mirror of
https://github.com/capstone-engine/capstone.git
synced 2024-12-04 20:06:41 +00:00
443 lines
14 KiB
C++
443 lines
14 KiB
C++
//===-- llvm/Support/MathExtras.h - Useful math functions -------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains some functions that are useful for math stuff.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/* Capstone Disassembly Engine */
|
|
/* By Nguyen Anh Quynh <aquynh@gmail.com>, 2013-2015 */
|
|
|
|
#ifndef CS_LLVM_SUPPORT_MATHEXTRAS_H
|
|
#define CS_LLVM_SUPPORT_MATHEXTRAS_H
|
|
|
|
#if defined(_WIN32_WCE) && (_WIN32_WCE < 0x800)
|
|
#include "windowsce/intrin.h"
|
|
#elif defined(_MSC_VER)
|
|
#include <intrin.h>
|
|
#endif
|
|
|
|
#ifndef __cplusplus
|
|
#if defined (WIN32) || defined (WIN64) || defined (_WIN32) || defined (_WIN64)
|
|
#define inline /* inline */
|
|
#endif
|
|
#endif
|
|
|
|
// NOTE: The following support functions use the _32/_64 extensions instead of
|
|
// type overloading so that signed and unsigned integers can be used without
|
|
// ambiguity.
|
|
|
|
/// Hi_32 - This function returns the high 32 bits of a 64 bit value.
|
|
static inline uint32_t Hi_32(uint64_t Value) {
|
|
return (uint32_t)(Value >> 32);
|
|
}
|
|
|
|
/// Lo_32 - This function returns the low 32 bits of a 64 bit value.
|
|
static inline uint32_t Lo_32(uint64_t Value) {
|
|
return (uint32_t)(Value);
|
|
}
|
|
|
|
/// isUIntN - Checks if an unsigned integer fits into the given (dynamic)
|
|
/// bit width.
|
|
static inline bool isUIntN(unsigned N, uint64_t x) {
|
|
return x == (x & (~0ULL >> (64 - N)));
|
|
}
|
|
|
|
/// isIntN - Checks if an signed integer fits into the given (dynamic)
|
|
/// bit width.
|
|
//static inline bool isIntN(unsigned N, int64_t x) {
|
|
// return N >= 64 || (-(INT64_C(1)<<(N-1)) <= x && x < (INT64_C(1)<<(N-1)));
|
|
//}
|
|
|
|
/// isMask_32 - This function returns true if the argument is a sequence of ones
|
|
/// starting at the least significant bit with the remainder zero (32 bit
|
|
/// version). Ex. isMask_32(0x0000FFFFU) == true.
|
|
static inline bool isMask_32(uint32_t Value) {
|
|
return Value && ((Value + 1) & Value) == 0;
|
|
}
|
|
|
|
/// isMask_64 - This function returns true if the argument is a sequence of ones
|
|
/// starting at the least significant bit with the remainder zero (64 bit
|
|
/// version).
|
|
static inline bool isMask_64(uint64_t Value) {
|
|
return Value && ((Value + 1) & Value) == 0;
|
|
}
|
|
|
|
/// isShiftedMask_32 - This function returns true if the argument contains a
|
|
/// sequence of ones with the remainder zero (32 bit version.)
|
|
/// Ex. isShiftedMask_32(0x0000FF00U) == true.
|
|
static inline bool isShiftedMask_32(uint32_t Value) {
|
|
return isMask_32((Value - 1) | Value);
|
|
}
|
|
|
|
/// isShiftedMask_64 - This function returns true if the argument contains a
|
|
/// sequence of ones with the remainder zero (64 bit version.)
|
|
static inline bool isShiftedMask_64(uint64_t Value) {
|
|
return isMask_64((Value - 1) | Value);
|
|
}
|
|
|
|
/// isPowerOf2_32 - This function returns true if the argument is a power of
|
|
/// two > 0. Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.)
