gecko-dev/memory/mozjemalloc/jemalloc.c

7187 lines
186 KiB
C
Raw Normal View History

/* -*- Mode: C; tab-width: 8; c-basic-offset: 8; indent-tabs-mode: t -*- */
/* vim:set softtabstop=8 shiftwidth=8 noet: */
/*-
* Copyright (C) 2006-2008 Jason Evans <jasone@FreeBSD.org>.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice(s), this list of conditions and the following disclaimer as
* the first lines of this file unmodified other than the possible
* addition of one or more copyright notices.
* 2. Redistributions in binary form must reproduce the above copyright
* notice(s), this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*******************************************************************************
*
* This allocator implementation is designed to provide scalable performance
* for multi-threaded programs on multi-processor systems. The following
* features are included for this purpose:
*
* + Multiple arenas are used if there are multiple CPUs, which reduces lock
* contention and cache sloshing.
*
* + Cache line sharing between arenas is avoided for internal data
* structures.
*
* + Memory is managed in chunks and runs (chunks can be split into runs),
* rather than as individual pages. This provides a constant-time
* mechanism for associating allocations with particular arenas.
*
* Allocation requests are rounded up to the nearest size class, and no record
* of the original request size is maintained. Allocations are broken into
* categories according to size class. Assuming runtime defaults, 4 kB pages
* and a 16 byte quantum on a 32-bit system, the size classes in each category
* are as follows:
*
* |=====================================|
* | Category | Subcategory | Size |
* |=====================================|
* | Small | Tiny | 2 |
* | | | 4 |
* | | | 8 |
* | |----------------+---------|
* | | Quantum-spaced | 16 |
* | | | 32 |
* | | | 48 |
* | | | ... |
* | | | 480 |
* | | | 496 |
* | | | 512 |
* | |----------------+---------|
* | | Sub-page | 1 kB |
* | | | 2 kB |
* |=====================================|
* | Large | 4 kB |
* | | 8 kB |
* | | 12 kB |
* | | ... |
* | | 1012 kB |
* | | 1016 kB |
* | | 1020 kB |
* |=====================================|
* | Huge | 1 MB |
* | | 2 MB |
* | | 3 MB |
* | | ... |
* |=====================================|
*
* NOTE: Due to Mozilla bug 691003, we cannot reserve less than one word for an
* allocation on Linux or Mac. So on 32-bit *nix, the smallest bucket size is
* 4 bytes, and on 64-bit, the smallest bucket size is 8 bytes.
*
* A different mechanism is used for each category:
*
* Small : Each size class is segregated into its own set of runs. Each run
* maintains a bitmap of which regions are free/allocated.
*
* Large : Each allocation is backed by a dedicated run. Metadata are stored
* in the associated arena chunk header maps.
*
* Huge : Each allocation is backed by a dedicated contiguous set of chunks.
* Metadata are stored in a separate red-black tree.
*
*******************************************************************************
*/
#ifdef MOZ_MEMORY_ANDROID
#define NO_TLS
#define _pthread_self() pthread_self()
#endif
/*
* On Linux, we use madvise(MADV_DONTNEED) to release memory back to the
* operating system. If we release 1MB of live pages with MADV_DONTNEED, our
* RSS will decrease by 1MB (almost) immediately.
*
* On Mac, we use madvise(MADV_FREE). Unlike MADV_DONTNEED on Linux, MADV_FREE
* on Mac doesn't cause the OS to release the specified pages immediately; the
* OS keeps them in our process until the machine comes under memory pressure.
*
* It's therefore difficult to measure the process's RSS on Mac, since, in the
* absence of memory pressure, the contribution from the heap to RSS will not
* decrease due to our madvise calls.
*
* We therefore define MALLOC_DOUBLE_PURGE on Mac. This causes jemalloc to
* track which pages have been MADV_FREE'd. You can then call
* jemalloc_purge_freed_pages(), which will force the OS to release those
* MADV_FREE'd pages, making the process's RSS reflect its true memory usage.
*
* The jemalloc_purge_freed_pages definition in memory/build/mozmemory.h needs
* to be adjusted if MALLOC_DOUBLE_PURGE is ever enabled on Linux.
*/
#ifdef MOZ_MEMORY_DARWIN
#define MALLOC_DOUBLE_PURGE
#endif
/*
* MALLOC_PRODUCTION disables assertions and statistics gathering. It also
* defaults the A and J runtime options to off. These settings are appropriate
* for production systems.
*/
#ifndef MOZ_MEMORY_DEBUG
# define MALLOC_PRODUCTION
#endif
/*
* Use only one arena by default. Mozilla does not currently make extensive
* use of concurrent allocation, so the increased fragmentation associated with
* multiple arenas is not warranted.
*/
#define MOZ_MEMORY_NARENAS_DEFAULT_ONE
/*
* Pass this set of options to jemalloc as its default. It does not override
* the options passed via the MALLOC_OPTIONS environment variable but is
* applied in addition to them.
*/
#ifdef MOZ_B2G
/* Reduce the amount of unused dirty pages to 1MiB on B2G */
# define MOZ_MALLOC_OPTIONS "ff"
#else
# define MOZ_MALLOC_OPTIONS ""
#endif
/*
* MALLOC_STATS enables statistics calculation, and is required for
* jemalloc_stats().
*/
#define MALLOC_STATS
/* Memory filling (junk/poison/zero). */
#define MALLOC_FILL
#ifndef MALLOC_PRODUCTION
/*
* MALLOC_DEBUG enables assertions and other sanity checks, and disables
* inline functions.
*/
# define MALLOC_DEBUG
/* Allocation tracing. */
# ifndef MOZ_MEMORY_WINDOWS
# define MALLOC_UTRACE
# endif
/* Support optional abort() on OOM. */
# define MALLOC_XMALLOC
/* Support SYSV semantics. */
# define MALLOC_SYSV
#endif
/*
* MALLOC_VALIDATE causes malloc_usable_size() to perform some pointer
* validation. There are many possible errors that validation does not even
* attempt to detect.
*/
#define MALLOC_VALIDATE
/*
* MALLOC_BALANCE enables monitoring of arena lock contention and dynamically
* re-balances arena load if exponentially averaged contention exceeds a
* certain threshold.
*/
/* #define MALLOC_BALANCE */
#if defined(MOZ_MEMORY_LINUX) && !defined(MOZ_MEMORY_ANDROID)
#define _GNU_SOURCE /* For mremap(2). */
#if 0 /* Enable in order to test decommit code on Linux. */
# define MALLOC_DECOMMIT
#endif
#endif
#include <sys/types.h>
#include <errno.h>
#include <stdlib.h>
#include <limits.h>
#include <stdarg.h>
#include <stdio.h>
#include <string.h>
#ifdef MOZ_MEMORY_WINDOWS
/* Some defines from the CRT internal headers that we need here. */
#define _CRT_SPINCOUNT 5000
#define __crtInitCritSecAndSpinCount InitializeCriticalSectionAndSpinCount
#include <io.h>
#include <windows.h>
#include <intrin.h>
#pragma warning( disable: 4267 4996 4146 )
#define bool BOOL
#define false FALSE
#define true TRUE
#define inline __inline
#define SIZE_T_MAX SIZE_MAX
#define STDERR_FILENO 2
#define PATH_MAX MAX_PATH
#define vsnprintf _vsnprintf
#ifndef NO_TLS
static unsigned long tlsIndex = 0xffffffff;
#endif
#define __thread
#define _pthread_self() __threadid()
/* use MSVC intrinsics */
#pragma intrinsic(_BitScanForward)
static __forceinline int
ffs(int x)
{
unsigned long i;
if (_BitScanForward(&i, x) != 0)
return (i + 1);
return (0);
}
/* Implement getenv without using malloc */
static char mozillaMallocOptionsBuf[64];
#define getenv xgetenv
static char *
getenv(const char *name)
{
if (GetEnvironmentVariableA(name, (LPSTR)&mozillaMallocOptionsBuf,
sizeof(mozillaMallocOptionsBuf)) > 0)
return (mozillaMallocOptionsBuf);
return (NULL);
}
typedef unsigned char uint8_t;
typedef unsigned uint32_t;
typedef unsigned long long uint64_t;
typedef unsigned long long uintmax_t;
#if defined(_WIN64)
typedef long long ssize_t;
#else
typedef long ssize_t;
#endif
#define MALLOC_DECOMMIT
#endif
/*
* Allow unmapping pages on all platforms. Note that if this is disabled,
* jemalloc will never unmap anything, instead recycling pages for later use.
*/
#define JEMALLOC_MUNMAP
/*
* Enable limited chunk recycling on all platforms. Note that when
* JEMALLOC_MUNMAP is not defined, all chunks will be recycled unconditionally.
*/
#define JEMALLOC_RECYCLE
#ifndef MOZ_MEMORY_WINDOWS
#ifndef MOZ_MEMORY_SOLARIS
#include <sys/cdefs.h>
#endif
#ifndef __DECONST
# define __DECONST(type, var) ((type)(uintptr_t)(const void *)(var))
#endif
#ifndef MOZ_MEMORY
__FBSDID("$FreeBSD: head/lib/libc/stdlib/malloc.c 180599 2008-07-18 19:35:44Z jasone $");
#include "libc_private.h"
#ifdef MALLOC_DEBUG
# define _LOCK_DEBUG
#endif
#include "spinlock.h"
#include "namespace.h"
#endif
#include <sys/mman.h>
#ifndef MADV_FREE
# define MADV_FREE MADV_DONTNEED
#endif
#ifndef MAP_NOSYNC
# define MAP_NOSYNC 0
#endif
#include <sys/param.h>
#ifndef MOZ_MEMORY
#include <sys/stddef.h>
#endif
#include <sys/time.h>
#include <sys/types.h>
#if !defined(MOZ_MEMORY_SOLARIS) && !defined(MOZ_MEMORY_ANDROID)
#include <sys/sysctl.h>
#endif
#include <sys/uio.h>
#ifndef MOZ_MEMORY
#include <sys/ktrace.h> /* Must come after several other sys/ includes. */
#include <machine/atomic.h>
#include <machine/cpufunc.h>
#include <machine/vmparam.h>
#endif
#include <errno.h>
#include <limits.h>
#ifndef SIZE_T_MAX
# define SIZE_T_MAX SIZE_MAX
#endif
#include <pthread.h>
#ifdef MOZ_MEMORY_DARWIN
#define _pthread_self pthread_self
#define _pthread_mutex_init pthread_mutex_init
#define _pthread_mutex_trylock pthread_mutex_trylock
#define _pthread_mutex_lock pthread_mutex_lock
#define _pthread_mutex_unlock pthread_mutex_unlock
#endif
#include <sched.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#ifndef MOZ_MEMORY_DARWIN
#include <strings.h>
#endif
#include <unistd.h>
#ifdef MOZ_MEMORY_DARWIN
#include <libkern/OSAtomic.h>
#include <mach/mach_error.h>
#include <mach/mach_init.h>
#include <mach/vm_map.h>
#include <malloc/malloc.h>
#endif
#ifndef MOZ_MEMORY
#include "un-namespace.h"
#endif
#endif
#include "jemalloc_types.h"
#include "linkedlist.h"
#include "mozmemory_wrap.h"
/* Some tools, such as /dev/dsp wrappers, LD_PRELOAD libraries that
* happen to override mmap() and call dlsym() from their overridden
* mmap(). The problem is that dlsym() calls malloc(), and this ends
* up in a dead lock in jemalloc.
* On these systems, we prefer to directly use the system call.
* We do that for Linux systems and kfreebsd with GNU userland.
* Note sanity checks are not done (alignment of offset, ...) because
* the uses of mmap are pretty limited, in jemalloc.
*
* On Alpha, glibc has a bug that prevents syscall() to work for system
* calls with 6 arguments
*/
#if (defined(MOZ_MEMORY_LINUX) && !defined(__alpha__)) || \
(defined(MOZ_MEMORY_BSD) && defined(__GLIBC__))
#include <sys/syscall.h>
#if defined(SYS_mmap) || defined(SYS_mmap2)
static inline
void *_mmap(void *addr, size_t length, int prot, int flags,
int fd, off_t offset)
{
/* S390 only passes one argument to the mmap system call, which is a
* pointer to a structure containing the arguments */
#ifdef __s390__
struct {
void *addr;
size_t length;
long prot;
long flags;
long fd;
off_t offset;
} args = { addr, length, prot, flags, fd, offset };
return (void *) syscall(SYS_mmap, &args);
#else
#ifdef SYS_mmap2
return (void *) syscall(SYS_mmap2, addr, length, prot, flags,
fd, offset >> 12);
#else
return (void *) syscall(SYS_mmap, addr, length, prot, flags,
fd, offset);
#endif
#endif
}
#define mmap _mmap
#define munmap(a, l) syscall(SYS_munmap, a, l)
#endif
#endif
#ifdef MOZ_MEMORY_DARWIN
static const bool isthreaded = true;
#endif
#if defined(MOZ_MEMORY_SOLARIS) && defined(MAP_ALIGN) && !defined(JEMALLOC_NEVER_USES_MAP_ALIGN)
#define JEMALLOC_USES_MAP_ALIGN /* Required on Solaris 10. Might improve performance elsewhere. */
#endif
#define __DECONST(type, var) ((type)(uintptr_t)(const void *)(var))
#ifdef MOZ_MEMORY_WINDOWS
/* MSVC++ does not support C99 variable-length arrays. */
# define RB_NO_C99_VARARRAYS
#endif
#include "rb.h"
#ifdef MALLOC_DEBUG
/* Disable inlining to make debugging easier. */
#ifdef inline
#undef inline
#endif
# define inline
#endif
/* Size of stack-allocated buffer passed to strerror_r(). */
#define STRERROR_BUF 64
/* Minimum alignment of non-tiny allocations is 2^QUANTUM_2POW_MIN bytes. */
# define QUANTUM_2POW_MIN 4
#if defined(_WIN64) || defined(__LP64__)
# define SIZEOF_PTR_2POW 3
#else
# define SIZEOF_PTR_2POW 2
#endif
#define PIC
#ifndef MOZ_MEMORY_DARWIN
static const bool isthreaded = true;
#else
# define NO_TLS
#endif
#if 0
#ifdef __i386__
# define QUANTUM_2POW_MIN 4
# define SIZEOF_PTR_2POW 2
# define CPU_SPINWAIT __asm__ volatile("pause")
#endif
#ifdef __ia64__
# define QUANTUM_2POW_MIN 4
# define SIZEOF_PTR_2POW 3
#endif
#ifdef __alpha__
# define QUANTUM_2POW_MIN 4
# define SIZEOF_PTR_2POW 3
# define NO_TLS
#endif
#ifdef __sparc64__
# define QUANTUM_2POW_MIN 4
# define SIZEOF_PTR_2POW 3
# define NO_TLS
#endif
#ifdef __amd64__
# define QUANTUM_2POW_MIN 4
# define SIZEOF_PTR_2POW 3
# define CPU_SPINWAIT __asm__ volatile("pause")
#endif
#ifdef __arm__
# define QUANTUM_2POW_MIN 3
# define SIZEOF_PTR_2POW 2
# define NO_TLS
#endif
#ifdef __mips__
# define QUANTUM_2POW_MIN 3
# define SIZEOF_PTR_2POW 2
# define NO_TLS
#endif
#ifdef __powerpc__
# define QUANTUM_2POW_MIN 4
# define SIZEOF_PTR_2POW 2
#endif
#endif
#define SIZEOF_PTR (1U << SIZEOF_PTR_2POW)
/* sizeof(int) == (1U << SIZEOF_INT_2POW). */
#ifndef SIZEOF_INT_2POW
# define SIZEOF_INT_2POW 2
#endif
/* We can't use TLS in non-PIC programs, since TLS relies on loader magic. */
#if (!defined(PIC) && !defined(NO_TLS))
# define NO_TLS
#endif
#ifdef NO_TLS
/* MALLOC_BALANCE requires TLS. */
# ifdef MALLOC_BALANCE
# undef MALLOC_BALANCE
# endif
#endif
/*
* Size and alignment of memory chunks that are allocated by the OS's virtual
* memory system.
*/
#define CHUNK_2POW_DEFAULT 20
/* Maximum number of dirty pages per arena. */
#define DIRTY_MAX_DEFAULT (1U << 10)
/*
* Maximum size of L1 cache line. This is used to avoid cache line aliasing,
* so over-estimates are okay (up to a point), but under-estimates will
* negatively affect performance.
*/
#define CACHELINE_2POW 6
#define CACHELINE ((size_t)(1U << CACHELINE_2POW))
/*
* Smallest size class to support. On Linux and Mac, even malloc(1) must
* reserve a word's worth of memory (see Mozilla bug 691003).
*/
#ifdef MOZ_MEMORY_WINDOWS
#define TINY_MIN_2POW 1
#else
#define TINY_MIN_2POW (sizeof(void*) == 8 ? 3 : 2)
#endif
/*
* Maximum size class that is a multiple of the quantum, but not (necessarily)
* a power of 2. Above this size, allocations are rounded up to the nearest
* power of 2.
*/
#define SMALL_MAX_2POW_DEFAULT 9
#define SMALL_MAX_DEFAULT (1U << SMALL_MAX_2POW_DEFAULT)
/*
* RUN_MAX_OVRHD indicates maximum desired run header overhead. Runs are sized
* as small as possible such that this setting is still honored, without
* violating other constraints. The goal is to make runs as small as possible
* without exceeding a per run external fragmentation threshold.
*
* We use binary fixed point math for overhead computations, where the binary
* point is implicitly RUN_BFP bits to the left.
*
* Note that it is possible to set RUN_MAX_OVRHD low enough that it cannot be
* honored for some/all object sizes, since there is one bit of header overhead
* per object (plus a constant). This constraint is relaxed (ignored) for runs
* that are so small that the per-region overhead is greater than:
*
* (RUN_MAX_OVRHD / (reg_size << (3+RUN_BFP))
*/
#define RUN_BFP 12
/* \/ Implicit binary fixed point. */
#define RUN_MAX_OVRHD 0x0000003dU
#define RUN_MAX_OVRHD_RELAX 0x00001800U
/*
* Hyper-threaded CPUs may need a special instruction inside spin loops in
* order to yield to another virtual CPU. If no such instruction is defined
* above, make CPU_SPINWAIT a no-op.
*/
#ifndef CPU_SPINWAIT
# define CPU_SPINWAIT
#endif
/*
* Adaptive spinning must eventually switch to blocking, in order to avoid the
* potential for priority inversion deadlock. Backing off past a certain point
* can actually waste time.
*/
#define SPIN_LIMIT_2POW 11
/*
* Conversion from spinning to blocking is expensive; we use (1U <<
* BLOCK_COST_2POW) to estimate how many more times costly blocking is than
* worst-case spinning.
*/
#define BLOCK_COST_2POW 4
#ifdef MALLOC_BALANCE
/*
* We use an exponential moving average to track recent lock contention,
* where the size of the history window is N, and alpha=2/(N+1).
*
* Due to integer math rounding, very small values here can cause
* substantial degradation in accuracy, thus making the moving average decay
* faster than it would with precise calculation.
*/
# define BALANCE_ALPHA_INV_2POW 9
/*
* Threshold value for the exponential moving contention average at which to
* re-assign a thread.
*/
# define BALANCE_THRESHOLD_DEFAULT (1U << (SPIN_LIMIT_2POW-4))
#endif
/******************************************************************************/
/* MALLOC_DECOMMIT and MALLOC_DOUBLE_PURGE are mutually exclusive. */
#if defined(MALLOC_DECOMMIT) && defined(MALLOC_DOUBLE_PURGE)
#error MALLOC_DECOMMIT and MALLOC_DOUBLE_PURGE are mutually exclusive.
#endif
/*
* Mutexes based on spinlocks. We can't use normal pthread spinlocks in all
* places, because they require malloc()ed memory, which causes bootstrapping
* issues in some cases.
*/
#if defined(MOZ_MEMORY_WINDOWS)
#define malloc_mutex_t CRITICAL_SECTION
#define malloc_spinlock_t CRITICAL_SECTION
#elif defined(MOZ_MEMORY_DARWIN)
typedef struct {
OSSpinLock lock;
} malloc_mutex_t;
typedef struct {
OSSpinLock lock;
} malloc_spinlock_t;
#elif defined(MOZ_MEMORY)
typedef pthread_mutex_t malloc_mutex_t;
typedef pthread_mutex_t malloc_spinlock_t;
#else
/* XXX these should #ifdef these for freebsd (and linux?) only */
typedef struct {
spinlock_t lock;
} malloc_mutex_t;
typedef malloc_spinlock_t malloc_mutex_t;
#endif
/* Set to true once the allocator has been initialized. */
static bool malloc_initialized = false;
#if defined(MOZ_MEMORY_WINDOWS)
/* No init lock for Windows. */
#elif defined(MOZ_MEMORY_DARWIN)
static malloc_mutex_t init_lock = {OS_SPINLOCK_INIT};
#elif defined(MOZ_MEMORY_LINUX) && !defined(MOZ_MEMORY_ANDROID)
static malloc_mutex_t init_lock = PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP;
#elif defined(MOZ_MEMORY)
static malloc_mutex_t init_lock = PTHREAD_MUTEX_INITIALIZER;
#else
static malloc_mutex_t init_lock = {_SPINLOCK_INITIALIZER};
#endif
/******************************************************************************/
/*
* Statistics data structures.
*/
#ifdef MALLOC_STATS
typedef struct malloc_bin_stats_s malloc_bin_stats_t;
struct malloc_bin_stats_s {
/*
* Number of allocation requests that corresponded to the size of this
* bin.
*/
uint64_t nrequests;
/* Total number of runs created for this bin's size class. */
uint64_t nruns;
/*
* Total number of runs reused by extracting them from the runs tree for
* this bin's size class.
*/
uint64_t reruns;
/* High-water mark for this bin. */
unsigned long highruns;
/* Current number of runs in this bin. */
unsigned long curruns;
};
typedef struct arena_stats_s arena_stats_t;
struct arena_stats_s {
/* Number of bytes currently mapped. */
size_t mapped;
/*
* Total number of purge sweeps, total number of madvise calls made,
* and total pages purged in order to keep dirty unused memory under
* control.
*/
uint64_t npurge;
uint64_t nmadvise;
uint64_t purged;
#ifdef MALLOC_DECOMMIT
/*
* Total number of decommit/commit operations, and total number of
* pages decommitted.
*/
uint64_t ndecommit;
uint64_t ncommit;
uint64_t decommitted;
#endif
/* Current number of committed pages. */
size_t committed;
/* Per-size-category statistics. */
size_t allocated_small;
uint64_t nmalloc_small;
uint64_t ndalloc_small;
size_t allocated_large;
uint64_t nmalloc_large;
uint64_t ndalloc_large;
#ifdef MALLOC_BALANCE
/* Number of times this arena reassigned a thread due to contention. */
uint64_t nbalance;
#endif
};
#endif /* #ifdef MALLOC_STATS */
/******************************************************************************/
/*
* Extent data structures.
*/
/* Tree of extents. */
typedef struct extent_node_s extent_node_t;
struct extent_node_s {
/* Linkage for the size/address-ordered tree. */
rb_node(extent_node_t) link_szad;
/* Linkage for the address-ordered tree. */
rb_node(extent_node_t) link_ad;
/* Pointer to the extent that this tree node is responsible for. */
void *addr;
/* Total region size. */
size_t size;
/* True if zero-filled; used by chunk recycling code. */
bool zeroed;
};
typedef rb_tree(extent_node_t) extent_tree_t;
/******************************************************************************/
/*
* Radix tree data structures.
*/
#ifdef MALLOC_VALIDATE
/*
* Size of each radix tree node (must be a power of 2). This impacts tree
* depth.
*/
# if (SIZEOF_PTR == 4)
# define MALLOC_RTREE_NODESIZE (1U << 14)
# else
# define MALLOC_RTREE_NODESIZE CACHELINE
# endif
typedef struct malloc_rtree_s malloc_rtree_t;
struct malloc_rtree_s {
malloc_spinlock_t lock;
void **root;
unsigned height;
unsigned level2bits[1]; /* Dynamically sized. */
};
#endif
/******************************************************************************/
/*
* Arena data structures.
*/
typedef struct arena_s arena_t;
typedef struct arena_bin_s arena_bin_t;
/* Each element of the chunk map corresponds to one page within the chunk. */
typedef struct arena_chunk_map_s arena_chunk_map_t;
struct arena_chunk_map_s {
/*
* Linkage for run trees. There are two disjoint uses:
*
* 1) arena_t's runs_avail tree.
* 2) arena_run_t conceptually uses this linkage for in-use non-full
* runs, rather than directly embedding linkage.
*/
rb_node(arena_chunk_map_t) link;
/*
* Run address (or size) and various flags are stored together. The bit
* layout looks like (assuming 32-bit system):
*
* ???????? ???????? ????---- -mckdzla
*
* ? : Unallocated: Run address for first/last pages, unset for internal
* pages.
* Small: Run address.
* Large: Run size for first page, unset for trailing pages.
* - : Unused.
* m : MADV_FREE/MADV_DONTNEED'ed?
* c : decommitted?
* k : key?
* d : dirty?
* z : zeroed?
* l : large?
* a : allocated?
*
* Following are example bit patterns for the three types of runs.
*
* r : run address
* s : run size
* x : don't care
* - : 0
* [cdzla] : bit set
*
* Unallocated:
* ssssssss ssssssss ssss---- --c-----
* xxxxxxxx xxxxxxxx xxxx---- ----d---
* ssssssss ssssssss ssss---- -----z--
*
* Small:
* rrrrrrrr rrrrrrrr rrrr---- -------a
* rrrrrrrr rrrrrrrr rrrr---- -------a
* rrrrrrrr rrrrrrrr rrrr---- -------a
*
* Large:
* ssssssss ssssssss ssss---- ------la
* -------- -------- -------- ------la
* -------- -------- -------- ------la
*/
size_t bits;
/* Note that CHUNK_MAP_DECOMMITTED's meaning varies depending on whether
* MALLOC_DECOMMIT and MALLOC_DOUBLE_PURGE are defined.
*
* If MALLOC_DECOMMIT is defined, a page which is CHUNK_MAP_DECOMMITTED must be
* re-committed with pages_commit() before it may be touched. If
* MALLOC_DECOMMIT is defined, MALLOC_DOUBLE_PURGE may not be defined.
*
* If neither MALLOC_DECOMMIT nor MALLOC_DOUBLE_PURGE is defined, pages which
* are madvised (with either MADV_DONTNEED or MADV_FREE) are marked with
* CHUNK_MAP_MADVISED.
*
* Otherwise, if MALLOC_DECOMMIT is not defined and MALLOC_DOUBLE_PURGE is
* defined, then a page which is madvised is marked as CHUNK_MAP_MADVISED.
* When it's finally freed with jemalloc_purge_freed_pages, the page is marked
* as CHUNK_MAP_DECOMMITTED.
