capstone/arch/X86/X86Disassembler.c

1034 lines
38 KiB
C

//===-- X86Disassembler.cpp - Disassembler for x86 and x86_64 -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is part of the X86 Disassembler.
// It contains code to translate the data produced by the decoder into
// MCInsts.
//
// The X86 disassembler is a table-driven disassembler for the 16-, 32-, and
// 64-bit X86 instruction sets. The main decode sequence for an assembly
// instruction in this disassembler is:
//
// 1. Read the prefix bytes and determine the attributes of the instruction.
// These attributes, recorded in enum attributeBits
// (X86DisassemblerDecoderCommon.h), form a bitmask. The table CONTEXTS_SYM
// provides a mapping from bitmasks to contexts, which are represented by
// enum InstructionContext (ibid.).
//
// 2. Read the opcode, and determine what kind of opcode it is. The
// disassembler distinguishes four kinds of opcodes, which are enumerated in
// OpcodeType (X86DisassemblerDecoderCommon.h): one-byte (0xnn), two-byte
// (0x0f 0xnn), three-byte-38 (0x0f 0x38 0xnn), or three-byte-3a
// (0x0f 0x3a 0xnn). Mandatory prefixes are treated as part of the context.
//
// 3. Depending on the opcode type, look in one of four ClassDecision structures
// (X86DisassemblerDecoderCommon.h). Use the opcode class to determine which
// OpcodeDecision (ibid.) to look the opcode in. Look up the opcode, to get
// a ModRMDecision (ibid.).
//
// 4. Some instructions, such as escape opcodes or extended opcodes, or even
// instructions that have ModRM*Reg / ModRM*Mem forms in LLVM, need the
// ModR/M byte to complete decode. The ModRMDecision's type is an entry from
// ModRMDecisionType (X86DisassemblerDecoderCommon.h) that indicates if the
// ModR/M byte is required and how to interpret it.
//
// 5. After resolving the ModRMDecision, the disassembler has a unique ID
// of type InstrUID (X86DisassemblerDecoderCommon.h). Looking this ID up in
// INSTRUCTIONS_SYM yields the name of the instruction and the encodings and
// meanings of its operands.
//
// 6. For each operand, its encoding is an entry from OperandEncoding
// (X86DisassemblerDecoderCommon.h) and its type is an entry from
// OperandType (ibid.). The encoding indicates how to read it from the
// instruction; the type indicates how to interpret the value once it has
// been read. For example, a register operand could be stored in the R/M
// field of the ModR/M byte, the REG field of the ModR/M byte, or added to
// the main opcode. This is orthogonal from its meaning (an GPR or an XMM
// register, for instance). Given this information, the operands can be
// extracted and interpreted.
//
// 7. As the last step, the disassembler translates the instruction information
// and operands into a format understandable by the client - in this case, an
// MCInst for use by the MC infrastructure.
//
// The disassembler is broken broadly into two parts: the table emitter that
// emits the instruction decode tables discussed above during compilation, and
// the disassembler itself. The table emitter is documented in more detail in
// utils/TableGen/X86DisassemblerEmitter.h.
//
// X86Disassembler.cpp contains the code responsible for step 7, and for
// invoking the decoder to execute steps 1-6.
// X86DisassemblerDecoderCommon.h contains the definitions needed by both the
// table emitter and the disassembler.
// X86DisassemblerDecoder.h contains the public interface of the decoder,
// factored out into C for possible use by other projects.
// X86DisassemblerDecoder.c contains the source code of the decoder, which is
// responsible for steps 1-6.
//
//===----------------------------------------------------------------------===//
/* Capstone Disassembly Engine */
/* By Nguyen Anh Quynh <aquynh@gmail.com>, 2013-2019 */
#ifdef CAPSTONE_HAS_X86
#if defined (WIN32) || defined (WIN64) || defined (_WIN32) || defined (_WIN64)
#pragma warning(disable:4996) // disable MSVC's warning on strncpy()
#pragma warning(disable:28719) // disable MSVC's warning on strncpy()
#endif
#include <capstone/platform.h>
#if defined(CAPSTONE_HAS_OSXKERNEL)
#include <Availability.h>
#endif
#include <string.h>
#include "../../cs_priv.h"
#include "X86BaseInfo.h"
#include "X86Disassembler.h"
#include "X86DisassemblerDecoderCommon.h"
#include "X86DisassemblerDecoder.h"
#include "../../MCInst.h"
#include "../../utils.h"
#include "X86Mapping.h"
#define GET_REGINFO_ENUM
#define GET_REGINFO_MC_DESC
#include "X86GenRegisterInfo.inc"
#define GET_INSTRINFO_ENUM
#ifdef CAPSTONE_X86_REDUCE
#include "X86GenInstrInfo_reduce.inc"
#else
#include "X86GenInstrInfo.inc"
#endif
// Fill-ins to make the compiler happy. These constants are never actually
// assigned; they are just filler to make an automatically-generated switch
// statement work.
enum {
X86_BX_SI = 500,
X86_BX_DI = 501,
X86_BP_SI = 502,
X86_BP_DI = 503,
X86_sib = 504,
X86_sib64 = 505
};
//
// Private code that translates from struct InternalInstructions to MCInsts.
//
/// translateRegister - Translates an internal register to the appropriate LLVM
/// register, and appends it as an operand to an MCInst.
///
/// @param mcInst - The MCInst to append to.
/// @param reg - The Reg to append.
static void translateRegister(MCInst *mcInst, Reg reg)
{
#define ENTRY(x) X86_##x,
static const uint16_t llvmRegnums[] = {
ALL_REGS
0
};
#undef ENTRY
uint16_t llvmRegnum = llvmRegnums[reg];
MCOperand_CreateReg0(mcInst, llvmRegnum);
}
static const uint8_t segmentRegnums[SEG_OVERRIDE_max] = {
0, // SEG_OVERRIDE_NONE
X86_CS,
X86_SS,
X86_DS,
X86_ES,
X86_FS,
X86_GS
};
/// translateSrcIndex - Appends a source index operand to an MCInst.
