capstone/cstool/cstool.c
Priit Laes a1659e996c Add cortex-m support to cstool, refactoring and crash fix (#1099)
* cstool: Refactor architecture parsing and fix crash with invalid arch

* cstool: Enable cortex-m decoder
2018-03-19 00:04:27 +08:00

356 lines
8.8 KiB
C

/* Tang Yuhang <tyh000011112222@gmail.com> 2016 */
#include <string.h>
#include <ctype.h>
#include <errno.h>
#include <capstone.h>
void print_insn_detail_x86(csh ud, cs_mode mode, cs_insn *ins);
void print_insn_detail_arm(csh handle, cs_insn *ins);
void print_insn_detail_arm64(csh handle, cs_insn *ins);
void print_insn_detail_mips(csh handle, cs_insn *ins);
void print_insn_detail_ppc(csh handle, cs_insn *ins);
void print_insn_detail_sparc(csh handle, cs_insn *ins);
void print_insn_detail_sysz(csh handle, cs_insn *ins);
void print_insn_detail_xcore(csh handle, cs_insn *ins);
void print_string_hex(char *comment, unsigned char *str, size_t len)
{
unsigned char *c;
printf("%s", comment);
for (c = str; c < str + len; c++) {
printf("0x%02x ", *c & 0xff);
}
printf("\n");
}
// convert hexchar to hexnum
static uint8_t char_to_hexnum(char c)
{
if (c >= '0' && c <= '9') {
return (uint8_t)(c - '0');
}
if (c >= 'a' && c <= 'f') {
return (uint8_t)(10 + c - 'a');
}
// c >= 'A' && c <= 'F'
return (uint8_t)(10 + c - 'A');
}
// convert user input (char[]) to uint8_t[], each element of which is
// valid hexadecimal, and return actual length of uint8_t[] in @size.
static uint8_t *preprocess(char *code, size_t *size)
{
size_t i = 0, j = 0;
uint8_t high, low;
uint8_t *result;
result = (uint8_t *)malloc(strlen(code));
if (result != NULL) {
while (code[i] != '\0') {
if (isxdigit(code[i]) && isxdigit(code[i+1])) {
high = 16 * char_to_hexnum(code[i]);
low = char_to_hexnum(code[i+1]);
result[j] = high + low;
i++;
j++;
}
i++;
}
*size = j;
}
return result;
}
static void usage(char *prog)
{
printf("Cstool for Capstone Disassembler Engine v%u.%u.%u\n\n", CS_VERSION_MAJOR, CS_VERSION_MINOR, CS_VERSION_EXTRA);
printf("Syntax: %s [-d] <arch+mode> <assembly-hexstring> [start-address-in-hex-format]\n", prog);
printf("\nThe following <arch+mode> options are supported:\n");
if (cs_support(CS_ARCH_X86)) {
printf(" x16: 16-bit mode (X86)\n");
printf(" x32: 32-bit mode (X86)\n");
printf(" x64: 64-bit mode (X86)\n");
printf(" x16att: 16-bit mode (X86) syntax-att\n");
printf(" x32att: 32-bit mode (X86) syntax-att\n");
printf(" x64att: 64-bit mode (X86) syntax-att\n");
}
if (cs_support(CS_ARCH_ARM)) {
printf(" arm: arm\n");
printf(" armbe: arm + big endian\n");
printf(" thumb: thumb mode\n");
printf(" thumbbe: thumb + big endian\n");
printf(" cortexm: thumb + cortex-m extensions\n");
}
if (cs_support(CS_ARCH_ARM64)) {
printf(" arm64: aarch64 mode\n");
printf(" arm64be: aarch64 + big endian\n");
}
if (cs_support(CS_ARCH_MIPS)) {
