gecko-dev/layout/base/MotionPathUtils.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

507 lines
20 KiB
C++
Raw Normal View History

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "mozilla/MotionPathUtils.h"
#include "gfxPlatform.h"
#include "mozilla/dom/SVGPathData.h"
#include "mozilla/gfx/2D.h"
#include "mozilla/gfx/Matrix.h"
#include "mozilla/RefPtr.h"
#include "nsIFrame.h"
#include "nsStyleTransformMatrix.h"
#include <math.h>
namespace mozilla {
RayReferenceData::RayReferenceData(const nsIFrame* aFrame) {
// We use GetContainingBlock() for now. TYLin said this function is buggy in
// modern CSS layout, but is ok for most cases.
// FIXME: Bug 1581237: This is still not clear that which box we should use
// for calculating the path length. We may need to update this.
// https://github.com/w3c/fxtf-drafts/issues/369
// FIXME: Bug 1579294: SVG layout may get a |container| with empty mRect
// (e.g. nsSVGOuterSVGAnonChildFrame), which makes the path length zero.
const nsIFrame* container = aFrame->GetContainingBlock();
if (!container) {
// If there is no parent frame, it's impossible to calculate the path
// length, so does the path.
return;
}
// The initial position is (0, 0) in |aFrame|, and we have to transform it
// into the space of |container|, so use GetOffsetsTo() to get the delta
// value.
// FIXME: Bug 1559232: The initial position will be adjusted after
// supporting `offset-position`.
mInitialPosition = CSSPoint::FromAppUnits(aFrame->GetOffsetTo(container));
// FIXME: We need a better definition for containing box in the spec. For now,
// we use border box for calculation.
// https://github.com/w3c/fxtf-drafts/issues/369
mContainingBlockRect =
CSSRect::FromAppUnits(container->GetRectRelativeToSelf());
}
static already_AddRefed<gfx::Path> BuildPath(
const Span<const StylePathCommand>& aPath, gfx::PathBuilder* aPathBuilder) {
return SVGPathData::BuildPath(aPath, aPathBuilder,
NS_STYLE_STROKE_LINECAP_BUTT, 0.0);
}
/* static */
OffsetPathData OffsetPathData::Path(const StyleSVGPathData& aPath,
gfx::PathBuilder* aPathBuilder) {
const auto& path = aPath._0.AsSpan();
// FIXME: Bug 1484780, we should cache the path to avoid rebuilding it here
// at every restyle. (Caching the path avoids the cost of flattening it again
// each time.)
RefPtr<gfx::Path> gfxPath = BuildPath(path, aPathBuilder);
return OffsetPathData(gfxPath, !path.empty() && path.rbegin()->IsClosePath());
}
// The distance is measured between the initial position and the intersection of
// the ray with the box
// https://drafts.fxtf.org/motion-1/#size-sides
static CSSCoord ComputeSides(const CSSPoint& aInitialPosition,
const CSSSize& aContainerSize,
const StyleAngle& aAngle) {
// Given an acute angle |theta| (i.e. |t|) of a right-angled triangle, the
// hypotenuse |h| is the side that connects the two acute angles. The side
// |b| adjacent to |theta| is the side of the triangle that connects |theta|
// to the right angle.
//
// e.g. if the angle |t| is 0 ~ 90 degrees, and b * tan(theta) <= b',
// h = b / cos(t):
// b*tan(t)
// (0, 0) #--------*-----*--# (aContainerSize.width, 0)
// | | / |
// | | / |
// | b h |
// | |t/ |
// | |/ |
// (aInitialPosition) *---b'---* (aContainerSize.width, aInitialPosition.y)
// | | |
// | | |
// | | |
// | | |
// | | |
// #-----------------# (aContainerSize.width,
// (0, aContainerSize.height) aContainerSize.height)
double theta = aAngle.ToRadians();
double sint = std::sin(theta);
double cost = std::cos(theta);
double b = cost >= 0 ? aInitialPosition.y
: aContainerSize.height - aInitialPosition.y;
double bPrime = sint >= 0 ? aContainerSize.width - aInitialPosition.x
: aInitialPosition.x;
sint = std::fabs(sint);
cost = std::fabs(cost);
// If |b * tan(theta)| is larger than |bPrime|, the intersection is
// on the other side, and |b'| is the opposite side of angle |theta| in this
// case.
