Introduce mkrom

This commit is contained in:
Ryan Dwyer 2021-10-23 11:27:59 +10:00
parent 39a92c5970
commit 91ae15a32d
22 changed files with 2836 additions and 707 deletions

1
.gitignore vendored
View File

@ -18,3 +18,4 @@ src/assets/*/fonts/*.bin
src/assets/*/sequences/*.seq
src/assets/*/textures/*.bin
src/generated
tools/mkrom/mkrom

View File

@ -28,6 +28,7 @@ export ROMID
NTSC=0
PAL=0
JPN=0
ZIPMAGIC=0x0000
ifeq ($(ROMID),ntsc-beta)
NTSC=1
@ -37,22 +38,27 @@ endif
ifeq ($(ROMID),ntsc-1.0)
NTSC=1
VERSION=1
ZIPMAGIC=0xffff
endif
ifeq ($(ROMID),ntsc-final)
NTSC=1
VERSION=2
ZIPMAGIC=0xffff
endif
ifeq ($(ROMID),pal-beta)
PAL=1
VERSION=3
ZIPMAGIC=0x0c00
endif
ifeq ($(ROMID),pal-final)
PAL=1
VERSION=4
ZIPMAGIC=0xaf00
endif
ifeq ($(ROMID),jpn-final)
JPN=1
VERSION=5
ZIPMAGIC=0x0002
endif
DEFINES := VERSION=$(VERSION) NTSC=$(NTSC) PAL=$(PAL) JPN=$(JPN) PIRACYCHECKS=$(PIRACYCHECKS) _FINALROM=1
@ -233,7 +239,7 @@ ASSET_FILES := \
$(patsubst $(A_DIR)/files/guns/%.bin, $(B_DIR)/assets/files/G%Z, $(shell find $(A_DIR)/files/guns -name '*.bin')) \
$(patsubst $(A_DIR)/files/props/%.bin, $(B_DIR)/assets/files/P%Z, $(shell find $(A_DIR)/files/props -name '*.bin')) \
$(patsubst src/files/setup/%.c, $(B_DIR)/assets/files/U%Z, $(shell find src/files/setup -name '*.c')) \
$(patsubst $(A_DIR)/files/setup/%.bin, $(B_DIR)/assets/files/U%Z, $(shell find $(A_DIR)/files/setup -name '*.bin')) \
$(patsubst $(A_DIR)/files/setup/%.bin, $(B_DIR)/assets/files/U%Z, $(shell find $(A_DIR)/files -path '*/setup/*.bin')) \
$(patsubst $(A_DIR)/files/bgdata/%.seg, $(B_DIR)/assets/files/bgdata/%.seg, $(shell find $(A_DIR)/files/bgdata -name '*.seg')) \
$(patsubst src/files/bgdata/%_tiles.s, $(B_DIR)/assets/files/bgdata/%_tilesZ, $(shell find src/files/bgdata -name 'bg_*_tiles.s')) \
$(patsubst $(A_DIR)/files/bgdata/%_tiles.bin, $(B_DIR)/assets/files/bgdata/%_tilesZ, $(shell find $(A_DIR)/files/bgdata -name 'bg_*_tiles.bin')) \
@ -266,6 +272,7 @@ O_FILES := \
$(B_DIR)/assets/fonts/ocramd.o \
$(B_DIR)/assets/fonts/tahoma.o \
$(B_DIR)/assets/fonts/zurich.o \
$(B_DIR)/garbage.o \
$(B_DIR)/getitle.o \
$(B_DIR)/mpconfigs.o \
$(B_DIR)/assets/mpstrings/mpstringsE.o \
@ -308,24 +315,14 @@ $(B_DIR)/stage1.elf: $(O_FILES) ld/pd.ld
$(B_DIR)/stage1.bin: $(B_DIR)/stage1.elf
$(TOOLCHAIN)-objcopy $< $@ -O binary
# Stage2 takes stage1 and patches the piracy checksums.
$(B_DIR)/stage2.bin: $(B_DIR)/stage1.bin
@cp $< $@.tmp
ROMID=$(ROMID) PIRACYCHECKS=$(PIRACYCHECKS) tools/patchpiracysums $@.tmp $(B_DIR)/pd.map && mv $@.tmp $@
# Build the final ROM from stage1.bin using mkrom
# mkrom handles calculating the piracy checksums, zipping segments and
# calculating the ROM checksum.
$(B_DIR)/pd.z64: $(B_DIR)/stage1.bin tools/mkrom/mkrom
tools/mkrom/mkrom $(B_DIR)/stage1.bin $(B_DIR)/pd.map $(PIRACYCHECKS) $(ZIPMAGIC) $@
# Stage3 takes stage2, compresses the game/lib/data segments,
# inserts them and truncates the ROM to 32MB.
$(B_DIR)/stage3.bin: $(B_DIR)/stage2.bin $(B_DIR)/segments/gamezips.bin
@cp $< $@.tmp
tools/packrom $@.tmp && mv $@.tmp $@
$(B_DIR)/segments/gamezips.bin: $(B_DIR)/segments/game.bin
ROMID=$(ROMID) tools/mkgamezips
# The final ROM image takes stage3 and calculates the ROM CRC.
$(B_DIR)/pd.z64: $(B_DIR)/stage3.bin
@cp $< $@.tmp
tools/patchromcrc $@.tmp --write && mv $@.tmp $@
tools/mkrom/mkrom:
$(MAKE) -C tools/mkrom
################################################################################
# Testing Related
@ -338,7 +335,7 @@ CHECK_FILES := $(shell awk '{print $$2}' checksums.$(ROMID).md5)
test: $(CHECK_FILES)
@md5sum --quiet -c checksums.$(ROMID).md5
$(B_DIR)/segments/%.bin: $(B_DIR)/stage2.bin
$(B_DIR)/segments/%.bin: $(B_DIR)/pd.z64
@B_DIR=$(B_DIR) tools/extract-segment $*
################################################################################
@ -348,6 +345,9 @@ $(B_DIR)/assets/fonts/%.o: $(A_DIR)/fonts/%.bin
mkdir -p $(B_DIR)/assets/fonts
TOOLCHAIN=$(TOOLCHAIN) ROMID=$(ROMID) tools/mkrawobject $< $@
$(B_DIR)/garbage.o: $(E_DIR)/garbage.bin
TOOLCHAIN=$(TOOLCHAIN) ROMID=$(ROMID) tools/mkrawobject $< $@
$(B_DIR)/getitle.o: $(E_DIR)/getitle.bin
TOOLCHAIN=$(TOOLCHAIN) ROMID=$(ROMID) tools/mkrawobject $< $@

View File

@ -50,15 +50,13 @@
END_SEG(font##name)
/**
* Placeholder segments are used to mark the locations where zipped content will
* go. It's really just here so it appears in the linker map which allows
* packrom to find it. We only care about the start address for this segment,
* so the romheader object is used as it's nice and short.
* Placeholder segments are used to mark the
* locations where zipped content will go.
*/
#define PLACEHOLDER_SEGMENT(name) \
#define PLACEHOLDER_SEGMENT(name, len) \
BEGIN_SEG(name) \
{ \
build/ROMID/romheader.o (.data); \
. = . + len; \
} \
END_SEG(name)
@ -67,7 +65,7 @@
* ----------------------------------------------------------------------------
* The lib, data and game segments are compressed in the final ROM. To do this,
* we build them uncompressed here but place them past the end of the ROM, then
* a later script compresses them and writes them into the ROM.
* mkrom compresses them and writes them into the ROM.
*
* These constants are defining how much space is reserved for the compressed
* segments. If these segments are edited and grow to a point that their
@ -78,11 +76,15 @@
#if VERSION >= VERSION_PAL_FINAL
#define ROMALLOCATION_LIB 0x038800
#define ROMALLOCATION_DATA 0x015000
#define ROMALLOCATION_GAME 0x13d180
#else
#define ROMALLOCATION_GAME 0x1306f0
#elif VERSION >= VERSION_NTSC_1_0
#define ROMALLOCATION_LIB 0x038800
#define ROMALLOCATION_DATA 0x015000
#define ROMALLOCATION_GAME 0x151980
#define ROMALLOCATION_GAME 0x144ee0
#else
#define ROMALLOCATION_LIB 0x02f800
#define ROMALLOCATION_DATA 0x012000
#define ROMALLOCATION_GAME 0x112080
#endif
OUTPUT_ARCH (mips)
@ -203,7 +205,7 @@ SECTIONS
__rompos = 0x00001050;
PLACEHOLDER_SEGMENT(libzip)
PLACEHOLDER_SEGMENT(libzip, ROMALLOCATION_LIB)
__rompos = 0x02000000;
__rampos = 0x70001050;
@ -227,7 +229,7 @@ SECTIONS
__savedrompos = __rompos;
__rompos = _libzipSegmentRomStart + ROMALLOCATION_LIB;
PLACEHOLDER_SEGMENT(datazip)
PLACEHOLDER_SEGMENT(datazip, ROMALLOCATION_DATA)
__rompos = __savedrompos;
__rampos = 0x80001050 + SIZEOF(.lib);
@ -244,8 +246,6 @@ SECTIONS
}
END_SEG(data)
_datazipSegmentRomEnd = _datazipSegmentRomStart + ROMALLOCATION_DATA;
rspbootTextStart = _dataSegmentStart;
rspbootTextEnd = rspbootTextStart + 0xd0;
gspTextStart = rspbootTextEnd;
@ -300,7 +300,8 @@ SECTIONS
* -------------------------------------------------------------------------
*/
PLACEHOLDER_SEGMENT(gamezip)
PLACEHOLDER_SEGMENT(gamezip, ROMALLOCATION_GAME)
__rompos = __savedrompos;
__rampos = 0x7f000000;
@ -311,6 +312,23 @@ SECTIONS
}
END_SEG(game)
__rompos = _inflateSegmentRomEnd + ROMALLOCATION_GAME;
/***************************************************************************
* garbage
* -------------------------------------------------------------------------
* ROM range: 0x00194b30 - 0x001a15c0
* RAM range: N/A
* -------------------------------------------------------------------------
* On NTSC, this contains unused JPN fonts. On PAL, not sure what this is.
*/
BEGIN_SEG(garbage)
{
build/ROMID/garbage.o (.data);
}
END_SEG(garbage)
/***************************************************************************
* animations
* -------------------------------------------------------------------------
@ -319,8 +337,6 @@ SECTIONS
* -------------------------------------------------------------------------
*/
__rompos = _inflateSegmentRomEnd + ROMALLOCATION_GAME;
BEGIN_SEG(animations)
{
build/ROMID/assets/animations.o (.data);

View File

@ -26,8 +26,7 @@ class Extractor:
self.extract_firingrange()
self.extract_fonts()
self.extract_game()
self.extract_garbage1()
self.extract_garbage2()
self.extract_garbage()
self.extract_getitle()
self.extract_lib()
self.extract_mpconfigs()
@ -188,15 +187,10 @@ class Extractor:
def extract_inflate(self):
self.write_extracted('inflate.bin', self.rom[0x4e850:0x4fc40])
def extract_garbage1(self):
start = self.val('garbage1')
end = self.val('data')
self.write_extracted('garbage1.bin', self.rom[start:end])
def extract_garbage2(self):
start = self.val('garbage2')
def extract_garbage(self):
start = self.val('garbage')
end = self.val('animations')
self.write_extracted('garbage2.bin', self.rom[start:end])
self.write_extracted('garbage.bin', self.rom[start:end])
# In all versions, lib starts at 0x1050 and is compressed from 0x3050 onwards
def extract_lib(self):
@ -461,11 +455,10 @@ class Extractor:
vals = {
# ntsc-beta ntsc-1.0 ntsc-final pal-beta pal-final jpn-final
'game': [0x43c40, 0x4fc40, 0x4fc40, 0x4fc40, 0x4fc40, 0x4fc40, ],
'garbage1': [0x0, 0x2ea22, 0x2ea6c, 0x0, 0x2eb21, 0x0, ],
'files': [0x29160, 0x28080, 0x28080, 0x29b90, 0x28910, 0x28800, ],
'data': [0x30850, 0x39850, 0x39850, 0x39850, 0x39850, 0x39850, ],
'garbage2': [0x0, 0x1574a0, 0x157800, 0x0, 0x158038, 0x0, ],
'game': [0x43c40, 0x4fc40, 0x4fc40, 0x4fc40, 0x4fc40, 0x4fc40, ],
'garbage': [0x155cc0, 0x194b20, 0x194b20, 0x0, 0x180330, 0x0, ],
'animations': [0x155dc0, 0x1a15c0, 0x1a15c0, 0x18cdc0, 0x18cdc0, 0x190c50, ],
'mpconfigs': [0x785130, 0x7d0a40, 0x7d0a40, 0x7bc240, 0x7bc240, 0x7c00d0, ],
'firingrange': [0x79e410, 0x7e9d20, 0x7e9d20, 0x7d5520, 0x7d5520, 0x7d93b0, ],

