mirror of
https://github.com/krystalgamer/spidey-decomp.git
synced 2024-11-26 23:00:30 +00:00
Added zlib 1.1.3 and pkr.cpp skeleton
This commit is contained in:
parent
5602d18f73
commit
9561fd1092
BIN
lib/zlib.lib
Normal file
BIN
lib/zlib.lib
Normal file
Binary file not shown.
8
pkr.cpp
Normal file
8
pkr.cpp
Normal file
@ -0,0 +1,8 @@
|
||||
#include "pkr.h"
|
||||
#include "zlib.h"
|
||||
|
||||
i32 fileCRCCheck(u8* buf, i32 size, u32 expected)
|
||||
{
|
||||
u32 res = crc32(0,0 ,0);
|
||||
return 1;
|
||||
}
|
12
pkr.h
Normal file
12
pkr.h
Normal file
@ -0,0 +1,12 @@
|
||||
#ifndef PKR_H
|
||||
#define PKR_H
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "export.h"
|
||||
|
||||
|
||||
EXPORT i32 fileCRCCheck(u8*, i32, u32);
|
||||
|
||||
|
||||
#endif
|
10
spider.dsp
10
spider.dsp
@ -53,7 +53,7 @@ BSC32=bscmake.exe
|
||||
# ADD BSC32 /nologo
|
||||
LINK32=link.exe
|
||||
# ADD BASE LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /subsystem:windows /machine:I386
|
||||
# ADD LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /subsystem:windows /machine:I386
|
||||
# ADD LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib zlib.lib /nologo /subsystem:windows /machine:I386
|
||||
|
||||
!ELSEIF "$(CFG)" == "spider - Win32 Debug"
|
||||
|
||||
@ -404,6 +404,10 @@ SOURCE=.\physics.cpp
|
||||
# End Source File
|
||||
# Begin Source File
|
||||
|
||||
SOURCE=.\pkr.cpp
|
||||
# End Source File
|
||||
# Begin Source File
|
||||
|
||||
SOURCE=.\platform.cpp
|
||||
# End Source File
|
||||
# Begin Source File
|
||||
@ -920,6 +924,10 @@ SOURCE=.\physics.h
|
||||
# End Source File
|
||||
# Begin Source File
|
||||
|
||||
SOURCE=.\pkr.h
|
||||
# End Source File
|
||||
# Begin Source File
|
||||
|
||||
SOURCE=.\platform.h
|
||||
# End Source File
|
||||
# Begin Source File
|
||||
|
42
utils.cpp
42
utils.cpp
@ -809,89 +809,47 @@ INLINE int Rnd(int n)
|
||||
|
||||
const unsigned int crc32_tab[] = {
|
||||
0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f,
|
||||
|
||||
0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988,
|
||||
|
||||
0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2,
|
||||
|
||||
0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7,
|
||||
|
||||
0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
|
||||
|
||||
0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172,
|
||||
|
||||
0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c,
|
||||
|
||||
0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59,
|
||||
|
||||
0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423,
|
||||
|
||||
0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
|
||||
|
||||
0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106,
|
||||
|
||||
0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433,
|
||||
|
||||
0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d,
|
||||
|
||||
0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e,
|
||||
|
||||
0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
|
||||
|
||||
0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65,
|
||||
|
||||
0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7,
|
||||
|
||||
0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0,
|
||||
|
||||
0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa,
|
||||
|
||||
0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
|
||||
|
||||
0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81,
|
||||
|
||||
0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a,
|
||||
|
||||
0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84,
|
||||
|
||||
0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1,
|
||||
|
||||
0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
|
||||
|
||||
0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc,
|
||||
|
||||
0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e,
|
||||
|
||||
0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b,
|
||||
|
||||
0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55,
|
||||
|
||||
0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
|
||||
|
||||
0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28,
|
||||
|
||||
0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d,
|
||||
|
||||
0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f,
|
||||
|
||||
0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38,
|
||||
|
||||
0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,
|
||||
|
||||
0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777,
|
||||
|
||||
0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69,
|
||||
|
||||
0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2,
|
||||
|
||||
0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc,
|
||||
|
||||
0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
|
||||
|
||||
0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693,
|
||||
|
||||
0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94,
|
||||
|
||||
0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d
|
||||
};
|
||||
|
||||
|
279
zconf.h
Normal file
279
zconf.h
Normal file
@ -0,0 +1,279 @@
|
||||
/* zconf.h -- configuration of the zlib compression library
|
||||
* Copyright (C) 1995-1998 Jean-loup Gailly.
|
||||
* For conditions of distribution and use, see copyright notice in zlib.h
|
||||
*/
|
||||
|
||||
/* @(#) $Id$ */
|
||||
|
||||
#ifndef _ZCONF_H
|
||||
#define _ZCONF_H
|
||||
|
||||
/*
|
||||
* If you *really* need a unique prefix for all types and library functions,
|
||||
* compile with -DZ_PREFIX. The "standard" zlib should be compiled without it.
|
||||
*/
|
||||
#ifdef Z_PREFIX
|
||||
# define deflateInit_ z_deflateInit_
|
||||
# define deflate z_deflate
|
||||
# define deflateEnd z_deflateEnd
|
||||
# define inflateInit_ z_inflateInit_
|
||||
# define inflate z_inflate
|
||||
# define inflateEnd z_inflateEnd
|
||||
# define deflateInit2_ z_deflateInit2_
|
||||
# define deflateSetDictionary z_deflateSetDictionary
|
||||
# define deflateCopy z_deflateCopy
|
||||
# define deflateReset z_deflateReset
|
||||
# define deflateParams z_deflateParams
|
||||
# define inflateInit2_ z_inflateInit2_
|
||||
# define inflateSetDictionary z_inflateSetDictionary
|
||||
# define inflateSync z_inflateSync
|
||||
# define inflateSyncPoint z_inflateSyncPoint
|
||||
# define inflateReset z_inflateReset
|
||||
# define compress z_compress
|
||||
# define compress2 z_compress2
|
||||
# define uncompress z_uncompress
|
||||
# define adler32 z_adler32
|
||||
# define crc32 z_crc32
|
||||
# define get_crc_table z_get_crc_table
|
||||
|
||||
# define Byte z_Byte
|
||||
# define uInt z_uInt
|
||||
# define uLong z_uLong
|
||||
# define Bytef z_Bytef
|
||||
# define charf z_charf
|
||||
# define intf z_intf
|
||||
# define uIntf z_uIntf
|
||||
# define uLongf z_uLongf
|
||||
# define voidpf z_voidpf
|
||||
# define voidp z_voidp
|
||||
#endif
|
||||
|
||||
#if (defined(_WIN32) || defined(__WIN32__)) && !defined(WIN32)
|
||||
# define WIN32
|
||||
#endif
|
||||
#if defined(__GNUC__) || defined(WIN32) || defined(__386__) || defined(i386)
|
||||
# ifndef __32BIT__
|
||||
# define __32BIT__
|
||||
# endif
|
||||
#endif
|
||||
#if defined(__MSDOS__) && !defined(MSDOS)
|
||||
# define MSDOS
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Compile with -DMAXSEG_64K if the alloc function cannot allocate more
|
||||
* than 64k bytes at a time (needed on systems with 16-bit int).