//
// e.g. If b * tan(theta) > b', h = b' / sin(theta):
// *----*
// | |
// | /|
// b /t|
// |t/ |
// |/ |
// *-b'-*
if (b * sint > bPrime * cost) {
return bPrime / sint;
}
return b / cost;
}
static CSSCoord ComputeRayPathLength(const StyleRaySize aRaySizeType,
const StyleAngle& aAngle,
const RayReferenceData& aRayData) {
if (aRaySizeType == StyleRaySize::Sides) {
// If the initial position is not within the box, the distance is 0.
if (!aRayData.mContainingBlockRect.Contains(aRayData.mInitialPosition)) {
return 0.0;
}
return ComputeSides(aRayData.mInitialPosition,
aRayData.mContainingBlockRect.Size(), aAngle);
}
// left: the length between the initial point and the left side.
// right: the length between the initial point and the right side.
// top: the length between the initial point and the top side.
// bottom: the lenght between the initial point and the bottom side.
CSSCoord left = std::abs(aRayData.mInitialPosition.x);
CSSCoord right = std::abs(aRayData.mContainingBlockRect.width -
aRayData.mInitialPosition.x);
CSSCoord top = std::abs(aRayData.mInitialPosition.y);
CSSCoord bottom = std::abs(aRayData.mContainingBlockRect.height -
aRayData.mInitialPosition.y);
switch (aRaySizeType) {
case StyleRaySize::ClosestSide:
return std::min({left, right, top, bottom});
case StyleRaySize::FarthestSide:
return std::max({left, right, top, bottom});
case StyleRaySize::ClosestCorner:
case StyleRaySize::FarthestCorner: {
CSSCoord h = 0;
CSSCoord v = 0;
if (aRaySizeType == StyleRaySize::ClosestCorner) {
h = std::min(left, right);
v = std::min(top, bottom);
} else {
h = std::max(left, right);
v = std::max(top, bottom);
}
return sqrt(h.value * h.value + v.value * v.value);
}
default:
MOZ_ASSERT_UNREACHABLE("Unsupported ray size");
}
return 0.0;
}
static void ApplyRotationAndMoveRayToXAxis(
const StyleOffsetRotate& aOffsetRotate, const StyleAngle& aRayAngle,
AutoTArray<gfx::Point, 4>& aVertices) {
const StyleAngle directionAngle = aRayAngle - StyleAngle{90.0f};
// Get the final rotation which includes the direction angle and
// offset-rotate.
const StyleAngle rotateAngle =
(aOffsetRotate.auto_ ? directionAngle : StyleAngle{0.0f}) +
aOffsetRotate.angle;
// This is the rotation to rotate ray to positive x-axis (i.e. 90deg).
const StyleAngle rayToXAxis = StyleAngle{90.0} - aRayAngle;
gfx::Matrix m;
m.PreRotate((rotateAngle + rayToXAxis).ToRadians());
for (gfx::Point& p : aVertices) {
p = m.TransformPoint(p);
}
}
class RayPointComparator {
public:
bool Equals(const gfx::Point& a, const gfx::Point& b) const {
return std::fabs(a.y) == std::fabs(b.y);
}
bool LessThan(const gfx::Point& a, const gfx::Point& b) const {
return std::fabs(a.y) > std::fabs(b.y);
}
};
// Note: the calculation of contain doesn't take other transform-like properties
// into account. The spec doesn't mention the co-operation for this, so for now,
// we assume we only need to take motion-path into account.
static CSSCoord ComputeRayUsedDistance(const RayFunction& aRay,
const LengthPercentage& aDistance,
const StyleOffsetRotate& aRotate,
const StylePositionOrAuto& aAnchor,
const CSSPoint& aTransformOrigin,
const CSSSize& aSize,
const CSSCoord& aPathLength) {
CSSCoord usedDistance = aDistance.ResolveToCSSPixels(aPathLength);
if (!aRay.contain) {
return usedDistance;
}
// We have to simulate the 4 vertices to check if any of them is outside the
// path circle. Here, we create a 2D Cartesian coordinate system and its
// origin is at the anchor point of the box. And then apply the rotation on
// these 4 vertices, calculate the range of |usedDistance| which makes the box
// entirely contained within the path.