|
|
static inline bool isPowerOf2_32(uint32_t Value) {
|
|
return Value && !(Value & (Value - 1));
|
|
}
|
|
|
|
/// CountLeadingZeros_32 - this function performs the platform optimal form of
|
|
/// counting the number of zeros from the most significant bit to the first one
|
|
/// bit. Ex. CountLeadingZeros_32(0x00F000FF) == 8.
|
|
/// Returns 32 if the word is zero.
|
|
static inline unsigned CountLeadingZeros_32(uint32_t Value) {
|
|
unsigned Count; // result
|
|
#if __GNUC__ >= 4
|
|
// PowerPC is defined for __builtin_clz(0)
|
|
#if !defined(__ppc__) && !defined(__ppc64__)
|
|
if (!Value) return 32;
|
|
#endif
|
|
Count = __builtin_clz(Value);
|
|
#else
|
|
unsigned Shift;
|
|
if (!Value) return 32;
|
|
Count = 0;
|
|
// bisection method for count leading zeros
|
|
for (Shift = 32 >> 1; Shift; Shift >>= 1) {
|
|
uint32_t Tmp = Value >> Shift;
|
|
if (Tmp) {
|
|
Value = Tmp;
|
|
} else {
|
|
Count |= Shift;
|
|
}
|
|
}
|
|
#endif
|
|
return Count;
|
|
}
|
|
|
|
/// CountLeadingOnes_32 - this function performs the operation of
|
|
/// counting the number of ones from the most significant bit to the first zero
|
|
/// bit. Ex. CountLeadingOnes_32(0xFF0FFF00) == 8.
|
|
/// Returns 32 if the word is all ones.
|
|
static inline unsigned CountLeadingOnes_32(uint32_t Value) {
|
|
return CountLeadingZeros_32(~Value);
|
|
}
|
|
|
|
/// CountLeadingZeros_64 - This function performs the platform optimal form
|
|
/// of counting the number of zeros from the most significant bit to the first
|
|
/// one bit (64 bit edition.)
|
|
/// Returns 64 if the word is zero.
|
|
static inline unsigned CountLeadingZeros_64(uint64_t Value) {
|
|
unsigned Count; // result
|
|
#if __GNUC__ >= 4
|
|
// PowerPC is defined for __builtin_clzll(0)
|
|
#if !defined(__ppc__) && !defined(__ppc64__)
|
|
if (!Value) return 64;
|
|
#endif
|
|
Count = __builtin_clzll(Value);
|
|
#else
|
|
#ifndef _MSC_VER
|
|
unsigned Shift;
|
|
if (sizeof(long) == sizeof(int64_t))
|
|
{
|
|
if (!Value) return 64;
|
|
Count = 0;
|
|
// bisection method for count leading zeros
|
|
for (Shift = 64 >> 1; Shift; Shift >>= 1) {
|
|
uint64_t Tmp = Value >> Shift;
|
|
if (Tmp) {
|
|
Value = Tmp;
|
|
} else {
|
|
Count |= Shift;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
// get hi portion
|
|
uint32_t Hi = Hi_32(Value);
|
|
|
|
// if some bits in hi portion
|
|
if (Hi) {
|
|
// leading zeros in hi portion plus all bits in lo portion
|
|
Count = CountLeadingZeros_32(Hi);
|
|
} else {
|
|
// get lo portion
|
|
uint32_t Lo = Lo_32(Value);
|
|
// same as 32 bit value
|
|
Count = CountLeadingZeros_32(Lo)+32;
|
|
}
|
|
}
|
|
#endif
|
|
return Count;
|
|
}
|
|
|
|
/// CountLeadingOnes_64 - This function performs the operation
|
|
/// of counting the number of ones from the most significant bit to the first
|
|
/// zero bit (64 bit edition.)
|
|
/// Returns 64 if the word is all ones.
|
|
static inline unsigned CountLeadingOnes_64(uint64_t Value) {
|
|
return CountLeadingZeros_64(~Value);
|
|
}
|
|
|
|
/// CountTrailingZeros_32 - this function performs the platform optimal form of
|
|
/// counting the number of zeros from the least significant bit to the first one
|
|
/// bit. Ex. CountTrailingZeros_32(0xFF00FF00) == 8.