*/
#if defined(MALLOC_DECOMMIT) || defined(MALLOC_STATS) || defined(MALLOC_DOUBLE_PURGE)
#define CHUNK_MAP_MADVISED ((size_t)0x40U)
#define CHUNK_MAP_DECOMMITTED ((size_t)0x20U)
#define CHUNK_MAP_MADVISED_OR_DECOMMITTED (CHUNK_MAP_MADVISED | CHUNK_MAP_DECOMMITTED)
#endif
#define CHUNK_MAP_KEY ((size_t)0x10U)
#define CHUNK_MAP_DIRTY ((size_t)0x08U)
#define CHUNK_MAP_ZEROED ((size_t)0x04U)
#define CHUNK_MAP_LARGE ((size_t)0x02U)
#define CHUNK_MAP_ALLOCATED ((size_t)0x01U)
};
typedef rb_tree(arena_chunk_map_t) arena_avail_tree_t;
typedef rb_tree(arena_chunk_map_t) arena_run_tree_t;
/* Arena chunk header. */
typedef struct arena_chunk_s arena_chunk_t;
struct arena_chunk_s {
/* Arena that owns the chunk. */
arena_t *arena;
/* Linkage for the arena's chunks_dirty tree. */
rb_node(arena_chunk_t) link_dirty;
#ifdef MALLOC_DOUBLE_PURGE
/* If we're double-purging, we maintain a linked list of chunks which
* have pages which have been madvise(MADV_FREE)'d but not explicitly
* purged.
*
* We're currently lazy and don't remove a chunk from this list when
* all its madvised pages are recommitted. */
LinkedList chunks_madvised_elem;
#endif
/* Number of dirty pages. */
size_t ndirty;
/* Map of pages within chunk that keeps track of free/large/small. */
arena_chunk_map_t map[1]; /* Dynamically sized. */
};
typedef rb_tree(arena_chunk_t) arena_chunk_tree_t;
typedef struct arena_run_s arena_run_t;
struct arena_run_s {
#if defined(MALLOC_DEBUG) || defined(MOZ_JEMALLOC_HARD_ASSERTS)
uint32_t magic;
# define ARENA_RUN_MAGIC 0x384adf93
#endif
/* Bin this run is associated with. */
arena_bin_t *bin;
/* Index of first element that might have a free region. */
unsigned regs_minelm;
/* Number of free regions in run. */
unsigned nfree;
/* Bitmask of in-use regions (0: in use, 1: free). */
unsigned regs_mask[1]; /* Dynamically sized. */
};
struct arena_bin_s {
/*
* Current run being used to service allocations of this bin's size
* class.
*/
arena_run_t *runcur;
/*
* Tree of non-full runs. This tree is used when looking for an
* existing run when runcur is no longer usable. We choose the
* non-full run that is lowest in memory; this policy tends to keep
* objects packed well, and it can also help reduce the number of
* almost-empty chunks.
*/
arena_run_tree_t runs;
/* Size of regions in a run for this bin's size class. */
size_t reg_size;
/* Total size of a run for this bin's size class. */
size_t run_size;
/* Total number of regions in a run for this bin's size class. */
uint32_t nregs;
/* Number of elements in a run's regs_mask for this bin's size class. */
uint32_t regs_mask_nelms;
/* Offset of first region in a run for this bin's size class. */
uint32_t reg0_offset;
#ifdef MALLOC_STATS
/* Bin statistics. */
malloc_bin_stats_t stats;
#endif
};
struct arena_s {
#if defined(MALLOC_DEBUG) || defined(MOZ_JEMALLOC_HARD_ASSERTS)
uint32_t magic;
# define ARENA_MAGIC 0x947d3d24
#endif
/* All operations on this arena require that lock be locked. */
#ifdef MOZ_MEMORY
malloc_spinlock_t lock;
#else
pthread_mutex_t lock;
#endif
#ifdef MALLOC_STATS
arena_stats_t stats;
#endif
/* Tree of dirty-page-containing chunks this arena manages. */
arena_chunk_tree_t chunks_dirty;
#ifdef MALLOC_DOUBLE_PURGE
/* Head of a linked list of MADV_FREE'd-page-containing chunks this
* arena manages. */
LinkedList chunks_madvised;
#endif
/*
* In order to avoid rapid chunk allocation/deallocation when an arena
* oscillates right on the cusp of needing a new chunk, cache the most
* recently freed chunk. The spare is left in the arena's chunk trees
* until it is deleted.
*
* There is one spare chunk per arena, rather than one spare total, in
* order to avoid interactions between multiple threads that could make
* a single spare inadequate.
*/
arena_chunk_t *spare;
/*
* Current count of pages within unused runs that are potentially
* dirty, and for which madvise(... MADV_FREE) has not been called. By
* tracking this, we can institute a limit on how much dirty unused
* memory is mapped for each arena.
*/
size_t ndirty;
/*
* Size/address-ordered tree of this arena's available runs. This tree
* is used for first-best-fit run allocation.
*/
arena_avail_tree_t runs_avail;
#ifdef MALLOC_BALANCE
/*
* The arena load balancing machinery needs to keep track of how much
* lock contention there is. This value is exponentially averaged.
*/
uint32_t contention;
#endif
/*
* bins is used to store rings of free regions of the following sizes,
* assuming a 16-byte quantum, 4kB pagesize, and default MALLOC_OPTIONS.
*
* bins[i] | size |
* --------+------+
* 0 | 2 |
* 1 | 4 |
* 2 | 8 |
* --------+------+
* 3 | 16 |
* 4 | 32 |
* 5 | 48 |
* 6 | 64 |
* : :
* : :
* 33 | 496 |
* 34 | 512 |
* --------+------+
* 35 | 1024 |
* 36 | 2048 |
* --------+------+
*/
arena_bin_t bins[1]; /* Dynamically sized. */
};
/******************************************************************************/
/*
* Data.
*/
#ifndef MOZ_MEMORY_NARENAS_DEFAULT_ONE
/* Number of CPUs. */
static unsigned ncpus;
#endif
#ifdef JEMALLOC_MUNMAP
static const bool config_munmap = true;
#else
static const bool config_munmap = false;
#endif
#ifdef JEMALLOC_RECYCLE
static const bool config_recycle = true;
#else
static const bool config_recycle = false;
#endif
/*
* When MALLOC_STATIC_SIZES is defined most of the parameters
* controlling the malloc behavior are defined as compile-time constants
* for best performance and cannot be altered at runtime.
*/
#if !defined(__ia64__) && !defined(__sparc__) && !defined(__mips__)
#define MALLOC_STATIC_SIZES 1
#endif
#ifdef MALLOC_STATIC_SIZES
/*
* VM page size. It must divide the runtime CPU page size or the code
* will abort.
* Platform specific page size conditions copied from js/public/HeapAPI.h
*/
#if (defined(SOLARIS) || defined(__FreeBSD__)) && \
(defined(__sparc) || defined(__sparcv9) || defined(__ia64))
#define pagesize_2pow ((size_t) 13)
#elif defined(__powerpc64__) || defined(__aarch64__)
#define pagesize_2pow ((size_t) 16)
#else
#define pagesize_2pow ((size_t) 12)
#endif
#define pagesize ((size_t) 1 << pagesize_2pow)
#define pagesize_mask (pagesize - 1)
/* Various quantum-related settings. */
#define QUANTUM_DEFAULT ((size_t) 1 << QUANTUM_2POW_MIN)
static const size_t quantum = QUANTUM_DEFAULT;
static const size_t quantum_mask = QUANTUM_DEFAULT - 1;
/* Various bin-related settings. */
static const size_t small_min = (QUANTUM_DEFAULT >> 1) + 1;
static const size_t small_max = (size_t) SMALL_MAX_DEFAULT;
/* Max size class for bins. */
static const size_t bin_maxclass = pagesize >> 1;
/* Number of (2^n)-spaced tiny bins. */
static const unsigned ntbins = (unsigned)
(QUANTUM_2POW_MIN - TINY_MIN_2POW);
/* Number of quantum-spaced bins. */
static const unsigned nqbins = (unsigned)
(SMALL_MAX_DEFAULT >> QUANTUM_2POW_MIN);
/* Number of (2^n)-spaced sub-page bins. */
static const unsigned nsbins = (unsigned)
(pagesize_2pow -
SMALL_MAX_2POW_DEFAULT - 1);
#else /* !MALLOC_STATIC_SIZES */
/* VM page size. */
static size_t pagesize;
static size_t pagesize_mask;
static size_t pagesize_2pow;
/* Various bin-related settings. */
static size_t bin_maxclass; /* Max size class for bins. */
static unsigned ntbins; /* Number of (2^n)-spaced tiny bins. */
static unsigned nqbins; /* Number of quantum-spaced bins. */
static unsigned nsbins; /* Number of (2^n)-spaced sub-page bins. */
static size_t small_min;
static size_t small_max;
/* Various quantum-related settings. */
static size_t quantum;
static size_t quantum_mask; /* (quantum - 1). */
#endif
/* Various chunk-related settings. */
/*
* Compute the header size such that it is large enough to contain the page map
* and enough nodes for the worst case: one node per non-header page plus one
* extra for situations where we briefly have one more node allocated than we
* will need.
*/
#define calculate_arena_header_size() \
(sizeof(arena_chunk_t) + sizeof(arena_chunk_map_t) * (chunk_npages - 1))
#define calculate_arena_header_pages() \
((calculate_arena_header_size() >> pagesize_2pow) + \
((calculate_arena_header_size() & pagesize_mask) ? 1 : 0))
/* Max size class for arenas. */
#define calculate_arena_maxclass() \
(chunksize - (arena_chunk_header_npages << pagesize_2pow))
/*
* Recycle at most 128 chunks. With 1 MiB chunks, this means we retain at most
* 6.25% of the process address space on a 32-bit OS for later use.
*/
#define CHUNK_RECYCLE_LIMIT 128
#ifdef MALLOC_STATIC_SIZES
#define CHUNKSIZE_DEFAULT ((size_t) 1 << CHUNK_2POW_DEFAULT)
static const size_t chunksize = CHUNKSIZE_DEFAULT;
static const size_t chunksize_mask =CHUNKSIZE_DEFAULT - 1;
static const size_t chunk_npages = CHUNKSIZE_DEFAULT >> pagesize_2pow;
#define arena_chunk_header_npages calculate_arena_header_pages()
#define arena_maxclass calculate_arena_maxclass()
static const size_t recycle_limit = CHUNK_RECYCLE_LIMIT * CHUNKSIZE_DEFAULT;
#else
static size_t chunksize;
static size_t chunksize_mask; /* (chunksize - 1). */
static size_t chunk_npages;
static size_t arena_chunk_header_npages;
static size_t arena_maxclass; /* Max size class for arenas. */
static size_t recycle_limit;
#endif
/* The current amount of recycled bytes, updated atomically. */
static size_t recycled_size;
/********/
/*
* Chunks.
*/
#ifdef MALLOC_VALIDATE
static malloc_rtree_t *chunk_rtree;
#endif
/* Protects chunk-related data structures. */
static malloc_mutex_t chunks_mtx;
/*
* Trees of chunks that were previously allocated (trees differ only in node
* ordering). These are used when allocating chunks, in an attempt to re-use
* address space. Depending on function, different tree orderings are needed,
* which is why there are two trees with the same contents.
*/
static extent_tree_t chunks_szad_mmap;
static extent_tree_t chunks_ad_mmap;
/* Protects huge allocation-related data structures. */
static malloc_mutex_t huge_mtx;
/* Tree of chunks that are stand-alone huge allocations. */
static extent_tree_t huge;
#ifdef MALLOC_STATS
/* Huge allocation statistics. */
static uint64_t huge_nmalloc;
static uint64_t huge_ndalloc;
static size_t huge_allocated;
static size_t huge_mapped;
#endif
/****************************/
/*
* base (internal allocation).
*/
/*
* Current pages that are being used for internal memory allocations. These
* pages are carved up in cacheline-size quanta, so that there is no chance of
* false cache line sharing.
*/
static void *base_pages;
static void *base_next_addr;
#if defined(MALLOC_DECOMMIT) || defined(MALLOC_STATS)
static void *base_next_decommitted;
#endif
static void *base_past_addr; /* Addr immediately past base_pages. */
static extent_node_t *base_nodes;
static malloc_mutex_t base_mtx;
#ifdef MALLOC_STATS
static size_t base_mapped;
static size_t base_committed;
#endif
/********/
/*
* Arenas.
*/
/*
* Arenas that are used to service external requests. Not all elements of the
* arenas array are necessarily used; arenas are created lazily as needed.
*/
static arena_t **arenas;
static unsigned narenas;
#ifndef NO_TLS
# ifdef MALLOC_BALANCE
static unsigned narenas_2pow;
# else
static unsigned next_arena;
# endif
#endif
#ifdef MOZ_MEMORY
static malloc_spinlock_t arenas_lock; /* Protects arenas initialization. */
#else
static pthread_mutex_t arenas_lock; /* Protects arenas initialization. */
#endif
#ifndef NO_TLS
/*
* Map of pthread_self() --> arenas[???], used for selecting an arena to use
* for allocations.
*/
#ifndef MOZ_MEMORY_WINDOWS
static __thread arena_t *arenas_map;
#endif
#endif
/*******************************/
/*
* Runtime configuration options.
*/
MOZ_JEMALLOC_API
const char *_malloc_options = MOZ_MALLOC_OPTIONS;
#ifndef MALLOC_PRODUCTION
static bool opt_abort = true;
#ifdef MALLOC_FILL
static bool opt_junk = true;
static bool opt_poison = true;
static bool opt_zero = false;
#endif
#else
static bool opt_abort = false;
#ifdef MALLOC_FILL
static const bool opt_junk = false;
static const bool opt_poison = true;
static const bool opt_zero = false;
#endif
#endif
static size_t opt_dirty_max = DIRTY_MAX_DEFAULT;
#ifdef MALLOC_BALANCE
static uint64_t opt_balance_threshold = BALANCE_THRESHOLD_DEFAULT;
#endif
static bool opt_print_stats = false;
#ifdef MALLOC_STATIC_SIZES
#define opt_quantum_2pow QUANTUM_2POW_MIN
#define opt_small_max_2pow SMALL_MAX_2POW_DEFAULT
#define opt_chunk_2pow CHUNK_2POW_DEFAULT
#else
static size_t opt_quantum_2pow = QUANTUM_2POW_MIN;
static size_t opt_small_max_2pow = SMALL_MAX_2POW_DEFAULT;
static size_t opt_chunk_2pow = CHUNK_2POW_DEFAULT;
#endif
#ifdef MALLOC_UTRACE
static bool opt_utrace = false;
#endif
#ifdef MALLOC_SYSV
static bool opt_sysv = false;
#endif
#ifdef MALLOC_XMALLOC
static bool opt_xmalloc = false;
#endif
static int opt_narenas_lshift = 0;
#ifdef MALLOC_UTRACE
typedef struct {
void *p;
size_t s;
void *r;
} malloc_utrace_t;
#define UTRACE(a, b, c) \
if (opt_utrace) { \
malloc_utrace_t ut; \
ut.p = (a); \
ut.s = (b); \
ut.r = (c); \
utrace(&ut, sizeof(ut)); \
}
#else
#define UTRACE(a, b, c)
#endif
/******************************************************************************/
/*
* Begin function prototypes for non-inline static functions.
*/
static char *umax2s(uintmax_t x, unsigned base, char *s);
static bool malloc_mutex_init(malloc_mutex_t *mutex);
static bool malloc_spin_init(malloc_spinlock_t *lock);
static void wrtmessage(const char *p1, const char *p2, const char *p3,
const char *p4);
#ifdef MALLOC_STATS
#ifdef MOZ_MEMORY_DARWIN
/* Avoid namespace collision with OS X's malloc APIs. */
#define malloc_printf moz_malloc_printf
#endif
static void malloc_printf(const char *format, ...);
#endif
static bool base_pages_alloc(size_t minsize);
static void *base_alloc(size_t size);
static void *base_calloc(size_t number, size_t size);
static extent_node_t *base_node_alloc(void);
static void base_node_dealloc(extent_node_t *node);
#ifdef MALLOC_STATS
static void stats_print(arena_t *arena);
#endif
static void *pages_map(void *addr, size_t size);
static void pages_unmap(void *addr, size_t size);
static void *chunk_alloc_mmap(size_t size, size_t alignment);
static void *chunk_recycle(extent_tree_t *chunks_szad,
extent_tree_t *chunks_ad, size_t size,
size_t alignment, bool base, bool *zero);
static void *chunk_alloc(size_t size, size_t alignment, bool base, bool zero);
static void chunk_record(extent_tree_t *chunks_szad,
extent_tree_t *chunks_ad, void *chunk, size_t size);
static bool chunk_dalloc_mmap(void *chunk, size_t size);
static void chunk_dealloc(void *chunk, size_t size);
#ifndef NO_TLS
static arena_t *choose_arena_hard(void);
#endif
static void arena_run_split(arena_t *arena, arena_run_t *run, size_t size,
bool large, bool zero);
static void arena_chunk_init(arena_t *arena, arena_chunk_t *chunk);
static void arena_chunk_dealloc(arena_t *arena, arena_chunk_t *chunk);
static arena_run_t *arena_run_alloc(arena_t *arena, arena_bin_t *bin,
size_t size, bool large, bool zero);
static void arena_purge(arena_t *arena, bool all);
static void arena_run_dalloc(arena_t *arena, arena_run_t *run, bool dirty);
static void arena_run_trim_head(arena_t *arena, arena_chunk_t *chunk,
arena_run_t *run, size_t oldsize, size_t newsize);
static void arena_run_trim_tail(arena_t *arena, arena_chunk_t *chunk,
arena_run_t *run, size_t oldsize, size_t newsize, bool dirty);
static arena_run_t *arena_bin_nonfull_run_get(arena_t *arena, arena_bin_t *bin);
static void *arena_bin_malloc_hard(arena_t *arena, arena_bin_t *bin);
static size_t arena_bin_run_size_calc(arena_bin_t *bin, size_t min_run_size);
#ifdef MALLOC_BALANCE
static void arena_lock_balance_hard(arena_t *arena);
#endif
static void *arena_malloc_large(arena_t *arena, size_t size, bool zero);
static void *arena_palloc(arena_t *arena, size_t alignment, size_t size,
size_t alloc_size);
static size_t arena_salloc(const void *ptr);
static void arena_dalloc_large(arena_t *arena, arena_chunk_t *chunk,
void *ptr);
static void arena_ralloc_large_shrink(arena_t *arena, arena_chunk_t *chunk,
void *ptr, size_t size, size_t oldsize);
static bool arena_ralloc_large_grow(arena_t *arena, arena_chunk_t *chunk,
void *ptr, size_t size, size_t oldsize);
static bool arena_ralloc_large(void *ptr, size_t size, size_t oldsize);
static void *arena_ralloc(void *ptr, size_t size, size_t oldsize);
static bool arena_new(arena_t *arena);
static arena_t *arenas_extend(unsigned ind);
static void *huge_malloc(size_t size, bool zero);
static void *huge_palloc(size_t size, size_t alignment, bool zero);
static void *huge_ralloc(void *ptr, size_t size, size_t oldsize);
static void huge_dalloc(void *ptr);
static void malloc_print_stats(void);
#ifndef MOZ_MEMORY_WINDOWS
static
#endif
bool malloc_init_hard(void);
static void _malloc_prefork(void);
static void _malloc_postfork(void);
#ifdef MOZ_MEMORY_DARWIN
/*
* MALLOC_ZONE_T_NOTE
*
* On Darwin, we hook into the memory allocator using a malloc_zone_t struct.
* We must be very careful around this struct because of different behaviour on
* different versions of OSX.
*
* Each of OSX 10.5, 10.6 and 10.7 use different versions of the struct
* (with version numbers 3, 6 and 8 respectively). The binary we use on each of
* these platforms will not necessarily be built using the correct SDK [1].
* This means we need to statically know the correct struct size to use on all
* OSX releases, and have a fallback for unknown future versions. The struct
* sizes defined in osx_zone_types.h.
*
* For OSX 10.8 and later, we may expect the malloc_zone_t struct to change
* again, and need to dynamically account for this. By simply leaving
* malloc_zone_t alone, we don't quite deal with the problem, because there
* remain calls to jemalloc through the mozalloc interface. We check this
* dynamically on each allocation, using the CHECK_DARWIN macro and
* osx_use_jemalloc.
*
*
* [1] Mozilla is built as a universal binary on Mac, supporting i386 and
* x86_64. The i386 target is built using the 10.5 SDK, even if it runs on
* 10.6. The x86_64 target is built using the 10.6 SDK, even if it runs on
* 10.7 or later, or 10.5.
*
* FIXME:
* When later versions of OSX come out (10.8 and up), we need to check their
* malloc_zone_t versions. If they're greater than 8, we need a new version
* of malloc_zone_t adapted into osx_zone_types.h.
*/
#ifndef MOZ_REPLACE_MALLOC
#include "osx_zone_types.h"
#define LEOPARD_MALLOC_ZONE_T_VERSION 3
#define SNOW_LEOPARD_MALLOC_ZONE_T_VERSION 6
#define LION_MALLOC_ZONE_T_VERSION 8
static bool osx_use_jemalloc = false;
static lion_malloc_zone l_szone;
static malloc_zone_t * szone = (malloc_zone_t*)(&l_szone);
static lion_malloc_introspection l_ozone_introspect;
static malloc_introspection_t * const ozone_introspect =
(malloc_introspection_t*)(&l_ozone_introspect);
static void szone2ozone(malloc_zone_t *zone, size_t size);
static size_t zone_version_size(int version);
#else
static const bool osx_use_jemalloc = true;
#endif
#endif
/*
* End function prototypes.
*/
/******************************************************************************/
static inline size_t
load_acquire_z(size_t *p)
{
volatile size_t result = *p;
# ifdef MOZ_MEMORY_WINDOWS
/*
* We use InterlockedExchange with a dummy value to insert a memory
* barrier. This has been confirmed to generate the right instruction
* and is also used by MinGW.
*/
volatile long dummy = 0;
InterlockedExchange(&dummy, 1);
# else
__sync_synchronize();
# endif
return result;
}
/*
* umax2s() provides minimal integer printing functionality, which is
* especially useful for situations where allocation in vsnprintf() calls would
* potentially cause deadlock.
*/
#define UMAX2S_BUFSIZE 65
char *
umax2s(uintmax_t x, unsigned base, char *s)
{
unsigned i;
i = UMAX2S_BUFSIZE - 1;
s[i] = '\0';
switch (base) {
case 10:
do {
i--;
s[i] = "0123456789"[x % 10];
x /= 10;
} while (x > 0);
break;
case 16:
do {
i--;
s[i] = "0123456789abcdef"[x & 0xf];
x >>= 4;
} while (x > 0);
break;
default:
do {
i--;
s[i] = "0123456789abcdefghijklmnopqrstuvwxyz"[x % base];
x /= base;
} while (x > 0);
}
return (&s[i]);
}
static void
wrtmessage(const char *p1, const char *p2, const char *p3, const char *p4)
{
#if defined(MOZ_MEMORY) && !defined(MOZ_MEMORY_WINDOWS)
#define _write write
#endif
_write(STDERR_FILENO, p1, (unsigned int) strlen(p1));
_write(STDERR_FILENO, p2, (unsigned int) strlen(p2));
_write(STDERR_FILENO, p3, (unsigned int) strlen(p3));
_write(STDERR_FILENO, p4, (unsigned int) strlen(p4));
}
MOZ_JEMALLOC_API
void (*_malloc_message)(const char *p1, const char *p2, const char *p3,
const char *p4) = wrtmessage;
#ifdef MALLOC_DEBUG
# define assert(e) do { \
if (!(e)) { \
char line_buf[UMAX2S_BUFSIZE]; \
_malloc_message(__FILE__, ":", umax2s(__LINE__, 10, \
line_buf), ": Failed assertion: "); \
_malloc_message("\"", #e, "\"\n", ""); \
abort(); \
} \
} while (0)
#else
#define assert(e)
#endif
#include "mozilla/Assertions.h"
#include "mozilla/Attributes.h"
#include "mozilla/TaggedAnonymousMemory.h"
// Note: MozTaggedAnonymousMmap() could call an LD_PRELOADed mmap
// instead of the one defined here; use only MozTagAnonymousMemory().
/* RELEASE_ASSERT calls jemalloc_crash() instead of calling MOZ_CRASH()
* directly because we want crashing to add a frame to the stack. This makes
* it easier to find the failing assertion in crash stacks. */
MOZ_NEVER_INLINE static void
jemalloc_crash()
{
MOZ_CRASH();
}
#if defined(MOZ_JEMALLOC_HARD_ASSERTS)
# define RELEASE_ASSERT(assertion) do { \
if (!(assertion)) { \
jemalloc_crash(); \
} \
} while (0)
2012-06-13 13:21:06 +00:00
#else
# define RELEASE_ASSERT(assertion) assert(assertion)
#endif
/******************************************************************************/
/*
* Begin mutex. We can't use normal pthread mutexes in all places, because
* they require malloc()ed memory, which causes bootstrapping issues in some
* cases.