View File

@ -1,12 +1,82 @@
#!/bin/bash
#!/usr/bin/env python3
# Extracts a segment from the binary that was produced by ld.
# Extracts a segment from the binary that was produced by ld
# and unzips it if necessary. Used for `make test`.
segment=$1
import os
import re
import sys
import zlib
pos=$(grep "^\.$segment " $B_DIR/pd.map | awk '{print $6}')
len=$(grep "^\.$segment " $B_DIR/pd.map | awk '{print $3}')
def bdir():
return 'build/%s' % os.environ['ROMID']
mkdir -p $B_DIR/segments
dd if=$B_DIR/stage2.bin of=$B_DIR/segments/$segment.bin skip=$(($pos)) iflag=skip_bytes bs=$(($len)) count=1 status=none
def find_segment(segname):
fd = open(bdir() + '/pd.map', 'r')
ldmap = fd.read()
fd.close()
start = re.findall(r'0x([0-9a-f]+)\s+_' + segname + 'SegmentRomStart = ', ldmap)[0]
end = re.findall(r'0x([0-9a-f]+)\s+_' + segname + 'SegmentRomEnd = ', ldmap)[0]
start = int(start, 16)
end = int(end, 16)
return (start, end)
def inflate(buffer):
header = int.from_bytes(buffer[0:2], 'big')
assert(header == 0x1173)
return zlib.decompress(buffer[5:], wbits=-15)
def inflate_game(buffer):
binary = bytes()
i = 0
while True:
offset = int.from_bytes(buffer[i:i+4], 'big') + 2
peek = int.from_bytes(buffer[offset:offset+2], 'big')
if peek == 0:
break
part = inflate(buffer[offset:offset+0x1000])
binary += part
if len(part) != 0x1000:
break
i += 4
return binary
def inflate_lib(buffer):
return buffer[0:0x2000] + inflate(buffer[0x2000:])
def inflate_data(buffer):
return inflate(buffer)
def main():
segname = sys.argv[1]
loadname = sys.argv[1]
if segname in ['lib', 'game', 'data']:
loadname += 'zip'
(start, end) = find_segment(loadname)
fd = open(bdir() + '/pd.z64', 'rb')
fd.seek(start)
buffer = fd.read(end - start)
fd.close()
if segname == 'lib':
buffer = inflate_lib(buffer)
elif segname == 'game':
buffer = inflate_game(buffer)
elif segname == 'data':
buffer = inflate_data(buffer)
os.makedirs(bdir() + '/segments', exist_ok=True)
fd = open(bdir() + '/segments/' + segname + '.bin', 'wb')
fd.write(buffer)
fd.close()
main()

File diff suppressed because one or more lines are too long

7
tools/mkrom/Makefile Normal file
View File

@ -0,0 +1,7 @@
C_FILES = $(wildcard *.c)
%.o: %.c
gcc -O3 %< -o $@
mkrom: $(C_FILES)
gcc -O3 $(C_FILES) -o mkrom

152
tools/mkrom/game.c Normal file
View File

@ -0,0 +1,152 @@
#include <arpa/inet.h>
#include <memory.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include "mkrom.h"
extern struct state state;
/**
* This file handles creation of the gamezips segment.
*
* Before mkrom is called, the game segment (uncompressed) is placed past the
* end of the ROM by ld. This segment must be split into 4KB chunks. Each chunk
* is zipped and then placed in its final location within the ROM.
*
* The format of the gamezips segment is:
* - Array of offsets to each chunk, where each offset is 4 bytes and relative
* to the start of the gamezips segment.
* - A final offset that points to the end of the final chunk.
* - Chunk data, where each chunk consists of:
* - A 2 byte checksum of the uncompressed chunk.
* - Zip data (starting with 0x1173001000).
* - Optional single byte to align it to the next 2 byte boundary.
* The added byte is data from the previous chunk.
*/
/**
* Calculate the checksum of this chunk's raw data.
*
* The game never verifies this, but it exists in the ROM so it has to be
* calculated by mkrom.
*
* It's a simple sum of each word, but then it gets stored as a short so the
* upper half is lost.
*/
static uint32_t crc(uint8_t *buffer, size_t len)
{
uint32_t sum = 0;
uint32_t offset;
for (offset = 0; offset < len; offset += 4) {
sum += ntohl(*(uint32_t *) &buffer[offset]);
}
return sum;
}
/**
* Create a game chunk. We just calculate and prepend the checksum, then call
* rarezip() which does the zipping and adding of the 0x1173 header.
*/
static void create_chunk(uint8_t *outbuf, size_t *outlen, uint8_t *inbuf, size_t inlen)
{
uint32_t sum = crc(inbuf, inlen);
outbuf[0] = (sum >> 8) & 0xff;
outbuf[1] = sum & 0xff;
rarezip(&outbuf[2], outlen, inbuf, inlen, state.zipmagic);
*outlen += 2;
}
/**
* Generate the gamezips segment.
*
* This segment starts with an offset table followed by the chunk data.
* However, we need to keep the offset table zeroed here and build the table
* in a different allocation because the ROM is packed with a duplicate of
* this segment which has an empty offset table.
*
* So this function creates:
* - state.gamezips, which is big enough to hold the offset table plus zips,
* but has the offset table zeroed
* - state.gametable, which is just the table and has the entries populated.
*
* Each chunk is aligned to an even byte. If alignment needs to occur, the extra
* byte is taken from the same offset in the previous chunk. In other words, the
* same output buffer is used for every chunk and it's not cleared between uses.
*/
void game_zip(void)
{
uint32_t end;
size_t len;
size_t num_chunks;
uint32_t tableoffset;
uint32_t dataoffset;
size_t len_remaining;
uint8_t outscratch[0x1100];
uint32_t offset;
uint32_t tablelen;
memset(outscratch, 0, 0x1000);
// Find the game's position in the ROM and calculate the number of chunks
map_get_segment_rompos("game", &offset, &end);
len = end - offset;
num_chunks = len / 0x1000;
if (len % 0x1000) {
num_chunks++;
}
// Allocate buffers
tablelen = num_chunks * 4 + 4;
state.gamezips = malloc(tablelen + len);
state.gametable = malloc(tablelen);
state.gametablelen = tablelen;
memset(state.gamezips, 0, tablelen);
tableoffset = 0;
dataoffset = tablelen;
len_remaining = len;
// Generate the chunks
while (offset < end) {
size_t chunkoriglen = len_remaining >= 0x1000 ? 0x1000 : len_remaining;
size_t chunklen;
// Write the table entry
state.gametable[tableoffset + 0] = (dataoffset >> 24) & 0xff;
state.gametable[tableoffset + 1] = (dataoffset >> 16) & 0xff;
state.gametable[tableoffset + 2] = (dataoffset >> 8) & 0xff;
state.gametable[tableoffset + 3] = dataoffset & 0xff;
tableoffset += 4;
// Write the data
create_chunk(outscratch, &chunklen, &state.rom[offset], chunkoriglen);
chunklen += chunklen % 2;
memcpy(&state.gamezips[dataoffset], outscratch, chunklen);
dataoffset += chunklen;
len_remaining -= 0x1000;
offset += 0x1000;
}
// The table contains an additional pointer to the end of the final chunk
state.gametable[tableoffset + 0] = (dataoffset >> 24) & 0xff;
state.gametable[tableoffset + 1] = (dataoffset >> 16) & 0xff;
state.gametable[tableoffset + 2] = (dataoffset >> 8) & 0xff;
state.gametable[tableoffset + 3] = dataoffset & 0xff;
state.gamezipslen = dataoffset;
}

178
tools/mkrom/gzip.h Normal file
View File

@ -0,0 +1,178 @@
/* gzip.h -- common declarations for all gzip modules
* Copyright (C) 1992-1993 Jean-loup Gailly.
* This is free software; you can redistribute it and/or modify it under the
* terms of the GNU General Public License, see the file COPYING.
*/
#if defined(__STDC__)
# define OF(args) args
#else
# define OF(args) ()
#endif
#ifdef __STDC__
typedef void *voidp;
#else
typedef char *voidp;
#endif
/* I don't like nested includes, but the string and io functions are used
* too often
*/
#include <stdio.h>
#if !defined(NO_STRING_H) || defined(STDC_HEADERS)
# include <string.h>
# if !defined(STDC_HEADERS) && !defined(NO_MEMORY_H) && !defined(__GNUC__)
# include <memory.h>
# endif
# define memzero(s, n) memset ((voidp)(s), 0, (n))
#else
# include <strings.h>
# define strchr index
# define strrchr rindex
# define memcpy(d, s, n) bcopy((s), (d), (n))
# define memcmp(s1, s2, n) bcmp((s1), (s2), (n))
# define memzero(s, n) bzero((s), (n))
#endif
#ifndef RETSIGTYPE
# define RETSIGTYPE void
#endif
#define local static
typedef unsigned char uch;
typedef unsigned short ush;
typedef unsigned long ulg;
/* Compression methods (see algorithm.doc) */
#define STORED 0
#define COMPRESSED 1
#define PACKED 2
#define LZHED 3
/* methods 4 to 7 reserved */
#define DEFLATED 8
#define MAX_METHODS 9
#ifndef INBUFSIZ
# ifdef SMALL_MEM
# define INBUFSIZ 0x2000 /* input buffer size */
# else
# define INBUFSIZ 0x8000 /* input buffer size */
# endif
#endif
#define INBUF_EXTRA 64 /* required by unlzw() */
#ifndef OUTBUFSIZ
# ifdef SMALL_MEM
# define OUTBUFSIZ 8192 /* output buffer size */
# else
# define OUTBUFSIZ 16384 /* output buffer size */
# endif
#endif
#define OUTBUF_EXTRA 2048 /* required by unlzw() */
#ifndef DIST_BUFSIZE
# ifdef SMALL_MEM
# define DIST_BUFSIZE 0x2000 /* buffer for distances, see trees.c */
# else
# define DIST_BUFSIZE 0x8000 /* buffer for distances, see trees.c */
# endif
#endif
#define EXTERN(type, array) extern type array[]
#define DECLARE(type, array, size) type array[size]
#define ALLOC(type, array, size)
#define FREE(array)
EXTERN(uch, inbuf); /* input buffer */
EXTERN(uch, outbuf); /* output buffer */
EXTERN(ush, d_buf); /* buffer for distances, see trees.c */
EXTERN(uch, window); /* Sliding window and suffix table (unlzw) */
#define tab_suffix window
#ifndef MAXSEG_64K
# define tab_prefix prev /* hash link (see deflate.c) */
# define head (prev+WSIZE) /* hash head (see deflate.c) */
EXTERN(ush, tab_prefix); /* prefix code (see unlzw.c) */
#else
# define tab_prefix0 prev
# define head tab_prefix1
EXTERN(ush, tab_prefix0); /* prefix for even codes */
EXTERN(ush, tab_prefix1); /* prefix for odd codes */
#endif
extern unsigned outcnt; /* bytes in output buffer */
/* for compatibility with old zip sources (to be cleaned) */
typedef int file_t; /* Do not use stdio */
#define NO_FILE (-1) /* in memory compression */
/* internal file attribute */
#define UNKNOWN 0xffff
#define BINARY 0
#define ASCII 1
#ifndef WSIZE
# define WSIZE 0x8000 /* window size--must be a power of two, and */
#endif /* at least 32K for zip's deflate method */
#define MIN_MATCH 3
#define MAX_MATCH 258
/* The minimum and maximum match lengths */
#define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
/* Minimum amount of lookahead, except at the end of the input file.
* See deflate.c for comments about the MIN_MATCH+1.
*/
#define MAX_DIST (WSIZE-MIN_LOOKAHEAD)
/* In order to simplify the code, particularly on 16 bit machines, match
* distances are limited to MAX_DIST instead of WSIZE.
*/
/* put_byte is used for the compressed output, put_ubyte for the
* uncompressed output. However unlzw() uses window for its
* suffix table instead of its output buffer, so it does not use put_ubyte
* (to be cleaned up).
*/
#define put_byte(c) {outbuf[outcnt++]=(uch)(c); if (outcnt==OUTBUFSIZ)\
flush_outbuf();}
/* Output a 16 bit value, lsb first */
#define put_short(w) \
{ if (outcnt < OUTBUFSIZ-2) { \
outbuf[outcnt++] = (uch) ((w) & 0xff); \
outbuf[outcnt++] = (uch) ((ush)(w) >> 8); \
} else { \
put_byte((uch)((w) & 0xff)); \
put_byte((uch)((ush)(w) >> 8)); \
} \
}
#define seekable() 0 /* force sequential output */
/* in gzip.c */
RETSIGTYPE abort_gzip OF((void));
/* in deflate.c */
void lm_init OF((void));
ulg deflate OF((void));
/* in trees.c */
void ct_init OF((void));
int ct_tally OF((int dist, int lc));
ulg flush_block OF((char *buf, ulg stored_len, int eof));
/* in bits.c */
void bi_init OF((void));
void send_bits OF((int value, int length));
unsigned bi_reverse OF((unsigned value, int length));
void bi_windup OF((void));
void copy_block OF((char *buf, unsigned len, int header));
extern int read_buf OF((char *buf, unsigned size));
/* in util.c: */
extern void flush_outbuf OF((void));
extern void write_buf OF((voidp buf, unsigned cnt));
extern void warn OF((char *a, char *b));

118
tools/mkrom/gzip_bits.c Normal file
View File

@ -0,0 +1,118 @@
/* bits.c -- output variable-length bit strings
* Copyright (C) 1992-1993 Jean-loup Gailly
* This is free software; you can redistribute it and/or modify it under the
* terms of the GNU General Public License, see the file COPYING.
*/
#include "gzip.h"
#include "crypt.h"
/* ===========================================================================
* Local data used by the "bit string" routines.
*/
local unsigned short bi_buf;
/* Output buffer. bits are inserted starting at the bottom (least significant
* bits).
*/
#define Buf_size (8 * 2*sizeof(char))
/* Number of bits used within bi_buf. (bi_buf might be implemented on
* more than 16 bits on some systems.)
*/
local int bi_valid;
/* Number of valid bits in bi_buf. All bits above the last valid bit
* are always zero.
*/
/* ===========================================================================
* Initialize the bit string routines.
*/
void bi_init(void)
{
bi_buf = 0;
bi_valid = 0;
}
/* ===========================================================================
* Send a value on a given number of bits.
* IN assertion: length <= 16 and value fits in length bits.
*/
void send_bits(value, length)
int value; /* value to send */
int length; /* number of bits */
{
/* If not enough room in bi_buf, use (valid) bits from bi_buf and
* (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
* unused bits in value.
*/
if (bi_valid > (int)Buf_size - length) {
bi_buf |= (value << bi_valid);
put_short(bi_buf);
bi_buf = (ush)value >> (Buf_size - bi_valid);
bi_valid += length - Buf_size;
} else {
bi_buf |= value << bi_valid;
bi_valid += length;
}
}
/* ===========================================================================
* Reverse the first len bits of a code, using straightforward code (a faster
* method would use a table)
* IN assertion: 1 <= len <= 15
*/
unsigned bi_reverse(code, len)
unsigned code; /* the value to invert */
int len; /* its bit length */
{
register unsigned res = 0;
do {
res |= code & 1;
code >>= 1, res <<= 1;
} while (--len > 0);
return res >> 1;
}
/* ===========================================================================
* Write out any remaining bits in an incomplete byte.
*/
void bi_windup()
{
if (bi_valid > 8) {
put_short(bi_buf);
} else if (bi_valid > 0) {
put_byte(bi_buf);
}
bi_buf = 0;
bi_valid = 0;
}
/* ===========================================================================
* Copy a stored block to the zip file, storing first the length and its
* one's complement if requested.
*/
void copy_block(buf, len, header)
char *buf; /* the input data */
unsigned len; /* its length */
int header; /* true if block header must be written */
{
bi_windup(); /* align on byte boundary */
if (header) {
put_short((ush)len);
put_short((ush)~len);
}
while (len--) {
put_byte(*buf++);
}
}
void flush_outbuf()
{
if (outcnt == 0) return;
write_buf((char *)outbuf, outcnt);
outcnt = 0;
}

