gecko-dev/hal/Hal.cpp

1250 lines
31 KiB
C++
Raw Normal View History

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set sw=2 ts=8 et ft=cpp : */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this file,
* You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "Hal.h"
#include "HalImpl.h"
#include "HalSandbox.h"
#include "nsThreadUtils.h"
#include "nsXULAppAPI.h"
#include "mozilla/Observer.h"
#include "nsIDocument.h"
#include "nsIDOMDocument.h"
#include "nsPIDOMWindow.h"
#include "nsIDOMWindow.h"
#include "mozilla/Services.h"
#include "nsIWebNavigation.h"
#include "nsITabChild.h"
#include "nsIDocShell.h"
#include "mozilla/StaticPtr.h"
#include "mozilla/ClearOnShutdown.h"
#include "WindowIdentifier.h"
#include "mozilla/dom/ScreenOrientation.h"
#include "mozilla/dom/ContentChild.h"
#include "mozilla/dom/ContentParent.h"
#ifdef XP_WIN
#include <process.h>
#define getpid _getpid
#endif
using namespace mozilla::services;
using namespace mozilla::dom;
#define PROXY_IF_SANDBOXED(_call) \
do { \
if (InSandbox()) { \
if (!hal_sandbox::HalChildDestroyed()) { \
hal_sandbox::_call; \
} \
} else { \
hal_impl::_call; \
} \
} while (0)
#define RETURN_PROXY_IF_SANDBOXED(_call, defValue)\
do { \
if (InSandbox()) { \
if (hal_sandbox::HalChildDestroyed()) { \
return defValue; \
} \
return hal_sandbox::_call; \
} else { \
return hal_impl::_call; \
} \
} while (0)
namespace mozilla {
namespace hal {
PRLogModuleInfo *
GetHalLog()
{
static PRLogModuleInfo *sHalLog;
if (!sHalLog) {
sHalLog = PR_NewLogModule("hal");
}
return sHalLog;
}
namespace {
void
AssertMainThread()
{
MOZ_ASSERT(NS_IsMainThread());
}
bool
InSandbox()
{
return GeckoProcessType_Content == XRE_GetProcessType();
}
void
AssertMainProcess()
{
MOZ_ASSERT(GeckoProcessType_Default == XRE_GetProcessType());
}
bool
WindowIsActive(nsIDOMWindow* aWindow)
{
nsCOMPtr<nsPIDOMWindow> window = do_QueryInterface(aWindow);
NS_ENSURE_TRUE(window, false);
nsIDocument* document = window->GetDoc();
NS_ENSURE_TRUE(document, false);
return !document->Hidden();
}
StaticAutoPtr<WindowIdentifier::IDArrayType> gLastIDToVibrate;
void InitLastIDToVibrate()
{
gLastIDToVibrate = new WindowIdentifier::IDArrayType();
ClearOnShutdown(&gLastIDToVibrate);
}
} // anonymous namespace
void
Vibrate(const nsTArray<uint32_t>& pattern, nsIDOMWindow* window)
{
Vibrate(pattern, WindowIdentifier(window));
}
void
Vibrate(const nsTArray<uint32_t>& pattern, const WindowIdentifier &id)
{
AssertMainThread();
// Only active windows may start vibrations. If |id| hasn't gone
// through the IPC layer -- that is, if our caller is the outside
// world, not hal_proxy -- check whether the window is active. If
// |id| has gone through IPC, don't check the window's visibility;
// only the window corresponding to the bottommost process has its
// visibility state set correctly.
if (!id.HasTraveledThroughIPC() && !WindowIsActive(id.GetWindow())) {
HAL_LOG(("Vibrate: Window is inactive, dropping vibrate."));
return;
}
if (!InSandbox()) {
if (!gLastIDToVibrate) {
InitLastIDToVibrate();
}
*gLastIDToVibrate = id.AsArray();
}
// Don't forward our ID if we are not in the sandbox, because hal_impl
// doesn't need it, and we don't want it to be tempted to read it. The
// empty identifier will assert if it's used.
PROXY_IF_SANDBOXED(Vibrate(pattern, InSandbox() ? id : WindowIdentifier()));
}
void
CancelVibrate(nsIDOMWindow* window)
{
CancelVibrate(WindowIdentifier(window));
}
void
CancelVibrate(const WindowIdentifier &id)
{
AssertMainThread();
// Although only active windows may start vibrations, a window may
// cancel its own vibration even if it's no longer active.
//
// After a window is marked as inactive, it sends a CancelVibrate
// request. We want this request to cancel a playing vibration
// started by that window, so we certainly don't want to reject the
// cancellation request because the window is now inactive.
//
// But it could be the case that, after this window became inactive,
// some other window came along and started a vibration. We don't
// want this window's cancellation request to cancel that window's
// actively-playing vibration!