*/
static bool
malloc_mutex_init(malloc_mutex_t *mutex)
{
#if defined(MOZ_MEMORY_WINDOWS)
if (isthreaded)
if (! __crtInitCritSecAndSpinCount(mutex, _CRT_SPINCOUNT))
return (true);
#elif defined(MOZ_MEMORY_DARWIN)
mutex->lock = OS_SPINLOCK_INIT;
#elif defined(MOZ_MEMORY_LINUX) && !defined(MOZ_MEMORY_ANDROID)
pthread_mutexattr_t attr;
if (pthread_mutexattr_init(&attr) != 0)
return (true);
pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ADAPTIVE_NP);
if (pthread_mutex_init(mutex, &attr) != 0) {
pthread_mutexattr_destroy(&attr);
return (true);
}
pthread_mutexattr_destroy(&attr);
#elif defined(MOZ_MEMORY)
if (pthread_mutex_init(mutex, NULL) != 0)
return (true);
#else
static const spinlock_t lock = _SPINLOCK_INITIALIZER;
mutex->lock = lock;
#endif
return (false);
}
static inline void
malloc_mutex_lock(malloc_mutex_t *mutex)
{
#if defined(MOZ_MEMORY_WINDOWS)
EnterCriticalSection(mutex);
#elif defined(MOZ_MEMORY_DARWIN)
OSSpinLockLock(&mutex->lock);
#elif defined(MOZ_MEMORY)
pthread_mutex_lock(mutex);
#else
if (isthreaded)
_SPINLOCK(&mutex->lock);
#endif
}
static inline void
malloc_mutex_unlock(malloc_mutex_t *mutex)
{
#if defined(MOZ_MEMORY_WINDOWS)
LeaveCriticalSection(mutex);
#elif defined(MOZ_MEMORY_DARWIN)
OSSpinLockUnlock(&mutex->lock);
#elif defined(MOZ_MEMORY)
pthread_mutex_unlock(mutex);
#else
if (isthreaded)
_SPINUNLOCK(&mutex->lock);
#endif
}
static bool
malloc_spin_init(malloc_spinlock_t *lock)
{
#if defined(MOZ_MEMORY_WINDOWS)
if (isthreaded)
if (! __crtInitCritSecAndSpinCount(lock, _CRT_SPINCOUNT))
return (true);
#elif defined(MOZ_MEMORY_DARWIN)
lock->lock = OS_SPINLOCK_INIT;
#elif defined(MOZ_MEMORY_LINUX) && !defined(MOZ_MEMORY_ANDROID)
pthread_mutexattr_t attr;
if (pthread_mutexattr_init(&attr) != 0)
return (true);
pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ADAPTIVE_NP);
if (pthread_mutex_init(lock, &attr) != 0) {
pthread_mutexattr_destroy(&attr);
return (true);
}
pthread_mutexattr_destroy(&attr);
#elif defined(MOZ_MEMORY)
if (pthread_mutex_init(lock, NULL) != 0)
return (true);
#else
lock->lock = _SPINLOCK_INITIALIZER;
#endif
return (false);
}
static inline void
malloc_spin_lock(malloc_spinlock_t *lock)
{
#if defined(MOZ_MEMORY_WINDOWS)
EnterCriticalSection(lock);
#elif defined(MOZ_MEMORY_DARWIN)
OSSpinLockLock(&lock->lock);
#elif defined(MOZ_MEMORY)
pthread_mutex_lock(lock);
#else
if (isthreaded)
_SPINLOCK(&lock->lock);
#endif
}
static inline void
malloc_spin_unlock(malloc_spinlock_t *lock)
{
#if defined(MOZ_MEMORY_WINDOWS)
LeaveCriticalSection(lock);
#elif defined(MOZ_MEMORY_DARWIN)
OSSpinLockUnlock(&lock->lock);
#elif defined(MOZ_MEMORY)
pthread_mutex_unlock(lock);
#else
if (isthreaded)
_SPINUNLOCK(&lock->lock);
#endif
}
/*
* End mutex.
*/
/******************************************************************************/
/*
* Begin spin lock. Spin locks here are actually adaptive mutexes that block
* after a period of spinning, because unbounded spinning would allow for
* priority inversion.
*/
#if defined(MOZ_MEMORY) && !defined(MOZ_MEMORY_DARWIN)
# define malloc_spin_init malloc_mutex_init
# define malloc_spin_lock malloc_mutex_lock
# define malloc_spin_unlock malloc_mutex_unlock
#endif
#ifndef MOZ_MEMORY
/*
* We use an unpublished interface to initialize pthread mutexes with an
* allocation callback, in order to avoid infinite recursion.
*/
int _pthread_mutex_init_calloc_cb(pthread_mutex_t *mutex,
void *(calloc_cb)(size_t, size_t));
__weak_reference(_pthread_mutex_init_calloc_cb_stub,
_pthread_mutex_init_calloc_cb);
int
_pthread_mutex_init_calloc_cb_stub(pthread_mutex_t *mutex,
void *(calloc_cb)(size_t, size_t))
{
return (0);
}
static bool
malloc_spin_init(pthread_mutex_t *lock)
{
if (_pthread_mutex_init_calloc_cb(lock, base_calloc) != 0)
return (true);
return (false);
}
static inline unsigned
malloc_spin_lock(pthread_mutex_t *lock)
{
unsigned ret = 0;
if (isthreaded) {
if (_pthread_mutex_trylock(lock) != 0) {
unsigned i;
volatile unsigned j;
/* Exponentially back off. */
for (i = 1; i <= SPIN_LIMIT_2POW; i++) {
for (j = 0; j < (1U << i); j++)
ret++;
CPU_SPINWAIT;
if (_pthread_mutex_trylock(lock) == 0)
return (ret);
}
/*
* Spinning failed. Block until the lock becomes
* available, in order to avoid indefinite priority
* inversion.
*/
_pthread_mutex_lock(lock);
assert((ret << BLOCK_COST_2POW) != 0);
return (ret << BLOCK_COST_2POW);
}
}
return (ret);
}
static inline void
malloc_spin_unlock(pthread_mutex_t *lock)
{
if (isthreaded)
_pthread_mutex_unlock(lock);
}
#endif
/*
* End spin lock.
*/
/******************************************************************************/
/*
* Begin Utility functions/macros.
*/
/* Return the chunk address for allocation address a. */
#define CHUNK_ADDR2BASE(a) \
((void *)((uintptr_t)(a) & ~chunksize_mask))
/* Return the chunk offset of address a. */
#define CHUNK_ADDR2OFFSET(a) \
((size_t)((uintptr_t)(a) & chunksize_mask))
/* Return the smallest chunk multiple that is >= s. */
#define CHUNK_CEILING(s) \
(((s) + chunksize_mask) & ~chunksize_mask)
/* Return the smallest cacheline multiple that is >= s. */
#define CACHELINE_CEILING(s) \
(((s) + (CACHELINE - 1)) & ~(CACHELINE - 1))
/* Return the smallest quantum multiple that is >= a. */
#define QUANTUM_CEILING(a) \
(((a) + quantum_mask) & ~quantum_mask)
/* Return the smallest pagesize multiple that is >= s. */
#define PAGE_CEILING(s) \
(((s) + pagesize_mask) & ~pagesize_mask)
/* Compute the smallest power of 2 that is >= x. */
static inline size_t
pow2_ceil(size_t x)
{
x--;
x |= x >> 1;
x |= x >> 2;
x |= x >> 4;
x |= x >> 8;
x |= x >> 16;
#if (SIZEOF_PTR == 8)
x |= x >> 32;
#endif
x++;
return (x);
}
#ifdef MALLOC_BALANCE
/*
* Use a simple linear congruential pseudo-random number generator:
*
* prn(y) = (a*x + c) % m
*
* where the following constants ensure maximal period:
*
* a == Odd number (relatively prime to 2^n), and (a-1) is a multiple of 4.
* c == Odd number (relatively prime to 2^n).
* m == 2^32
*
* See Knuth's TAOCP 3rd Ed., Vol. 2, pg. 17 for details on these constraints.
*
* This choice of m has the disadvantage that the quality of the bits is
* proportional to bit position. For example. the lowest bit has a cycle of 2,
* the next has a cycle of 4, etc. For this reason, we prefer to use the upper
* bits.
*/
# define PRN_DEFINE(suffix, var, a, c) \
static inline void \
sprn_##suffix(uint32_t seed) \
{ \
var = seed; \
} \
\
static inline uint32_t \
prn_##suffix(uint32_t lg_range) \
{ \
uint32_t ret, x; \
\
assert(lg_range > 0); \
assert(lg_range <= 32); \
\
x = (var * (a)) + (c); \
var = x; \
ret = x >> (32 - lg_range); \
\
return (ret); \
}
# define SPRN(suffix, seed) sprn_##suffix(seed)
# define PRN(suffix, lg_range) prn_##suffix(lg_range)
#endif
#ifdef MALLOC_BALANCE
/* Define the PRNG used for arena assignment. */
static __thread uint32_t balance_x;
PRN_DEFINE(balance, balance_x, 1297, 1301)
#endif
#ifdef MALLOC_UTRACE
static int
utrace(const void *addr, size_t len)
{
malloc_utrace_t *ut = (malloc_utrace_t *)addr;
char buf_a[UMAX2S_BUFSIZE];
char buf_b[UMAX2S_BUFSIZE];
assert(len == sizeof(malloc_utrace_t));
if (ut->p == NULL && ut->s == 0 && ut->r == NULL) {
_malloc_message(
umax2s(getpid(), 10, buf_a),
" x USER malloc_init()\n", "", "");
} else if (ut->p == NULL && ut->r != NULL) {
_malloc_message(
umax2s(getpid(), 10, buf_a),
" x USER 0x",
umax2s((uintptr_t)ut->r, 16, buf_b),
" = malloc(");
_malloc_message(
umax2s(ut->s, 10, buf_a),
")\n", "", "");
} else if (ut->p != NULL && ut->r != NULL) {
_malloc_message(
umax2s(getpid(), 10, buf_a),
" x USER 0x",
umax2s((uintptr_t)ut->r, 16, buf_b),
" = realloc(0x");
_malloc_message(
umax2s((uintptr_t)ut->p, 16, buf_a),
", ",
umax2s(ut->s, 10, buf_b),
")\n");
} else {
_malloc_message(
umax2s(getpid(), 10, buf_a),
" x USER free(0x",
umax2s((uintptr_t)ut->p, 16, buf_b),
")\n");
}
return (0);
}
#endif
static inline const char *
_getprogname(void)
{
return ("<jemalloc>");
}
#ifdef MALLOC_STATS
/*
* Print to stderr in such a way as to (hopefully) avoid memory allocation.
*/
static void
malloc_printf(const char *format, ...)
{
char buf[4096];
va_list ap;
va_start(ap, format);
vsnprintf(buf, sizeof(buf), format, ap);
va_end(ap);
_malloc_message(buf, "", "", "");
}
#endif
/******************************************************************************/
static inline void
pages_decommit(void *addr, size_t size)
{
#ifdef MOZ_MEMORY_WINDOWS
/*
* The region starting at addr may have been allocated in multiple calls
* to VirtualAlloc and recycled, so decommitting the entire region in one
* go may not be valid. However, since we allocate at least a chunk at a
* time, we may touch any region in chunksized increments.
*/
size_t pages_size = min(size, chunksize -
CHUNK_ADDR2OFFSET((uintptr_t)addr));
while (size > 0) {
if (!VirtualFree(addr, pages_size, MEM_DECOMMIT))
abort();
addr = (void *)((uintptr_t)addr + pages_size);
size -= pages_size;
pages_size = min(size, chunksize);
}
#else
if (mmap(addr, size, PROT_NONE, MAP_FIXED | MAP_PRIVATE | MAP_ANON, -1,
0) == MAP_FAILED)
abort();
MozTagAnonymousMemory(addr, size, "jemalloc-decommitted");
#endif
}
static inline void
pages_commit(void *addr, size_t size)
{
# ifdef MOZ_MEMORY_WINDOWS
/*
* The region starting at addr may have been allocated in multiple calls
* to VirtualAlloc and recycled, so committing the entire region in one
* go may not be valid. However, since we allocate at least a chunk at a
* time, we may touch any region in chunksized increments.
*/
size_t pages_size = min(size, chunksize -
CHUNK_ADDR2OFFSET((uintptr_t)addr));
while (size > 0) {
if (!VirtualAlloc(addr, pages_size, MEM_COMMIT, PAGE_READWRITE))
abort();
addr = (void *)((uintptr_t)addr + pages_size);
size -= pages_size;
pages_size = min(size, chunksize);
}
# else
if (mmap(addr, size, PROT_READ | PROT_WRITE, MAP_FIXED | MAP_PRIVATE |
MAP_ANON, -1, 0) == MAP_FAILED)
abort();
MozTagAnonymousMemory(addr, size, "jemalloc");
# endif
}
static bool
base_pages_alloc(size_t minsize)
{
size_t csize;
#if defined(MALLOC_DECOMMIT) || defined(MALLOC_STATS)
size_t pminsize;
#endif
assert(minsize != 0);
csize = CHUNK_CEILING(minsize);
base_pages = chunk_alloc(csize, chunksize, true, false);
if (base_pages == NULL)
return (true);
base_next_addr = base_pages;
base_past_addr = (void *)((uintptr_t)base_pages + csize);
#if defined(MALLOC_DECOMMIT) || defined(MALLOC_STATS)
/*
* Leave enough pages for minsize committed, since otherwise they would
* have to be immediately recommitted.
*/
pminsize = PAGE_CEILING(minsize);
base_next_decommitted = (void *)((uintptr_t)base_pages + pminsize);
# if defined(MALLOC_DECOMMIT)
if (pminsize < csize)
pages_decommit(base_next_decommitted, csize - pminsize);
# endif
# ifdef MALLOC_STATS
base_mapped += csize;
base_committed += pminsize;
# endif
#endif
return (false);
}
static void *
base_alloc(size_t size)
{
void *ret;
size_t csize;
/* Round size up to nearest multiple of the cacheline size. */
csize = CACHELINE_CEILING(size);
malloc_mutex_lock(&base_mtx);
/* Make sure there's enough space for the allocation. */
if ((uintptr_t)base_next_addr + csize > (uintptr_t)base_past_addr) {
if (base_pages_alloc(csize)) {
malloc_mutex_unlock(&base_mtx);
return (NULL);
}
}
/* Allocate. */
ret = base_next_addr;
base_next_addr = (void *)((uintptr_t)base_next_addr + csize);
#if defined(MALLOC_DECOMMIT) || defined(MALLOC_STATS)
/* Make sure enough pages are committed for the new allocation. */
if ((uintptr_t)base_next_addr > (uintptr_t)base_next_decommitted) {
void *pbase_next_addr =
(void *)(PAGE_CEILING((uintptr_t)base_next_addr));
# ifdef MALLOC_DECOMMIT
pages_commit(base_next_decommitted, (uintptr_t)pbase_next_addr -
(uintptr_t)base_next_decommitted);
# endif
base_next_decommitted = pbase_next_addr;
# ifdef MALLOC_STATS
base_committed += (uintptr_t)pbase_next_addr -
(uintptr_t)base_next_decommitted;
# endif
}
#endif
malloc_mutex_unlock(&base_mtx);
return (ret);
}
static void *
base_calloc(size_t number, size_t size)
{
void *ret;
ret = base_alloc(number * size);
memset(ret, 0, number * size);
return (ret);
}
static extent_node_t *
base_node_alloc(void)
{
extent_node_t *ret;
malloc_mutex_lock(&base_mtx);
if (base_nodes != NULL) {
ret = base_nodes;
base_nodes = *(extent_node_t **)ret;
malloc_mutex_unlock(&base_mtx);
} else {
malloc_mutex_unlock(&base_mtx);
ret = (extent_node_t *)base_alloc(sizeof(extent_node_t));
}
return (ret);
}
static void
base_node_dealloc(extent_node_t *node)
{
malloc_mutex_lock(&base_mtx);
*(extent_node_t **)node = base_nodes;
base_nodes = node;
malloc_mutex_unlock(&base_mtx);
}
/******************************************************************************/
#ifdef MALLOC_STATS
static void
stats_print(arena_t *arena)
{
unsigned i, gap_start;
#ifdef MOZ_MEMORY_WINDOWS
malloc_printf("dirty: %Iu page%s dirty, %I64u sweep%s,"
" %I64u madvise%s, %I64u page%s purged\n",
arena->ndirty, arena->ndirty == 1 ? "" : "s",
arena->stats.npurge, arena->stats.npurge == 1 ? "" : "s",
arena->stats.nmadvise, arena->stats.nmadvise == 1 ? "" : "s",
arena->stats.purged, arena->stats.purged == 1 ? "" : "s");
# ifdef MALLOC_DECOMMIT
malloc_printf("decommit: %I64u decommit%s, %I64u commit%s,"
" %I64u page%s decommitted\n",
arena->stats.ndecommit, (arena->stats.ndecommit == 1) ? "" : "s",
arena->stats.ncommit, (arena->stats.ncommit == 1) ? "" : "s",
arena->stats.decommitted,
(arena->stats.decommitted == 1) ? "" : "s");
# endif
malloc_printf(" allocated nmalloc ndalloc\n");
malloc_printf("small: %12Iu %12I64u %12I64u\n",
arena->stats.allocated_small, arena->stats.nmalloc_small,
arena->stats.ndalloc_small);
malloc_printf("large: %12Iu %12I64u %12I64u\n",
arena->stats.allocated_large, arena->stats.nmalloc_large,
arena->stats.ndalloc_large);
malloc_printf("total: %12Iu %12I64u %12I64u\n",
arena->stats.allocated_small + arena->stats.allocated_large,
arena->stats.nmalloc_small + arena->stats.nmalloc_large,
arena->stats.ndalloc_small + arena->stats.ndalloc_large);
malloc_printf("mapped: %12Iu\n", arena->stats.mapped);
#else
malloc_printf("dirty: %zu page%s dirty, %llu sweep%s,"
" %llu madvise%s, %llu page%s purged\n",
arena->ndirty, arena->ndirty == 1 ? "" : "s",
arena->stats.npurge, arena->stats.npurge == 1 ? "" : "s",
arena->stats.nmadvise, arena->stats.nmadvise == 1 ? "" : "s",
arena->stats.purged, arena->stats.purged == 1 ? "" : "s");
# ifdef MALLOC_DECOMMIT
malloc_printf("decommit: %llu decommit%s, %llu commit%s,"
" %llu page%s decommitted\n",
arena->stats.ndecommit, (arena->stats.ndecommit == 1) ? "" : "s",
arena->stats.ncommit, (arena->stats.ncommit == 1) ? "" : "s",
arena->stats.decommitted,
(arena->stats.decommitted == 1) ? "" : "s");
# endif
malloc_printf(" allocated nmalloc ndalloc\n");
malloc_printf("small: %12zu %12llu %12llu\n",
arena->stats.allocated_small, arena->stats.nmalloc_small,
arena->stats.ndalloc_small);
malloc_printf("large: %12zu %12llu %12llu\n",
arena->stats.allocated_large, arena->stats.nmalloc_large,
arena->stats.ndalloc_large);
malloc_printf("total: %12zu %12llu %12llu\n",
arena->stats.allocated_small + arena->stats.allocated_large,
arena->stats.nmalloc_small + arena->stats.nmalloc_large,
arena->stats.ndalloc_small + arena->stats.ndalloc_large);
malloc_printf("mapped: %12zu\n", arena->stats.mapped);
#endif
malloc_printf("bins: bin size regs pgs requests newruns"
" reruns maxruns curruns\n");
for (i = 0, gap_start = UINT_MAX; i < ntbins + nqbins + nsbins; i++) {
if (arena->bins[i].stats.nrequests == 0) {
if (gap_start == UINT_MAX)
gap_start = i;
} else {
if (gap_start != UINT_MAX) {
if (i > gap_start + 1) {
/* Gap of more than one size class. */
malloc_printf("[%u..%u]\n",
gap_start, i - 1);
} else {
/* Gap of one size class. */
malloc_printf("[%u]\n", gap_start);
}
gap_start = UINT_MAX;
}
malloc_printf(
#if defined(MOZ_MEMORY_WINDOWS)
"%13u %1s %4u %4u %3u %9I64u %9I64u"
" %9I64u %7u %7u\n",
#else
"%13u %1s %4u %4u %3u %9llu %9llu"
" %9llu %7lu %7lu\n",
#endif
i,
i < ntbins ? "T" : i < ntbins + nqbins ? "Q" : "S",
arena->bins[i].reg_size,
arena->bins[i].nregs,
arena->bins[i].run_size >> pagesize_2pow,
arena->bins[i].stats.nrequests,
arena->bins[i].stats.nruns,
arena->bins[i].stats.reruns,
arena->bins[i].stats.highruns,
arena->bins[i].stats.curruns);
}
}
if (gap_start != UINT_MAX) {
if (i > gap_start + 1) {
/* Gap of more than one size class. */
malloc_printf("[%u..%u]\n", gap_start, i - 1);
} else {
/* Gap of one size class. */
malloc_printf("[%u]\n", gap_start);
}
}
}
#endif
/*
* End Utility functions/macros.
*/
/******************************************************************************/
/*
* Begin extent tree code.
*/
static inline int
extent_szad_comp(extent_node_t *a, extent_node_t *b)
{
int ret;
size_t a_size = a->size;
size_t b_size = b->size;
ret = (a_size > b_size) - (a_size < b_size);
if (ret == 0) {
uintptr_t a_addr = (uintptr_t)a->addr;
uintptr_t b_addr = (uintptr_t)b->addr;
ret = (a_addr > b_addr) - (a_addr < b_addr);
}
return (ret);
}
/* Wrap red-black tree macros in functions. */
rb_wrap(static, extent_tree_szad_, extent_tree_t, extent_node_t,
link_szad, extent_szad_comp)
static inline int
extent_ad_comp(extent_node_t *a, extent_node_t *b)
{
uintptr_t a_addr = (uintptr_t)a->addr;
uintptr_t b_addr = (uintptr_t)b->addr;
return ((a_addr > b_addr) - (a_addr < b_addr));
}
/* Wrap red-black tree macros in functions. */
rb_wrap(static, extent_tree_ad_, extent_tree_t, extent_node_t, link_ad,
extent_ad_comp)
/*
* End extent tree code.
*/
/******************************************************************************/
/*
* Begin chunk management functions.
*/
#ifdef MOZ_MEMORY_WINDOWS
static void *
pages_map(void *addr, size_t size)
{
void *ret = NULL;
ret = VirtualAlloc(addr, size, MEM_COMMIT | MEM_RESERVE,
PAGE_READWRITE);
return (ret);
}
static void
pages_unmap(void *addr, size_t size)
{
if (VirtualFree(addr, 0, MEM_RELEASE) == 0) {
_malloc_message(_getprogname(),
": (malloc) Error in VirtualFree()\n", "", "");
if (opt_abort)
abort();
}
}
#else
#ifdef JEMALLOC_USES_MAP_ALIGN
static void *
pages_map_align(size_t size, size_t alignment)
{
void *ret;
/*
* We don't use MAP_FIXED here, because it can cause the *replacement*
* of existing mappings, and we only want to create new mappings.
*/
ret = mmap((void *)alignment, size, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_NOSYNC | MAP_ALIGN | MAP_ANON, -1, 0);
assert(ret != NULL);
if (ret == MAP_FAILED)
ret = NULL;
else
MozTagAnonymousMemory(ret, size, "jemalloc");
return (ret);
}
#endif
static void *
pages_map(void *addr, size_t size)
{
void *ret;
#if defined(__ia64__)
/*
* The JS engine assumes that all allocated pointers have their high 17 bits clear,
* which ia64's mmap doesn't support directly. However, we can emulate it by passing
* mmap an "addr" parameter with those bits clear. The mmap will return that address,
* or the nearest available memory above that address, providing a near-guarantee
* that those bits are clear. If they are not, we return NULL below to indicate
* out-of-memory.
*
* The addr is chosen as 0x0000070000000000, which still allows about 120TB of virtual
* address space.
*
* See Bug 589735 for more information.
*/
bool check_placement = true;
if (addr == NULL) {
addr = (void*)0x0000070000000000;
check_placement = false;
}
#endif
/*
* We don't use MAP_FIXED here, because it can cause the *replacement*
* of existing mappings, and we only want to create new mappings.
*/
ret = mmap(addr, size, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANON, -1, 0);
assert(ret != NULL);
if (ret == MAP_FAILED) {
ret = NULL;
}
#if defined(__ia64__)
/*
* If the allocated memory doesn't have its upper 17 bits clear, consider it
* as out of memory.
*/
else if ((long long)ret & 0xffff800000000000) {
munmap(ret, size);
ret = NULL;
}
/* If the caller requested a specific memory location, verify that's what mmap returned. */
else if (check_placement && ret != addr) {
#else
else if (addr != NULL && ret != addr) {
#endif
/*
* We succeeded in mapping memory, but not in the right place.
*/
if (munmap(ret, size) == -1) {
char buf[STRERROR_BUF];
strerror_r(errno, buf, sizeof(buf));
_malloc_message(_getprogname(),
": (malloc) Error in munmap(): ", buf, "\n");
if (opt_abort)
abort();
}
ret = NULL;
}
if (ret != NULL) {
MozTagAnonymousMemory(ret, size, "jemalloc");
}
#if defined(__ia64__)
assert(ret == NULL || (!check_placement && ret != NULL)
|| (check_placement && ret == addr));
#else
assert(ret == NULL || (addr == NULL && ret != addr)
|| (addr != NULL && ret == addr));
#endif
return (ret);
}
static void
pages_unmap(void *addr, size_t size)
{
if (munmap(addr, size) == -1) {
char buf[STRERROR_BUF];
strerror_r(errno, buf, sizeof(buf));
_malloc_message(_getprogname(),
": (malloc) Error in munmap(): ", buf, "\n");
if (opt_abort)
abort();
}
}
#endif
#ifdef MOZ_MEMORY_DARWIN
#define VM_COPY_MIN (pagesize << 5)
static inline void
pages_copy(void *dest, const void *src, size_t n)
{
assert((void *)((uintptr_t)dest & ~pagesize_mask) == dest);
assert(n >= VM_COPY_MIN);
assert((void *)((uintptr_t)src & ~pagesize_mask) == src);
vm_copy(mach_task_self(), (vm_address_t)src, (vm_size_t)n,
(vm_address_t)dest);
}
#endif
#ifdef MALLOC_VALIDATE
static inline malloc_rtree_t *
malloc_rtree_new(unsigned bits)
{
malloc_rtree_t *ret;
unsigned bits_per_level, height, i;
bits_per_level = ffs(pow2_ceil((MALLOC_RTREE_NODESIZE /
sizeof(void *)))) - 1;
height = bits / bits_per_level;
if (height * bits_per_level != bits)
height++;
RELEASE_ASSERT(height * bits_per_level >= bits);
ret = (malloc_rtree_t*)base_calloc(1, sizeof(malloc_rtree_t) +
(sizeof(unsigned) * (height - 1)));
if (ret == NULL)
return (NULL);
malloc_spin_init(&ret->lock);
ret->height = height;
if (bits_per_level * height > bits)
ret->level2bits[0] = bits % bits_per_level;
else
ret->level2bits[0] = bits_per_level;
for (i = 1; i < height; i++)
ret->level2bits[i] = bits_per_level;
ret->root = (void**)base_calloc(1, sizeof(void *) << ret->level2bits[0]);
if (ret->root == NULL) {
/*
* We leak the rtree here, since there's no generic base
* deallocation.
*/
return (NULL);
}
return (ret);
}
#define MALLOC_RTREE_GET_GENERATE(f) \
/* The least significant bits of the key are ignored. */ \
static inline void * \
f(malloc_rtree_t *rtree, uintptr_t key) \
{ \
void *ret; \
uintptr_t subkey; \
unsigned i, lshift, height, bits; \
void **node, **child; \
\
MALLOC_RTREE_LOCK(&rtree->lock); \
for (i = lshift = 0, height = rtree->height, node = rtree->root;\
i < height - 1; \
i++, lshift += bits, node = child) { \
bits = rtree->level2bits[i]; \
subkey = (key << lshift) >> ((SIZEOF_PTR << 3) - bits); \
child = (void**)node[subkey]; \
if (child == NULL) { \
MALLOC_RTREE_UNLOCK(&rtree->lock); \
return (NULL); \
} \
} \
\
/* \
* node is a leaf, so it contains values rather than node \
* pointers. \
*/ \
bits = rtree->level2bits[i]; \
subkey = (key << lshift) >> ((SIZEOF_PTR << 3) - bits); \
ret = node[subkey]; \
MALLOC_RTREE_UNLOCK(&rtree->lock); \
\
MALLOC_RTREE_GET_VALIDATE \
return (ret); \
}
#ifdef MALLOC_DEBUG
# define MALLOC_RTREE_LOCK(l) malloc_spin_lock(l)
# define MALLOC_RTREE_UNLOCK(l) malloc_spin_unlock(l)
# define MALLOC_RTREE_GET_VALIDATE
MALLOC_RTREE_GET_GENERATE(malloc_rtree_get_locked)
# undef MALLOC_RTREE_LOCK
# undef MALLOC_RTREE_UNLOCK
# undef MALLOC_RTREE_GET_VALIDATE
#endif
#define MALLOC_RTREE_LOCK(l)
#define MALLOC_RTREE_UNLOCK(l)
#ifdef MALLOC_DEBUG
/*
* Suppose that it were possible for a jemalloc-allocated chunk to be
* munmap()ped, followed by a different allocator in another thread re-using
* overlapping virtual memory, all without invalidating the cached rtree
* value. The result would be a false positive (the rtree would claim that
* jemalloc owns memory that it had actually discarded). I don't think this
* scenario is possible, but the following assertion is a prudent sanity
* check.
