capstone/cs.c
billow c4a9694d9e - add tricore to python binding
- try fix `test_corpus.py`
2023-04-14 00:34:59 +08:00

1661 lines
40 KiB
C

/* Capstone Disassembly Engine */
/* By Nguyen Anh Quynh <aquynh@gmail.com>, 2013-2019 */
#if defined (WIN32) || defined (WIN64) || defined (_WIN32) || defined (_WIN64)
#pragma warning(disable:4996) // disable MSVC's warning on strcpy()
#pragma warning(disable:28719) // disable MSVC's warning on strcpy()
#endif
#if defined(CAPSTONE_HAS_OSXKERNEL)
#include <Availability.h>
#include <libkern/libkern.h>
#else
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#endif
#include <string.h>
#include <capstone/capstone.h>
#include "utils.h"
#include "MCRegisterInfo.h"
#if defined(_KERNEL_MODE)
#include "windows\winkernel_mm.h"
#endif
// Issue #681: Windows kernel does not support formatting float point
#if defined(_KERNEL_MODE) && !defined(CAPSTONE_DIET)
#if defined(CAPSTONE_HAS_ARM) || defined(CAPSTONE_HAS_ARM64) || defined(CAPSTONE_HAS_M68K)
#define CAPSTONE_STR_INTERNAL(x) #x
#define CAPSTONE_STR(x) CAPSTONE_STR_INTERNAL(x)
#define CAPSTONE_MSVC_WRANING_PREFIX __FILE__ "("CAPSTONE_STR(__LINE__)") : warning message : "
#pragma message(CAPSTONE_MSVC_WRANING_PREFIX "Windows driver does not support full features for selected architecture(s). Define CAPSTONE_DIET to compile Capstone with only supported features. See issue #681 for details.")
#undef CAPSTONE_MSVC_WRANING_PREFIX
#undef CAPSTONE_STR
#undef CAPSTONE_STR_INTERNAL
#endif
#endif // defined(_KERNEL_MODE) && !defined(CAPSTONE_DIET)
#if !defined(CAPSTONE_HAS_OSXKERNEL) && !defined(CAPSTONE_DIET) && !defined(_KERNEL_MODE)
#define INSN_CACHE_SIZE 32
#else
// reduce stack variable size for kernel/firmware
#define INSN_CACHE_SIZE 8
#endif
// default SKIPDATA mnemonic
#ifndef CAPSTONE_DIET
#define SKIPDATA_MNEM ".byte"
#else // No printing is available in diet mode
#define SKIPDATA_MNEM NULL
#endif
#include "arch/AArch64/AArch64Module.h"
#include "arch/ARM/ARMModule.h"
#include "arch/EVM/EVMModule.h"
#include "arch/WASM/WASMModule.h"
#include "arch/M680X/M680XModule.h"
#include "arch/M68K/M68KModule.h"
#include "arch/Mips/MipsModule.h"
#include "arch/PowerPC/PPCModule.h"
#include "arch/Sparc/SparcModule.h"
#include "arch/SystemZ/SystemZModule.h"
#include "arch/TMS320C64x/TMS320C64xModule.h"
#include "arch/X86/X86Module.h"
#include "arch/XCore/XCoreModule.h"
#include "arch/RISCV/RISCVModule.h"
#include "arch/MOS65XX/MOS65XXModule.h"
#include "arch/BPF/BPFModule.h"
#include "arch/SH/SHModule.h"
#include "arch/TriCore/TriCoreModule.h"
static const struct {
// constructor initialization
cs_err (*arch_init)(cs_struct *);
// support cs_option()
cs_err (*arch_option)(cs_struct *, cs_opt_type, size_t value);
// bitmask for finding disallowed modes for an arch:
// to be called in cs_open()/cs_option()
cs_mode arch_disallowed_mode_mask;
} arch_configs[MAX_ARCH] = {
#ifdef CAPSTONE_HAS_ARM
{
ARM_global_init,
ARM_option,
~(CS_MODE_LITTLE_ENDIAN | CS_MODE_ARM | CS_MODE_V8 | CS_MODE_MCLASS
| CS_MODE_THUMB | CS_MODE_BIG_ENDIAN)
},
#else
{ NULL, NULL, 0 },
#endif
#ifdef CAPSTONE_HAS_ARM64
{
AArch64_global_init,
AArch64_option,
~(CS_MODE_LITTLE_ENDIAN | CS_MODE_ARM | CS_MODE_BIG_ENDIAN),
},
#else
{ NULL, NULL, 0 },
#endif
#ifdef CAPSTONE_HAS_MIPS
{
Mips_global_init,
Mips_option,
~(CS_MODE_LITTLE_ENDIAN | CS_MODE_32 | CS_MODE_64 | CS_MODE_MICRO
| CS_MODE_MIPS32R6 | CS_MODE_BIG_ENDIAN | CS_MODE_MIPS2 | CS_MODE_MIPS3),
},
#else
{ NULL, NULL, 0 },
#endif
#ifdef CAPSTONE_HAS_X86
{
X86_global_init,
X86_option,
~(CS_MODE_LITTLE_ENDIAN | CS_MODE_32 | CS_MODE_64 | CS_MODE_16),
},
#else
{ NULL, NULL, 0 },
#endif
#ifdef CAPSTONE_HAS_POWERPC
{
PPC_global_init,
PPC_option,
~(CS_MODE_LITTLE_ENDIAN | CS_MODE_32 | CS_MODE_64 | CS_MODE_BIG_ENDIAN
| CS_MODE_QPX | CS_MODE_PS),
},
#else
{ NULL, NULL, 0 },
#endif
#ifdef CAPSTONE_HAS_SPARC
{
Sparc_global_init,
Sparc_option,
~(CS_MODE_BIG_ENDIAN | CS_MODE_V9),
},
#else
{ NULL, NULL, 0 },
#endif
#ifdef CAPSTONE_HAS_SYSZ
{
SystemZ_global_init,
SystemZ_option,
~(CS_MODE_BIG_ENDIAN),
},
#else
{ NULL, NULL, 0 },
#endif
#ifdef CAPSTONE_HAS_XCORE
{
XCore_global_init,
XCore_option,
~(CS_MODE_BIG_ENDIAN),
},
#else
{ NULL, NULL, 0 },
#endif
#ifdef CAPSTONE_HAS_M68K
{
M68K_global_init,
M68K_option,