|
||||
*/
|
||||
#if defined(MSDOS) && !defined(__32BIT__)
|
||||
# define MAXSEG_64K
|
||||
#endif
|
||||
#ifdef MSDOS
|
||||
# define UNALIGNED_OK
|
||||
#endif
|
||||
|
||||
#if (defined(MSDOS) || defined(_WINDOWS) || defined(WIN32)) && !defined(STDC)
|
||||
# define STDC
|
||||
#endif
|
||||
#if defined(__STDC__) || defined(__cplusplus) || defined(__OS2__)
|
||||
# ifndef STDC
|
||||
# define STDC
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#ifndef STDC
|
||||
# ifndef const /* cannot use !defined(STDC) && !defined(const) on Mac */
|
||||
# define const
|
||||
# endif
|
||||
#endif
|
||||
|
||||
/* Some Mac compilers merge all .h files incorrectly: */
|
||||
#if defined(__MWERKS__) || defined(applec) ||defined(THINK_C) ||defined(__SC__)
|
||||
# define NO_DUMMY_DECL
|
||||
#endif
|
||||
|
||||
/* Old Borland C incorrectly complains about missing returns: */
|
||||
#if defined(__BORLANDC__) && (__BORLANDC__ < 0x500)
|
||||
# define NEED_DUMMY_RETURN
|
||||
#endif
|
||||
|
||||
|
||||
/* Maximum value for memLevel in deflateInit2 */
|
||||
#ifndef MAX_MEM_LEVEL
|
||||
# ifdef MAXSEG_64K
|
||||
# define MAX_MEM_LEVEL 8
|
||||
# else
|
||||
# define MAX_MEM_LEVEL 9
|
||||
# endif
|
||||
#endif
|
||||
|
||||
/* Maximum value for windowBits in deflateInit2 and inflateInit2.
|
||||
* WARNING: reducing MAX_WBITS makes minigzip unable to extract .gz files
|
||||
* created by gzip. (Files created by minigzip can still be extracted by
|
||||
* gzip.)
|
||||
*/
|
||||
#ifndef MAX_WBITS
|
||||
# define MAX_WBITS 15 /* 32K LZ77 window */
|
||||
#endif
|
||||
|
||||
/* The memory requirements for deflate are (in bytes):
|
||||
(1 << (windowBits+2)) + (1 << (memLevel+9))
|
||||
that is: 128K for windowBits=15 + 128K for memLevel = 8 (default values)
|
||||
plus a few kilobytes for small objects. For example, if you want to reduce
|
||||
the default memory requirements from 256K to 128K, compile with
|
||||
make CFLAGS="-O -DMAX_WBITS=14 -DMAX_MEM_LEVEL=7"
|
||||
Of course this will generally degrade compression (there's no free lunch).
|
||||
|
||||
The memory requirements for inflate are (in bytes) 1 << windowBits
|
||||
that is, 32K for windowBits=15 (default value) plus a few kilobytes
|
||||
for small objects.
|
||||
*/
|
||||
|
||||
/* Type declarations */
|
||||
|
||||
#ifndef OF /* function prototypes */
|
||||
# ifdef STDC
|
||||
# define OF(args) args
|
||||
# else
|
||||
# define OF(args) ()
|
||||
# endif
|
||||
#endif
|
||||
|
||||
/* The following definitions for FAR are needed only for MSDOS mixed
|
||||
* model programming (small or medium model with some far allocations).
|
||||
* This was tested only with MSC; for other MSDOS compilers you may have
|
||||
* to define NO_MEMCPY in zutil.h. If you don't need the mixed model,
|
||||
* just define FAR to be empty.
|
||||
*/
|
||||
#if (defined(M_I86SM) || defined(M_I86MM)) && !defined(__32BIT__)
|
||||
/* MSC small or medium model */
|
||||
# define SMALL_MEDIUM
|
||||
# ifdef _MSC_VER
|
||||
# define FAR _far
|
||||
# else
|
||||
# define FAR far
|
||||
# endif
|
||||
#endif
|
||||
#if defined(__BORLANDC__) && (defined(__SMALL__) || defined(__MEDIUM__))
|
||||
# ifndef __32BIT__
|
||||
# define SMALL_MEDIUM
|
||||
# define FAR _far
|
||||
# endif
|
||||
#endif
|
||||
|
||||
/* Compile with -DZLIB_DLL for Windows DLL support */
|
||||
#if defined(ZLIB_DLL)
|
||||
# if defined(_WINDOWS) || defined(WINDOWS)
|
||||
# ifdef FAR
|
||||
# undef FAR
|
||||
# endif
|
||||
# include <windows.h>
|
||||
# define ZEXPORT WINAPI
|
||||
# ifdef WIN32
|
||||
# define ZEXPORTVA WINAPIV
|
||||
# else
|
||||
# define ZEXPORTVA FAR _cdecl _export
|
||||
# endif
|
||||
# endif
|
||||
# if defined (__BORLANDC__)
|
||||
# if (__BORLANDC__ >= 0x0500) && defined (WIN32)
|
||||
# include <windows.h>
|
||||
# define ZEXPORT __declspec(dllexport) WINAPI
|
||||
# define ZEXPORTRVA __declspec(dllexport) WINAPIV
|
||||
# else
|
||||
# if defined (_Windows) && defined (__DLL__)
|
||||
# define ZEXPORT _export
|
||||
# define ZEXPORTVA _export
|
||||
# endif
|
||||
# endif
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#if defined (__BEOS__)
|
||||
# if defined (ZLIB_DLL)
|
||||
# define ZEXTERN extern __declspec(dllexport)
|
||||
# else
|
||||
# define ZEXTERN extern __declspec(dllimport)
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#ifndef ZEXPORT
|
||||
# define ZEXPORT
|
||||
#endif
|
||||
#ifndef ZEXPORTVA
|
||||
# define ZEXPORTVA
|
||||
#endif
|
||||
#ifndef ZEXTERN
|
||||
# define ZEXTERN extern
|
||||
#endif
|
||||
|
||||
#ifndef FAR
|
||||
# define FAR
|
||||
#endif
|
||||
|
||||
#if !defined(MACOS) && !defined(TARGET_OS_MAC)
|
||||
typedef unsigned char Byte; /* 8 bits */
|
||||
#endif
|
||||
typedef unsigned int uInt; /* 16 bits or more */
|
||||
typedef unsigned long uLong; /* 32 bits or more */
|
||||
|
||||
#ifdef SMALL_MEDIUM
|
||||
/* Borland C/C++ and some old MSC versions ignore FAR inside typedef */
|
||||
# define Bytef Byte FAR
|
||||
#else
|
||||
typedef Byte FAR Bytef;
|
||||
#endif
|
||||
typedef char FAR charf;
|
||||
typedef int FAR intf;
|
||||
typedef uInt FAR uIntf;
|
||||
typedef uLong FAR uLongf;
|
||||
|
||||
#ifdef STDC
|
||||
typedef void FAR *voidpf;
|
||||
typedef void *voidp;
|
||||
#else
|
||||
typedef Byte FAR *voidpf;
|
||||
typedef Byte *voidp;
|
||||
#endif
|
||||
|
||||
#ifdef HAVE_UNISTD_H
|
||||
# include <sys/types.h> /* for off_t */
|
||||
# include <unistd.h> /* for SEEK_* and off_t */
|
||||
# define z_off_t off_t
|
||||
#endif
|
||||
#ifndef SEEK_SET
|
||||
# define SEEK_SET 0 /* Seek from beginning of file. */
|
||||
# define SEEK_CUR 1 /* Seek from current position. */
|
||||
# define SEEK_END 2 /* Set file pointer to EOF plus "offset" */
|
||||
#endif
|
||||
#ifndef z_off_t
|
||||
# define z_off_t long
|
||||
#endif
|
||||
|
||||
/* MVS linker does not support external names larger than 8 bytes */
|
||||
#if defined(__MVS__)
|
||||
# pragma map(deflateInit_,"DEIN")
|
||||
# pragma map(deflateInit2_,"DEIN2")
|
||||
# pragma map(deflateEnd,"DEEND")
|
||||
# pragma map(inflateInit_,"ININ")
|
||||
# pragma map(inflateInit2_,"ININ2")
|
||||
# pragma map(inflateEnd,"INEND")
|
||||
# pragma map(inflateSync,"INSY")
|
||||
# pragma map(inflateSetDictionary,"INSEDI")
|
||||
# pragma map(inflate_blocks,"INBL")
|
||||
# pragma map(inflate_blocks_new,"INBLNE")
|
||||
# pragma map(inflate_blocks_free,"INBLFR")
|
||||
# pragma map(inflate_blocks_reset,"INBLRE")
|
||||
# pragma map(inflate_codes_free,"INCOFR")
|
||||
# pragma map(inflate_codes,"INCO")
|
||||
# pragma map(inflate_fast,"INFA")
|
||||
# pragma map(inflate_flush,"INFLU")
|
||||
# pragma map(inflate_mask,"INMA")
|
||||
# pragma map(inflate_set_dictionary,"INSEDI2")
|
||||
# pragma map(inflate_copyright,"INCOPY")
|
||||
# pragma map(inflate_trees_bits,"INTRBI")
|
||||
# pragma map(inflate_trees_dynamic,"INTRDY")
|
||||
# pragma map(inflate_trees_fixed,"INTRFI")
|
||||
# pragma map(inflate_trees_free,"INTRFR")
|
||||
#endif
|
||||
|
||||
#endif /* _ZCONF_H */
|
893
zlib.h
Normal file
893
zlib.h
Normal file
@ -0,0 +1,893 @@
|
||||
/* zlib.h -- interface of the 'zlib' general purpose compression library
|
||||
version 1.1.3, July 9th, 1998
|
||||
|
||||
Copyright (C) 1995-1998 Jean-loup Gailly and Mark Adler
|
||||
|
||||
This software is provided 'as-is', without any express or implied
|
||||
warranty. In no event will the authors be held liable for any damages
|
||||
arising from the use of this software.