//
// To solve this problem, we keep track of the id of the last window
// to start a vibration, and only accepts cancellation requests from
// the same window. All other cancellation requests are ignored.
if (InSandbox() || (gLastIDToVibrate && *gLastIDToVibrate == id.AsArray())) {
// Don't forward our ID if we are not in the sandbox, because hal_impl
// doesn't need it, and we don't want it to be tempted to read it. The
// empty identifier will assert if it's used.
PROXY_IF_SANDBOXED(CancelVibrate(InSandbox() ? id : WindowIdentifier()));
}
}
template <class InfoType>
class ObserversManager
{
public:
void AddObserver(Observer<InfoType>* aObserver) {
if (!mObservers) {
mObservers = new mozilla::ObserverList<InfoType>();
}
mObservers->AddObserver(aObserver);
if (mObservers->Length() == 1) {
EnableNotifications();
}
}
void RemoveObserver(Observer<InfoType>* aObserver) {
bool removed = mObservers && mObservers->RemoveObserver(aObserver);
if (!removed) {
NS_WARNING("RemoveObserver() called for unregistered observer");
return;
}
if (mObservers->Length() == 0) {
DisableNotifications();
OnNotificationsDisabled();
delete mObservers;
mObservers = nullptr;
}
}
void BroadcastInformation(const InfoType& aInfo) {
// It is possible for mObservers to be nullptr here on some platforms,
// because a call to BroadcastInformation gets queued up asynchronously
// while RemoveObserver is running (and before the notifications are
// disabled). The queued call can then get run after mObservers has
// been nulled out. See bug 757025.
if (!mObservers) {
return;
}
mObservers->Broadcast(aInfo);
}
protected:
virtual void EnableNotifications() = 0;
virtual void DisableNotifications() = 0;
virtual void OnNotificationsDisabled() {}
private:
mozilla::ObserverList<InfoType>* mObservers;
};
template <class InfoType>
class CachingObserversManager : public ObserversManager<InfoType>
{
public:
InfoType GetCurrentInformation() {
if (mHasValidCache) {
return mInfo;
}
GetCurrentInformationInternal(&mInfo);
mHasValidCache = true;
return mInfo;
}
void CacheInformation(const InfoType& aInfo) {
mHasValidCache = true;
mInfo = aInfo;
}
void BroadcastCachedInformation() {
this->BroadcastInformation(mInfo);
}
protected:
virtual void GetCurrentInformationInternal(InfoType*) = 0;
virtual void OnNotificationsDisabled() {
mHasValidCache = false;
}
private:
InfoType mInfo;
bool mHasValidCache;
};
class BatteryObserversManager : public CachingObserversManager<BatteryInformation>
{
protected:
void EnableNotifications() {
PROXY_IF_SANDBOXED(EnableBatteryNotifications());
}
void DisableNotifications() {
PROXY_IF_SANDBOXED(DisableBatteryNotifications());
}
void GetCurrentInformationInternal(BatteryInformation* aInfo) {
PROXY_IF_SANDBOXED(GetCurrentBatteryInformation(aInfo));
}
};
static BatteryObserversManager sBatteryObservers;
class NetworkObserversManager : public CachingObserversManager<NetworkInformation>
{
protected:
void EnableNotifications() {
PROXY_IF_SANDBOXED(EnableNetworkNotifications());
}
void DisableNotifications() {
PROXY_IF_SANDBOXED(DisableNetworkNotifications());
}
void GetCurrentInformationInternal(NetworkInformation* aInfo) {
PROXY_IF_SANDBOXED(GetCurrentNetworkInformation(aInfo));
}
};
static NetworkObserversManager sNetworkObservers;
class WakeLockObserversManager : public ObserversManager<WakeLockInformation>
{
protected:
void EnableNotifications() {
PROXY_IF_SANDBOXED(EnableWakeLockNotifications());
}
void DisableNotifications() {
PROXY_IF_SANDBOXED(DisableWakeLockNotifications());
}
};
static WakeLockObserversManager sWakeLockObservers;
class ScreenConfigurationObserversManager : public CachingObserversManager<ScreenConfiguration>
{
protected:
void EnableNotifications() {
PROXY_IF_SANDBOXED(EnableScreenConfigurationNotifications());
}
void DisableNotifications() {
PROXY_IF_SANDBOXED(DisableScreenConfigurationNotifications());