~(CS_MODE_BIG_ENDIAN | CS_MODE_M68K_000 | CS_MODE_M68K_010 | CS_MODE_M68K_020
| CS_MODE_M68K_030 | CS_MODE_M68K_040 | CS_MODE_M68K_060),
},
#else
{ NULL, NULL, 0 },
#endif
#ifdef CAPSTONE_HAS_TMS320C64X
{
TMS320C64x_global_init,
TMS320C64x_option,
~(CS_MODE_BIG_ENDIAN),
},
#else
{ NULL, NULL, 0 },
#endif
#ifdef CAPSTONE_HAS_M680X
{
M680X_global_init,
M680X_option,
~(CS_MODE_M680X_6301 | CS_MODE_M680X_6309 | CS_MODE_M680X_6800
| CS_MODE_M680X_6801 | CS_MODE_M680X_6805 | CS_MODE_M680X_6808
| CS_MODE_M680X_6809 | CS_MODE_M680X_6811 | CS_MODE_M680X_CPU12
| CS_MODE_M680X_HCS08),
},
#else
{ NULL, NULL, 0 },
#endif
#ifdef CAPSTONE_HAS_EVM
{
EVM_global_init,
EVM_option,
0,
},
#else
{ NULL, NULL, 0 },
#endif
#ifdef CAPSTONE_HAS_MOS65XX
{
MOS65XX_global_init,
MOS65XX_option,
~(CS_MODE_LITTLE_ENDIAN | CS_MODE_MOS65XX_6502 | CS_MODE_MOS65XX_65C02
| CS_MODE_MOS65XX_W65C02 | CS_MODE_MOS65XX_65816_LONG_MX),
},
#else
{ NULL, NULL, 0 },
#endif
#ifdef CAPSTONE_HAS_WASM
{
WASM_global_init,
WASM_option,
0,
},
#else
{ NULL, NULL, 0 },
#endif
#ifdef CAPSTONE_HAS_BPF
{
BPF_global_init,
BPF_option,
~(CS_MODE_LITTLE_ENDIAN | CS_MODE_BPF_CLASSIC | CS_MODE_BPF_EXTENDED
| CS_MODE_BIG_ENDIAN),
},
#else
{ NULL, NULL, 0 },
#endif
#ifdef CAPSTONE_HAS_RISCV
{
RISCV_global_init,
RISCV_option,
~(CS_MODE_RISCV32 | CS_MODE_RISCV64 | CS_MODE_RISCVC),
},
#else
{ NULL, NULL, 0 },
#endif
#ifdef CAPSTONE_HAS_SH
{
SH_global_init,
SH_option,
~(CS_MODE_SH2 | CS_MODE_SH2A | CS_MODE_SH3 |
CS_MODE_SH4 | CS_MODE_SH4A |
CS_MODE_SHFPU | CS_MODE_SHDSP|CS_MODE_BIG_ENDIAN),
},
#else
{ NULL, NULL, 0 },
#endif
#ifdef CAPSTONE_HAS_TRICORE
{
TRICORE_global_init,
TRICORE_option,
~(CS_MODE_BIG_ENDIAN | CS_MODE_TRICORE),
},
#else
{ NULL, NULL, 0 },
#endif
};
// bitmask of enabled architectures
static const uint32_t all_arch = 0
#ifdef CAPSTONE_HAS_ARM
| (1 << CS_ARCH_ARM)
#endif
#ifdef CAPSTONE_HAS_ARM64
| (1 << CS_ARCH_ARM64)
#endif
#ifdef CAPSTONE_HAS_MIPS
| (1 << CS_ARCH_MIPS)
#endif
#ifdef CAPSTONE_HAS_X86
| (1 << CS_ARCH_X86)
#endif
#ifdef CAPSTONE_HAS_POWERPC
| (1 << CS_ARCH_PPC)
#endif
#ifdef CAPSTONE_HAS_SPARC
| (1 << CS_ARCH_SPARC)
#endif
#ifdef CAPSTONE_HAS_SYSZ
| (1 << CS_ARCH_SYSZ)
#endif
#ifdef CAPSTONE_HAS_XCORE
| (1 << CS_ARCH_XCORE)
#endif
#ifdef CAPSTONE_HAS_M68K
| (1 << CS_ARCH_M68K)
#endif
#ifdef CAPSTONE_HAS_TMS320C64X
| (1 << CS_ARCH_TMS320C64X)
#endif
#ifdef CAPSTONE_HAS_M680X
| (1 << CS_ARCH_M680X)
#endif
#ifdef CAPSTONE_HAS_EVM
| (1 << CS_ARCH_EVM)
#endif
#ifdef CAPSTONE_HAS_MOS65XX
| (1 << CS_ARCH_MOS65XX)
#endif
#ifdef CAPSTONE_HAS_WASM
| (1 << CS_ARCH_WASM)
#endif
#ifdef CAPSTONE_HAS_BPF
| (1 << CS_ARCH_BPF)
#endif
#ifdef CAPSTONE_HAS_RISCV
| (1 << CS_ARCH_RISCV)
#endif
#ifdef CAPSTONE_HAS_SH
| (1 << CS_ARCH_SH)
#endif
#ifdef CAPSTONE_HAS_TRICORE
| (1 << CS_ARCH_TRICORE)
#endif
;
#if defined(CAPSTONE_USE_SYS_DYN_MEM)
#if !defined(CAPSTONE_HAS_OSXKERNEL) && !defined(_KERNEL_MODE)
// default
thread_local cs_malloc_t cs_mem_malloc = malloc;
thread_local cs_calloc_t cs_mem_calloc = calloc;
thread_local cs_realloc_t cs_mem_realloc = realloc;
thread_local cs_free_t cs_mem_free = free;
#if defined(_WIN32_WCE)
thread_local cs_vsnprintf_t cs_vsnprintf = _vsnprintf;
#else
thread_local cs_vsnprintf_t cs_vsnprintf = vsnprintf;
#endif // defined(_WIN32_WCE)
#elif defined(_KERNEL_MODE)
// Windows driver
thread_local cs_malloc_t cs_mem_malloc = cs_winkernel_malloc;
thread_local cs_calloc_t cs_mem_calloc = cs_winkernel_calloc;
thread_local cs_realloc_t cs_mem_realloc = cs_winkernel_realloc;
thread_local cs_free_t cs_mem_free = cs_winkernel_free;
thread_local cs_vsnprintf_t cs_vsnprintf = cs_winkernel_vsnprintf;
#else
// OSX kernel
extern void* kern_os_malloc(size_t size);
extern void kern_os_free(void* addr);
extern void* kern_os_realloc(void* addr, size_t nsize);
static void* cs_kern_os_calloc(size_t num, size_t size)
{
return kern_os_malloc(num * size); // malloc bzeroes the buffer
}
thread_local cs_malloc_t cs_mem_malloc = kern_os_malloc;
thread_local cs_calloc_t cs_mem_calloc = cs_kern_os_calloc;
thread_local cs_realloc_t cs_mem_realloc = kern_os_realloc;
thread_local cs_free_t cs_mem_free = kern_os_free;
thread_local cs_vsnprintf_t cs_vsnprintf = vsnprintf;
#endif // !defined(CAPSTONE_HAS_OSXKERNEL) && !defined(_KERNEL_MODE)
#else