|
||||
|
||||
Permission is granted to anyone to use this software for any purpose,
|
||||
including commercial applications, and to alter it and redistribute it
|
||||
freely, subject to the following restrictions:
|
||||
|
||||
1. The origin of this software must not be misrepresented; you must not
|
||||
claim that you wrote the original software. If you use this software
|
||||
in a product, an acknowledgment in the product documentation would be
|
||||
appreciated but is not required.
|
||||
2. Altered source versions must be plainly marked as such, and must not be
|
||||
misrepresented as being the original software.
|
||||
3. This notice may not be removed or altered from any source distribution.
|
||||
|
||||
Jean-loup Gailly Mark Adler
|
||||
jloup@gzip.org madler@alumni.caltech.edu
|
||||
|
||||
|
||||
The data format used by the zlib library is described by RFCs (Request for
|
||||
Comments) 1950 to 1952 in the files ftp://ds.internic.net/rfc/rfc1950.txt
|
||||
(zlib format), rfc1951.txt (deflate format) and rfc1952.txt (gzip format).
|
||||
*/
|
||||
|
||||
#ifndef _ZLIB_H
|
||||
#define _ZLIB_H
|
||||
|
||||
#include "zconf.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#define ZLIB_VERSION "1.1.3"
|
||||
|
||||
/*
|
||||
The 'zlib' compression library provides in-memory compression and
|
||||
decompression functions, including integrity checks of the uncompressed
|
||||
data. This version of the library supports only one compression method
|
||||
(deflation) but other algorithms will be added later and will have the same
|
||||
stream interface.
|
||||
|
||||
Compression can be done in a single step if the buffers are large
|
||||
enough (for example if an input file is mmap'ed), or can be done by
|
||||
repeated calls of the compression function. In the latter case, the
|
||||
application must provide more input and/or consume the output
|
||||
(providing more output space) before each call.
|
||||
|
||||
The library also supports reading and writing files in gzip (.gz) format
|
||||
with an interface similar to that of stdio.
|
||||
|
||||
The library does not install any signal handler. The decoder checks
|
||||
the consistency of the compressed data, so the library should never
|
||||
crash even in case of corrupted input.
|
||||
*/
|
||||
|
||||
typedef voidpf (*alloc_func) OF((voidpf opaque, uInt items, uInt size));
|
||||
typedef void (*free_func) OF((voidpf opaque, voidpf address));
|
||||
|
||||
struct internal_state;
|
||||
|
||||
typedef struct z_stream_s {
|
||||
Bytef *next_in; /* next input byte */
|
||||
uInt avail_in; /* number of bytes available at next_in */
|
||||
uLong total_in; /* total nb of input bytes read so far */
|
||||
|
||||
Bytef *next_out; /* next output byte should be put there */
|
||||
uInt avail_out; /* remaining free space at next_out */
|
||||
uLong total_out; /* total nb of bytes output so far */
|
||||
|
||||
char *msg; /* last error message, NULL if no error */
|
||||
struct internal_state FAR *state; /* not visible by applications */
|
||||
|
||||
alloc_func zalloc; /* used to allocate the internal state */
|
||||
free_func zfree; /* used to free the internal state */
|
||||
voidpf opaque; /* private data object passed to zalloc and zfree */
|
||||
|
||||
int data_type; /* best guess about the data type: ascii or binary */
|
||||
uLong adler; /* adler32 value of the uncompressed data */
|
||||
uLong reserved; /* reserved for future use */
|
||||
} z_stream;
|
||||
|
||||
typedef z_stream FAR *z_streamp;
|
||||
|
||||
/*
|
||||
The application must update next_in and avail_in when avail_in has
|
||||
dropped to zero. It must update next_out and avail_out when avail_out
|
||||
has dropped to zero. The application must initialize zalloc, zfree and
|
||||
opaque before calling the init function. All other fields are set by the
|
||||
compression library and must not be updated by the application.
|
||||
|
||||
The opaque value provided by the application will be passed as the first
|
||||
parameter for calls of zalloc and zfree. This can be useful for custom
|
||||
memory management. The compression library attaches no meaning to the
|
||||
opaque value.
|
||||
|
||||
zalloc must return Z_NULL if there is not enough memory for the object.
|
||||
If zlib is used in a multi-threaded application, zalloc and zfree must be
|
||||
thread safe.
|
||||
|
||||
On 16-bit systems, the functions zalloc and zfree must be able to allocate
|
||||
exactly 65536 bytes, but will not be required to allocate more than this
|
||||
if the symbol MAXSEG_64K is defined (see zconf.h). WARNING: On MSDOS,
|
||||
pointers returned by zalloc for objects of exactly 65536 bytes *must*
|
||||
have their offset normalized to zero. The default allocation function
|
||||
provided by this library ensures this (see zutil.c). To reduce memory
|
||||
requirements and avoid any allocation of 64K objects, at the expense of
|
||||
compression ratio, compile the library with -DMAX_WBITS=14 (see zconf.h).
|
||||
|
||||
The fields total_in and total_out can be used for statistics or
|
||||
progress reports. After compression, total_in holds the total size of
|
||||
the uncompressed data and may be saved for use in the decompressor
|
||||
(particularly if the decompressor wants to decompress everything in
|
||||
a single step).
|
||||
*/
|
||||
|
||||
/* constants */
|
||||
|
||||
#define Z_NO_FLUSH 0
|
||||
#define Z_PARTIAL_FLUSH 1 /* will be removed, use Z_SYNC_FLUSH instead */
|
||||
#define Z_SYNC_FLUSH 2
|
||||
#define Z_FULL_FLUSH 3
|
||||
#define Z_FINISH 4
|
||||
/* Allowed flush values; see deflate() below for details */
|
||||
|
||||
#define Z_OK 0
|
||||
#define Z_STREAM_END 1
|
||||
#define Z_NEED_DICT 2
|
||||
#define Z_ERRNO (-1)
|
||||
#define Z_STREAM_ERROR (-2)
|
||||
#define Z_DATA_ERROR (-3)
|
||||
#define Z_MEM_ERROR (-4)
|
||||
#define Z_BUF_ERROR (-5)
|
||||
#define Z_VERSION_ERROR (-6)
|
||||
/* Return codes for the compression/decompression functions. Negative
|
||||
* values are errors, positive values are used for special but normal events.