}
void GetCurrentInformationInternal(ScreenConfiguration* aInfo) {
PROXY_IF_SANDBOXED(GetCurrentScreenConfiguration(aInfo));
}
};
static ScreenConfigurationObserversManager sScreenConfigurationObservers;
void
RegisterBatteryObserver(BatteryObserver* aObserver)
{
AssertMainThread();
sBatteryObservers.AddObserver(aObserver);
}
void
UnregisterBatteryObserver(BatteryObserver* aObserver)
{
AssertMainThread();
sBatteryObservers.RemoveObserver(aObserver);
}
void
GetCurrentBatteryInformation(BatteryInformation* aInfo)
{
AssertMainThread();
*aInfo = sBatteryObservers.GetCurrentInformation();
}
void
NotifyBatteryChange(const BatteryInformation& aInfo)
{
AssertMainThread();
sBatteryObservers.CacheInformation(aInfo);
sBatteryObservers.BroadcastCachedInformation();
}
bool GetScreenEnabled()
{
AssertMainThread();
RETURN_PROXY_IF_SANDBOXED(GetScreenEnabled(), false);
}
void SetScreenEnabled(bool aEnabled)
{
AssertMainThread();
PROXY_IF_SANDBOXED(SetScreenEnabled(aEnabled));
}
bool GetKeyLightEnabled()
{
AssertMainThread();
RETURN_PROXY_IF_SANDBOXED(GetKeyLightEnabled(), false);
}
void SetKeyLightEnabled(bool aEnabled)
{
AssertMainThread();
PROXY_IF_SANDBOXED(SetKeyLightEnabled(aEnabled));
}
bool GetCpuSleepAllowed()
{
// Generally for interfaces that are accessible by normal web content
// we should cache the result and be notified on state changes, like
// what the battery API does. But since this is only used by
// privileged interface, the synchronous getter is OK here.
AssertMainThread();
RETURN_PROXY_IF_SANDBOXED(GetCpuSleepAllowed(), true);
}
void SetCpuSleepAllowed(bool aAllowed)
{
AssertMainThread();
PROXY_IF_SANDBOXED(SetCpuSleepAllowed(aAllowed));
}
double GetScreenBrightness()
{
AssertMainThread();
RETURN_PROXY_IF_SANDBOXED(GetScreenBrightness(), 0);
}
void SetScreenBrightness(double aBrightness)
{
AssertMainThread();
PROXY_IF_SANDBOXED(SetScreenBrightness(clamped(aBrightness, 0.0, 1.0)));
}
class SystemClockChangeObserversManager : public ObserversManager<int64_t>
{
protected:
void EnableNotifications() {
PROXY_IF_SANDBOXED(EnableSystemClockChangeNotifications());
}
void DisableNotifications() {
PROXY_IF_SANDBOXED(DisableSystemClockChangeNotifications());
}
};
static SystemClockChangeObserversManager sSystemClockChangeObservers;
void
RegisterSystemClockChangeObserver(SystemClockChangeObserver* aObserver)
{
AssertMainThread();
sSystemClockChangeObservers.AddObserver(aObserver);
}
void
UnregisterSystemClockChangeObserver(SystemClockChangeObserver* aObserver)
{
AssertMainThread();
sSystemClockChangeObservers.RemoveObserver(aObserver);
}
void
NotifySystemClockChange(const int64_t& aClockDeltaMS)
{
sSystemClockChangeObservers.BroadcastInformation(aClockDeltaMS);
}
class SystemTimezoneChangeObserversManager : public ObserversManager<SystemTimezoneChangeInformation>
{
protected:
void EnableNotifications() {
PROXY_IF_SANDBOXED(EnableSystemTimezoneChangeNotifications());
}
void DisableNotifications() {
PROXY_IF_SANDBOXED(DisableSystemTimezoneChangeNotifications());
}
};
static SystemTimezoneChangeObserversManager sSystemTimezoneChangeObservers;
void
RegisterSystemTimezoneChangeObserver(SystemTimezoneChangeObserver* aObserver)
{
AssertMainThread();
sSystemTimezoneChangeObservers.AddObserver(aObserver);
}
void
UnregisterSystemTimezoneChangeObserver(SystemTimezoneChangeObserver* aObserver)
{
AssertMainThread();
sSystemTimezoneChangeObservers.RemoveObserver(aObserver);
}
void
NotifySystemTimezoneChange(const SystemTimezoneChangeInformation& aSystemTimezoneChangeInfo)
{
sSystemTimezoneChangeObservers.BroadcastInformation(aSystemTimezoneChangeInfo);
}
void
AdjustSystemClock(int64_t aDeltaMilliseconds)
{
AssertMainThread();
PROXY_IF_SANDBOXED(AdjustSystemClock(aDeltaMilliseconds));
}
void
SetTimezone(const nsCString& aTimezoneSpec)
{
AssertMainThread();