// User-defined
thread_local cs_malloc_t cs_mem_malloc = NULL;
thread_local cs_calloc_t cs_mem_calloc = NULL;
thread_local cs_realloc_t cs_mem_realloc = NULL;
thread_local cs_free_t cs_mem_free = NULL;
thread_local cs_vsnprintf_t cs_vsnprintf = NULL;
#endif // defined(CAPSTONE_USE_SYS_DYN_MEM)
CAPSTONE_EXPORT
unsigned int CAPSTONE_API cs_version(int *major, int *minor)
{
if (major != NULL && minor != NULL) {
*major = CS_API_MAJOR;
*minor = CS_API_MINOR;
}
return (CS_API_MAJOR << 8) + CS_API_MINOR;
}
CAPSTONE_EXPORT
bool CAPSTONE_API cs_support(int query)
{
if (query == CS_ARCH_ALL)
return all_arch == ((1 << CS_ARCH_ARM) | (1 << CS_ARCH_ARM64) |
(1 << CS_ARCH_MIPS) | (1 << CS_ARCH_X86) |
(1 << CS_ARCH_PPC) | (1 << CS_ARCH_SPARC) |
(1 << CS_ARCH_SYSZ) | (1 << CS_ARCH_XCORE) |
(1 << CS_ARCH_M68K) | (1 << CS_ARCH_TMS320C64X) |
(1 << CS_ARCH_M680X) | (1 << CS_ARCH_EVM) |
(1 << CS_ARCH_RISCV) | (1 << CS_ARCH_MOS65XX) |
(1 << CS_ARCH_WASM) | (1 << CS_ARCH_BPF) |
(1 << CS_ARCH_SH) | (1 << CS_ARCH_TRICORE));
if ((unsigned int)query < CS_ARCH_MAX)
return all_arch & (1 << query);
if (query == CS_SUPPORT_DIET) {
#ifdef CAPSTONE_DIET
return true;
#else
return false;
#endif
}
if (query == CS_SUPPORT_X86_REDUCE) {
#if defined(CAPSTONE_HAS_X86) && defined(CAPSTONE_X86_REDUCE)
return true;
#else
return false;
#endif
}
// unsupported query
return false;
}
CAPSTONE_EXPORT
cs_err CAPSTONE_API cs_errno(csh handle)
{
struct cs_struct *ud;
if (!handle)
return CS_ERR_CSH;
ud = (struct cs_struct *)(uintptr_t)handle;
return ud->errnum;
}
CAPSTONE_EXPORT
const char * CAPSTONE_API cs_strerror(cs_err code)
{
switch(code) {
default:
return "Unknown error code";
case CS_ERR_OK:
return "OK (CS_ERR_OK)";
case CS_ERR_MEM:
return "Out of memory (CS_ERR_MEM)";
case CS_ERR_ARCH:
return "Invalid/unsupported architecture(CS_ERR_ARCH)";
case CS_ERR_HANDLE:
return "Invalid handle (CS_ERR_HANDLE)";
case CS_ERR_CSH:
return "Invalid csh (CS_ERR_CSH)";
case CS_ERR_MODE:
return "Invalid mode (CS_ERR_MODE)";
case CS_ERR_OPTION:
return "Invalid option (CS_ERR_OPTION)";
case CS_ERR_DETAIL:
return "Details are unavailable (CS_ERR_DETAIL)";
case CS_ERR_MEMSETUP:
return "Dynamic memory management uninitialized (CS_ERR_MEMSETUP)";
case CS_ERR_VERSION:
return "Different API version between core & binding (CS_ERR_VERSION)";
case CS_ERR_DIET:
return "Information irrelevant in diet engine (CS_ERR_DIET)";
case CS_ERR_SKIPDATA:
return "Information irrelevant for 'data' instruction in SKIPDATA mode (CS_ERR_SKIPDATA)";
case CS_ERR_X86_ATT:
return "AT&T syntax is unavailable (CS_ERR_X86_ATT)";
case CS_ERR_X86_INTEL:
return "INTEL syntax is unavailable (CS_ERR_X86_INTEL)";
case CS_ERR_X86_MASM:
return "MASM syntax is unavailable (CS_ERR_X86_MASM)";
}
}
CAPSTONE_EXPORT
cs_err CAPSTONE_API cs_open(cs_arch arch, cs_mode mode, csh *handle)
{
cs_err err;
struct cs_struct *ud;
if (!cs_mem_malloc || !cs_mem_calloc || !cs_mem_realloc || !cs_mem_free || !cs_vsnprintf)
// Error: before cs_open(), dynamic memory management must be initialized
// with cs_option(CS_OPT_MEM)
return CS_ERR_MEMSETUP;
if (arch < CS_ARCH_MAX && arch_configs[arch].arch_init) {
// verify if requested mode is valid
if (mode & arch_configs[arch].arch_disallowed_mode_mask) {
*handle = 0;
return CS_ERR_MODE;
}
ud = cs_mem_calloc(1, sizeof(*ud));
if (!ud) {
// memory insufficient
return CS_ERR_MEM;
}
ud->errnum = CS_ERR_OK;
ud->arch = arch;
ud->mode = mode;
// by default, do not break instruction into details
ud->detail = CS_OPT_OFF;
// default skipdata setup
ud->skipdata_setup.mnemonic = SKIPDATA_MNEM;
err = arch_configs[ud->arch].arch_init(ud);
if (err) {
cs_mem_free(ud);
*handle = 0;
return err;
}
*handle = (uintptr_t)ud;
return CS_ERR_OK;
} else {
*handle = 0;
return CS_ERR_ARCH;
}
}
CAPSTONE_EXPORT
cs_err CAPSTONE_API cs_close(csh *handle)
{
struct cs_struct *ud;
struct insn_mnem *next, *tmp;
if (*handle == 0)
// invalid handle
return CS_ERR_CSH;
ud = (struct cs_struct *)(*handle);
if (ud->printer_info)
cs_mem_free(ud->printer_info);
// free the linked list of customized mnemonic
tmp = ud->mnem_list;
while(tmp) {
next = tmp->next;
cs_mem_free(tmp);
tmp = next;
}
cs_mem_free(ud->insn_cache);
memset(ud, 0, sizeof(*ud));
cs_mem_free(ud);
// invalidate this handle by ZERO out its value.
