capstone/Mapping.c
Rot127 0c90fe13f5
Replace assert with CS_ASSERT in modules (#2478)
* Replace asserts with macros for AArch64, Alpha, LoongArch, Mips, SystemZ inc files.

* Add missing clearing of MCInst

* Ensure correct dir name is used.

* Replace asserts in inc files for PPC, ARM, TriCore

* Replace all asserts in modules with CS_ASSERT.

Also enable the CS_ASSERTs if CMAKE_BUILD_TYPE=Debug

* Formatting
2024-09-25 14:58:06 +08:00

457 lines
12 KiB
C

/* Capstone Disassembly Engine */
/* By Nguyen Anh Quynh <aquynh@gmail.com>, 2013-2019 */
/* Rot127 <unisono@quyllur.org>, 2022-2023 */
#include "Mapping.h"
#include "capstone/capstone.h"
#include "utils.h"
// create a cache for fast id lookup
static unsigned short *make_id2insn(const insn_map *insns, unsigned int size)
{
// NOTE: assume that the max id is always put at the end of insns array
unsigned short max_id = insns[size - 1].id;
unsigned int i;
unsigned short *cache =
(unsigned short *)cs_mem_calloc(max_id + 1, sizeof(*cache));
for (i = 1; i < size; i++)
cache[insns[i].id] = i;
return cache;
}
// look for @id in @insns, given its size in @max. first time call will update
// @cache. return 0 if not found
unsigned short insn_find(const insn_map *insns, unsigned int max,
unsigned int id, unsigned short **cache)
{
if (id > insns[max - 1].id)
return 0;
if (*cache == NULL)
*cache = make_id2insn(insns, max);
return (*cache)[id];
}
// Gives the id for the given @name if it is saved in @map.
// Returns the id or -1 if not found.
int name2id(const name_map *map, int max, const char *name)
{
int i;
for (i = 0; i < max; i++) {
if (!strcmp(map[i].name, name)) {
return map[i].id;
}
}
// nothing match
return -1;
}
// Gives the name for the given @id if it is saved in @map.
// Returns the name or NULL if not found.
const char *id2name(const name_map *map, int max, const unsigned int id)
{
int i;
for (i = 0; i < max; i++) {
if (map[i].id == id) {
return map[i].name;
}
}
// nothing match
return NULL;
}
/// Adds a register to the implicit write register list.
/// It will not add the same register twice.
void map_add_implicit_write(MCInst *MI, uint32_t Reg)
{
if (!MI->flat_insn->detail)
return;
uint16_t *regs_write = MI->flat_insn->detail->regs_write;
for (int i = 0; i < MAX_IMPL_W_REGS; ++i) {
if (i == MI->flat_insn->detail->regs_write_count) {
regs_write[i] = Reg;
MI->flat_insn->detail->regs_write_count++;
return;
}
if (regs_write[i] == Reg)
return;
}
}
/// Adds a register to the implicit read register list.
/// It will not add the same register twice.
void map_add_implicit_read(MCInst *MI, uint32_t Reg)
{
if (!MI->flat_insn->detail)
return;
uint16_t *regs_read = MI->flat_insn->detail->regs_read;
for (int i = 0; i < MAX_IMPL_R_REGS; ++i) {
if (i == MI->flat_insn->detail->regs_read_count) {
regs_read[i] = Reg;
MI->flat_insn->detail->regs_read_count++;
return;
}
if (regs_read[i] == Reg)
return;
}
}
/// Removes a register from the implicit write register list.
void map_remove_implicit_write(MCInst *MI, uint32_t Reg)
{
if (!MI->flat_insn->detail)
return;
uint16_t *regs_write = MI->flat_insn->detail->regs_write;
bool shorten_list = false;
for (int i = 0; i < MAX_IMPL_W_REGS; ++i) {
if (shorten_list) {
regs_write[i - 1] = regs_write[i];
}
if (i >= MI->flat_insn->detail->regs_write_count)
return;
if (regs_write[i] == Reg) {
MI->flat_insn->detail->regs_write_count--;
// The register should exist only once in the list.
CS_ASSERT_RET(!shorten_list);
shorten_list = true;
}
}
}
/// Copies the implicit read registers of @imap to @MI->flat_insn.
/// Already present registers will be preserved.
void map_implicit_reads(MCInst *MI, const insn_map *imap)
{
#ifndef CAPSTONE_DIET
if (!MI->flat_insn->detail)
return;
cs_detail *detail = MI->flat_insn->detail;
unsigned Opcode = MCInst_getOpcode(MI);
unsigned i = 0;
uint16_t reg = imap[Opcode].regs_use[i];
while (reg != 0) {
if (i >= MAX_IMPL_R_REGS ||
detail->regs_read_count >= MAX_IMPL_R_REGS) {
printf("ERROR: Too many implicit read register defined in "