// Note:
// "Contained within the path" means the rectangle is inside a circle whose
// radius is |aPathLength|.
CSSPoint usedAnchor = aTransformOrigin;
if (!aAnchor.IsAuto()) {
const StylePosition& anchor = aAnchor.AsPosition();
usedAnchor.x = anchor.horizontal.ResolveToCSSPixels(aSize.width);
usedAnchor.y = anchor.vertical.ResolveToCSSPixels(aSize.height);
}
AutoTArray<gfx::Point, 4> vertices = {
{-usedAnchor.x, -usedAnchor.y},
{aSize.width - usedAnchor.x, -usedAnchor.y},
{aSize.width - usedAnchor.x, aSize.height - usedAnchor.y},
{-usedAnchor.x, aSize.height - usedAnchor.y}};
ApplyRotationAndMoveRayToXAxis(aRotate, aRay.angle, vertices);
// We have to check if all 4 vertices are inside the circle with radius |r|.
// Assume the position of the vertex is (x, y), and the box is moved by
// |usedDistance| along the path:
//
// (usedDistance + x)^2 + y^2 <= r^2
// ==> (usedDistance + x)^2 <= r^2 - y^2 = d
// ==> -x - sqrt(d) <= used distance <= -x + sqrt(d)
//
// Note: |usedDistance| is added into |x| because we convert the ray function
// to 90deg, x-axis):
float upperMin = std::numeric_limits<float>::max();
float lowerMax = std::numeric_limits<float>::min();
bool shouldIncreasePathLength = false;
for (const gfx::Point& p : vertices) {
float d = aPathLength.value * aPathLength.value - p.y * p.y;
if (d < 0) {
// Impossible to make the box inside the path circle. Need to increase
// the path length.
shouldIncreasePathLength = true;
break;
}
float sqrtD = sqrt(d);
upperMin = std::min(upperMin, -p.x + sqrtD);
lowerMax = std::max(lowerMax, -p.x - sqrtD);
}
if (!shouldIncreasePathLength) {
return std::max(lowerMax, std::min(upperMin, (float)usedDistance));
}
// Sort by the absolute value of y, so the first vertex of the each pair of
// vertices we check has a larger y value. (i.e. |yi| is always larger than or
// equal to |yj|.)
vertices.Sort(RayPointComparator());
// Assume we set |usedDistance| to |-vertices[0].x|, so the current radius is
// fabs(vertices[0].y). This is a possible solution.
double radius = std::fabs(vertices[0].y);
usedDistance = -vertices[0].x;
const double epsilon = 1e-5;
for (size_t i = 0; i < 3; ++i) {
for (size_t j = i + 1; j < 4; ++j) {
double xi = vertices[i].x;
double yi = vertices[i].y;
double xj = vertices[j].x;
double yj = vertices[j].y;
double dx = xi - xj;
// Check if any path that enclosed vertices[i] would also enclose
// vertices[j].
//
// For example, the initial setup:
// * (0, yi)
// |
// r
// | * (xj - xi, yj)
// xi | dx
// ----*-----------*----------*---
// (anchor point) | (0, 0)
//
// Assuming (0, yi) is on the path and (xj - xi, yj) is inside the path
// circle, we should use the inequality to check this:
// (xj - xi)^2 + yj^2 <= yi^2
//
// After the first iterations, the updated inequality is:
// (dx + d)^2 + yj^2 <= yi^2 + d^2
// ==> dx^2 + 2dx*d + yj^2 <= yi^2
// ==> dx^2 + yj^2 <= yi^2 - 2dx*d <= yi^2
// , |d| is the difference (or offset) between the old |usedDistance| and
// new |usedDistance|.
//
// Note: `2dx * d` must be positive because
// 1. if |xj| is larger than |xi|, only negative |d| could be used to get
// a new path length which encloses both vertices.