// this is to make sure it is unusable after cs_close()
*handle = 0;
return CS_ERR_OK;
}
// replace str1 in target with str2; target starts with str1
// output is put into result (which is array of char with size CS_MNEMONIC_SIZE)
// return 0 on success, -1 on failure
static int str_replace(char *result, char *target, const char *str1, char *str2)
{
// only perform replacement if the output fits into result
if (strlen(target) - strlen(str1) + strlen(str2) < CS_MNEMONIC_SIZE - 1) {
// copy str2 to begining of result
strcpy(result, str2);
// skip str1 - already replaced by str2
strcat(result, target + strlen(str1));
return 0;
} else
return -1;
}
// fill insn with mnemonic & operands info
static void fill_insn(struct cs_struct *handle, cs_insn *insn, char *buffer, MCInst *mci,
PostPrinter_t postprinter, const uint8_t *code)
{
#ifndef CAPSTONE_DIET
char *sp, *mnem;
#endif
uint16_t copy_size = MIN(sizeof(insn->bytes), insn->size);
// fill the instruction bytes.
// we might skip some redundant bytes in front in the case of X86
memcpy(insn->bytes, code + insn->size - copy_size, copy_size);
insn->op_str[0] = '\0';
insn->size = copy_size;
// alias instruction might have ID saved in OpcodePub
if (MCInst_getOpcodePub(mci))
insn->id = MCInst_getOpcodePub(mci);
// post printer handles some corner cases (hacky)
if (postprinter)
postprinter((csh)handle, insn, buffer, mci);
#ifndef CAPSTONE_DIET
mnem = insn->mnemonic;
for (sp = buffer; *sp; sp++) {
if (*sp == ' '|| *sp == '\t')
break;
if (*sp == '|') // lock|rep prefix for x86
*sp = ' ';
// copy to @mnemonic
*mnem = *sp;
mnem++;
}
*mnem = '\0';
// we might have customized mnemonic
if (handle->mnem_list) {
struct insn_mnem *tmp = handle->mnem_list;
while(tmp) {
if (tmp->insn.id == insn->id) {
char str[CS_MNEMONIC_SIZE];
if (!str_replace(str, insn->mnemonic, cs_insn_name((csh)handle, insn->id), tmp->insn.mnemonic)) {
// copy result to mnemonic
(void)strncpy(insn->mnemonic, str, sizeof(insn->mnemonic) - 1);
insn->mnemonic[sizeof(insn->mnemonic) - 1] = '\0';
}
break;
}
tmp = tmp->next;
}
}
// copy @op_str
if (*sp) {
// find the next non-space char
sp++;
for (; ((*sp == ' ') || (*sp == '\t')); sp++);
strncpy(insn->op_str, sp, sizeof(insn->op_str) - 1);
insn->op_str[sizeof(insn->op_str) - 1] = '\0';
} else
insn->op_str[0] = '\0';
#endif
}
// how many bytes will we skip when encountering data (CS_OPT_SKIPDATA)?
// this very much depends on instruction alignment requirement of each arch.
static uint8_t skipdata_size(cs_struct *handle)
{
switch(handle->arch) {
default:
// should never reach
return (uint8_t)-1;
case CS_ARCH_ARM:
// skip 2 bytes on Thumb mode.
if (handle->mode & CS_MODE_THUMB)
return 2;
// otherwise, skip 4 bytes
return 4;
case CS_ARCH_ARM64:
case CS_ARCH_MIPS:
case CS_ARCH_PPC:
case CS_ARCH_SPARC:
// skip 4 bytes
return 4;
case CS_ARCH_SYSZ:
// SystemZ instruction's length can be 2, 4 or 6 bytes,
// so we just skip 2 bytes
return 2;
case CS_ARCH_X86:
// X86 has no restriction on instruction alignment
return 1;
case CS_ARCH_XCORE:
// XCore instruction's length can be 2 or 4 bytes,
// so we just skip 2 bytes
return 2;
case CS_ARCH_M68K:
// M68K has 2 bytes instruction alignment but contain multibyte instruction so we skip 2 bytes
return 2;
case CS_ARCH_TMS320C64X:
// TMS320C64x alignment is 4.
return 4;
case CS_ARCH_M680X:
// M680X alignment is 1.
return 1;
case CS_ARCH_EVM:
// EVM alignment is 1.
return 1;
case CS_ARCH_WASM:
//WASM alignment is 1
return 1;
case CS_ARCH_MOS65XX:
// MOS65XX alignment is 1.
return 1;
case CS_ARCH_BPF:
// both classic and extended BPF have alignment 8.
