gecko-dev/dom/bindings/BindingDeclarations.h

624 lines
15 KiB
C
Raw Normal View History

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*-*/
/* vim: set ts=2 sw=2 et tw=79: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this file,
* You can obtain one at http://mozilla.org/MPL/2.0/. */
/**
* A header for declaring various things that binding implementation headers
* might need. The idea is to make binding implementation headers safe to
* include anywhere without running into include hell like we do with
* BindingUtils.h
*/
#ifndef mozilla_dom_BindingDeclarations_h__
#define mozilla_dom_BindingDeclarations_h__
#include "nsStringGlue.h"
#include "js/Value.h"
#include "js/RootingAPI.h"
#include "mozilla/Maybe.h"
#include "nsCOMPtr.h"
#include "nsDOMString.h"
#include "nsStringBuffer.h"
#include "nsTArray.h"
#include "nsAutoPtr.h" // for nsRefPtr member variables
#include "mozilla/dom/OwningNonNull.h"
class nsWrapperCache;
// nsGlobalWindow implements nsWrapperCache, but doesn't always use it. Don't
// try to use it without fixing that first.
class nsGlobalWindow;
namespace mozilla {
namespace dom {
// Struct that serves as a base class for all dictionaries. Particularly useful
// so we can use IsBaseOf to detect dictionary template arguments.
struct DictionaryBase
{
};
// Struct that serves as a base class for all typed arrays and array buffers and
// array buffer views. Particularly useful so we can use IsBaseOf to detect
// typed array/buffer/view template arguments.
struct AllTypedArraysBase {
};
struct MainThreadDictionaryBase : public DictionaryBase
{
protected:
bool ParseJSON(JSContext *aCx, const nsAString& aJSON,
JS::MutableHandle<JS::Value> aVal);
};
struct EnumEntry {
const char* value;
size_t length;
};
class MOZ_STACK_CLASS GlobalObject
{
public:
GlobalObject(JSContext* aCx, JSObject* aObject);
JSObject* Get() const
{
return mGlobalJSObject;
}
nsISupports* GetAsSupports() const;
// The context that this returns is not guaranteed to be in the compartment of
// the object returned from Get(), in fact it's generally in the caller's
// compartment.
JSContext* GetContext() const
{
return mCx;
}
bool Failed() const
{
return !Get();
}
protected:
JS::RootedObject mGlobalJSObject;
JSContext* mCx;
mutable nsISupports* mGlobalObject;
mutable nsCOMPtr<nsISupports> mGlobalObjectRef;
};
/**
* A class for representing string return values. This can be either passed to
* callees that have an nsString or nsAString out param or passed to a callee
* that actually knows about this class and can work with it. Such a callee may
* call SetStringBuffer on this object, but only if it plans to keep holding a
* strong ref to the stringbuffer!
*
* The proper way to store a value in this class is to either to do nothing
* (which leaves this as an empty string), to call SetStringBuffer with a
* non-null stringbuffer, to call SetNull(), or to call AsAString() and set the
* value in the resulting nsString. These options are mutually exclusive!
* Don't do more than one of them.
*
* The proper way to extract a value is to check IsNull(). If not null, then
* check HasStringBuffer(). If that's true, check for a zero length, and if the
* length is nonzero call StringBuffer(). If the length is zero this is the
* empty string. If HasStringBuffer() returns false, call AsAString() and get
* the value from that.