|
|
/// Returns 32 if the word is zero.
|
|
static inline unsigned CountTrailingZeros_32(uint32_t Value) {
|
|
#if __GNUC__ >= 4
|
|
return Value ? __builtin_ctz(Value) : 32;
|
|
#else
|
|
static const unsigned Mod37BitPosition[] = {
|
|
32, 0, 1, 26, 2, 23, 27, 0, 3, 16, 24, 30, 28, 11, 0, 13,
|
|
4, 7, 17, 0, 25, 22, 31, 15, 29, 10, 12, 6, 0, 21, 14, 9,
|
|
5, 20, 8, 19, 18
|
|
};
|
|
// Replace "-Value" by "1+~Value" in the following commented code to avoid
|
|
// MSVC warning C4146
|
|
// return Mod37BitPosition[(-Value & Value) % 37];
|
|
return Mod37BitPosition[((1 + ~Value) & Value) % 37];
|
|
#endif
|
|
}
|
|
|
|
/// CountTrailingOnes_32 - this function performs the operation of
|
|
/// counting the number of ones from the least significant bit to the first zero
|
|
/// bit. Ex. CountTrailingOnes_32(0x00FF00FF) == 8.
|
|
/// Returns 32 if the word is all ones.
|
|
static inline unsigned CountTrailingOnes_32(uint32_t Value) {
|
|
return CountTrailingZeros_32(~Value);
|
|
}
|
|
|
|
/// CountTrailingZeros_64 - This function performs the platform optimal form
|
|
/// of counting the number of zeros from the least significant bit to the first
|
|
/// one bit (64 bit edition.)
|
|
/// Returns 64 if the word is zero.
|
|
static inline unsigned CountTrailingZeros_64(uint64_t Value) {
|
|
#if __GNUC__ >= 4
|
|
return Value ? __builtin_ctzll(Value) : 64;
|
|
#else
|
|
static const unsigned Mod67Position[] = {
|
|
64, 0, 1, 39, 2, 15, 40, 23, 3, 12, 16, 59, 41, 19, 24, 54,
|
|
4, 64, 13, 10, 17, 62, 60, 28, 42, 30, 20, 51, 25, 44, 55,
|
|
47, 5, 32, 65, 38, 14, 22, 11, 58, 18, 53, 63, 9, 61, 27,
|
|
29, 50, 43, 46, 31, 37, 21, 57, 52, 8, 26, 49, 45, 36, 56,
|
|
7, 48, 35, 6, 34, 33, 0
|
|
};
|
|
// Replace "-Value" by "1+~Value" in the following commented code to avoid
|
|
// MSVC warning C4146
|
|
// return Mod67Position[(-Value & Value) % 67];
|
|
return Mod67Position[((1 + ~Value) & Value) % 67];
|
|
#endif
|
|
}
|
|
|
|
/// CountTrailingOnes_64 - This function performs the operation
|
|
/// of counting the number of ones from the least significant bit to the first
|
|
/// zero bit (64 bit edition.)
|
|
/// Returns 64 if the word is all ones.
|
|
static inline unsigned CountTrailingOnes_64(uint64_t Value) {
|
|
return CountTrailingZeros_64(~Value);
|
|
}
|
|
|
|
/// CountPopulation_32 - this function counts the number of set bits in a value.
|
|
/// Ex. CountPopulation(0xF000F000) = 8
|
|
/// Returns 0 if the word is zero.
|
|
static inline unsigned CountPopulation_32(uint32_t Value) {
|
|
#if __GNUC__ >= 4
|
|
return __builtin_popcount(Value);
|
|
#else
|
|
uint32_t v = Value - ((Value >> 1) & 0x55555555);
|
|
v = (v & 0x33333333) + ((v >> 2) & 0x33333333);
|
|
return (((v + (v >> 4)) & 0xF0F0F0F) * 0x1010101) >> 24;
|
|
#endif
|
|
}
|
|
|
|
/// CountPopulation_64 - this function counts the number of set bits in a value,
|
|
/// (64 bit edition.)