return 8;
case CS_ARCH_RISCV:
// special compress mode
if (handle->mode & CS_MODE_RISCVC)
return 2;
return 4;
case CS_ARCH_SH:
return 2;
case CS_ARCH_TRICORE:
// TriCore instruction's length can be 2 or 4 bytes,
// so we just skip 2 bytes
return 2;
}
}
CAPSTONE_EXPORT
cs_err CAPSTONE_API cs_option(csh ud, cs_opt_type type, size_t value)
{
struct cs_struct *handle;
cs_opt_mnem *opt;
// cs_option() can be called with NULL handle just for CS_OPT_MEM
// This is supposed to be executed before all other APIs (even cs_open())
if (type == CS_OPT_MEM) {
cs_opt_mem *mem = (cs_opt_mem *)value;
cs_mem_malloc = mem->malloc;
cs_mem_calloc = mem->calloc;
cs_mem_realloc = mem->realloc;
cs_mem_free = mem->free;
cs_vsnprintf = mem->vsnprintf;
return CS_ERR_OK;
}
handle = (struct cs_struct *)(uintptr_t)ud;
if (!handle)
return CS_ERR_CSH;
switch(type) {
default:
break;
case CS_OPT_UNSIGNED:
handle->imm_unsigned = (cs_opt_value)value;
return CS_ERR_OK;
case CS_OPT_DETAIL:
handle->detail = (cs_opt_value)value;
return CS_ERR_OK;
case CS_OPT_SKIPDATA:
handle->skipdata = (value == CS_OPT_ON);
if (handle->skipdata) {
if (handle->skipdata_size == 0) {
// set the default skipdata size
handle->skipdata_size = skipdata_size(handle);
}
}
return CS_ERR_OK;
case CS_OPT_SKIPDATA_SETUP:
if (value) {
handle->skipdata_setup = *((cs_opt_skipdata *)value);
if (handle->skipdata_setup.mnemonic == NULL) {
handle->skipdata_setup.mnemonic = SKIPDATA_MNEM;
}
}
return CS_ERR_OK;
case CS_OPT_MNEMONIC:
opt = (cs_opt_mnem *)value;
if (opt->id) {
if (opt->mnemonic) {
struct insn_mnem *tmp;
// add new instruction, or replace existing instruction
// 1. find if we already had this insn in the linked list
tmp = handle->mnem_list;
while(tmp) {
if (tmp->insn.id == opt->id) {
// found this instruction, so replace its mnemonic
(void)strncpy(tmp->insn.mnemonic, opt->mnemonic, sizeof(tmp->insn.mnemonic) - 1);
tmp->insn.mnemonic[sizeof(tmp->insn.mnemonic) - 1] = '\0';
break;
}
tmp = tmp->next;
}
// 2. add this instruction if we have not had it yet
if (!tmp) {
tmp = cs_mem_malloc(sizeof(*tmp));
tmp->insn.id = opt->id;
(void)strncpy(tmp->insn.mnemonic, opt->mnemonic, sizeof(tmp->insn.mnemonic) - 1);
tmp->insn.mnemonic[sizeof(tmp->insn.mnemonic) - 1] = '\0';
// this new instruction is heading the list
tmp->next = handle->mnem_list;
handle->mnem_list = tmp;
}
return CS_ERR_OK;
} else {
struct insn_mnem *prev, *tmp;
// we want to delete an existing instruction
// iterate the list to find the instruction to remove it
tmp = handle->mnem_list;
prev = tmp;
while(tmp) {
if (tmp->insn.id == opt->id) {
// delete this instruction
if (tmp == prev) {
// head of the list
handle->mnem_list = tmp->next;
} else {
prev->next = tmp->next;
}
cs_mem_free(tmp);
break;
}
prev = tmp;
tmp = tmp->next;
}
}
}
return CS_ERR_OK;
case CS_OPT_MODE:
// verify if requested mode is valid
if (value & arch_configs[handle->arch].arch_disallowed_mode_mask) {
return CS_ERR_OPTION;
}
break;
}
return arch_configs[handle->arch].arch_option(handle, type, value);
}
// generate @op_str for data instruction of SKIPDATA
#ifndef CAPSTONE_DIET
static void skipdata_opstr(char *opstr, const uint8_t *buffer, size_t size)
{
char *p = opstr;
int len;
size_t i;
size_t available = sizeof(((cs_insn*)NULL)->op_str);
if (!size) {
opstr[0] = '\0';
return;
}
len = cs_snprintf(p, available, "0x%02x", buffer[0]);
p+= len;
available -= len;
for(i = 1; i < size; i++) {
len = cs_snprintf(p, available, ", 0x%02x", buffer[i]);
if (len < 0) {
break;
}
if ((size_t)len > available - 1) {
break;
}
p+= len;
available -= len;
}
}
#endif
// dynamicly allocate memory to contain disasm insn
// NOTE: caller must free() the allocated memory itself to avoid memory leaking
CAPSTONE_EXPORT
size_t CAPSTONE_API cs_disasm(csh ud, const uint8_t *buffer, size_t size, uint64_t offset, size_t count, cs_insn **insn)
{
struct cs_struct *handle;
MCInst mci;
uint16_t insn_size;
size_t c = 0, i;
unsigned int f = 0; // index of the next instruction in the cache
cs_insn *insn_cache; // cache contains disassembled instructions
void *total = NULL;
size_t total_size = 0; // total size of output buffer containing all insns
bool r;
void *tmp;
size_t skipdata_bytes;
uint64_t offset_org; // save all the original info of the buffer
size_t size_org;
const uint8_t *buffer_org;
unsigned int cache_size = INSN_CACHE_SIZE;
size_t next_offset;
handle = (struct cs_struct *)(uintptr_t)ud;
if (!handle) {
// FIXME: how to handle this case:
// handle->errnum = CS_ERR_HANDLE;
return 0;
}
handle->errnum = CS_ERR_OK;
// reset IT block of ARM structure
if (handle->arch == CS_ARCH_ARM)
handle->ITBlock.size = 0;
#ifdef CAPSTONE_USE_SYS_DYN_MEM
if (count > 0 && count <= INSN_CACHE_SIZE)
cache_size = (unsigned int) count;
#endif
// save the original offset for SKIPDATA
buffer_org = buffer;
offset_org = offset;
size_org = size;
total_size = sizeof(cs_insn) * cache_size;
total = cs_mem_malloc(total_size);
if (total == NULL) {
// insufficient memory
handle->errnum = CS_ERR_MEM;
return 0;
}
insn_cache = total;
while (size > 0) {
MCInst_Init(&mci);
mci.csh = handle;
// relative branches need to know the address & size of current insn
mci.address = offset;
if (handle->detail) {
// allocate memory for @detail pointer
insn_cache->detail = cs_mem_malloc(sizeof(cs_detail));
} else {
insn_cache->detail = NULL;
}
// save all the information for non-detailed mode
mci.flat_insn = insn_cache;
mci.flat_insn->address = offset;
#ifdef CAPSTONE_DIET
// zero out mnemonic & op_str