printf(" mips: mips32 + little endian\n");
printf(" mipsbe: mips32 + big endian\n");
printf(" mips64: mips64 + little endian\n");
printf(" mips64be: mips64 + big endian\n");
}
if (cs_support(CS_ARCH_PPC)) {
printf(" ppc64: ppc64 + little endian\n");
printf(" ppc64be: ppc64 + big endian\n");
}
if (cs_support(CS_ARCH_SPARC)) {
printf(" sparc: sparc\n");
}
if (cs_support(CS_ARCH_SYSZ)) {
printf(" systemz: systemz (s390x)\n");
}
if (cs_support(CS_ARCH_XCORE)) {
printf(" xcore: xcore\n");
}
printf("\n");
}
int main(int argc, char **argv)
{
csh handle;
char *mode;
uint8_t *assembly;
size_t count, size;
uint64_t address = 0;
cs_insn *insn;
cs_err err;
cs_mode md;
cs_arch arch;
bool detail_flag = false;
bool x86_att_syntax = false;
if (argc != 3 && argc != 4 && argc != 5) {
usage(argv[0]);
return -1;
}
if (!strcmp(argv[1], "-d")) {
if (argc == 3) {
usage(argv[0]);
return -1;
}
detail_flag = true;
mode = argv[2];
assembly = preprocess(argv[3], &size);
if (argc == 5) {
char *temp;
address = strtoull(argv[4], &temp, 16);
if (temp == argv[4] || *temp != '\0' || errno == ERANGE) {
printf("ERROR: invalid address argument, quit!\n");
return -2;
}
}
} else {
if (argc == 5) {
usage(argv[0]);
return -1;
}
mode = argv[1];
assembly = preprocess(argv[2], &size);
if (assembly == NULL) {
printf("ERROR: invalid assembler-string argument, quit!\n");
return -3;
}
if (argc == 4) {
// cstool <arch> <assembly> <address>
char *temp;
address = strtoull(argv[3], &temp, 16);
if (temp == argv[3] || *temp != '\0' || errno == ERANGE) {
printf("ERROR: invalid address argument, quit!\n");
return -2;
}
}
}
if (!strcmp(mode, "arm") || !strcmp(mode, "arml") || !strcmp(mode, "armle")) {
arch = CS_ARCH_ARM;
md = CS_MODE_ARM | CS_MODE_LITTLE_ENDIAN;
} else if (!strcmp(mode, "armb") || !strcmp(mode, "armbe") ) {
arch = CS_ARCH_ARM;
md = CS_MODE_ARM | CS_MODE_BIG_ENDIAN;
} else if (!strcmp(mode, "thumb") || !strcmp(mode, "thumble")) {
arch = CS_ARCH_ARM;
md = CS_MODE_THUMB | CS_MODE_LITTLE_ENDIAN;
} else if (!strcmp(mode, "thumbbe")) {
arch = CS_ARCH_ARM;
md = CS_MODE_THUMB | CS_MODE_BIG_ENDIAN;
} else if (!strcmp(mode, "cortexm")) {
arch = CS_ARCH_ARM;
md = CS_MODE_THUMB | CS_MODE_MCLASS | CS_MODE_LITTLE_ENDIAN;
} else if (!strcmp(mode, "arm64")) {
arch = CS_ARCH_ARM64;
md = CS_MODE_LITTLE_ENDIAN;
} else if (!strcmp(mode, "arm64be")) {
arch = CS_ARCH_ARM64;
md = CS_MODE_BIG_ENDIAN;
} else if (!strcmp(mode, "mips")) {
arch = CS_ARCH_MIPS;
md = CS_MODE_MIPS32 | CS_MODE_LITTLE_ENDIAN;
} else if (!strcmp(mode, "mipsbe")) {
arch = CS_ARCH_MIPS;
md = CS_MODE_MIPS32 | CS_MODE_BIG_ENDIAN;
} else if (!strcmp(mode, "mips64")) {
arch = CS_ARCH_MIPS;
md = CS_MODE_MIPS64 | CS_MODE_LITTLE_ENDIAN;
} else if (!strcmp(mode, "mips64be")) {
arch = CS_ARCH_MIPS;
md = CS_MODE_MIPS64 | CS_MODE_BIG_ENDIAN;