///
/// @param mcInst - The MCInst to append to.
/// @param insn - The internal instruction.
static bool translateSrcIndex(MCInst *mcInst, InternalInstruction *insn)
{
unsigned baseRegNo;
if (insn->mode == MODE_64BIT)
baseRegNo = insn->hasAdSize ? X86_ESI : X86_RSI;
else if (insn->mode == MODE_32BIT)
baseRegNo = insn->hasAdSize ? X86_SI : X86_ESI;
else {
// assert(insn->mode == MODE_16BIT);
baseRegNo = insn->hasAdSize ? X86_ESI : X86_SI;
}
MCOperand_CreateReg0(mcInst, baseRegNo);
MCOperand_CreateReg0(mcInst, segmentRegnums[insn->segmentOverride]);
return false;
}
/// translateDstIndex - Appends a destination index operand to an MCInst.
///
/// @param mcInst - The MCInst to append to.
/// @param insn - The internal instruction.
static bool translateDstIndex(MCInst *mcInst, InternalInstruction *insn)
{
unsigned baseRegNo;
if (insn->mode == MODE_64BIT)
baseRegNo = insn->hasAdSize ? X86_EDI : X86_RDI;
else if (insn->mode == MODE_32BIT)
baseRegNo = insn->hasAdSize ? X86_DI : X86_EDI;
else {
// assert(insn->mode == MODE_16BIT);
baseRegNo = insn->hasAdSize ? X86_EDI : X86_DI;
}
MCOperand_CreateReg0(mcInst, baseRegNo);
return false;
}
/// translateImmediate - Appends an immediate operand to an MCInst.
///
/// @param mcInst - The MCInst to append to.
/// @param immediate - The immediate value to append.
/// @param operand - The operand, as stored in the descriptor table.
/// @param insn - The internal instruction.
static void translateImmediate(MCInst *mcInst, uint64_t immediate,
const OperandSpecifier *operand, InternalInstruction *insn)
{
OperandType type;
type = (OperandType)operand->type;
if (type == TYPE_REL) {
//isBranch = true;
//pcrel = insn->startLocation + insn->immediateOffset + insn->immediateSize;
switch (operand->encoding) {
default:
break;
case ENCODING_Iv:
switch (insn->displacementSize) {
default:
break;
case 1:
if(immediate & 0x80)
immediate |= ~(0xffull);
break;
case 2:
if(immediate & 0x8000)
immediate |= ~(0xffffull);
break;
case 4:
if(immediate & 0x80000000)
immediate |= ~(0xffffffffull);
break;
case 8:
break;
}
break;
case ENCODING_IB:
if (immediate & 0x80)
immediate |= ~(0xffull);
break;
case ENCODING_IW:
if (immediate & 0x8000)
immediate |= ~(0xffffull);
break;
case ENCODING_ID:
if (immediate & 0x80000000)
immediate |= ~(0xffffffffull);
break;
}
} // By default sign-extend all X86 immediates based on their encoding.
else if (type == TYPE_IMM) {
switch (operand->encoding) {
default:
break;
case ENCODING_IB:
if(immediate & 0x80)
immediate |= ~(0xffull);
break;
case ENCODING_IW:
if(immediate & 0x8000)
immediate |= ~(0xffffull);
break;
case ENCODING_ID:
if(immediate & 0x80000000)
immediate |= ~(0xffffffffull);
break;
case ENCODING_IO:
break;
}
} else if (type == TYPE_IMM3) {
#ifndef CAPSTONE_X86_REDUCE
// Check for immediates that printSSECC can't handle.
if (immediate >= 8) {
unsigned NewOpc = 0;
switch (MCInst_getOpcode(mcInst)) {
default: break; // never reach
case X86_CMPPDrmi: NewOpc = X86_CMPPDrmi_alt; break;
case X86_CMPPDrri: NewOpc = X86_CMPPDrri_alt; break;
case X86_CMPPSrmi: NewOpc = X86_CMPPSrmi_alt; break;
case X86_CMPPSrri: NewOpc = X86_CMPPSrri_alt; break;
case X86_CMPSDrm: NewOpc = X86_CMPSDrm_alt; break;
case X86_CMPSDrr: NewOpc = X86_CMPSDrr_alt; break;
case X86_CMPSSrm: NewOpc = X86_CMPSSrm_alt; break;
case X86_CMPSSrr: NewOpc = X86_CMPSSrr_alt; break;
case X86_VPCOMBri: NewOpc = X86_VPCOMBri_alt; break;
case X86_VPCOMBmi: NewOpc = X86_VPCOMBmi_alt; break;
case X86_VPCOMWri: NewOpc = X86_VPCOMWri_alt; break;
case X86_VPCOMWmi: NewOpc = X86_VPCOMWmi_alt; break;
case X86_VPCOMDri: NewOpc = X86_VPCOMDri_alt; break;
case X86_VPCOMDmi: NewOpc = X86_VPCOMDmi_alt; break;
case X86_VPCOMQri: NewOpc = X86_VPCOMQri_alt; break;
case X86_VPCOMQmi: NewOpc = X86_VPCOMQmi_alt; break;
case X86_VPCOMUBri: NewOpc = X86_VPCOMUBri_alt; break;
case X86_VPCOMUBmi: NewOpc = X86_VPCOMUBmi_alt; break;
case X86_VPCOMUWri: NewOpc = X86_VPCOMUWri_alt; break;
case X86_VPCOMUWmi: NewOpc = X86_VPCOMUWmi_alt; break;
case X86_VPCOMUDri: NewOpc = X86_VPCOMUDri_alt; break;
case X86_VPCOMUDmi: NewOpc = X86_VPCOMUDmi_alt; break;
case X86_VPCOMUQri: NewOpc = X86_VPCOMUQri_alt; break;
case X86_VPCOMUQmi: NewOpc = X86_VPCOMUQmi_alt; break;
}
// Switch opcode to the one that doesn't get special printing.