481
tools/mkrom/gzip_deflate.c Normal file
View File

@ -0,0 +1,481 @@
#include <stdio.h>
#include "gzip.h"
/**
* This file is based off gzip 1.2.4, but with unused functionality removed.
* No functionality has been added or changed.
*/
/* Compile with MEDIUM_MEM to reduce the memory requirements or
* with SMALL_MEM to use as little memory as possible. Use BIG_MEM if the
* entire input file can be held in memory (not possible on 16 bit systems).
* Warning: defining these symbols affects HASH_BITS (see below) and thus
* affects the compression ratio. The compressed output
* is still correct, and might even be smaller in some cases.
*/
#ifndef HASH_BITS
# define HASH_BITS 15
/* For portability to 16 bit machines, do not use values above 15. */
#endif
/* To save space (see unlzw.c), we overlay prev+head with tab_prefix and
* window with tab_suffix. Check that we can do this:
*/
#define HASH_SIZE (unsigned)(1<<HASH_BITS)
#define HASH_MASK (HASH_SIZE-1)
#define WMASK (WSIZE-1)
/* HASH_SIZE and WSIZE must be powers of two */
#define NIL 0
/* Tail of hash chains */
#define FAST 4
#define SLOW 2
/* speed options for the general purpose bit flag */
#ifndef TOO_FAR
# define TOO_FAR 4096
#endif
/* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
/* ===========================================================================
* Local data used by the "longest match" routines.
*/
typedef ush Pos;
typedef unsigned IPos;
/* A Pos is an index in the character window. We use short instead of int to
* save space in the various tables. IPos is used only for parameter passing.
*/
/* DECLARE(uch, window, 2L*WSIZE); */
/* Sliding window. Input bytes are read into the second half of the window,
* and move to the first half later to keep a dictionary of at least WSIZE
* bytes. With this organization, matches are limited to a distance of
* WSIZE-MAX_MATCH bytes, but this ensures that IO is always
* performed with a length multiple of the block size. Also, it limits
* the window size to 64K, which is quite useful on MSDOS.
* To do: limit the window size to WSIZE+BSZ if SMALL_MEM (the code would
* be less efficient).
*/
/* DECLARE(Pos, prev, WSIZE); */
/* Link to older string with same hash index. To limit the size of this
* array to 64K, this link is maintained only for the last 32K strings.
* An index in this array is thus a window index modulo 32K.
*/
/* DECLARE(Pos, head, 1<<HASH_BITS); */
/* Heads of the hash chains or NIL. */
ulg window_size = (ulg)2*WSIZE;
/* window size, 2*WSIZE except for MMAP or BIG_MEM, where it is the
* input file length plus MIN_LOOKAHEAD.
*/
long block_start;
/* window position at the beginning of the current output block. Gets
* negative when the window is moved backwards.
*/
local unsigned ins_h; /* hash index of string to be inserted */
#define H_SHIFT ((HASH_BITS+MIN_MATCH-1)/MIN_MATCH)
/* Number of bits by which ins_h and del_h must be shifted at each
* input step. It must be such that after MIN_MATCH steps, the oldest
* byte no longer takes part in the hash key, that is:
* H_SHIFT * MIN_MATCH >= HASH_BITS
*/
unsigned int prev_length;
/* Length of the best match at previous step. Matches not greater than this
* are discarded. This is used in the lazy match evaluation.
*/
unsigned strstart; /* start of string to insert */
unsigned match_start; /* start of matching string */
local int eofile; /* flag set at end of input file */
unsigned lookahead; /* number of valid bytes ahead in window */
unsigned max_chain_length;
/* To speed up deflation, hash chains are never searched beyond this length.
* A higher limit improves compression ratio but degrades the speed.
*/
local unsigned int max_lazy_match;
/* Attempt to find a better match only when the current match is strictly
* smaller than this value. This mechanism is used only for compression
* levels >= 4.
*/
#define max_insert_length max_lazy_match
/* Insert new strings in the hash table only if the match length
* is not greater than this length. This saves time but degrades compression.
* max_insert_length is used only for compression levels <= 3.
*/
unsigned good_match;
/* Use a faster search when the previous match is longer than this */
/* Values for max_lazy_match, good_match and max_chain_length, depending on
* the desired pack level (0..9). The values given below have been tuned to
* exclude worst case performance for pathological files. Better values may be
* found for specific files.
*/
typedef struct config {
ush good_length; /* reduce lazy search above this match length */
ush max_lazy; /* do not perform lazy search above this match length */
ush nice_length; /* quit search above this match length */
ush max_chain;
} config;
#ifdef FULL_SEARCH
# define nice_match MAX_MATCH
#else
int nice_match; /* Stop searching when current match exceeds this */
#endif
local config configuration_table[10] = {
/* good lazy nice chain */
/* 0 */ {0, 0, 0, 0}, /* store only */
/* 1 */ {4, 4, 8, 4}, /* maximum speed, no lazy matches */
/* 2 */ {4, 5, 16, 8},
/* 3 */ {4, 6, 32, 32},
/* 4 */ {4, 4, 16, 16}, /* lazy matches */
/* 5 */ {8, 16, 32, 32},
/* 6 */ {8, 16, 128, 128},
/* 7 */ {8, 32, 128, 256},
/* 8 */ {32, 128, 258, 1024},
/* 9 */ {32, 258, 258, 4096}}; /* maximum compression */
/* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
* For deflate_fast() (levels <= 3) good is ignored and lazy has a different
* meaning.
*/
#define EQUAL 0
/* result of memcmp for equal strings */
/* ===========================================================================
* Prototypes for local functions.
*/
local void fill_window OF((void));
int longest_match OF((IPos cur_match));
/* ===========================================================================
* Update a hash value with the given input byte
* IN assertion: all calls to to UPDATE_HASH are made with consecutive
* input characters, so that a running hash key can be computed from the
* previous key instead of complete recalculation each time.
*/
#define UPDATE_HASH(h,c) (h = (((h)<<H_SHIFT) ^ (c)) & HASH_MASK)
/* ===========================================================================
* Insert string s in the dictionary and set match_head to the previous head
* of the hash chain (the most recent string with same hash key). Return
* the previous length of the hash chain.
* IN assertion: all calls to to INSERT_STRING are made with consecutive
* input characters and the first MIN_MATCH bytes of s are valid
* (except for the last MIN_MATCH-1 bytes of the input file).
*/
#define INSERT_STRING(s, match_head) \
(UPDATE_HASH(ins_h, window[(s) + MIN_MATCH-1]), \
prev[(s) & WMASK] = match_head = head[ins_h], \
head[ins_h] = (s))
/* ===========================================================================
* Initialize the "longest match" routines for a new file
*/
void lm_init (void)
{
register unsigned j;
/* Initialize the hash table. */
memzero((char*)head, HASH_SIZE*sizeof(*head));
/* prev will be initialized on the fly */
/* Set the default configuration parameters: */
max_lazy_match = configuration_table[9].max_lazy;
good_match = configuration_table[9].good_length;
nice_match = configuration_table[9].nice_length;
max_chain_length = configuration_table[9].max_chain;
/* ??? reduce max_chain_length for binary files */
strstart = 0;
block_start = 0L;
lookahead = read_buf((char*)window,
sizeof(int) <= 2 ? (unsigned)WSIZE : 2*WSIZE);
if (lookahead == 0 || lookahead == (unsigned)EOF) {
eofile = 1, lookahead = 0;
return;
}
eofile = 0;
/* Make sure that we always have enough lookahead. This is important
* if input comes from a device such as a tty.
*/
while (lookahead < MIN_LOOKAHEAD && !eofile) fill_window();
ins_h = 0;
for (j=0; j<MIN_MATCH-1; j++) UPDATE_HASH(ins_h, window[j]);
/* If lookahead < MIN_MATCH, ins_h is garbage, but this is
* not important since only literal bytes will be emitted.
*/
}
/* ===========================================================================
* Set match_start to the longest match starting at the given string and
* return its length. Matches shorter or equal to prev_length are discarded,
* in which case the result is equal to prev_length and match_start is
* garbage.
* IN assertions: cur_match is the head of the hash chain for the current
* string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
*/
/* For MSDOS, OS/2 and 386 Unix, an optimized version is in match.asm or
* match.s. The code is functionally equivalent, so you can use the C version
* if desired.
*/
int longest_match(cur_match)
IPos cur_match; /* current match */
{
unsigned chain_length = max_chain_length; /* max hash chain length */
register uch *scan = window + strstart; /* current string */
register uch *match; /* matched string */
register int len; /* length of current match */
int best_len = prev_length; /* best match length so far */
IPos limit = strstart > (IPos)MAX_DIST ? strstart - (IPos)MAX_DIST : NIL;
/* Stop when cur_match becomes <= limit. To simplify the code,
* we prevent matches with the string of window index 0.
*/
/* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
* It is easy to get rid of this optimization if necessary.
*/
register uch *strend = window + strstart + MAX_MATCH;
register uch scan_end1 = scan[best_len-1];
register uch scan_end = scan[best_len];
/* Do not waste too much time if we already have a good match: */
if (prev_length >= good_match) {
chain_length >>= 2;
}
// Iterate backwards through the buffer
do {
match = window + cur_match;
/* Skip to next match if the match length cannot increase
* or if the match length is less than 2:
*/
if (match[best_len] != scan_end ||
match[best_len-1] != scan_end1 ||
*match != *scan ||
*++match != scan[1]) {
continue;
}
/* The check at best_len-1 can be removed because it will be made
* again later. (This heuristic is not always a win.)
* It is not necessary to compare scan[2] and match[2] since they
* are always equal when the other bytes match, given that
* the hash keys are equal and that HASH_BITS >= 8.
*/
scan += 2, match++;
/* We check for insufficient lookahead only every 8th comparison;
* the 256th check will be made at strstart+258.
*/
do {
} while (*++scan == *++match && *++scan == *++match &&
*++scan == *++match && *++scan == *++match &&
*++scan == *++match && *++scan == *++match &&
*++scan == *++match && *++scan == *++match &&
scan < strend);
len = MAX_MATCH - (int)(strend - scan);
scan = strend - MAX_MATCH;
if (len > best_len) {
match_start = cur_match;
best_len = len;
if (len >= nice_match) break;
scan_end1 = scan[best_len-1];
scan_end = scan[best_len];
}
} while ((cur_match = prev[cur_match & WMASK]) > limit
&& --chain_length != 0);
return best_len;
}
/* ===========================================================================
* Fill the window when the lookahead becomes insufficient.
* Updates strstart and lookahead, and sets eofile if end of input file.
* IN assertion: lookahead < MIN_LOOKAHEAD && strstart + lookahead > 0
* OUT assertions: at least one byte has been read, or eofile is set;
* file reads are performed for at least two bytes (required for the
* translate_eol option).
*/
local void fill_window()
{
register unsigned n, m;
unsigned more = (unsigned)(window_size - (ulg)lookahead - (ulg)strstart);
/* Amount of free space at the end of the window. */
/* If the window is almost full and there is insufficient lookahead,
* move the upper half to the lower one to make room in the upper half.
*/
if (more == (unsigned)EOF) {
/* Very unlikely, but possible on 16 bit machine if strstart == 0
* and lookahead == 1 (input done one byte at time)
*/
more--;
} else if (strstart >= WSIZE+MAX_DIST) {
/* By the IN assertion, the window is not empty so we can't confuse
* more == 0 with more == 64K on a 16 bit machine.
*/
memcpy((char*)window, (char*)window+WSIZE, (unsigned)WSIZE);
match_start -= WSIZE;
strstart -= WSIZE; /* we now have strstart >= MAX_DIST: */
block_start -= (long) WSIZE;
for (n = 0; n < HASH_SIZE; n++) {
m = head[n];
head[n] = (Pos)(m >= WSIZE ? m-WSIZE : NIL);
}
for (n = 0; n < WSIZE; n++) {
m = prev[n];
prev[n] = (Pos)(m >= WSIZE ? m-WSIZE : NIL);
/* If n is not on any hash chain, prev[n] is garbage but
* its value will never be used.
*/
}
more += WSIZE;
}
/* At this point, more >= 2 */
if (!eofile) {
n = read_buf((char*)window+strstart+lookahead, more);
if (n == 0 || n == (unsigned)EOF) {
eofile = 1;
} else {
lookahead += n;
}
}
}
/* ===========================================================================
* Flush the current block, with given end-of-file flag.
* IN assertion: strstart is set to the end of the current match.
*/
#define FLUSH_BLOCK(eof) \
flush_block(block_start >= 0L ? (char*)&window[(unsigned)block_start] : \
(char*)NULL, (long)strstart - block_start, (eof))
/* ===========================================================================
* Processes a new input file and return its compressed length. We use a lazy
* evaluation for matches: a match is finally adopted only if there is
* no better match at the next window position.
*/
ulg deflate()
{
IPos hash_head; /* head of hash chain */
IPos prev_match; /* previous match */
int flush; /* set if current block must be flushed */
int match_available = 0; /* set if previous match exists */
register unsigned match_length = MIN_MATCH-1; /* length of best match */
/* Process the input block. */
while (lookahead != 0) {
/* Insert the string window[strstart .. strstart+2] in the
* dictionary, and set hash_head to the head of the hash chain:
*/
INSERT_STRING(strstart, hash_head);
/* Find the longest match, discarding those <= prev_length. */
prev_length = match_length, prev_match = match_start;
match_length = MIN_MATCH-1;
if (hash_head != NIL && prev_length < max_lazy_match &&
strstart - hash_head <= MAX_DIST) {
/* To simplify the code, we prevent matches with the string
* of window index 0 (in particular we have to avoid a match
* of the string with itself at the start of the input file).
*/
match_length = longest_match (hash_head);
/* longest_match() sets match_start */
if (match_length > lookahead) match_length = lookahead;
/* Ignore a length 3 match if it is too distant: */
if (match_length == MIN_MATCH && strstart-match_start > TOO_FAR){
/* If prev_match is also MIN_MATCH, match_start is garbage
* but we will ignore the current match anyway.
*/
match_length--;
}
}
/* If there was a match at the previous step and the current
* match is not better, output the previous match:
*/
if (prev_length >= MIN_MATCH && match_length <= prev_length) {
flush = ct_tally(strstart-1-prev_match, prev_length - MIN_MATCH);
/* Insert in hash table all strings up to the end of the match.
* strstart-1 and strstart are already inserted.
*/
lookahead -= prev_length-1;
prev_length -= 2;
do {
strstart++;
INSERT_STRING(strstart, hash_head);
/* strstart never exceeds WSIZE-MAX_MATCH, so there are
* always MIN_MATCH bytes ahead. If lookahead < MIN_MATCH
* these bytes are garbage, but it does not matter since the
* next lookahead bytes will always be emitted as literals.
*/
} while (--prev_length != 0);
match_available = 0;
match_length = MIN_MATCH-1;
strstart++;
if (flush) FLUSH_BLOCK(0), block_start = strstart;
} else if (match_available) {
/* If there was no match at the previous position, output a
* single literal. If there was a match but the current match
* is longer, truncate the previous match to a single literal.
*/
if (ct_tally (0, window[strstart-1])) {
FLUSH_BLOCK(0), block_start = strstart;
}
strstart++;
lookahead--;
} else {
/* There is no previous match to compare with, wait for
* the next step to decide.
*/
match_available = 1;
strstart++;
lookahead--;
}
/* Make sure that we always have enough lookahead, except
* at the end of the input file. We need MAX_MATCH bytes
* for the next match, plus MIN_MATCH bytes to insert the
* string following the next match.
*/
while (lookahead < MIN_LOOKAHEAD && !eofile) fill_window();
}
if (match_available) ct_tally (0, window[strstart-1]);
return FLUSH_BLOCK(1); /* eof */
}