*/
# define MALLOC_RTREE_GET_VALIDATE \
assert(malloc_rtree_get_locked(rtree, key) == ret);
#else
# define MALLOC_RTREE_GET_VALIDATE
#endif
MALLOC_RTREE_GET_GENERATE(malloc_rtree_get)
#undef MALLOC_RTREE_LOCK
#undef MALLOC_RTREE_UNLOCK
#undef MALLOC_RTREE_GET_VALIDATE
static inline bool
malloc_rtree_set(malloc_rtree_t *rtree, uintptr_t key, void *val)
{
uintptr_t subkey;
unsigned i, lshift, height, bits;
void **node, **child;
malloc_spin_lock(&rtree->lock);
for (i = lshift = 0, height = rtree->height, node = rtree->root;
i < height - 1;
i++, lshift += bits, node = child) {
bits = rtree->level2bits[i];
subkey = (key << lshift) >> ((SIZEOF_PTR << 3) - bits);
child = (void**)node[subkey];
if (child == NULL) {
child = (void**)base_calloc(1, sizeof(void *) <<
rtree->level2bits[i+1]);
if (child == NULL) {
malloc_spin_unlock(&rtree->lock);
return (true);
}
node[subkey] = child;
}
}
/* node is a leaf, so it contains values rather than node pointers. */
bits = rtree->level2bits[i];
subkey = (key << lshift) >> ((SIZEOF_PTR << 3) - bits);
node[subkey] = val;
malloc_spin_unlock(&rtree->lock);
return (false);
}
#endif
/* pages_trim, chunk_alloc_mmap_slow and chunk_alloc_mmap were cherry-picked
* from upstream jemalloc 3.4.1 to fix Mozilla bug 956501. */
/* Return the offset between a and the nearest aligned address at or below a. */
#define ALIGNMENT_ADDR2OFFSET(a, alignment) \
((size_t)((uintptr_t)(a) & (alignment - 1)))
/* Return the smallest alignment multiple that is >= s. */
#define ALIGNMENT_CEILING(s, alignment) \
(((s) + (alignment - 1)) & (-(alignment)))
static void *
pages_trim(void *addr, size_t alloc_size, size_t leadsize, size_t size)
{
void *ret = (void *)((uintptr_t)addr + leadsize);
assert(alloc_size >= leadsize + size);
#ifdef MOZ_MEMORY_WINDOWS
{
void *new_addr;
pages_unmap(addr, alloc_size);
new_addr = pages_map(ret, size);
if (new_addr == ret)
return (ret);
if (new_addr)
pages_unmap(new_addr, size);
return (NULL);
}
#else
{
size_t trailsize = alloc_size - leadsize - size;
if (leadsize != 0)
pages_unmap(addr, leadsize);
if (trailsize != 0)
pages_unmap((void *)((uintptr_t)ret + size), trailsize);
return (ret);
}
#endif
}
static void *
chunk_alloc_mmap_slow(size_t size, size_t alignment)
{
void *ret, *pages;
size_t alloc_size, leadsize;
alloc_size = size + alignment - pagesize;
/* Beware size_t wrap-around. */
if (alloc_size < size)
return (NULL);
do {
pages = pages_map(NULL, alloc_size);
if (pages == NULL)
return (NULL);
leadsize = ALIGNMENT_CEILING((uintptr_t)pages, alignment) -
(uintptr_t)pages;
ret = pages_trim(pages, alloc_size, leadsize, size);
} while (ret == NULL);
assert(ret != NULL);
return (ret);
}
static void *
chunk_alloc_mmap(size_t size, size_t alignment)
{
#ifdef JEMALLOC_USES_MAP_ALIGN
return pages_map_align(size, alignment);
#else
void *ret;
size_t offset;
/*
* Ideally, there would be a way to specify alignment to mmap() (like
* NetBSD has), but in the absence of such a feature, we have to work
* hard to efficiently create aligned mappings. The reliable, but
* slow method is to create a mapping that is over-sized, then trim the
* excess. However, that always results in one or two calls to
* pages_unmap().
*
* Optimistically try mapping precisely the right amount before falling
* back to the slow method, with the expectation that the optimistic
* approach works most of the time.
*/
ret = pages_map(NULL, size);
if (ret == NULL)
return (NULL);
offset = ALIGNMENT_ADDR2OFFSET(ret, alignment);
if (offset != 0) {
pages_unmap(ret, size);
return (chunk_alloc_mmap_slow(size, alignment));
}
assert(ret != NULL);
return (ret);
#endif
}
bool
pages_purge(void *addr, size_t length)
{
bool unzeroed;
#ifdef MALLOC_DECOMMIT
pages_decommit(addr, length);
unzeroed = false;
#else
# ifdef MOZ_MEMORY_WINDOWS
/*
* The region starting at addr may have been allocated in multiple calls
* to VirtualAlloc and recycled, so resetting the entire region in one
* go may not be valid. However, since we allocate at least a chunk at a
* time, we may touch any region in chunksized increments.
*/
size_t pages_size = min(length, chunksize -
CHUNK_ADDR2OFFSET((uintptr_t)addr));
while (length > 0) {
VirtualAlloc(addr, pages_size, MEM_RESET, PAGE_READWRITE);
addr = (void *)((uintptr_t)addr + pages_size);
length -= pages_size;
pages_size = min(length, chunksize);
}
unzeroed = true;
# else
# ifdef MOZ_MEMORY_LINUX
# define JEMALLOC_MADV_PURGE MADV_DONTNEED
# define JEMALLOC_MADV_ZEROS true
# else /* FreeBSD and Darwin. */
# define JEMALLOC_MADV_PURGE MADV_FREE
# define JEMALLOC_MADV_ZEROS false
# endif
int err = madvise(addr, length, JEMALLOC_MADV_PURGE);
unzeroed = (JEMALLOC_MADV_ZEROS == false || err != 0);
# undef JEMALLOC_MADV_PURGE
# undef JEMALLOC_MADV_ZEROS
# endif
#endif
return (unzeroed);
}
static void *
chunk_recycle(extent_tree_t *chunks_szad, extent_tree_t *chunks_ad, size_t size,
size_t alignment, bool base, bool *zero)
{
void *ret;
extent_node_t *node;
extent_node_t key;
size_t alloc_size, leadsize, trailsize;
bool zeroed;
if (base) {
/*
* This function may need to call base_node_{,de}alloc(), but
* the current chunk allocation request is on behalf of the
* base allocator. Avoid deadlock (and if that weren't an
* issue, potential for infinite recursion) by returning NULL.
*/
return (NULL);
}
alloc_size = size + alignment - chunksize;
/* Beware size_t wrap-around. */
if (alloc_size < size)
return (NULL);
key.addr = NULL;
key.size = alloc_size;
malloc_mutex_lock(&chunks_mtx);
node = extent_tree_szad_nsearch(chunks_szad, &key);
if (node == NULL) {
malloc_mutex_unlock(&chunks_mtx);
return (NULL);
}
leadsize = ALIGNMENT_CEILING((uintptr_t)node->addr, alignment) -
(uintptr_t)node->addr;
assert(node->size >= leadsize + size);
trailsize = node->size - leadsize - size;
ret = (void *)((uintptr_t)node->addr + leadsize);
zeroed = node->zeroed;
if (zeroed)
*zero = true;
/* Remove node from the tree. */
extent_tree_szad_remove(chunks_szad, node);
extent_tree_ad_remove(chunks_ad, node);
if (leadsize != 0) {
/* Insert the leading space as a smaller chunk. */
node->size = leadsize;
extent_tree_szad_insert(chunks_szad, node);
extent_tree_ad_insert(chunks_ad, node);
node = NULL;
}
if (trailsize != 0) {
/* Insert the trailing space as a smaller chunk. */
if (node == NULL) {
/*
* An additional node is required, but
* base_node_alloc() can cause a new base chunk to be
* allocated. Drop chunks_mtx in order to avoid
* deadlock, and if node allocation fails, deallocate
* the result before returning an error.
*/
malloc_mutex_unlock(&chunks_mtx);
node = base_node_alloc();
if (node == NULL) {
chunk_dealloc(ret, size);
return (NULL);
}
malloc_mutex_lock(&chunks_mtx);
}
node->addr = (void *)((uintptr_t)(ret) + size);
node->size = trailsize;
node->zeroed = zeroed;
extent_tree_szad_insert(chunks_szad, node);
extent_tree_ad_insert(chunks_ad, node);
node = NULL;
}
if (config_munmap && config_recycle)
recycled_size -= size;
malloc_mutex_unlock(&chunks_mtx);
if (node != NULL)
base_node_dealloc(node);
#ifdef MALLOC_DECOMMIT
pages_commit(ret, size);
#endif
if (*zero) {
if (zeroed == false)
memset(ret, 0, size);
#ifdef DEBUG
else {
size_t i;
size_t *p = (size_t *)(uintptr_t)ret;
for (i = 0; i < size / sizeof(size_t); i++)
assert(p[i] == 0);
}
#endif
}
return (ret);
}
#ifdef MOZ_MEMORY_WINDOWS
/*
* On Windows, calls to VirtualAlloc and VirtualFree must be matched, making it
* awkward to recycle allocations of varying sizes. Therefore we only allow
* recycling when the size equals the chunksize, unless deallocation is entirely
* disabled.
*/
#define CAN_RECYCLE(size) (size == chunksize)
#else
#define CAN_RECYCLE(size) true
#endif
static void *
chunk_alloc(size_t size, size_t alignment, bool base, bool zero)
{
void *ret;
assert(size != 0);
assert((size & chunksize_mask) == 0);
assert(alignment != 0);
assert((alignment & chunksize_mask) == 0);
if (!config_munmap || (config_recycle && CAN_RECYCLE(size))) {
ret = chunk_recycle(&chunks_szad_mmap, &chunks_ad_mmap,
size, alignment, base, &zero);
if (ret != NULL)
goto RETURN;
}
ret = chunk_alloc_mmap(size, alignment);
if (ret != NULL) {
goto RETURN;
}
/* All strategies for allocation failed. */
ret = NULL;
RETURN:
#ifdef MALLOC_VALIDATE
if (ret != NULL && base == false) {
if (malloc_rtree_set(chunk_rtree, (uintptr_t)ret, ret)) {
chunk_dealloc(ret, size);
return (NULL);
}
}
#endif
assert(CHUNK_ADDR2BASE(ret) == ret);
return (ret);
}
static void
chunk_record(extent_tree_t *chunks_szad, extent_tree_t *chunks_ad, void *chunk,
size_t size)
{
bool unzeroed;
extent_node_t *xnode, *node, *prev, *xprev, key;
unzeroed = pages_purge(chunk, size);
/*
* Allocate a node before acquiring chunks_mtx even though it might not
* be needed, because base_node_alloc() may cause a new base chunk to
* be allocated, which could cause deadlock if chunks_mtx were already
* held.
*/
xnode = base_node_alloc();
/* Use xprev to implement conditional deferred deallocation of prev. */
xprev = NULL;
malloc_mutex_lock(&chunks_mtx);
key.addr = (void *)((uintptr_t)chunk + size);
node = extent_tree_ad_nsearch(chunks_ad, &key);
/* Try to coalesce forward. */
if (node != NULL && node->addr == key.addr) {
/*
* Coalesce chunk with the following address range. This does
* not change the position within chunks_ad, so only
* remove/insert from/into chunks_szad.
*/
extent_tree_szad_remove(chunks_szad, node);
node->addr = chunk;
node->size += size;
node->zeroed = (node->zeroed && (unzeroed == false));
extent_tree_szad_insert(chunks_szad, node);
} else {
/* Coalescing forward failed, so insert a new node. */
if (xnode == NULL) {
/*
* base_node_alloc() failed, which is an exceedingly
* unlikely failure. Leak chunk; its pages have
* already been purged, so this is only a virtual
* memory leak.
*/
goto label_return;
}
node = xnode;
xnode = NULL; /* Prevent deallocation below. */
node->addr = chunk;
node->size = size;
node->zeroed = (unzeroed == false);
extent_tree_ad_insert(chunks_ad, node);
extent_tree_szad_insert(chunks_szad, node);
}
/* Try to coalesce backward. */
prev = extent_tree_ad_prev(chunks_ad, node);
if (prev != NULL && (void *)((uintptr_t)prev->addr + prev->size) ==
chunk) {
/*
* Coalesce chunk with the previous address range. This does
* not change the position within chunks_ad, so only
* remove/insert node from/into chunks_szad.
*/
extent_tree_szad_remove(chunks_szad, prev);
extent_tree_ad_remove(chunks_ad, prev);
extent_tree_szad_remove(chunks_szad, node);
node->addr = prev->addr;
node->size += prev->size;
node->zeroed = (node->zeroed && prev->zeroed);
extent_tree_szad_insert(chunks_szad, node);
xprev = prev;
}
if (config_munmap && config_recycle)
recycled_size += size;
label_return:
malloc_mutex_unlock(&chunks_mtx);
/*
* Deallocate xnode and/or xprev after unlocking chunks_mtx in order to
* avoid potential deadlock.
*/
if (xnode != NULL)
base_node_dealloc(xnode);
if (xprev != NULL)
base_node_dealloc(xprev);
}
static bool
chunk_dalloc_mmap(void *chunk, size_t size)
{
if (!config_munmap || (config_recycle && CAN_RECYCLE(size) &&
load_acquire_z(&recycled_size) < recycle_limit))
return true;
pages_unmap(chunk, size);
return false;
}
#undef CAN_RECYCLE
static void
chunk_dealloc(void *chunk, size_t size)
{
assert(chunk != NULL);
assert(CHUNK_ADDR2BASE(chunk) == chunk);
assert(size != 0);
assert((size & chunksize_mask) == 0);
#ifdef MALLOC_VALIDATE
malloc_rtree_set(chunk_rtree, (uintptr_t)chunk, NULL);
#endif
if (chunk_dalloc_mmap(chunk, size))
chunk_record(&chunks_szad_mmap, &chunks_ad_mmap, chunk, size);
}
/*
* End chunk management functions.
*/
/******************************************************************************/
/*
* Begin arena.
*/
/*
* Choose an arena based on a per-thread value (fast-path code, calls slow-path
* code if necessary).
*/
static inline arena_t *
choose_arena(void)
{
arena_t *ret;
/*
* We can only use TLS if this is a PIC library, since for the static
* library version, libc's malloc is used by TLS allocation, which
* introduces a bootstrapping issue.
*/
#ifndef NO_TLS
if (isthreaded == false) {
/* Avoid the overhead of TLS for single-threaded operation. */
return (arenas[0]);
}
# ifdef MOZ_MEMORY_WINDOWS
ret = (arena_t*)TlsGetValue(tlsIndex);
# else
ret = arenas_map;
# endif
if (ret == NULL) {
ret = choose_arena_hard();
RELEASE_ASSERT(ret != NULL);
}
#else
if (isthreaded && narenas > 1) {
unsigned long ind;
/*
* Hash _pthread_self() to one of the arenas. There is a prime
* number of arenas, so this has a reasonable chance of
* working. Even so, the hashing can be easily thwarted by
* inconvenient _pthread_self() values. Without specific
* knowledge of how _pthread_self() calculates values, we can't
* easily do much better than this.
*/
ind = (unsigned long) _pthread_self() % narenas;
/*
* Optimistially assume that arenas[ind] has been initialized.
* At worst, we find out that some other thread has already
* done so, after acquiring the lock in preparation. Note that
* this lazy locking also has the effect of lazily forcing
* cache coherency; without the lock acquisition, there's no
* guarantee that modification of arenas[ind] by another thread
* would be seen on this CPU for an arbitrary amount of time.
*
* In general, this approach to modifying a synchronized value
* isn't a good idea, but in this case we only ever modify the
* value once, so things work out well.
*/
ret = arenas[ind];
if (ret == NULL) {
/*
* Avoid races with another thread that may have already
* initialized arenas[ind].
*/
malloc_spin_lock(&arenas_lock);
if (arenas[ind] == NULL)
ret = arenas_extend((unsigned)ind);
else
ret = arenas[ind];
malloc_spin_unlock(&arenas_lock);
}
} else
ret = arenas[0];
#endif
RELEASE_ASSERT(ret != NULL);
return (ret);
}
#ifndef NO_TLS
/*
* Choose an arena based on a per-thread value (slow-path code only, called
* only by choose_arena()).
*/
static arena_t *
choose_arena_hard(void)
{
arena_t *ret;
assert(isthreaded);
#ifdef MALLOC_BALANCE
/* Seed the PRNG used for arena load balancing. */
SPRN(balance, (uint32_t)(uintptr_t)(_pthread_self()));
#endif
if (narenas > 1) {
#ifdef MALLOC_BALANCE
unsigned ind;
ind = PRN(balance, narenas_2pow);
if ((ret = arenas[ind]) == NULL) {
malloc_spin_lock(&arenas_lock);
if ((ret = arenas[ind]) == NULL)
ret = arenas_extend(ind);
malloc_spin_unlock(&arenas_lock);
}
#else
malloc_spin_lock(&arenas_lock);
if ((ret = arenas[next_arena]) == NULL)
ret = arenas_extend(next_arena);
next_arena = (next_arena + 1) % narenas;
malloc_spin_unlock(&arenas_lock);
#endif
} else
ret = arenas[0];
#ifdef MOZ_MEMORY_WINDOWS
TlsSetValue(tlsIndex, ret);
#else
arenas_map = ret;
#endif
return (ret);
}
#endif
static inline int
arena_chunk_comp(arena_chunk_t *a, arena_chunk_t *b)
{
uintptr_t a_chunk = (uintptr_t)a;
uintptr_t b_chunk = (uintptr_t)b;
assert(a != NULL);
assert(b != NULL);
return ((a_chunk > b_chunk) - (a_chunk < b_chunk));
}
/* Wrap red-black tree macros in functions. */
rb_wrap(static, arena_chunk_tree_dirty_, arena_chunk_tree_t,
arena_chunk_t, link_dirty, arena_chunk_comp)
static inline int
arena_run_comp(arena_chunk_map_t *a, arena_chunk_map_t *b)
{
uintptr_t a_mapelm = (uintptr_t)a;
uintptr_t b_mapelm = (uintptr_t)b;
assert(a != NULL);
assert(b != NULL);
return ((a_mapelm > b_mapelm) - (a_mapelm < b_mapelm));
}
/* Wrap red-black tree macros in functions. */
rb_wrap(static, arena_run_tree_, arena_run_tree_t, arena_chunk_map_t, link,
arena_run_comp)
static inline int
arena_avail_comp(arena_chunk_map_t *a, arena_chunk_map_t *b)
{
int ret;
size_t a_size = a->bits & ~pagesize_mask;
size_t b_size = b->bits & ~pagesize_mask;
ret = (a_size > b_size) - (a_size < b_size);
if (ret == 0) {
uintptr_t a_mapelm, b_mapelm;
if ((a->bits & CHUNK_MAP_KEY) == 0)
a_mapelm = (uintptr_t)a;
else {
/*
* Treat keys as though they are lower than anything
* else.
*/
a_mapelm = 0;
}
b_mapelm = (uintptr_t)b;
ret = (a_mapelm > b_mapelm) - (a_mapelm < b_mapelm);
}
return (ret);
}
/* Wrap red-black tree macros in functions. */
rb_wrap(static, arena_avail_tree_, arena_avail_tree_t, arena_chunk_map_t, link,
arena_avail_comp)
static inline void *
arena_run_reg_alloc(arena_run_t *run, arena_bin_t *bin)
{
void *ret;
unsigned i, mask, bit, regind;
assert(run->magic == ARENA_RUN_MAGIC);
assert(run->regs_minelm < bin->regs_mask_nelms);
/*
* Move the first check outside the loop, so that run->regs_minelm can
* be updated unconditionally, without the possibility of updating it
* multiple times.
*/
i = run->regs_minelm;
mask = run->regs_mask[i];
if (mask != 0) {
/* Usable allocation found. */
bit = ffs((int)mask) - 1;
regind = ((i << (SIZEOF_INT_2POW + 3)) + bit);
assert(regind < bin->nregs);
ret = (void *)(((uintptr_t)run) + bin->reg0_offset
+ (bin->reg_size * regind));
/* Clear bit. */
mask ^= (1U << bit);
run->regs_mask[i] = mask;
return (ret);
}
for (i++; i < bin->regs_mask_nelms; i++) {
mask = run->regs_mask[i];
if (mask != 0) {
/* Usable allocation found. */
bit = ffs((int)mask) - 1;
regind = ((i << (SIZEOF_INT_2POW + 3)) + bit);
assert(regind < bin->nregs);
ret = (void *)(((uintptr_t)run) + bin->reg0_offset
+ (bin->reg_size * regind));
/* Clear bit. */
mask ^= (1U << bit);
run->regs_mask[i] = mask;
/*
* Make a note that nothing before this element
* contains a free region.
*/
run->regs_minelm = i; /* Low payoff: + (mask == 0); */
return (ret);
}
}
/* Not reached. */
RELEASE_ASSERT(0);
return (NULL);
}
static inline void
arena_run_reg_dalloc(arena_run_t *run, arena_bin_t *bin, void *ptr, size_t size)
{
/*
* To divide by a number D that is not a power of two we multiply
* by (2^21 / D) and then right shift by 21 positions.
*
* X / D
*
* becomes
*
* (X * size_invs[(D >> QUANTUM_2POW_MIN) - 3]) >> SIZE_INV_SHIFT
*/
#define SIZE_INV_SHIFT 21
#define SIZE_INV(s) (((1U << SIZE_INV_SHIFT) / (s << QUANTUM_2POW_MIN)) + 1)
static const unsigned size_invs[] = {
SIZE_INV(3),
SIZE_INV(4), SIZE_INV(5), SIZE_INV(6), SIZE_INV(7),
SIZE_INV(8), SIZE_INV(9), SIZE_INV(10), SIZE_INV(11),
SIZE_INV(12),SIZE_INV(13), SIZE_INV(14), SIZE_INV(15),
SIZE_INV(16),SIZE_INV(17), SIZE_INV(18), SIZE_INV(19),
SIZE_INV(20),SIZE_INV(21), SIZE_INV(22), SIZE_INV(23),
SIZE_INV(24),SIZE_INV(25), SIZE_INV(26), SIZE_INV(27),
SIZE_INV(28),SIZE_INV(29), SIZE_INV(30), SIZE_INV(31)
#if (QUANTUM_2POW_MIN < 4)
,
SIZE_INV(32), SIZE_INV(33), SIZE_INV(34), SIZE_INV(35),
SIZE_INV(36), SIZE_INV(37), SIZE_INV(38), SIZE_INV(39),
SIZE_INV(40), SIZE_INV(41), SIZE_INV(42), SIZE_INV(43),
SIZE_INV(44), SIZE_INV(45), SIZE_INV(46), SIZE_INV(47),
SIZE_INV(48), SIZE_INV(49), SIZE_INV(50), SIZE_INV(51),
SIZE_INV(52), SIZE_INV(53), SIZE_INV(54), SIZE_INV(55),
SIZE_INV(56), SIZE_INV(57), SIZE_INV(58), SIZE_INV(59),
SIZE_INV(60), SIZE_INV(61), SIZE_INV(62), SIZE_INV(63)
#endif
};
unsigned diff, regind, elm, bit;
assert(run->magic == ARENA_RUN_MAGIC);
assert(((sizeof(size_invs)) / sizeof(unsigned)) + 3
>= (SMALL_MAX_DEFAULT >> QUANTUM_2POW_MIN));
/*
* Avoid doing division with a variable divisor if possible. Using
* actual division here can reduce allocator throughput by over 20%!
*/
diff = (unsigned)((uintptr_t)ptr - (uintptr_t)run - bin->reg0_offset);
if ((size & (size - 1)) == 0) {
/*
* log2_table allows fast division of a power of two in the
* [1..128] range.
*
* (x / divisor) becomes (x >> log2_table[divisor - 1]).
*/
static const unsigned char log2_table[] = {
0, 1, 0, 2, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 4,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7
};
if (size <= 128)
regind = (diff >> log2_table[size - 1]);
else if (size <= 32768)
regind = diff >> (8 + log2_table[(size >> 8) - 1]);
else {
/*
* The run size is too large for us to use the lookup
* table. Use real division.
*/
regind = diff / size;
}
} else if (size <= ((sizeof(size_invs) / sizeof(unsigned))
<< QUANTUM_2POW_MIN) + 2) {
regind = size_invs[(size >> QUANTUM_2POW_MIN) - 3] * diff;
regind >>= SIZE_INV_SHIFT;
} else {
/*
* size_invs isn't large enough to handle this size class, so
* calculate regind using actual division. This only happens
* if the user increases small_max via the 'S' runtime
* configuration option.
*/
regind = diff / size;
};
RELEASE_ASSERT(diff == regind * size);
RELEASE_ASSERT(regind < bin->nregs);
elm = regind >> (SIZEOF_INT_2POW + 3);
if (elm < run->regs_minelm)
run->regs_minelm = elm;
bit = regind - (elm << (SIZEOF_INT_2POW + 3));
RELEASE_ASSERT((run->regs_mask[elm] & (1U << bit)) == 0);
run->regs_mask[elm] |= (1U << bit);
#undef SIZE_INV
#undef SIZE_INV_SHIFT
}
static void
arena_run_split(arena_t *arena, arena_run_t *run, size_t size, bool large,
bool zero)
{
arena_chunk_t *chunk;
size_t old_ndirty, run_ind, total_pages, need_pages, rem_pages, i;
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(run);
old_ndirty = chunk->ndirty;
run_ind = (unsigned)(((uintptr_t)run - (uintptr_t)chunk)
>> pagesize_2pow);
total_pages = (chunk->map[run_ind].bits & ~pagesize_mask) >>
pagesize_2pow;
need_pages = (size >> pagesize_2pow);
assert(need_pages > 0);
assert(need_pages <= total_pages);
rem_pages = total_pages - need_pages;
arena_avail_tree_remove(&arena->runs_avail, &chunk->map[run_ind]);
/* Keep track of trailing unused pages for later use. */
if (rem_pages > 0) {
chunk->map[run_ind+need_pages].bits = (rem_pages <<
pagesize_2pow) | (chunk->map[run_ind+need_pages].bits &
pagesize_mask);
chunk->map[run_ind+total_pages-1].bits = (rem_pages <<
pagesize_2pow) | (chunk->map[run_ind+total_pages-1].bits &
pagesize_mask);
arena_avail_tree_insert(&arena->runs_avail,
&chunk->map[run_ind+need_pages]);
}
for (i = 0; i < need_pages; i++) {
#if defined(MALLOC_DECOMMIT) || defined(MALLOC_STATS) || defined(MALLOC_DOUBLE_PURGE)
/*
* Commit decommitted pages if necessary. If a decommitted
* page is encountered, commit all needed adjacent decommitted
* pages in one operation, in order to reduce system call
* overhead.