if (NewOpc != 0) {
MCInst_setOpcode(mcInst, NewOpc);
}
}
#endif
} else if (type == TYPE_IMM5) {
#ifndef CAPSTONE_X86_REDUCE
// Check for immediates that printAVXCC can't handle.
if (immediate >= 32) {
unsigned NewOpc = 0;
switch (MCInst_getOpcode(mcInst)) {
default: break; // unexpected opcode
case X86_VCMPPDrmi: NewOpc = X86_VCMPPDrmi_alt; break;
case X86_VCMPPDrri: NewOpc = X86_VCMPPDrri_alt; break;
case X86_VCMPPSrmi: NewOpc = X86_VCMPPSrmi_alt; break;
case X86_VCMPPSrri: NewOpc = X86_VCMPPSrri_alt; break;
case X86_VCMPSDrm: NewOpc = X86_VCMPSDrm_alt; break;
case X86_VCMPSDrr: NewOpc = X86_VCMPSDrr_alt; break;
case X86_VCMPSSrm: NewOpc = X86_VCMPSSrm_alt; break;
case X86_VCMPSSrr: NewOpc = X86_VCMPSSrr_alt; break;
case X86_VCMPPDYrmi: NewOpc = X86_VCMPPDYrmi_alt; break;
case X86_VCMPPDYrri: NewOpc = X86_VCMPPDYrri_alt; break;
case X86_VCMPPSYrmi: NewOpc = X86_VCMPPSYrmi_alt; break;
case X86_VCMPPSYrri: NewOpc = X86_VCMPPSYrri_alt; break;
case X86_VCMPPDZrmi: NewOpc = X86_VCMPPDZrmi_alt; break;
case X86_VCMPPDZrri: NewOpc = X86_VCMPPDZrri_alt; break;
case X86_VCMPPDZrrib: NewOpc = X86_VCMPPDZrrib_alt; break;
case X86_VCMPPSZrmi: NewOpc = X86_VCMPPSZrmi_alt; break;
case X86_VCMPPSZrri: NewOpc = X86_VCMPPSZrri_alt; break;
case X86_VCMPPSZrrib: NewOpc = X86_VCMPPSZrrib_alt; break;
case X86_VCMPPDZ128rmi: NewOpc = X86_VCMPPDZ128rmi_alt; break;
case X86_VCMPPDZ128rri: NewOpc = X86_VCMPPDZ128rri_alt; break;
case X86_VCMPPSZ128rmi: NewOpc = X86_VCMPPSZ128rmi_alt; break;
case X86_VCMPPSZ128rri: NewOpc = X86_VCMPPSZ128rri_alt; break;
case X86_VCMPPDZ256rmi: NewOpc = X86_VCMPPDZ256rmi_alt; break;
case X86_VCMPPDZ256rri: NewOpc = X86_VCMPPDZ256rri_alt; break;
case X86_VCMPPSZ256rmi: NewOpc = X86_VCMPPSZ256rmi_alt; break;
case X86_VCMPPSZ256rri: NewOpc = X86_VCMPPSZ256rri_alt; break;
case X86_VCMPSDZrm_Int: NewOpc = X86_VCMPSDZrmi_alt; break;
case X86_VCMPSDZrr_Int: NewOpc = X86_VCMPSDZrri_alt; break;
case X86_VCMPSDZrrb_Int: NewOpc = X86_VCMPSDZrrb_alt; break;
case X86_VCMPSSZrm_Int: NewOpc = X86_VCMPSSZrmi_alt; break;
case X86_VCMPSSZrr_Int: NewOpc = X86_VCMPSSZrri_alt; break;
case X86_VCMPSSZrrb_Int: NewOpc = X86_VCMPSSZrrb_alt; break;
}
// Switch opcode to the one that doesn't get special printing.
if (NewOpc != 0) {
MCInst_setOpcode(mcInst, NewOpc);
}
}
#endif
} else if (type == TYPE_AVX512ICC) {
#ifndef CAPSTONE_X86_REDUCE
if (immediate >= 8 || ((immediate & 0x3) == 3)) {
unsigned NewOpc = 0;
switch (MCInst_getOpcode(mcInst)) {
default: // llvm_unreachable("unexpected opcode");
case X86_VPCMPBZ128rmi: NewOpc = X86_VPCMPBZ128rmi_alt; break;
case X86_VPCMPBZ128rmik: NewOpc = X86_VPCMPBZ128rmik_alt; break;
case X86_VPCMPBZ128rri: NewOpc = X86_VPCMPBZ128rri_alt; break;
case X86_VPCMPBZ128rrik: NewOpc = X86_VPCMPBZ128rrik_alt; break;
case X86_VPCMPBZ256rmi: NewOpc = X86_VPCMPBZ256rmi_alt; break;
case X86_VPCMPBZ256rmik: NewOpc = X86_VPCMPBZ256rmik_alt; break;
case X86_VPCMPBZ256rri: NewOpc = X86_VPCMPBZ256rri_alt; break;
case X86_VPCMPBZ256rrik: NewOpc = X86_VPCMPBZ256rrik_alt; break;
case X86_VPCMPBZrmi: NewOpc = X86_VPCMPBZrmi_alt; break;
case X86_VPCMPBZrmik: NewOpc = X86_VPCMPBZrmik_alt; break;
case X86_VPCMPBZrri: NewOpc = X86_VPCMPBZrri_alt; break;
case X86_VPCMPBZrrik: NewOpc = X86_VPCMPBZrrik_alt; break;
case X86_VPCMPDZ128rmi: NewOpc = X86_VPCMPDZ128rmi_alt; break;
case X86_VPCMPDZ128rmib: NewOpc = X86_VPCMPDZ128rmib_alt; break;
case X86_VPCMPDZ128rmibk: NewOpc = X86_VPCMPDZ128rmibk_alt; break;
case X86_VPCMPDZ128rmik: NewOpc = X86_VPCMPDZ128rmik_alt; break;
case X86_VPCMPDZ128rri: NewOpc = X86_VPCMPDZ128rri_alt; break;
case X86_VPCMPDZ128rrik: NewOpc = X86_VPCMPDZ128rrik_alt; break;
