gecko-dev/xpcom/ds/TimeStamp_posix.cpp

346 lines
8.5 KiB
C++
Raw Normal View History

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim:set ts=2 sw=2 sts=2 et cindent: */
2012-05-21 11:12:37 +00:00
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
//
// Implement TimeStamp::Now() with POSIX clocks.
//
// The "tick" unit for POSIX clocks is simply a nanosecond, as this is
// the smallest unit of time representable by struct timespec. That
// doesn't mean that a nanosecond is the resolution of TimeDurations
// obtained with this API; see TimeDuration::Resolution;
//
#include <sys/syscall.h>
#include <time.h>
#include <unistd.h>
#if defined(__DragonFly__) || defined(__FreeBSD__) \
|| defined(__NetBSD__) || defined(__OpenBSD__)
#include <sys/param.h>
#include <sys/sysctl.h>
#endif
#if defined(__DragonFly__) || defined(__FreeBSD__)
#include <sys/user.h>
#endif
#if defined(__NetBSD__)
#undef KERN_PROC
#define KERN_PROC KERN_PROC2
#define KINFO_PROC struct kinfo_proc2
#else
#define KINFO_PROC struct kinfo_proc
#endif
#if defined(__DragonFly__)
#define KP_START_SEC kp_start.tv_sec
#define KP_START_USEC kp_start.tv_usec
#elif defined(__FreeBSD__)
#define KP_START_SEC ki_start.tv_sec
#define KP_START_USEC ki_start.tv_usec
#else
#define KP_START_SEC p_ustart_sec
#define KP_START_USEC p_ustart_usec
#endif
#include "mozilla/TimeStamp.h"
#include "nsCRT.h"
#include "prprf.h"
#include "prthread.h"
#include "nsDebug.h"
// Estimate of the smallest duration of time we can measure.
static uint64_t sResolution;
static uint64_t sResolutionSigDigs;
static const uint16_t kNsPerUs = 1000;
static const uint64_t kNsPerMs = 1000000;
static const uint64_t kNsPerSec = 1000000000;
static const double kNsPerMsd = 1000000.0;
static const double kNsPerSecd = 1000000000.0;
static uint64_t
TimespecToNs(const struct timespec& ts)
{
uint64_t baseNs = uint64_t(ts.tv_sec) * kNsPerSec;
return baseNs + uint64_t(ts.tv_nsec);
}
static uint64_t
ClockTimeNs()
{
struct timespec ts;
// this can't fail: we know &ts is valid, and TimeStamp::Startup()
// checks that CLOCK_MONOTONIC is supported (and aborts if not)
clock_gettime(CLOCK_MONOTONIC, &ts);
// tv_sec is defined to be relative to an arbitrary point in time,
// but it would be madness for that point in time to be earlier than
// the Epoch. So we can safely assume that even if time_t is 32
// bits, tv_sec won't overflow while the browser is open. Revisit
// this argument if we're still building with 32-bit time_t around
// the year 2037.
return TimespecToNs(ts);
}
static uint64_t
ClockResolutionNs()
{
// NB: why not rely on clock_getres()? Two reasons: (i) it might
// lie, and (ii) it might return an "ideal" resolution that while
// theoretically true, could never be measured in practice. Since
// clock_gettime() likely involves a system call on your platform,
// the "actual" timing resolution shouldn't be lower than syscall
// overhead.
uint64_t start = ClockTimeNs();
uint64_t end = ClockTimeNs();
uint64_t minres = (end - start);
// 10 total trials is arbitrary: what we're trying to avoid by
// looping is getting unlucky and being interrupted by a context
// switch or signal, or being bitten by paging/cache effects
for (int i = 0; i < 9; ++i) {
start = ClockTimeNs();
end = ClockTimeNs();
uint64_t candidate = (start - end);
if (candidate < minres)
minres = candidate;
}
if (0 == minres) {
// measurable resolution is either incredibly low, ~1ns, or very
// high. fall back on clock_getres()
struct timespec ts;
if (0 == clock_getres(CLOCK_MONOTONIC, &ts)) {
minres = TimespecToNs(ts);
}
}
if (0 == minres) {
// clock_getres probably failed. fall back on NSPR's resolution
// assumption
minres = 1 * kNsPerMs;
}
return minres;
}
namespace mozilla {
double
TimeDuration::ToSeconds() const
{
return double(mValue) / kNsPerSecd;
}
double
TimeDuration::ToSecondsSigDigits() const
{
// don't report a value < mResolution ...