PROXY_IF_SANDBOXED(SetTimezone(aTimezoneSpec));
}
int32_t
GetTimezoneOffset()
{
AssertMainThread();
RETURN_PROXY_IF_SANDBOXED(GetTimezoneOffset(), 0);
}
nsCString
GetTimezone()
{
AssertMainThread();
RETURN_PROXY_IF_SANDBOXED(GetTimezone(), nsCString(""));
}
void
EnableSensorNotifications(SensorType aSensor) {
AssertMainThread();
PROXY_IF_SANDBOXED(EnableSensorNotifications(aSensor));
}
void
DisableSensorNotifications(SensorType aSensor) {
AssertMainThread();
PROXY_IF_SANDBOXED(DisableSensorNotifications(aSensor));
}
typedef mozilla::ObserverList<SensorData> SensorObserverList;
static SensorObserverList* gSensorObservers = nullptr;
static SensorObserverList &
GetSensorObservers(SensorType sensor_type) {
MOZ_ASSERT(sensor_type < NUM_SENSOR_TYPE);
if(!gSensorObservers) {
gSensorObservers = new SensorObserverList[NUM_SENSOR_TYPE];
}
return gSensorObservers[sensor_type];
}
void
RegisterSensorObserver(SensorType aSensor, ISensorObserver *aObserver) {
SensorObserverList &observers = GetSensorObservers(aSensor);
AssertMainThread();
observers.AddObserver(aObserver);
if(observers.Length() == 1) {
EnableSensorNotifications(aSensor);
}
}
void
UnregisterSensorObserver(SensorType aSensor, ISensorObserver *aObserver) {
AssertMainThread();
if (!gSensorObservers) {
return;
}
SensorObserverList &observers = GetSensorObservers(aSensor);
if (!observers.RemoveObserver(aObserver) || observers.Length() > 0) {
return;
}
DisableSensorNotifications(aSensor);
// Destroy sSensorObservers only if all observer lists are empty.
for (int i = 0; i < NUM_SENSOR_TYPE; i++) {
if (gSensorObservers[i].Length() > 0) {
return;
}
}
delete [] gSensorObservers;
gSensorObservers = nullptr;
}
void
NotifySensorChange(const SensorData &aSensorData) {
SensorObserverList &observers = GetSensorObservers(aSensorData.sensor());
AssertMainThread();
observers.Broadcast(aSensorData);
}
void
RegisterNetworkObserver(NetworkObserver* aObserver)
{
AssertMainThread();
sNetworkObservers.AddObserver(aObserver);
}
void
UnregisterNetworkObserver(NetworkObserver* aObserver)
{
AssertMainThread();
sNetworkObservers.RemoveObserver(aObserver);
}
void
GetCurrentNetworkInformation(NetworkInformation* aInfo)
{
AssertMainThread();
*aInfo = sNetworkObservers.GetCurrentInformation();
}
void
NotifyNetworkChange(const NetworkInformation& aInfo)
{
sNetworkObservers.CacheInformation(aInfo);
sNetworkObservers.BroadcastCachedInformation();
}
void Reboot()
{
AssertMainProcess();
AssertMainThread();
PROXY_IF_SANDBOXED(Reboot());
}
void PowerOff()
{
AssertMainProcess();
AssertMainThread();
PROXY_IF_SANDBOXED(PowerOff());
}
void StartForceQuitWatchdog(ShutdownMode aMode, int32_t aTimeoutSecs)
{
AssertMainProcess();
AssertMainThread();
PROXY_IF_SANDBOXED(StartForceQuitWatchdog(aMode, aTimeoutSecs));
}
void StartMonitoringGamepadStatus()
{
PROXY_IF_SANDBOXED(StartMonitoringGamepadStatus());
}
void StopMonitoringGamepadStatus()
{
PROXY_IF_SANDBOXED(StopMonitoringGamepadStatus());
}
void
RegisterWakeLockObserver(WakeLockObserver* aObserver)
{
AssertMainThread();
sWakeLockObservers.AddObserver(aObserver);
}
void
UnregisterWakeLockObserver(WakeLockObserver* aObserver)
{
AssertMainThread();
sWakeLockObservers.RemoveObserver(aObserver);
}
void
ModifyWakeLock(const nsAString& aTopic,
WakeLockControl aLockAdjust,
WakeLockControl aHiddenAdjust,
uint64_t aProcessID /* = CONTENT_PROCESS_ID_UNKNOWN */)
{
AssertMainThread();
if (aProcessID == CONTENT_PROCESS_ID_UNKNOWN) {
aProcessID = InSandbox() ? ContentChild::GetSingleton()->GetID() :
CONTENT_PROCESS_ID_MAIN;
}
PROXY_IF_SANDBOXED(ModifyWakeLock(aTopic, aLockAdjust,
aHiddenAdjust, aProcessID));
}
void
GetWakeLockInfo(const nsAString& aTopic, WakeLockInformation* aWakeLockInfo)
{
AssertMainThread();
PROXY_IF_SANDBOXED(GetWakeLockInfo(aTopic, aWakeLockInfo));
}
void
NotifyWakeLockChange(const WakeLockInformation& aInfo)