case X86_VPCMPDZ256rmi: NewOpc = X86_VPCMPDZ256rmi_alt; break;
case X86_VPCMPDZ256rmib: NewOpc = X86_VPCMPDZ256rmib_alt; break;
case X86_VPCMPDZ256rmibk: NewOpc = X86_VPCMPDZ256rmibk_alt; break;
case X86_VPCMPDZ256rmik: NewOpc = X86_VPCMPDZ256rmik_alt; break;
case X86_VPCMPDZ256rri: NewOpc = X86_VPCMPDZ256rri_alt; break;
case X86_VPCMPDZ256rrik: NewOpc = X86_VPCMPDZ256rrik_alt; break;
case X86_VPCMPDZrmi: NewOpc = X86_VPCMPDZrmi_alt; break;
case X86_VPCMPDZrmib: NewOpc = X86_VPCMPDZrmib_alt; break;
case X86_VPCMPDZrmibk: NewOpc = X86_VPCMPDZrmibk_alt; break;
case X86_VPCMPDZrmik: NewOpc = X86_VPCMPDZrmik_alt; break;
case X86_VPCMPDZrri: NewOpc = X86_VPCMPDZrri_alt; break;
case X86_VPCMPDZrrik: NewOpc = X86_VPCMPDZrrik_alt; break;
case X86_VPCMPQZ128rmi: NewOpc = X86_VPCMPQZ128rmi_alt; break;
case X86_VPCMPQZ128rmib: NewOpc = X86_VPCMPQZ128rmib_alt; break;
case X86_VPCMPQZ128rmibk: NewOpc = X86_VPCMPQZ128rmibk_alt; break;
case X86_VPCMPQZ128rmik: NewOpc = X86_VPCMPQZ128rmik_alt; break;
case X86_VPCMPQZ128rri: NewOpc = X86_VPCMPQZ128rri_alt; break;
case X86_VPCMPQZ128rrik: NewOpc = X86_VPCMPQZ128rrik_alt; break;
case X86_VPCMPQZ256rmi: NewOpc = X86_VPCMPQZ256rmi_alt; break;
case X86_VPCMPQZ256rmib: NewOpc = X86_VPCMPQZ256rmib_alt; break;
case X86_VPCMPQZ256rmibk: NewOpc = X86_VPCMPQZ256rmibk_alt; break;
case X86_VPCMPQZ256rmik: NewOpc = X86_VPCMPQZ256rmik_alt; break;
case X86_VPCMPQZ256rri: NewOpc = X86_VPCMPQZ256rri_alt; break;
case X86_VPCMPQZ256rrik: NewOpc = X86_VPCMPQZ256rrik_alt; break;
case X86_VPCMPQZrmi: NewOpc = X86_VPCMPQZrmi_alt; break;
case X86_VPCMPQZrmib: NewOpc = X86_VPCMPQZrmib_alt; break;
case X86_VPCMPQZrmibk: NewOpc = X86_VPCMPQZrmibk_alt; break;
case X86_VPCMPQZrmik: NewOpc = X86_VPCMPQZrmik_alt; break;
case X86_VPCMPQZrri: NewOpc = X86_VPCMPQZrri_alt; break;
case X86_VPCMPQZrrik: NewOpc = X86_VPCMPQZrrik_alt; break;
case X86_VPCMPUBZ128rmi: NewOpc = X86_VPCMPUBZ128rmi_alt; break;
case X86_VPCMPUBZ128rmik: NewOpc = X86_VPCMPUBZ128rmik_alt; break;
case X86_VPCMPUBZ128rri: NewOpc = X86_VPCMPUBZ128rri_alt; break;
case X86_VPCMPUBZ128rrik: NewOpc = X86_VPCMPUBZ128rrik_alt; break;
case X86_VPCMPUBZ256rmi: NewOpc = X86_VPCMPUBZ256rmi_alt; break;
case X86_VPCMPUBZ256rmik: NewOpc = X86_VPCMPUBZ256rmik_alt; break;
case X86_VPCMPUBZ256rri: NewOpc = X86_VPCMPUBZ256rri_alt; break;
case X86_VPCMPUBZ256rrik: NewOpc = X86_VPCMPUBZ256rrik_alt; break;
case X86_VPCMPUBZrmi: NewOpc = X86_VPCMPUBZrmi_alt; break;
case X86_VPCMPUBZrmik: NewOpc = X86_VPCMPUBZrmik_alt; break;
case X86_VPCMPUBZrri: NewOpc = X86_VPCMPUBZrri_alt; break;
case X86_VPCMPUBZrrik: NewOpc = X86_VPCMPUBZrrik_alt; break;
case X86_VPCMPUDZ128rmi: NewOpc = X86_VPCMPUDZ128rmi_alt; break;
case X86_VPCMPUDZ128rmib: NewOpc = X86_VPCMPUDZ128rmib_alt; break;
case X86_VPCMPUDZ128rmibk: NewOpc = X86_VPCMPUDZ128rmibk_alt; break;
case X86_VPCMPUDZ128rmik: NewOpc = X86_VPCMPUDZ128rmik_alt; break;
case X86_VPCMPUDZ128rri: NewOpc = X86_VPCMPUDZ128rri_alt; break;
case X86_VPCMPUDZ128rrik: NewOpc = X86_VPCMPUDZ128rrik_alt; break;
case X86_VPCMPUDZ256rmi: NewOpc = X86_VPCMPUDZ256rmi_alt; break;
case X86_VPCMPUDZ256rmib: NewOpc = X86_VPCMPUDZ256rmib_alt; break;
case X86_VPCMPUDZ256rmibk: NewOpc = X86_VPCMPUDZ256rmibk_alt; break;
case X86_VPCMPUDZ256rmik: NewOpc = X86_VPCMPUDZ256rmik_alt; break;
case X86_VPCMPUDZ256rri: NewOpc = X86_VPCMPUDZ256rri_alt; break;
case X86_VPCMPUDZ256rrik: NewOpc = X86_VPCMPUDZ256rrik_alt; break;
case X86_VPCMPUDZrmi: NewOpc = X86_VPCMPUDZrmi_alt; break;
case X86_VPCMPUDZrmib: NewOpc = X86_VPCMPUDZrmib_alt; break;
case X86_VPCMPUDZrmibk: NewOpc = X86_VPCMPUDZrmibk_alt; break;