*/
if (chunk->map[run_ind + i].bits & CHUNK_MAP_MADVISED_OR_DECOMMITTED) {
size_t j;
/*
* Advance i+j to just past the index of the last page
* to commit. Clear CHUNK_MAP_DECOMMITTED and
* CHUNK_MAP_MADVISED along the way.
*/
for (j = 0; i + j < need_pages && (chunk->map[run_ind +
i + j].bits & CHUNK_MAP_MADVISED_OR_DECOMMITTED); j++) {
/* DECOMMITTED and MADVISED are mutually exclusive. */
assert(!(chunk->map[run_ind + i + j].bits & CHUNK_MAP_DECOMMITTED &&
chunk->map[run_ind + i + j].bits & CHUNK_MAP_MADVISED));
chunk->map[run_ind + i + j].bits &=
~CHUNK_MAP_MADVISED_OR_DECOMMITTED;
}
# ifdef MALLOC_DECOMMIT
pages_commit((void *)((uintptr_t)chunk + ((run_ind + i)
<< pagesize_2pow)), (j << pagesize_2pow));
# ifdef MALLOC_STATS
arena->stats.ncommit++;
# endif
# endif
# ifdef MALLOC_STATS
arena->stats.committed += j;
# endif
# ifndef MALLOC_DECOMMIT
}
# else
} else /* No need to zero since commit zeros. */
# endif
#endif
/* Zero if necessary. */
if (zero) {
if ((chunk->map[run_ind + i].bits & CHUNK_MAP_ZEROED)
== 0) {
memset((void *)((uintptr_t)chunk + ((run_ind
+ i) << pagesize_2pow)), 0, pagesize);
/* CHUNK_MAP_ZEROED is cleared below. */
}
}
/* Update dirty page accounting. */
if (chunk->map[run_ind + i].bits & CHUNK_MAP_DIRTY) {
chunk->ndirty--;
arena->ndirty--;
/* CHUNK_MAP_DIRTY is cleared below. */
}
/* Initialize the chunk map. */
if (large) {
chunk->map[run_ind + i].bits = CHUNK_MAP_LARGE
| CHUNK_MAP_ALLOCATED;
} else {
chunk->map[run_ind + i].bits = (size_t)run
| CHUNK_MAP_ALLOCATED;
}
}
/*
* Set the run size only in the first element for large runs. This is
* primarily a debugging aid, since the lack of size info for trailing
* pages only matters if the application tries to operate on an
* interior pointer.
*/
if (large)
chunk->map[run_ind].bits |= size;
if (chunk->ndirty == 0 && old_ndirty > 0)
arena_chunk_tree_dirty_remove(&arena->chunks_dirty, chunk);
}
static void
arena_chunk_init(arena_t *arena, arena_chunk_t *chunk)
{
arena_run_t *run;
size_t i;
#ifdef MALLOC_STATS
arena->stats.mapped += chunksize;
#endif
chunk->arena = arena;
/*
* Claim that no pages are in use, since the header is merely overhead.
*/
chunk->ndirty = 0;
/* Initialize the map to contain one maximal free untouched run. */
run = (arena_run_t *)((uintptr_t)chunk + (arena_chunk_header_npages <<
pagesize_2pow));
for (i = 0; i < arena_chunk_header_npages; i++)
chunk->map[i].bits = 0;
chunk->map[i].bits = arena_maxclass | CHUNK_MAP_DECOMMITTED | CHUNK_MAP_ZEROED;
for (i++; i < chunk_npages-1; i++) {
chunk->map[i].bits = CHUNK_MAP_DECOMMITTED | CHUNK_MAP_ZEROED;
}
chunk->map[chunk_npages-1].bits = arena_maxclass | CHUNK_MAP_DECOMMITTED | CHUNK_MAP_ZEROED;
#ifdef MALLOC_DECOMMIT
/*
* Start out decommitted, in order to force a closer correspondence
* between dirty pages and committed untouched pages.
*/
pages_decommit(run, arena_maxclass);
# ifdef MALLOC_STATS
arena->stats.ndecommit++;
arena->stats.decommitted += (chunk_npages - arena_chunk_header_npages);
# endif
#endif
#ifdef MALLOC_STATS
arena->stats.committed += arena_chunk_header_npages;
#endif
/* Insert the run into the runs_avail tree. */
arena_avail_tree_insert(&arena->runs_avail,
&chunk->map[arena_chunk_header_npages]);
#ifdef MALLOC_DOUBLE_PURGE
LinkedList_Init(&chunk->chunks_madvised_elem);
#endif
}
static void
arena_chunk_dealloc(arena_t *arena, arena_chunk_t *chunk)
{
if (arena->spare != NULL) {
if (arena->spare->ndirty > 0) {
arena_chunk_tree_dirty_remove(
&chunk->arena->chunks_dirty, arena->spare);
arena->ndirty -= arena->spare->ndirty;
#ifdef MALLOC_STATS
arena->stats.committed -= arena->spare->ndirty;
#endif
}
#ifdef MALLOC_DOUBLE_PURGE
/* This is safe to do even if arena->spare is not in the list. */
LinkedList_Remove(&arena->spare->chunks_madvised_elem);
#endif
chunk_dealloc((void *)arena->spare, chunksize);
#ifdef MALLOC_STATS
arena->stats.mapped -= chunksize;
arena->stats.committed -= arena_chunk_header_npages;
#endif
}
/*
* Remove run from runs_avail, so that the arena does not use it.
* Dirty page flushing only uses the chunks_dirty tree, so leaving this
* chunk in the chunks_* trees is sufficient for that purpose.
*/
arena_avail_tree_remove(&arena->runs_avail,
&chunk->map[arena_chunk_header_npages]);
arena->spare = chunk;
}
static arena_run_t *
arena_run_alloc(arena_t *arena, arena_bin_t *bin, size_t size, bool large,
bool zero)
{
arena_run_t *run;
arena_chunk_map_t *mapelm, key;
assert(size <= arena_maxclass);
assert((size & pagesize_mask) == 0);
/* Search the arena's chunks for the lowest best fit. */
key.bits = size | CHUNK_MAP_KEY;
mapelm = arena_avail_tree_nsearch(&arena->runs_avail, &key);
if (mapelm != NULL) {
arena_chunk_t *chunk =
(arena_chunk_t*)CHUNK_ADDR2BASE(mapelm);
size_t pageind = ((uintptr_t)mapelm -
(uintptr_t)chunk->map) /
sizeof(arena_chunk_map_t);
run = (arena_run_t *)((uintptr_t)chunk + (pageind
<< pagesize_2pow));
arena_run_split(arena, run, size, large, zero);
return (run);
}
if (arena->spare != NULL) {
/* Use the spare. */
arena_chunk_t *chunk = arena->spare;
arena->spare = NULL;
run = (arena_run_t *)((uintptr_t)chunk +
(arena_chunk_header_npages << pagesize_2pow));
/* Insert the run into the runs_avail tree. */
arena_avail_tree_insert(&arena->runs_avail,
&chunk->map[arena_chunk_header_npages]);
arena_run_split(arena, run, size, large, zero);
return (run);
}
/*
* No usable runs. Create a new chunk from which to allocate
* the run.
*/
{
arena_chunk_t *chunk = (arena_chunk_t *)
chunk_alloc(chunksize, chunksize, false, true);
if (chunk == NULL)
return (NULL);
arena_chunk_init(arena, chunk);
run = (arena_run_t *)((uintptr_t)chunk +
(arena_chunk_header_npages << pagesize_2pow));
}
/* Update page map. */
arena_run_split(arena, run, size, large, zero);
return (run);
}
static void
arena_purge(arena_t *arena, bool all)
{
arena_chunk_t *chunk;
size_t i, npages;
/* If all is set purge all dirty pages. */
size_t dirty_max = all ? 1 : opt_dirty_max;
#ifdef MALLOC_DEBUG
size_t ndirty = 0;
rb_foreach_begin(arena_chunk_t, link_dirty, &arena->chunks_dirty,
chunk) {
ndirty += chunk->ndirty;
} rb_foreach_end(arena_chunk_t, link_dirty, &arena->chunks_dirty, chunk)
assert(ndirty == arena->ndirty);
#endif
RELEASE_ASSERT(all || (arena->ndirty > opt_dirty_max));
#ifdef MALLOC_STATS
arena->stats.npurge++;
#endif
/*
* Iterate downward through chunks until enough dirty memory has been
* purged. Terminate as soon as possible in order to minimize the
* number of system calls, even if a chunk has only been partially
* purged.
*/
while (arena->ndirty > (dirty_max >> 1)) {
#ifdef MALLOC_DOUBLE_PURGE
bool madvised = false;
#endif
chunk = arena_chunk_tree_dirty_last(&arena->chunks_dirty);
RELEASE_ASSERT(chunk != NULL);
for (i = chunk_npages - 1; chunk->ndirty > 0; i--) {
RELEASE_ASSERT(i >= arena_chunk_header_npages);
if (chunk->map[i].bits & CHUNK_MAP_DIRTY) {
#ifdef MALLOC_DECOMMIT
const size_t free_operation = CHUNK_MAP_DECOMMITTED;
#else
const size_t free_operation = CHUNK_MAP_MADVISED;
#endif
assert((chunk->map[i].bits &
CHUNK_MAP_MADVISED_OR_DECOMMITTED) == 0);
chunk->map[i].bits ^= free_operation | CHUNK_MAP_DIRTY;
/* Find adjacent dirty run(s). */
for (npages = 1;
i > arena_chunk_header_npages &&
(chunk->map[i - 1].bits & CHUNK_MAP_DIRTY);
npages++) {
i--;
assert((chunk->map[i].bits &
CHUNK_MAP_MADVISED_OR_DECOMMITTED) == 0);
chunk->map[i].bits ^= free_operation | CHUNK_MAP_DIRTY;
}
chunk->ndirty -= npages;
arena->ndirty -= npages;
#ifdef MALLOC_DECOMMIT
pages_decommit((void *)((uintptr_t)
chunk + (i << pagesize_2pow)),
(npages << pagesize_2pow));
# ifdef MALLOC_STATS
arena->stats.ndecommit++;
arena->stats.decommitted += npages;
# endif
#endif
#ifdef MALLOC_STATS
arena->stats.committed -= npages;
#endif
#ifndef MALLOC_DECOMMIT
madvise((void *)((uintptr_t)chunk + (i <<
pagesize_2pow)), (npages << pagesize_2pow),
MADV_FREE);
# ifdef MALLOC_DOUBLE_PURGE
madvised = true;
# endif
#endif
#ifdef MALLOC_STATS
arena->stats.nmadvise++;
arena->stats.purged += npages;
#endif
if (arena->ndirty <= (dirty_max >> 1))
break;
}
}
if (chunk->ndirty == 0) {
arena_chunk_tree_dirty_remove(&arena->chunks_dirty,
chunk);
}
#ifdef MALLOC_DOUBLE_PURGE
if (madvised) {
/* The chunk might already be in the list, but this
* makes sure it's at the front. */
LinkedList_Remove(&chunk->chunks_madvised_elem);
LinkedList_InsertHead(&arena->chunks_madvised, &chunk->chunks_madvised_elem);
}
#endif
}
}
static void
arena_run_dalloc(arena_t *arena, arena_run_t *run, bool dirty)
{
arena_chunk_t *chunk;
size_t size, run_ind, run_pages;
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(run);
run_ind = (size_t)(((uintptr_t)run - (uintptr_t)chunk)
>> pagesize_2pow);
RELEASE_ASSERT(run_ind >= arena_chunk_header_npages);
RELEASE_ASSERT(run_ind < chunk_npages);
if ((chunk->map[run_ind].bits & CHUNK_MAP_LARGE) != 0)
size = chunk->map[run_ind].bits & ~pagesize_mask;
else
size = run->bin->run_size;
run_pages = (size >> pagesize_2pow);
/* Mark pages as unallocated in the chunk map. */
if (dirty) {
size_t i;
for (i = 0; i < run_pages; i++) {
RELEASE_ASSERT((chunk->map[run_ind + i].bits & CHUNK_MAP_DIRTY)
== 0);
chunk->map[run_ind + i].bits = CHUNK_MAP_DIRTY;
}
if (chunk->ndirty == 0) {
arena_chunk_tree_dirty_insert(&arena->chunks_dirty,
chunk);
}
chunk->ndirty += run_pages;
arena->ndirty += run_pages;
} else {
size_t i;
for (i = 0; i < run_pages; i++) {
chunk->map[run_ind + i].bits &= ~(CHUNK_MAP_LARGE |
CHUNK_MAP_ALLOCATED);
}
}
chunk->map[run_ind].bits = size | (chunk->map[run_ind].bits &
pagesize_mask);
chunk->map[run_ind+run_pages-1].bits = size |
(chunk->map[run_ind+run_pages-1].bits & pagesize_mask);
/* Try to coalesce forward. */
if (run_ind + run_pages < chunk_npages &&
(chunk->map[run_ind+run_pages].bits & CHUNK_MAP_ALLOCATED) == 0) {
size_t nrun_size = chunk->map[run_ind+run_pages].bits &
~pagesize_mask;
/*
* Remove successor from runs_avail; the coalesced run is
* inserted later.
*/
arena_avail_tree_remove(&arena->runs_avail,
&chunk->map[run_ind+run_pages]);
size += nrun_size;
run_pages = size >> pagesize_2pow;
RELEASE_ASSERT((chunk->map[run_ind+run_pages-1].bits & ~pagesize_mask)
== nrun_size);
chunk->map[run_ind].bits = size | (chunk->map[run_ind].bits &
pagesize_mask);
chunk->map[run_ind+run_pages-1].bits = size |
(chunk->map[run_ind+run_pages-1].bits & pagesize_mask);
}
/* Try to coalesce backward. */
if (run_ind > arena_chunk_header_npages && (chunk->map[run_ind-1].bits &
CHUNK_MAP_ALLOCATED) == 0) {
size_t prun_size = chunk->map[run_ind-1].bits & ~pagesize_mask;
run_ind -= prun_size >> pagesize_2pow;
/*
* Remove predecessor from runs_avail; the coalesced run is
* inserted later.
*/
arena_avail_tree_remove(&arena->runs_avail,
&chunk->map[run_ind]);
size += prun_size;
run_pages = size >> pagesize_2pow;
RELEASE_ASSERT((chunk->map[run_ind].bits & ~pagesize_mask) ==
prun_size);
chunk->map[run_ind].bits = size | (chunk->map[run_ind].bits &
pagesize_mask);
chunk->map[run_ind+run_pages-1].bits = size |
(chunk->map[run_ind+run_pages-1].bits & pagesize_mask);
}
/* Insert into runs_avail, now that coalescing is complete. */
arena_avail_tree_insert(&arena->runs_avail, &chunk->map[run_ind]);
/* Deallocate chunk if it is now completely unused. */
if ((chunk->map[arena_chunk_header_npages].bits & (~pagesize_mask |
CHUNK_MAP_ALLOCATED)) == arena_maxclass)
arena_chunk_dealloc(arena, chunk);
/* Enforce opt_dirty_max. */
if (arena->ndirty > opt_dirty_max)
arena_purge(arena, false);
}
static void
arena_run_trim_head(arena_t *arena, arena_chunk_t *chunk, arena_run_t *run,
size_t oldsize, size_t newsize)
{
size_t pageind = ((uintptr_t)run - (uintptr_t)chunk) >> pagesize_2pow;
size_t head_npages = (oldsize - newsize) >> pagesize_2pow;
assert(oldsize > newsize);
/*
* Update the chunk map so that arena_run_dalloc() can treat the
* leading run as separately allocated.
*/
chunk->map[pageind].bits = (oldsize - newsize) | CHUNK_MAP_LARGE |
CHUNK_MAP_ALLOCATED;
chunk->map[pageind+head_npages].bits = newsize | CHUNK_MAP_LARGE |
CHUNK_MAP_ALLOCATED;
arena_run_dalloc(arena, run, false);
}
static void
arena_run_trim_tail(arena_t *arena, arena_chunk_t *chunk, arena_run_t *run,
size_t oldsize, size_t newsize, bool dirty)
{
size_t pageind = ((uintptr_t)run - (uintptr_t)chunk) >> pagesize_2pow;
size_t npages = newsize >> pagesize_2pow;
assert(oldsize > newsize);
/*
* Update the chunk map so that arena_run_dalloc() can treat the
* trailing run as separately allocated.
*/
chunk->map[pageind].bits = newsize | CHUNK_MAP_LARGE |
CHUNK_MAP_ALLOCATED;
chunk->map[pageind+npages].bits = (oldsize - newsize) | CHUNK_MAP_LARGE
| CHUNK_MAP_ALLOCATED;
arena_run_dalloc(arena, (arena_run_t *)((uintptr_t)run + newsize),
dirty);
}
static arena_run_t *
arena_bin_nonfull_run_get(arena_t *arena, arena_bin_t *bin)
{
arena_chunk_map_t *mapelm;
arena_run_t *run;
unsigned i, remainder;
/* Look for a usable run. */
mapelm = arena_run_tree_first(&bin->runs);
if (mapelm != NULL) {
/* run is guaranteed to have available space. */
arena_run_tree_remove(&bin->runs, mapelm);
run = (arena_run_t *)(mapelm->bits & ~pagesize_mask);
#ifdef MALLOC_STATS
bin->stats.reruns++;
#endif
return (run);
}
/* No existing runs have any space available. */
/* Allocate a new run. */
run = arena_run_alloc(arena, bin, bin->run_size, false, false);
if (run == NULL)
return (NULL);
/*
* Don't initialize if a race in arena_run_alloc() allowed an existing
* run to become usable.
*/
if (run == bin->runcur)
return (run);
/* Initialize run internals. */
run->bin = bin;
for (i = 0; i < bin->regs_mask_nelms - 1; i++)
run->regs_mask[i] = UINT_MAX;
remainder = bin->nregs & ((1U << (SIZEOF_INT_2POW + 3)) - 1);
if (remainder == 0)
run->regs_mask[i] = UINT_MAX;
else {
/* The last element has spare bits that need to be unset. */
run->regs_mask[i] = (UINT_MAX >> ((1U << (SIZEOF_INT_2POW + 3))
- remainder));
}
run->regs_minelm = 0;
run->nfree = bin->nregs;
#if defined(MALLOC_DEBUG) || defined(MOZ_JEMALLOC_HARD_ASSERTS)
run->magic = ARENA_RUN_MAGIC;
#endif
#ifdef MALLOC_STATS
bin->stats.nruns++;
bin->stats.curruns++;
if (bin->stats.curruns > bin->stats.highruns)
bin->stats.highruns = bin->stats.curruns;
#endif
return (run);
}
/* bin->runcur must have space available before this function is called. */
static inline void *
arena_bin_malloc_easy(arena_t *arena, arena_bin_t *bin, arena_run_t *run)
{
void *ret;
RELEASE_ASSERT(run->magic == ARENA_RUN_MAGIC);
RELEASE_ASSERT(run->nfree > 0);
ret = arena_run_reg_alloc(run, bin);
RELEASE_ASSERT(ret != NULL);
run->nfree--;
return (ret);
}
/* Re-fill bin->runcur, then call arena_bin_malloc_easy(). */
static void *
arena_bin_malloc_hard(arena_t *arena, arena_bin_t *bin)
{
bin->runcur = arena_bin_nonfull_run_get(arena, bin);
if (bin->runcur == NULL)
return (NULL);
RELEASE_ASSERT(bin->runcur->magic == ARENA_RUN_MAGIC);
RELEASE_ASSERT(bin->runcur->nfree > 0);
return (arena_bin_malloc_easy(arena, bin, bin->runcur));
}
/*
* Calculate bin->run_size such that it meets the following constraints:
*
* *) bin->run_size >= min_run_size
* *) bin->run_size <= arena_maxclass
* *) bin->run_size <= RUN_MAX_SMALL
* *) run header overhead <= RUN_MAX_OVRHD (or header overhead relaxed).
*
* bin->nregs, bin->regs_mask_nelms, and bin->reg0_offset are
* also calculated here, since these settings are all interdependent.
*/
static size_t
arena_bin_run_size_calc(arena_bin_t *bin, size_t min_run_size)
{
size_t try_run_size, good_run_size;
unsigned good_nregs, good_mask_nelms, good_reg0_offset;
unsigned try_nregs, try_mask_nelms, try_reg0_offset;
assert(min_run_size >= pagesize);
assert(min_run_size <= arena_maxclass);
/*
* Calculate known-valid settings before entering the run_size
* expansion loop, so that the first part of the loop always copies
* valid settings.
*
* The do..while loop iteratively reduces the number of regions until
* the run header and the regions no longer overlap. A closed formula
* would be quite messy, since there is an interdependency between the
* header's mask length and the number of regions.
*/
try_run_size = min_run_size;
try_nregs = ((try_run_size - sizeof(arena_run_t)) / bin->reg_size)
+ 1; /* Counter-act try_nregs-- in loop. */
do {
try_nregs--;
try_mask_nelms = (try_nregs >> (SIZEOF_INT_2POW + 3)) +
((try_nregs & ((1U << (SIZEOF_INT_2POW + 3)) - 1)) ? 1 : 0);
try_reg0_offset = try_run_size - (try_nregs * bin->reg_size);
} while (sizeof(arena_run_t) + (sizeof(unsigned) * (try_mask_nelms - 1))
> try_reg0_offset);
/* run_size expansion loop. */
do {
/*
* Copy valid settings before trying more aggressive settings.
*/
good_run_size = try_run_size;
good_nregs = try_nregs;
good_mask_nelms = try_mask_nelms;
good_reg0_offset = try_reg0_offset;
/* Try more aggressive settings. */
try_run_size += pagesize;
try_nregs = ((try_run_size - sizeof(arena_run_t)) /
bin->reg_size) + 1; /* Counter-act try_nregs-- in loop. */
do {
try_nregs--;
try_mask_nelms = (try_nregs >> (SIZEOF_INT_2POW + 3)) +
((try_nregs & ((1U << (SIZEOF_INT_2POW + 3)) - 1)) ?
1 : 0);
try_reg0_offset = try_run_size - (try_nregs *
bin->reg_size);
} while (sizeof(arena_run_t) + (sizeof(unsigned) *
(try_mask_nelms - 1)) > try_reg0_offset);
} while (try_run_size <= arena_maxclass
&& RUN_MAX_OVRHD * (bin->reg_size << 3) > RUN_MAX_OVRHD_RELAX
&& (try_reg0_offset << RUN_BFP) > RUN_MAX_OVRHD * try_run_size);
assert(sizeof(arena_run_t) + (sizeof(unsigned) * (good_mask_nelms - 1))
<= good_reg0_offset);
assert((good_mask_nelms << (SIZEOF_INT_2POW + 3)) >= good_nregs);
/* Copy final settings. */
bin->run_size = good_run_size;
bin->nregs = good_nregs;
bin->regs_mask_nelms = good_mask_nelms;
bin->reg0_offset = good_reg0_offset;
return (good_run_size);
}
#ifdef MALLOC_BALANCE
static inline void
arena_lock_balance(arena_t *arena)
{
unsigned contention;
contention = malloc_spin_lock(&arena->lock);
if (narenas > 1) {
/*
* Calculate the exponentially averaged contention for this
* arena. Due to integer math always rounding down, this value
* decays somewhat faster then normal.
*/
arena->contention = (((uint64_t)arena->contention
* (uint64_t)((1U << BALANCE_ALPHA_INV_2POW)-1))
+ (uint64_t)contention) >> BALANCE_ALPHA_INV_2POW;
if (arena->contention >= opt_balance_threshold)
arena_lock_balance_hard(arena);
}
}
static void
arena_lock_balance_hard(arena_t *arena)
{
uint32_t ind;
arena->contention = 0;
#ifdef MALLOC_STATS
arena->stats.nbalance++;
#endif
ind = PRN(balance, narenas_2pow);
if (arenas[ind] != NULL) {
#ifdef MOZ_MEMORY_WINDOWS
TlsSetValue(tlsIndex, arenas[ind]);
#else
arenas_map = arenas[ind];
#endif
} else {
malloc_spin_lock(&arenas_lock);
if (arenas[ind] != NULL) {
#ifdef MOZ_MEMORY_WINDOWS
TlsSetValue(tlsIndex, arenas[ind]);
#else
arenas_map = arenas[ind];
#endif
} else {
#ifdef MOZ_MEMORY_WINDOWS
TlsSetValue(tlsIndex, arenas_extend(ind));
#else
arenas_map = arenas_extend(ind);
#endif
}
malloc_spin_unlock(&arenas_lock);
}
}
#endif
static inline void *
arena_malloc_small(arena_t *arena, size_t size, bool zero)
{
void *ret;
arena_bin_t *bin;
arena_run_t *run;
if (size < small_min) {
/* Tiny. */
size = pow2_ceil(size);
bin = &arena->bins[ffs((int)(size >> (TINY_MIN_2POW +
1)))];
#if (!defined(NDEBUG) || defined(MALLOC_STATS))
/*
* Bin calculation is always correct, but we may need
* to fix size for the purposes of assertions and/or
* stats accuracy.
