/* Capstone Disassembly Engine */ /* By Nguyen Anh Quynh , 2013-2019 */ #if defined (WIN32) || defined (WIN64) || defined (_WIN32) || defined (_WIN64) #pragma warning(disable:4996) // disable MSVC's warning on strcpy() #pragma warning(disable:28719) // disable MSVC's warning on strcpy() #endif #if defined(CAPSTONE_HAS_OSXKERNEL) #include #include #else #include #include #include #endif #include #include #include "utils.h" #include "MCRegisterInfo.h" #if defined(_KERNEL_MODE) #include "windows\winkernel_mm.h" #endif // Issue #681: Windows kernel does not support formatting float point #if defined(_KERNEL_MODE) && !defined(CAPSTONE_DIET) #if defined(CAPSTONE_HAS_ARM) || defined(CAPSTONE_HAS_AARCH64) || defined(CAPSTONE_HAS_M68K) #define CAPSTONE_STR_INTERNAL(x) #x #define CAPSTONE_STR(x) CAPSTONE_STR_INTERNAL(x) #define CAPSTONE_MSVC_WRANING_PREFIX __FILE__ "("CAPSTONE_STR(__LINE__)") : warning message : " #pragma message(CAPSTONE_MSVC_WRANING_PREFIX "Windows driver does not support full features for selected architecture(s). Define CAPSTONE_DIET to compile Capstone with only supported features. See issue #681 for details.") #undef CAPSTONE_MSVC_WRANING_PREFIX #undef CAPSTONE_STR #undef CAPSTONE_STR_INTERNAL #endif #endif // defined(_KERNEL_MODE) && !defined(CAPSTONE_DIET) #if !defined(CAPSTONE_HAS_OSXKERNEL) && !defined(CAPSTONE_DIET) && !defined(_KERNEL_MODE) #define INSN_CACHE_SIZE 32 #else // reduce stack variable size for kernel/firmware #define INSN_CACHE_SIZE 8 #endif // default SKIPDATA mnemonic #ifndef CAPSTONE_DIET #define SKIPDATA_MNEM ".byte" #else // No printing is available in diet mode #define SKIPDATA_MNEM NULL #endif #include "arch/AArch64/AArch64Module.h" #include "arch/ARM/ARMModule.h" #include "arch/EVM/EVMModule.h" #include "arch/WASM/WASMModule.h" #include "arch/M680X/M680XModule.h" #include "arch/M68K/M68KModule.h" #include "arch/Mips/MipsModule.h" #include "arch/PowerPC/PPCModule.h" #include "arch/Sparc/SparcModule.h" #include "arch/SystemZ/SystemZModule.h" #include "arch/TMS320C64x/TMS320C64xModule.h" #include "arch/X86/X86Module.h" #include "arch/XCore/XCoreModule.h" #include "arch/RISCV/RISCVModule.h" #include "arch/MOS65XX/MOS65XXModule.h" #include "arch/BPF/BPFModule.h" #include "arch/SH/SHModule.h" #include "arch/TriCore/TriCoreModule.h" static const struct { // constructor initialization cs_err (*arch_init)(cs_struct *); // support cs_option() cs_err (*arch_option)(cs_struct *, cs_opt_type, size_t value); // bitmask for finding disallowed modes for an arch: // to be called in cs_open()/cs_option() cs_mode arch_disallowed_mode_mask; } arch_configs[MAX_ARCH] = { #ifdef CAPSTONE_HAS_ARM { ARM_global_init, ARM_option, ~(CS_MODE_LITTLE_ENDIAN | CS_MODE_ARM | CS_MODE_V8 | CS_MODE_MCLASS | CS_MODE_THUMB | CS_MODE_BIG_ENDIAN) }, #else { NULL, NULL, 0 }, #endif #ifdef CAPSTONE_HAS_AARCH64 { AArch64_global_init, AArch64_option, ~(CS_MODE_LITTLE_ENDIAN | CS_MODE_ARM | CS_MODE_BIG_ENDIAN), }, #else { NULL, NULL, 0 }, #endif #ifdef CAPSTONE_HAS_MIPS { Mips_global_init, Mips_option, ~(CS_MODE_LITTLE_ENDIAN | CS_MODE_32 | CS_MODE_64 | CS_MODE_MICRO | CS_MODE_MIPS32R6 | CS_MODE_BIG_ENDIAN | CS_MODE_MIPS2 | CS_MODE_MIPS3), }, #else { NULL, NULL, 0 }, #endif #ifdef CAPSTONE_HAS_X86 { X86_global_init, X86_option, ~(CS_MODE_LITTLE_ENDIAN | CS_MODE_32 | CS_MODE_64 | CS_MODE_16), }, #else { NULL, NULL, 0 }, #endif #ifdef CAPSTONE_HAS_POWERPC { PPC_global_init, PPC_option, ~(CS_MODE_LITTLE_ENDIAN | CS_MODE_32 | CS_MODE_64 | CS_MODE_BIG_ENDIAN | CS_MODE_QPX | CS_MODE_PS | CS_MODE_BOOKE), }, #else { NULL, NULL, 0 }, #endif #ifdef CAPSTONE_HAS_SPARC { Sparc_global_init, Sparc_option, ~(CS_MODE_BIG_ENDIAN | CS_MODE_V9), }, #else { NULL, NULL, 0 }, #endif #ifdef CAPSTONE_HAS_SYSZ { SystemZ_global_init, SystemZ_option, ~(CS_MODE_BIG_ENDIAN), }, #else { NULL, NULL, 0 }, #endif #ifdef CAPSTONE_HAS_XCORE { XCore_global_init, XCore_option, ~(CS_MODE_BIG_ENDIAN), }, #else { NULL, NULL, 0 }, #endif #ifdef CAPSTONE_HAS_M68K { M68K_global_init, M68K_option, ~(CS_MODE_BIG_ENDIAN | CS_MODE_M68K_000 | CS_MODE_M68K_010 | CS_MODE_M68K_020 | CS_MODE_M68K_030 | CS_MODE_M68K_040 | CS_MODE_M68K_060), }, #else { NULL, NULL, 0 }, #endif #ifdef CAPSTONE_HAS_TMS320C64X { TMS320C64x_global_init, TMS320C64x_option, ~(CS_MODE_BIG_ENDIAN), }, #else { NULL, NULL, 0 }, #endif #ifdef CAPSTONE_HAS_M680X { M680X_global_init, M680X_option, ~(CS_MODE_M680X_6301 | CS_MODE_M680X_6309 | CS_MODE_M680X_6800 | CS_MODE_M680X_6801 | CS_MODE_M680X_6805 | CS_MODE_M680X_6808 | CS_MODE_M680X_6809 | CS_MODE_M680X_6811 | CS_MODE_M680X_CPU12 | CS_MODE_M680X_HCS08), }, #else { NULL, NULL, 0 }, #endif #ifdef CAPSTONE_HAS_EVM { EVM_global_init, EVM_option, 0, }, #else { NULL, NULL, 0 }, #endif #ifdef CAPSTONE_HAS_MOS65XX { MOS65XX_global_init, MOS65XX_option, ~(CS_MODE_LITTLE_ENDIAN | CS_MODE_MOS65XX_6502 | CS_MODE_MOS65XX_65C02 | CS_MODE_MOS65XX_W65C02 | CS_MODE_MOS65XX_65816_LONG_MX), }, #else { NULL, NULL, 0 }, #endif #ifdef CAPSTONE_HAS_WASM { WASM_global_init, WASM_option, 0, }, #else { NULL, NULL, 0 }, #endif #ifdef CAPSTONE_HAS_BPF { BPF_global_init, BPF_option, ~(CS_MODE_LITTLE_ENDIAN | CS_MODE_BPF_CLASSIC | CS_MODE_BPF_EXTENDED | CS_MODE_BIG_ENDIAN), }, #else { NULL, NULL, 0 }, #endif #ifdef CAPSTONE_HAS_RISCV { RISCV_global_init, RISCV_option, ~(CS_MODE_RISCV32 | CS_MODE_RISCV64 | CS_MODE_RISCVC), }, #else { NULL, NULL, 0 }, #endif #ifdef CAPSTONE_HAS_SH { SH_global_init, SH_option, ~(CS_MODE_SH2 | CS_MODE_SH2A | CS_MODE_SH3 | CS_MODE_SH4 | CS_MODE_SH4A | CS_MODE_SHFPU | CS_MODE_SHDSP|CS_MODE_BIG_ENDIAN), }, #else { NULL, NULL, 0 }, #endif #ifdef CAPSTONE_HAS_TRICORE { TRICORE_global_init, TRICORE_option, ~(CS_MODE_TRICORE_110 | CS_MODE_TRICORE_120 | CS_MODE_TRICORE_130 | CS_MODE_TRICORE_131 | CS_MODE_TRICORE_160 | CS_MODE_TRICORE_161 | CS_MODE_TRICORE_162 | CS_MODE_LITTLE_ENDIAN), }, #else { NULL, NULL, 0 }, #endif }; // bitmask of enabled architectures static const uint32_t all_arch = 0 #ifdef CAPSTONE_HAS_ARM | (1 << CS_ARCH_ARM) #endif #if defined(CAPSTONE_HAS_AARCH64) || defined(CAPSTONE_HAS_ARM64) | (1 << CS_ARCH_AARCH64) #endif #ifdef CAPSTONE_HAS_MIPS | (1 << CS_ARCH_MIPS) #endif #ifdef CAPSTONE_HAS_X86 | (1 << CS_ARCH_X86) #endif #ifdef CAPSTONE_HAS_POWERPC | (1 << CS_ARCH_PPC) #endif #ifdef CAPSTONE_HAS_SPARC | (1 << CS_ARCH_SPARC) #endif #ifdef CAPSTONE_HAS_SYSZ | (1 << CS_ARCH_SYSZ) #endif #ifdef CAPSTONE_HAS_XCORE | (1 << CS_ARCH_XCORE) #endif #ifdef CAPSTONE_HAS_M68K | (1 << CS_ARCH_M68K) #endif #ifdef CAPSTONE_HAS_TMS320C64X | (1 << CS_ARCH_TMS320C64X) #endif #ifdef CAPSTONE_HAS_M680X | (1 << CS_ARCH_M680X) #endif #ifdef CAPSTONE_HAS_EVM | (1 << CS_ARCH_EVM) #endif #ifdef CAPSTONE_HAS_MOS65XX | (1 << CS_ARCH_MOS65XX) #endif #ifdef CAPSTONE_HAS_WASM | (1 << CS_ARCH_WASM) #endif #ifdef CAPSTONE_HAS_BPF | (1 << CS_ARCH_BPF) #endif #ifdef CAPSTONE_HAS_RISCV | (1 << CS_ARCH_RISCV) #endif #ifdef CAPSTONE_HAS_SH | (1 << CS_ARCH_SH) #endif #ifdef CAPSTONE_HAS_TRICORE | (1 << CS_ARCH_TRICORE) #endif ; #if defined(CAPSTONE_USE_SYS_DYN_MEM) #if !defined(CAPSTONE_HAS_OSXKERNEL) && !defined(_KERNEL_MODE) // default cs_malloc_t cs_mem_malloc = malloc; cs_calloc_t cs_mem_calloc = calloc; cs_realloc_t cs_mem_realloc = realloc; cs_free_t cs_mem_free = free; #if defined(_WIN32_WCE) cs_vsnprintf_t cs_vsnprintf = _vsnprintf; #else cs_vsnprintf_t cs_vsnprintf = vsnprintf; #endif // defined(_WIN32_WCE) #elif defined(_KERNEL_MODE) // Windows driver cs_malloc_t cs_mem_malloc = cs_winkernel_malloc; cs_calloc_t cs_mem_calloc = cs_winkernel_calloc; cs_realloc_t cs_mem_realloc = cs_winkernel_realloc; cs_free_t cs_mem_free = cs_winkernel_free; cs_vsnprintf_t cs_vsnprintf = cs_winkernel_vsnprintf; #else // OSX kernel extern void* kern_os_malloc(size_t size); extern void kern_os_free(void* addr); extern void* kern_os_realloc(void* addr, size_t nsize); static void* cs_kern_os_calloc(size_t num, size_t size) { return kern_os_malloc(num * size); // malloc bzeroes the buffer } cs_malloc_t cs_mem_malloc = kern_os_malloc; cs_calloc_t cs_mem_calloc = cs_kern_os_calloc; cs_realloc_t cs_mem_realloc = kern_os_realloc; cs_free_t cs_mem_free = kern_os_free; cs_vsnprintf_t cs_vsnprintf = vsnprintf; #endif // !defined(CAPSTONE_HAS_OSXKERNEL) && !defined(_KERNEL_MODE) #else // User-defined cs_malloc_t cs_mem_malloc = NULL; cs_calloc_t cs_mem_calloc = NULL; cs_realloc_t cs_mem_realloc = NULL; cs_free_t cs_mem_free = NULL; cs_vsnprintf_t cs_vsnprintf = NULL; #endif // defined(CAPSTONE_USE_SYS_DYN_MEM) CAPSTONE_EXPORT unsigned int CAPSTONE_API cs_version(int *major, int *minor) { if (major != NULL && minor != NULL) { *major = CS_API_MAJOR; *minor = CS_API_MINOR; } return (CS_API_MAJOR << 8) + CS_API_MINOR; } CAPSTONE_EXPORT bool CAPSTONE_API cs_support(int query) { if (query == CS_ARCH_ALL) return all_arch == ((1 << CS_ARCH_ARM) | (1 << CS_ARCH_AARCH64) | (1 << CS_ARCH_MIPS) | (1 << CS_ARCH_X86) | (1 << CS_ARCH_PPC) | (1 << CS_ARCH_SPARC) | (1 << CS_ARCH_SYSZ) | (1 << CS_ARCH_XCORE) | (1 << CS_ARCH_M68K) | (1 << CS_ARCH_TMS320C64X) | (1 << CS_ARCH_M680X) | (1 << CS_ARCH_EVM) | (1 << CS_ARCH_RISCV) | (1 << CS_ARCH_MOS65XX) | (1 << CS_ARCH_WASM) | (1 << CS_ARCH_BPF) | (1 << CS_ARCH_SH) | (1 << CS_ARCH_TRICORE)); if ((unsigned int)query < CS_ARCH_MAX) return all_arch & (1 << query); if (query == CS_SUPPORT_DIET) { #ifdef CAPSTONE_DIET return true; #else return false; #endif } if (query == CS_SUPPORT_X86_REDUCE) { #if defined(CAPSTONE_HAS_X86) && defined(CAPSTONE_X86_REDUCE) return true; #else return false; #endif } // unsupported query return false; } CAPSTONE_EXPORT cs_err CAPSTONE_API cs_errno(csh handle) { struct cs_struct *ud; if (!handle) return CS_ERR_CSH; ud = (struct cs_struct *)(uintptr_t)handle; return ud->errnum; } CAPSTONE_EXPORT const char * CAPSTONE_API cs_strerror(cs_err code) { switch(code) { default: return "Unknown error code"; case CS_ERR_OK: return "OK (CS_ERR_OK)"; case CS_ERR_MEM: return "Out of memory (CS_ERR_MEM)"; case CS_ERR_ARCH: return "Invalid/unsupported architecture(CS_ERR_ARCH)"; case CS_ERR_HANDLE: return "Invalid handle (CS_ERR_HANDLE)"; case CS_ERR_CSH: return "Invalid csh (CS_ERR_CSH)"; case CS_ERR_MODE: return "Invalid mode (CS_ERR_MODE)"; case CS_ERR_OPTION: return "Invalid option (CS_ERR_OPTION)"; case CS_ERR_DETAIL: return "Details are unavailable (CS_ERR_DETAIL)"; case CS_ERR_MEMSETUP: return "Dynamic memory management uninitialized (CS_ERR_MEMSETUP)"; case CS_ERR_VERSION: return "Different API version between core & binding (CS_ERR_VERSION)"; case CS_ERR_DIET: return "Information irrelevant in diet engine (CS_ERR_DIET)"; case CS_ERR_SKIPDATA: return "Information irrelevant for 'data' instruction in SKIPDATA mode (CS_ERR_SKIPDATA)"; case CS_ERR_X86_ATT: return "AT&T syntax is unavailable (CS_ERR_X86_ATT)"; case CS_ERR_X86_INTEL: return "INTEL syntax is unavailable (CS_ERR_X86_INTEL)"; case CS_ERR_X86_MASM: return "MASM syntax is unavailable (CS_ERR_X86_MASM)"; } } CAPSTONE_EXPORT cs_err CAPSTONE_API cs_open(cs_arch arch, cs_mode mode, csh *handle) { cs_err err; struct cs_struct *ud; if (!cs_mem_malloc || !cs_mem_calloc || !cs_mem_realloc || !cs_mem_free || !cs_vsnprintf) // Error: before cs_open(), dynamic memory management must be initialized // with cs_option(CS_OPT_MEM) return CS_ERR_MEMSETUP; if (arch < CS_ARCH_MAX && arch_configs[arch].arch_init) { // verify if requested mode is valid if (mode & arch_configs[arch].arch_disallowed_mode_mask) { *handle = 0; return CS_ERR_MODE; } ud = cs_mem_calloc(1, sizeof(*ud)); if (!ud) { // memory insufficient return CS_ERR_MEM; } ud->errnum = CS_ERR_OK; ud->arch = arch; ud->mode = mode; // by default, do not break instruction into details ud->detail_opt = CS_OPT_OFF; // default skipdata setup ud->skipdata_setup.mnemonic = SKIPDATA_MNEM; err = arch_configs[ud->arch].arch_init(ud); if (err) { cs_mem_free(ud); *handle = 0; return err; } *handle = (uintptr_t)ud; return CS_ERR_OK; } else { *handle = 0; return CS_ERR_ARCH; } } CAPSTONE_EXPORT cs_err CAPSTONE_API cs_close(csh *handle) { struct cs_struct *ud; struct insn_mnem *next, *tmp; if (*handle == 0) // invalid handle return CS_ERR_CSH; ud = (struct cs_struct *)(*handle); if (ud->printer_info) cs_mem_free(ud->printer_info); // free the linked list of customized mnemonic tmp = ud->mnem_list; while(tmp) { next = tmp->next; cs_mem_free(tmp); tmp = next; } cs_mem_free(ud->insn_cache); memset(ud, 0, sizeof(*ud)); cs_mem_free(ud); // invalidate this handle by ZERO out its value. // this is to make sure it is unusable after cs_close() *handle = 0; return CS_ERR_OK; } // replace str1 in target with str2; target starts with str1 // output is put into result (which is array of char with size CS_MNEMONIC_SIZE) // return 0 on success, -1 on failure static int str_replace(char *result, char *target, const char *str1, char *str2) { // only perform replacement if the output fits into result if (strlen(target) - strlen(str1) + strlen(str2) < CS_MNEMONIC_SIZE - 1) { // copy str2 to begining of result strcpy(result, str2); // skip str1 - already replaced by str2 strcat(result, target + strlen(str1)); return 0; } else return -1; } /// The asm string sometimes has a leading space or tab. /// Here we remove it. static void fixup_asm_string(char *asm_str) { if (!asm_str) { return; } int i = 0; int k = 0; bool text_reached = (asm_str[0] != ' ' && asm_str[0] != '\t'); while (asm_str[i]) { if (!text_reached && (asm_str[i] == ' ' || asm_str[i] == '\t')) { ++i; text_reached = true; continue; } asm_str[k] = asm_str[i]; ++k, ++i; } asm_str[k] = '\0'; } // fill insn with mnemonic & operands info static void fill_insn(struct cs_struct *handle, cs_insn *insn, char *buffer, MCInst *mci, PostPrinter_t postprinter, const uint8_t *code) { #ifndef CAPSTONE_DIET char *sp, *mnem; #endif fixup_asm_string(buffer); uint16_t copy_size = MIN(sizeof(insn->bytes), insn->size); // fill the instruction bytes. // we might skip some redundant bytes in front in the case of X86 memcpy(insn->bytes, code + insn->size - copy_size, copy_size); insn->op_str[0] = '\0'; insn->size = copy_size; // alias instruction might have ID saved in OpcodePub if (MCInst_getOpcodePub(mci)) insn->id = MCInst_getOpcodePub(mci); // post printer handles some corner cases (hacky) if (postprinter) postprinter((csh)handle, insn, buffer, mci); #ifndef CAPSTONE_DIET mnem = insn->mnemonic; // memset(mnem, 0, CS_MNEMONIC_SIZE); for (sp = buffer; *sp; sp++) { if (*sp == ' '|| *sp == '\t') break; if (*sp == '|') // lock|rep prefix for x86 *sp = ' '; // copy to @mnemonic *mnem = *sp; mnem++; } *mnem = '\0'; // we might have customized mnemonic if (handle->mnem_list) { struct insn_mnem *tmp = handle->mnem_list; while(tmp) { if (tmp->insn.id == insn->id) { char str[CS_MNEMONIC_SIZE]; if (!str_replace(str, insn->mnemonic, cs_insn_name((csh)handle, insn->id), tmp->insn.mnemonic)) { // copy result to mnemonic (void)strncpy(insn->mnemonic, str, sizeof(insn->mnemonic) - 1); insn->mnemonic[sizeof(insn->mnemonic) - 1] = '\0'; } break; } tmp = tmp->next; } } // copy @op_str if (*sp) { // find the next non-space char sp++; for (; ((*sp == ' ') || (*sp == '\t')); sp++); strncpy(insn->op_str, sp, sizeof(insn->op_str) - 1); insn->op_str[sizeof(insn->op_str) - 1] = '\0'; } else insn->op_str[0] = '\0'; #endif } // how many bytes will we skip when encountering data (CS_OPT_SKIPDATA)? // this very much depends on instruction alignment requirement of each arch. static uint8_t skipdata_size(cs_struct *handle) { switch(handle->arch) { default: // should never reach return (uint8_t)-1; case CS_ARCH_ARM: // skip 2 bytes on Thumb mode. if (handle->mode & CS_MODE_THUMB) return 2; // otherwise, skip 4 bytes return 4; case CS_ARCH_AARCH64: case CS_ARCH_MIPS: case CS_ARCH_PPC: case CS_ARCH_SPARC: // skip 4 bytes return 4; case CS_ARCH_SYSZ: // SystemZ instruction's length can be 2, 4 or 6 bytes, // so we just skip 2 bytes return 2; case CS_ARCH_X86: // X86 has no restriction on instruction alignment return 1; case CS_ARCH_XCORE: // XCore instruction's length can be 2 or 4 bytes, // so we just skip 2 bytes return 2; case CS_ARCH_M68K: // M68K has 2 bytes instruction alignment but contain multibyte instruction so we skip 2 bytes return 2; case CS_ARCH_TMS320C64X: // TMS320C64x alignment is 4. return 4; case CS_ARCH_M680X: // M680X alignment is 1. return 1; case CS_ARCH_EVM: // EVM alignment is 1. return 1; case CS_ARCH_WASM: //WASM alignment is 1 return 1; case CS_ARCH_MOS65XX: // MOS65XX alignment is 1. return 1; case CS_ARCH_BPF: // both classic and extended BPF have alignment 8. return 8; case CS_ARCH_RISCV: // special compress mode if (handle->mode & CS_MODE_RISCVC) return 2; return 4; case CS_ARCH_SH: return 2; case CS_ARCH_TRICORE: // TriCore instruction's length can be 2 or 4 bytes, // so we just skip 2 bytes return 2; } } CAPSTONE_EXPORT cs_err CAPSTONE_API cs_option(csh ud, cs_opt_type type, size_t value) { struct cs_struct *handle; cs_opt_mnem *opt; // cs_option() can be called with NULL handle just for CS_OPT_MEM // This is supposed to be executed before all other APIs (even cs_open()) if (type == CS_OPT_MEM) { cs_opt_mem *mem = (cs_opt_mem *)value; cs_mem_malloc = mem->malloc; cs_mem_calloc = mem->calloc; cs_mem_realloc = mem->realloc; cs_mem_free = mem->free; cs_vsnprintf = mem->vsnprintf; return CS_ERR_OK; } handle = (struct cs_struct *)(uintptr_t)ud; if (!handle) return CS_ERR_CSH; switch(type) { default: break; case CS_OPT_UNSIGNED: handle->imm_unsigned = (cs_opt_value)value; return CS_ERR_OK; case CS_OPT_DETAIL: handle->detail_opt |= (cs_opt_value)value; return CS_ERR_OK; case CS_OPT_SKIPDATA: handle->skipdata = (value == CS_OPT_ON); if (handle->skipdata) { if (handle->skipdata_size == 0) { // set the default skipdata size handle->skipdata_size = skipdata_size(handle); } } return CS_ERR_OK; case CS_OPT_SKIPDATA_SETUP: if (value) { handle->skipdata_setup = *((cs_opt_skipdata *)value); if (handle->skipdata_setup.mnemonic == NULL) { handle->skipdata_setup.mnemonic = SKIPDATA_MNEM; } } return CS_ERR_OK; case CS_OPT_MNEMONIC: opt = (cs_opt_mnem *)value; if (opt->id) { if (opt->mnemonic) { struct insn_mnem *tmp; // add new instruction, or replace existing instruction // 1. find if we already had this insn in the linked list tmp = handle->mnem_list; while(tmp) { if (tmp->insn.id == opt->id) { // found this instruction, so replace its mnemonic (void)strncpy(tmp->insn.mnemonic, opt->mnemonic, sizeof(tmp->insn.mnemonic) - 1); tmp->insn.mnemonic[sizeof(tmp->insn.mnemonic) - 1] = '\0'; break; } tmp = tmp->next; } // 2. add this instruction if we have not had it yet if (!tmp) { tmp = cs_mem_malloc(sizeof(*tmp)); tmp->insn.id = opt->id; (void)strncpy(tmp->insn.mnemonic, opt->mnemonic, sizeof(tmp->insn.mnemonic) - 1); tmp->insn.mnemonic[sizeof(tmp->insn.mnemonic) - 1] = '\0'; // this new instruction is heading the list tmp->next = handle->mnem_list; handle->mnem_list = tmp; } return CS_ERR_OK; } else { struct insn_mnem *prev, *tmp; // we want to delete an existing instruction // iterate the list to find the instruction to remove it tmp = handle->mnem_list; prev = tmp; while(tmp) { if (tmp->insn.id == opt->id) { // delete this instruction if (tmp == prev) { // head of the list handle->mnem_list = tmp->next; } else { prev->next = tmp->next; } cs_mem_free(tmp); break; } prev = tmp; tmp = tmp->next; } } } return CS_ERR_OK; case CS_OPT_MODE: // verify if requested mode is valid if (value & arch_configs[handle->arch].arch_disallowed_mode_mask) { return CS_ERR_OPTION; } break; case CS_OPT_NO_BRANCH_OFFSET: if (handle->PrintBranchImmNotAsAddress) return CS_ERR_OK; break; } return arch_configs[handle->arch].arch_option(handle, type, value); } // generate @op_str for data instruction of SKIPDATA #ifndef CAPSTONE_DIET static void skipdata_opstr(char *opstr, const uint8_t *buffer, size_t size) { char *p = opstr; int len; size_t i; size_t available = sizeof(((cs_insn*)NULL)->op_str); if (!size) { opstr[0] = '\0'; return; } len = cs_snprintf(p, available, "0x%02x", buffer[0]); p+= len; available -= len; for(i = 1; i < size; i++) { len = cs_snprintf(p, available, ", 0x%02x", buffer[i]); if (len < 0) { break; } if ((size_t)len > available - 1) { break; } p+= len; available -= len; } } #endif // dynamicly allocate memory to contain disasm insn // NOTE: caller must free() the allocated memory itself to avoid memory leaking CAPSTONE_EXPORT size_t CAPSTONE_API cs_disasm(csh ud, const uint8_t *buffer, size_t size, uint64_t offset, size_t count, cs_insn **insn) { struct cs_struct *handle; MCInst mci; uint16_t insn_size; size_t c = 0, i; unsigned int f = 0; // index of the next instruction in the cache cs_insn *insn_cache; // cache contains disassembled instructions void *total = NULL; size_t total_size = 0; // total size of output buffer containing all insns bool r; void *tmp; size_t skipdata_bytes; uint64_t offset_org; // save all the original info of the buffer size_t size_org; const uint8_t *buffer_org; unsigned int cache_size = INSN_CACHE_SIZE; size_t next_offset; handle = (struct cs_struct *)(uintptr_t)ud; if (!handle) { // FIXME: how to handle this case: // handle->errnum = CS_ERR_HANDLE; return 0; } handle->errnum = CS_ERR_OK; #ifdef CAPSTONE_USE_SYS_DYN_MEM if (count > 0 && count <= INSN_CACHE_SIZE) cache_size = (unsigned int) count; #endif // save the original offset for SKIPDATA buffer_org = buffer; offset_org = offset; size_org = size; total_size = sizeof(cs_insn) * cache_size; total = cs_mem_calloc(sizeof(cs_insn), cache_size); if (total == NULL) { // insufficient memory handle->errnum = CS_ERR_MEM; return 0; } insn_cache = total; while (size > 0) { MCInst_Init(&mci); mci.csh = handle; // relative branches need to know the address & size of current insn mci.address = offset; if (handle->detail_opt) { // allocate memory for @detail pointer insn_cache->detail = cs_mem_malloc(sizeof(cs_detail)); } else { insn_cache->detail = NULL; } // save all the information for non-detailed mode mci.flat_insn = insn_cache; mci.flat_insn->address = offset; #ifdef CAPSTONE_DIET // zero out mnemonic & op_str mci.flat_insn->mnemonic[0] = '\0'; mci.flat_insn->op_str[0] = '\0'; #endif r = handle->disasm(ud, buffer, size, &mci, &insn_size, offset, handle->getinsn_info); if (r) { SStream ss; SStream_Init(&ss); mci.flat_insn->size = insn_size; // map internal instruction opcode to public insn ID handle->insn_id(handle, insn_cache, mci.Opcode); handle->printer(&mci, &ss, handle->printer_info); fill_insn(handle, insn_cache, ss.buffer, &mci, handle->post_printer, buffer); // adjust for pseudo opcode (X86) if (handle->arch == CS_ARCH_X86) insn_cache->id += mci.popcode_adjust; next_offset = insn_size; } else { // encounter a broken instruction // free memory of @detail pointer if (handle->detail_opt) { cs_mem_free(insn_cache->detail); } // if there is no request to skip data, or remaining data is too small, // then bail out if (!handle->skipdata || handle->skipdata_size > size) break; if (handle->skipdata_setup.callback) { skipdata_bytes = handle->skipdata_setup.callback(buffer_org, size_org, (size_t)(offset - offset_org), handle->skipdata_setup.user_data); if (skipdata_bytes > size) // remaining data is not enough break; if (!skipdata_bytes) // user requested not to skip data, so bail out break; } else skipdata_bytes = handle->skipdata_size; // we have to skip some amount of data, depending on arch & mode insn_cache->id = 0; // invalid ID for this "data" instruction insn_cache->address = offset; insn_cache->size = (uint16_t)skipdata_bytes; memcpy(insn_cache->bytes, buffer, skipdata_bytes); #ifdef CAPSTONE_DIET insn_cache->mnemonic[0] = '\0'; insn_cache->op_str[0] = '\0'; #else strncpy(insn_cache->mnemonic, handle->skipdata_setup.mnemonic, sizeof(insn_cache->mnemonic) - 1); skipdata_opstr(insn_cache->op_str, buffer, skipdata_bytes); #endif insn_cache->detail = NULL; next_offset = skipdata_bytes; } // one more instruction entering the cache f++; // one more instruction disassembled c++; if (count > 0 && c == count) // already got requested number of instructions break; if (f == cache_size) { // full cache, so expand the cache to