*/
class MOZ_STACK_CLASS DOMString {
public:
DOMString()
: mStringBuffer(nullptr)
, mLength(0)
, mIsNull(false)
{}
~DOMString()
{
MOZ_ASSERT(mString.empty() || !mStringBuffer,
"Shouldn't have both present!");
}
operator nsString&()
{
return AsAString();
}
nsString& AsAString()
{
MOZ_ASSERT(!mStringBuffer, "We already have a stringbuffer?");
MOZ_ASSERT(!mIsNull, "We're already set as null");
if (mString.empty()) {
mString.construct();
}
return mString.ref();
}
bool HasStringBuffer() const
{
MOZ_ASSERT(mString.empty() || !mStringBuffer,
"Shouldn't have both present!");
MOZ_ASSERT(!mIsNull, "Caller should have checked IsNull() first");
return mString.empty();
}
// Get the stringbuffer. This can only be called if HasStringBuffer()
// returned true and StringBufferLength() is nonzero. If that's true, it will
// never return null.
nsStringBuffer* StringBuffer() const
{
MOZ_ASSERT(!mIsNull, "Caller should have checked IsNull() first");
MOZ_ASSERT(HasStringBuffer(),
"Don't ask for the stringbuffer if we don't have it");
MOZ_ASSERT(StringBufferLength() != 0, "Why are you asking for this?");
MOZ_ASSERT(mStringBuffer,
"If our length is nonzero, we better have a stringbuffer.");
return mStringBuffer;
}
// Get the length of the stringbuffer. Can only be called if
// HasStringBuffer().
uint32_t StringBufferLength() const
{
MOZ_ASSERT(HasStringBuffer(), "Don't call this if there is no stringbuffer");
return mLength;
}
void SetStringBuffer(nsStringBuffer* aStringBuffer, uint32_t aLength)
{
MOZ_ASSERT(mString.empty(), "We already have a string?");
MOZ_ASSERT(!mIsNull, "We're already set as null");
MOZ_ASSERT(!mStringBuffer, "Setting stringbuffer twice?");
MOZ_ASSERT(aStringBuffer, "Why are we getting null?");
mStringBuffer = aStringBuffer;
mLength = aLength;
}
void SetNull()
{
MOZ_ASSERT(!mStringBuffer, "Should have no stringbuffer if null");
MOZ_ASSERT(mString.empty(), "Should have no string if null");
mIsNull = true;
}
bool IsNull() const
{
MOZ_ASSERT(!mStringBuffer || mString.empty(),
"How could we have a stringbuffer and a nonempty string?");
return mIsNull || (!mString.empty() && mString.ref().IsVoid());
}
void ToString(nsAString& aString)
{
if (IsNull()) {
SetDOMStringToNull(aString);
} else if (HasStringBuffer()) {
if (StringBufferLength() == 0) {
aString.Truncate();
} else {
StringBuffer()->ToString(StringBufferLength(), aString);
}
} else {
aString = AsAString();
}
}
private:
// We need to be able to act like a string as needed
Maybe<nsAutoString> mString;
// For callees that know we exist, we can be a stringbuffer/length/null-flag
// triple.
nsStringBuffer* mStringBuffer;
uint32_t mLength;
bool mIsNull;
};
// Class for representing optional arguments.
template<typename T, typename InternalType>
class Optional_base
{
public:
Optional_base()
{}
explicit Optional_base(const T& aValue)
{
mImpl.construct(aValue);
}
template<typename T1, typename T2>
explicit Optional_base(const T1& aValue1, const T2& aValue2)
{
mImpl.construct(aValue1, aValue2);
}
bool WasPassed() const
{
return !mImpl.empty();
}
void Construct()
{
mImpl.construct();
}
template <class T1>
void Construct(const T1 &t1)
{
mImpl.construct(t1);
}
template <class T1, class T2>
void Construct(const T1 &t1, const T2 &t2)
{
mImpl.construct(t1, t2);
}
void Reset()
{
if (WasPassed()) {
mImpl.destroy();
}
}
const T& Value() const
{
return mImpl.ref();
}
// Return InternalType here so we can work with it usefully.
