//===-- PPCInstPrinter.cpp - Convert PPC MCInst to assembly syntax --------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This class prints an PPC MCInst to a .s file. // //===----------------------------------------------------------------------===// /* Capstone Disassembly Engine */ /* By Nguyen Anh Quynh , 2013-2014 */ #ifdef CAPSTONE_HAS_POWERPC #include #include #include #include "PPCInstPrinter.h" #include "PPCPredicates.h" #include "../../MCInst.h" #include "../../utils.h" #include "../../SStream.h" #include "../../MCRegisterInfo.h" #include "../../MathExtras.h" #include "PPCMapping.h" #ifndef CAPSTONE_DIET static const char *getRegisterName(unsigned RegNo); #endif static void printOperand(MCInst *MI, unsigned OpNo, SStream *O); static void printInstruction(MCInst *MI, SStream *O, MCRegisterInfo *MRI); static void printAbsBranchOperand(MCInst *MI, unsigned OpNo, SStream *O); static void set_mem_access(MCInst *MI, bool status) { if (MI->csh->detail != CS_OPT_ON) return; MI->csh->doing_mem = status; if (status) { MI->flat_insn->detail->ppc.operands[MI->flat_insn->detail->ppc.op_count].type = PPC_OP_MEM; MI->flat_insn->detail->ppc.operands[MI->flat_insn->detail->ppc.op_count].mem.base = PPC_REG_INVALID; MI->flat_insn->detail->ppc.operands[MI->flat_insn->detail->ppc.op_count].mem.disp = 0; } else { // done, create the next operand slot MI->flat_insn->detail->ppc.op_count++; } } void PPC_post_printer(csh ud, cs_insn *insn, char *insn_asm, MCInst *mci) { if (((cs_struct *)ud)->detail != CS_OPT_ON) return; // check if this insn has branch hint if (strrchr(insn_asm, '+') != NULL) { insn->detail->ppc.bh = PPC_BH_PLUS; } else if (strrchr(insn_asm, '-') != NULL) { insn->detail->ppc.bh = PPC_BH_MINUS; } } #define GET_INSTRINFO_ENUM #include "PPCGenInstrInfo.inc" void PPC_printInst(MCInst *MI, SStream *O, void *Info) { // Check for slwi/srwi mnemonics. if (MCInst_getOpcode(MI) == PPC_RLWINM) { unsigned char SH = (unsigned char)MCOperand_getImm(MCInst_getOperand(MI, 2)); unsigned char MB = (unsigned char)MCOperand_getImm(MCInst_getOperand(MI, 3)); unsigned char ME = (unsigned char)MCOperand_getImm(MCInst_getOperand(MI, 4)); bool useSubstituteMnemonic = false; if (SH <= 31 && MB == 0 && ME == (31-SH)) { SStream_concat(O, "slwi\t"); useSubstituteMnemonic = true; } if (SH <= 31 && MB == (32-SH) && ME == 31) { SStream_concat(O, "srwi\t"); useSubstituteMnemonic = true; SH = 32-SH; } if (useSubstituteMnemonic) { printOperand(MI, 0, O); SStream_concat(O, ", "); printOperand(MI, 1, O); if (SH > HEX_THRESHOLD) SStream_concat(O, ", 0x%x", (unsigned int)SH); else SStream_concat(O, ", %u", (unsigned int)SH); return; } } if ((MCInst_getOpcode(MI) == PPC_OR || MCInst_getOpcode(MI) == PPC_OR8) && MCOperand_getReg(MCInst_getOperand(MI, 1)) == MCOperand_getReg(MCInst_getOperand(MI, 1))) { SStream_concat(O, "mr\t"); printOperand(MI, 0, O); SStream_concat(O, ", "); printOperand(MI, 1, O); return; } if (MCInst_getOpcode(MI) == PPC_RLDICR) { unsigned char SH = (unsigned char)MCOperand_getImm(MCInst_getOperand(MI, 2)); unsigned char ME = (unsigned char)MCOperand_getImm(MCInst_getOperand(MI, 3)); // rldicr RA, RS, SH, 63-SH == sldi RA, RS, SH if (63-SH == ME) { SStream_concat(O, "sldi\t"); printOperand(MI, 0, O); SStream_concat(O, ", "); printOperand(MI, 1, O); if (SH > HEX_THRESHOLD) SStream_concat(O, ", 0x%x", (unsigned int)SH); else SStream_concat(O, ", %u", (unsigned int)SH); return; } } printInstruction(MI, O, NULL); } static