capstone/arch/AArch64/AArch64BaseInfo.h
2019-04-10 14:17:08 +08:00

527 lines
18 KiB
C++

//===-- AArch64BaseInfo.h - Top level definitions for AArch64- --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains small standalone helper functions and enum definitions for
// the AArch64 target useful for the compiler back-end and the MC libraries.
// As such, it deliberately does not include references to LLVM core
// code gen types, passes, etc..
//
//===----------------------------------------------------------------------===//
/* Capstone Disassembly Engine */
/* By Nguyen Anh Quynh <aquynh@gmail.com>, 2013-2019 */
#ifndef CS_LLVM_AARCH64_BASEINFO_H
#define CS_LLVM_AARCH64_BASEINFO_H
#include <ctype.h>
#include <string.h>
#include "AArch64Mapping.h"
#ifndef __cplusplus
#if defined (WIN32) || defined (WIN64) || defined (_WIN32) || defined (_WIN64)
#define inline /* inline */
#endif
#endif
inline static unsigned getWRegFromXReg(unsigned Reg)
{
switch (Reg) {
default: break;
case ARM64_REG_X0: return ARM64_REG_W0;
case ARM64_REG_X1: return ARM64_REG_W1;
case ARM64_REG_X2: return ARM64_REG_W2;
case ARM64_REG_X3: return ARM64_REG_W3;
case ARM64_REG_X4: return ARM64_REG_W4;
case ARM64_REG_X5: return ARM64_REG_W5;
case ARM64_REG_X6: return ARM64_REG_W6;
case ARM64_REG_X7: return ARM64_REG_W7;
case ARM64_REG_X8: return ARM64_REG_W8;
case ARM64_REG_X9: return ARM64_REG_W9;
case ARM64_REG_X10: return ARM64_REG_W10;
case ARM64_REG_X11: return ARM64_REG_W11;
case ARM64_REG_X12: return ARM64_REG_W12;
case ARM64_REG_X13: return ARM64_REG_W13;
case ARM64_REG_X14: return ARM64_REG_W14;
case ARM64_REG_X15: return ARM64_REG_W15;
case ARM64_REG_X16: return ARM64_REG_W16;
case ARM64_REG_X17: return ARM64_REG_W17;
case ARM64_REG_X18: return ARM64_REG_W18;
case ARM64_REG_X19: return ARM64_REG_W19;
case ARM64_REG_X20: return ARM64_REG_W20;
case ARM64_REG_X21: return ARM64_REG_W21;
case ARM64_REG_X22: return ARM64_REG_W22;
case ARM64_REG_X23: return ARM64_REG_W23;
case ARM64_REG_X24: return ARM64_REG_W24;
case ARM64_REG_X25: return ARM64_REG_W25;
case ARM64_REG_X26: return ARM64_REG_W26;
case ARM64_REG_X27: return ARM64_REG_W27;
case ARM64_REG_X28: return ARM64_REG_W28;
case ARM64_REG_FP: return ARM64_REG_W29;
case ARM64_REG_LR: return ARM64_REG_W30;
case ARM64_REG_SP: return ARM64_REG_WSP;
case ARM64_REG_XZR: return ARM64_REG_WZR;
}
// For anything else, return it unchanged.
return Reg;
}
inline static unsigned getXRegFromWReg(unsigned Reg)
{
switch (Reg) {
case ARM64_REG_W0: return ARM64_REG_X0;
case ARM64_REG_W1: return ARM64_REG_X1;
case ARM64_REG_W2: return ARM64_REG_X2;
case ARM64_REG_W3: return ARM64_REG_X3;
case ARM64_REG_W4: return ARM64_REG_X4;
case ARM64_REG_W5: return ARM64_REG_X5;
case ARM64_REG_W6: return ARM64_REG_X6;
case ARM64_REG_W7: return ARM64_REG_X7;
case ARM64_REG_W8: return ARM64_REG_X8;
case ARM64_REG_W9: return ARM64_REG_X9;
case ARM64_REG_W10: return ARM64_REG_X10;
case ARM64_REG_W11: return ARM64_REG_X11;
case ARM64_REG_W12: return ARM64_REG_X12;
case ARM64_REG_W13: return ARM64_REG_X13;
case ARM64_REG_W14: return ARM64_REG_X14;
case ARM64_REG_W15: return ARM64_REG_X15;
case ARM64_REG_W16: return ARM64_REG_X16;
case ARM64_REG_W17: return ARM64_REG_X17;
case ARM64_REG_W18: return ARM64_REG_X18;
case ARM64_REG_W19: return ARM64_REG_X19;
case ARM64_REG_W20: return ARM64_REG_X20;
case ARM64_REG_W21: return ARM64_REG_X21;
case ARM64_REG_W22: return ARM64_REG_X22;
case ARM64_REG_W23: return ARM64_REG_X23;
case ARM64_REG_W24: return ARM64_REG_X24;
case ARM64_REG_W25: return ARM64_REG_X25;
case ARM64_REG_W26: return ARM64_REG_X26;
case ARM64_REG_W27: return ARM64_REG_X27;
case ARM64_REG_W28: return ARM64_REG_X28;
case ARM64_REG_W29: return ARM64_REG_FP;
case ARM64_REG_W30: return ARM64_REG_LR;
case ARM64_REG_WSP: return ARM64_REG_SP;
case ARM64_REG_WZR: return ARM64_REG_XZR;
}
// For anything else, return it unchanged.