*/
if (size < (1U << TINY_MIN_2POW))
size = (1U << TINY_MIN_2POW);
#endif
} else if (size <= small_max) {
/* Quantum-spaced. */
size = QUANTUM_CEILING(size);
bin = &arena->bins[ntbins + (size >> opt_quantum_2pow)
- 1];
} else {
/* Sub-page. */
size = pow2_ceil(size);
bin = &arena->bins[ntbins + nqbins
+ (ffs((int)(size >> opt_small_max_2pow)) - 2)];
}
RELEASE_ASSERT(size == bin->reg_size);
#ifdef MALLOC_BALANCE
arena_lock_balance(arena);
#else
malloc_spin_lock(&arena->lock);
#endif
if ((run = bin->runcur) != NULL && run->nfree > 0)
ret = arena_bin_malloc_easy(arena, bin, run);
else
ret = arena_bin_malloc_hard(arena, bin);
if (ret == NULL) {
malloc_spin_unlock(&arena->lock);
return (NULL);
}
#ifdef MALLOC_STATS
bin->stats.nrequests++;
arena->stats.nmalloc_small++;
arena->stats.allocated_small += size;
#endif
malloc_spin_unlock(&arena->lock);
if (zero == false) {
#ifdef MALLOC_FILL
if (opt_junk)
memset(ret, 0xa5, size);
else if (opt_zero)
memset(ret, 0, size);
#endif
} else
memset(ret, 0, size);
return (ret);
}
static void *
arena_malloc_large(arena_t *arena, size_t size, bool zero)
{
void *ret;
/* Large allocation. */
size = PAGE_CEILING(size);
#ifdef MALLOC_BALANCE
arena_lock_balance(arena);
#else
malloc_spin_lock(&arena->lock);
#endif
ret = (void *)arena_run_alloc(arena, NULL, size, true, zero);
if (ret == NULL) {
malloc_spin_unlock(&arena->lock);
return (NULL);
}
#ifdef MALLOC_STATS
arena->stats.nmalloc_large++;
arena->stats.allocated_large += size;
#endif
malloc_spin_unlock(&arena->lock);
if (zero == false) {
#ifdef MALLOC_FILL
if (opt_junk)
memset(ret, 0xa5, size);
else if (opt_zero)
memset(ret, 0, size);
#endif
}
return (ret);
}
static inline void *
arena_malloc(arena_t *arena, size_t size, bool zero)
{
assert(arena != NULL);
RELEASE_ASSERT(arena->magic == ARENA_MAGIC);
assert(size != 0);
assert(QUANTUM_CEILING(size) <= arena_maxclass);
if (size <= bin_maxclass) {
return (arena_malloc_small(arena, size, zero));
} else
return (arena_malloc_large(arena, size, zero));
}
static inline void *
imalloc(size_t size)
{
assert(size != 0);
if (size <= arena_maxclass)
return (arena_malloc(choose_arena(), size, false));
else
return (huge_malloc(size, false));
}
static inline void *
icalloc(size_t size)
{
if (size <= arena_maxclass)
return (arena_malloc(choose_arena(), size, true));
else
return (huge_malloc(size, true));
}
/* Only handles large allocations that require more than page alignment. */
static void *
arena_palloc(arena_t *arena, size_t alignment, size_t size, size_t alloc_size)
{
void *ret;
size_t offset;
arena_chunk_t *chunk;
assert((size & pagesize_mask) == 0);
assert((alignment & pagesize_mask) == 0);
#ifdef MALLOC_BALANCE
arena_lock_balance(arena);
#else
malloc_spin_lock(&arena->lock);
#endif
ret = (void *)arena_run_alloc(arena, NULL, alloc_size, true, false);
if (ret == NULL) {
malloc_spin_unlock(&arena->lock);
return (NULL);
}
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ret);
offset = (uintptr_t)ret & (alignment - 1);
assert((offset & pagesize_mask) == 0);
assert(offset < alloc_size);
if (offset == 0)
arena_run_trim_tail(arena, chunk, (arena_run_t*)ret, alloc_size, size, false);
else {
size_t leadsize, trailsize;
leadsize = alignment - offset;
if (leadsize > 0) {
arena_run_trim_head(arena, chunk, (arena_run_t*)ret, alloc_size,
alloc_size - leadsize);
ret = (void *)((uintptr_t)ret + leadsize);
}
trailsize = alloc_size - leadsize - size;
if (trailsize != 0) {
/* Trim trailing space. */
assert(trailsize < alloc_size);
arena_run_trim_tail(arena, chunk, (arena_run_t*)ret, size + trailsize,
size, false);
}
}
#ifdef MALLOC_STATS
arena->stats.nmalloc_large++;
arena->stats.allocated_large += size;
#endif
malloc_spin_unlock(&arena->lock);
#ifdef MALLOC_FILL
if (opt_junk)
memset(ret, 0xa5, size);
else if (opt_zero)
memset(ret, 0, size);
#endif
return (ret);
}
static inline void *
ipalloc(size_t alignment, size_t size)
{
void *ret;
size_t ceil_size;
/*
* Round size up to the nearest multiple of alignment.
*
* This done, we can take advantage of the fact that for each small
* size class, every object is aligned at the smallest power of two
* that is non-zero in the base two representation of the size. For
* example:
*
* Size | Base 2 | Minimum alignment
* -----+----------+------------------
* 96 | 1100000 | 32
* 144 | 10100000 | 32
* 192 | 11000000 | 64
*
* Depending on runtime settings, it is possible that arena_malloc()
* will further round up to a power of two, but that never causes
* correctness issues.
*/
ceil_size = (size + (alignment - 1)) & (-alignment);
/*
* (ceil_size < size) protects against the combination of maximal
* alignment and size greater than maximal alignment.
*/
if (ceil_size < size) {
/* size_t overflow. */
return (NULL);
}
if (ceil_size <= pagesize || (alignment <= pagesize
&& ceil_size <= arena_maxclass))
ret = arena_malloc(choose_arena(), ceil_size, false);
else {
size_t run_size;
/*
* We can't achieve sub-page alignment, so round up alignment
* permanently; it makes later calculations simpler.
*/
alignment = PAGE_CEILING(alignment);
ceil_size = PAGE_CEILING(size);
/*
* (ceil_size < size) protects against very large sizes within
* pagesize of SIZE_T_MAX.
*
* (ceil_size + alignment < ceil_size) protects against the
* combination of maximal alignment and ceil_size large enough
* to cause overflow. This is similar to the first overflow
* check above, but it needs to be repeated due to the new
* ceil_size value, which may now be *equal* to maximal
* alignment, whereas before we only detected overflow if the
* original size was *greater* than maximal alignment.
*/
if (ceil_size < size || ceil_size + alignment < ceil_size) {
/* size_t overflow. */
return (NULL);
}
/*
* Calculate the size of the over-size run that arena_palloc()
* would need to allocate in order to guarantee the alignment.
*/
if (ceil_size >= alignment)
run_size = ceil_size + alignment - pagesize;
else {
/*
* It is possible that (alignment << 1) will cause
* overflow, but it doesn't matter because we also
* subtract pagesize, which in the case of overflow
* leaves us with a very large run_size. That causes
* the first conditional below to fail, which means
* that the bogus run_size value never gets used for
* anything important.
*/
run_size = (alignment << 1) - pagesize;
}
if (run_size <= arena_maxclass) {
ret = arena_palloc(choose_arena(), alignment, ceil_size,
run_size);
} else if (alignment <= chunksize)
ret = huge_malloc(ceil_size, false);
else
ret = huge_palloc(ceil_size, alignment, false);
}
assert(((uintptr_t)ret & (alignment - 1)) == 0);
return (ret);
}
/* Return the size of the allocation pointed to by ptr. */
static size_t
arena_salloc(const void *ptr)
{
size_t ret;
arena_chunk_t *chunk;
size_t pageind, mapbits;
assert(ptr != NULL);
assert(CHUNK_ADDR2BASE(ptr) != ptr);
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >> pagesize_2pow);
mapbits = chunk->map[pageind].bits;
RELEASE_ASSERT((mapbits & CHUNK_MAP_ALLOCATED) != 0);
if ((mapbits & CHUNK_MAP_LARGE) == 0) {
arena_run_t *run = (arena_run_t *)(mapbits & ~pagesize_mask);
RELEASE_ASSERT(run->magic == ARENA_RUN_MAGIC);
ret = run->bin->reg_size;
} else {
ret = mapbits & ~pagesize_mask;
RELEASE_ASSERT(ret != 0);
}
return (ret);
}
#if (defined(MALLOC_VALIDATE) || defined(MOZ_MEMORY_DARWIN))
/*
* Validate ptr before assuming that it points to an allocation. Currently,
* the following validation is performed:
*
* + Check that ptr is not NULL.
*
* + Check that ptr lies within a mapped chunk.
*/
static inline size_t
isalloc_validate(const void *ptr)
{
arena_chunk_t *chunk;
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
if (chunk == NULL)
return (0);
if (malloc_rtree_get(chunk_rtree, (uintptr_t)chunk) == NULL)
return (0);
if (chunk != ptr) {
RELEASE_ASSERT(chunk->arena->magic == ARENA_MAGIC);
return (arena_salloc(ptr));
} else {
size_t ret;
extent_node_t *node;
extent_node_t key;
/* Chunk. */
key.addr = (void *)chunk;
malloc_mutex_lock(&huge_mtx);
node = extent_tree_ad_search(&huge, &key);
if (node != NULL)
ret = node->size;
else
ret = 0;
malloc_mutex_unlock(&huge_mtx);
return (ret);
}
}
#endif
static inline size_t
isalloc(const void *ptr)
{
size_t ret;
arena_chunk_t *chunk;
assert(ptr != NULL);
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
if (chunk != ptr) {
/* Region. */
assert(chunk->arena->magic == ARENA_MAGIC);
ret = arena_salloc(ptr);
} else {
extent_node_t *node, key;
/* Chunk (huge allocation). */
malloc_mutex_lock(&huge_mtx);
/* Extract from tree of huge allocations. */
key.addr = __DECONST(void *, ptr);
node = extent_tree_ad_search(&huge, &key);
RELEASE_ASSERT(node != NULL);
ret = node->size;
malloc_mutex_unlock(&huge_mtx);
}
return (ret);
}
static inline void
arena_dalloc_small(arena_t *arena, arena_chunk_t *chunk, void *ptr,
arena_chunk_map_t *mapelm)
{
arena_run_t *run;
arena_bin_t *bin;
size_t size;
run = (arena_run_t *)(mapelm->bits & ~pagesize_mask);
RELEASE_ASSERT(run->magic == ARENA_RUN_MAGIC);
bin = run->bin;
size = bin->reg_size;
#ifdef MALLOC_FILL
if (opt_poison)
memset(ptr, 0x5a, size);
#endif
arena_run_reg_dalloc(run, bin, ptr, size);
run->nfree++;
if (run->nfree == bin->nregs) {
/* Deallocate run. */
if (run == bin->runcur)
bin->runcur = NULL;
else if (bin->nregs != 1) {
size_t run_pageind = (((uintptr_t)run -
(uintptr_t)chunk)) >> pagesize_2pow;
arena_chunk_map_t *run_mapelm =
&chunk->map[run_pageind];
/*
* This block's conditional is necessary because if the
* run only contains one region, then it never gets
* inserted into the non-full runs tree.
*/
RELEASE_ASSERT(arena_run_tree_search(&bin->runs, run_mapelm) ==
run_mapelm);
arena_run_tree_remove(&bin->runs, run_mapelm);
}
#if defined(MALLOC_DEBUG) || defined(MOZ_JEMALLOC_HARD_ASSERTS)
run->magic = 0;
#endif
arena_run_dalloc(arena, run, true);
#ifdef MALLOC_STATS
bin->stats.curruns--;
#endif
} else if (run->nfree == 1 && run != bin->runcur) {
/*
* Make sure that bin->runcur always refers to the lowest
* non-full run, if one exists.
*/
if (bin->runcur == NULL)
bin->runcur = run;
else if ((uintptr_t)run < (uintptr_t)bin->runcur) {
/* Switch runcur. */
if (bin->runcur->nfree > 0) {
arena_chunk_t *runcur_chunk =
(arena_chunk_t*)CHUNK_ADDR2BASE(bin->runcur);
size_t runcur_pageind =
(((uintptr_t)bin->runcur -
(uintptr_t)runcur_chunk)) >> pagesize_2pow;
arena_chunk_map_t *runcur_mapelm =
&runcur_chunk->map[runcur_pageind];
/* Insert runcur. */
RELEASE_ASSERT(arena_run_tree_search(&bin->runs,
runcur_mapelm) == NULL);
arena_run_tree_insert(&bin->runs,
runcur_mapelm);
}
bin->runcur = run;
} else {
size_t run_pageind = (((uintptr_t)run -
(uintptr_t)chunk)) >> pagesize_2pow;
arena_chunk_map_t *run_mapelm =
&chunk->map[run_pageind];
RELEASE_ASSERT(arena_run_tree_search(&bin->runs, run_mapelm) ==
NULL);
arena_run_tree_insert(&bin->runs, run_mapelm);
}
}
#ifdef MALLOC_STATS
arena->stats.allocated_small -= size;
arena->stats.ndalloc_small++;
#endif
}
static void
arena_dalloc_large(arena_t *arena, arena_chunk_t *chunk, void *ptr)
{
/* Large allocation. */
malloc_spin_lock(&arena->lock);
#ifdef MALLOC_FILL
#ifndef MALLOC_STATS
if (opt_poison)
#endif
#endif
{
size_t pageind = ((uintptr_t)ptr - (uintptr_t)chunk) >>
pagesize_2pow;
size_t size = chunk->map[pageind].bits & ~pagesize_mask;
#ifdef MALLOC_FILL
#ifdef MALLOC_STATS
if (opt_poison)
#endif
memset(ptr, 0x5a, size);
#endif
#ifdef MALLOC_STATS
arena->stats.allocated_large -= size;
#endif
}
#ifdef MALLOC_STATS
arena->stats.ndalloc_large++;
#endif
arena_run_dalloc(arena, (arena_run_t *)ptr, true);
malloc_spin_unlock(&arena->lock);
}
static inline void
arena_dalloc(void *ptr, size_t offset)
{
arena_chunk_t *chunk;
arena_t *arena;
size_t pageind;
arena_chunk_map_t *mapelm;
assert(ptr != NULL);
assert(offset != 0);
assert(CHUNK_ADDR2OFFSET(ptr) == offset);
chunk = (arena_chunk_t *) ((uintptr_t)ptr - offset);
arena = chunk->arena;
assert(arena != NULL);
RELEASE_ASSERT(arena->magic == ARENA_MAGIC);
pageind = offset >> pagesize_2pow;
mapelm = &chunk->map[pageind];
RELEASE_ASSERT((mapelm->bits & CHUNK_MAP_ALLOCATED) != 0);
if ((mapelm->bits & CHUNK_MAP_LARGE) == 0) {
/* Small allocation. */
malloc_spin_lock(&arena->lock);
arena_dalloc_small(arena, chunk, ptr, mapelm);
malloc_spin_unlock(&arena->lock);
} else
arena_dalloc_large(arena, chunk, ptr);
}
static inline void
idalloc(void *ptr)
{
size_t offset;
assert(ptr != NULL);
offset = CHUNK_ADDR2OFFSET(ptr);
if (offset != 0)
arena_dalloc(ptr, offset);
else
huge_dalloc(ptr);
}
static void
arena_ralloc_large_shrink(arena_t *arena, arena_chunk_t *chunk, void *ptr,
size_t size, size_t oldsize)
{
assert(size < oldsize);
/*
* Shrink the run, and make trailing pages available for other
* allocations.
*/
#ifdef MALLOC_BALANCE
arena_lock_balance(arena);
#else
malloc_spin_lock(&arena->lock);
#endif
arena_run_trim_tail(arena, chunk, (arena_run_t *)ptr, oldsize, size,
true);
#ifdef MALLOC_STATS
arena->stats.allocated_large -= oldsize - size;
#endif
malloc_spin_unlock(&arena->lock);
}
static bool
arena_ralloc_large_grow(arena_t *arena, arena_chunk_t *chunk, void *ptr,
size_t size, size_t oldsize)
{
size_t pageind = ((uintptr_t)ptr - (uintptr_t)chunk) >> pagesize_2pow;
size_t npages = oldsize >> pagesize_2pow;
RELEASE_ASSERT(oldsize == (chunk->map[pageind].bits & ~pagesize_mask));
/* Try to extend the run. */
assert(size > oldsize);
#ifdef MALLOC_BALANCE
arena_lock_balance(arena);
#else
malloc_spin_lock(&arena->lock);
#endif
if (pageind + npages < chunk_npages && (chunk->map[pageind+npages].bits
& CHUNK_MAP_ALLOCATED) == 0 && (chunk->map[pageind+npages].bits &
~pagesize_mask) >= size - oldsize) {
/*
* The next run is available and sufficiently large. Split the
* following run, then merge the first part with the existing
* allocation.
*/
arena_run_split(arena, (arena_run_t *)((uintptr_t)chunk +
((pageind+npages) << pagesize_2pow)), size - oldsize, true,
false);
chunk->map[pageind].bits = size | CHUNK_MAP_LARGE |
CHUNK_MAP_ALLOCATED;
chunk->map[pageind+npages].bits = CHUNK_MAP_LARGE |
CHUNK_MAP_ALLOCATED;
#ifdef MALLOC_STATS
arena->stats.allocated_large += size - oldsize;
#endif
malloc_spin_unlock(&arena->lock);
return (false);
}
malloc_spin_unlock(&arena->lock);
return (true);
}
/*
* Try to resize a large allocation, in order to avoid copying. This will
* always fail if growing an object, and the following run is already in use.
*/
static bool
arena_ralloc_large(void *ptr, size_t size, size_t oldsize)
{
size_t psize;
psize = PAGE_CEILING(size);
if (psize == oldsize) {
/* Same size class. */
#ifdef MALLOC_FILL
if (opt_poison && size < oldsize) {
memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize -
size);
}
#endif
return (false);
} else {
arena_chunk_t *chunk;
arena_t *arena;
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
arena = chunk->arena;
RELEASE_ASSERT(arena->magic == ARENA_MAGIC);
if (psize < oldsize) {
#ifdef MALLOC_FILL
/* Fill before shrinking in order avoid a race. */
if (opt_poison) {
memset((void *)((uintptr_t)ptr + size), 0x5a,
oldsize - size);
}
#endif
arena_ralloc_large_shrink(arena, chunk, ptr, psize,
oldsize);
return (false);
} else {
bool ret = arena_ralloc_large_grow(arena, chunk, ptr,
psize, oldsize);
#ifdef MALLOC_FILL
if (ret == false && opt_zero) {
memset((void *)((uintptr_t)ptr + oldsize), 0,
size - oldsize);
}
#endif
return (ret);
}
}
}
static void *
arena_ralloc(void *ptr, size_t size, size_t oldsize)
{
void *ret;
size_t copysize;
/* Try to avoid moving the allocation. */
if (size < small_min) {
if (oldsize < small_min &&
ffs((int)(pow2_ceil(size) >> (TINY_MIN_2POW + 1)))
== ffs((int)(pow2_ceil(oldsize) >> (TINY_MIN_2POW + 1))))
goto IN_PLACE; /* Same size class. */
} else if (size <= small_max) {
if (oldsize >= small_min && oldsize <= small_max &&
(QUANTUM_CEILING(size) >> opt_quantum_2pow)
== (QUANTUM_CEILING(oldsize) >> opt_quantum_2pow))
goto IN_PLACE; /* Same size class. */
} else if (size <= bin_maxclass) {
if (oldsize > small_max && oldsize <= bin_maxclass &&
pow2_ceil(size) == pow2_ceil(oldsize))
goto IN_PLACE; /* Same size class. */
} else if (oldsize > bin_maxclass && oldsize <= arena_maxclass) {
assert(size > bin_maxclass);
if (arena_ralloc_large(ptr, size, oldsize) == false)
return (ptr);
}
/*
* If we get here, then size and oldsize are different enough that we
* need to move the object. In that case, fall back to allocating new
* space and copying.
*/
ret = arena_malloc(choose_arena(), size, false);
if (ret == NULL)
return (NULL);
/* Junk/zero-filling were already done by arena_malloc(). */
copysize = (size < oldsize) ? size : oldsize;
#ifdef VM_COPY_MIN
if (copysize >= VM_COPY_MIN)
pages_copy(ret, ptr, copysize);
else
#endif
memcpy(ret, ptr, copysize);
idalloc(ptr);
return (ret);
IN_PLACE:
#ifdef MALLOC_FILL
if (opt_poison && size < oldsize)
memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize - size);
else if (opt_zero && size > oldsize)
memset((void *)((uintptr_t)ptr + oldsize), 0, size - oldsize);
#endif
return (ptr);
}
static inline void *
iralloc(void *ptr, size_t size)
{
size_t oldsize;
assert(ptr != NULL);
assert(size != 0);
oldsize = isalloc(ptr);
if (size <= arena_maxclass)
return (arena_ralloc(ptr, size, oldsize));
else
return (huge_ralloc(ptr, size, oldsize));
}
static bool
arena_new(arena_t *arena)
{
unsigned i;
arena_bin_t *bin;
size_t pow2_size, prev_run_size;
if (malloc_spin_init(&arena->lock))
return (true);
#ifdef MALLOC_STATS
memset(&arena->stats, 0, sizeof(arena_stats_t));
#endif
/* Initialize chunks. */
arena_chunk_tree_dirty_new(&arena->chunks_dirty);
#ifdef MALLOC_DOUBLE_PURGE
LinkedList_Init(&arena->chunks_madvised);
#endif
arena->spare = NULL;
arena->ndirty = 0;
arena_avail_tree_new(&arena->runs_avail);
#ifdef MALLOC_BALANCE
arena->contention = 0;
#endif
/* Initialize bins. */
prev_run_size = pagesize;
/* (2^n)-spaced tiny bins. */
for (i = 0; i < ntbins; i++) {
bin = &arena->bins[i];
bin->runcur = NULL;
arena_run_tree_new(&bin->runs);
bin->reg_size = (1U << (TINY_MIN_2POW + i));
prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
#ifdef MALLOC_STATS
memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
#endif
}
/* Quantum-spaced bins. */
for (; i < ntbins + nqbins; i++) {
bin = &arena->bins[i];
bin->runcur = NULL;
arena_run_tree_new(&bin->runs);
bin->reg_size = quantum * (i - ntbins + 1);
pow2_size = pow2_ceil(quantum * (i - ntbins + 1));
prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
#ifdef MALLOC_STATS
memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
#endif
}
/* (2^n)-spaced sub-page bins. */
for (; i < ntbins + nqbins + nsbins; i++) {
bin = &arena->bins[i];
bin->runcur = NULL;
arena_run_tree_new(&bin->runs);
bin->reg_size = (small_max << (i - (ntbins + nqbins) + 1));
prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
#ifdef MALLOC_STATS
memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
#endif
}
#if defined(MALLOC_DEBUG) || defined(MOZ_JEMALLOC_HARD_ASSERTS)
arena->magic = ARENA_MAGIC;
#endif
return (false);
}
/* Create a new arena and insert it into the arenas array at index ind. */
static arena_t *
arenas_extend(unsigned ind)
{
arena_t *ret;
/* Allocate enough space for trailing bins. */
ret = (arena_t *)base_alloc(sizeof(arena_t)
+ (sizeof(arena_bin_t) * (ntbins + nqbins + nsbins - 1)));
if (ret != NULL && arena_new(ret) == false) {
arenas[ind] = ret;
return (ret);
}
/* Only reached if there is an OOM error. */
/*
* OOM here is quite inconvenient to propagate, since dealing with it
* would require a check for failure in the fast path. Instead, punt
* by using arenas[0]. In practice, this is an extremely unlikely
* failure.
*/
_malloc_message(_getprogname(),
": (malloc) Error initializing arena\n", "", "");
if (opt_abort)
abort();
return (arenas[0]);
}
/*
* End arena.
*/
/******************************************************************************/
/*
* Begin general internal functions.
*/
static void *
huge_malloc(size_t size, bool zero)
{
return huge_palloc(size, chunksize, zero);
}
static void *
huge_palloc(size_t size, size_t alignment, bool zero)
{
void *ret;
size_t csize;
size_t psize;
extent_node_t *node;
/* Allocate one or more contiguous chunks for this request. */
csize = CHUNK_CEILING(size);
if (csize == 0) {
/* size is large enough to cause size_t wrap-around. */
return (NULL);
}
/* Allocate an extent node with which to track the chunk. */
node = base_node_alloc();
if (node == NULL)
return (NULL);
ret = chunk_alloc(csize, alignment, false, zero);
if (ret == NULL) {
base_node_dealloc(node);
return (NULL);
}
/* Insert node into huge. */
node->addr = ret;
psize = PAGE_CEILING(size);
node->size = psize;
malloc_mutex_lock(&huge_mtx);
extent_tree_ad_insert(&huge, node);
#ifdef MALLOC_STATS
huge_nmalloc++;
/* Although we allocated space for csize bytes, we indicate that we've
* allocated only psize bytes.
*
* If DECOMMIT is defined, this is a reasonable thing to do, since
* we'll explicitly decommit the bytes in excess of psize.
*
* If DECOMMIT is not defined, then we're relying on the OS to be lazy
* about how it allocates physical pages to mappings. If we never
* touch the pages in excess of psize, the OS won't allocate a physical
* page, and we won't use more than psize bytes of physical memory.
*
* A correct program will only touch memory in excess of how much it
* requested if it first calls malloc_usable_size and finds out how
* much space it has to play with. But because we set node->size =
* psize above, malloc_usable_size will return psize, not csize, and
* the program will (hopefully) never touch bytes in excess of psize.
* Thus those bytes won't take up space in physical memory, and we can
* reasonably claim we never "allocated" them in the first place. */
huge_allocated += psize;
huge_mapped += csize;
#endif
malloc_mutex_unlock(&huge_mtx);
#ifdef MALLOC_DECOMMIT
if (csize - psize > 0)
pages_decommit((void *)((uintptr_t)ret + psize), csize - psize);
#endif
#ifdef MALLOC_FILL
if (zero == false) {
if (opt_junk)
# ifdef MALLOC_DECOMMIT
memset(ret, 0xa5, psize);
# else
memset(ret, 0xa5, csize);
# endif
else if (opt_zero)
# ifdef MALLOC_DECOMMIT
memset(ret, 0, psize);
# else
memset(ret, 0, csize);
# endif
}
#endif
return (ret);
}
static void *
huge_ralloc(void *ptr, size_t size, size_t oldsize)
{
void *ret;
size_t copysize;
/* Avoid moving the allocation if the size class would not change. */
if (oldsize > arena_maxclass &&
CHUNK_CEILING(size) == CHUNK_CEILING(oldsize)) {
size_t psize = PAGE_CEILING(size);
#ifdef MALLOC_FILL
if (opt_poison && size < oldsize) {
memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize
- size);
}
#endif
#ifdef MALLOC_DECOMMIT
if (psize < oldsize) {
extent_node_t *node, key;
pages_decommit((void *)((uintptr_t)ptr + psize),
oldsize - psize);
/* Update recorded size. */
malloc_mutex_lock(&huge_mtx);
key.addr = __DECONST(void *, ptr);
node = extent_tree_ad_search(&huge, &key);
assert(node != NULL);
assert(node->size == oldsize);
# ifdef MALLOC_STATS
huge_allocated -= oldsize - psize;
/* No need to change huge_mapped, because we didn't
* (un)map anything. */
# endif
node->size = psize;
malloc_mutex_unlock(&huge_mtx);
} else if (psize > oldsize) {
pages_commit((void *)((uintptr_t)ptr + oldsize),
psize - oldsize);
}
#endif
/* Although we don't have to commit or decommit anything if
* DECOMMIT is not defined and the size class didn't change, we
* do need to update the recorded size if the size increased,
* so malloc_usable_size doesn't return a value smaller than
* what was requested via realloc(). */
if (psize > oldsize) {
/* Update recorded size. */
extent_node_t *node, key;
malloc_mutex_lock(&huge_mtx);
key.addr = __DECONST(void *, ptr);
node = extent_tree_ad_search(&huge, &key);
assert(node != NULL);
assert(node->size == oldsize);
# ifdef MALLOC_STATS
huge_allocated += psize - oldsize;
/* No need to change huge_mapped, because we didn't
* (un)map anything. */
# endif
node->size = psize;
malloc_mutex_unlock(&huge_mtx);
}
#ifdef MALLOC_FILL
if (opt_zero && size > oldsize) {
memset((void *)((uintptr_t)ptr + oldsize), 0, size
- oldsize);
}
#endif
return (ptr);
}
/*
* If we get here, then size and oldsize are different enough that we
* need to use a different size class. In that case, fall back to
* allocating new space and copying.