mci.flat_insn->mnemonic[0] = '\0';
mci.flat_insn->op_str[0] = '\0';
#endif
r = handle->disasm(ud, buffer, size, &mci, &insn_size, offset, handle->getinsn_info);
if (r) {
SStream ss;
SStream_Init(&ss);
mci.flat_insn->size = insn_size;
// map internal instruction opcode to public insn ID
handle->insn_id(handle, insn_cache, mci.Opcode);
handle->printer(&mci, &ss, handle->printer_info);
fill_insn(handle, insn_cache, ss.buffer, &mci, handle->post_printer, buffer);
// adjust for pseudo opcode (X86)
if (handle->arch == CS_ARCH_X86)
insn_cache->id += mci.popcode_adjust;
next_offset = insn_size;
} else {
// encounter a broken instruction
// free memory of @detail pointer
if (handle->detail) {
cs_mem_free(insn_cache->detail);
}
// if there is no request to skip data, or remaining data is too small,
// then bail out
if (!handle->skipdata || handle->skipdata_size > size)
break;
if (handle->skipdata_setup.callback) {
skipdata_bytes = handle->skipdata_setup.callback(buffer_org, size_org,
(size_t)(offset - offset_org), handle->skipdata_setup.user_data);
if (skipdata_bytes > size)
// remaining data is not enough
break;
if (!skipdata_bytes)
// user requested not to skip data, so bail out
break;
} else
skipdata_bytes = handle->skipdata_size;
// we have to skip some amount of data, depending on arch & mode
insn_cache->id = 0; // invalid ID for this "data" instruction
insn_cache->address = offset;
insn_cache->size = (uint16_t)skipdata_bytes;
memcpy(insn_cache->bytes, buffer, skipdata_bytes);
#ifdef CAPSTONE_DIET
insn_cache->mnemonic[0] = '\0';
insn_cache->op_str[0] = '\0';
#else
strncpy(insn_cache->mnemonic, handle->skipdata_setup.mnemonic,
sizeof(insn_cache->mnemonic) - 1);
skipdata_opstr(insn_cache->op_str, buffer, skipdata_bytes);
#endif
insn_cache->detail = NULL;
next_offset = skipdata_bytes;
}
// one more instruction entering the cache
f++;
// one more instruction disassembled
c++;
if (count > 0 && c == count)
// already got requested number of instructions
break;
if (f == cache_size) {
// full cache, so expand the cache to contain incoming insns
cache_size = cache_size * 8 / 5; // * 1.6 ~ golden ratio
total_size += (sizeof(cs_insn) * cache_size);
tmp = cs_mem_realloc(total, total_size);
if (tmp == NULL) { // insufficient memory
if (handle->detail) {
insn_cache = (cs_insn *)total;
for (i = 0; i < c; i++, insn_cache++)
cs_mem_free(insn_cache->detail);
}
cs_mem_free(total);
*insn = NULL;
handle->errnum = CS_ERR_MEM;
return 0;
}
total = tmp;
// continue to fill in the cache after the last instruction
insn_cache = (cs_insn *)((char *)total + sizeof(cs_insn) * c);
// reset f back to 0, so we fill in the cache from begining
f = 0;
} else
insn_cache++;
buffer += next_offset;
size -= next_offset;
offset += next_offset;
}
if (!c) {
// we did not disassemble any instruction
cs_mem_free(total);
total = NULL;
} else if (f != cache_size) {
// total did not fully use the last cache, so downsize it
tmp = cs_mem_realloc(total, total_size - (cache_size - f) * sizeof(*insn_cache));
if (tmp == NULL) { // insufficient memory
// free all detail pointers
if (handle->detail) {
insn_cache = (cs_insn *)total;
for (i = 0; i < c; i++, insn_cache++)
cs_mem_free(insn_cache->detail);
}
cs_mem_free(total);
*insn = NULL;
handle->errnum = CS_ERR_MEM;
return 0;
}
total = tmp;
}
*insn = total;
return c;
}
CAPSTONE_EXPORT
void CAPSTONE_API cs_free(cs_insn *insn, size_t count)
{
size_t i;
// free all detail pointers
for (i = 0; i < count; i++)
cs_mem_free(insn[i].detail);
// then free pointer to cs_insn array
cs_mem_free(insn);
}
CAPSTONE_EXPORT
cs_insn * CAPSTONE_API cs_malloc(csh ud)
{
cs_insn *insn;
struct cs_struct *handle = (struct cs_struct *)(uintptr_t)ud;
insn = cs_mem_malloc(sizeof(cs_insn));
if (!insn) {
// insufficient memory
handle->errnum = CS_ERR_MEM;
return NULL;
} else {
if (handle->detail) {
// allocate memory for @detail pointer
insn->detail = cs_mem_malloc(sizeof(cs_detail));
if (insn->detail == NULL) { // insufficient memory
cs_mem_free(insn);
handle->errnum = CS_ERR_MEM;
return NULL;
}
} else
insn->detail = NULL;
}
return insn;
}
// iterator for instruction "single-stepping"
CAPSTONE_EXPORT
bool CAPSTONE_API cs_disasm_iter(csh ud, const uint8_t **code, size_t *size,
uint64_t *address, cs_insn *insn)
{
struct cs_struct *handle;
uint16_t insn_size;
MCInst mci;
bool r;
handle = (struct cs_struct *)(uintptr_t)ud;
if (!handle) {
return false;
}
handle->errnum = CS_ERR_OK;
MCInst_Init(&mci);
mci.csh = handle;
// relative branches need to know the address & size of current insn
mci.address = *address;
// save all the information for non-detailed mode
mci.flat_insn = insn;
mci.flat_insn->address = *address;
#ifdef CAPSTONE_DIET
// zero out mnemonic & op_str
mci.flat_insn->mnemonic[0] = '\0';
mci.flat_insn->op_str[0] = '\0';
#endif
r = handle->disasm(ud, *code, *size, &mci, &insn_size, *address, handle->getinsn_info);
if (r) {
SStream ss;
SStream_Init(&ss);
mci.flat_insn->size = insn_size;
// map internal instruction opcode to public insn ID
handle->insn_id(handle, insn, mci.Opcode);
handle->printer(&mci, &ss, handle->printer_info);
fill_insn(handle, insn, ss.buffer, &mci, handle->post_printer, *code);
// adjust for pseudo opcode (X86)
if (handle->arch == CS_ARCH_X86)
insn->id += mci.popcode_adjust;
*code += insn_size;
*size -= insn_size;
*address += insn_size;
} else { // encounter a broken instruction
size_t skipdata_bytes;
// if there is no request to skip data, or remaining data is too small,
// then bail out