// 2. if |xj| is smaller than |xi|, only positive |d| could be used to get
// a new path length which encloses both vertices.
if (dx * dx + yj * yj <= yi * yi + epsilon) {
continue;
}
// We have to find a new usedDistance which let both vertices[i] and
// vertices[j] be on the path.
// (usedDistance + xi)^2 + yi^2 = (usedDistance + xj)^2 + yj^2
// = radius^2
// ==> usedDistance = (xj^2 + yj^2 - xi^2 - yi^2) / 2(xi-xj)
//
// Note: it's impossible to have a "divide by zero" problem here.
// If |dx| is zero, the if-condition above should always be true and so
// we skip the calculation.
double newUsedDistance =
(xj * xj + yj * yj - xi * xi - yi * yi) / dx / 2.0;
// Then, move vertices[i] and vertices[j] by |newUsedDistance|.
xi += newUsedDistance; // or xj += newUsedDistance; if we use |xj| to get
// |newRadius|.
double newRadius = sqrt(xi * xi + yi * yi);
if (newRadius > radius) {
// We have to increase the path length to make sure both vertices[i] and
// vertices[j] are contained by this new path length.
radius = newRadius;
usedDistance = (float)newUsedDistance;
}
}
}
return usedDistance;
}
/* static */
Maybe<MotionPathData> MotionPathUtils::ResolveMotionPath(
const OffsetPathData& aPath, const LengthPercentage& aDistance,
const StyleOffsetRotate& aRotate, const StylePositionOrAuto& aAnchor,
const CSSPoint& aTransformOrigin, const CSSSize& aFrameSize,
const Maybe<CSSPoint>& aFramePosition) {
if (aPath.IsNone()) {
return Nothing();
}
// Compute the point and angle for creating the equivalent translate and
// rotate.
double directionAngle = 0.0;
gfx::Point point;
if (aPath.IsPath()) {
const auto& path = aPath.AsPath();
if (!path.mGfxPath) {
NS_WARNING("could not get a valid gfx path");
return Nothing();
}
// Per the spec, we have to convert offset distance to pixels, with 100%
// being converted to total length. So here |gfxPath| is built with CSS
// pixel, and we calculate |pathLength| and |computedDistance| with CSS
// pixel as well.
gfx::Float pathLength = path.mGfxPath->ComputeLength();
gfx::Float usedDistance =
aDistance.ResolveToCSSPixels(CSSCoord(pathLength));
if (path.mIsClosedIntervals) {
// Per the spec, let used offset distance be equal to offset distance
// modulus the total length of the path. If the total length of the path
// is 0, used offset distance is also 0.
usedDistance = pathLength > 0.0 ? fmod(usedDistance, pathLength) : 0.0;
// We make sure |usedDistance| is 0.0 or a positive value.
// https://github.com/w3c/fxtf-drafts/issues/339
if (usedDistance < 0.0) {
usedDistance += pathLength;
}
} else {
// Per the spec, for unclosed interval, let used offset distance be equal
// to offset distance clamped by 0 and the total length of the path.
usedDistance = clamped(usedDistance, 0.0f, pathLength);
}
gfx::Point tangent;
point = path.mGfxPath->ComputePointAtLength(usedDistance, &tangent);
directionAngle = (double)atan2(tangent.y, tangent.x); // In Radian.
} else if (aPath.IsRay()) {
const auto& ray = aPath.AsRay();
MOZ_ASSERT(ray.mRay);
CSSCoord pathLength =
ComputeRayPathLength(ray.mRay->size, ray.mRay->angle, ray.mData);
CSSCoord usedDistance =
ComputeRayUsedDistance(*ray.mRay, aDistance, aRotate, aAnchor,
aTransformOrigin, aFrameSize, pathLength);
// 0deg pointing up and positive angles representing clockwise rotation.
directionAngle =
StyleAngle{ray.mRay->angle.ToDegrees() - 90.0f}.ToRadians();
point.x = usedDistance * cos(directionAngle);
point.y = usedDistance * sin(directionAngle);
} else {
MOZ_ASSERT_UNREACHABLE("Unsupported offset-path value");
return Nothing();
}
// If |rotate.auto_| is true, the element should be rotated by the angle of
// the direction (i.e. directional tangent vector) of the offset-path, and the
// computed value of <angle> is added to this.