911
tools/mkrom/gzip_trees.c Normal file
View File

@ -0,0 +1,911 @@
/* trees.c -- output deflated data using Huffman coding
* Copyright (C) 1992-1993 Jean-loup Gailly
* This is free software; you can redistribute it and/or modify it under the
* terms of the GNU General Public License, see the file COPYING.
*/
#include <ctype.h>
#include "gzip.h"
/* ===========================================================================
* Constants
*/
#define MAX_BITS 15
/* All codes must not exceed MAX_BITS bits */
#define MAX_BL_BITS 7
/* Bit length codes must not exceed MAX_BL_BITS bits */
#define LENGTH_CODES 29
/* number of length codes, not counting the special END_BLOCK code */
#define LITERALS 256
/* number of literal bytes 0..255 */
#define END_BLOCK 256
/* end of block literal code */
#define L_CODES (LITERALS+1+LENGTH_CODES)
/* number of Literal or Length codes, including the END_BLOCK code */
#define D_CODES 30
/* number of distance codes */
#define BL_CODES 19
/* number of codes used to transfer the bit lengths */
local int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
= {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
local int extra_dbits[D_CODES] /* extra bits for each distance code */
= {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
local int extra_blbits[BL_CODES]/* extra bits for each bit length code */
= {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
#define STORED_BLOCK 0
#define STATIC_TREES 1
#define DYN_TREES 2
/* The three kinds of block type */
#ifndef LIT_BUFSIZE
# ifdef SMALL_MEM
# define LIT_BUFSIZE 0x2000
# else
# ifdef MEDIUM_MEM
# define LIT_BUFSIZE 0x4000
# else
# define LIT_BUFSIZE 0x8000
# endif
# endif
#endif
#ifndef DIST_BUFSIZE
# define DIST_BUFSIZE LIT_BUFSIZE
#endif
/* Sizes of match buffers for literals/lengths and distances. There are
* 4 reasons for limiting LIT_BUFSIZE to 64K:
* - frequencies can be kept in 16 bit counters
* - if compression is not successful for the first block, all input data is
* still in the window so we can still emit a stored block even when input
* comes from standard input. (This can also be done for all blocks if
* LIT_BUFSIZE is not greater than 32K.)
* - if compression is not successful for a file smaller than 64K, we can
* even emit a stored file instead of a stored block (saving 5 bytes).
* - creating new Huffman trees less frequently may not provide fast
* adaptation to changes in the input data statistics. (Take for
* example a binary file with poorly compressible code followed by
* a highly compressible string table.) Smaller buffer sizes give
* fast adaptation but have of course the overhead of transmitting trees
* more frequently.
* - I can't count above 4
* The current code is general and allows DIST_BUFSIZE < LIT_BUFSIZE (to save
* memory at the expense of compression). Some optimizations would be possible
* if we rely on DIST_BUFSIZE == LIT_BUFSIZE.
*/
#if LIT_BUFSIZE > INBUFSIZ
error cannot overlay l_buf and inbuf
#endif
#define REP_3_6 16
/* repeat previous bit length 3-6 times (2 bits of repeat count) */
#define REPZ_3_10 17
/* repeat a zero length 3-10 times (3 bits of repeat count) */
#define REPZ_11_138 18
/* repeat a zero length 11-138 times (7 bits of repeat count) */
/* ===========================================================================
* Local data
*/
/* Data structure describing a single value and its code string. */
typedef struct ct_data {
union {
ush freq; /* frequency count */
ush code; /* bit string */
} fc;
union {
ush dad; /* father node in Huffman tree */
ush len; /* length of bit string */
} dl;
} ct_data;
#define Freq fc.freq
#define Code fc.code
#define Dad dl.dad
#define Len dl.len
#define HEAP_SIZE (2*L_CODES+1)
/* maximum heap size */
local ct_data dyn_ltree[HEAP_SIZE]; /* literal and length tree */
local ct_data dyn_dtree[2*D_CODES+1]; /* distance tree */
local ct_data static_ltree[L_CODES+2];
/* The static literal tree. Since the bit lengths are imposed, there is no
* need for the L_CODES extra codes used during heap construction. However
* The codes 286 and 287 are needed to build a canonical tree (see ct_init
* below).
*/
local ct_data static_dtree[D_CODES];
/* The static distance tree. (Actually a trivial tree since all codes use
* 5 bits.)
*/
local ct_data bl_tree[2*BL_CODES+1];
/* Huffman tree for the bit lengths */
typedef struct tree_desc {
ct_data *dyn_tree; /* the dynamic tree */
ct_data *static_tree; /* corresponding static tree or NULL */
int *extra_bits; /* extra bits for each code or NULL */
int extra_base; /* base index for extra_bits */
int elems; /* max number of elements in the tree */
int max_length; /* max bit length for the codes */
int max_code; /* largest code with non zero frequency */
} tree_desc;
local tree_desc l_desc =
{dyn_ltree, static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS, 0};
local tree_desc d_desc =
{dyn_dtree, static_dtree, extra_dbits, 0, D_CODES, MAX_BITS, 0};
local tree_desc bl_desc =
{bl_tree, (ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS, 0};
local ush bl_count[MAX_BITS+1];
/* number of codes at each bit length for an optimal tree */
local uch bl_order[BL_CODES]
= {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
/* The lengths of the bit length codes are sent in order of decreasing
* probability, to avoid transmitting the lengths for unused bit length codes.
*/
local int heap[2*L_CODES+1]; /* heap used to build the Huffman trees */
local int heap_len; /* number of elements in the heap */
local int heap_max; /* element of largest frequency */
/* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
* The same heap array is used to build all trees.
*/
local uch depth[2*L_CODES+1];
/* Depth of each subtree used as tie breaker for trees of equal frequency */
local uch length_code[MAX_MATCH-MIN_MATCH+1];
/* length code for each normalized match length (0 == MIN_MATCH) */
local uch dist_code[512];
/* distance codes. The first 256 values correspond to the distances
* 3 .. 258, the last 256 values correspond to the top 8 bits of
* the 15 bit distances.
*/
local int base_length[LENGTH_CODES];
/* First normalized length for each code (0 = MIN_MATCH) */
local int base_dist[D_CODES];
/* First normalized distance for each code (0 = distance of 1) */
#define l_buf inbuf
/* DECLARE(uch, l_buf, LIT_BUFSIZE); buffer for literals or lengths */
/* DECLARE(ush, d_buf, DIST_BUFSIZE); buffer for distances */
local uch flag_buf[(LIT_BUFSIZE/8)];
/* flag_buf is a bit array distinguishing literals from lengths in
* l_buf, thus indicating the presence or absence of a distance.
*/
local unsigned last_lit; /* running index in l_buf */
local unsigned last_dist; /* running index in d_buf */
local unsigned last_flags; /* running index in flag_buf */
local uch flags; /* current flags not yet saved in flag_buf */
local uch flag_bit; /* current bit used in flags */
/* bits are filled in flags starting at bit 0 (least significant).
* Note: these flags are overkill in the current code since we don't
* take advantage of DIST_BUFSIZE == LIT_BUFSIZE.
*/
local ulg opt_len; /* bit length of current block with optimal trees */
local ulg static_len; /* bit length of current block with static trees */
local ulg compressed_len; /* total bit length of compressed file */
local ulg input_len; /* total byte length of input file */
/* input_len is for debugging only since we can get it by other means. */
extern long block_start; /* window offset of current block */
extern unsigned strstart; /* window offset of current string */
/* ===========================================================================
* Local (static) routines in this file.
*/
local void init_block OF((void));
local void pqdownheap OF((ct_data *tree, int k));
local void gen_bitlen OF((tree_desc *desc));
local void gen_codes OF((ct_data *tree, int max_code));
local void build_tree OF((tree_desc *desc));
local void scan_tree OF((ct_data *tree, int max_code));
local void send_tree OF((ct_data *tree, int max_code));
local int build_bl_tree OF((void));
local void send_all_trees OF((int lcodes, int dcodes, int blcodes));
local void compress_block OF((ct_data *ltree, ct_data *dtree));
#define send_code(c, tree) send_bits(tree[c].Code, tree[c].Len)
/* Send a code of the given tree. c and tree must not have side effects */
#define d_code(dist) \
((dist) < 256 ? dist_code[dist] : dist_code[256+((dist)>>7)])
/* Mapping from a distance to a distance code. dist is the distance - 1 and
* must not have side effects. dist_code[256] and dist_code[257] are never
* used.
*/
#define MAX(a,b) (a >= b ? a : b)
/* the arguments must not have side effects */
/* ===========================================================================
* Allocate the match buffer, initialize the various tables and save the
* location of the internal file attribute (ascii/binary) and method
* (DEFLATE/STORE).
*/
void ct_init(void)
{
int n; /* iterates over tree elements */
int bits; /* bit counter */
int length; /* length value */
int code; /* code value */
int dist; /* distance index */
compressed_len = input_len = 0L;
if (static_dtree[0].Len != 0) return; /* ct_init already called */
/* Initialize the mapping length (0..255) -> length code (0..28) */
length = 0;
for (code = 0; code < LENGTH_CODES-1; code++) {
base_length[code] = length;
for (n = 0; n < (1<<extra_lbits[code]); n++) {
length_code[length++] = (uch)code;
}
}
/* Note that the length 255 (match length 258) can be represented
* in two different ways: code 284 + 5 bits or code 285, so we
* overwrite length_code[255] to use the best encoding:
*/
length_code[length-1] = (uch)code;
/* Initialize the mapping dist (0..32K) -> dist code (0..29) */
dist = 0;
for (code = 0 ; code < 16; code++) {
base_dist[code] = dist;
for (n = 0; n < (1<<extra_dbits[code]); n++) {
dist_code[dist++] = (uch)code;
}
}
dist >>= 7; /* from now on, all distances are divided by 128 */
for ( ; code < D_CODES; code++) {
base_dist[code] = dist << 7;
for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
dist_code[256 + dist++] = (uch)code;
}
}
/* Construct the codes of the static literal tree */
for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
n = 0;
while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
/* Codes 286 and 287 do not exist, but we must include them in the
* tree construction to get a canonical Huffman tree (longest code
* all ones)
*/
gen_codes((ct_data *)static_ltree, L_CODES+1);
/* The static distance tree is trivial: */
for (n = 0; n < D_CODES; n++) {
static_dtree[n].Len = 5;
static_dtree[n].Code = bi_reverse(n, 5);
}
/* Initialize the first block of the first file: */
init_block();
}
/* ===========================================================================
* Initialize a new block.
*/
local void init_block()
{
int n; /* iterates over tree elements */
/* Initialize the trees. */
for (n = 0; n < L_CODES; n++) dyn_ltree[n].Freq = 0;
for (n = 0; n < D_CODES; n++) dyn_dtree[n].Freq = 0;
for (n = 0; n < BL_CODES; n++) bl_tree[n].Freq = 0;
dyn_ltree[END_BLOCK].Freq = 1;
opt_len = static_len = 0L;
last_lit = last_dist = last_flags = 0;
flags = 0; flag_bit = 1;
}
#define SMALLEST 1
/* Index within the heap array of least frequent node in the Huffman tree */
/* ===========================================================================
* Remove the smallest element from the heap and recreate the heap with
* one less element. Updates heap and heap_len.
*/
#define pqremove(tree, top) \
{\
top = heap[SMALLEST]; \
heap[SMALLEST] = heap[heap_len--]; \
pqdownheap(tree, SMALLEST); \
}
/* ===========================================================================
* Compares to subtrees, using the tree depth as tie breaker when
* the subtrees have equal frequency. This minimizes the worst case length.
*/
#define smaller(tree, n, m) \
(tree[n].Freq < tree[m].Freq || \
(tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
/* ===========================================================================
* Restore the heap property by moving down the tree starting at node k,
* exchanging a node with the smallest of its two sons if necessary, stopping
* when the heap property is re-established (each father smaller than its
* two sons).
*/
local void pqdownheap(tree, k)
ct_data *tree; /* the tree to restore */
int k; /* node to move down */
{
int v = heap[k];
int j = k << 1; /* left son of k */
while (j <= heap_len) {
/* Set j to the smallest of the two sons: */
if (j < heap_len && smaller(tree, heap[j+1], heap[j])) j++;
/* Exit if v is smaller than both sons */
if (smaller(tree, v, heap[j])) break;
/* Exchange v with the smallest son */
heap[k] = heap[j]; k = j;
/* And continue down the tree, setting j to the left son of k */
j <<= 1;
}
heap[k] = v;
}
/* ===========================================================================
* Compute the optimal bit lengths for a tree and update the total bit length
* for the current block.
* IN assertion: the fields freq and dad are set, heap[heap_max] and
* above are the tree nodes sorted by increasing frequency.
* OUT assertions: the field len is set to the optimal bit length, the
* array bl_count contains the frequencies for each bit length.
* The length opt_len is updated; static_len is also updated if stree is
* not null.
*/
local void gen_bitlen(desc)
tree_desc *desc; /* the tree descriptor */
{
ct_data *tree = desc->dyn_tree;
int *extra = desc->extra_bits;
int base = desc->extra_base;
int max_code = desc->max_code;
int max_length = desc->max_length;
ct_data *stree = desc->static_tree;
int h; /* heap index */
int n, m; /* iterate over the tree elements */
int bits; /* bit length */
int xbits; /* extra bits */
ush f; /* frequency */
int overflow = 0; /* number of elements with bit length too large */
for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
/* In a first pass, compute the optimal bit lengths (which may
* overflow in the case of the bit length tree).
*/
tree[heap[heap_max]].Len = 0; /* root of the heap */
for (h = heap_max+1; h < HEAP_SIZE; h++) {
n = heap[h];
bits = tree[tree[n].Dad].Len + 1;
if (bits > max_length) bits = max_length, overflow++;
tree[n].Len = (ush)bits;
/* We overwrite tree[n].Dad which is no longer needed */
if (n > max_code) continue; /* not a leaf node */
bl_count[bits]++;
xbits = 0;
if (n >= base) xbits = extra[n-base];
f = tree[n].Freq;
opt_len += (ulg)f * (bits + xbits);
if (stree) static_len += (ulg)f * (stree[n].Len + xbits);
}
if (overflow == 0) return;
/* Find the first bit length which could increase: */
do {
bits = max_length-1;
while (bl_count[bits] == 0) bits--;
bl_count[bits]--; /* move one leaf down the tree */
bl_count[bits+1] += 2; /* move one overflow item as its brother */
bl_count[max_length]--;
/* The brother of the overflow item also moves one step up,
* but this does not affect bl_count[max_length]
*/
overflow -= 2;