void printPredicateOperand(MCInst *MI, unsigned OpNo, SStream *O, const char *Modifier) { unsigned Code = (unsigned int)MCOperand_getImm(MCInst_getOperand(MI, OpNo)); MI->flat_insn->detail->ppc.bc = (ppc_bc)Code; if (!strcmp(Modifier, "cc")) { switch ((ppc_predicate)Code) { default: // unreachable case PPC_PRED_LT_MINUS: case PPC_PRED_LT_PLUS: case PPC_PRED_LT: SStream_concat(O, "lt"); return; case PPC_PRED_LE_MINUS: case PPC_PRED_LE_PLUS: case PPC_PRED_LE: SStream_concat(O, "le"); return; case PPC_PRED_EQ_MINUS: case PPC_PRED_EQ_PLUS: case PPC_PRED_EQ: SStream_concat(O, "eq"); return; case PPC_PRED_GE_MINUS: case PPC_PRED_GE_PLUS: case PPC_PRED_GE: SStream_concat(O, "ge"); return; case PPC_PRED_GT_MINUS: case PPC_PRED_GT_PLUS: case PPC_PRED_GT: SStream_concat(O, "gt"); return; case PPC_PRED_NE_MINUS: case PPC_PRED_NE_PLUS: case PPC_PRED_NE: SStream_concat(O, "ne"); return; case PPC_PRED_UN_MINUS: case PPC_PRED_UN_PLUS: case PPC_PRED_UN: SStream_concat(O, "un"); return; case PPC_PRED_NU_MINUS: case PPC_PRED_NU_PLUS: case PPC_PRED_NU: SStream_concat(O, "nu"); return; } } if (!strcmp(Modifier, "pm")) { switch ((ppc_predicate)Code) { case PPC_PRED_LT: case PPC_PRED_LE: case PPC_PRED_EQ: case PPC_PRED_GE: case PPC_PRED_GT: case PPC_PRED_NE: case PPC_PRED_UN: case PPC_PRED_NU: return; case PPC_PRED_LT_MINUS: case PPC_PRED_LE_MINUS: case PPC_PRED_EQ_MINUS: case PPC_PRED_GE_MINUS: case PPC_PRED_GT_MINUS: case PPC_PRED_NE_MINUS: case PPC_PRED_UN_MINUS: case PPC_PRED_NU_MINUS: SStream_concat(O, "-"); return; case PPC_PRED_LT_PLUS: case PPC_PRED_LE_PLUS: case PPC_PRED_EQ_PLUS: case PPC_PRED_GE_PLUS: case PPC_PRED_GT_PLUS: case PPC_PRED_NE_PLUS: case PPC_PRED_UN_PLUS: case PPC_PRED_NU_PLUS: SStream_concat(O, "+"); return; default: // unreachable return; } // llvm_unreachable("Invalid predicate code"); } //assert(StringRef(Modifier) == "reg" && // "Need to specify 'cc', 'pm' or 'reg' as predicate op modifier!"); printOperand(MI, OpNo + 1, O); } static void printS5ImmOperand(MCInst *MI, unsigned OpNo, SStream *O) { int Value = (int)MCOperand_getImm(MCInst_getOperand(MI, OpNo)); Value = SignExtend32(Value, 5); if (Value >= 0) { if (Value > HEX_THRESHOLD) SStream_concat(O, "0x%x", Value); else SStream_concat(O, "%u", Value); } else { if (Value < -HEX_THRESHOLD) SStream_concat(O, "-0x%x", -Value); else SStream_concat(O, "-%u", -Value); } if (MI->csh->detail) { MI->flat_insn->detail->ppc.operands[MI->flat_insn->detail->ppc.op_count].type = PPC_OP_IMM; MI->flat_insn->detail->ppc.operands[MI->flat_insn->detail->ppc.op_count].imm = Value; MI->flat_insn->detail->ppc.op_count++; } } static void printU5ImmOperand(MCInst *MI, unsigned OpNo, SStream *O) { unsigned int Value = (unsigned int)MCOperand_getImm(MCInst_getOperand(MI, OpNo)); //assert(Value <= 31 && "Invalid u5imm argument!"); if (Value > HEX_THRESHOLD) SStream_concat(O, "0x%x", Value); else SStream_concat(O, "%u", Value); if (MI->csh->detail) { MI->flat_insn->detail->ppc.operands[MI->flat_insn->detail->ppc.op_count].type = PPC_OP_IMM; MI->flat_insn->detail->ppc.operands[MI->flat_insn->detail->ppc.op_count].imm = Value; MI->flat_insn->detail->ppc.op_count++; } } static void printU6ImmOperand(MCInst *MI, unsigned OpNo, SStream *O) { unsigned int Value = (unsigned int)MCOperand_getImm(MCInst_getOperand(MI, OpNo)); //assert(Value <= 63 && "Invalid u6imm argument!"); if (Value > HEX_THRESHOLD) SStream_concat(O, "0x%x", Value); else