// Otherwise, the element has a constant clockwise rotation transformation
// applied to it by the specified rotation angle. (i.e. Don't need to
// consider the direction of the path.)
gfx::Float angle = static_cast<gfx::Float>(
(aRotate.auto_ ? directionAngle : 0.0) + aRotate.angle.ToRadians());
// Compute the offset for motion path translate.
// Bug 1559232: the translate parameters will be adjusted more after we
// support offset-position.
// Per the spec, the default offset-anchor is `auto`, so initialize the anchor
// point to transform-origin.
CSSPoint anchorPoint(aTransformOrigin);
gfx::Point shift;
if (!aAnchor.IsAuto()) {
const auto& pos = aAnchor.AsPosition();
anchorPoint = nsStyleTransformMatrix::Convert2DPosition(
pos.horizontal, pos.vertical, aFrameSize);
// We need this value to shift the origin from transform-origin to
// offset-anchor (and vice versa).
// See nsStyleTransformMatrix::ReadTransform for more details.
shift = (anchorPoint - aTransformOrigin).ToUnknownPoint();
}
// SVG frames (unlike other frames) have a reference box that can be (and
// typically is) offset from the TopLeft() of the frame.
// In motion path, we have to make sure the object is aligned with offset-path
// when using content area, so we should tweak the anchor point by the offset.
if (aFramePosition) {
anchorPoint.x += aFramePosition->x;
anchorPoint.y += aFramePosition->y;
}
return Some(
MotionPathData{point - anchorPoint.ToUnknownPoint(), angle, shift});
}
static OffsetPathData GenerateOffsetPathData(const nsIFrame* aFrame) {
const StyleOffsetPath& path = aFrame->StyleDisplay()->mOffsetPath;
switch (path.tag) {
case StyleOffsetPath::Tag::Path: {
// Here we only need to build a valid path for motion path, so
// using the default values of stroke-width, stoke-linecap, and fill-rule
// is fine for now because what we want is get the point and its normal
// vector along the path, instead of rendering it.
RefPtr<gfx::DrawTarget> drawTarget =
gfxPlatform::GetPlatform()->ScreenReferenceDrawTarget();
RefPtr<gfx::PathBuilder> builder =
drawTarget->CreatePathBuilder(gfx::FillRule::FILL_WINDING);
return OffsetPathData::Path(path.AsPath(), builder);
}
case StyleOffsetPath::Tag::Ray:
return OffsetPathData::Ray(path.AsRay(), RayReferenceData(aFrame));
case StyleOffsetPath::Tag::None:
default:
return OffsetPathData::None();
}
}
/* static*/
Maybe<MotionPathData> MotionPathUtils::ResolveMotionPath(
const nsIFrame* aFrame) {
MOZ_ASSERT(aFrame);
const nsStyleDisplay* display = aFrame->StyleDisplay();
nsStyleTransformMatrix::TransformReferenceBox refBox(aFrame);
// Note: This may need to be updated if we support more transform-box.
bool tweakForSVGLayout =
(aFrame->GetStateBits() & NS_FRAME_SVG_LAYOUT) &&
display->mTransformBox != StyleGeometryBox::ViewBox &&
display->mTransformBox != StyleGeometryBox::BorderBox;
// FIXME: It's possible to refactor the calculation of transform-origin, so we
// could calculate from the caller, and reuse the value in nsDisplayList.cpp.
CSSPoint transformOrigin = nsStyleTransformMatrix::Convert2DPosition(
display->mTransformOrigin.horizontal, display->mTransformOrigin.vertical,
refBox);
return ResolveMotionPath(
GenerateOffsetPathData(aFrame), display->mOffsetDistance,
display->mOffsetRotate, display->mOffsetAnchor, transformOrigin,
CSSSize::FromAppUnits(nsSize(refBox.Width(), refBox.Height())),
tweakForSVGLayout ? Some(CSSPoint::FromAppUnits(aFrame->GetPosition()))
: Nothing());
}
} // namespace mozilla