return Reg;
}
inline static unsigned getBRegFromDReg(unsigned Reg)
{
switch (Reg) {
case ARM64_REG_D0: return ARM64_REG_B0;
case ARM64_REG_D1: return ARM64_REG_B1;
case ARM64_REG_D2: return ARM64_REG_B2;
case ARM64_REG_D3: return ARM64_REG_B3;
case ARM64_REG_D4: return ARM64_REG_B4;
case ARM64_REG_D5: return ARM64_REG_B5;
case ARM64_REG_D6: return ARM64_REG_B6;
case ARM64_REG_D7: return ARM64_REG_B7;
case ARM64_REG_D8: return ARM64_REG_B8;
case ARM64_REG_D9: return ARM64_REG_B9;
case ARM64_REG_D10: return ARM64_REG_B10;
case ARM64_REG_D11: return ARM64_REG_B11;
case ARM64_REG_D12: return ARM64_REG_B12;
case ARM64_REG_D13: return ARM64_REG_B13;
case ARM64_REG_D14: return ARM64_REG_B14;
case ARM64_REG_D15: return ARM64_REG_B15;
case ARM64_REG_D16: return ARM64_REG_B16;
case ARM64_REG_D17: return ARM64_REG_B17;
case ARM64_REG_D18: return ARM64_REG_B18;
case ARM64_REG_D19: return ARM64_REG_B19;
case ARM64_REG_D20: return ARM64_REG_B20;
case ARM64_REG_D21: return ARM64_REG_B21;
case ARM64_REG_D22: return ARM64_REG_B22;
case ARM64_REG_D23: return ARM64_REG_B23;
case ARM64_REG_D24: return ARM64_REG_B24;
case ARM64_REG_D25: return ARM64_REG_B25;
case ARM64_REG_D26: return ARM64_REG_B26;
case ARM64_REG_D27: return ARM64_REG_B27;
case ARM64_REG_D28: return ARM64_REG_B28;
case ARM64_REG_D29: return ARM64_REG_B29;
case ARM64_REG_D30: return ARM64_REG_B30;
case ARM64_REG_D31: return ARM64_REG_B31;
}
// For anything else, return it unchanged.
return Reg;
}
inline static unsigned getDRegFromBReg(unsigned Reg)
{
switch (Reg) {
case ARM64_REG_B0: return ARM64_REG_D0;
case ARM64_REG_B1: return ARM64_REG_D1;
case ARM64_REG_B2: return ARM64_REG_D2;
case ARM64_REG_B3: return ARM64_REG_D3;
case ARM64_REG_B4: return ARM64_REG_D4;
case ARM64_REG_B5: return ARM64_REG_D5;
case ARM64_REG_B6: return ARM64_REG_D6;
case ARM64_REG_B7: return ARM64_REG_D7;
case ARM64_REG_B8: return ARM64_REG_D8;
case ARM64_REG_B9: return ARM64_REG_D9;
case ARM64_REG_B10: return ARM64_REG_D10;
case ARM64_REG_B11: return ARM64_REG_D11;
case ARM64_REG_B12: return ARM64_REG_D12;
case ARM64_REG_B13: return ARM64_REG_D13;
case ARM64_REG_B14: return ARM64_REG_D14;
case ARM64_REG_B15: return ARM64_REG_D15;
case ARM64_REG_B16: return ARM64_REG_D16;
case ARM64_REG_B17: return ARM64_REG_D17;
case ARM64_REG_B18: return ARM64_REG_D18;
case ARM64_REG_B19: return ARM64_REG_D19;
case ARM64_REG_B20: return ARM64_REG_D20;
case ARM64_REG_B21: return ARM64_REG_D21;
case ARM64_REG_B22: return ARM64_REG_D22;
case ARM64_REG_B23: return ARM64_REG_D23;
case ARM64_REG_B24: return ARM64_REG_D24;
case ARM64_REG_B25: return ARM64_REG_D25;
case ARM64_REG_B26: return ARM64_REG_D26;
case ARM64_REG_B27: return ARM64_REG_D27;
case ARM64_REG_B28: return ARM64_REG_D28;
case ARM64_REG_B29: return ARM64_REG_D29;
case ARM64_REG_B30: return ARM64_REG_D30;
case ARM64_REG_B31: return ARM64_REG_D31;
}
// For anything else, return it unchanged.