contain incoming insns cache_size = cache_size * 8 / 5; // * 1.6 ~ golden ratio total_size += (sizeof(cs_insn) * cache_size); tmp = cs_mem_realloc(total, total_size); if (tmp == NULL) { // insufficient memory if (handle->detail_opt) { insn_cache = (cs_insn *)total; for (i = 0; i < c; i++, insn_cache++) cs_mem_free(insn_cache->detail); } cs_mem_free(total); *insn = NULL; handle->errnum = CS_ERR_MEM; return 0; } total = tmp; // continue to fill in the cache after the last instruction insn_cache = (cs_insn *)((char *)total + sizeof(cs_insn) * c); // reset f back to 0, so we fill in the cache from begining f = 0; } else insn_cache++; buffer += next_offset; size -= next_offset; offset += next_offset; } if (!c) { // we did not disassemble any instruction cs_mem_free(total); total = NULL; } else if (f != cache_size) { // total did not fully use the last cache, so downsize it tmp = cs_mem_realloc(total, total_size - (cache_size - f) * sizeof(*insn_cache)); if (tmp == NULL) { // insufficient memory // free all detail pointers if (handle->detail_opt) { insn_cache = (cs_insn *)total; for (i = 0; i < c; i++, insn_cache++) cs_mem_free(insn_cache->detail); } cs_mem_free(total); *insn = NULL; handle->errnum = CS_ERR_MEM; return 0; } total = tmp; } *insn = total; return c; } CAPSTONE_EXPORT void CAPSTONE_API cs_free(cs_insn *insn, size_t count) { size_t i; // free all detail pointers for (i = 0; i < count; i++) cs_mem_free(insn[i].detail); // then free pointer to cs_insn array cs_mem_free(insn); } CAPSTONE_EXPORT cs_insn * CAPSTONE_API cs_malloc(csh ud) { cs_insn *insn; struct cs_struct *handle = (struct cs_struct *)(uintptr_t)ud; insn = cs_mem_malloc(sizeof(cs_insn)); if (!insn) { // insufficient memory handle->errnum = CS_ERR_MEM; return NULL; } else { if (handle->detail_opt) { // allocate memory for @detail pointer insn->detail = cs_mem_malloc(sizeof(cs_detail)); if (insn->detail == NULL) { // insufficient memory cs_mem_free(insn); handle->errnum = CS_ERR_MEM; return NULL; } } else insn->detail = NULL; } return insn; } // iterator for instruction "single-stepping" CAPSTONE_EXPORT bool CAPSTONE_API cs_disasm_iter(csh ud, const uint8_t **code, size_t *size, uint64_t *address, cs_insn *insn) { struct cs_struct *handle; uint16_t insn_size; MCInst mci; bool r; handle = (struct cs_struct *)(uintptr_t)ud; if (!handle) { return false; } handle->errnum = CS_ERR_OK; MCInst_Init(&mci); mci.csh = handle; // relative branches need to know the address & size of current insn mci.address = *address; // save all the information for non-detailed mode mci.flat_insn = insn; mci.flat_insn->address = *address; #ifdef CAPSTONE_DIET // zero out mnemonic & op_str mci.flat_insn->mnemonic[0] = '\0'; mci.flat_insn->op_str[0] = '\0'; #endif r = handle->disasm(ud, *code, *size, &mci, &insn_size, *address, handle->getinsn_info); if (r) { SStream ss; SStream_Init(&ss); mci.flat_insn->size = insn_size; // map internal instruction opcode to public insn ID handle->insn_id(handle, insn, mci.Opcode); handle->printer(&mci, &ss, handle->printer_info); fill_insn(handle, insn, ss.buffer, &mci, handle->post_printer, *code); // adjust for pseudo opcode (X86) if (handle->arch == CS_ARCH_X86) insn->id += mci.popcode_adjust; *code += insn_size; *size -= insn_size; *address += insn_size; } else { // encounter a broken instruction size_t skipdata_bytes; // if there is no request to skip data, or remaining data is too small, // then bail out if (!handle->skipdata || handle->skipdata_size > *size) return false; if (handle->skipdata_setup.callback) { skipdata_bytes = handle->skipdata_setup.callback(*code, *size, 0, handle->skipdata_setup.user_data); if (skipdata_bytes > *size) // remaining data is not enough return false; if (!skipdata_bytes) // user requested not to skip data, so bail out return false; } else skipdata_bytes = handle->skipdata_size; // we have to skip some amount of data, depending on arch & mode insn->id = 0; // invalid ID for this "data" instruction insn->address = *address; insn->size = (uint16_t)skipdata_bytes; #ifdef CAPSTONE_DIET insn->mnemonic[0] = '\0'; insn->op_str[0] = '\0'; #else memcpy(insn->bytes, *code, skipdata_bytes); strncpy(insn->mnemonic, handle->skipdata_setup.mnemonic, sizeof(insn->mnemonic) - 1); skipdata_opstr(insn->op_str, *code, skipdata_bytes); #endif *code += skipdata_bytes; *size -= skipdata_bytes; *address += skipdata_bytes; } return true; } // return friendly name of register in a string CAPSTONE_EXPORT const char * CAPSTONE_API cs_reg_name(csh ud, unsigned int reg) { struct cs_struct *handle = (struct cs_struct *)(uintptr_t)ud; if (!handle || handle->reg_name == NULL) { return NULL; } return handle->reg_name(ud, reg); } CAPSTONE_EXPORT const char * CAPSTONE_API cs_insn_name(csh ud, unsigned int insn) { struct cs_struct *handle = (struct cs_struct *)(uintptr_t)ud; if (!handle || handle->insn_name == NULL) { return NULL; } return handle->insn_name(ud, insn); } CAPSTONE_EXPORT const char * CAPSTONE_API cs_group_name(csh ud, unsigned int group) { struct cs_struct *handle = (struct cs_struct *)(uintptr_t)ud; if (!handle || handle->group_name == NULL) { return NULL; } return handle->group_name(ud, group); } CAPSTONE_EXPORT bool CAPSTONE_API cs_insn_group(csh ud, const cs_insn *insn, unsigned int group_id) { struct cs_struct *handle; if (!ud) return false; handle = (struct cs_struct *)(uintptr_t)ud; if (!handle->detail_opt) { handle->errnum = CS_ERR_DETAIL; return false; } if (!insn->id) { handle->errnum = CS_ERR_SKIPDATA; return false; } if (!insn->detail) { handle->errnum = CS_ERR_DETAIL; return false; } return arr_exist8(insn->detail->groups, insn->detail->groups_count, group_id); } CAPSTONE_EXPORT bool CAPSTONE_API cs_reg_read(csh ud, const cs_insn *insn, unsigned int reg_id) { struct cs_struct *handle; if (!ud) return false; handle = (struct cs_struct *)(uintptr_t)ud; if (!handle->detail_opt) { handle->errnum = CS_ERR_DETAIL; return false; } if (!insn->id) { handle->errnum = CS_ERR_SKIPDATA; return false; } if (!insn->detail) { handle->errnum = CS_ERR_DETAIL; return false; } return arr_exist(insn->detail->regs_read, insn->detail->regs_read_count, reg_id); } CAPSTONE_EXPORT bool CAPSTONE_API cs_reg_write(csh ud, const cs_insn *insn, unsigned int reg_id) { struct cs_struct *handle; if (!ud) return false; handle = (struct cs_struct *)(uintptr_t)ud; if (!handle->detail_opt) { handle->errnum = CS_ERR_DETAIL; return false; } if (!insn->id) { handle->errnum = CS_ERR_SKIPDATA; return false; } if (!insn->detail) { handle->errnum = CS_ERR_DETAIL; return false; } return arr_exist(insn->detail->regs_write, insn->detail->regs_write_count, reg_id); } CAPSTONE_EXPORT int CAPSTONE_API cs_op_count(csh ud, const cs_insn *insn, unsigned int op_type) { struct cs_struct *handle; unsigned int count = 0, i; if (!ud) return -1; handle = (struct cs_struct *)(uintptr_t)ud; if (!handle->detail_opt) { handle->errnum = CS_ERR_DETAIL; return -1; } if (!insn->id) { handle->errnum = CS_ERR_SKIPDATA; return -1; } if (!insn->detail) { handle->errnum = CS_ERR_DETAIL; return -1; } handle->errnum = CS_ERR_OK; switch (handle->arch) { default: handle->errnum = CS_ERR_HANDLE; return -1; case CS_ARCH_ARM: for (i = 0; i < insn->detail->arm.op_count; i++) if (insn->detail->arm.operands[i].type == (arm_op_type)op_type) count++; break; case CS_ARCH_AARCH64: for (i = 0; i < insn->detail->aarch64.op_count; i++) if (insn->detail->aarch64.operands[i].type == (aarch64_op_type)op_type) count++; break; case CS_ARCH_X86: for (i = 0; i < insn->detail->x86.op_count; i++) if (insn->detail->x86.operands[i].type == (x86_op_type)op_type) count++; break; case CS_ARCH_MIPS: for (i = 0; i < insn->detail->mips.op_count; i++) if (insn->detail->mips.operands[i].type == (mips_op_type)op_type) count++; break; case CS_ARCH_PPC: for (i = 0; i < insn->detail->ppc.op_count; i++) if (insn->detail->ppc.operands[i].type == (ppc_op_type)op_type) count++; break; case CS_ARCH_SPARC: for (i = 0; i < insn->detail->sparc.op_count; i++) if (insn->detail->sparc.operands[i].type == (sparc_op_type)op_type) count++; break; case CS_ARCH_SYSZ: for (i = 0; i < insn->detail->sysz.op_count; i++) if (insn->detail->sysz.operands[i].type == (sysz_op_type)op_type) count++; break; case CS_ARCH_XCORE: for (i = 0; i < insn->detail->xcore.op_count; i++) if (insn->detail->xcore.operands[i].type == (xcore_op_type)op_type) count++; break; case CS_ARCH_M68K: for (i = 0; i < insn->detail->m68k.op_count; i++) if (insn->detail->m68k.operands[i].type == (m68k_op_type)op_type) count++; break; case CS_ARCH_TMS320C64X: for (i = 0; i < insn->detail->tms320c64x.op_count; i++) if (insn->detail->tms320c64x.operands[i].type == (tms320c64x_op_type)op_type) count++; break; case CS_ARCH_M680X: for (i = 0; i < insn->detail->m680x.op_count; i++) if (insn->detail->m680x.operands[i].type == (m680x_op_type)op_type) count++; break; case CS_ARCH_EVM: break; case CS_ARCH_MOS65XX: for (i = 0; i < insn->detail->mos65xx.op_count; i++) if (insn->detail->mos65xx.operands[i].type == (mos65xx_op_type)op_type) count++; break; case CS_ARCH_WASM: for (i = 0; i < insn->detail->wasm.op_count; i++) if (insn->detail->wasm.operands[i].type == (wasm_op_type)op_type) count++; break; case CS_ARCH_BPF: for (i = 0; i < insn->detail->bpf.op_count; i++) if (insn->detail->bpf.operands[i].type == (bpf_op_type)op_type) count++; break; case CS_ARCH_RISCV: for (i = 0; i < insn->detail->riscv.op_count; i++) if (insn->detail->riscv.operands[i].type == (riscv_op_type)op_type) count++; break; case CS_ARCH_TRICORE: for (i = 0; i < insn->detail->tricore.op_count; i++) if (insn->detail->tricore.operands[i].type == (tricore_op_type)op_type) count++; break; } return count; } CAPSTONE_EXPORT int CAPSTONE_API cs_op_index(csh ud, const cs_insn *insn, unsigned int op_type, unsigned int post) { struct cs_struct *handle; unsigned int count = 0, i; if (!ud) return -1; handle = (struct cs_struct *)(uintptr_t)ud; if (!handle->detail_opt) { handle->errnum = CS_ERR_DETAIL; return -1; } if (!insn->id) { handle->errnum = CS_ERR_SKIPDATA; return -1; } if (!insn->detail) { handle->errnum = CS_ERR_DETAIL; return -1; } handle->errnum = CS_ERR_OK; switch (handle->arch) { default: handle->errnum = CS_ERR_HANDLE; return -1; case CS_ARCH_ARM: for (i = 0; i < insn->detail->arm.op_count; i++) { if (insn->detail->arm.operands[i].type == (arm_op_type)op_type) count++; if (count == post) return i; } break; case CS_ARCH_AARCH64: for (i = 0; i < insn->detail->aarch64.op_count; i++) { if (insn->detail->aarch64.operands[i].type == (aarch64_op_type)op_type) count++; if (count == post) return i; } break; case CS_ARCH_X86: for (i = 0; i < insn->detail->x86.op_count; i++) { if (insn->detail->x86.operands[i].type == (x86_op_type)op_type) count++; if (count == post) return i; } break; case CS_ARCH_MIPS: for (i = 0; i < insn->detail->mips.op_count; i++) { if (insn->detail->mips.operands[i].type == (mips_op_type)op_type) count++; if (count == post) return i; } break; case CS_ARCH_PPC: for (i = 0; i < insn->detail->ppc.op_count; i++) { if (insn->detail->ppc.operands[i].type == (ppc_op_type)op_type) count++; if (count == post) return i; } break; case CS_ARCH_SPARC: for (i = 0; i < insn->detail->sparc.op_count; i++) { if (insn->detail->sparc.operands[i].type == (sparc_op_type)op_type) count++; if (count == post) return i; } break; case CS_ARCH_SYSZ: for (i = 0; i < insn->detail->sysz.op_count; i++) { if (insn->detail->sysz.operands[i].type == (sysz_op_type)op_type) count++; if (count == post) return i; } break; case CS_ARCH_XCORE: for (i = 0; i < insn->detail->xcore.op_count; i++) { if (insn->detail->xcore.operands[i].type == (xcore_op_type)op_type) count++; if (count == post) return i; } break; case CS_ARCH_TRICORE: for (i = 0; i < insn->detail->tricore.op_count; i++) { if (insn->detail->tricore.operands[i].type == (tricore_op_type)op_type) count++; if (count == post) return i; } break; case CS_ARCH_M68K: for (i = 0; i < insn->detail->m68k.op_count; i++) { if (insn->detail->m68k.operands[i].type == (m68k_op_type)op_type) count++; if (count == post) return i; } break; case CS_ARCH_TMS320C64X: for (i = 0; i < insn->detail->tms320c64x.op_count; i++) { if (insn->detail->tms320c64x.operands[i].type == (tms320c64x_op_type)op_type) count++; if (count == post) return i; } break; case CS_ARCH_M680X: for (i = 0; i < insn->detail->m680x.op_count; i++) { if (insn->detail->m680x.operands[i].type == (m680x_op_type)op_type) count++; if (count == post) return i; } break; case CS_ARCH_EVM: #if 0 for (i = 0; i < insn->detail->evm.op_count; i++) { if (insn->detail->evm.operands[i].type == (evm_op_type)op_type) count++; if (count == post) return i; } #endif break; case CS_ARCH_MOS65XX: for (i = 0; i < insn->detail->mos65xx.op_count; i++) { if (insn->detail->mos65xx.operands[i].type == (mos65xx_op_type)op_type) count++; if (count == post) return i; } break; case CS_ARCH_WASM: for (i = 0; i < insn->detail->wasm.op_count; i++) { if (insn->detail->wasm.operands[i].type == (wasm_op_type)op_type) count++; if (count == post) return i; } break; case CS_ARCH_BPF: for (i = 0; i < insn->detail->bpf.op_count; i++) { if (insn->detail->bpf.operands[i].type == (bpf_op_type)op_type) count++; if (count == post) return i; } break; case CS_ARCH_RISCV: for (i = 0; i < insn->detail->riscv.op_count; i++) { if (insn->detail->riscv.operands[i].type == (riscv_op_type)op_type) count++; if (count == post) return i; } break; case CS_ARCH_SH: for (i = 0; i < insn->detail->sh.op_count; i++) { if (insn->detail->sh.operands[i].type == (sh_op_type)op_type) count++; if (count == post) return i; } break; } return -1; } CAPSTONE_EXPORT cs_err CAPSTONE_API cs_regs_access(csh ud, const cs_insn *insn, cs_regs regs_read, uint8_t *regs_read_count, cs_regs regs_write, uint8_t *regs_write_count) { struct cs_struct *handle; if (!ud) return -1; handle = (struct cs_struct *)(uintptr_t)ud; #ifdef CAPSTONE_DIET // This API does not work in DIET mode handle->errnum = CS_ERR_DIET; return CS_ERR_DIET; #else if (!handle->detail_opt) { handle->errnum = CS_ERR_DETAIL; return CS_ERR_DETAIL; } if (!insn->id) { handle->errnum = CS_ERR_SKIPDATA; return CS_ERR_SKIPDATA; } if (!insn->detail) { handle->errnum = CS_ERR_DETAIL; return CS_ERR_DETAIL; } if (handle->reg_access) { handle->reg_access(insn, regs_read, regs_read_count, regs_write, regs_write_count); } else { // this arch is unsupported yet handle->errnum = CS_ERR_ARCH; return CS_ERR_ARCH; } return CS_ERR_OK; #endif }