SStream_concat(O, "%u", Value); if (MI->csh->detail) { MI->flat_insn->detail->ppc.operands[MI->flat_insn->detail->ppc.op_count].type = PPC_OP_IMM; MI->flat_insn->detail->ppc.operands[MI->flat_insn->detail->ppc.op_count].imm = Value; MI->flat_insn->detail->ppc.op_count++; } } static void printS16ImmOperand(MCInst *MI, unsigned OpNo, SStream *O) { if (MCOperand_isImm(MCInst_getOperand(MI, OpNo))) { short Imm = (short)MCOperand_getImm(MCInst_getOperand(MI, OpNo)); if (Imm >= 0) { if (Imm > HEX_THRESHOLD) SStream_concat(O, "0x%x", Imm); else SStream_concat(O, "%u", Imm); } else { if (Imm < -HEX_THRESHOLD) SStream_concat(O, "-0x%x", -Imm); else SStream_concat(O, "-%u", -Imm); } if (MI->csh->detail) { MI->flat_insn->detail->ppc.operands[MI->flat_insn->detail->ppc.op_count].type = PPC_OP_IMM; MI->flat_insn->detail->ppc.operands[MI->flat_insn->detail->ppc.op_count].imm = Imm; MI->flat_insn->detail->ppc.op_count++; } } else printOperand(MI, OpNo, O); } static void printS16ImmOperand_Mem(MCInst *MI, unsigned OpNo, SStream *O) { if (MCOperand_isImm(MCInst_getOperand(MI, OpNo))) { short Imm = (short)MCOperand_getImm(MCInst_getOperand(MI, OpNo)); // Do not print zero offset if (Imm == 0) return; if (Imm >= 0) { if (Imm > HEX_THRESHOLD) SStream_concat(O, "0x%x", Imm); else SStream_concat(O, "%u", Imm); } else { if (Imm < -HEX_THRESHOLD) SStream_concat(O, "-0x%x", -Imm); else SStream_concat(O, "-%u", -Imm); } if (MI->csh->detail) { if (MI->csh->doing_mem) { MI->flat_insn->detail->ppc.operands[MI->flat_insn->detail->ppc.op_count].mem.disp = Imm; } else { MI->flat_insn->detail->ppc.operands[MI->flat_insn->detail->ppc.op_count].type = PPC_OP_IMM; MI->flat_insn->detail->ppc.operands[MI->flat_insn->detail->ppc.op_count].imm = Imm; MI->flat_insn->detail->ppc.op_count++; } } } else printOperand(MI, OpNo, O); } static void printU16ImmOperand(MCInst *MI, unsigned OpNo, SStream *O) { if (MCOperand_isImm(MCInst_getOperand(MI, OpNo))) { unsigned short Imm = (unsigned short)MCOperand_getImm(MCInst_getOperand(MI, OpNo)); if (Imm > HEX_THRESHOLD) SStream_concat(O, "0x%x", Imm); else SStream_concat(O, "%u", Imm); if (MI->csh->detail) { MI->flat_insn->detail->ppc.operands[MI->flat_insn->detail->ppc.op_count].type = PPC_OP_IMM; MI->flat_insn->detail->ppc.operands[MI->flat_insn->detail->ppc.op_count].imm = Imm; MI->flat_insn->detail->ppc.op_count++; } } else printOperand(MI, OpNo, O); } static void printBranchOperand(MCInst *MI, unsigned OpNo, SStream *O) { if (!MCOperand_isImm(MCInst_getOperand(MI, OpNo))) { printOperand(MI, OpNo, O); return; } // Branches can take an immediate operand. This is used by the branch // selection pass to print .+8, an eight byte displacement from the PC. SStream_concat(O, ".+"); printAbsBranchOperand(MI, OpNo, O); } static void printAbsBranchOperand(MCInst *MI, unsigned OpNo, SStream *O) { int tmp; if (!MCOperand_isImm(MCInst_getOperand(MI, OpNo))) { printOperand(MI, OpNo, O); return; } tmp = (int)MCOperand_getImm(MCInst_getOperand(MI, OpNo)) * 4; if (tmp >= 0) { if (tmp > HEX_THRESHOLD) SStream_concat(O, "0x%x", tmp); else SStream_concat(O, "%u", tmp); } else { if (tmp < -HEX_THRESHOLD) SStream_concat(O, "-0x%x", -tmp); else SStream_concat(O, "-%u", -tmp); } } #define GET_REGINFO_ENUM #include "PPCGenRegisterInfo.inc" static void printcrbitm(MCInst *MI, unsigned OpNo, SStream *O) { unsigned CCReg = MCOperand_getReg(MCInst_getOperand(MI, OpNo)); unsigned RegNo, tmp; switch (CCReg) { default: // llvm_unreachable("Unknown CR register"); case PPC_CR0: RegNo = 0; break; case PPC_CR1: RegNo = 1; break; case PPC_CR2: RegNo = 2; break; case PPC_CR3: RegNo = 3; break; case PPC_CR4: RegNo = 4; break; case PPC_CR5: RegNo = 5; break; case PPC_CR6: RegNo = 6; break; case PPC_CR7: RegNo = 7; break; } tmp = 0x80 >> RegNo; if (tmp > HEX_THRESHOLD) SStream_concat(O, "0x%x", tmp); else SStream_concat(O, "%u", tmp); } static void printMemRegImm(MCInst *MI, unsigned OpNo, SStream *O) { set_mem_access(MI, true); printS16ImmOperand_Mem(MI, OpNo, O); SStream_concat(O, "("); if (MCOperand_getReg(MCInst_getOperand(MI, OpNo + 1)) == PPC_R0) SStream_concat(O, "0"); else printOperand(MI, OpNo + 1, O); SStream_concat(O, ")"); set_mem_access(MI, false); } static void printMemRegReg(MCInst *MI, unsigned OpNo, SStream *O) { // When used as the base register, r0 reads constant zero rather than // the value contained in the register. For this reason, the darwin // assembler requires that we print r0 as 0 (no r) when used as the base. if (MCOperand_getReg(MCInst_getOperand(MI, OpNo)) == PPC_R0) SStream_concat(O, "0"); else printOperand(MI, OpNo, O); SStream_concat(O, ", "); printOperand(MI, OpNo + 1, O); } static void printTLSCall(MCInst *MI, unsigned OpNo, SStream *O) { set_mem_access(MI, true); printBranchOperand(MI, OpNo, O); SStream_concat(O, "("); printOperand(MI, OpNo + 1, O); SStream_concat(O, ")"); set_mem_access(MI, false); } #ifndef CAPSTONE_DIET /// stripRegisterPrefix - This method strips the character prefix from a /// register name so that only the number is left. Used by for linux asm. static const char *stripRegisterPrefix(const char *RegName) { switch (RegName[0]) { case 'r': case 'f': case 'v': return RegName + 1; case 'c': if (RegName[1] == 'r') return RegName + 2; } return RegName; } #endif static void printOperand(MCInst *MI, unsigned OpNo, SStream *O) { MCOperand *Op = MCInst_getOperand(MI, OpNo); if (MCOperand_isReg(Op)) { unsigned reg = MCOperand_getReg(Op); #ifndef CAPSTONE_DIET const char *RegName = getRegisterName(reg); #endif // map to public register reg = PPC_map_register(reg); #ifndef CAPSTONE_DIET // The linux and AIX assembler does not take register prefixes. if (MI->csh->syntax == CS_OPT_SYNTAX_NOREGNAME) RegName = stripRegisterPrefix(RegName); SStream_concat(O, "%s", RegName); #endif if (MI->csh->detail) { if (MI->csh->doing_mem) { MI->flat_insn->detail->ppc.operands[MI->flat_insn->detail->ppc.op_count].mem.base = reg; } else { MI->flat_insn->detail->ppc.operands[MI->flat_insn->detail->ppc.op_count].type = PPC_OP_REG; MI->flat_insn->detail->ppc.operands[MI->flat_insn->detail->ppc.op_count].reg = reg; MI->flat_insn->detail->ppc.op_count++; } } return; } if (MCOperand_isImm(Op)) { int32_t imm = (int32_t)MCOperand_getImm(Op); if (imm >= 0) { if (imm > HEX_THRESHOLD) SStream_concat(O, "0x%x", imm); else SStream_concat(O, "%u", imm); } else { if (imm < -HEX_THRESHOLD) SStream_concat(O, "-0x%x", -imm); else SStream_concat(O, "-%u", -imm); } if (MI->csh->detail) { if (MI->csh->doing_mem) { MI->flat_insn->detail->ppc.operands[MI->flat_insn->detail->ppc.op_count].mem.disp = imm; } else { MI->flat_insn->detail->ppc.operands[MI->flat_insn->detail->ppc.op_count].type = PPC_OP_IMM; MI->flat_insn->detail->ppc.operands[MI->flat_insn->detail->ppc.op_count].imm = imm; MI->flat_insn->detail->ppc.op_count++; } } } } //#define PRINT_ALIAS_INSTR #include "PPCGenAsmWriter.inc" #endif