} while (overflow > 0);
/* Now recompute all bit lengths, scanning in increasing frequency.
* h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
* lengths instead of fixing only the wrong ones. This idea is taken
* from 'ar' written by Haruhiko Okumura.)
*/
for (bits = max_length; bits != 0; bits--) {
n = bl_count[bits];
while (n != 0) {
m = heap[--h];
if (m > max_code) continue;
if (tree[m].Len != (unsigned) bits) {
opt_len += ((long)bits-(long)tree[m].Len)*(long)tree[m].Freq;
tree[m].Len = (ush)bits;
}
n--;
}
}
}
/* ===========================================================================
* Generate the codes for a given tree and bit counts (which need not be
* optimal).
* IN assertion: the array bl_count contains the bit length statistics for
* the given tree and the field len is set for all tree elements.
* OUT assertion: the field code is set for all tree elements of non
* zero code length.
*/
local void gen_codes (tree, max_code)
ct_data *tree; /* the tree to decorate */
int max_code; /* largest code with non zero frequency */
{
ush next_code[MAX_BITS+1]; /* next code value for each bit length */
ush code = 0; /* running code value */
int bits; /* bit index */
int n; /* code index */
/* The distribution counts are first used to generate the code values
* without bit reversal.
*/
for (bits = 1; bits <= MAX_BITS; bits++) {
next_code[bits] = code = (code + bl_count[bits-1]) << 1;
}
/* Check that the bit counts in bl_count are consistent. The last code
* must be all ones.
*/
for (n = 0; n <= max_code; n++) {
int len = tree[n].Len;
if (len == 0) continue;
/* Now reverse the bits */
tree[n].Code = bi_reverse(next_code[len]++, len);
}
}
/* ===========================================================================
* Construct one Huffman tree and assigns the code bit strings and lengths.
* Update the total bit length for the current block.
* IN assertion: the field freq is set for all tree elements.
* OUT assertions: the fields len and code are set to the optimal bit length
* and corresponding code. The length opt_len is updated; static_len is
* also updated if stree is not null. The field max_code is set.
*/
local void build_tree(desc)
tree_desc *desc; /* the tree descriptor */
{
ct_data *tree = desc->dyn_tree;
ct_data *stree = desc->static_tree;
int elems = desc->elems;
int n, m; /* iterate over heap elements */
int max_code = -1; /* largest code with non zero frequency */
int node = elems; /* next internal node of the tree */
/* Construct the initial heap, with least frequent element in
* heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
* heap[0] is not used.
*/
heap_len = 0, heap_max = HEAP_SIZE;
for (n = 0; n < elems; n++) {
if (tree[n].Freq != 0) {
heap[++heap_len] = max_code = n;
depth[n] = 0;
} else {
tree[n].Len = 0;
}
}
/* The pkzip format requires that at least one distance code exists,
* and that at least one bit should be sent even if there is only one
* possible code. So to avoid special checks later on we force at least
* two codes of non zero frequency.
*/
while (heap_len < 2) {
int new = heap[++heap_len] = (max_code < 2 ? ++max_code : 0);
tree[new].Freq = 1;
depth[new] = 0;
opt_len--; if (stree) static_len -= stree[new].Len;
/* new is 0 or 1 so it does not have extra bits */
}
desc->max_code = max_code;
/* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
* establish sub-heaps of increasing lengths:
*/
for (n = heap_len/2; n >= 1; n--) pqdownheap(tree, n);
/* Construct the Huffman tree by repeatedly combining the least two
* frequent nodes.
*/
do {
pqremove(tree, n); /* n = node of least frequency */
m = heap[SMALLEST]; /* m = node of next least frequency */
heap[--heap_max] = n; /* keep the nodes sorted by frequency */
heap[--heap_max] = m;
/* Create a new node father of n and m */
tree[node].Freq = tree[n].Freq + tree[m].Freq;
depth[node] = (uch) (MAX(depth[n], depth[m]) + 1);
tree[n].Dad = tree[m].Dad = (ush)node;
/* and insert the new node in the heap */
heap[SMALLEST] = node++;
pqdownheap(tree, SMALLEST);
} while (heap_len >= 2);
heap[--heap_max] = heap[SMALLEST];
/* At this point, the fields freq and dad are set. We can now
* generate the bit lengths.
*/
gen_bitlen((tree_desc *)desc);
/* The field len is now set, we can generate the bit codes */
gen_codes ((ct_data *)tree, max_code);
}
/* ===========================================================================
* Scan a literal or distance tree to determine the frequencies of the codes
* in the bit length tree. Updates opt_len to take into account the repeat
* counts. (The contribution of the bit length codes will be added later
* during the construction of bl_tree.)
*/
local void scan_tree (tree, max_code)
ct_data *tree; /* the tree to be scanned */
int max_code; /* and its largest code of non zero frequency */
{
int n; /* iterates over all tree elements */
int prevlen = -1; /* last emitted length */
int curlen; /* length of current code */
int nextlen = tree[0].Len; /* length of next code */
int count = 0; /* repeat count of the current code */
int max_count = 7; /* max repeat count */
int min_count = 4; /* min repeat count */
if (nextlen == 0) max_count = 138, min_count = 3;
tree[max_code+1].Len = (ush)0xffff; /* guard */
for (n = 0; n <= max_code; n++) {
curlen = nextlen; nextlen = tree[n+1].Len;
if (++count < max_count && curlen == nextlen) {
continue;
} else if (count < min_count) {
bl_tree[curlen].Freq += count;
} else if (curlen != 0) {
if (curlen != prevlen) bl_tree[curlen].Freq++;
bl_tree[REP_3_6].Freq++;
} else if (count <= 10) {
bl_tree[REPZ_3_10].Freq++;
} else {
bl_tree[REPZ_11_138].Freq++;
}
count = 0; prevlen = curlen;
if (nextlen == 0) {
max_count = 138, min_count = 3;
} else if (curlen == nextlen) {
max_count = 6, min_count = 3;
} else {
max_count = 7, min_count = 4;
}
}
}
/* ===========================================================================
* Send a literal or distance tree in compressed form, using the codes in
* bl_tree.
*/
local void send_tree (tree, max_code)
ct_data *tree; /* the tree to be scanned */
int max_code; /* and its largest code of non zero frequency */
{
int n; /* iterates over all tree elements */
int prevlen = -1; /* last emitted length */
int curlen; /* length of current code */
int nextlen = tree[0].Len; /* length of next code */
int count = 0; /* repeat count of the current code */
int max_count = 7; /* max repeat count */
int min_count = 4; /* min repeat count */
/* tree[max_code+1].Len = -1; */ /* guard already set */
if (nextlen == 0) max_count = 138, min_count = 3;
for (n = 0; n <= max_code; n++) {
curlen = nextlen; nextlen = tree[n+1].Len;
if (++count < max_count && curlen == nextlen) {
continue;
} else if (count < min_count) {
do { send_code(curlen, bl_tree); } while (--count != 0);
} else if (curlen != 0) {
if (curlen != prevlen) {
send_code(curlen, bl_tree); count--;
}
send_code(REP_3_6, bl_tree); send_bits(count-3, 2);
} else if (count <= 10) {
send_code(REPZ_3_10, bl_tree); send_bits(count-3, 3);
} else {
send_code(REPZ_11_138, bl_tree); send_bits(count-11, 7);
}
count = 0; prevlen = curlen;
if (nextlen == 0) {
max_count = 138, min_count = 3;
} else if (curlen == nextlen) {
max_count = 6, min_count = 3;
} else {
max_count = 7, min_count = 4;
}
}
}
/* ===========================================================================
* Construct the Huffman tree for the bit lengths and return the index in
* bl_order of the last bit length code to send.
*/
local int build_bl_tree()
{
int max_blindex; /* index of last bit length code of non zero freq */
/* Determine the bit length frequencies for literal and distance trees */
scan_tree((ct_data *)dyn_ltree, l_desc.max_code);
scan_tree((ct_data *)dyn_dtree, d_desc.max_code);
/* Build the bit length tree: */
build_tree((tree_desc *)(&bl_desc));
/* opt_len now includes the length of the tree representations, except
* the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
*/
/* Determine the number of bit length codes to send. The pkzip format
* requires that at least 4 bit length codes be sent. (appnote.txt says
* 3 but the actual value used is 4.)
*/
for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
if (bl_tree[bl_order[max_blindex]].Len != 0) break;
}
/* Update opt_len to include the bit length tree and counts */
opt_len += 3*(max_blindex+1) + 5+5+4;
return max_blindex;
}
/* ===========================================================================
* Send the header for a block using dynamic Huffman trees: the counts, the
* lengths of the bit length codes, the literal tree and the distance tree.
* IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
*/
local void send_all_trees(lcodes, dcodes, blcodes)
int lcodes, dcodes, blcodes; /* number of codes for each tree */
{
int rank; /* index in bl_order */
send_bits(lcodes-257, 5); /* not +255 as stated in appnote.txt */
send_bits(dcodes-1, 5);
send_bits(blcodes-4, 4); /* not -3 as stated in appnote.txt */
for (rank = 0; rank < blcodes; rank++) {
send_bits(bl_tree[bl_order[rank]].Len, 3);
}
send_tree((ct_data *)dyn_ltree, lcodes-1); /* send the literal tree */
send_tree((ct_data *)dyn_dtree, dcodes-1); /* send the distance tree */
}
/* ===========================================================================
* Determine the best encoding for the current block: dynamic trees, static
* trees or store, and output the encoded block to the zip file. This function
* returns the total compressed length for the file so far.
*/
ulg flush_block(buf, stored_len, eof)
char *buf; /* input block, or NULL if too old */
ulg stored_len; /* length of input block */
int eof; /* true if this is the last block for a file */
{
ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
int max_blindex; /* index of last bit length code of non zero freq */
flag_buf[last_flags] = flags; /* Save the flags for the last 8 items */
/* Construct the literal and distance trees */
build_tree((tree_desc *)(&l_desc));
build_tree((tree_desc *)(&d_desc));
/* At this point, opt_len and static_len are the total bit lengths of
* the compressed block data, excluding the tree representations.
*/
/* Build the bit length tree for the above two trees, and get the index
* in bl_order of the last bit length code to send.
*/
max_blindex = build_bl_tree();
/* Determine the best encoding. Compute first the block length in bytes */
opt_lenb = (opt_len+3+7)>>3;
static_lenb = (static_len+3+7)>>3;
input_len += stored_len; /* for debugging only */
if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
/* If compression failed and this is the first and last block,
* and if the zip file can be seeked (to rewrite the local header),
* the whole file is transformed into a stored file:
*/
if (stored_len <= opt_lenb && eof && compressed_len == 0L && seekable()) {
copy_block(buf, (unsigned)stored_len, 0); /* without header */
compressed_len = stored_len << 3;
} else if (stored_len+4 <= opt_lenb && buf != (char*)0) {
/* 4: two words for the lengths */
/* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
* Otherwise we can't have processed more than WSIZE input bytes since
* the last block flush, because compression would have been
* successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
* transform a block into a stored block.
*/
send_bits((STORED_BLOCK<<1)+eof, 3); /* send block type */
compressed_len = (compressed_len + 3 + 7) & ~7L;
compressed_len += (stored_len + 4) << 3;
copy_block(buf, (unsigned)stored_len, 1); /* with header */
} else if (static_lenb == opt_lenb) {
send_bits((STATIC_TREES<<1)+eof, 3);
compress_block((ct_data *)static_ltree, (ct_data *)static_dtree);
compressed_len += 3 + static_len;
} else {
send_bits((DYN_TREES<<1)+eof, 3);
send_all_trees(l_desc.max_code+1, d_desc.max_code+1, max_blindex+1);
compress_block((ct_data *)dyn_ltree, (ct_data *)dyn_dtree);
compressed_len += 3 + opt_len;
}
init_block();
if (eof) {
bi_windup();
compressed_len += 7; /* align on byte boundary */
}
return compressed_len >> 3;
}
/* ===========================================================================
* Save the match info and tally the frequency counts. Return true if
* the current block must be flushed.
*/
int ct_tally (dist, lc)
int dist; /* distance of matched string */
int lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */
{
l_buf[last_lit++] = (uch)lc;
if (dist == 0) {
/* lc is the unmatched char */
dyn_ltree[lc].Freq++;
} else {
/* Here, lc is the match length - MIN_MATCH */
dist--; /* dist = match distance - 1 */
dyn_ltree[length_code[lc]+LITERALS+1].Freq++;
dyn_dtree[d_code(dist)].Freq++;
d_buf[last_dist++] = (ush)dist;
flags |= flag_bit;
}
flag_bit <<= 1;
/* Output the flags if they fill a byte: */
if ((last_lit & 7) == 0) {
flag_buf[last_flags++] = flags;
flags = 0, flag_bit = 1;
}
/* Try to guess if it is profitable to stop the current block here */
if ((last_lit & 0xfff) == 0) {
/* Compute an upper bound for the compressed length */
ulg out_length = (ulg)last_lit*8L;
ulg in_length = (ulg)strstart-block_start;
int dcode;
for (dcode = 0; dcode < D_CODES; dcode++) {
out_length += (ulg)dyn_dtree[dcode].Freq*(5L+extra_dbits[dcode]);
}
out_length >>= 3;
if (last_dist < last_lit/2 && out_length < in_length/2) return 1;
}
return (last_lit == LIT_BUFSIZE-1 || last_dist == DIST_BUFSIZE);
/* We avoid equality with LIT_BUFSIZE because of wraparound at 64K
* on 16 bit machines and because stored blocks are restricted to
* 64K-1 bytes.
*/
}
/* ===========================================================================
* Send the block data compressed using the given Huffman trees
*/
local void compress_block(ltree, dtree)
ct_data *ltree; /* literal tree */
ct_data *dtree; /* distance tree */
{
unsigned dist; /* distance of matched string */
int lc; /* match length or unmatched char (if dist == 0) */
unsigned lx = 0; /* running index in l_buf */
unsigned dx = 0; /* running index in d_buf */
unsigned fx = 0; /* running index in flag_buf */
uch flag = 0; /* current flags */
unsigned code; /* the code to send */
int extra; /* number of extra bits to send */
if (last_lit != 0) do {
if ((lx & 7) == 0) flag = flag_buf[fx++];
lc = l_buf[lx++];
if ((flag & 1) == 0) {
send_code(lc, ltree); /* send a literal byte */
} else {
/* Here, lc is the match length - MIN_MATCH */
code = length_code[lc];
send_code(code+LITERALS+1, ltree); /* send the length code */
extra = extra_lbits[code];
if (extra != 0) {
lc -= base_length[code];
send_bits(lc, extra); /* send the extra length bits */
}
dist = d_buf[dx++];
/* Here, dist is the match distance - 1 */
code = d_code(dist);
send_code(code, dtree); /* send the distance code */
extra = extra_dbits[code];
if (extra != 0) {
dist -= base_dist[code];
send_bits(dist, extra); /* send the extra distance bits */
}
} /* literal or match pair ? */
flag >>= 1;
} while (lx < last_lit);
send_code(END_BLOCK, ltree);
}