case X86_VPCMPUDZrmik: NewOpc = X86_VPCMPUDZrmik_alt; break;
case X86_VPCMPUDZrri: NewOpc = X86_VPCMPUDZrri_alt; break;
case X86_VPCMPUDZrrik: NewOpc = X86_VPCMPUDZrrik_alt; break;
case X86_VPCMPUQZ128rmi: NewOpc = X86_VPCMPUQZ128rmi_alt; break;
case X86_VPCMPUQZ128rmib: NewOpc = X86_VPCMPUQZ128rmib_alt; break;
case X86_VPCMPUQZ128rmibk: NewOpc = X86_VPCMPUQZ128rmibk_alt; break;
case X86_VPCMPUQZ128rmik: NewOpc = X86_VPCMPUQZ128rmik_alt; break;
case X86_VPCMPUQZ128rri: NewOpc = X86_VPCMPUQZ128rri_alt; break;
case X86_VPCMPUQZ128rrik: NewOpc = X86_VPCMPUQZ128rrik_alt; break;
case X86_VPCMPUQZ256rmi: NewOpc = X86_VPCMPUQZ256rmi_alt; break;
case X86_VPCMPUQZ256rmib: NewOpc = X86_VPCMPUQZ256rmib_alt; break;
case X86_VPCMPUQZ256rmibk: NewOpc = X86_VPCMPUQZ256rmibk_alt; break;
case X86_VPCMPUQZ256rmik: NewOpc = X86_VPCMPUQZ256rmik_alt; break;
case X86_VPCMPUQZ256rri: NewOpc = X86_VPCMPUQZ256rri_alt; break;
case X86_VPCMPUQZ256rrik: NewOpc = X86_VPCMPUQZ256rrik_alt; break;
case X86_VPCMPUQZrmi: NewOpc = X86_VPCMPUQZrmi_alt; break;
case X86_VPCMPUQZrmib: NewOpc = X86_VPCMPUQZrmib_alt; break;
case X86_VPCMPUQZrmibk: NewOpc = X86_VPCMPUQZrmibk_alt; break;
case X86_VPCMPUQZrmik: NewOpc = X86_VPCMPUQZrmik_alt; break;
case X86_VPCMPUQZrri: NewOpc = X86_VPCMPUQZrri_alt; break;
case X86_VPCMPUQZrrik: NewOpc = X86_VPCMPUQZrrik_alt; break;
case X86_VPCMPUWZ128rmi: NewOpc = X86_VPCMPUWZ128rmi_alt; break;
case X86_VPCMPUWZ128rmik: NewOpc = X86_VPCMPUWZ128rmik_alt; break;
case X86_VPCMPUWZ128rri: NewOpc = X86_VPCMPUWZ128rri_alt; break;
case X86_VPCMPUWZ128rrik: NewOpc = X86_VPCMPUWZ128rrik_alt; break;
case X86_VPCMPUWZ256rmi: NewOpc = X86_VPCMPUWZ256rmi_alt; break;
case X86_VPCMPUWZ256rmik: NewOpc = X86_VPCMPUWZ256rmik_alt; break;
case X86_VPCMPUWZ256rri: NewOpc = X86_VPCMPUWZ256rri_alt; break;
case X86_VPCMPUWZ256rrik: NewOpc = X86_VPCMPUWZ256rrik_alt; break;
case X86_VPCMPUWZrmi: NewOpc = X86_VPCMPUWZrmi_alt; break;
case X86_VPCMPUWZrmik: NewOpc = X86_VPCMPUWZrmik_alt; break;
case X86_VPCMPUWZrri: NewOpc = X86_VPCMPUWZrri_alt; break;
case X86_VPCMPUWZrrik: NewOpc = X86_VPCMPUWZrrik_alt; break;
case X86_VPCMPWZ128rmi: NewOpc = X86_VPCMPWZ128rmi_alt; break;
case X86_VPCMPWZ128rmik: NewOpc = X86_VPCMPWZ128rmik_alt; break;
case X86_VPCMPWZ128rri: NewOpc = X86_VPCMPWZ128rri_alt; break;
case X86_VPCMPWZ128rrik: NewOpc = X86_VPCMPWZ128rrik_alt; break;
case X86_VPCMPWZ256rmi: NewOpc = X86_VPCMPWZ256rmi_alt; break;
case X86_VPCMPWZ256rmik: NewOpc = X86_VPCMPWZ256rmik_alt; break;
case X86_VPCMPWZ256rri: NewOpc = X86_VPCMPWZ256rri_alt; break;
case X86_VPCMPWZ256rrik: NewOpc = X86_VPCMPWZ256rrik_alt; break;
case X86_VPCMPWZrmi: NewOpc = X86_VPCMPWZrmi_alt; break;
case X86_VPCMPWZrmik: NewOpc = X86_VPCMPWZrmik_alt; break;
case X86_VPCMPWZrri: NewOpc = X86_VPCMPWZrri_alt; break;
case X86_VPCMPWZrrik: NewOpc = X86_VPCMPWZrrik_alt; break;
}
// Switch opcode to the one that doesn't get special printing.
if (NewOpc != 0) {
MCInst_setOpcode(mcInst, NewOpc);
}
}
#endif
}
switch (type) {
case TYPE_XMM:
MCOperand_CreateReg0(mcInst, X86_XMM0 + ((uint32_t)immediate >> 4));
return;
case TYPE_YMM:
MCOperand_CreateReg0(mcInst, X86_YMM0 + ((uint32_t)immediate >> 4));
return;
case TYPE_ZMM:
MCOperand_CreateReg0(mcInst, X86_ZMM0 + ((uint32_t)immediate >> 4));
return;
default:
// operand is 64 bits wide. Do nothing.
break;
}
MCOperand_CreateImm0(mcInst, immediate);
if (type == TYPE_MOFFS) {
MCOperand_CreateReg0(mcInst, segmentRegnums[insn->segmentOverride]);
}
}
/// translateRMRegister - Translates a register stored in the R/M field of the
/// ModR/M byte to its LLVM equivalent and appends it to an MCInst.