"instruction mapping.\n");
return;
}
detail->regs_read[detail->regs_read_count++] = reg;
if (i + 1 < MAX_IMPL_R_REGS) {
// Select next one
reg = imap[Opcode].regs_use[++i];
}
}
#endif // CAPSTONE_DIET
}
/// Copies the implicit write registers of @imap to @MI->flat_insn.
/// Already present registers will be preserved.
void map_implicit_writes(MCInst *MI, const insn_map *imap)
{
#ifndef CAPSTONE_DIET
if (!MI->flat_insn->detail)
return;
cs_detail *detail = MI->flat_insn->detail;
unsigned Opcode = MCInst_getOpcode(MI);
unsigned i = 0;
uint16_t reg = imap[Opcode].regs_mod[i];
while (reg != 0) {
if (i >= MAX_IMPL_W_REGS ||
detail->regs_write_count >= MAX_IMPL_W_REGS) {
printf("ERROR: Too many implicit write register defined in "
"instruction mapping.\n");
return;
}
detail->regs_write[detail->regs_write_count++] = reg;
if (i + 1 < MAX_IMPL_W_REGS) {
// Select next one
reg = imap[Opcode].regs_mod[++i];
}
}
#endif // CAPSTONE_DIET
}
/// Adds a given group to @MI->flat_insn.
/// A group is never added twice.
void add_group(MCInst *MI, unsigned /* arch_group */ group)
{
#ifndef CAPSTONE_DIET
if (!MI->flat_insn->detail)
return;
cs_detail *detail = MI->flat_insn->detail;
if (detail->groups_count >= MAX_NUM_GROUPS) {
printf("ERROR: Too many groups defined.\n");
return;
}
for (int i = 0; i < detail->groups_count; ++i) {
if (detail->groups[i] == group) {
return;
}
}
detail->groups[detail->groups_count++] = group;
#endif // CAPSTONE_DIET
}
/// Copies the groups from @imap to @MI->flat_insn.
/// Already present groups will be preserved.
void map_groups(MCInst *MI, const insn_map *imap)
{
#ifndef CAPSTONE_DIET
if (!MI->flat_insn->detail)
return;
cs_detail *detail = MI->flat_insn->detail;
unsigned Opcode = MCInst_getOpcode(MI);
unsigned i = 0;
uint16_t group = imap[Opcode].groups[i];
while (group != 0) {
if (detail->groups_count >= MAX_NUM_GROUPS) {
printf("ERROR: Too many groups defined in instruction mapping.\n");
return;
}
detail->groups[detail->groups_count++] = group;
group = imap[Opcode].groups[++i];
}
#endif // CAPSTONE_DIET
}
/// Returns the pointer to the supllementary information in
/// the instruction mapping table @imap or NULL in case of failure.
const void *map_get_suppl_info(MCInst *MI, const insn_map *imap)
{
#ifndef CAPSTONE_DIET
if (!MI->flat_insn->detail)
return NULL;
unsigned Opcode = MCInst_getOpcode(MI);
return &imap[Opcode].suppl_info;
#else
return NULL;
#endif // CAPSTONE_DIET
}
// Search for the CS instruction id for the given @MC_Opcode in @imap.
// return -1 if none is found.
unsigned int find_cs_id(unsigned MC_Opcode, const insn_map *imap,
unsigned imap_size)
{
// binary searching since the IDs are sorted in order
unsigned int left, right, m;
unsigned int max = imap_size;
right = max - 1;
if (MC_Opcode < imap[0].id || MC_Opcode > imap[right].id)
// not found
return -1;
left = 0;
while (left <= right) {
m = (left + right) / 2;
if (MC_Opcode == imap[m].id) {
return m;
}
if (MC_Opcode < imap[m].id)
right = m - 1;
else
left = m + 1;
}
return -1;
}
/// Sets the Capstone instruction id which maps to the @MI opcode.
/// If no mapping is found the function returns and prints an error.
void map_cs_id(MCInst *MI, const insn_map *imap, unsigned int imap_size)
{
unsigned int i = find_cs_id(MCInst_getOpcode(MI), imap, imap_size);
if (i != -1) {
MI->flat_insn->id = imap[i].mapid;
return;
}
printf("ERROR: Could not find CS id for MCInst opcode: %d\n",
MCInst_getOpcode(MI));
return;
}
/// Returns the operand type information from the
/// mapping table for instruction operands.
/// Only usable by `auto-sync` archs!
const cs_op_type mapping_get_op_type(MCInst *MI, unsigned OpNum,
const map_insn_ops *insn_ops_map,
size_t map_size)
{
assert(MI);
assert(MI->Opcode < map_size);
assert(OpNum < sizeof(insn_ops_map[MI->Opcode].ops) /
sizeof(insn_ops_map[MI->Opcode].ops[0]));
return insn_ops_map[MI->Opcode].ops[OpNum].type;
}
/// Returns the operand access flags from the
/// mapping table for instruction operands.