73
tools/mkrom/main.c Normal file
View File

@ -0,0 +1,73 @@
#include <stdio.h>
#include <stdlib.h>
#include "mkrom.h"
struct state state;
/**
* mkrom - do ROM finalisation steps
*
* mkrom <romfile> <mapfile> <piracychecks> <zipmagic> <outfile>
*
* <romfile>
* This is the path to the stage1 binary. This file is similar to the final ROM,
* but the allocations for compressed segments are vacant, and the compressed
* segments themselves are found uncompressed past the 32MB mark of the ROM.
* This program will compress those segments, put them in their allocated spaces
* and truncate the ROM to 32MB.
*
* <mapfile>
* This is the path to the linker map, which is used to determine where the
* uncompressed segments are and where they should be placed.
*
* <piracychecks>
* This should be 0 or 1 to indicate whether this version of the ROM contains
* piracy checks or not. Some piracy checks work by checksumming functions in
* memory at runtime and comparing it with a known value. If set to 1, mkrom
* will calculate the checksums for these functions and patch them into the
* piracy checks.
*
* <zipmagic>
* This is a two byte value which is used when zipping the game segments.
* The original code was influenced by uninitialised data. These two bytes are
* just setting that uninitialised data.
*
* <outfile>
* The file to write the final ROM file to.
*
* eg. mkrom stage1.bin pd.map 1 0x1234 pd.z64
*/
int main(int argc, char **argv)
{
if (argc < 6) {
fprintf(stderr, "Usage: mkrom <romfile> <mapfile> <piracychecks> <zipmagic> <outfile>\n");
exit(1);
}
rom_load(argv[1]);
map_open(argv[2]);
state.piracychecks = atoi(argv[3]);
state.zipmagic = strtol(argv[4], NULL, 16);
// Compute piracy checksums if requested
if (state.piracychecks) {
piracy_patch();
}
// Slice the game segment into chunks and zip each of them to create the
// gamezips segment
game_zip();
// Pack each segment into their final locations
pack_lib();
pack_data();
pack_game();
pack_fill();
rom_update_crc();
rom_write(argv[5]);
return 0;
}

151
tools/mkrom/map.c Normal file
View File

@ -0,0 +1,151 @@
#include <ctype.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "mkrom.h"
/**
* This file handles reading and parsing the linker map.
*/
extern struct state state;
void map_open(char *filename)
{
state.mapfd = fopen(filename, "r");
if (!state.mapfd) {
fprintf(stderr, "Unable to open map file \"%s\" for reading\n", filename);
exit(1);
}
}
/**
* Find the start and end offsets of the given function in the ROM and write
* their offsets to the start and end pointers.
*
* Return true if the function was found, false if not.
*/
bool map_get_function_rompos(char *funcname, uint32_t *start, uint32_t *end)
{
char line[1024];
char *ptr;
uint32_t segramaddr = 0;
uint32_t segromoffset = 0;
uint32_t ramaddr;
char find[1024];
bool lookingforend = false;
snprintf(find, sizeof(find), " %s\n", funcname);
fseek(state.mapfd, 0, SEEK_SET);
while (!feof(state.mapfd)) {
fgets(line, 1024, state.mapfd);
if (lookingforend) {
ptr = line;
while (isspace(*ptr)) {
ptr++;
}
if (ptr[0] == '0' && ptr[1] == 'x') {
ramaddr = strtoul(ptr, NULL, 16);
*end = ramaddr - segramaddr + segromoffset;
return true;
}
} else if (line[0] == '.') {
// Start of a segment
// ".game 0x000000007f000000 0x1b99e0 load address 0x00000000020ac170"
// Jump to RAM address
ptr = strstr(line, "0x");
segramaddr = strtoul(ptr, NULL, 16);
// Jump to length
ptr++;
ptr = strstr(ptr, "0x");
// Jump to ROM offset
ptr++;
ptr = strstr(ptr, "0x");
segromoffset = strtoul(ptr, NULL, 16);
} else if (strstr(line, find)) {
// Found the function
// "0x000000007f15d9a8 bgInflate"
ptr = strstr(line, "0x");
ramaddr = strtoul(ptr, NULL, 16);
*start = ramaddr - segramaddr + segromoffset;
lookingforend = true;
}
}
fprintf(stderr, "Unable to find function \"%s\" in linker map\n", funcname);
return false;
}
/**
* Find the start and end offsets of the given segment in the ROM and write
* their offsets to the start and end pointers.
*
* Either point may be NULL.
*
* Return true if the segment was found, false if not.
*/
bool map_get_segment_rompos(char *segname, uint32_t *start, uint32_t *end)
{
char startstring[64];
char endstring[64];
char line[1024];
bool found_start = false;
bool found_end = false;
snprintf(startstring, sizeof(startstring), "_%sSegmentRomStart = ", segname);
snprintf(endstring, sizeof(endstring), "_%sSegmentRomEnd = ", segname);
fseek(state.mapfd, 0, SEEK_SET);
// Find lines like this:
// " 0x0000000000001050 _libzipSegmentRomStart = __rompos"
while (!feof(state.mapfd)) {
fgets(line, 1024, state.mapfd);
if (!found_start && strstr(line, startstring)) {
char *ptr = strstr(line, "0x");
if (start != NULL) {
*start = strtoul(ptr, NULL, 16);
}
if (found_end) {
return true;
}
found_start = true;
}
if (!found_end && strstr(line, endstring)) {
char *ptr = strstr(line, "0x");
if (end != NULL) {
*end = strtoul(ptr, NULL, 16);
}
if (found_start) {
return true;
}
found_end = true;
}
}
fprintf(stderr, "Unable to find segment \"%s\" in linker map\n", segname);
return false;
}

76
tools/mkrom/mkrom.h Normal file
View File

@ -0,0 +1,76 @@
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
struct state {
/**
* A pointer to the full working ROM area in memory.
*/
unsigned char *rom;
/**
* The size of the above rom allocation in bytes.
* The value is the same filesize as the stage1 binary,
* which is 32MB plus some uncompressed segments on the end.
*/
size_t romlen;
/**
* Whether piracy checks are enabled for this build or not.
* If enabled, mkrom will recalculate piracy-related checksums.
*/
bool piracychecks;
/**
* Two bytes that are used to seed some uninitialised data in the input
* buffer when zipping game chunks.
*/
unsigned short zipmagic;
/**
* File descriptor for the linker map.
*/
FILE *mapfd;
/**
* A pointer to the gamezips segment, once created.
* The gamezips segment is the full segment but with the offest table
* zeroed.
*/
unsigned char *gamezips;
/**
* Size of the above gamezips allocation in bytes.
*/
size_t gamezipslen;
/**
* Pointer to a separate allocation for the gamezips offset table.
*/
unsigned char *gametable;
/**
* Size of the above gametable allocation in bytes.
*/
size_t gametablelen;
};
void game_zip(void);
void map_open(char *filename);
bool map_get_function_rompos(char *funcname, uint32_t *start, uint32_t *end);
bool map_get_segment_rompos(char *funcname, uint32_t *start, uint32_t *end);
void pack_lib(void);
void pack_data(void);
void pack_game(void);
void pack_fill(void);
void piracy_patch(void);
void rarezip(uint8_t *outbuffer, size_t *outlen, uint8_t *inbuffer, size_t inlen, uint32_t magic);
void rom_load(char *filename);
void rom_update_crc(void);
void rom_write(char *filename);