/// @param mcInst - The MCInst to append to.
/// @param insn - The internal instruction to extract the R/M field
/// from.
/// @return - 0 on success; -1 otherwise
static bool translateRMRegister(MCInst *mcInst, InternalInstruction *insn)
{
if (insn->eaBase == EA_BASE_sib || insn->eaBase == EA_BASE_sib64) {
//debug("A R/M register operand may not have a SIB byte");
return true;
}
switch (insn->eaBase) {
case EA_BASE_NONE:
//debug("EA_BASE_NONE for ModR/M base");
return true;
#define ENTRY(x) case EA_BASE_##x:
ALL_EA_BASES
#undef ENTRY
//debug("A R/M register operand may not have a base; "
// "the operand must be a register.");
return true;
#define ENTRY(x) \
case EA_REG_##x: \
MCOperand_CreateReg0(mcInst, X86_##x); break;
ALL_REGS
#undef ENTRY
default:
//debug("Unexpected EA base register");
return true;
}
return false;
}
/// translateRMMemory - Translates a memory operand stored in the Mod and R/M
/// fields of an internal instruction (and possibly its SIB byte) to a memory
/// operand in LLVM's format, and appends it to an MCInst.
///
/// @param mcInst - The MCInst to append to.
/// @param insn - The instruction to extract Mod, R/M, and SIB fields
/// from.
/// @return - 0 on success; nonzero otherwise
static bool translateRMMemory(MCInst *mcInst, InternalInstruction *insn)
{
// Addresses in an MCInst are represented as five operands:
// 1. basereg (register) The R/M base, or (if there is a SIB) the
// SIB base
// 2. scaleamount (immediate) 1, or (if there is a SIB) the specified
// scale amount
// 3. indexreg (register) x86_registerNONE, or (if there is a SIB)
// the index (which is multiplied by the
// scale amount)
// 4. displacement (immediate) 0, or the displacement if there is one
// 5. segmentreg (register) x86_registerNONE for now, but could be set
// if we have segment overrides
int scaleAmount, indexReg;
if (insn->eaBase == EA_BASE_sib || insn->eaBase == EA_BASE_sib64) {
if (insn->sibBase != SIB_BASE_NONE) {
switch (insn->sibBase) {
#define ENTRY(x) \
case SIB_BASE_##x: \
MCOperand_CreateReg0(mcInst, X86_##x); break;
ALL_SIB_BASES
#undef ENTRY
default:
//debug("Unexpected sibBase");
return true;
}
} else {
MCOperand_CreateReg0(mcInst, 0);
}
if (insn->sibIndex != SIB_INDEX_NONE) {
switch (insn->sibIndex) {
default:
//debug("Unexpected sibIndex");
return true;
#define ENTRY(x) \
case SIB_INDEX_##x: \
indexReg = X86_##x; break;
EA_BASES_32BIT
EA_BASES_64BIT
REGS_XMM
REGS_YMM
REGS_ZMM
#undef ENTRY
}
} else {
// Use EIZ/RIZ for a few ambiguous cases where the SIB byte is present,
// but no index is used and modrm alone should have been enough.
// -No base register in 32-bit mode. In 64-bit mode this is used to
// avoid rip-relative addressing.
// -Any base register used other than ESP/RSP/R12D/R12. Using these as a
// base always requires a SIB byte.
// -A scale other than 1 is used.
if (insn->sibScale != 1 ||
(insn->sibBase == SIB_BASE_NONE && insn->mode != MODE_64BIT) ||
(insn->sibBase != SIB_BASE_NONE &&
insn->sibBase != SIB_BASE_ESP && insn->sibBase != SIB_BASE_RSP &&
insn->sibBase != SIB_BASE_R12D && insn->sibBase != SIB_BASE_R12)) {
indexReg = insn->addressSize == 4? X86_EIZ : X86_RIZ;
} else
indexReg = 0;
}
scaleAmount = insn->sibScale;
} else {
switch (insn->eaBase) {
case EA_BASE_NONE:
if (insn->eaDisplacement == EA_DISP_NONE) {
//debug("EA_BASE_NONE and EA_DISP_NONE for ModR/M base");
return true;
}
if (insn->mode == MODE_64BIT) {
if (insn->prefix3 == 0x67) // address-size prefix overrides RIP relative addressing
MCOperand_CreateReg0(mcInst, X86_EIP);
else
// Section 2.2.1.6
MCOperand_CreateReg0(mcInst, insn->addressSize == 4 ? X86_EIP : X86_RIP);
} else {
MCOperand_CreateReg0(mcInst, 0);
}
indexReg = 0;
break;
case EA_BASE_BX_SI:
MCOperand_CreateReg0(mcInst, X86_BX);
indexReg = X86_SI;
break;
case EA_BASE_BX_DI:
MCOperand_CreateReg0(mcInst, X86_BX);
indexReg = X86_DI;
break;
case EA_BASE_BP_SI:
MCOperand_CreateReg0(mcInst, X86_BP);
indexReg = X86_SI;
break;
case EA_BASE_BP_DI:
MCOperand_CreateReg0(mcInst, X86_BP);
indexReg = X86_DI;
break;
default:
indexReg = 0;
switch (insn->eaBase) {
default:
//debug("Unexpected eaBase");
return true;
// Here, we will use the fill-ins defined above. However,
// BX_SI, BX_DI, BP_SI, and BP_DI are all handled above and
// sib and sib64 were handled in the top-level if, so they're only
// placeholders to keep the compiler happy.