return Reg;
}
// // Enums corresponding to AArch64 condition codes
// The CondCodes constants map directly to the 4-bit encoding of the
// condition field for predicated instructions.
typedef enum AArch64CC_CondCode { // Meaning (integer) Meaning (floating-point)
AArch64CC_EQ = 0x0, // Equal Equal
AArch64CC_NE = 0x1, // Not equal Not equal, or unordered
AArch64CC_HS = 0x2, // Unsigned higher or same >, ==, or unordered
AArch64CC_LO = 0x3, // Unsigned lower Less than
AArch64CC_MI = 0x4, // Minus, negative Less than
AArch64CC_PL = 0x5, // Plus, positive or zero >, ==, or unordered
AArch64CC_VS = 0x6, // Overflow Unordered
AArch64CC_VC = 0x7, // No overflow Not unordered
AArch64CC_HI = 0x8, // Unsigned higher Greater than, or unordered
AArch64CC_LS = 0x9, // Unsigned lower or same Less than or equal
AArch64CC_GE = 0xa, // Greater than or equal Greater than or equal
AArch64CC_LT = 0xb, // Less than Less than, or unordered
AArch64CC_GT = 0xc, // Greater than Greater than
AArch64CC_LE = 0xd, // Less than or equal <, ==, or unordered
AArch64CC_AL = 0xe, // Always (unconditional) Always (unconditional)
AArch64CC_NV = 0xf, // Always (unconditional) Always (unconditional)
// Note the NV exists purely to disassemble 0b1111. Execution is "always".
AArch64CC_Invalid
} AArch64CC_CondCode;
inline static AArch64CC_CondCode getInvertedCondCode(AArch64CC_CondCode Code)
{
// To reverse a condition it's necessary to only invert the low bit:
return (AArch64CC_CondCode)((unsigned)Code ^ 0x1);
}
inline static const char *getCondCodeName(AArch64CC_CondCode CC)
{
switch (CC) {
default: return NULL; // never reach
case AArch64CC_EQ: return "eq";
case AArch64CC_NE: return "ne";
case AArch64CC_HS: return "hs";
case AArch64CC_LO: return "lo";
case AArch64CC_MI: return "mi";
case AArch64CC_PL: return "pl";
case AArch64CC_VS: return "vs";
case AArch64CC_VC: return "vc";
case AArch64CC_HI: return "hi";
case AArch64CC_LS: return "ls";
case AArch64CC_GE: return "ge";
case AArch64CC_LT: return "lt";
case AArch64CC_GT: return "gt";
case AArch64CC_LE: return "le";
case AArch64CC_AL: return "al";
case AArch64CC_NV: return "nv";
}
}
/// Given a condition code, return NZCV flags that would satisfy that condition.
/// The flag bits are in the format expected by the ccmp instructions.
/// Note that many different flag settings can satisfy a given condition code,
/// this function just returns one of them.
inline static unsigned getNZCVToSatisfyCondCode(AArch64CC_CondCode Code)
{
// NZCV flags encoded as expected by ccmp instructions, ARMv8 ISA 5.5.7.
enum { N = 8, Z = 4, C = 2, V = 1 };
switch (Code) {
default: // llvm_unreachable("Unknown condition code");
case AArch64CC_EQ: return Z; // Z == 1
case AArch64CC_NE: return 0; // Z == 0
case AArch64CC_HS: return C; // C == 1
case AArch64CC_LO: return 0; // C == 0
case AArch64CC_MI: return N; // N == 1
case AArch64CC_PL: return 0; // N == 0
case AArch64CC_VS: return V; // V == 1
case AArch64CC_VC: return 0; // V == 0
case AArch64CC_HI: return C; // C == 1 && Z == 0
case AArch64CC_LS: return 0; // C == 0 || Z == 1
case AArch64CC_GE: return 0; // N == V
case AArch64CC_LT: return N; // N != V
case AArch64CC_GT: return 0; // Z == 0 && N == V
case AArch64CC_LE: return Z; // Z == 1 || N != V
}
}
/// Instances of this class can perform bidirectional mapping from random
/// identifier strings to operand encodings. For example "MSR" takes a named
/// system-register which must be encoded somehow and decoded for printing. This
/// central location means that the information for those transformations is not
/// duplicated and remains in sync.