|
|
static inline unsigned CountPopulation_64(uint64_t Value) {
|
|
#if __GNUC__ >= 4
|
|
return __builtin_popcountll(Value);
|
|
#else
|
|
uint64_t v = Value - ((Value >> 1) & 0x5555555555555555ULL);
|
|
v = (v & 0x3333333333333333ULL) + ((v >> 2) & 0x3333333333333333ULL);
|
|
v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL;
|
|
return (uint64_t)((v * 0x0101010101010101ULL) >> 56);
|
|
#endif
|
|
}
|
|
|
|
/// Log2_32 - This function returns the floor log base 2 of the specified value,
|
|
/// -1 if the value is zero. (32 bit edition.)
|
|
/// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2
|
|
static inline unsigned Log2_32(uint32_t Value) {
|
|
return 31 - CountLeadingZeros_32(Value);
|
|
}
|
|
|
|
/// Log2_64 - This function returns the floor log base 2 of the specified value,
|
|
/// -1 if the value is zero. (64 bit edition.)
|
|
static inline unsigned Log2_64(uint64_t Value) {
|
|
return 63 - CountLeadingZeros_64(Value);
|
|
}
|
|
|
|
/// Log2_32_Ceil - This function returns the ceil log base 2 of the specified
|
|
/// value, 32 if the value is zero. (32 bit edition).
|
|
/// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3
|
|
static inline unsigned Log2_32_Ceil(uint32_t Value) {
|
|
return 32-CountLeadingZeros_32(Value-1);
|
|
}
|
|
|
|
/// Log2_64_Ceil - This function returns the ceil log base 2 of the specified
|
|
/// value, 64 if the value is zero. (64 bit edition.)
|
|
static inline unsigned Log2_64_Ceil(uint64_t Value) {
|
|
return 64-CountLeadingZeros_64(Value-1);
|
|
}
|
|
|
|
/// GreatestCommonDivisor64 - Return the greatest common divisor of the two
|
|
/// values using Euclid's algorithm.
|
|
static inline uint64_t GreatestCommonDivisor64(uint64_t A, uint64_t B) {
|
|
while (B) {
|
|
uint64_t T = B;
|
|
B = A % B;
|
|
A = T;
|
|
}
|
|
return A;
|
|
}
|
|
|
|
/// BitsToDouble - This function takes a 64-bit integer and returns the bit
|
|
/// equivalent double.
|
|
static inline double BitsToDouble(uint64_t Bits) {
|
|
union {
|
|
uint64_t L;
|
|
double D;
|
|
} T;
|
|
T.L = Bits;
|
|
return T.D;
|
|
}
|
|
|
|
/// BitsToFloat - This function takes a 32-bit integer and returns the bit
|
|
/// equivalent float.
|
|
static inline float BitsToFloat(uint32_t Bits) {
|
|
union {
|
|
uint32_t I;
|
|
float F;
|
|
} T;
|
|
T.I = Bits;
|
|
return T.F;
|
|
}
|
|
|
|
/// DoubleToBits - This function takes a double and returns the bit
|
|
/// equivalent 64-bit integer. Note that copying doubles around
|
|
/// changes the bits of NaNs on some hosts, notably x86, so this
|
|
/// routine cannot be used if these bits are needed.
|
|
static inline uint64_t DoubleToBits(double Double) {
|
|
union {
|
|
uint64_t L;
|
|
double D;
|
|
} T;
|
|
T.D = Double;
|
|
return T.L;
|
|
}
|
|
|
|
/// FloatToBits - This function takes a float and returns the bit
|
|
/// equivalent 32-bit integer. Note that copying floats around
|
|
/// changes the bits of NaNs on some hosts, notably x86, so this
|
|
/// routine cannot be used if these bits are needed.