|
||||
*/
|
||||
|
||||
#define Z_NO_COMPRESSION 0
|
||||
#define Z_BEST_SPEED 1
|
||||
#define Z_BEST_COMPRESSION 9
|
||||
#define Z_DEFAULT_COMPRESSION (-1)
|
||||
/* compression levels */
|
||||
|
||||
#define Z_FILTERED 1
|
||||
#define Z_HUFFMAN_ONLY 2
|
||||
#define Z_DEFAULT_STRATEGY 0
|
||||
/* compression strategy; see deflateInit2() below for details */
|
||||
|
||||
#define Z_BINARY 0
|
||||
#define Z_ASCII 1
|
||||
#define Z_UNKNOWN 2
|
||||
/* Possible values of the data_type field */
|
||||
|
||||
#define Z_DEFLATED 8
|
||||
/* The deflate compression method (the only one supported in this version) */
|
||||
|
||||
#define Z_NULL 0 /* for initializing zalloc, zfree, opaque */
|
||||
|
||||
#define zlib_version zlibVersion()
|
||||
/* for compatibility with versions < 1.0.2 */
|
||||
|
||||
/* basic functions */
|
||||
|
||||
ZEXTERN const char * ZEXPORT zlibVersion OF((void));
|
||||
/* The application can compare zlibVersion and ZLIB_VERSION for consistency.
|
||||
If the first character differs, the library code actually used is
|
||||
not compatible with the zlib.h header file used by the application.
|
||||
This check is automatically made by deflateInit and inflateInit.
|
||||
*/
|
||||
|
||||
/*
|
||||
ZEXTERN int ZEXPORT deflateInit OF((z_streamp strm, int level));
|
||||
|
||||
Initializes the internal stream state for compression. The fields
|
||||
zalloc, zfree and opaque must be initialized before by the caller.
|
||||
If zalloc and zfree are set to Z_NULL, deflateInit updates them to
|
||||
use default allocation functions.
|
||||
|
||||
The compression level must be Z_DEFAULT_COMPRESSION, or between 0 and 9:
|
||||
1 gives best speed, 9 gives best compression, 0 gives no compression at
|
||||
all (the input data is simply copied a block at a time).
|
||||
Z_DEFAULT_COMPRESSION requests a default compromise between speed and
|
||||
compression (currently equivalent to level 6).
|
||||
|
||||
deflateInit returns Z_OK if success, Z_MEM_ERROR if there was not
|
||||
enough memory, Z_STREAM_ERROR if level is not a valid compression level,
|
||||
Z_VERSION_ERROR if the zlib library version (zlib_version) is incompatible
|
||||
with the version assumed by the caller (ZLIB_VERSION).
|
||||
msg is set to null if there is no error message. deflateInit does not
|
||||
perform any compression: this will be done by deflate().
|
||||
*/
|
||||
|
||||
|
||||
ZEXTERN int ZEXPORT deflate OF((z_streamp strm, int flush));
|
||||
/*
|
||||
deflate compresses as much data as possible, and stops when the input
|
||||
buffer becomes empty or the output buffer becomes full. It may introduce some
|
||||
output latency (reading input without producing any output) except when
|
||||
forced to flush.
|
||||
|
||||
The detailed semantics are as follows. deflate performs one or both of the
|
||||
following actions:
|
||||
|
||||
- Compress more input starting at next_in and update next_in and avail_in
|
||||
accordingly. If not all input can be processed (because there is not
|
||||
enough room in the output buffer), next_in and avail_in are updated and
|
||||
processing will resume at this point for the next call of deflate().
|
||||
|
||||
- Provide more output starting at next_out and update next_out and avail_out
|
||||
accordingly. This action is forced if the parameter flush is non zero.
|
||||
Forcing flush frequently degrades the compression ratio, so this parameter
|
||||
should be set only when necessary (in interactive applications).
|
||||
Some output may be provided even if flush is not set.
|
||||
|
||||
Before the call of deflate(), the application should ensure that at least
|
||||
one of the actions is possible, by providing more input and/or consuming
|
||||
more output, and updating avail_in or avail_out accordingly; avail_out
|
||||
should never be zero before the call. The application can consume the
|
||||
compressed output when it wants, for example when the output buffer is full
|
||||
(avail_out == 0), or after each call of deflate(). If deflate returns Z_OK
|
||||
and with zero avail_out, it must be called again after making room in the
|
||||
output buffer because there might be more output pending.
|
||||
|
||||
If the parameter flush is set to Z_SYNC_FLUSH, all pending output is
|
||||
flushed to the output buffer and the output is aligned on a byte boundary, so
|
||||
that the decompressor can get all input data available so far. (In particular
|
||||
avail_in is zero after the call if enough output space has been provided
|
||||
before the call.) Flushing may degrade compression for some compression
|
||||
algorithms and so it should be used only when necessary.
|
||||
|
||||
If flush is set to Z_FULL_FLUSH, all output is flushed as with
|
||||
Z_SYNC_FLUSH, and the compression state is reset so that decompression can
|
||||
restart from this point if previous compressed data has been damaged or if
|
||||
random access is desired. Using Z_FULL_FLUSH too often can seriously degrade
|
||||
the compression.
|
||||
|
||||
If deflate returns with avail_out == 0, this function must be called again
|
||||
with the same value of the flush parameter and more output space (updated
|
||||
avail_out), until the flush is complete (deflate returns with non-zero
|
||||
avail_out).
|
||||
|
||||
If the parameter flush is set to Z_FINISH, pending input is processed,
|
||||
pending output is flushed and deflate returns with Z_STREAM_END if there
|
||||
was enough output space; if deflate returns with Z_OK, this function must be
|
||||
called again with Z_FINISH and more output space (updated avail_out) but no
|
||||
more input data, until it returns with Z_STREAM_END or an error. After
|
||||
deflate has returned Z_STREAM_END, the only possible operations on the
|
||||
stream are deflateReset or deflateEnd.
|
||||
|
||||
Z_FINISH can be used immediately after deflateInit if all the compression
|
||||
is to be done in a single step. In this case, avail_out must be at least
|
||||
0.1% larger than avail_in plus 12 bytes. If deflate does not return
|
||||
Z_STREAM_END, then it must be called again as described above.
|
||||
|
||||
deflate() sets strm->adler to the adler32 checksum of all input read
|
||||
so far (that is, total_in bytes).
|
||||
|
||||
deflate() may update data_type if it can make a good guess about
|
||||
the input data type (Z_ASCII or Z_BINARY). In doubt, the data is considered
|
||||
binary. This field is only for information purposes and does not affect
|
||||
the compression algorithm in any manner.
|
||||
|
||||
deflate() returns Z_OK if some progress has been made (more input
|
||||
processed or more output produced), Z_STREAM_END if all input has been
|
||||
consumed and all output has been produced (only when flush is set to
|
||||
Z_FINISH), Z_STREAM_ERROR if the stream state was inconsistent (for example
|
||||
if next_in or next_out was NULL), Z_BUF_ERROR if no progress is possible
|
||||
(for example avail_in or avail_out was zero).
|
||||
*/
|
||||
|
||||
|
||||
ZEXTERN int ZEXPORT deflateEnd OF((z_streamp strm));
|
||||
/*
|
||||
All dynamically allocated data structures for this stream are freed.
|
||||
This function discards any unprocessed input and does not flush any
|
||||
pending output.
|
||||
|
||||
deflateEnd returns Z_OK if success, Z_STREAM_ERROR if the
|
||||
stream state was inconsistent, Z_DATA_ERROR if the stream was freed
|
||||
prematurely (some input or output was discarded). In the error case,
|
||||
msg may be set but then points to a static string (which must not be
|
||||
deallocated).