{
AssertMainThread();
sWakeLockObservers.BroadcastInformation(aInfo);
}
void
RegisterScreenConfigurationObserver(ScreenConfigurationObserver* aObserver)
{
AssertMainThread();
sScreenConfigurationObservers.AddObserver(aObserver);
}
void
UnregisterScreenConfigurationObserver(ScreenConfigurationObserver* aObserver)
{
AssertMainThread();
sScreenConfigurationObservers.RemoveObserver(aObserver);
}
void
GetCurrentScreenConfiguration(ScreenConfiguration* aScreenConfiguration)
{
AssertMainThread();
*aScreenConfiguration = sScreenConfigurationObservers.GetCurrentInformation();
}
void
NotifyScreenConfigurationChange(const ScreenConfiguration& aScreenConfiguration)
{
sScreenConfigurationObservers.CacheInformation(aScreenConfiguration);
sScreenConfigurationObservers.BroadcastCachedInformation();
}
bool
LockScreenOrientation(const dom::ScreenOrientation& aOrientation)
{
AssertMainThread();
RETURN_PROXY_IF_SANDBOXED(LockScreenOrientation(aOrientation), false);
}
void
UnlockScreenOrientation()
{
AssertMainThread();
PROXY_IF_SANDBOXED(UnlockScreenOrientation());
}
void
EnableSwitchNotifications(SwitchDevice aDevice) {
AssertMainThread();
PROXY_IF_SANDBOXED(EnableSwitchNotifications(aDevice));
}
void
DisableSwitchNotifications(SwitchDevice aDevice) {
AssertMainThread();
PROXY_IF_SANDBOXED(DisableSwitchNotifications(aDevice));
}
SwitchState GetCurrentSwitchState(SwitchDevice aDevice)
{
AssertMainThread();
RETURN_PROXY_IF_SANDBOXED(GetCurrentSwitchState(aDevice), SWITCH_STATE_UNKNOWN);
}
void NotifySwitchStateFromInputDevice(SwitchDevice aDevice, SwitchState aState)
{
AssertMainThread();
PROXY_IF_SANDBOXED(NotifySwitchStateFromInputDevice(aDevice, aState));
}
typedef mozilla::ObserverList<SwitchEvent> SwitchObserverList;
static SwitchObserverList *sSwitchObserverLists = nullptr;
static SwitchObserverList&
GetSwitchObserverList(SwitchDevice aDevice) {
MOZ_ASSERT(0 <= aDevice && aDevice < NUM_SWITCH_DEVICE);
if (sSwitchObserverLists == nullptr) {
sSwitchObserverLists = new SwitchObserverList[NUM_SWITCH_DEVICE];
}
return sSwitchObserverLists[aDevice];
}
static void
ReleaseObserversIfNeeded() {
for (int i = 0; i < NUM_SWITCH_DEVICE; i++) {
if (sSwitchObserverLists[i].Length() != 0)
return;
}
//The length of every list is 0, no observer in the list.
delete [] sSwitchObserverLists;
sSwitchObserverLists = nullptr;
}
void
RegisterSwitchObserver(SwitchDevice aDevice, SwitchObserver *aObserver)
{
AssertMainThread();
SwitchObserverList& observer = GetSwitchObserverList(aDevice);
observer.AddObserver(aObserver);
if (observer.Length() == 1) {
EnableSwitchNotifications(aDevice);
}
}
void
UnregisterSwitchObserver(SwitchDevice aDevice, SwitchObserver *aObserver)
{
AssertMainThread();
if (!sSwitchObserverLists) {
return;
}
SwitchObserverList& observer = GetSwitchObserverList(aDevice);
if (!observer.RemoveObserver(aObserver) || observer.Length() > 0) {
return;
}
DisableSwitchNotifications(aDevice);
ReleaseObserversIfNeeded();
}
void
NotifySwitchChange(const SwitchEvent& aEvent)
{
// When callback this notification, main thread may call unregister function
// first. We should check if this pointer is valid.
if (!sSwitchObserverLists)
return;
SwitchObserverList& observer = GetSwitchObserverList(aEvent.device());
observer.Broadcast(aEvent);
}
static AlarmObserver* sAlarmObserver;
bool
RegisterTheOneAlarmObserver(AlarmObserver* aObserver)
{
MOZ_ASSERT(!InSandbox());
MOZ_ASSERT(!sAlarmObserver);
sAlarmObserver = aObserver;
RETURN_PROXY_IF_SANDBOXED(EnableAlarm(), false);
}
void
UnregisterTheOneAlarmObserver()
{
if (sAlarmObserver) {
sAlarmObserver = nullptr;
PROXY_IF_SANDBOXED(DisableAlarm());
}
}
void
NotifyAlarmFired()
{
if (sAlarmObserver) {
sAlarmObserver->Notify(void_t());
}
}
bool
SetAlarm(int32_t aSeconds, int32_t aNanoseconds)
{
// It's pointless to program an alarm nothing is going to observe ...