|
|
static inline uint32_t FloatToBits(float Float) {
|
|
union {
|
|
uint32_t I;
|
|
float F;
|
|
} T;
|
|
T.F = Float;
|
|
return T.I;
|
|
}
|
|
|
|
/// MinAlign - A and B are either alignments or offsets. Return the minimum
|
|
/// alignment that may be assumed after adding the two together.
|
|
static inline uint64_t MinAlign(uint64_t A, uint64_t B) {
|
|
// The largest power of 2 that divides both A and B.
|
|
//
|
|
// Replace "-Value" by "1+~Value" in the following commented code to avoid
|
|
// MSVC warning C4146
|
|
// return (A | B) & -(A | B);
|
|
return (A | B) & (1 + ~(A | B));
|
|
}
|
|
|
|
/// NextPowerOf2 - Returns the next power of two (in 64-bits)
|
|
/// that is strictly greater than A. Returns zero on overflow.
|
|
static inline uint64_t NextPowerOf2(uint64_t A) {
|
|
A |= (A >> 1);
|
|
A |= (A >> 2);
|
|
A |= (A >> 4);
|
|
A |= (A >> 8);
|
|
A |= (A >> 16);
|
|
A |= (A >> 32);
|
|
return A + 1;
|
|
}
|
|
|
|
/// Returns the next integer (mod 2**64) that is greater than or equal to
|
|
/// \p Value and is a multiple of \p Align. \p Align must be non-zero.
|
|
///
|
|
/// Examples:
|
|
/// \code
|
|
/// RoundUpToAlignment(5, 8) = 8
|
|
/// RoundUpToAlignment(17, 8) = 24
|
|
/// RoundUpToAlignment(~0LL, 8) = 0
|
|
/// \endcode
|
|
static inline uint64_t RoundUpToAlignment(uint64_t Value, uint64_t Align) {
|
|
return ((Value + Align - 1) / Align) * Align;
|
|
}
|
|
|
|
/// Returns the offset to the next integer (mod 2**64) that is greater than
|
|
/// or equal to \p Value and is a multiple of \p Align. \p Align must be
|
|
/// non-zero.
|
|
static inline uint64_t OffsetToAlignment(uint64_t Value, uint64_t Align) {
|
|
return RoundUpToAlignment(Value, Align) - Value;
|
|
}
|
|
|
|
/// abs64 - absolute value of a 64-bit int. Not all environments support
|
|
/// "abs" on whatever their name for the 64-bit int type is. The absolute
|
|
/// value of the largest negative number is undefined, as with "abs".
|
|
static inline int64_t abs64(int64_t x) {
|
|
return (x < 0) ? -x : x;
|
|
}
|
|
|
|
/// \brief Sign extend number in the bottom B bits of X to a 32-bit int.
|
|
/// Requires 0 < B <= 32.
|
|
static inline int32_t SignExtend32(uint32_t X, unsigned B) {
|
|
return (int32_t)(X << (32 - B)) >> (32 - B);
|
|
}
|
|
|
|
/// \brief Sign extend number in the bottom B bits of X to a 64-bit int.
|
|
/// Requires 0 < B <= 64.
|
|
static inline int64_t SignExtend64(uint64_t X, unsigned B) {
|
|
return (int64_t)(X << (64 - B)) >> (64 - B);
|
|
}
|
|
|
|
/// \brief Count number of 0's from the most significant bit to the least
|
|
/// stopping at the first 1.
|
|
///
|
|
/// Only unsigned integral types are allowed.
|
|
///
|
|
/// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are
|
|
/// valid arguments.
|
|
static inline unsigned int countLeadingZeros(int x)
|
|
{
|
|
int i;
|
|
const unsigned bits = sizeof(x) * 8;
|
|
unsigned count = bits;
|
|
|
|
if (x < 0) {
|
|
return 0;
|
|
}
|
|
for (i = bits; --i; ) {
|
|
if (x == 0) break;
|
|
count--;
|
|
x >>= 1;
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
#endif
|