|
||||
*/
|
||||
|
||||
|
||||
/*
|
||||
ZEXTERN int ZEXPORT inflateInit OF((z_streamp strm));
|
||||
|
||||
Initializes the internal stream state for decompression. The fields
|
||||
next_in, avail_in, zalloc, zfree and opaque must be initialized before by
|
||||
the caller. If next_in is not Z_NULL and avail_in is large enough (the exact
|
||||
value depends on the compression method), inflateInit determines the
|
||||
compression method from the zlib header and allocates all data structures
|
||||
accordingly; otherwise the allocation will be deferred to the first call of
|
||||
inflate. If zalloc and zfree are set to Z_NULL, inflateInit updates them to
|
||||
use default allocation functions.
|
||||
|
||||
inflateInit returns Z_OK if success, Z_MEM_ERROR if there was not enough
|
||||
memory, Z_VERSION_ERROR if the zlib library version is incompatible with the
|
||||
version assumed by the caller. msg is set to null if there is no error
|
||||
message. inflateInit does not perform any decompression apart from reading
|
||||
the zlib header if present: this will be done by inflate(). (So next_in and
|
||||
avail_in may be modified, but next_out and avail_out are unchanged.)
|
||||
*/
|
||||
|
||||
|
||||
ZEXTERN int ZEXPORT inflate OF((z_streamp strm, int flush));
|
||||
/*
|
||||
inflate decompresses as much data as possible, and stops when the input
|
||||
buffer becomes empty or the output buffer becomes full. It may some
|
||||
introduce some output latency (reading input without producing any output)
|
||||
except when forced to flush.
|
||||
|
||||
The detailed semantics are as follows. inflate performs one or both of the
|
||||
following actions:
|
||||
|
||||
- Decompress more input starting at next_in and update next_in and avail_in
|
||||
accordingly. If not all input can be processed (because there is not
|
||||
enough room in the output buffer), next_in is updated and processing
|
||||
will resume at this point for the next call of inflate().
|
||||
|
||||
- Provide more output starting at next_out and update next_out and avail_out
|
||||
accordingly. inflate() provides as much output as possible, until there
|
||||
is no more input data or no more space in the output buffer (see below
|
||||
about the flush parameter).
|
||||
|
||||
Before the call of inflate(), the application should ensure that at least
|
||||
one of the actions is possible, by providing more input and/or consuming
|
||||
more output, and updating the next_* and avail_* values accordingly.
|
||||
The application can consume the uncompressed output when it wants, for
|
||||
example when the output buffer is full (avail_out == 0), or after each
|
||||
call of inflate(). If inflate returns Z_OK and with zero avail_out, it
|
||||
must be called again after making room in the output buffer because there
|
||||
might be more output pending.
|
||||
|
||||
If the parameter flush is set to Z_SYNC_FLUSH, inflate flushes as much
|
||||
output as possible to the output buffer. The flushing behavior of inflate is
|
||||
not specified for values of the flush parameter other than Z_SYNC_FLUSH
|
||||
and Z_FINISH, but the current implementation actually flushes as much output
|
||||
as possible anyway.
|
||||
|
||||
inflate() should normally be called until it returns Z_STREAM_END or an
|
||||
error. However if all decompression is to be performed in a single step
|
||||
(a single call of inflate), the parameter flush should be set to
|
||||
Z_FINISH. In this case all pending input is processed and all pending
|
||||
output is flushed; avail_out must be large enough to hold all the
|
||||
uncompressed data. (The size of the uncompressed data may have been saved
|
||||
by the compressor for this purpose.) The next operation on this stream must
|
||||
be inflateEnd to deallocate the decompression state. The use of Z_FINISH
|
||||
is never required, but can be used to inform inflate that a faster routine
|
||||
may be used for the single inflate() call.
|
||||
|
||||
If a preset dictionary is needed at this point (see inflateSetDictionary
|
||||
below), inflate sets strm-adler to the adler32 checksum of the
|
||||
dictionary chosen by the compressor and returns Z_NEED_DICT; otherwise
|
||||
it sets strm->adler to the adler32 checksum of all output produced
|
||||
so far (that is, total_out bytes) and returns Z_OK, Z_STREAM_END or
|
||||
an error code as described below. At the end of the stream, inflate()
|
||||
checks that its computed adler32 checksum is equal to that saved by the
|
||||
compressor and returns Z_STREAM_END only if the checksum is correct.
|
||||
|
||||
inflate() returns Z_OK if some progress has been made (more input processed
|
||||
or more output produced), Z_STREAM_END if the end of the compressed data has
|
||||
been reached and all uncompressed output has been produced, Z_NEED_DICT if a
|
||||
preset dictionary is needed at this point, Z_DATA_ERROR if the input data was
|
||||
corrupted (input stream not conforming to the zlib format or incorrect
|
||||
adler32 checksum), Z_STREAM_ERROR if the stream structure was inconsistent
|
||||
(for example if next_in or next_out was NULL), Z_MEM_ERROR if there was not
|
||||
enough memory, Z_BUF_ERROR if no progress is possible or if there was not
|
||||
enough room in the output buffer when Z_FINISH is used. In the Z_DATA_ERROR
|
||||
case, the application may then call inflateSync to look for a good
|
||||
compression block.
|
||||
*/
|
||||
|
||||
|
||||
ZEXTERN int ZEXPORT inflateEnd OF((z_streamp strm));
|
||||
/*
|
||||
All dynamically allocated data structures for this stream are freed.
|
||||
This function discards any unprocessed input and does not flush any
|
||||
pending output.
|
||||
|
||||
inflateEnd returns Z_OK if success, Z_STREAM_ERROR if the stream state
|
||||
was inconsistent. In the error case, msg may be set but then points to a
|
||||
static string (which must not be deallocated).
|
||||
*/
|
||||
|
||||
/* Advanced functions */
|
||||
|
||||
/*
|
||||
The following functions are needed only in some special applications.
|
||||
*/
|
||||
|
||||
/*
|
||||
ZEXTERN int ZEXPORT deflateInit2 OF((z_streamp strm,
|
||||
int level,
|
||||
int method,
|
||||
int windowBits,
|
||||
int memLevel,
|
||||
int strategy));
|
||||
|
||||
This is another version of deflateInit with more compression options. The
|
||||
fields next_in, zalloc, zfree and opaque must be initialized before by
|
||||
the caller.
|
||||
|
||||
The method parameter is the compression method. It must be Z_DEFLATED in
|
||||
this version of the library.
|
||||
|
||||
The windowBits parameter is the base two logarithm of the window size
|
||||
(the size of the history buffer). It should be in the range 8..15 for this
|
||||
version of the library. Larger values of this parameter result in better
|
||||
compression at the expense of memory usage. The default value is 15 if
|
||||
deflateInit is used instead.
|
||||
|
||||
The memLevel parameter specifies how much memory should be allocated
|
||||
for the internal compression state. memLevel=1 uses minimum memory but
|
||||
is slow and reduces compression ratio; memLevel=9 uses maximum memory
|
||||
for optimal speed. The default value is 8. See zconf.h for total memory
|
||||
usage as a function of windowBits and memLevel.
|
||||
|
||||
The strategy parameter is used to tune the compression algorithm. Use the
|
||||
value Z_DEFAULT_STRATEGY for normal data, Z_FILTERED for data produced by a
|
||||
filter (or predictor), or Z_HUFFMAN_ONLY to force Huffman encoding only (no
|
||||
string match). Filtered data consists mostly of small values with a
|
||||
somewhat random distribution. In this case, the compression algorithm is
|
||||
tuned to compress them better. The effect of Z_FILTERED is to force more
|
||||
Huffman coding and less string matching; it is somewhat intermediate
|
||||
between Z_DEFAULT and Z_HUFFMAN_ONLY. The strategy parameter only affects
|
||||
the compression ratio but not the correctness of the compressed output even
|
||||
if it is not set appropriately.