if (!handle->skipdata || handle->skipdata_size > *size)
return false;
if (handle->skipdata_setup.callback) {
skipdata_bytes = handle->skipdata_setup.callback(*code, *size,
0, handle->skipdata_setup.user_data);
if (skipdata_bytes > *size)
// remaining data is not enough
return false;
if (!skipdata_bytes)
// user requested not to skip data, so bail out
return false;
} else
skipdata_bytes = handle->skipdata_size;
// we have to skip some amount of data, depending on arch & mode
insn->id = 0; // invalid ID for this "data" instruction
insn->address = *address;
insn->size = (uint16_t)skipdata_bytes;
#ifdef CAPSTONE_DIET
insn->mnemonic[0] = '\0';
insn->op_str[0] = '\0';
#else
memcpy(insn->bytes, *code, skipdata_bytes);
strncpy(insn->mnemonic, handle->skipdata_setup.mnemonic,
sizeof(insn->mnemonic) - 1);
skipdata_opstr(insn->op_str, *code, skipdata_bytes);
#endif
*code += skipdata_bytes;
*size -= skipdata_bytes;
*address += skipdata_bytes;
}
return true;
}
// return friendly name of register in a string
CAPSTONE_EXPORT
const char * CAPSTONE_API cs_reg_name(csh ud, unsigned int reg)
{
struct cs_struct *handle = (struct cs_struct *)(uintptr_t)ud;
if (!handle || handle->reg_name == NULL) {
return NULL;
}
return handle->reg_name(ud, reg);
}
CAPSTONE_EXPORT
const char * CAPSTONE_API cs_insn_name(csh ud, unsigned int insn)
{
struct cs_struct *handle = (struct cs_struct *)(uintptr_t)ud;
if (!handle || handle->insn_name == NULL) {
return NULL;
}
return handle->insn_name(ud, insn);
}
CAPSTONE_EXPORT
const char * CAPSTONE_API cs_group_name(csh ud, unsigned int group)
{
struct cs_struct *handle = (struct cs_struct *)(uintptr_t)ud;
if (!handle || handle->group_name == NULL) {
return NULL;
}
return handle->group_name(ud, group);
}
CAPSTONE_EXPORT
bool CAPSTONE_API cs_insn_group(csh ud, const cs_insn *insn, unsigned int group_id)
{
struct cs_struct *handle;
if (!ud)
return false;
handle = (struct cs_struct *)(uintptr_t)ud;
if (!handle->detail) {
handle->errnum = CS_ERR_DETAIL;
return false;
}
if (!insn->id) {
handle->errnum = CS_ERR_SKIPDATA;
return false;
}
if (!insn->detail) {
handle->errnum = CS_ERR_DETAIL;
return false;
}
return arr_exist8(insn->detail->groups, insn->detail->groups_count, group_id);
}
CAPSTONE_EXPORT
bool CAPSTONE_API cs_reg_read(csh ud, const cs_insn *insn, unsigned int reg_id)
{
struct cs_struct *handle;
if (!ud)
return false;
handle = (struct cs_struct *)(uintptr_t)ud;
if (!handle->detail) {
handle->errnum = CS_ERR_DETAIL;
return false;
}
if (!insn->id) {
handle->errnum = CS_ERR_SKIPDATA;
return false;
}
if (!insn->detail) {
handle->errnum = CS_ERR_DETAIL;
return false;
}
return arr_exist(insn->detail->regs_read, insn->detail->regs_read_count, reg_id);
}
CAPSTONE_EXPORT
bool CAPSTONE_API cs_reg_write(csh ud, const cs_insn *insn, unsigned int reg_id)
{
struct cs_struct *handle;
if (!ud)
return false;
handle = (struct cs_struct *)(uintptr_t)ud;
if (!handle->detail) {
handle->errnum = CS_ERR_DETAIL;
return false;
}
if (!insn->id) {
handle->errnum = CS_ERR_SKIPDATA;
return false;
}
if (!insn->detail) {
handle->errnum = CS_ERR_DETAIL;
return false;
}
return arr_exist(insn->detail->regs_write, insn->detail->regs_write_count, reg_id);
}
CAPSTONE_EXPORT
int CAPSTONE_API cs_op_count(csh ud, const cs_insn *insn, unsigned int op_type)
{
struct cs_struct *handle;
unsigned int count = 0, i;
if (!ud)
return -1;
handle = (struct cs_struct *)(uintptr_t)ud;
if (!handle->detail) {
handle->errnum = CS_ERR_DETAIL;
return -1;
}
if (!insn->id) {
handle->errnum = CS_ERR_SKIPDATA;
return -1;
}
if (!insn->detail) {
handle->errnum = CS_ERR_DETAIL;
return -1;
}
handle->errnum = CS_ERR_OK;
switch (handle->arch) {
default:
handle->errnum = CS_ERR_HANDLE;
return -1;
case CS_ARCH_ARM:
for (i = 0; i < insn->detail->arm.op_count; i++)
if (insn->detail->arm.operands[i].type == (arm_op_type)op_type)
count++;
break;
case CS_ARCH_ARM64:
for (i = 0; i < insn->detail->arm64.op_count; i++)
if (insn->detail->arm64.operands[i].type == (arm64_op_type)op_type)
count++;
break;
case CS_ARCH_X86:
for (i = 0; i < insn->detail->x86.op_count; i++)
if (insn->detail->x86.operands[i].type == (x86_op_type)op_type)
count++;
break;
case CS_ARCH_MIPS:
for (i = 0; i < insn->detail->mips.op_count; i++)
if (insn->detail->mips.operands[i].type == (mips_op_type)op_type)
count++;
break;
case CS_ARCH_PPC:
for (i = 0; i < insn->detail->ppc.op_count; i++)
if (insn->detail->ppc.operands[i].type == (ppc_op_type)op_type)
count++;
break;
case CS_ARCH_SPARC:
for (i = 0; i < insn->detail->sparc.op_count; i++)
if (insn->detail->sparc.operands[i].type == (sparc_op_type)op_type)
count++;
break;
case CS_ARCH_SYSZ:
for (i = 0; i < insn->detail->sysz.op_count; i++)
if (insn->detail->sysz.operands[i].type == (sysz_op_type)op_type)
count++;
break;
case CS_ARCH_XCORE:
for (i = 0; i < insn->detail->xcore.op_count; i++)
if (insn->detail->xcore.operands[i].type == (xcore_op_type)op_type)
count++;
break;
case CS_ARCH_M68K:
for (i = 0; i < insn->detail->m68k.op_count; i++)
if (insn->detail->m68k.operands[i].type == (m68k_op_type)op_type)
count++;
break;
case CS_ARCH_TMS320C64X:
for (i = 0; i < insn->detail->tms320c64x.op_count; i++)
if (insn->detail->tms320c64x.operands[i].type == (tms320c64x_op_type)op_type)
count++;
break;
case CS_ARCH_M680X:
for (i = 0; i < insn->detail->m680x.op_count; i++)
if (insn->detail->m680x.operands[i].type == (m680x_op_type)op_type)
count++;
break;
case CS_ARCH_EVM:
break;
case CS_ARCH_MOS65XX:
for (i = 0; i < insn->detail->mos65xx.op_count; i++)