///
/// FIXME: currently the algorithm is a completely unoptimised linear
/// search. Obviously this could be improved, but we would probably want to work
/// out just how often these instructions are emitted before working on it. It
/// might even be optimal to just reorder the tables for the common instructions
/// rather than changing the algorithm.
typedef struct A64NamedImmMapper_Mapping {
const char *Name;
uint32_t Value;
} A64NamedImmMapper_Mapping;
typedef struct A64NamedImmMapper {
const A64NamedImmMapper_Mapping *Pairs;
size_t NumPairs;
uint32_t TooBigImm;
} A64NamedImmMapper;
typedef struct A64SysRegMapper {
const A64NamedImmMapper_Mapping *SysRegPairs;
const A64NamedImmMapper_Mapping *InstPairs;
size_t NumInstPairs;
} A64SysRegMapper;
typedef enum A64SE_ShiftExtSpecifiers {
A64SE_Invalid = -1,
A64SE_LSL,
A64SE_MSL,
A64SE_LSR,
A64SE_ASR,
A64SE_ROR,
A64SE_UXTB,
A64SE_UXTH,
A64SE_UXTW,
A64SE_UXTX,
A64SE_SXTB,
A64SE_SXTH,
A64SE_SXTW,
A64SE_SXTX
} A64SE_ShiftExtSpecifiers;
typedef enum A64Layout_VectorLayout {
A64Layout_Invalid = -1,
A64Layout_VL_8B,
A64Layout_VL_4H,
A64Layout_VL_2S,
A64Layout_VL_1D,
A64Layout_VL_16B,
A64Layout_VL_8H,
A64Layout_VL_4S,
A64Layout_VL_2D,
// Bare layout for the 128-bit vector
// (only show ".b", ".h", ".s", ".d" without vector number)
A64Layout_VL_B,
A64Layout_VL_H,
A64Layout_VL_S,
A64Layout_VL_D
} A64Layout_VectorLayout;
inline static const char *AArch64VectorLayoutToString(A64Layout_VectorLayout Layout)
{
switch (Layout) {
default: return NULL; // never reach
case A64Layout_VL_8B: return ".8b";
case A64Layout_VL_4H: return ".4h";
case A64Layout_VL_2S: return ".2s";
case A64Layout_VL_1D: return ".1d";
case A64Layout_VL_16B: return ".16b";
case A64Layout_VL_8H: return ".8h";
case A64Layout_VL_4S: return ".4s";
case A64Layout_VL_2D: return ".2d";
case A64Layout_VL_B: return ".b";
case A64Layout_VL_H: return ".h";
case A64Layout_VL_S: return ".s";
case A64Layout_VL_D: return ".d";
}
}
inline static A64Layout_VectorLayout AArch64StringToVectorLayout(char *LayoutStr)
{
if (!strcmp(LayoutStr, ".8b"))
return A64Layout_VL_8B;
if (!strcmp(LayoutStr, ".4h"))
return A64Layout_VL_4H;
if (!strcmp(LayoutStr, ".2s"))
return A64Layout_VL_2S;
if (!strcmp(LayoutStr, ".1d"))
return A64Layout_VL_1D;
if (!strcmp(LayoutStr, ".16b"))
return A64Layout_VL_16B;
if (!strcmp(LayoutStr, ".8h"))
return A64Layout_VL_8H;
if (!strcmp(LayoutStr, ".4s"))
return A64Layout_VL_4S;
if (!strcmp(LayoutStr, ".2d"))
return A64Layout_VL_2D;
if (!strcmp(LayoutStr, ".b"))
return A64Layout_VL_B;
if (!strcmp(LayoutStr, ".s"))
return A64Layout_VL_S;
if (!strcmp(LayoutStr, ".d"))
return A64Layout_VL_D;
return A64Layout_Invalid;
}
/// Target Operand Flag enum.
enum TOF {
//===------------------------------------------------------------------===//
// AArch64 Specific MachineOperand flags.