#define ENTRY(x) \
case EA_BASE_##x: \
MCOperand_CreateReg0(mcInst, X86_##x); break;
ALL_EA_BASES
#undef ENTRY
#define ENTRY(x) case EA_REG_##x:
ALL_REGS
#undef ENTRY
//debug("A R/M memory operand may not be a register; "
// "the base field must be a base.");
return true;
}
}
scaleAmount = 1;
}
MCOperand_CreateImm0(mcInst, scaleAmount);
MCOperand_CreateReg0(mcInst, indexReg);
MCOperand_CreateImm0(mcInst, insn->displacement);
MCOperand_CreateReg0(mcInst, segmentRegnums[insn->segmentOverride]);
return false;
}
/// translateRM - Translates an operand stored in the R/M (and possibly SIB)
/// byte of an instruction to LLVM form, and appends it to an MCInst.
///
/// @param mcInst - The MCInst to append to.
/// @param operand - The operand, as stored in the descriptor table.
/// @param insn - The instruction to extract Mod, R/M, and SIB fields
/// from.
/// @return - 0 on success; nonzero otherwise
static bool translateRM(MCInst *mcInst, const OperandSpecifier *operand,
InternalInstruction *insn)
{
switch (operand->type) {
default:
//debug("Unexpected type for a R/M operand");
return true;
case TYPE_R8:
case TYPE_R16:
case TYPE_R32:
case TYPE_R64:
case TYPE_Rv:
case TYPE_MM64:
case TYPE_XMM:
case TYPE_YMM:
case TYPE_ZMM:
case TYPE_VK:
case TYPE_DEBUGREG:
case TYPE_CONTROLREG:
case TYPE_BNDR:
return translateRMRegister(mcInst, insn);
case TYPE_M:
case TYPE_MVSIBX:
case TYPE_MVSIBY:
case TYPE_MVSIBZ:
return translateRMMemory(mcInst, insn);
}
}
/// translateFPRegister - Translates a stack position on the FPU stack to its
/// LLVM form, and appends it to an MCInst.
///
/// @param mcInst - The MCInst to append to.
/// @param stackPos - The stack position to translate.
static void translateFPRegister(MCInst *mcInst, uint8_t stackPos)
{
MCOperand_CreateReg0(mcInst, X86_ST0 + stackPos);
}
/// translateMaskRegister - Translates a 3-bit mask register number to
/// LLVM form, and appends it to an MCInst.
///
/// @param mcInst - The MCInst to append to.
/// @param maskRegNum - Number of mask register from 0 to 7.
/// @return - false on success; true otherwise.
static bool translateMaskRegister(MCInst *mcInst, uint8_t maskRegNum)
{
if (maskRegNum >= 8) {
// debug("Invalid mask register number");
return true;
}
MCOperand_CreateReg0(mcInst, X86_K0 + maskRegNum);
return false;
}
/// translateOperand - Translates an operand stored in an internal instruction
/// to LLVM's format and appends it to an MCInst.
///
/// @param mcInst - The MCInst to append to.
/// @param operand - The operand, as stored in the descriptor table.
/// @param insn - The internal instruction.
/// @return - false on success; true otherwise.
static bool translateOperand(MCInst *mcInst, const OperandSpecifier *operand, InternalInstruction *insn)
{
switch (operand->encoding) {
case ENCODING_REG:
translateRegister(mcInst, insn->reg);
return false;
case ENCODING_WRITEMASK:
return translateMaskRegister(mcInst, insn->writemask);
CASE_ENCODING_RM:
CASE_ENCODING_VSIB:
return translateRM(mcInst, operand, insn);
case ENCODING_IB:
case ENCODING_IW:
case ENCODING_ID:
case ENCODING_IO:
case ENCODING_Iv:
case ENCODING_Ia:
translateImmediate(mcInst, insn->immediates[insn->numImmediatesTranslated++], operand, insn);
return false;
case ENCODING_IRC:
MCOperand_CreateImm0(mcInst, insn->RC);
return false;
case ENCODING_SI:
return translateSrcIndex(mcInst, insn);
case ENCODING_DI:
return translateDstIndex(mcInst, insn);
case ENCODING_RB:
case ENCODING_RW:
case ENCODING_RD:
case ENCODING_RO:
case ENCODING_Rv:
translateRegister(mcInst, insn->opcodeRegister);
return false;
case ENCODING_FP:
translateFPRegister(mcInst, insn->modRM & 7);
return false;
case ENCODING_VVVV:
translateRegister(mcInst, insn->vvvv);
return false;
case ENCODING_DUP:
return translateOperand(mcInst, &insn->operands[operand->type - TYPE_DUP0], insn);
default:
//debug("Unhandled operand encoding during translation");
return true;
}
}
static bool translateInstruction(MCInst *mcInst, InternalInstruction *insn)
{
int index;
if (!insn->spec) {
//debug("Instruction has no specification");
return true;
}
MCInst_clear(mcInst);
MCInst_setOpcode(mcInst, insn->instructionID);
// If when reading the prefix bytes we determined the overlapping 0xf2 or 0xf3
// prefix bytes should be disassembled as xrelease and xacquire then set the
// opcode to those instead of the rep and repne opcodes.