|
||||
|
||||
deflateInit2 returns Z_OK if success, Z_MEM_ERROR if there was not enough
|
||||
memory, Z_STREAM_ERROR if a parameter is invalid (such as an invalid
|
||||
method). msg is set to null if there is no error message. deflateInit2 does
|
||||
not perform any compression: this will be done by deflate().
|
||||
*/
|
||||
|
||||
ZEXTERN int ZEXPORT deflateSetDictionary OF((z_streamp strm,
|
||||
const Bytef *dictionary,
|
||||
uInt dictLength));
|
||||
/*
|
||||
Initializes the compression dictionary from the given byte sequence
|
||||
without producing any compressed output. This function must be called
|
||||
immediately after deflateInit, deflateInit2 or deflateReset, before any
|
||||
call of deflate. The compressor and decompressor must use exactly the same
|
||||
dictionary (see inflateSetDictionary).
|
||||
|
||||
The dictionary should consist of strings (byte sequences) that are likely
|
||||
to be encountered later in the data to be compressed, with the most commonly
|
||||
used strings preferably put towards the end of the dictionary. Using a
|
||||
dictionary is most useful when the data to be compressed is short and can be
|
||||
predicted with good accuracy; the data can then be compressed better than
|
||||
with the default empty dictionary.
|
||||
|
||||
Depending on the size of the compression data structures selected by
|
||||
deflateInit or deflateInit2, a part of the dictionary may in effect be
|
||||
discarded, for example if the dictionary is larger than the window size in
|
||||
deflate or deflate2. Thus the strings most likely to be useful should be
|
||||
put at the end of the dictionary, not at the front.
|
||||
|
||||
Upon return of this function, strm->adler is set to the Adler32 value
|
||||
of the dictionary; the decompressor may later use this value to determine
|
||||
which dictionary has been used by the compressor. (The Adler32 value
|
||||
applies to the whole dictionary even if only a subset of the dictionary is
|
||||
actually used by the compressor.)
|
||||
|
||||
deflateSetDictionary returns Z_OK if success, or Z_STREAM_ERROR if a
|
||||
parameter is invalid (such as NULL dictionary) or the stream state is
|
||||
inconsistent (for example if deflate has already been called for this stream
|
||||
or if the compression method is bsort). deflateSetDictionary does not
|
||||
perform any compression: this will be done by deflate().
|
||||
*/
|
||||
|
||||
ZEXTERN int ZEXPORT deflateCopy OF((z_streamp dest,
|
||||
z_streamp source));
|
||||
/*
|
||||
Sets the destination stream as a complete copy of the source stream.
|
||||
|
||||
This function can be useful when several compression strategies will be
|
||||
tried, for example when there are several ways of pre-processing the input
|
||||
data with a filter. The streams that will be discarded should then be freed
|
||||
by calling deflateEnd. Note that deflateCopy duplicates the internal
|
||||
compression state which can be quite large, so this strategy is slow and
|
||||
can consume lots of memory.
|
||||
|
||||
deflateCopy returns Z_OK if success, Z_MEM_ERROR if there was not
|
||||
enough memory, Z_STREAM_ERROR if the source stream state was inconsistent
|
||||
(such as zalloc being NULL). msg is left unchanged in both source and
|
||||
destination.
|
||||
*/
|
||||
|
||||
ZEXTERN int ZEXPORT deflateReset OF((z_streamp strm));
|
||||
/*
|
||||
This function is equivalent to deflateEnd followed by deflateInit,
|
||||
but does not free and reallocate all the internal compression state.
|
||||
The stream will keep the same compression level and any other attributes
|
||||
that may have been set by deflateInit2.
|
||||
|
||||
deflateReset returns Z_OK if success, or Z_STREAM_ERROR if the source
|
||||
stream state was inconsistent (such as zalloc or state being NULL).
|
||||
*/
|
||||
|
||||
ZEXTERN int ZEXPORT deflateParams OF((z_streamp strm,
|
||||
int level,
|
||||
int strategy));
|
||||
/*
|
||||
Dynamically update the compression level and compression strategy. The
|
||||
interpretation of level and strategy is as in deflateInit2. This can be
|
||||
used to switch between compression and straight copy of the input data, or
|
||||
to switch to a different kind of input data requiring a different
|
||||
strategy. If the compression level is changed, the input available so far
|
||||
is compressed with the old level (and may be flushed); the new level will
|
||||
take effect only at the next call of deflate().
|
||||
|
||||
Before the call of deflateParams, the stream state must be set as for
|
||||
a call of deflate(), since the currently available input may have to
|
||||
be compressed and flushed. In particular, strm->avail_out must be non-zero.
|
||||
|
||||
deflateParams returns Z_OK if success, Z_STREAM_ERROR if the source
|
||||
stream state was inconsistent or if a parameter was invalid, Z_BUF_ERROR
|
||||
if strm->avail_out was zero.
|
||||
*/
|
||||
|
||||
/*
|
||||
ZEXTERN int ZEXPORT inflateInit2 OF((z_streamp strm,
|
||||
int windowBits));
|
||||
|
||||
This is another version of inflateInit with an extra parameter. The
|
||||
fields next_in, avail_in, zalloc, zfree and opaque must be initialized
|
||||
before by the caller.
|
||||
|
||||
The windowBits parameter is the base two logarithm of the maximum window
|
||||
size (the size of the history buffer). It should be in the range 8..15 for
|
||||
this version of the library. The default value is 15 if inflateInit is used
|
||||
instead. If a compressed stream with a larger window size is given as
|
||||
input, inflate() will return with the error code Z_DATA_ERROR instead of
|
||||
trying to allocate a larger window.
|
||||
|
||||
inflateInit2 returns Z_OK if success, Z_MEM_ERROR if there was not enough
|
||||
memory, Z_STREAM_ERROR if a parameter is invalid (such as a negative
|
||||
memLevel). msg is set to null if there is no error message. inflateInit2
|
||||
does not perform any decompression apart from reading the zlib header if
|
||||
present: this will be done by inflate(). (So next_in and avail_in may be
|
||||
modified, but next_out and avail_out are unchanged.)
|
||||
*/
|
||||
|
||||
ZEXTERN int ZEXPORT inflateSetDictionary OF((z_streamp strm,
|
||||
const Bytef *dictionary,
|
||||
uInt dictLength));
|
||||
/*
|
||||
Initializes the decompression dictionary from the given uncompressed byte
|
||||
sequence. This function must be called immediately after a call of inflate
|
||||
if this call returned Z_NEED_DICT. The dictionary chosen by the compressor
|
||||
can be determined from the Adler32 value returned by this call of
|
||||
inflate. The compressor and decompressor must use exactly the same
|
||||
dictionary (see deflateSetDictionary).
|
||||
|
||||
inflateSetDictionary returns Z_OK if success, Z_STREAM_ERROR if a
|
||||
parameter is invalid (such as NULL dictionary) or the stream state is
|
||||
inconsistent, Z_DATA_ERROR if the given dictionary doesn't match the
|
||||
expected one (incorrect Adler32 value). inflateSetDictionary does not
|
||||
perform any decompression: this will be done by subsequent calls of
|
||||
inflate().
|
||||
*/
|
||||
|
||||
ZEXTERN int ZEXPORT inflateSync OF((z_streamp strm));
|
||||
/*
|
||||
Skips invalid compressed data until a full flush point (see above the
|
||||
description of deflate with Z_FULL_FLUSH) can be found, or until all
|
||||
available input is skipped. No output is provided.
|
||||
|
||||
inflateSync returns Z_OK if a full flush point has been found, Z_BUF_ERROR
|
||||
if no more input was provided, Z_DATA_ERROR if no flush point has been found,
|
||||
or Z_STREAM_ERROR if the stream structure was inconsistent. In the success
|
||||
case, the application may save the current current value of total_in which
|
||||
indicates where valid compressed data was found. In the error case, the
|
||||
application may repeatedly call inflateSync, providing more input each time,
|
||||
until success or end of the input data.