*/
ret = huge_malloc(size, false);
if (ret == NULL)
return (NULL);
copysize = (size < oldsize) ? size : oldsize;
#ifdef VM_COPY_MIN
if (copysize >= VM_COPY_MIN)
pages_copy(ret, ptr, copysize);
else
#endif
memcpy(ret, ptr, copysize);
idalloc(ptr);
return (ret);
}
static void
huge_dalloc(void *ptr)
{
extent_node_t *node, key;
malloc_mutex_lock(&huge_mtx);
/* Extract from tree of huge allocations. */
key.addr = ptr;
node = extent_tree_ad_search(&huge, &key);
assert(node != NULL);
assert(node->addr == ptr);
extent_tree_ad_remove(&huge, node);
#ifdef MALLOC_STATS
huge_ndalloc++;
huge_allocated -= node->size;
huge_mapped -= CHUNK_CEILING(node->size);
#endif
malloc_mutex_unlock(&huge_mtx);
/* Unmap chunk. */
chunk_dealloc(node->addr, CHUNK_CEILING(node->size));
base_node_dealloc(node);
}
#ifndef MOZ_MEMORY_NARENAS_DEFAULT_ONE
#ifdef MOZ_MEMORY_BSD
static inline unsigned
malloc_ncpus(void)
{
unsigned ret;
int mib[2];
size_t len;
mib[0] = CTL_HW;
mib[1] = HW_NCPU;
len = sizeof(ret);
if (sysctl(mib, 2, &ret, &len, (void *) 0, 0) == -1) {
/* Error. */
return (1);
}
return (ret);
}
#elif (defined(MOZ_MEMORY_LINUX))
#include <fcntl.h>
static inline unsigned
malloc_ncpus(void)
{
unsigned ret;
int fd, nread, column;
char buf[1024];
static const char matchstr[] = "processor\t:";
int i;
/*
* sysconf(3) would be the preferred method for determining the number
* of CPUs, but it uses malloc internally, which causes untennable
* recursion during malloc initialization.
*/
fd = open("/proc/cpuinfo", O_RDONLY);
if (fd == -1)
return (1); /* Error. */
/*
* Count the number of occurrences of matchstr at the beginnings of
* lines. This treats hyperthreaded CPUs as multiple processors.
*/
column = 0;
ret = 0;
while (true) {
nread = read(fd, &buf, sizeof(buf));
if (nread <= 0)
break; /* EOF or error. */
for (i = 0;i < nread;i++) {
char c = buf[i];
if (c == '\n')
column = 0;
else if (column != -1) {
if (c == matchstr[column]) {
column++;
if (column == sizeof(matchstr) - 1) {
column = -1;
ret++;
}
} else
column = -1;
}
}
}
if (ret == 0)
ret = 1; /* Something went wrong in the parser. */
close(fd);
return (ret);
}
#elif (defined(MOZ_MEMORY_DARWIN))
#include <mach/mach_init.h>
#include <mach/mach_host.h>
static inline unsigned
malloc_ncpus(void)
{
kern_return_t error;
natural_t n;
processor_info_array_t pinfo;
mach_msg_type_number_t pinfocnt;
error = host_processor_info(mach_host_self(), PROCESSOR_BASIC_INFO,
&n, &pinfo, &pinfocnt);
if (error != KERN_SUCCESS)
return (1); /* Error. */
else
return (n);
}
#elif (defined(MOZ_MEMORY_SOLARIS))
static inline unsigned
malloc_ncpus(void)
{
return sysconf(_SC_NPROCESSORS_ONLN);
}
#else
static inline unsigned
malloc_ncpus(void)
{
/*
* We lack a way to determine the number of CPUs on this platform, so
* assume 1 CPU.
*/
return (1);
}
#endif
#endif
static void
malloc_print_stats(void)
{
if (opt_print_stats) {
char s[UMAX2S_BUFSIZE];
_malloc_message("___ Begin malloc statistics ___\n", "", "",
"");
_malloc_message("Assertions ",
#ifdef NDEBUG
"disabled",
#else
"enabled",
#endif
"\n", "");
_malloc_message("Boolean MALLOC_OPTIONS: ",
opt_abort ? "A" : "a", "", "");
#ifdef MALLOC_FILL
_malloc_message(opt_poison ? "C" : "c", "", "", "");
_malloc_message(opt_junk ? "J" : "j", "", "", "");
#endif
_malloc_message("P", "", "", "");
#ifdef MALLOC_UTRACE
_malloc_message(opt_utrace ? "U" : "u", "", "", "");
#endif
#ifdef MALLOC_SYSV
_malloc_message(opt_sysv ? "V" : "v", "", "", "");
#endif
#ifdef MALLOC_XMALLOC
_malloc_message(opt_xmalloc ? "X" : "x", "", "", "");
#endif
#ifdef MALLOC_FILL
_malloc_message(opt_zero ? "Z" : "z", "", "", "");
#endif
_malloc_message("\n", "", "", "");
#ifndef MOZ_MEMORY_NARENAS_DEFAULT_ONE
_malloc_message("CPUs: ", umax2s(ncpus, 10, s), "\n", "");
#endif
_malloc_message("Max arenas: ", umax2s(narenas, 10, s), "\n",
"");
#ifdef MALLOC_BALANCE
_malloc_message("Arena balance threshold: ",
umax2s(opt_balance_threshold, 10, s), "\n", "");
#endif
_malloc_message("Pointer size: ", umax2s(sizeof(void *), 10, s),
"\n", "");
_malloc_message("Quantum size: ", umax2s(quantum, 10, s), "\n",
"");
_malloc_message("Max small size: ", umax2s(small_max, 10, s),
"\n", "");
_malloc_message("Max dirty pages per arena: ",
umax2s(opt_dirty_max, 10, s), "\n", "");
_malloc_message("Chunk size: ", umax2s(chunksize, 10, s), "",
"");
_malloc_message(" (2^", umax2s(opt_chunk_2pow, 10, s), ")\n",
"");
#ifdef MALLOC_STATS
{
size_t allocated, mapped = 0;
#ifdef MALLOC_BALANCE
uint64_t nbalance = 0;
#endif
unsigned i;
arena_t *arena;
/* Calculate and print allocated/mapped stats. */
/* arenas. */
for (i = 0, allocated = 0; i < narenas; i++) {
if (arenas[i] != NULL) {
malloc_spin_lock(&arenas[i]->lock);
allocated +=
arenas[i]->stats.allocated_small;
allocated +=
arenas[i]->stats.allocated_large;
mapped += arenas[i]->stats.mapped;
#ifdef MALLOC_BALANCE
nbalance += arenas[i]->stats.nbalance;
#endif
malloc_spin_unlock(&arenas[i]->lock);
}
}
/* huge/base. */
malloc_mutex_lock(&huge_mtx);
allocated += huge_allocated;
mapped += huge_mapped;
malloc_mutex_unlock(&huge_mtx);
malloc_mutex_lock(&base_mtx);
mapped += base_mapped;
malloc_mutex_unlock(&base_mtx);
#ifdef MOZ_MEMORY_WINDOWS
malloc_printf("Allocated: %lu, mapped: %lu\n",
allocated, mapped);
#else
malloc_printf("Allocated: %zu, mapped: %zu\n",
allocated, mapped);
#endif
#ifdef MALLOC_BALANCE
malloc_printf("Arena balance reassignments: %llu\n",
nbalance);
#endif
/* Print chunk stats. */
malloc_printf(
"huge: nmalloc ndalloc allocated\n");
#ifdef MOZ_MEMORY_WINDOWS
malloc_printf(" %12llu %12llu %12lu\n",
huge_nmalloc, huge_ndalloc, huge_allocated);
#else
malloc_printf(" %12llu %12llu %12zu\n",
huge_nmalloc, huge_ndalloc, huge_allocated);
#endif
/* Print stats for each arena. */
for (i = 0; i < narenas; i++) {
arena = arenas[i];
if (arena != NULL) {
malloc_printf(
"\narenas[%u]:\n", i);
malloc_spin_lock(&arena->lock);
stats_print(arena);
malloc_spin_unlock(&arena->lock);
}
}
}
#endif /* #ifdef MALLOC_STATS */
_malloc_message("--- End malloc statistics ---\n", "", "", "");
}
}
/*
* FreeBSD's pthreads implementation calls malloc(3), so the malloc
* implementation has to take pains to avoid infinite recursion during
* initialization.
*/
#if (defined(MOZ_MEMORY_WINDOWS) || defined(MOZ_MEMORY_DARWIN))
#define malloc_init() false
#else
static inline bool
malloc_init(void)
{
if (malloc_initialized == false)
return (malloc_init_hard());
return (false);
}
#endif
#if !defined(MOZ_MEMORY_WINDOWS)
static
#endif
bool
malloc_init_hard(void)
{
unsigned i;
char buf[PATH_MAX + 1];
const char *opts;
long result;
#ifndef MOZ_MEMORY_WINDOWS
int linklen;
#endif
#ifdef MOZ_MEMORY_DARWIN
malloc_zone_t* default_zone;
#endif
#ifndef MOZ_MEMORY_WINDOWS
malloc_mutex_lock(&init_lock);
#endif
if (malloc_initialized) {
/*
* Another thread initialized the allocator before this one
* acquired init_lock.
*/
#ifndef MOZ_MEMORY_WINDOWS
malloc_mutex_unlock(&init_lock);
#endif
return (false);
}
#ifdef MOZ_MEMORY_WINDOWS
/* get a thread local storage index */
tlsIndex = TlsAlloc();
#endif
/* Get page size and number of CPUs */
#ifdef MOZ_MEMORY_WINDOWS
{
SYSTEM_INFO info;
GetSystemInfo(&info);
result = info.dwPageSize;
#ifndef MOZ_MEMORY_NARENAS_DEFAULT_ONE
ncpus = info.dwNumberOfProcessors;
#endif
}
#else
#ifndef MOZ_MEMORY_NARENAS_DEFAULT_ONE
ncpus = malloc_ncpus();
#endif
result = sysconf(_SC_PAGESIZE);
assert(result != -1);
#endif
/* We assume that the page size is a power of 2. */
assert(((result - 1) & result) == 0);
#ifdef MALLOC_STATIC_SIZES
if (pagesize % (size_t) result) {
_malloc_message(_getprogname(),
"Compile-time page size does not divide the runtime one.\n",
"", "");
abort();
}
#else
pagesize = (size_t) result;
pagesize_mask = (size_t) result - 1;
pagesize_2pow = ffs((int)result) - 1;
#endif
for (i = 0; i < 3; i++) {
unsigned j;
/* Get runtime configuration. */
switch (i) {
case 0:
#ifndef MOZ_MEMORY_WINDOWS
if ((linklen = readlink("/etc/malloc.conf", buf,
sizeof(buf) - 1)) != -1) {
/*
* Use the contents of the "/etc/malloc.conf"
* symbolic link's name.
*/
buf[linklen] = '\0';
opts = buf;
} else
#endif
{
/* No configuration specified. */
buf[0] = '\0';
opts = buf;
}
break;
case 1:
if ((opts = getenv("MALLOC_OPTIONS")) != NULL) {
/*
* Do nothing; opts is already initialized to
* the value of the MALLOC_OPTIONS environment
* variable.
*/
} else {
/* No configuration specified. */
buf[0] = '\0';
opts = buf;
}
break;
case 2:
if (_malloc_options != NULL) {
/*
* Use options that were compiled into the
* program.
*/
opts = _malloc_options;
} else {
/* No configuration specified. */
buf[0] = '\0';
opts = buf;
}
break;
default:
/* NOTREACHED */
buf[0] = '\0';
opts = buf;
assert(false);
}
for (j = 0; opts[j] != '\0'; j++) {
unsigned k, nreps;
bool nseen;
/* Parse repetition count, if any. */
for (nreps = 0, nseen = false;; j++, nseen = true) {
switch (opts[j]) {
case '0': case '1': case '2': case '3':
case '4': case '5': case '6': case '7':
case '8': case '9':
nreps *= 10;
nreps += opts[j] - '0';
break;
default:
goto MALLOC_OUT;
}
}
MALLOC_OUT:
if (nseen == false)
nreps = 1;
for (k = 0; k < nreps; k++) {
switch (opts[j]) {
case 'a':
opt_abort = false;
break;
case 'A':
opt_abort = true;
break;
case 'b':
#ifdef MALLOC_BALANCE
opt_balance_threshold >>= 1;
#endif
break;
case 'B':
#ifdef MALLOC_BALANCE
if (opt_balance_threshold == 0)
opt_balance_threshold = 1;
else if ((opt_balance_threshold << 1)
> opt_balance_threshold)
opt_balance_threshold <<= 1;
#endif
break;
#ifdef MALLOC_FILL
#ifndef MALLOC_PRODUCTION
case 'c':
opt_poison = false;
break;
case 'C':
opt_poison = true;
break;
#endif
#endif
case 'f':
opt_dirty_max >>= 1;
break;
case 'F':
if (opt_dirty_max == 0)
opt_dirty_max = 1;
else if ((opt_dirty_max << 1) != 0)
opt_dirty_max <<= 1;
break;
#ifdef MALLOC_FILL
#ifndef MALLOC_PRODUCTION
case 'j':
opt_junk = false;
break;
case 'J':
opt_junk = true;
break;
#endif
#endif
#ifndef MALLOC_STATIC_SIZES
case 'k':
/*
* Chunks always require at least one
* header page, so chunks can never be
* smaller than two pages.
*/
if (opt_chunk_2pow > pagesize_2pow + 1)
opt_chunk_2pow--;
break;
case 'K':
if (opt_chunk_2pow + 1 <
(sizeof(size_t) << 3))
opt_chunk_2pow++;
break;
#endif
case 'n':
opt_narenas_lshift--;
break;
case 'N':
opt_narenas_lshift++;
break;
case 'p':
opt_print_stats = false;
break;
case 'P':
opt_print_stats = true;
break;
#ifndef MALLOC_STATIC_SIZES
case 'q':
if (opt_quantum_2pow > QUANTUM_2POW_MIN)
opt_quantum_2pow--;
break;
case 'Q':
if (opt_quantum_2pow < pagesize_2pow -
1)
opt_quantum_2pow++;
break;
case 's':
if (opt_small_max_2pow >
QUANTUM_2POW_MIN)
opt_small_max_2pow--;
break;
case 'S':
if (opt_small_max_2pow < pagesize_2pow
- 1)
opt_small_max_2pow++;
break;
#endif
#ifdef MALLOC_UTRACE
case 'u':
opt_utrace = false;
break;
case 'U':
opt_utrace = true;
break;
#endif
#ifdef MALLOC_SYSV
case 'v':
opt_sysv = false;
break;
case 'V':
opt_sysv = true;
break;
#endif
#ifdef MALLOC_XMALLOC
case 'x':
opt_xmalloc = false;
break;
case 'X':
opt_xmalloc = true;
break;
#endif
#ifdef MALLOC_FILL
#ifndef MALLOC_PRODUCTION
case 'z':
opt_zero = false;
break;
case 'Z':
opt_zero = true;
break;
#endif
#endif
default: {
char cbuf[2];
cbuf[0] = opts[j];
cbuf[1] = '\0';
_malloc_message(_getprogname(),
": (malloc) Unsupported character "
"in malloc options: '", cbuf,
"'\n");
}
}
}
}
}
/* Take care to call atexit() only once. */
if (opt_print_stats) {
#ifndef MOZ_MEMORY_WINDOWS
/* Print statistics at exit. */
atexit(malloc_print_stats);
#endif
}
#if !defined(MOZ_MEMORY_WINDOWS) && !defined(MOZ_MEMORY_DARWIN)
/* Prevent potential deadlock on malloc locks after fork. */
pthread_atfork(_malloc_prefork, _malloc_postfork, _malloc_postfork);
#endif
#ifndef MALLOC_STATIC_SIZES
/* Set variables according to the value of opt_small_max_2pow. */
if (opt_small_max_2pow < opt_quantum_2pow)
opt_small_max_2pow = opt_quantum_2pow;
small_max = (1U << opt_small_max_2pow);
/* Set bin-related variables. */
bin_maxclass = (pagesize >> 1);
assert(opt_quantum_2pow >= TINY_MIN_2POW);
ntbins = opt_quantum_2pow - TINY_MIN_2POW;
assert(ntbins <= opt_quantum_2pow);
nqbins = (small_max >> opt_quantum_2pow);
nsbins = pagesize_2pow - opt_small_max_2pow - 1;
/* Set variables according to the value of opt_quantum_2pow. */
quantum = (1U << opt_quantum_2pow);
quantum_mask = quantum - 1;
if (ntbins > 0)
small_min = (quantum >> 1) + 1;
else
small_min = 1;
assert(small_min <= quantum);
/* Set variables according to the value of opt_chunk_2pow. */
chunksize = (1LU << opt_chunk_2pow);
chunksize_mask = chunksize - 1;
chunk_npages = (chunksize >> pagesize_2pow);
arena_chunk_header_npages = calculate_arena_header_pages();
arena_maxclass = calculate_arena_maxclass();
recycle_limit = CHUNK_RECYCLE_LIMIT * chunksize;
#endif
recycled_size = 0;
#ifdef JEMALLOC_USES_MAP_ALIGN
/*
* When using MAP_ALIGN, the alignment parameter must be a power of two
* multiple of the system pagesize, or mmap will fail.
*/
assert((chunksize % pagesize) == 0);
assert((1 << (ffs(chunksize / pagesize) - 1)) == (chunksize/pagesize));
#endif
UTRACE(0, 0, 0);
/* Various sanity checks that regard configuration. */
assert(quantum >= sizeof(void *));
assert(quantum <= pagesize);
assert(chunksize >= pagesize);
assert(quantum * 4 <= chunksize);
/* Initialize chunks data. */
malloc_mutex_init(&chunks_mtx);
extent_tree_szad_new(&chunks_szad_mmap);
extent_tree_ad_new(&chunks_ad_mmap);
/* Initialize huge allocation data. */
malloc_mutex_init(&huge_mtx);
extent_tree_ad_new(&huge);
#ifdef MALLOC_STATS
huge_nmalloc = 0;
huge_ndalloc = 0;
huge_allocated = 0;
huge_mapped = 0;
#endif
/* Initialize base allocation data structures. */
#ifdef MALLOC_STATS
base_mapped = 0;
base_committed = 0;
#endif
base_nodes = NULL;
malloc_mutex_init(&base_mtx);
#ifdef MOZ_MEMORY_NARENAS_DEFAULT_ONE
narenas = 1;
#else
if (ncpus > 1) {
/*
* For SMP systems, create four times as many arenas as there
* are CPUs by default.
*/
opt_narenas_lshift += 2;
}
/* Determine how many arenas to use. */
narenas = ncpus;
#endif
if (opt_narenas_lshift > 0) {
if ((narenas << opt_narenas_lshift) > narenas)
narenas <<= opt_narenas_lshift;
/*
* Make sure not to exceed the limits of what base_alloc() can
* handle.
*/
if (narenas * sizeof(arena_t *) > chunksize)
narenas = chunksize / sizeof(arena_t *);
} else if (opt_narenas_lshift < 0) {
if ((narenas >> -opt_narenas_lshift) < narenas)
narenas >>= -opt_narenas_lshift;
/* Make sure there is at least one arena. */
if (narenas == 0)
narenas = 1;
}
#ifdef MALLOC_BALANCE
assert(narenas != 0);
for (narenas_2pow = 0;
(narenas >> (narenas_2pow + 1)) != 0;
narenas_2pow++);
#endif
#ifdef NO_TLS
if (narenas > 1) {
static const unsigned primes[] = {1, 3, 5, 7, 11, 13, 17, 19,
23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83,
89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149,
151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211,
223, 227, 229, 233, 239, 241, 251, 257, 263};
unsigned nprimes, parenas;
/*
* Pick a prime number of hash arenas that is more than narenas
* so that direct hashing of pthread_self() pointers tends to
* spread allocations evenly among the arenas.
*/
assert((narenas & 1) == 0); /* narenas must be even. */
nprimes = (sizeof(primes) >> SIZEOF_INT_2POW);
parenas = primes[nprimes - 1]; /* In case not enough primes. */
for (i = 1; i < nprimes; i++) {
if (primes[i] > narenas) {
parenas = primes[i];
break;
}
}
narenas = parenas;
}
#endif
#ifndef NO_TLS
# ifndef MALLOC_BALANCE
next_arena = 0;
# endif
#endif
/* Allocate and initialize arenas. */
arenas = (arena_t **)base_alloc(sizeof(arena_t *) * narenas);
if (arenas == NULL) {
#ifndef MOZ_MEMORY_WINDOWS
malloc_mutex_unlock(&init_lock);
#endif
return (true);
}
/*
* Zero the array. In practice, this should always be pre-zeroed,
* since it was just mmap()ed, but let's be sure.
*/
memset(arenas, 0, sizeof(arena_t *) * narenas);
/*
* Initialize one arena here. The rest are lazily created in
* choose_arena_hard().
*/
arenas_extend(0);
if (arenas[0] == NULL) {
#ifndef MOZ_MEMORY_WINDOWS
malloc_mutex_unlock(&init_lock);
#endif
return (true);
}
#ifndef NO_TLS
/*
* Assign the initial arena to the initial thread, in order to avoid
* spurious creation of an extra arena if the application switches to
* threaded mode.
*/
#ifdef MOZ_MEMORY_WINDOWS
TlsSetValue(tlsIndex, arenas[0]);
#else
arenas_map = arenas[0];
#endif
#endif
/*
* Seed here for the initial thread, since choose_arena_hard() is only
* called for other threads. The seed value doesn't really matter.
*/
#ifdef MALLOC_BALANCE
SPRN(balance, 42);
#endif
malloc_spin_init(&arenas_lock);
#ifdef MALLOC_VALIDATE
chunk_rtree = malloc_rtree_new((SIZEOF_PTR << 3) - opt_chunk_2pow);
if (chunk_rtree == NULL)
return (true);
#endif
malloc_initialized = true;
#if defined(NEEDS_PTHREAD_MMAP_UNALIGNED_TSD)
if (pthread_key_create(&mmap_unaligned_tsd, NULL) != 0) {
malloc_printf("<jemalloc>: Error in pthread_key_create()\n");
}
#endif
#if defined(MOZ_MEMORY_DARWIN) && !defined(MOZ_REPLACE_MALLOC)
/*
* Overwrite the default memory allocator to use jemalloc everywhere.
*/
default_zone = malloc_default_zone();
/*
* We only use jemalloc with MacOS 10.6 and 10.7. jemalloc is disabled
* on 32-bit builds (10.5 and 32-bit 10.6) due to bug 702250, an
* apparent MacOS bug. In fact, this code isn't even compiled on
* 32-bit builds.
*
* We'll have to update our code to work with newer versions, because
* the malloc zone layout is likely to change.
*/
osx_use_jemalloc = (default_zone->version == SNOW_LEOPARD_MALLOC_ZONE_T_VERSION ||
default_zone->version == LION_MALLOC_ZONE_T_VERSION);
/* Allow us dynamically turn off jemalloc for testing. */
if (getenv("NO_MAC_JEMALLOC")) {
osx_use_jemalloc = false;
#ifdef __i386__
malloc_printf("Warning: NO_MAC_JEMALLOC has no effect on "
"i386 machines (such as this one).\n");
#endif
}
if (osx_use_jemalloc) {
/*
* Convert the default szone to an "overlay zone" that is capable
* of deallocating szone-allocated objects, but allocating new
* objects from jemalloc.
*/
size_t size = zone_version_size(default_zone->version);
szone2ozone(default_zone, size);
}
else {
szone = default_zone;
}
#endif
#ifndef MOZ_MEMORY_WINDOWS
malloc_mutex_unlock(&init_lock);
#endif
return (false);
}
/* XXX Why not just expose malloc_print_stats()? */
#ifdef MOZ_MEMORY_WINDOWS
void
malloc_shutdown()
{
malloc_print_stats();
}
#endif
/*
* End general internal functions.
*/
/******************************************************************************/
/*
* Begin malloc(3)-compatible functions.
*/
/*
* Even though we compile with MOZ_MEMORY, we may have to dynamically decide
* not to use jemalloc, as discussed above. However, we call jemalloc
* functions directly from mozalloc. Since it's pretty dangerous to mix the
* allocators, we need to call the OSX allocators from the functions below,
* when osx_use_jemalloc is not (dynamically) set.
*
* Note that we assume jemalloc is enabled on i386. This is safe because the
* only i386 versions of MacOS are 10.5 and 10.6, which we support. We have to
* do this because madvise isn't in the malloc zone struct for 10.5.
*
* This means that NO_MAC_JEMALLOC doesn't work on i386.
*/
#if defined(MOZ_MEMORY_DARWIN) && !defined(__i386__) && !defined(MOZ_REPLACE_MALLOC)
#define DARWIN_ONLY(A) if (!osx_use_jemalloc) { A; }
#else
#define DARWIN_ONLY(A)
#endif
MOZ_MEMORY_API void *
malloc_impl(size_t size)
{
void *ret;
DARWIN_ONLY(return (szone->malloc)(szone, size));
if (malloc_init()) {
ret = NULL;
goto RETURN;
}
if (size == 0) {
#ifdef MALLOC_SYSV
if (opt_sysv == false)
#endif
size = 1;
#ifdef MALLOC_SYSV
else {
ret = NULL;
goto RETURN;
}
#endif
}
ret = imalloc(size);
RETURN:
if (ret == NULL) {
#ifdef MALLOC_XMALLOC
if (opt_xmalloc) {
_malloc_message(_getprogname(),
": (malloc) Error in malloc(): out of memory\n", "",
"");
abort();
}
#endif
errno = ENOMEM;
}
UTRACE(0, size, ret);
return (ret);
}
/*
* In ELF systems the default visibility allows symbols to be preempted at
* runtime. This in turn prevents the uses of memalign in this file from being
* optimized. What we do in here is define two aliasing symbols (they point to
* the same code): memalign and memalign_internal. The internal version has
* hidden visibility and is used in every reference from this file.