#ifndef CAPSTONE_X86_REDUCE
if (insn->xAcquireRelease) {
if (MCInst_getOpcode(mcInst) == X86_REP_PREFIX)
MCInst_setOpcode(mcInst, X86_XRELEASE_PREFIX);
else if (MCInst_getOpcode(mcInst) == X86_REPNE_PREFIX)
MCInst_setOpcode(mcInst, X86_XACQUIRE_PREFIX);
}
#endif
insn->numImmediatesTranslated = 0;
for (index = 0; index < X86_MAX_OPERANDS; ++index) {
if (insn->operands[index].encoding != ENCODING_NONE) {
if (translateOperand(mcInst, &insn->operands[index], insn)) {
return true;
}
}
}
return false;
}
static int reader(const struct reader_info *info, uint8_t *byte, uint64_t address)
{
if (address - info->offset >= info->size)
// out of buffer range
return -1;
*byte = info->code[address - info->offset];
return 0;
}
// copy x86 detail information from internal structure to public structure
static void update_pub_insn(cs_insn *pub, InternalInstruction *inter)
{
if (inter->vectorExtensionType != 0) {
memcpy(pub->detail->x86.opcode, inter->vectorExtensionPrefix, sizeof(pub->detail->x86.opcode));
} else {
if (inter->twoByteEscape) {
if (inter->threeByteEscape) {
pub->detail->x86.opcode[0] = inter->twoByteEscape;
pub->detail->x86.opcode[1] = inter->threeByteEscape;
pub->detail->x86.opcode[2] = inter->opcode;
} else {
pub->detail->x86.opcode[0] = inter->twoByteEscape;
pub->detail->x86.opcode[1] = inter->opcode;
}
} else {
pub->detail->x86.opcode[0] = inter->opcode;
}
}
pub->detail->x86.rex = inter->rexPrefix;
pub->detail->x86.addr_size = inter->addressSize;
pub->detail->x86.modrm = inter->orgModRM;
pub->detail->x86.encoding.modrm_offset = inter->modRMOffset;
pub->detail->x86.sib = inter->sib;
pub->detail->x86.sib_index = x86_map_sib_index(inter->sibIndex);
pub->detail->x86.sib_scale = inter->sibScale;
pub->detail->x86.sib_base = x86_map_sib_base(inter->sibBase);
pub->detail->x86.disp = inter->displacement;
if (inter->consumedDisplacement) {
pub->detail->x86.encoding.disp_offset = inter->displacementOffset;
pub->detail->x86.encoding.disp_size = inter->displacementSize;
}
pub->detail->x86.encoding.imm_offset = inter->immediateOffset;
if (pub->detail->x86.encoding.imm_size == 0 && inter->immediateOffset != 0)
pub->detail->x86.encoding.imm_size = inter->immediateSize;
}
void X86_init(MCRegisterInfo *MRI)
{
// InitMCRegisterInfo(), X86GenRegisterInfo.inc
// RI->InitMCRegisterInfo(X86RegDesc, 277,
// RA, PC,
// X86MCRegisterClasses, 86,
// X86RegUnitRoots, 162, X86RegDiffLists, X86LaneMaskLists, X86RegStrings,
// X86RegClassStrings,
// X86SubRegIdxLists, 9,
// X86SubRegIdxRanges, X86RegEncodingTable);
/*
InitMCRegisterInfo(X86RegDesc, 234,
RA, PC,
X86MCRegisterClasses, 79,
X86RegUnitRoots, 119, X86RegDiffLists, X86RegStrings,
X86SubRegIdxLists, 7,
X86SubRegIdxRanges, X86RegEncodingTable);
*/
MCRegisterInfo_InitMCRegisterInfo(MRI, X86RegDesc, 277,
0, 0,
X86MCRegisterClasses, 86,
0, 0, X86RegDiffLists, 0,
X86SubRegIdxLists, 9,
0);
}
// Public interface for the disassembler
bool X86_getInstruction(csh ud, const uint8_t *code, size_t code_len,
MCInst *instr, uint16_t *size, uint64_t address, void *_info)
{
cs_struct *handle = (cs_struct *)(uintptr_t)ud;
InternalInstruction insn = { 0 };
struct reader_info info;
int ret;
bool result;
info.code = code;
info.size = code_len;
info.offset = address;
if (instr->flat_insn->detail) {
// instr->flat_insn->detail initialization: 3 alternatives
// 1. The whole structure, this is how it's done in other arch disassemblers
// Probably overkill since cs_detail is huge because of the 36 operands of ARM
//memset(instr->flat_insn->detail, 0, sizeof(cs_detail));
// 2. Only the part relevant to x86
memset(instr->flat_insn->detail, 0, offsetof(cs_detail, x86) + sizeof(cs_x86));
// 3. The relevant part except for x86.operands
// sizeof(cs_x86) is 0x1c0, sizeof(x86.operands) is 0x180
// marginally faster, should be okay since x86.op_count is set to 0
//memset(instr->flat_insn->detail, 0, offsetof(cs_detail, x86)+offsetof(cs_x86, operands));
}
if (handle->mode & CS_MODE_16)
ret = decodeInstruction(&insn,
reader, &info,
address,
MODE_16BIT);
else if (handle->mode & CS_MODE_32)
ret = decodeInstruction(&insn,
reader, &info,
address,
MODE_32BIT);
else
ret = decodeInstruction(&insn,
reader, &info,
address,
MODE_64BIT);
if (ret) {
// *size = (uint16_t)(insn.readerCursor - address);
return false;
} else {
*size = (uint16_t)insn.length;
result = (!translateInstruction(instr, &insn)) ? true : false;
if (result) {
unsigned Flags = X86_IP_NO_PREFIX;
instr->imm_size = insn.immSize;
// copy all prefixes
instr->x86_prefix[0] = insn.prefix0;
instr->x86_prefix[1] = insn.prefix1;
instr->x86_prefix[2] = insn.prefix2;
instr->x86_prefix[3] = insn.prefix3;
instr->xAcquireRelease = insn.xAcquireRelease;
if (handle->detail) {
update_pub_insn(instr->flat_insn, &insn);
}
if (insn.hasAdSize)
Flags |= X86_IP_HAS_AD_SIZE;
if (!insn.mandatoryPrefix) {
if (insn.hasOpSize)
Flags |= X86_IP_HAS_OP_SIZE;
if (insn.repeatPrefix == 0xf2)
Flags |= X86_IP_HAS_REPEAT_NE;
else if (insn.repeatPrefix == 0xf3 &&
// It should not be 'pause' f3 90
insn.opcode != 0x90)
Flags |= X86_IP_HAS_REPEAT;
if (insn.hasLockPrefix)
Flags |= X86_IP_HAS_LOCK;
}
instr->flags = Flags;
}
return result;
}
}
#endif