153
tools/mkrom/pack.c Normal file
View File

@ -0,0 +1,153 @@
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "mkrom.h"
extern struct state state;
static void copy(char *segname, uint8_t *payload, size_t len, char *constname)
{
uint32_t start;
uint32_t end;
char zipsegname[32];
uint32_t allocation;
snprintf(zipsegname, sizeof(zipsegname), "%szip", segname);
map_get_segment_rompos(zipsegname, &start, &end);
allocation = end - start;
if (len > allocation) {
fprintf(stderr, "The %s segment is too big after compression to fit the allocation of 0x%x.\n", segname, allocation);
fprintf(stderr, "In ld/pd.ld, increase the value of %s to 0x%x or higher.\n", constname, len);
exit(1);
}
memcpy(&state.rom[start], payload, len);
}
/**
* To pack the data segment, zip it in full and copy it to the datazip segment.
*/
void pack_data(void)
{
uint32_t start;
uint32_t end;
size_t ziplen;
map_get_segment_rompos("data", &start, &end);
uint8_t *buffer = malloc(end - start);
rarezip(buffer, &ziplen, &state.rom[start], end - start, 0);
copy("data", buffer, ziplen, "ROMALLOCATION_DATA");
free(buffer);
}
/**
* On the ROM, the gamezips segment exists with its offset table and zip data.
* Then after that comes a copy of the gamezips segment but with the offset
* table cleared. The second segment is garbage data.
*
* mkrom has already built the gamezips segment but with a zeroed table.
* The real table is pointed to by state.gametable.
*
* So we have to copy the gamezips segment twice, then paste the gametable
* segment over the start of the first one.
*/
void pack_game(void)
{
uint32_t gamezipstart;
uint32_t gamezipend;
size_t truncatedlen;
// Copy the gamezips segment
copy("game", state.gamezips, state.gamezipslen, "ROMALLOCATION_GAME");
// Paste over the offset table
map_get_segment_rompos("gamezip", &gamezipstart, &gamezipend);
memcpy(&state.rom[gamezipstart], state.gametable, state.gametablelen);
// Paste the second segment, truncating it to fit the allocation
truncatedlen = gamezipend - gamezipstart - state.gamezipslen;
if (truncatedlen > state.gamezipslen) {
truncatedlen = state.gamezipslen;
}
memcpy(&state.rom[gamezipstart + state.gamezipslen], state.gamezips, truncatedlen);
// The final two bytes from the real segment are duplicated into
// the first two bytes of the second segment's offset table
state.rom[gamezipstart + state.gamezipslen + 0] = state.rom[gamezipstart + state.gamezipslen - 2];
state.rom[gamezipstart + state.gamezipslen + 1] = state.rom[gamezipstart + state.gamezipslen - 1];
}
/**
* The lib segment is zipped from 0x2000 onwards.
*
* It's placed twice in a row in the ROM within its allocation, where the second
* one is truncated and unused.
*/
void pack_lib(void)
{
uint32_t libzipstart;
uint32_t libzipend;
uint32_t libstart;
uint32_t libend;
size_t ziplen;
size_t seglen;
size_t truncatedlen;
map_get_segment_rompos("lib", &libstart, &libend);
uint8_t *buffer = malloc(libend - libstart);
// Read the first 0x2000 into a buffer
memcpy(buffer, &state.rom[libstart], 0x2000);
// Compress the remainder from ROM, appending to the buffer
rarezip(&buffer[0x2000], &ziplen, &state.rom[libstart + 0x2000], libend - libstart - 0x2000, 0);
seglen = ziplen + 0x2000;
// Copy the buffer to its real spot in the ROM
copy("lib", buffer, seglen, "ROMALLOCATION_LIB");
// Copy it truncated to its fake spot
map_get_segment_rompos("libzip", &libzipstart, &libzipend);
truncatedlen = libzipend - libzipstart - seglen;
if (truncatedlen > seglen) {
truncatedlen = seglen;
}
memcpy(state.rom + libzipstart + seglen, buffer, truncatedlen);
free(buffer);
}
/**
* Fill from the end of the last segment to the end of the ROM with 0xff.
*/
void pack_fill(void)
{
uint32_t offset;
map_get_segment_rompos("accessingpak", NULL, &offset);
if (offset == 0) {
// We're probably building ntsc-beta, which doesn't have the
// accessingpak segment.
map_get_segment_rompos("copyright", NULL, &offset);
}
while (offset < 1024 * 1024 * 32) {
state.rom[offset] = 0xff;
offset++;
}
}

170
tools/mkrom/piracy.c Normal file
View File

@ -0,0 +1,170 @@
#include <arpa/inet.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include "mkrom.h"
#define CHECKSUM_PLACEHOLDER 0x99aabbcc
extern struct state state;
typedef uint32_t (*Algo)(uint32_t sum, uint32_t word);
static uint32_t algo01(uint32_t sum, uint32_t word) { return sum ^ word; }
static uint32_t algo02(uint32_t sum, uint32_t word) { return sum ^ ~word; }
static uint32_t algo03(uint32_t sum, uint32_t word) { return (sum + word) * 2; }
static uint32_t algo04(uint32_t sum, uint32_t word) { return sum + ~word; }
static uint32_t algo05(uint32_t sum, uint32_t word) { return sum * 2 + word; }
static uint32_t algo06(uint32_t sum, uint32_t word) { return sum + word; }
static uint32_t algo07(uint32_t sum, uint32_t word) { return (sum << 1) ^ word; }
static uint32_t algo08(uint32_t sum, uint32_t word) { return (sum + word) + (word >> 1); }
static uint32_t algo09(uint32_t sum, uint32_t word) { return sum - ~word; }
static uint32_t algo10(uint32_t sum, uint32_t word) { return (sum ^ word) << 1; }
static uint32_t algo11(uint32_t sum, uint32_t word) { return (sum ^ ~word) << 1; }
static uint32_t algo12(uint32_t sum, uint32_t word) {
sum ^= ~word;
sum ^= word << 5;
sum ^= word >> 15;
return sum;
}
/**
* Calculate the checksum of sumfunc.
*
* We just iterate each word in the function and run the algo function on each.
*/
static uint32_t calc_sum(char *sumfunc, Algo algo)
{
uint32_t start;
uint32_t end;
uint32_t sum = 0;
uint32_t offset;
if (!map_get_function_rompos(sumfunc, &start, &end)) {
fprintf(stderr, "Unable to find function \"%s\" in map file\n", sumfunc);
exit(1);
}
for (offset = start; offset < end; offset += 4) {
sum = algo(sum, ntohl(*(uint32_t *) &state.rom[offset]));
}
return sum;
}
static bool is_branch_likely(uint32_t word)
{
uint32_t op = word & 0xfc000000;
if (op == 0x50000000) { // beql
return true;
}
if (op == 0x54000000) { // bnel
return true;
}
if (op == 0x58000000) { // blezl
return true;
}
if (op == 0x5c000000) { // bgtzl
return true;
}
if (op == 0x01000000 && (word & 0x001f0000) == 0x00020000) { // bltzl
return true;
}
if (op == 0x01000000 && (word & 0x001f0000) == 0x00030000) { // bgezl
return true;
}
return false;
}
/**
* Search the patchfunc for the placeholder checksum and replace it with the one
* we calculated.
*
* Checksums are always written into $at with lui and ori instructions.
*
* 3c0199aa lui $at,0x99aa
* 3421bbcc ori $at,$at,0xbbcc
*/
static void write_sum(char *patchfunc, uint32_t sum)
{
uint32_t start;
uint32_t end;
if (!map_get_function_rompos(patchfunc, &start, &end)) {
fprintf(stderr, "Unable to find function \"%s\" in map file\n", patchfunc);
exit(1);
}
bool in_branchlikely = false;
uint32_t upperpos = 0;
uint32_t lowerpos = 0;
uint32_t offset;
for (offset = start; offset < end && (!upperpos || !lowerpos); offset += 4) {
uint32_t word = ntohl(*(uint32_t *) &state.rom[offset]);
if (in_branchlikely) {
in_branchlikely = false;
} else {
if (is_branch_likely(word)) {
in_branchlikely = true;
} else if (word == (0x3c010000 | (CHECKSUM_PLACEHOLDER >> 16))) {
upperpos = offset;
} else if (upperpos && word == (0x34210000 | (CHECKSUM_PLACEHOLDER & 0xffff))) {
lowerpos = offset;
}
}
}
if (!upperpos || !lowerpos) {
fprintf(stderr, "Unable to find placeholder checksum in %s.\n", patchfunc);
fprintf(stderr, "This can happen if you've turned PIRACYCHECKS off, built the files, then turned it on without rebuilding.\n");
fprintf(stderr, "To fix, try running the following:\n");
fprintf(stderr, "\n");
fprintf(stderr, " touch $(grep -lr PIRACYCHECKS src)\n");
fprintf(stderr, " make\n");
fprintf(stderr, "\n");
exit(1);
}
state.rom[upperpos + 2] = (sum >> 24) & 0xff;
state.rom[upperpos + 3] = (sum >> 16) & 0xff;
state.rom[lowerpos + 2] = (sum >> 8) & 0xff;
state.rom[lowerpos + 3] = sum & 0xff;
}
static void patch(Algo algo, char *patchfunc, char *sumfunc)
{
uint32_t sum = calc_sum(sumfunc, algo);
write_sum(patchfunc, sum);
}
/**
* Patch all the piracy functions in the game.
*/
void piracy_patch(void)
{
// algorithm, patch function, sum function
patch(algo01, "__scHandleTasks", "bootPhase1");
patch(algo02, "cheatMenuHandleDialog", "__scHandleTasks");
patch(algo03, "propobjHandlePickupByAibot", "func0f08e2ac");
patch(algo04, "chrUncloak", "propobjHandlePickupByAibot");
patch(algo05, "chrsCheckForNoise", "__scHandleRetrace");
patch(algo06, "lvInit", "lvGetSlowMotionType");
patch(algo07, "propAllocateEyespy", "lvInit");
patch(algo08, "chrConsiderGrenadeThrow", "bgInit");
patch(algo09, "bgun0f09e144", "tagsAllocatePtrs");
patch(algo10, "explosionAlertChrs", "glassDestroy");
patch(algo11, "func0f0069dc", "mtxGetObfuscatedRomBase");
patch(algo12, "func0f15c920", "func0f0069dc");
}

107
tools/mkrom/rarezip.c Normal file
View File

@ -0,0 +1,107 @@
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "gzip.h"
/**
* This file is mkrom's interface to gzip.
*
* The key thing here is that we need to be able to set the uninitialised data
* in the window buffer that gzip uses. This is required for a matching build
* and is the reason why mkrom must be written in C.
*
* Much of the gzip code has been ripped out, including file functionality and
* many, many global variables that it uses.
*/
#define BITS 16
// This global variable is required by gzip
unsigned outcnt; /* bytes in gzip's output buffer (not ours) */
DECLARE(uch, inbuf, INBUFSIZ +INBUF_EXTRA);
DECLARE(uch, outbuf, OUTBUFSIZ+OUTBUF_EXTRA);
DECLARE(ush, d_buf, DIST_BUFSIZE);
DECLARE(uch, window, 2L*WSIZE);
DECLARE(ush, tab_prefix, 1L<<BITS);
// These global variables are used to allow
// us to work with gzip's input/output system
unsigned len_remaining;
uint8_t *inptr;
uint8_t *outptr;
static void zip(uint8_t *outbuffer, size_t *outlen, uint8_t *inbuffer, size_t inlen, uint32_t magic)
{
// Set up pointers to the buffers.
// We'll move the pointers forward as gzip requests data be read or written
inptr = inbuffer;
outptr = outbuffer;
len_remaining = inlen;
// Here we're setting some "uninitialised" data in the window.
// Older versions of gzip are influenced by whatever data happened
// to be in the window immediately after the end of the input.
// Each game zip is 0x1000 long uncompressed.
// The magic values differ per ROM version and are specified as mkrom args.
window[0x1000] = (magic >> 8) & 0xff;
window[0x1001] = magic & 0xff;
outcnt = 0;
// Begin calling gzip routines
bi_init();
ct_init();
lm_init();
deflate();
flush_outbuf();
*outlen = outptr - outbuffer;
}
/**
* Write the RareZip header (0x1173 followed by original file size)
* to the buffer followed by the compressed data.
*
* It's up to the caller to allocate an output buffer big enough.
*/
void rarezip(uint8_t *outbuffer, size_t *outlen, uint8_t *inbuffer, size_t inlen, uint32_t magic)
{
outbuffer[0] = 0x11;
outbuffer[1] = 0x73;
outbuffer[2] = (inlen >> 16) & 0xff;
outbuffer[3] = (inlen >> 8) & 0xff;
outbuffer[4] = inlen & 0xff;
zip(&outbuffer[5], outlen, inbuffer, inlen, magic);
*outlen += 5;
}
/**
* This function is called by gzip when it wants more data.
*/
int read_buf(char *buf, unsigned size)
{
if (size > len_remaining) {
size = len_remaining;
}
memcpy(buf, inptr, size);
len_remaining -= size;
inptr += size;
return size;
}
/**
* This function is called by gzip when it wants to output data.
*/
void write_buf(voidp buf, unsigned size)
{
memcpy(outptr, buf, size);
outptr += size;
}

123
tools/mkrom/rom.c Normal file
View File

@ -0,0 +1,123 @@
#include <stdio.h>
#include <stdlib.h>
#include "mkrom.h"
extern struct state state;
/**
* Load the stage1 ROM into memory.
*/
void rom_load(char *filename)
{
FILE *fp = fopen(filename, "rb");
if (!fp) {
fprintf(stderr, "Unable to open \"%s\" for reading\n", filename);
exit(1);
}
fseek(fp, 0, SEEK_END);
state.romlen = ftell(fp);
state.rom = malloc(state.romlen);
if (!state.rom) {
fprintf(stderr, "Unable to allocate memory for ROM\n");
exit(1);
}
fseek(fp, 0, SEEK_SET);
fread(state.rom, state.romlen, 1, fp);
fclose(fp);
}
/**
* Write the ROM to the given filename and truncate it to 32MB.
*/
void rom_write(char *filename)
{
FILE *fp = fopen(filename, "wb");
if (!fp) {
fprintf(stderr, "Unable to open \"%s\" for writing\n", filename);
exit(1);
}
fwrite(state.rom, 1024 * 1024 * 32, 1, fp);
fclose(fp);
}
static uint32_t rol(uint32_t i, uint32_t b)
{
return (i << b) | (i >> (32 - b));
}
static uint32_t r4(unsigned char *b)
{
return b[0] * 0x1000000 + b[1] * 0x10000 + b[2] * 0x100 + b[3];
}
static void crc(unsigned char *rom, uint32_t *crc1, uint32_t *crc2)
{
uint32_t seed = 0xdf26f436;
uint32_t t1 = seed;
uint32_t t2 = seed;
uint32_t t3 = seed;
uint32_t t4 = seed;
uint32_t t5 = seed;
uint32_t t6 = seed;
uint32_t offset;
uint32_t d;
uint32_t r;
uint32_t temp;
unsigned char *lookup = &rom[0x40 + 0x0710];
for (offset = 0x1000; offset < 0x101000; offset += 4) {
d = r4(&rom[offset]);
if ((t6 + d) < t6) {
t4++;
}
t6 += d;
t3 ^= d;
r = rol(d, d & 0x1f);
t5 += r;
if (t2 > d) {
t2 ^= r;
} else {
t2 ^= t6 ^ d;
}
temp = r4(&lookup[offset & 0xff]);
t1 += temp ^ d;
}
*crc1 = t6 ^ t4 ^ t3;
*crc2 = t5 ^ t2 ^ t1;
}
/**
* Calculate the checksum of the ROM and write it to the ROM header.
*/
void rom_update_crc(void)
{
uint32_t crc1;
uint32_t crc2;
crc(state.rom, &crc1, &crc2);
state.rom[0x10] = (crc1 >> 24) & 0xff;
state.rom[0x11] = (crc1 >> 16) & 0xff;
state.rom[0x12] = (crc1 >> 8) & 0xff;
state.rom[0x13] = crc1 & 0xff;
state.rom[0x14] = (crc2 >> 24) & 0xff;
state.rom[0x15] = (crc2 >> 16) & 0xff;
state.rom[0x16] = (crc2 >> 8) & 0xff;
state.rom[0x17] = crc2 & 0xff;
}