/// Only usable by `auto-sync` archs!
const cs_ac_type mapping_get_op_access(MCInst *MI, unsigned OpNum,
const map_insn_ops *insn_ops_map,
size_t map_size)
{
assert(MI);
assert(MI->Opcode < map_size);
assert(OpNum < sizeof(insn_ops_map[MI->Opcode].ops) /
sizeof(insn_ops_map[MI->Opcode].ops[0]));
cs_ac_type access = insn_ops_map[MI->Opcode].ops[OpNum].access;
if (MCInst_opIsTied(MI, OpNum) || MCInst_opIsTying(MI, OpNum))
access |= (access == CS_AC_READ) ? CS_AC_WRITE : CS_AC_READ;
return access;
}
/// Returns the operand at detail->arch.operands[op_count + offset]
/// Or NULL if detail is not set.
#define DEFINE_get_detail_op(arch, ARCH) \
cs_##arch##_op *ARCH##_get_detail_op(MCInst *MI, int offset) \
{ \
if (!MI->flat_insn->detail) \
return NULL; \
int OpIdx = MI->flat_insn->detail->arch.op_count + offset; \
assert(OpIdx >= 0 && OpIdx < MAX_MC_OPS); \
return &MI->flat_insn->detail->arch.operands[OpIdx]; \
}
DEFINE_get_detail_op(arm, ARM);
DEFINE_get_detail_op(ppc, PPC);
DEFINE_get_detail_op(tricore, TriCore);
DEFINE_get_detail_op(aarch64, AArch64);
DEFINE_get_detail_op(alpha, Alpha);
DEFINE_get_detail_op(hppa, HPPA);
DEFINE_get_detail_op(loongarch, LoongArch);
DEFINE_get_detail_op(mips, Mips);
DEFINE_get_detail_op(riscv, RISCV);
DEFINE_get_detail_op(systemz, SystemZ);
/// Returns true if for this architecture the
/// alias operands should be filled.
/// TODO: Replace this with a proper option.
/// So it can be toggled between disas() calls.
bool map_use_alias_details(const MCInst *MI) {
assert(MI);
return (MI->csh->detail_opt & CS_OPT_ON) && !(MI->csh->detail_opt & CS_OPT_DETAIL_REAL);
}
/// Sets the setDetailOps flag to @p Val.
/// If detail == NULLit refuses to set the flag to true.
void map_set_fill_detail_ops(MCInst *MI, bool Val) {
CS_ASSERT_RET(MI);
if (!detail_is_set(MI)) {
MI->fillDetailOps = false;
return;
}
MI->fillDetailOps = Val;
}
/// Sets the instruction alias flags and the given alias id.
void map_set_is_alias_insn(MCInst *MI, bool Val, uint64_t Alias) {
CS_ASSERT_RET(MI);
MI->isAliasInstr = Val;
MI->flat_insn->is_alias = Val;
MI->flat_insn->alias_id = Alias;
}
static inline bool char_ends_mnem(const char c, cs_arch arch) {
switch (arch) {
default:
return (!c || c == ' ' || c == '\t' || c == '.');
case CS_ARCH_PPC:
return (!c || c == ' ' || c == '\t');
}
}
/// Sets an alternative id for some instruction.
/// Or -1 if it fails.
/// You must add (<ARCH>_INS_ALIAS_BEGIN + 1) to the id to get the real id.
void map_set_alias_id(MCInst *MI, const SStream *O, const name_map *alias_mnem_id_map, int map_size) {
if (!MCInst_isAlias(MI))
return;
char alias_mnem[16] = { 0 };
int i = 0, j = 0;
const char *asm_str_buf = O->buffer;
// Skip spaces and tabs
while (is_blank_char(asm_str_buf[i])) {
if (!asm_str_buf[i]) {
MI->flat_insn->alias_id = -1;
return;
}
++i;
}
for (; j < sizeof(alias_mnem) - 1; ++j, ++i) {
if (char_ends_mnem(asm_str_buf[i], MI->csh->arch))
break;
alias_mnem[j] = asm_str_buf[i];
}
MI->flat_insn->alias_id = name2id(alias_mnem_id_map, map_size, alias_mnem);
}
/// Does a binary search over the given map and searches for @id.
/// If @id exists in @map, it sets @found to true and returns
/// the value for the @id.
/// Otherwise, @found is set to false and it returns UINT64_MAX.
///
/// Of course it assumes the map is sorted.
uint64_t enum_map_bin_search(const cs_enum_id_map *map, size_t map_len,
const char *id, bool *found)
{
size_t l = 0;
size_t r = map_len;
size_t id_len = strlen(id);
while (l <= r) {
size_t m = (l + r) / 2;
size_t j = 0;
size_t i = 0;
size_t entry_len = strlen(map[m].str);
while (j < entry_len && i < id_len && id[i] == map[m].str[j]) {
++j, ++i;
}
if (i == id_len && j == entry_len) {
*found = true;
return map[m].val;
}
if (id[i] < map[m].str[j]) {
r = m - 1;
} else if (id[i] > map[m].str[j]) {
l = m + 1;
}
if ((m == 0 && id[i] < map[m].str[j]) || (l + r) / 2 >= map_len) {
// Break before we go out of bounds.
break;
}
}
*found = false;
return UINT64_MAX;
}