MOZ_ASSERT(sAlarmObserver);
RETURN_PROXY_IF_SANDBOXED(SetAlarm(aSeconds, aNanoseconds), false);
}
void
SetProcessPriority(int aPid,
ProcessPriority aPriority,
ProcessCPUPriority aCPUPriority,
uint32_t aBackgroundLRU)
{
// n.b. The sandboxed implementation crashes; SetProcessPriority works only
// from the main process.
MOZ_ASSERT(aBackgroundLRU == 0 || aPriority == PROCESS_PRIORITY_BACKGROUND);
PROXY_IF_SANDBOXED(SetProcessPriority(aPid, aPriority, aCPUPriority,
aBackgroundLRU));
}
void
SetCurrentThreadPriority(hal::ThreadPriority aThreadPriority)
{
PROXY_IF_SANDBOXED(SetCurrentThreadPriority(aThreadPriority));
}
// From HalTypes.h.
const char*
ProcessPriorityToString(ProcessPriority aPriority)
{
switch (aPriority) {
case PROCESS_PRIORITY_MASTER:
return "MASTER";
case PROCESS_PRIORITY_PREALLOC:
return "PREALLOC";
case PROCESS_PRIORITY_FOREGROUND_HIGH:
return "FOREGROUND_HIGH";
case PROCESS_PRIORITY_FOREGROUND:
return "FOREGROUND";
case PROCESS_PRIORITY_FOREGROUND_KEYBOARD:
return "FOREGROUND_KEYBOARD";
case PROCESS_PRIORITY_BACKGROUND_PERCEIVABLE:
return "BACKGROUND_PERCEIVABLE";
case PROCESS_PRIORITY_BACKGROUND_HOMESCREEN:
return "BACKGROUND_HOMESCREEN";
case PROCESS_PRIORITY_BACKGROUND:
return "BACKGROUND";
case PROCESS_PRIORITY_UNKNOWN:
return "UNKNOWN";
default:
MOZ_ASSERT(false);
return "???";
}
}
const char *
ThreadPriorityToString(ThreadPriority aPriority)
{
switch (aPriority) {
case THREAD_PRIORITY_COMPOSITOR:
return "COMPOSITOR";
default:
MOZ_ASSERT(false);
return "???";
}
}
// From HalTypes.h.
const char*
ProcessPriorityToString(ProcessPriority aPriority,
ProcessCPUPriority aCPUPriority)
{
// Sorry this is ugly. At least it's all in one place.
//
// We intentionally fall through if aCPUPriority is invalid; we won't hit any
// of the if statements further down, so it's OK.
switch (aPriority) {
case PROCESS_PRIORITY_MASTER:
if (aCPUPriority == PROCESS_CPU_PRIORITY_NORMAL) {
return "MASTER:CPU_NORMAL";
}
if (aCPUPriority == PROCESS_CPU_PRIORITY_LOW) {
return "MASTER:CPU_LOW";
}
case PROCESS_PRIORITY_PREALLOC:
if (aCPUPriority == PROCESS_CPU_PRIORITY_NORMAL) {
return "PREALLOC:CPU_NORMAL";
}
if (aCPUPriority == PROCESS_CPU_PRIORITY_LOW) {
return "PREALLOC:CPU_LOW";
}
case PROCESS_PRIORITY_FOREGROUND_HIGH:
if (aCPUPriority == PROCESS_CPU_PRIORITY_NORMAL) {
return "FOREGROUND_HIGH:CPU_NORMAL";
}
if (aCPUPriority == PROCESS_CPU_PRIORITY_LOW) {
return "FOREGROUND_HIGH:CPU_LOW";
}
case PROCESS_PRIORITY_FOREGROUND:
if (aCPUPriority == PROCESS_CPU_PRIORITY_NORMAL) {
return "FOREGROUND:CPU_NORMAL";
}
if (aCPUPriority == PROCESS_CPU_PRIORITY_LOW) {
return "FOREGROUND:CPU_LOW";
}
case PROCESS_PRIORITY_FOREGROUND_KEYBOARD:
if (aCPUPriority == PROCESS_CPU_PRIORITY_NORMAL) {
return "FOREGROUND_KEYBOARD:CPU_NORMAL";
}
if (aCPUPriority == PROCESS_CPU_PRIORITY_LOW) {
return "FOREGROUND_KEYBOARD:CPU_LOW";
}
case PROCESS_PRIORITY_BACKGROUND_PERCEIVABLE:
if (aCPUPriority == PROCESS_CPU_PRIORITY_NORMAL) {
return "BACKGROUND_PERCEIVABLE:CPU_NORMAL";
}
if (aCPUPriority == PROCESS_CPU_PRIORITY_LOW) {