} else if (!strcmp(mode, "x16")) {
arch = CS_ARCH_X86;
md = CS_MODE_16;
} else if (!strcmp(mode, "x32")) {
arch = CS_ARCH_X86;
md = CS_MODE_32;
} else if (!strcmp(mode, "x64")) {
arch = CS_ARCH_X86;
md = CS_MODE_64;
} else if (!strcmp(mode, "x16att")) {
arch = CS_ARCH_X86;
md = CS_MODE_16;
x86_att_syntax = true;
} else if (!strcmp(mode,"x32att")) {
arch = CS_ARCH_X86;
md = CS_MODE_32;
x86_att_syntax = true;
} else if (!strcmp(mode,"x64att")) {
arch = CS_ARCH_X86;
md = CS_MODE_64;
x86_att_syntax = true;
} else if (!strcmp(mode,"ppc64")) {
arch = CS_ARCH_PPC;
md = CS_MODE_64 | CS_MODE_LITTLE_ENDIAN;
} else if (!strcmp(mode,"ppc64be")) {
arch = CS_ARCH_PPC;
md = CS_MODE_64 | CS_MODE_BIG_ENDIAN;
} else if (!strcmp(mode,"sparc")) {
arch = CS_ARCH_SPARC;
md = CS_MODE_BIG_ENDIAN;
} else if (!strcmp(mode, "systemz") || !strcmp(mode, "sysz") || !strcmp(mode, "s390x")) {
arch = CS_ARCH_SYSZ;
md = CS_MODE_BIG_ENDIAN;
} else if (!strcmp(mode,"xcore")) {
arch = CS_ARCH_XCORE;
md = CS_MODE_BIG_ENDIAN;
} else {
printf("ERROR: unknown architecture '%s'!\n", mode);
usage(argv[0]);
return -1;
}
err = cs_open(arch, md, &handle);
if (err) {
printf("ERROR: Failed on cs_open(), quit!\n");
usage(argv[0]);
return -1;
}
if (arch == CS_ARCH_X86 && x86_att_syntax) {
cs_option(handle, CS_OPT_SYNTAX, CS_OPT_SYNTAX_ATT);
}
if (detail_flag) {
cs_option(handle, CS_OPT_DETAIL, CS_OPT_ON);
}
count = cs_disasm(handle, assembly, size, address, 0, &insn);
if (count > 0) {
size_t i;
for (i = 0; i < count; i++) {
int j;
printf("%"PRIx64" ", insn[i].address);
for (j = 0; j < insn[i].size; j++) {
if (j > 0)
putchar(' ');
printf("%02x", insn[i].bytes[j]);
}
// X86 instruction size is variable.
// align assembly instruction after the opcode
if (arch == CS_ARCH_X86) {
for (; j < 16; j++) {
printf(" ");
}
}
printf(" %s\t%s\n", insn[i].mnemonic, insn[i].op_str);
if (detail_flag) {
if (arch == CS_ARCH_X86) {
print_insn_detail_x86(handle, md, &insn[i]);
}
if (arch == CS_ARCH_ARM) {
print_insn_detail_arm(handle, &insn[i]);
}
if (arch == CS_ARCH_ARM64) {
print_insn_detail_arm64(handle,&insn[i]);
}
if (arch == CS_ARCH_MIPS) {
print_insn_detail_mips(handle, &insn[i]);
}
if (arch == CS_ARCH_PPC) {
print_insn_detail_ppc(handle, &insn[i]);
}
if (arch == CS_ARCH_SPARC) {
print_insn_detail_sparc(handle, &insn[i]);
}
if (arch == CS_ARCH_SYSZ) {
print_insn_detail_sysz(handle, &insn[i]);
}
if (arch == CS_ARCH_XCORE) {
print_insn_detail_xcore(handle, &insn[i]);
}
if (insn[i].detail->groups_count) {
int j;
printf("\tGroups: ");
for(j = 0; j < insn[i].detail->groups_count; j++) {
printf("%s ", cs_group_name(handle, insn[i].detail->groups[j]));
}
printf("\n");
}
printf("\n");
}
}
cs_free(insn, count);
} else {
printf("ERROR: invalid assembly code\n");
return(-4);
}
cs_close(&handle);
return 0;
}