|
||||
*/
|
||||
|
||||
ZEXTERN int ZEXPORT inflateReset OF((z_streamp strm));
|
||||
/*
|
||||
This function is equivalent to inflateEnd followed by inflateInit,
|
||||
but does not free and reallocate all the internal decompression state.
|
||||
The stream will keep attributes that may have been set by inflateInit2.
|
||||
|
||||
inflateReset returns Z_OK if success, or Z_STREAM_ERROR if the source
|
||||
stream state was inconsistent (such as zalloc or state being NULL).
|
||||
*/
|
||||
|
||||
|
||||
/* utility functions */
|
||||
|
||||
/*
|
||||
The following utility functions are implemented on top of the
|
||||
basic stream-oriented functions. To simplify the interface, some
|
||||
default options are assumed (compression level and memory usage,
|
||||
standard memory allocation functions). The source code of these
|
||||
utility functions can easily be modified if you need special options.
|
||||
*/
|
||||
|
||||
ZEXTERN int ZEXPORT compress OF((Bytef *dest, uLongf *destLen,
|
||||
const Bytef *source, uLong sourceLen));
|
||||
/*
|
||||
Compresses the source buffer into the destination buffer. sourceLen is
|
||||
the byte length of the source buffer. Upon entry, destLen is the total
|
||||
size of the destination buffer, which must be at least 0.1% larger than
|
||||
sourceLen plus 12 bytes. Upon exit, destLen is the actual size of the
|
||||
compressed buffer.
|
||||
This function can be used to compress a whole file at once if the
|
||||
input file is mmap'ed.
|
||||
compress returns Z_OK if success, Z_MEM_ERROR if there was not
|
||||
enough memory, Z_BUF_ERROR if there was not enough room in the output
|
||||
buffer.
|
||||
*/
|
||||
|
||||
ZEXTERN int ZEXPORT compress2 OF((Bytef *dest, uLongf *destLen,
|
||||
const Bytef *source, uLong sourceLen,
|
||||
int level));
|
||||
/*
|
||||
Compresses the source buffer into the destination buffer. The level
|
||||
parameter has the same meaning as in deflateInit. sourceLen is the byte
|
||||
length of the source buffer. Upon entry, destLen is the total size of the
|
||||
destination buffer, which must be at least 0.1% larger than sourceLen plus
|
||||
12 bytes. Upon exit, destLen is the actual size of the compressed buffer.
|
||||
|
||||
compress2 returns Z_OK if success, Z_MEM_ERROR if there was not enough
|
||||
memory, Z_BUF_ERROR if there was not enough room in the output buffer,
|
||||
Z_STREAM_ERROR if the level parameter is invalid.
|
||||
*/
|
||||
|
||||
ZEXTERN int ZEXPORT uncompress OF((Bytef *dest, uLongf *destLen,
|
||||
const Bytef *source, uLong sourceLen));
|
||||
/*
|
||||
Decompresses the source buffer into the destination buffer. sourceLen is
|
||||
the byte length of the source buffer. Upon entry, destLen is the total
|
||||
size of the destination buffer, which must be large enough to hold the
|
||||
entire uncompressed data. (The size of the uncompressed data must have
|
||||
been saved previously by the compressor and transmitted to the decompressor
|
||||
by some mechanism outside the scope of this compression library.)
|
||||
Upon exit, destLen is the actual size of the compressed buffer.
|
||||
This function can be used to decompress a whole file at once if the
|
||||
input file is mmap'ed.
|
||||
|
||||
uncompress returns Z_OK if success, Z_MEM_ERROR if there was not
|
||||
enough memory, Z_BUF_ERROR if there was not enough room in the output
|
||||
buffer, or Z_DATA_ERROR if the input data was corrupted.
|
||||
*/
|
||||
|
||||
|
||||
typedef voidp gzFile;
|
||||
|
||||
ZEXTERN gzFile ZEXPORT gzopen OF((const char *path, const char *mode));
|
||||
/*
|
||||
Opens a gzip (.gz) file for reading or writing. The mode parameter
|
||||
is as in fopen ("rb" or "wb") but can also include a compression level
|
||||
("wb9") or a strategy: 'f' for filtered data as in "wb6f", 'h' for
|
||||
Huffman only compression as in "wb1h". (See the description
|
||||
of deflateInit2 for more information about the strategy parameter.)
|
||||
|
||||
gzopen can be used to read a file which is not in gzip format; in this
|
||||
case gzread will directly read from the file without decompression.
|
||||
|
||||
gzopen returns NULL if the file could not be opened or if there was
|
||||
insufficient memory to allocate the (de)compression state; errno
|
||||
can be checked to distinguish the two cases (if errno is zero, the
|
||||
zlib error is Z_MEM_ERROR). */
|
||||
|
||||
ZEXTERN gzFile ZEXPORT gzdopen OF((int fd, const char *mode));
|
||||
/*
|
||||
gzdopen() associates a gzFile with the file descriptor fd. File
|
||||
descriptors are obtained from calls like open, dup, creat, pipe or
|
||||
fileno (in the file has been previously opened with fopen).
|
||||
The mode parameter is as in gzopen.
|
||||
The next call of gzclose on the returned gzFile will also close the
|
||||
file descriptor fd, just like fclose(fdopen(fd), mode) closes the file
|
||||
descriptor fd. If you want to keep fd open, use gzdopen(dup(fd), mode).
|
||||
gzdopen returns NULL if there was insufficient memory to allocate
|
||||
the (de)compression state.
|
||||
*/
|
||||
|
||||
ZEXTERN int ZEXPORT gzsetparams OF((gzFile file, int level, int strategy));
|
||||
/*
|
||||
Dynamically update the compression level or strategy. See the description
|
||||
of deflateInit2 for the meaning of these parameters.
|
||||
gzsetparams returns Z_OK if success, or Z_STREAM_ERROR if the file was not
|
||||
opened for writing.
|
||||
*/
|
||||
|
||||
ZEXTERN int ZEXPORT gzread OF((gzFile file, voidp buf, unsigned len));
|
||||
/*
|
||||
Reads the given number of uncompressed bytes from the compressed file.
|
||||
If the input file was not in gzip format, gzread copies the given number
|
||||
of bytes into the buffer.
|
||||
gzread returns the number of uncompressed bytes actually read (0 for
|
||||
end of file, -1 for error). */
|
||||
|
||||
ZEXTERN int ZEXPORT gzwrite OF((gzFile file,
|
||||
const voidp buf, unsigned len));
|
||||
/*
|
||||
Writes the given number of uncompressed bytes into the compressed file.
|
||||
gzwrite returns the number of uncompressed bytes actually written
|
||||
(0 in case of error).
|
||||
*/
|
||||
|
||||
ZEXTERN int ZEXPORTVA gzprintf OF((gzFile file, const char *format, ...));
|
||||
/*
|
||||
Converts, formats, and writes the args to the compressed file under
|
||||
control of the format string, as in fprintf. gzprintf returns the number of
|
||||
uncompressed bytes actually written (0 in case of error).
|
||||
*/
|
||||
|
||||
ZEXTERN int ZEXPORT gzputs OF((gzFile file, const char *s));
|
||||
/*
|
||||
Writes the given null-terminated string to the compressed file, excluding
|
||||
the terminating null character.
|
||||
gzputs returns the number of characters written, or -1 in case of error.
|
||||
*/
|
||||
|
||||
ZEXTERN char * ZEXPORT gzgets OF((gzFile file, char *buf, int len));
|
||||
/*
|
||||
Reads bytes from the compressed file until len-1 characters are read, or
|
||||
a newline character is read and transferred to buf, or an end-of-file
|
||||
condition is encountered. The string is then terminated with a null
|
||||
character.