InternalType& Value()
{
return mImpl.ref();
}
// And an explicit way to get the InternalType even if we're const.
const InternalType& InternalValue() const
{
return mImpl.ref();
}
// If we ever decide to add conversion operators for optional arrays
// like the ones Nullable has, we'll need to ensure that Maybe<> has
// the boolean before the actual data.
private:
// Forbid copy-construction and assignment
Optional_base(const Optional_base& other) MOZ_DELETE;
const Optional_base &operator=(const Optional_base &other) MOZ_DELETE;
protected:
Maybe<InternalType> mImpl;
};
template<typename T>
class Optional : public Optional_base<T, T>
{
public:
Optional() :
Optional_base<T, T>()
{}
explicit Optional(const T& aValue) :
Optional_base<T, T>(aValue)
{}
};
template<typename T>
class Optional<JS::Handle<T> > :
public Optional_base<JS::Handle<T>, JS::Rooted<T> >
{
public:
Optional() :
Optional_base<JS::Handle<T>, JS::Rooted<T> >()
{}
Optional(JSContext* cx) :
Optional_base<JS::Handle<T>, JS::Rooted<T> >()
{
this->Construct(cx);
}
Optional(JSContext* cx, const T& aValue) :
Optional_base<JS::Handle<T>, JS::Rooted<T> >(cx, aValue)
{}
// Override the const Value() to return the right thing so we're not
// returning references to temporaries.
JS::Handle<T> Value() const
{
return this->mImpl.ref();
}
// And we have to override the non-const one too, since we're
// shadowing the one on the superclass.
JS::Rooted<T>& Value()
{
return this->mImpl.ref();
}
};
// A specialization of Optional for JSObject* to make sure that when someone
// calls Construct() on it we will pre-initialized the JSObject* to nullptr so
// it can be traced safely.
template<>
class Optional<JSObject*> : public Optional_base<JSObject*, JSObject*>
{
public:
Optional() :
Optional_base<JSObject*, JSObject*>()
{}
explicit Optional(JSObject* aValue) :
Optional_base<JSObject*, JSObject*>(aValue)
{}
// Don't allow us to have an uninitialized JSObject*
void Construct()
{
// The Android compiler sucks and thinks we're trying to construct
// a JSObject* from an int if we don't cast here. :(
Optional_base<JSObject*, JSObject*>::Construct(
static_cast<JSObject*>(nullptr));
}
template <class T1>
void Construct(const T1& t1)
{
Optional_base<JSObject*, JSObject*>::Construct(t1);
}
};
// A specialization of Optional for JS::Value to make sure that when someone
// calls Construct() on it we will pre-initialized the JS::Value to
// JS::UndefinedValue() so it can be traced safely.
template<>
class Optional<JS::Value> : public Optional_base<JS::Value, JS::Value>
{
public:
Optional() :
Optional_base<JS::Value, JS::Value>()
{}
explicit Optional(JS::Value aValue) :
Optional_base<JS::Value, JS::Value>(aValue)
{}
// Don't allow us to have an uninitialized JS::Value
void Construct()
{
Optional_base<JS::Value, JS::Value>::Construct(JS::UndefinedValue());
}
template <class T1>
void Construct(const T1& t1)
{
Optional_base<JS::Value, JS::Value>::Construct(t1);
}
};
// A specialization of Optional for NonNull that lets us get a T& from Value()
template<typename U> class NonNull;
template<typename T>
class Optional<NonNull<T> > : public Optional_base<T, NonNull<T> >
{
public:
// We want our Value to actually return a non-const reference, even
// if we're const. At least for things that are normally pointer
// types...
T& Value() const
{
return *this->mImpl.ref().get();
}
// And we have to override the non-const one too, since we're
// shadowing the one on the superclass.
NonNull<T>& Value()
{
return this->mImpl.ref();
}
};
// A specialization of Optional for OwningNonNull that lets us get a
// T& from Value()
template<typename T>
class Optional<OwningNonNull<T> > : public Optional_base<T, OwningNonNull<T> >
{
public:
// We want our Value to actually return a non-const reference, even
// if we're const. At least for things that are normally pointer
// types...
T& Value() const
{
return *this->mImpl.ref().get();
}
// And we have to override the non-const one too, since we're
// shadowing the one on the superclass.
OwningNonNull<T>& Value()
{
return this->mImpl.ref();
}
};
// Specialization for strings.