if (insn->detail->mos65xx.operands[i].type == (mos65xx_op_type)op_type)
count++;
break;
case CS_ARCH_WASM:
for (i = 0; i < insn->detail->wasm.op_count; i++)
if (insn->detail->wasm.operands[i].type == (wasm_op_type)op_type)
count++;
break;
case CS_ARCH_BPF:
for (i = 0; i < insn->detail->bpf.op_count; i++)
if (insn->detail->bpf.operands[i].type == (bpf_op_type)op_type)
count++;
break;
case CS_ARCH_RISCV:
for (i = 0; i < insn->detail->riscv.op_count; i++)
if (insn->detail->riscv.operands[i].type == (riscv_op_type)op_type)
count++;
break;
case CS_ARCH_TRICORE:
for (i = 0; i < insn->detail->tricore.op_count; i++)
if (insn->detail->tricore.operands[i].type == (tricore_op_type)op_type)
count++;
break;
}
return count;
}
CAPSTONE_EXPORT
int CAPSTONE_API cs_op_index(csh ud, const cs_insn *insn, unsigned int op_type,
unsigned int post)
{
struct cs_struct *handle;
unsigned int count = 0, i;
if (!ud)
return -1;
handle = (struct cs_struct *)(uintptr_t)ud;
if (!handle->detail) {
handle->errnum = CS_ERR_DETAIL;
return -1;
}
if (!insn->id) {
handle->errnum = CS_ERR_SKIPDATA;
return -1;
}
if (!insn->detail) {
handle->errnum = CS_ERR_DETAIL;
return -1;
}
handle->errnum = CS_ERR_OK;
switch (handle->arch) {
default:
handle->errnum = CS_ERR_HANDLE;
return -1;
case CS_ARCH_ARM:
for (i = 0; i < insn->detail->arm.op_count; i++) {
if (insn->detail->arm.operands[i].type == (arm_op_type)op_type)
count++;
if (count == post)
return i;
}
break;
case CS_ARCH_ARM64:
for (i = 0; i < insn->detail->arm64.op_count; i++) {
if (insn->detail->arm64.operands[i].type == (arm64_op_type)op_type)
count++;
if (count == post)
return i;
}
break;
case CS_ARCH_X86:
for (i = 0; i < insn->detail->x86.op_count; i++) {
if (insn->detail->x86.operands[i].type == (x86_op_type)op_type)
count++;
if (count == post)
return i;
}
break;
case CS_ARCH_MIPS:
for (i = 0; i < insn->detail->mips.op_count; i++) {
if (insn->detail->mips.operands[i].type == (mips_op_type)op_type)
count++;
if (count == post)
return i;
}
break;
case CS_ARCH_PPC:
for (i = 0; i < insn->detail->ppc.op_count; i++) {
if (insn->detail->ppc.operands[i].type == (ppc_op_type)op_type)
count++;
if (count == post)
return i;
}
break;
case CS_ARCH_SPARC:
for (i = 0; i < insn->detail->sparc.op_count; i++) {
if (insn->detail->sparc.operands[i].type == (sparc_op_type)op_type)
count++;
if (count == post)
return i;
}
break;
case CS_ARCH_SYSZ:
for (i = 0; i < insn->detail->sysz.op_count; i++) {
if (insn->detail->sysz.operands[i].type == (sysz_op_type)op_type)
count++;
if (count == post)
return i;
}
break;
case CS_ARCH_XCORE:
for (i = 0; i < insn->detail->xcore.op_count; i++) {
if (insn->detail->xcore.operands[i].type == (xcore_op_type)op_type)
count++;
if (count == post)
return i;
}
break;
case CS_ARCH_TRICORE:
for (i = 0; i < insn->detail->tricore.op_count; i++) {
if (insn->detail->tricore.operands[i].type == (tricore_op_type)op_type)
count++;
if (count == post)
return i;
}
break;
case CS_ARCH_M68K:
for (i = 0; i < insn->detail->m68k.op_count; i++) {
if (insn->detail->m68k.operands[i].type == (m68k_op_type)op_type)
count++;
if (count == post)
return i;
}
break;
case CS_ARCH_TMS320C64X:
for (i = 0; i < insn->detail->tms320c64x.op_count; i++) {
if (insn->detail->tms320c64x.operands[i].type == (tms320c64x_op_type)op_type)
count++;
if (count == post)
return i;
}
break;
case CS_ARCH_M680X:
for (i = 0; i < insn->detail->m680x.op_count; i++) {
if (insn->detail->m680x.operands[i].type == (m680x_op_type)op_type)
count++;
if (count == post)
return i;
}
break;
case CS_ARCH_EVM:
#if 0
for (i = 0; i < insn->detail->evm.op_count; i++) {
if (insn->detail->evm.operands[i].type == (evm_op_type)op_type)
count++;
if (count == post)
return i;
}
#endif
break;
case CS_ARCH_MOS65XX:
for (i = 0; i < insn->detail->mos65xx.op_count; i++) {
if (insn->detail->mos65xx.operands[i].type == (mos65xx_op_type)op_type)
count++;
if (count == post)
return i;
}
break;
case CS_ARCH_WASM:
for (i = 0; i < insn->detail->wasm.op_count; i++) {
if (insn->detail->wasm.operands[i].type == (wasm_op_type)op_type)
count++;
if (count == post)
return i;
}
break;
case CS_ARCH_BPF:
for (i = 0; i < insn->detail->bpf.op_count; i++) {
if (insn->detail->bpf.operands[i].type == (bpf_op_type)op_type)
count++;
if (count == post)
return i;
}
break;
case CS_ARCH_RISCV:
for (i = 0; i < insn->detail->riscv.op_count; i++) {
if (insn->detail->riscv.operands[i].type == (riscv_op_type)op_type)
count++;
if (count == post)
return i;
}
break;
case CS_ARCH_SH:
for (i = 0; i < insn->detail->sh.op_count; i++) {
if (insn->detail->sh.operands[i].type == (sh_op_type)op_type)
count++;
if (count == post)
return i;
}
break;
}
return -1;
}
CAPSTONE_EXPORT
cs_err CAPSTONE_API cs_regs_access(csh ud, const cs_insn *insn,
cs_regs regs_read, uint8_t *regs_read_count,
cs_regs regs_write, uint8_t *regs_write_count)
{
struct cs_struct *handle;
if (!ud)
return -1;
handle = (struct cs_struct *)(uintptr_t)ud;
#ifdef CAPSTONE_DIET
// This API does not work in DIET mode
handle->errnum = CS_ERR_DIET;
return CS_ERR_DIET;
#else
if (!handle->detail) {
handle->errnum = CS_ERR_DETAIL;
return CS_ERR_DETAIL;
}
if (!insn->id) {
handle->errnum = CS_ERR_SKIPDATA;
return CS_ERR_SKIPDATA;
}
if (!insn->detail) {
handle->errnum = CS_ERR_DETAIL;
return CS_ERR_DETAIL;
}
if (handle->reg_access) {
handle->reg_access(insn, regs_read, regs_read_count, regs_write, regs_write_count);
} else {
// this arch is unsupported yet
handle->errnum = CS_ERR_ARCH;
return CS_ERR_ARCH;
}
return CS_ERR_OK;
#endif
}