|
||||
gzgets returns buf, or Z_NULL in case of error.
|
||||
*/
|
||||
|
||||
ZEXTERN int ZEXPORT gzputc OF((gzFile file, int c));
|
||||
/*
|
||||
Writes c, converted to an unsigned char, into the compressed file.
|
||||
gzputc returns the value that was written, or -1 in case of error.
|
||||
*/
|
||||
|
||||
ZEXTERN int ZEXPORT gzgetc OF((gzFile file));
|
||||
/*
|
||||
Reads one byte from the compressed file. gzgetc returns this byte
|
||||
or -1 in case of end of file or error.
|
||||
*/
|
||||
|
||||
ZEXTERN int ZEXPORT gzflush OF((gzFile file, int flush));
|
||||
/*
|
||||
Flushes all pending output into the compressed file. The parameter
|
||||
flush is as in the deflate() function. The return value is the zlib
|
||||
error number (see function gzerror below). gzflush returns Z_OK if
|
||||
the flush parameter is Z_FINISH and all output could be flushed.
|
||||
gzflush should be called only when strictly necessary because it can
|
||||
degrade compression.
|
||||
*/
|
||||
|
||||
ZEXTERN z_off_t ZEXPORT gzseek OF((gzFile file,
|
||||
z_off_t offset, int whence));
|
||||
/*
|
||||
Sets the starting position for the next gzread or gzwrite on the
|
||||
given compressed file. The offset represents a number of bytes in the
|
||||
uncompressed data stream. The whence parameter is defined as in lseek(2);
|
||||
the value SEEK_END is not supported.
|
||||
If the file is opened for reading, this function is emulated but can be
|
||||
extremely slow. If the file is opened for writing, only forward seeks are
|
||||
supported; gzseek then compresses a sequence of zeroes up to the new
|
||||
starting position.
|
||||
|
||||
gzseek returns the resulting offset location as measured in bytes from
|
||||
the beginning of the uncompressed stream, or -1 in case of error, in
|
||||
particular if the file is opened for writing and the new starting position
|
||||
would be before the current position.
|
||||
*/
|
||||
|
||||
ZEXTERN int ZEXPORT gzrewind OF((gzFile file));
|
||||
/*
|
||||
Rewinds the given file. This function is supported only for reading.
|
||||
|
||||
gzrewind(file) is equivalent to (int)gzseek(file, 0L, SEEK_SET)
|
||||
*/
|
||||
|
||||
ZEXTERN z_off_t ZEXPORT gztell OF((gzFile file));
|
||||
/*
|
||||
Returns the starting position for the next gzread or gzwrite on the
|
||||
given compressed file. This position represents a number of bytes in the
|
||||
uncompressed data stream.
|
||||
|
||||
gztell(file) is equivalent to gzseek(file, 0L, SEEK_CUR)
|
||||
*/
|
||||
|
||||
ZEXTERN int ZEXPORT gzeof OF((gzFile file));
|
||||
/*
|
||||
Returns 1 when EOF has previously been detected reading the given
|
||||
input stream, otherwise zero.
|
||||
*/
|
||||
|
||||
ZEXTERN int ZEXPORT gzclose OF((gzFile file));
|
||||
/*
|
||||
Flushes all pending output if necessary, closes the compressed file
|
||||
and deallocates all the (de)compression state. The return value is the zlib
|
||||
error number (see function gzerror below).
|
||||
*/
|
||||
|
||||
ZEXTERN const char * ZEXPORT gzerror OF((gzFile file, int *errnum));
|
||||
/*
|
||||
Returns the error message for the last error which occurred on the
|
||||
given compressed file. errnum is set to zlib error number. If an
|
||||
error occurred in the file system and not in the compression library,
|
||||
errnum is set to Z_ERRNO and the application may consult errno
|
||||
to get the exact error code.
|
||||
*/
|
||||
|
||||
/* checksum functions */
|
||||
|
||||
/*
|
||||
These functions are not related to compression but are exported
|
||||
anyway because they might be useful in applications using the
|
||||
compression library.
|
||||
*/
|
||||
|
||||
ZEXTERN uLong ZEXPORT adler32 OF((uLong adler, const Bytef *buf, uInt len));
|
||||
|
||||
/*
|
||||
Update a running Adler-32 checksum with the bytes buf[0..len-1] and
|
||||
return the updated checksum. If buf is NULL, this function returns
|
||||
the required initial value for the checksum.
|
||||
An Adler-32 checksum is almost as reliable as a CRC32 but can be computed
|
||||
much faster. Usage example:
|
||||
|
||||
uLong adler = adler32(0L, Z_NULL, 0);
|
||||
|
||||
while (read_buffer(buffer, length) != EOF) {
|
||||
adler = adler32(adler, buffer, length);
|
||||
}
|
||||
if (adler != original_adler) error();
|
||||
*/
|
||||
|
||||
ZEXTERN uLong ZEXPORT crc32 OF((uLong crc, const Bytef *buf, uInt len));
|
||||
/*
|
||||
Update a running crc with the bytes buf[0..len-1] and return the updated
|
||||
crc. If buf is NULL, this function returns the required initial value
|
||||
for the crc. Pre- and post-conditioning (one's complement) is performed
|
||||
within this function so it shouldn't be done by the application.
|
||||
Usage example:
|
||||
|
||||
uLong crc = crc32(0L, Z_NULL, 0);
|
||||
|
||||
while (read_buffer(buffer, length) != EOF) {
|
||||
crc = crc32(crc, buffer, length);
|
||||
}
|
||||
if (crc != original_crc) error();
|
||||
*/
|
||||
|
||||
|
||||
/* various hacks, don't look :) */
|
||||
|
||||
/* deflateInit and inflateInit are macros to allow checking the zlib version
|
||||
* and the compiler's view of z_stream:
|
||||
*/
|
||||
ZEXTERN int ZEXPORT deflateInit_ OF((z_streamp strm, int level,
|
||||
const char *version, int stream_size));
|
||||
ZEXTERN int ZEXPORT inflateInit_ OF((z_streamp strm,
|
||||
const char *version, int stream_size));
|
||||
ZEXTERN int ZEXPORT deflateInit2_ OF((z_streamp strm, int level, int method,
|
||||
int windowBits, int memLevel,
|
||||
int strategy, const char *version,
|
||||
int stream_size));
|
||||
ZEXTERN int ZEXPORT inflateInit2_ OF((z_streamp strm, int windowBits,
|
||||
const char *version, int stream_size));
|
||||
#define deflateInit(strm, level) \
|
||||
deflateInit_((strm), (level), ZLIB_VERSION, sizeof(z_stream))
|
||||
#define inflateInit(strm) \
|
||||
inflateInit_((strm), ZLIB_VERSION, sizeof(z_stream))
|
||||
#define deflateInit2(strm, level, method, windowBits, memLevel, strategy) \
|
||||
deflateInit2_((strm),(level),(method),(windowBits),(memLevel),\
|
||||
(strategy), ZLIB_VERSION, sizeof(z_stream))
|
||||
#define inflateInit2(strm, windowBits) \
|
||||
inflateInit2_((strm), (windowBits), ZLIB_VERSION, sizeof(z_stream))
|
||||
|
||||
|
||||
#if !defined(_Z_UTIL_H) && !defined(NO_DUMMY_DECL)
|
||||
struct internal_state {int dummy;}; /* hack for buggy compilers */
|
||||
#endif
|
||||
|
||||
ZEXTERN const char * ZEXPORT zError OF((int err));
|
||||
ZEXTERN int ZEXPORT inflateSyncPoint OF((z_streamp z));
|
||||
ZEXTERN const uLongf * ZEXPORT get_crc_table OF((void));
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* _ZLIB_H */
|
Loading…
Reference in New Issue
Block a user