View File

@ -1,152 +0,0 @@
#!/usr/bin/env python3
import os
import re
import subprocess
import sys
"""
packrom - performs code compression, writing of garbage data (required for a
matching ROM), ROM truncation to 32MB, and filling the tail end of the ROM with
0xff bytes.
Usage:
packrom <rom>
"""
def zip(binary):
filename = bdir() + '/tmp.bin';
fd = open(filename, 'wb')
fd.write(binary)
fd.close()
zipped = subprocess.check_output(['tools/rarezip', filename])
os.remove(filename)
return zipped
def bdir():
return 'build/%s' % os.environ['ROMID']
def edir():
return 'extracted/%s' % os.environ['ROMID']
def get_start(locations, segname):
return next(filter(lambda l: l['name'] == segname, locations))['addr']
def get_end(locations, start):
best = 0xffffffff
for location in locations:
if location['addr'] > start and location['addr'] < best:
best = location['addr']
return best;
def attempt(fd, locations, segname, payload, constname):
# Get location to write to
start = get_start(locations, segname + 'zip')
end = get_end(locations, start)
# Check it'll fit
allocation = end - start
if len(payload) > allocation:
print('The %s segment is too big after compression to fit the allocation of 0x%x. In ld/pd.ld, increase the value of %s to 0x%x or higher.' % (
segname, allocation, constname, len(payload)
))
exit(1)
# Write it
fd.seek(start)
fd.write(payload)
def get_segment(fd, locations, segname):
start = get_start(locations, segname)
end = get_end(locations, start)
fd.seek(start)
return fd.read(end - start)
# lib is compressed from offset 0x2000 onwards
def pack_lib(fd, locations):
lib = get_segment(fd, locations, 'lib')
zipped = lib[0:0x2000] + zip(lib[0x2000:])
attempt(fd, locations, 'lib', zipped, 'ROMALLOCATION_LIB')
def pack_data(fd, locations):
data = get_segment(fd, locations, 'data')
zipped = zip(data)
attempt(fd, locations, 'data', zipped, 'ROMALLOCATION_DATA')
def pack_game(fd, locations):
fd2 = open(bdir() + '/segments/gamezips.bin', 'rb')
zips = fd2.read()
fd2.close()
attempt(fd, locations, 'game', zips, 'ROMALLOCATION_GAME')
def get_locations():
fd = open(bdir() + '/pd.map', 'r')
ldmap = fd.read()
fd.close()
matches = re.findall(r'^\.(\S+)\s+0x[0-9a-f]+\s+0x[0-9a-f]+\s+load address\s+0x([0-9a-f]+)', ldmap, re.MULTILINE)
def make_numeric(match):
return {'addr': int(match[1], 16), 'name': match[0]}
return list(map(make_numeric, matches))
def write_garbage_part(fd, addr, filename):
fd2 = open(edir() + '/' + filename, 'rb')
binary = fd2.read()
fd2.close()
fd.seek(addr)
fd.write(binary)
def write_garbage(fd):
if os.environ['ROMID'] == 'pal-final':
write_garbage_part(fd, 0x2eb21, 'garbage1.bin')
write_garbage_part(fd, 0x158038, 'garbage2.bin')
elif os.environ['ROMID'] == 'ntsc-final':
write_garbage_part(fd, 0x2ea6c, 'garbage1.bin')
write_garbage_part(fd, 0x157800, 'garbage2.bin')
else:
write_garbage_part(fd, 0x2ea22, 'garbage1.bin')
write_garbage_part(fd, 0x1574a0, 'garbage2.bin')
def fill_tail(fd):
fd2 = open(bdir() + '/pd.map', 'r')
ldmap = fd2.read()
fd2.close()
match = re.findall(r'^\s*0x([0-9a-f]+)\s+_accessingpakSegmentRomEnd', ldmap, re.MULTILINE)
pos = int(match[0], 16)
fd.seek(pos)
while pos < 1024 * 1024 * 32:
fd.write(b'\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff')
pos += 0x10
def main():
locations = get_locations()
fd = open(sys.argv[1], 'rb+')
write_garbage(fd)
pack_lib(fd, locations)
pack_data(fd, locations)
pack_game(fd, locations)
fill_tail(fd)
# Truncate to 32MB
fd.seek(0)
fd.truncate(1024 * 1024 * 32)
fd.close()
main()

View File

@ -1,208 +0,0 @@
#!/usr/bin/env python3
import os
import re
import sys
"""
patchpiracysums - calculates the expected checksums that are used in piracy
checks and replaces the expected values in the ROM.
Usage:
patchpiracysums <rom> <ldmap>
To avoid piracy, the game calculates checksums of functions in memory and
compares them with expected values. This script is armed with a list of
locations where these piracy checks happen, as well as the algorithms used in
each, and calculates the expected checksums.
Locations are referenced by function name and resolved to addresses using a
linker map so it works with shifted ROMs. To find the location of the checksum
within a function, it expects the function to use CHECKSUM_PLACEHOLDER. It
searches for lui and ori instructions that load the placeholder value and
replaces the value with the calculated one.
"""
CHECKSUM_PLACEHOLDER = 0x99aabbcc
def algo01(checksum, word):
return checksum ^ word
def algo02(checksum, word):
return checksum ^ ~word
def algo03(checksum, word):
return ((checksum + word) & 0xffffffff) * 2
def algo04(checksum, word):
return checksum + ~word
def algo05(checksum, word):
return checksum * 2 + word
def algo06(checksum, word):
return checksum + word
def algo07(checksum, word):
checksum = (checksum << 1) & 0xffffffff
return checksum ^ word
def algo08(checksum, word):
checksum = (checksum + word) & 0xffffffff
return checksum + (word >> 1)
def algo09(checksum, word):
return checksum - ~word
def algo10(checksum, word):
return (checksum ^ word) << 1
def algo11(checksum, word):
return (checksum ^ ~word) << 1
def algo12(checksum, word):
checksum ^= ~word
checksum ^= (word << 5) & 0xffffffff
checksum ^= word >> 15
return checksum
class Tool:
def load_map(self):
fd = open(sys.argv[2], 'r')
ldmap = fd.read()
fd.close()
self.symbols = re.findall(r'^\s*0x([0-9a-f]+)\s+(\S+)$', ldmap, re.MULTILINE)
# Matching the following line:
# .boot 0x0000000070001000 0x2050 load address 0x0000000000001000
self.segpositions = re.findall(r'^\.(\S+)\s+0x([0-9a-f]+)\s+0x([0-9a-f]+)\s+load address\s+0x([0-9a-f]+)', ldmap, re.MULTILINE)
def ramtorom(self, ramaddr):
for pos in self.segpositions:
segname = pos[0]
rampos = int(pos[1], 16)
length = int(pos[2], 16)
rompos = int(pos[3], 16)
if ramaddr >= rampos and ramaddr < rampos + length:
return rompos + (ramaddr - rampos)
print('Couldn\'t translate RAM address 0x%08x to ROM' & romaddr)
exit(1)
def get_function_address(self, funcname):
startram = None
endram = None
for (index, symbol) in enumerate(list(self.symbols)):
if symbol[1] == funcname:
startram = int(symbol[0], 16)
endram = int(self.symbols[index + 1][0], 16)
break
if startram is None:
raise ValueError('Unable to find %s in map' % funcname)
startrom = self.ramtorom(startram)
endrom = self.ramtorom(endram)
return (startrom, endrom)
def is_branch_likely(self, word):
if word & 0xfc000000 == 0x50000000: # beql
return True
if word & 0xfc000000 == 0x54000000: # bnel
return True
if word & 0xfc000000 == 0x58000000: # blezl
return True
if word & 0xfc000000 == 0x5c000000: # bgtzl
return True
if word & 0xfc000000 == 0x01000000 and word & 0x001f0000 == 0x00020000: # bltzl
return True
if word & 0xfc000000 == 0x01000000 and word & 0x001f0000 == 0x00030000: # bgezl
return True
return False
def calc_checksum(self, sumfunc, algo):
(pos, end) = self.get_function_address(sumfunc)
self.fd.seek(pos)
checksum = 0
while pos < end:
word = int.from_bytes(self.fd.read(4), 'big')
checksum = algo(checksum, word) & 0xffffffff
pos += 4
return checksum
# Checksums are always written into $at with lui and ori
# 3c0199aa lui $at,0x99aa
# 3421bbcc ori $at,$at,0xbbcc
def write_checksum(self, patchfunc, checksum):
(pos, end) = self.get_function_address(patchfunc)
self.fd.seek(pos)
in_branchlikely = False
upperpos = None
lowerpos = None
while pos < end:
word = int.from_bytes(self.fd.read(4), 'big')
if in_branchlikely:
in_branchlikely = False
else:
if self.is_branch_likely(word):
in_branchlikely = True
elif word == 0x3c010000 | (CHECKSUM_PLACEHOLDER >> 16):
upperpos = pos
elif upperpos and word == 0x34210000 | (CHECKSUM_PLACEHOLDER & 0xffff):
lowerpos = pos
pos += 4
if upperpos is None or lowerpos is None:
print('Unable to find placeholder checksum in %s.' % patchfunc)
print('This can happen if you\'ve turned PIRACYCHECKS off, built the files, then turned it on without rebuilding.')
print('To fix, try running the following:')
print('')
print(' touch $(grep -lr PIRACYCHECKS src)')
print(' make')
print('')
exit(1)
self.fd.seek(upperpos)
self.fd.write((0x3c010000 | (checksum >> 16)).to_bytes(4, 'big'))
self.fd.seek(lowerpos)
self.fd.write((0x34210000 | (checksum & 0xffff)).to_bytes(4, 'big'))
def patch(self, algo, patchfunc, sumfunc):
checksum = self.calc_checksum(sumfunc, algo)
self.write_checksum(patchfunc, checksum)
def run(self):
self.load_map()
self.fd = open(sys.argv[1], 'rb+')
self.patch(algo01, '__scHandleTasks', 'bootPhase1')
self.patch(algo02, 'cheatMenuHandleDialog', '__scHandleTasks')
self.patch(algo03, 'propobjHandlePickupByAibot', 'func0f08e2ac')
self.patch(algo04, 'chrUncloak', 'propobjHandlePickupByAibot')
self.patch(algo05, 'chrsCheckForNoise', '__scHandleRetrace')
self.patch(algo06, 'lvInit', 'lvGetSlowMotionType')
self.patch(algo07, 'propAllocateEyespy', 'lvInit')
self.patch(algo08, 'chrConsiderGrenadeThrow', 'bgInit')
self.patch(algo09, 'bgun0f09e144', 'tagsAllocatePtrs')
self.patch(algo10, 'explosionAlertChrs', 'glassDestroy')
self.patch(algo11, 'func0f0069dc', 'mtxGetObfuscatedRomBase')
self.patch(algo12, 'func0f15c920', 'func0f0069dc')
self.fd.close()
# Piracy checks disabled for ntsc-beta for now...
# it's possible they don't exist in that version.
if os.environ['PIRACYCHECKS'] == '1' and os.environ['ROMID'] != 'ntsc-beta':
tool = Tool()
tool.run()

View File

@ -1,76 +0,0 @@
#!/usr/bin/env python3
import sys;
class Tool:
def ROL(self, i, b):
return ((i << b) | (i >> (32 - b))) & 0xffffffff
def R4(self, b):
return b[0]*0x1000000 + b[1]*0x10000 + b[2]*0x100 + b[3]
def crc(self, f):
seed = 0xdf26f436
t1 = t2 = t3 = t4 = t5 = t6 = seed
f.seek(0x0710 + 0x40)
lookup = f.read(0x100)
f.seek(0x1000)
for i in range(0x1000, 0x101000, 4):
d = self.R4(f.read(4))
if ((t6 + d) & 0xffffffff) < t6:
t4 += 1
t4 &= 0xffffffff
t6 += d
t6 &= 0xffffffff
t3 ^= d
r = self.ROL(d, d & 0x1F)
t5 += r
t5 &= 0xffffffff
if t2 > d:
t2 ^= r
else:
t2 ^= t6 ^ d
o = i & 0xFF
temp = self.R4(lookup[o:o + 4])
t1 += temp ^ d
t1 &= 0xffffffff
crc1 = t6 ^ t4 ^ t3
crc2 = t5 ^ t2 ^ t1
return crc1 & 0xffffffff, crc2 & 0xffffffff
fd = open(sys.argv[1], 'rb')
# Read existing CRC
fd.seek(0x10)
old = [
int.from_bytes(fd.read(4), 'big'),
int.from_bytes(fd.read(4), 'big'),
]
# Calculate new CRC
tool = Tool()
new = tool.crc(fd)
fd.close()
if '--verbose' in sys.argv:
print('Old CRCs: %08x %08x' % (old[0], old[1]))
print('New CRCs: %08x %08x' % (new[0], new[1]))
if new != old and '--write' in sys.argv:
fd = open(sys.argv[1], 'r+b')
fd.seek(0x10)
fd.write(new[0].to_bytes(4, 'big'))
fd.write(new[1].to_bytes(4, 'big'))
fd.close()