return "BACKGROUND_PERCEIVABLE:CPU_LOW";
}
case PROCESS_PRIORITY_BACKGROUND_HOMESCREEN:
if (aCPUPriority == PROCESS_CPU_PRIORITY_NORMAL) {
return "BACKGROUND_HOMESCREEN:CPU_NORMAL";
}
if (aCPUPriority == PROCESS_CPU_PRIORITY_LOW) {
return "BACKGROUND_HOMESCREEN:CPU_LOW";
}
case PROCESS_PRIORITY_BACKGROUND:
if (aCPUPriority == PROCESS_CPU_PRIORITY_NORMAL) {
return "BACKGROUND:CPU_NORMAL";
}
if (aCPUPriority == PROCESS_CPU_PRIORITY_LOW) {
return "BACKGROUND:CPU_LOW";
}
case PROCESS_PRIORITY_UNKNOWN:
if (aCPUPriority == PROCESS_CPU_PRIORITY_NORMAL) {
return "UNKNOWN:CPU_NORMAL";
}
if (aCPUPriority == PROCESS_CPU_PRIORITY_LOW) {
return "UNKNOWN:CPU_LOW";
}
default:
// Fall through. (|default| is here to silence warnings.)
break;
}
MOZ_ASSERT(false);
return "???";
}
static StaticAutoPtr<ObserverList<FMRadioOperationInformation> > sFMRadioObservers;
static void
InitializeFMRadioObserver()
{
if (!sFMRadioObservers) {
sFMRadioObservers = new ObserverList<FMRadioOperationInformation>;
ClearOnShutdown(&sFMRadioObservers);
}
}
void
RegisterFMRadioObserver(FMRadioObserver* aFMRadioObserver) {
AssertMainThread();
InitializeFMRadioObserver();
sFMRadioObservers->AddObserver(aFMRadioObserver);
}
void
UnregisterFMRadioObserver(FMRadioObserver* aFMRadioObserver) {
AssertMainThread();
InitializeFMRadioObserver();
sFMRadioObservers->RemoveObserver(aFMRadioObserver);
}
void
NotifyFMRadioStatus(const FMRadioOperationInformation& aFMRadioState) {
InitializeFMRadioObserver();
sFMRadioObservers->Broadcast(aFMRadioState);
}
void
EnableFMRadio(const FMRadioSettings& aInfo) {
AssertMainThread();
PROXY_IF_SANDBOXED(EnableFMRadio(aInfo));
}
void
DisableFMRadio() {
AssertMainThread();
PROXY_IF_SANDBOXED(DisableFMRadio());
}
void
FMRadioSeek(const FMRadioSeekDirection& aDirection) {
AssertMainThread();
PROXY_IF_SANDBOXED(FMRadioSeek(aDirection));
}
void
GetFMRadioSettings(FMRadioSettings* aInfo) {
AssertMainThread();
PROXY_IF_SANDBOXED(GetFMRadioSettings(aInfo));
}
void
SetFMRadioFrequency(const uint32_t aFrequency) {
AssertMainThread();
PROXY_IF_SANDBOXED(SetFMRadioFrequency(aFrequency));
}
uint32_t
GetFMRadioFrequency() {
AssertMainThread();
RETURN_PROXY_IF_SANDBOXED(GetFMRadioFrequency(), 0);
}
bool
IsFMRadioOn() {
AssertMainThread();
RETURN_PROXY_IF_SANDBOXED(IsFMRadioOn(), false);
}
uint32_t
GetFMRadioSignalStrength() {
AssertMainThread();
RETURN_PROXY_IF_SANDBOXED(GetFMRadioSignalStrength(), 0);
}
void
CancelFMRadioSeek() {
AssertMainThread();
PROXY_IF_SANDBOXED(CancelFMRadioSeek());
}
FMRadioSettings
GetFMBandSettings(FMRadioCountry aCountry) {
FMRadioSettings settings;
switch (aCountry) {
case FM_RADIO_COUNTRY_US:
case FM_RADIO_COUNTRY_EU:
settings.upperLimit() = 108000;
settings.lowerLimit() = 87800;
settings.spaceType() = 200;
settings.preEmphasis() = 75;
break;
case FM_RADIO_COUNTRY_JP_STANDARD:
settings.upperLimit() = 76000;
settings.lowerLimit() = 90000;
settings.spaceType() = 100;
settings.preEmphasis() = 50;
break;
case FM_RADIO_COUNTRY_CY:
case FM_RADIO_COUNTRY_DE:
case FM_RADIO_COUNTRY_DK:
case FM_RADIO_COUNTRY_ES:
case FM_RADIO_COUNTRY_FI:
case FM_RADIO_COUNTRY_FR:
case FM_RADIO_COUNTRY_HU:
case FM_RADIO_COUNTRY_IR:
case FM_RADIO_COUNTRY_IT:
case FM_RADIO_COUNTRY_KW:
case FM_RADIO_COUNTRY_LT:
case FM_RADIO_COUNTRY_ML:
case FM_RADIO_COUNTRY_NO:
case FM_RADIO_COUNTRY_OM:
case FM_RADIO_COUNTRY_PG:
case FM_RADIO_COUNTRY_NL:
case FM_RADIO_COUNTRY_CZ:
case FM_RADIO_COUNTRY_UK:
case FM_RADIO_COUNTRY_RW:
case FM_RADIO_COUNTRY_SN:
case FM_RADIO_COUNTRY_SI:
case FM_RADIO_COUNTRY_ZA:
case FM_RADIO_COUNTRY_SE:
case FM_RADIO_COUNTRY_CH:
case FM_RADIO_COUNTRY_TW:
case FM_RADIO_COUNTRY_UA:
settings.upperLimit() = 108000;
settings.lowerLimit() = 87500;
settings.spaceType() = 100;
settings.preEmphasis() = 50;
break;
case FM_RADIO_COUNTRY_VA:
case FM_RADIO_COUNTRY_MA:
case FM_RADIO_COUNTRY_TR:
settings.upperLimit() = 10800;
settings.lowerLimit() = 87500;
settings.spaceType() = 100;
settings.preEmphasis() = 75;
break;
case FM_RADIO_COUNTRY_AU:
case FM_RADIO_COUNTRY_BD:
settings.upperLimit() = 108000;
settings.lowerLimit() = 87500;
settings.spaceType() = 200;
settings.preEmphasis() = 75;
break;
case FM_RADIO_COUNTRY_AW:
case FM_RADIO_COUNTRY_BS:
case FM_RADIO_COUNTRY_CO:
case FM_RADIO_COUNTRY_KR:
settings.upperLimit() = 108000;
settings.lowerLimit() = 88000;
settings.spaceType() = 200;
settings.preEmphasis() = 75;
break;
case FM_RADIO_COUNTRY_EC:
settings.upperLimit() = 108000;
settings.lowerLimit() = 88000;
settings.spaceType() = 200;
settings.preEmphasis() = 0;
break;
case FM_RADIO_COUNTRY_GM:
settings.upperLimit() = 108000;
settings.lowerLimit() = 88000;
settings.spaceType() = 0;
settings.preEmphasis() = 75;
break;
case FM_RADIO_COUNTRY_QA:
settings.upperLimit() = 108000;
settings.lowerLimit() = 88000;
settings.spaceType() = 200;
settings.preEmphasis() = 50;
break;
case FM_RADIO_COUNTRY_SG:
settings.upperLimit() = 108000;
settings.lowerLimit() = 88000;
settings.spaceType() = 200;
settings.preEmphasis() = 50;
break;
case FM_RADIO_COUNTRY_IN:
settings.upperLimit() = 100000;
settings.lowerLimit() = 108000;
settings.spaceType() = 100;
settings.preEmphasis() = 50;
break;
case FM_RADIO_COUNTRY_NZ:
settings.upperLimit() = 100000;
settings.lowerLimit() = 88000;
settings.spaceType() = 50;
settings.preEmphasis() = 50;
break;
case FM_RADIO_COUNTRY_USER_DEFINED:
break;
default:
MOZ_ASSERT(0);
break;
};
return settings;
}
void FactoryReset()
{
AssertMainThread();
PROXY_IF_SANDBOXED(FactoryReset());
}
void
StartDiskSpaceWatcher()
{
AssertMainProcess();
AssertMainThread();
PROXY_IF_SANDBOXED(StartDiskSpaceWatcher());
}
void
StopDiskSpaceWatcher()
{
AssertMainProcess();
AssertMainThread();
PROXY_IF_SANDBOXED(StopDiskSpaceWatcher());
}
uint32_t
GetTotalSystemMemory()
{
return hal_impl::GetTotalSystemMemory();
}
uint32_t
GetTotalSystemMemoryLevel()
{
return hal_impl::GetTotalSystemMemoryLevel();
}
bool IsHeadphoneEventFromInputDev()
{
AssertMainThread();
RETURN_PROXY_IF_SANDBOXED(IsHeadphoneEventFromInputDev(), false);
}
} // namespace hal
} // namespace mozilla