// XXXbz we can't pull in FakeDependentString here, because it depends on
// internal strings. So we just have to forward-declare it and reimplement its
// ToAStringPtr.
struct FakeDependentString;
template<>
class Optional<nsAString>
{
public:
Optional() : mPassed(false) {}
bool WasPassed() const
{
return mPassed;
}
void operator=(const nsAString* str)
{
MOZ_ASSERT(str);
mStr = str;
mPassed = true;
}
// If this code ever goes away, remove the comment pointing to it in the
// FakeDependentString class in BindingUtils.h.
void operator=(const FakeDependentString* str)
{
MOZ_ASSERT(str);
mStr = reinterpret_cast<const nsDependentString*>(str);
mPassed = true;
}
const nsAString& Value() const
{
MOZ_ASSERT(WasPassed());
return *mStr;
}
private:
// Forbid copy-construction and assignment
Optional(const Optional& other) MOZ_DELETE;
const Optional &operator=(const Optional &other) MOZ_DELETE;
bool mPassed;
const nsAString* mStr;
};
template<class T>
class NonNull
{
public:
NonNull()
#ifdef DEBUG
: inited(false)
#endif
{}
operator T&() {
MOZ_ASSERT(inited);
MOZ_ASSERT(ptr, "NonNull<T> was set to null");
return *ptr;
}
operator const T&() const {
MOZ_ASSERT(inited);
MOZ_ASSERT(ptr, "NonNull<T> was set to null");
return *ptr;
}
void operator=(T* t) {
ptr = t;
MOZ_ASSERT(ptr);
#ifdef DEBUG
inited = true;
#endif
}
template<typename U>
void operator=(U* t) {
ptr = t->ToAStringPtr();
MOZ_ASSERT(ptr);
#ifdef DEBUG
inited = true;
#endif
}
T** Slot() {
#ifdef DEBUG
inited = true;
#endif
return &ptr;
}
T* Ptr() {
MOZ_ASSERT(inited);
MOZ_ASSERT(ptr, "NonNull<T> was set to null");
return ptr;
}
// Make us work with smart-ptr helpers that expect a get()
T* get() const {
MOZ_ASSERT(inited);
MOZ_ASSERT(ptr);
return ptr;
}
protected:
T* ptr;
#ifdef DEBUG
bool inited;
#endif
};
// Class for representing sequences in arguments. We use a non-auto array
// because that allows us to use sequences of sequences and the like. This
// needs to be fallible because web content controls the length of the array,
// and can easily try to create very large lengths.
template<typename T>
class Sequence : public FallibleTArray<T>
{
public:
Sequence() : FallibleTArray<T>()
{}
};
inline nsWrapperCache*
GetWrapperCache(nsWrapperCache* cache)
{
return cache;
}
inline nsWrapperCache*
GetWrapperCache(nsGlobalWindow* not_allowed);
inline nsWrapperCache*
GetWrapperCache(void* p)
{
return NULL;
}
// Helper template for smart pointers to resolve ambiguity between
// GetWrappeCache(void*) and GetWrapperCache(const ParentObject&).
template <template <typename> class SmartPtr, typename T>
inline nsWrapperCache*
GetWrapperCache(const SmartPtr<T>& aObject)
{
return GetWrapperCache(aObject.get());
}
struct ParentObject {
template<class T>
ParentObject(T* aObject) :
mObject(aObject),
mWrapperCache(GetWrapperCache(aObject))
{}
template<class T, template<typename> class SmartPtr>
ParentObject(const SmartPtr<T>& aObject) :
mObject(aObject.get()),
mWrapperCache(GetWrapperCache(aObject.get()))
{}
ParentObject(nsISupports* aObject, nsWrapperCache* aCache) :
mObject(aObject),
mWrapperCache(aCache)
{}
nsISupports* const mObject;
nsWrapperCache* const mWrapperCache;
};
} // namespace dom
} // namespace mozilla
#endif // mozilla_dom_BindingDeclarations_h__