*
* For more information on this technique, see section 2.2.7 (Avoid Using
* Exported Symbols) in http://www.akkadia.org/drepper/dsohowto.pdf.
*/
#ifndef MOZ_REPLACE_MALLOC
#if defined(__GNUC__) && !defined(MOZ_MEMORY_DARWIN)
#define MOZ_MEMORY_ELF
#endif
#ifdef MOZ_MEMORY_SOLARIS
# ifdef __SUNPRO_C
void *
memalign_impl(size_t alignment, size_t size);
#pragma no_inline(memalign_impl)
# elif (defined(__GNUC__))
__attribute__((noinline))
# endif
#else
#if (defined(MOZ_MEMORY_ELF))
__attribute__((visibility ("hidden")))
#endif
#endif
#endif /* MOZ_REPLACE_MALLOC */
#ifdef MOZ_MEMORY_ELF
#define MEMALIGN memalign_internal
#else
#define MEMALIGN memalign_impl
#endif
#ifndef MOZ_MEMORY_ELF
MOZ_MEMORY_API
#endif
void *
MEMALIGN(size_t alignment, size_t size)
{
void *ret;
DARWIN_ONLY(return (szone->memalign)(szone, alignment, size));
assert(((alignment - 1) & alignment) == 0);
if (malloc_init()) {
ret = NULL;
goto RETURN;
}
if (size == 0) {
#ifdef MALLOC_SYSV
if (opt_sysv == false)
#endif
size = 1;
#ifdef MALLOC_SYSV
else {
ret = NULL;
goto RETURN;
}
#endif
}
alignment = alignment < sizeof(void*) ? sizeof(void*) : alignment;
ret = ipalloc(alignment, size);
RETURN:
#ifdef MALLOC_XMALLOC
if (opt_xmalloc && ret == NULL) {
_malloc_message(_getprogname(),
": (malloc) Error in memalign(): out of memory\n", "", "");
abort();
}
#endif
UTRACE(0, size, ret);
return (ret);
}
#ifdef MOZ_MEMORY_ELF
extern void *
memalign_impl(size_t alignment, size_t size) __attribute__((alias ("memalign_internal"), visibility ("default")));
#endif
MOZ_MEMORY_API int
posix_memalign_impl(void **memptr, size_t alignment, size_t size)
{
void *result;
/* Make sure that alignment is a large enough power of 2. */
if (((alignment - 1) & alignment) != 0 || alignment < sizeof(void *)) {
#ifdef MALLOC_XMALLOC
if (opt_xmalloc) {
_malloc_message(_getprogname(),
": (malloc) Error in posix_memalign(): "
"invalid alignment\n", "", "");
abort();
}
#endif
return (EINVAL);
}
/* The 0-->1 size promotion is done in the memalign() call below */
result = MEMALIGN(alignment, size);
if (result == NULL)
return (ENOMEM);
*memptr = result;
return (0);
}
MOZ_MEMORY_API void *
aligned_alloc_impl(size_t alignment, size_t size)
{
if (size % alignment) {
#ifdef MALLOC_XMALLOC
if (opt_xmalloc) {
_malloc_message(_getprogname(),
": (malloc) Error in aligned_alloc(): "
"size is not multiple of alignment\n", "", "");
abort();
}
#endif
return (NULL);
}
return MEMALIGN(alignment, size);
}
MOZ_MEMORY_API void *
valloc_impl(size_t size)
{
return (MEMALIGN(pagesize, size));
}
MOZ_MEMORY_API void *
calloc_impl(size_t num, size_t size)
{
void *ret;
size_t num_size;
DARWIN_ONLY(return (szone->calloc)(szone, num, size));
if (malloc_init()) {
num_size = 0;
ret = NULL;
goto RETURN;
}
num_size = num * size;
if (num_size == 0) {
#ifdef MALLOC_SYSV
if ((opt_sysv == false) && ((num == 0) || (size == 0)))
#endif
num_size = 1;
#ifdef MALLOC_SYSV
else {
ret = NULL;
goto RETURN;
}
#endif
/*
* Try to avoid division here. We know that it isn't possible to
* overflow during multiplication if neither operand uses any of the
* most significant half of the bits in a size_t.
*/
} else if (((num | size) & (SIZE_T_MAX << (sizeof(size_t) << 2)))
&& (num_size / size != num)) {
/* size_t overflow. */
ret = NULL;
goto RETURN;
}
ret = icalloc(num_size);
RETURN:
if (ret == NULL) {
#ifdef MALLOC_XMALLOC
if (opt_xmalloc) {
_malloc_message(_getprogname(),
": (malloc) Error in calloc(): out of memory\n", "",
"");
abort();
}
#endif
errno = ENOMEM;
}
UTRACE(0, num_size, ret);
return (ret);
}
MOZ_MEMORY_API void *
realloc_impl(void *ptr, size_t size)
{
void *ret;
DARWIN_ONLY(return (szone->realloc)(szone, ptr, size));
if (size == 0) {
#ifdef MALLOC_SYSV
if (opt_sysv == false)
#endif
size = 1;
#ifdef MALLOC_SYSV
else {
if (ptr != NULL)
idalloc(ptr);
ret = NULL;
goto RETURN;
}
#endif
}
if (ptr != NULL) {
assert(malloc_initialized);
ret = iralloc(ptr, size);
if (ret == NULL) {
#ifdef MALLOC_XMALLOC
if (opt_xmalloc) {
_malloc_message(_getprogname(),
": (malloc) Error in realloc(): out of "
"memory\n", "", "");
abort();
}
#endif
errno = ENOMEM;
}
} else {
if (malloc_init())
ret = NULL;
else
ret = imalloc(size);
if (ret == NULL) {
#ifdef MALLOC_XMALLOC
if (opt_xmalloc) {
_malloc_message(_getprogname(),
": (malloc) Error in realloc(): out of "
"memory\n", "", "");
abort();
}
#endif
errno = ENOMEM;
}
}
#ifdef MALLOC_SYSV
RETURN:
#endif
UTRACE(ptr, size, ret);
return (ret);
}
MOZ_MEMORY_API void
free_impl(void *ptr)
{
size_t offset;
DARWIN_ONLY((szone->free)(szone, ptr); return);
UTRACE(ptr, 0, 0);
/*
* A version of idalloc that checks for NULL pointer but only for
* huge allocations assuming that CHUNK_ADDR2OFFSET(NULL) == 0.
*/
assert(CHUNK_ADDR2OFFSET(NULL) == 0);
offset = CHUNK_ADDR2OFFSET(ptr);
if (offset != 0)
arena_dalloc(ptr, offset);
else if (ptr != NULL)
huge_dalloc(ptr);
}
/*
* End malloc(3)-compatible functions.
*/
/******************************************************************************/
/*
* Begin non-standard functions.
*/
/* This was added by Mozilla for use by SQLite. */
#if defined(MOZ_MEMORY_DARWIN) && !defined(MOZ_REPLACE_MALLOC)
static
#else
MOZ_MEMORY_API
#endif
size_t
malloc_good_size_impl(size_t size)
{
/*
* This duplicates the logic in imalloc(), arena_malloc() and
* arena_malloc_small().
*/
if (size < small_min) {
/* Small (tiny). */
size = pow2_ceil(size);
/*
* We omit the #ifdefs from arena_malloc_small() --
* it can be inaccurate with its size in some cases, but this
* function must be accurate.
*/
if (size < (1U << TINY_MIN_2POW))
size = (1U << TINY_MIN_2POW);
} else if (size <= small_max) {
/* Small (quantum-spaced). */
size = QUANTUM_CEILING(size);
} else if (size <= bin_maxclass) {
/* Small (sub-page). */
size = pow2_ceil(size);
} else if (size <= arena_maxclass) {
/* Large. */
size = PAGE_CEILING(size);
} else {
/*
* Huge. We use PAGE_CEILING to get psize, instead of using
* CHUNK_CEILING to get csize. This ensures that this
* malloc_usable_size(malloc(n)) always matches
* malloc_good_size(n).
*/
size = PAGE_CEILING(size);
}
return size;
}
#if defined(MOZ_MEMORY_ANDROID) && (ANDROID_VERSION < 19)
MOZ_MEMORY_API size_t
malloc_usable_size_impl(void *ptr)
#else
MOZ_MEMORY_API size_t
malloc_usable_size_impl(const void *ptr)
#endif
{
DARWIN_ONLY(return (szone->size)(szone, ptr));
#ifdef MALLOC_VALIDATE
return (isalloc_validate(ptr));
#else
assert(ptr != NULL);
return (isalloc(ptr));
#endif
}
MOZ_JEMALLOC_API void
jemalloc_stats_impl(jemalloc_stats_t *stats)
{
size_t i, non_arena_mapped, chunk_header_size;
assert(stats != NULL);
/*
* Gather runtime settings.
*/
stats->opt_abort = opt_abort;
stats->opt_junk =
#ifdef MALLOC_FILL
opt_junk ? true :
#endif
false;
stats->opt_poison =
#ifdef MALLOC_FILL
opt_poison ? true :
#endif
false;
stats->opt_utrace =
#ifdef MALLOC_UTRACE
opt_utrace ? true :
#endif
false;
stats->opt_sysv =
#ifdef MALLOC_SYSV
opt_sysv ? true :
#endif
false;
stats->opt_xmalloc =
#ifdef MALLOC_XMALLOC
opt_xmalloc ? true :
#endif
false;
stats->opt_zero =
#ifdef MALLOC_FILL
opt_zero ? true :
#endif
false;
stats->narenas = narenas;
stats->balance_threshold =
#ifdef MALLOC_BALANCE
opt_balance_threshold
#else
SIZE_T_MAX
#endif
;
stats->quantum = quantum;
stats->small_max = small_max;
stats->large_max = arena_maxclass;
stats->chunksize = chunksize;
stats->dirty_max = opt_dirty_max;
/*
* Gather current memory usage statistics.
*/
stats->mapped = 0;
stats->allocated = 0;
stats->waste = 0;
stats->page_cache = 0;
stats->bookkeeping = 0;
stats->bin_unused = 0;
non_arena_mapped = 0;
/* Get huge mapped/allocated. */
malloc_mutex_lock(&huge_mtx);
non_arena_mapped += huge_mapped;
stats->allocated += huge_allocated;
assert(huge_mapped >= huge_allocated);
malloc_mutex_unlock(&huge_mtx);
/* Get base mapped/allocated. */
malloc_mutex_lock(&base_mtx);
non_arena_mapped += base_mapped;
stats->bookkeeping += base_committed;
assert(base_mapped >= base_committed);
malloc_mutex_unlock(&base_mtx);
/* Iterate over arenas. */
for (i = 0; i < narenas; i++) {
arena_t *arena = arenas[i];
size_t arena_mapped, arena_allocated, arena_committed, arena_dirty, j,
arena_unused, arena_headers;
arena_run_t* run;
arena_chunk_map_t* mapelm;
if (arena == NULL) {
continue;
}
arena_headers = 0;
arena_unused = 0;
malloc_spin_lock(&arena->lock);
arena_mapped = arena->stats.mapped;
/* "committed" counts dirty and allocated memory. */
arena_committed = arena->stats.committed << pagesize_2pow;
arena_allocated = arena->stats.allocated_small +
arena->stats.allocated_large;
arena_dirty = arena->ndirty << pagesize_2pow;
for (j = 0; j < ntbins + nqbins + nsbins; j++) {
arena_bin_t* bin = &arena->bins[j];
size_t bin_unused = 0;
const size_t run_header_size = sizeof(arena_run_t) +
(sizeof(unsigned) * (bin->regs_mask_nelms - 1));
rb_foreach_begin(arena_chunk_map_t, link, &bin->runs, mapelm) {
run = (arena_run_t *)(mapelm->bits & ~pagesize_mask);
bin_unused += run->nfree * bin->reg_size;
} rb_foreach_end(arena_chunk_map_t, link, &bin->runs, mapelm)
if (bin->runcur) {
bin_unused += bin->runcur->nfree * bin->reg_size;
}
arena_unused += bin_unused;
arena_headers += bin->stats.curruns * bin->reg0_offset;
}
malloc_spin_unlock(&arena->lock);
assert(arena_mapped >= arena_committed);
assert(arena_committed >= arena_allocated + arena_dirty);
/* "waste" is committed memory that is neither dirty nor
* allocated. */
stats->mapped += arena_mapped;
stats->allocated += arena_allocated;
stats->page_cache += arena_dirty;
stats->waste += arena_committed -
arena_allocated - arena_dirty - arena_unused - arena_headers;
stats->bin_unused += arena_unused;
stats->bookkeeping += arena_headers;
}
/* Account for arena chunk headers in bookkeeping rather than waste. */
chunk_header_size =
((stats->mapped / stats->chunksize) * arena_chunk_header_npages) <<
pagesize_2pow;
stats->mapped += non_arena_mapped;
stats->bookkeeping += chunk_header_size;
stats->waste -= chunk_header_size;
assert(stats->mapped >= stats->allocated + stats->waste +
stats->page_cache + stats->bookkeeping);
}
#ifdef MALLOC_DOUBLE_PURGE
/* Explicitly remove all of this chunk's MADV_FREE'd pages from memory. */
static void
hard_purge_chunk(arena_chunk_t *chunk)
{
/* See similar logic in arena_purge(). */
size_t i;
for (i = arena_chunk_header_npages; i < chunk_npages; i++) {
/* Find all adjacent pages with CHUNK_MAP_MADVISED set. */
size_t npages;
for (npages = 0;
chunk->map[i + npages].bits & CHUNK_MAP_MADVISED && i + npages < chunk_npages;
npages++) {
/* Turn off the chunk's MADV_FREED bit and turn on its
* DECOMMITTED bit. */
RELEASE_ASSERT(!(chunk->map[i + npages].bits & CHUNK_MAP_DECOMMITTED));
chunk->map[i + npages].bits ^= CHUNK_MAP_MADVISED_OR_DECOMMITTED;
}
/* We could use mincore to find out which pages are actually
* present, but it's not clear that's better. */
if (npages > 0) {
pages_decommit(((char*)chunk) + (i << pagesize_2pow), npages << pagesize_2pow);
pages_commit(((char*)chunk) + (i << pagesize_2pow), npages << pagesize_2pow);
}
i += npages;
}
}
/* Explicitly remove all of this arena's MADV_FREE'd pages from memory. */
static void
hard_purge_arena(arena_t *arena)
{
malloc_spin_lock(&arena->lock);
while (!LinkedList_IsEmpty(&arena->chunks_madvised)) {
LinkedList* next = arena->chunks_madvised.next;
arena_chunk_t *chunk =
LinkedList_Get(arena->chunks_madvised.next,
arena_chunk_t, chunks_madvised_elem);
hard_purge_chunk(chunk);
LinkedList_Remove(&chunk->chunks_madvised_elem);
}
malloc_spin_unlock(&arena->lock);
}
MOZ_JEMALLOC_API void
jemalloc_purge_freed_pages_impl()
{
size_t i;
for (i = 0; i < narenas; i++) {
arena_t *arena = arenas[i];
if (arena != NULL)
hard_purge_arena(arena);
}
if (!config_munmap || config_recycle) {
malloc_mutex_lock(&chunks_mtx);
extent_node_t *node = extent_tree_szad_first(&chunks_szad_mmap);
while (node) {
pages_decommit(node->addr, node->size);
pages_commit(node->addr, node->size);
node->zeroed = true;
node = extent_tree_szad_next(&chunks_szad_mmap, node);
}
malloc_mutex_unlock(&chunks_mtx);
}
}
#else /* !defined MALLOC_DOUBLE_PURGE */
MOZ_JEMALLOC_API void
jemalloc_purge_freed_pages_impl()
{
/* Do nothing. */
}
#endif /* defined MALLOC_DOUBLE_PURGE */
#ifdef MOZ_MEMORY_WINDOWS
void*
_recalloc(void *ptr, size_t count, size_t size)
{
size_t oldsize = (ptr != NULL) ? isalloc(ptr) : 0;
size_t newsize = count * size;
/*
* In order for all trailing bytes to be zeroed, the caller needs to
* use calloc(), followed by recalloc(). However, the current calloc()
* implementation only zeros the bytes requested, so if recalloc() is
* to work 100% correctly, calloc() will need to change to zero
* trailing bytes.
*/
ptr = realloc(ptr, newsize);
if (ptr != NULL && oldsize < newsize) {
memset((void *)((uintptr_t)ptr + oldsize), 0, newsize -
oldsize);
}
return ptr;
}
/*
* This impl of _expand doesn't ever actually expand or shrink blocks: it
* simply replies that you may continue using a shrunk block.
*/
void*
_expand(void *ptr, size_t newsize)
{
if (isalloc(ptr) >= newsize)
return ptr;
return NULL;
}
size_t
_msize(void *ptr)
{
return malloc_usable_size_impl(ptr);
}
#endif
MOZ_JEMALLOC_API void
jemalloc_free_dirty_pages_impl(void)
{
size_t i;
for (i = 0; i < narenas; i++) {
arena_t *arena = arenas[i];
if (arena != NULL) {
malloc_spin_lock(&arena->lock);
arena_purge(arena, true);
malloc_spin_unlock(&arena->lock);
}
}
}
/*
* End non-standard functions.
*/
/******************************************************************************/
/*
* Begin library-private functions, used by threading libraries for protection
* of malloc during fork(). These functions are only called if the program is
* running in threaded mode, so there is no need to check whether the program
* is threaded here.
*/
static void
_malloc_prefork(void)
{
unsigned i;
/* Acquire all mutexes in a safe order. */
malloc_spin_lock(&arenas_lock);
for (i = 0; i < narenas; i++) {
if (arenas[i] != NULL)
malloc_spin_lock(&arenas[i]->lock);
}
malloc_mutex_lock(&base_mtx);
malloc_mutex_lock(&huge_mtx);
}
static void
_malloc_postfork(void)
{
unsigned i;
/* Release all mutexes, now that fork() has completed. */
malloc_mutex_unlock(&huge_mtx);
malloc_mutex_unlock(&base_mtx);
for (i = 0; i < narenas; i++) {
if (arenas[i] != NULL)
malloc_spin_unlock(&arenas[i]->lock);
}
malloc_spin_unlock(&arenas_lock);
}
/*
* End library-private functions.
*/
/******************************************************************************/
#ifdef HAVE_DLOPEN
# include <dlfcn.h>
#endif
#if defined(MOZ_MEMORY_DARWIN)
#if !defined(MOZ_REPLACE_MALLOC)
static void *
zone_malloc(malloc_zone_t *zone, size_t size)
{
return (malloc_impl(size));
}
static void *
zone_calloc(malloc_zone_t *zone, size_t num, size_t size)
{
return (calloc_impl(num, size));
}
static void *
zone_valloc(malloc_zone_t *zone, size_t size)
{
void *ret = NULL; /* Assignment avoids useless compiler warning. */
posix_memalign_impl(&ret, pagesize, size);
return (ret);
}
static void *
zone_memalign(malloc_zone_t *zone, size_t alignment, size_t size)
{
return (memalign_impl(alignment, size));
}
static void *
zone_destroy(malloc_zone_t *zone)
{
/* This function should never be called. */
assert(false);
return (NULL);
}
static size_t
zone_good_size(malloc_zone_t *zone, size_t size)
{
return malloc_good_size_impl(size);
}
static size_t
ozone_size(malloc_zone_t *zone, void *ptr)
{
size_t ret = isalloc_validate(ptr);
if (ret == 0)
ret = szone->size(zone, ptr);
return ret;
}
static void
ozone_free(malloc_zone_t *zone, void *ptr)
{
if (isalloc_validate(ptr) != 0)
free_impl(ptr);
else {
size_t size = szone->size(zone, ptr);
if (size != 0)
(szone->free)(zone, ptr);
/* Otherwise we leak. */
}
}
static void *
ozone_realloc(malloc_zone_t *zone, void *ptr, size_t size)
{
size_t oldsize;
if (ptr == NULL)
return (malloc_impl(size));
oldsize = isalloc_validate(ptr);
if (oldsize != 0)
return (realloc_impl(ptr, size));
else {
oldsize = szone->size(zone, ptr);
if (oldsize == 0)
return (malloc_impl(size));
else {
void *ret = malloc_impl(size);
if (ret != NULL) {
memcpy(ret, ptr, (oldsize < size) ? oldsize :
size);
(szone->free)(zone, ptr);
}
return (ret);
}
}
}
static unsigned
ozone_batch_malloc(malloc_zone_t *zone, size_t size, void **results,
unsigned num_requested)
{
/* Don't bother implementing this interface, since it isn't required. */
return 0;
}
static void
ozone_batch_free(malloc_zone_t *zone, void **to_be_freed, unsigned num)
{
unsigned i;
for (i = 0; i < num; i++)
ozone_free(zone, to_be_freed[i]);
}
static void
ozone_free_definite_size(malloc_zone_t *zone, void *ptr, size_t size)
{
if (isalloc_validate(ptr) != 0) {
assert(isalloc_validate(ptr) == size);
free_impl(ptr);
} else {
assert(size == szone->size(zone, ptr));
l_szone.m16(zone, ptr, size);
}
}
static void
ozone_force_lock(malloc_zone_t *zone)
{
_malloc_prefork();
szone->introspect->force_lock(zone);
}
static void
ozone_force_unlock(malloc_zone_t *zone)
{
szone->introspect->force_unlock(zone);
_malloc_postfork();
}
static size_t
zone_version_size(int version)
{
switch (version)
{
case SNOW_LEOPARD_MALLOC_ZONE_T_VERSION:
return sizeof(snow_leopard_malloc_zone);
case LEOPARD_MALLOC_ZONE_T_VERSION:
return sizeof(leopard_malloc_zone);
default:
case LION_MALLOC_ZONE_T_VERSION:
return sizeof(lion_malloc_zone);
}
}
/*
* Overlay the default scalable zone (szone) such that existing allocations are
* drained, and further allocations come from jemalloc. This is necessary
* because Core Foundation directly accesses and uses the szone before the
* jemalloc library is even loaded.
*/
static void
szone2ozone(malloc_zone_t *default_zone, size_t size)
{
lion_malloc_zone *l_zone;
assert(malloc_initialized);
/*
* Stash a copy of the original szone so that we can call its
* functions as needed. Note that internally, the szone stores its
* bookkeeping data structures immediately following the malloc_zone_t
* header, so when calling szone functions, we need to pass a pointer to
* the original zone structure.
*/
memcpy(szone, default_zone, size);
/* OSX 10.7 allocates the default zone in protected memory. */
if (default_zone->version >= LION_MALLOC_ZONE_T_VERSION) {
void* start_of_page = (void*)((size_t)(default_zone) & ~pagesize_mask);
mprotect (start_of_page, size, PROT_READ | PROT_WRITE);
}
default_zone->size = (void *)ozone_size;
default_zone->malloc = (void *)zone_malloc;
default_zone->calloc = (void *)zone_calloc;
default_zone->valloc = (void *)zone_valloc;
default_zone->free = (void *)ozone_free;
default_zone->realloc = (void *)ozone_realloc;
default_zone->destroy = (void *)zone_destroy;
default_zone->batch_malloc = NULL;
default_zone->batch_free = ozone_batch_free;
default_zone->introspect = ozone_introspect;
/* Don't modify default_zone->zone_name; Mac libc may rely on the name
* being unchanged. See Mozilla bug 694896. */
ozone_introspect->enumerator = NULL;
ozone_introspect->good_size = (void *)zone_good_size;
ozone_introspect->check = NULL;
ozone_introspect->print = NULL;
ozone_introspect->log = NULL;
ozone_introspect->force_lock = (void *)ozone_force_lock;
ozone_introspect->force_unlock = (void *)ozone_force_unlock;
ozone_introspect->statistics = NULL;
/* Platform-dependent structs */
l_zone = (lion_malloc_zone*)(default_zone);
if (default_zone->version >= SNOW_LEOPARD_MALLOC_ZONE_T_VERSION) {
l_zone->m15 = (void (*)())zone_memalign;
l_zone->m16 = (void (*)())ozone_free_definite_size;
l_ozone_introspect.m9 = NULL;
}
if (default_zone->version >= LION_MALLOC_ZONE_T_VERSION) {
l_zone->m17 = NULL;
l_ozone_introspect.m10 = NULL;
l_ozone_introspect.m11 = NULL;
l_ozone_introspect.m12 = NULL;
l_ozone_introspect.m13 = NULL;
}
}
#endif
__attribute__((constructor))
void
jemalloc_darwin_init(void)
{
if (malloc_init_hard())
abort();
}
#endif
/*
* is_malloc(malloc_impl) is some macro magic to detect if malloc_impl is
* defined as "malloc" in mozmemory_wrap.h
*/
#define malloc_is_malloc 1
#define is_malloc_(a) malloc_is_ ## a
#define is_malloc(a) is_malloc_(a)
#if !defined(MOZ_MEMORY_DARWIN) && (is_malloc(malloc_impl) == 1)
# if defined(__GLIBC__) && !defined(__UCLIBC__)
/*
* glibc provides the RTLD_DEEPBIND flag for dlopen which can make it possible
* to inconsistently reference libc's malloc(3)-compatible functions
* (bug 493541).
*
* These definitions interpose hooks in glibc. The functions are actually
* passed an extra argument for the caller return address, which will be
* ignored.
*/
MOZ_MEMORY_API void (*__free_hook)(void *ptr) = free_impl;
MOZ_MEMORY_API void *(*__malloc_hook)(size_t size) = malloc_impl;
MOZ_MEMORY_API void *(*__realloc_hook)(void *ptr, size_t size) = realloc_impl;
MOZ_MEMORY_API void *(*__memalign_hook)(size_t alignment, size_t size) = MEMALIGN;
# elif defined(RTLD_DEEPBIND)
/*
* XXX On systems that support RTLD_GROUP or DF_1_GROUP, do their
* implementations permit similar inconsistencies? Should STV_SINGLETON
* visibility be used for interposition where available?
*/
# error "Interposing malloc is unsafe on this system without libc malloc hooks."
# endif
#endif
#ifdef MOZ_MEMORY_WINDOWS
/*
* In the new style jemalloc integration jemalloc is built as a separate
* shared library. Since we're no longer hooking into the CRT binary,
* we need to initialize the heap at the first opportunity we get.
* DLL_PROCESS_ATTACH in DllMain is that opportunity.
*/
BOOL APIENTRY DllMain(HINSTANCE hModule,
DWORD reason,
LPVOID lpReserved)
{
switch (reason) {
case DLL_PROCESS_ATTACH:
/* Don't force the system to page DllMain back in every time
* we create/destroy a thread */
DisableThreadLibraryCalls(hModule);
/* Initialize the heap */
malloc_init_hard();
break;
case DLL_PROCESS_DETACH:
break;
}
return TRUE;
}
#endif