MO_NO_FLAG,
MO_FRAGMENT = 0xf,
/// MO_PAGE - A symbol operand with this flag represents the pc-relative
/// offset of the 4K page containing the symbol. This is used with the
/// ADRP instruction.
MO_PAGE = 1,
/// MO_PAGEOFF - A symbol operand with this flag represents the offset of
/// that symbol within a 4K page. This offset is added to the page address
/// to produce the complete address.
MO_PAGEOFF = 2,
/// MO_G3 - A symbol operand with this flag (granule 3) represents the high
/// 16-bits of a 64-bit address, used in a MOVZ or MOVK instruction
MO_G3 = 3,
/// MO_G2 - A symbol operand with this flag (granule 2) represents the bits
/// 32-47 of a 64-bit address, used in a MOVZ or MOVK instruction
MO_G2 = 4,
/// MO_G1 - A symbol operand with this flag (granule 1) represents the bits
/// 16-31 of a 64-bit address, used in a MOVZ or MOVK instruction
MO_G1 = 5,
/// MO_G0 - A symbol operand with this flag (granule 0) represents the bits
/// 0-15 of a 64-bit address, used in a MOVZ or MOVK instruction
MO_G0 = 6,
/// MO_HI12 - This flag indicates that a symbol operand represents the bits
/// 13-24 of a 64-bit address, used in a arithmetic immediate-shifted-left-
/// by-12-bits instruction.
MO_HI12 = 7,
/// MO_GOT - This flag indicates that a symbol operand represents the
/// address of the GOT entry for the symbol, rather than the address of
/// the symbol itself.
MO_GOT = 0x10,
/// MO_NC - Indicates whether the linker is expected to check the symbol
/// reference for overflow. For example in an ADRP/ADD pair of relocations
/// the ADRP usually does check, but not the ADD.
MO_NC = 0x20,
/// MO_TLS - Indicates that the operand being accessed is some kind of
/// thread-local symbol. On Darwin, only one type of thread-local access
/// exists (pre linker-relaxation), but on ELF the TLSModel used for the
/// referee will affect interpretation.
MO_TLS = 0x40,
/// MO_DLLIMPORT - On a symbol operand, this represents that the reference
/// to the symbol is for an import stub. This is used for DLL import
/// storage class indication on Windows.
MO_DLLIMPORT = 0x80,
};
typedef struct SysAlias {
const char *Name;
uint16_t Encoding;
} SysAlias;
#define AT SysAlias
#define DB SysAlias
#define DC SysAlias
#define SVEPRFM SysAlias
#define PRFM SysAlias
#define PSB SysAlias
#define ISB SysAlias
#define TSB SysAlias
#define PState SysAlias
#define SVEPREDPAT SysAlias
typedef struct SysAliasReg {
const char *Name;
uint16_t Encoding;
bool NeedsReg;
} SysAliasReg;
#define IC SysAliasReg
#define TLBI SysAliasReg
typedef struct SysAliasSysReg {
const char *Name;
uint16_t Encoding;
bool Readable;
bool Writeable;
} SysAliasSysReg;
#define SysReg SysAliasSysReg
typedef struct ExactFPImm {
const char *Name;
int Enum;
const char *Repr;
} ExactFPImm;
const AT *lookupATByEncoding(uint16_t Encoding);
const DB *lookupDBByEncoding(uint16_t Encoding);
const DC *lookupDCByEncoding(uint16_t Encoding);
const IC *lookupICByEncoding(uint16_t Encoding);
const TLBI *lookupTLBIByEncoding(uint16_t Encoding);
const SVEPRFM *lookupSVEPRFMByEncoding(uint16_t Encoding);
const PRFM *lookupPRFMByEncoding(uint16_t Encoding);
const PSB *AArch64PSBHint_lookupPSBByEncoding(uint16_t Encoding);
const ISB *lookupISBByEncoding(uint16_t Encoding);
const TSB *lookupTSBByEncoding(uint16_t Encoding);
const SysReg *lookupSysRegByEncoding(uint16_t Encoding);
const PState *lookupPStateByEncoding(uint16_t Encoding);
const SVEPREDPAT *lookupSVEPREDPATByEncoding(uint16_t Encoding);
const ExactFPImm *lookupExactFPImmByEnum(uint16_t Encoding);
// NOTE: result must be 128 bytes to contain the result
void AArch64SysReg_genericRegisterString(uint32_t Bits, char *result);
#include "AArch64GenSystemOperands_enum.inc"
#endif