int64_t valueSigDigs = sResolution * (mValue / sResolution);
// and chop off insignificant digits
valueSigDigs = sResolutionSigDigs * (valueSigDigs / sResolutionSigDigs);
return double(valueSigDigs) / kNsPerSecd;
}
TimeDuration
TimeDuration::FromMilliseconds(double aMilliseconds)
{
return TimeDuration::FromTicks(aMilliseconds * kNsPerMsd);
}
TimeDuration
TimeDuration::Resolution()
{
return TimeDuration::FromTicks(int64_t(sResolution));
}
static bool gInitialized = false;
nsresult
TimeStamp::Startup()
{
if (gInitialized)
return NS_OK;
struct timespec dummy;
if (0 != clock_gettime(CLOCK_MONOTONIC, &dummy))
NS_RUNTIMEABORT("CLOCK_MONOTONIC is absent!");
sResolution = ClockResolutionNs();
// find the number of significant digits in sResolution, for the
// sake of ToSecondsSigDigits()
for (sResolutionSigDigs = 1;
!(sResolutionSigDigs == sResolution
|| 10*sResolutionSigDigs > sResolution);
sResolutionSigDigs *= 10);
gInitialized = true;
return NS_OK;
}
void
TimeStamp::Shutdown()
{
}
TimeStamp
TimeStamp::Now(bool aHighResolution)
{
return TimeStamp(ClockTimeNs());
}
#if defined(LINUX) || defined(ANDROID)
// Calculates the amount of jiffies that have elapsed since boot and up to the
// starttime value of a specific process as found in its /proc/*/stat file.
// Returns 0 if an error occurred.
static uint64_t
JiffiesSinceBoot(const char *aFile)
{
char stat[512];
FILE *f = fopen(aFile, "r");
if (!f)
return 0;
int n = fread(&stat, 1, sizeof(stat) - 1, f);
fclose(f);
if (n <= 0)
return 0;
stat[n] = 0;
long long unsigned startTime = 0; // instead of uint64_t to keep GCC quiet
char *s = strrchr(stat, ')');
if (!s)
return 0;
int rv = sscanf(s + 2,
"%*c %*d %*d %*d %*d %*d %*u %*u %*u %*u "
"%*u %*u %*u %*d %*d %*d %*d %*d %*d %llu",
&startTime);
if (rv != 1 || !startTime)
return 0;
return startTime;
}
// Computes the interval that has elapsed between the thread creation and the
// process creation by comparing the starttime fields in the respective
// /proc/*/stat files. The resulting value will be a good approximation of the
// process uptime. This value will be stored at the address pointed by aTime;
// if an error occurred 0 will be stored instead.
static void
ComputeProcessUptimeThread(void *aTime)
{
uint64_t *uptime = static_cast<uint64_t *>(aTime);
long hz = sysconf(_SC_CLK_TCK);
*uptime = 0;
if (!hz)
return;
char threadStat[40];
sprintf(threadStat, "/proc/self/task/%d/stat", (pid_t) syscall(__NR_gettid));
uint64_t threadJiffies = JiffiesSinceBoot(threadStat);
uint64_t selfJiffies = JiffiesSinceBoot("/proc/self/stat");
if (!threadJiffies || !selfJiffies)
return;
*uptime = ((threadJiffies - selfJiffies) * kNsPerSec) / hz;
}
// Computes and returns the process uptime in us on Linux & its derivatives.
// Returns 0 if an error was encountered.
uint64_t
TimeStamp::ComputeProcessUptime()
{
uint64_t uptime = 0;
PRThread *thread = PR_CreateThread(PR_USER_THREAD,
ComputeProcessUptimeThread,
&uptime,
PR_PRIORITY_NORMAL,
PR_LOCAL_THREAD,
PR_JOINABLE_THREAD,
0);
PR_JoinThread(thread);
return uptime / kNsPerUs;
}
#elif defined(__DragonFly__) || defined(__FreeBSD__) \
|| defined(__NetBSD__) || defined(__OpenBSD__)
// Computes and returns the process uptime in us on various BSD flavors.
// Returns 0 if an error was encountered.
uint64_t
TimeStamp::ComputeProcessUptime()
{
struct timespec ts;
int rv = clock_gettime(CLOCK_REALTIME, &ts);
if (rv == -1) {
return 0;
}
int mib[] = {
CTL_KERN,
KERN_PROC,
KERN_PROC_PID,
getpid(),
#if defined(__NetBSD__) || defined(__OpenBSD__)
sizeof(KINFO_PROC),
1,
#endif
};
u_int mibLen = sizeof(mib) / sizeof(mib[0]);
KINFO_PROC proc;
size_t bufferSize = sizeof(proc);
rv = sysctl(mib, mibLen, &proc, &bufferSize, nullptr, 0);
if (rv == -1)
return 0;
uint64_t startTime = ((uint64_t)proc.KP_START_SEC * kNsPerSec)
+ (proc.KP_START_USEC * kNsPerUs);
uint64_t now = ((uint64_t)ts.tv_sec * kNsPerSec) + ts.tv_nsec;
if (startTime > now)
return 0;
return (now - startTime) / kNsPerUs;
}
#else
uint64_t
TimeStamp::ComputeProcessUptime()
{
return 0;
}
#endif
} // namespace mozilla