gecko-dev/gfx/cairo/pixman-16-bit-pipeline.patch

1243 lines
36 KiB
Diff
Raw Normal View History

diff --git a/gfx/cairo/libpixman/src/pixman-access.c b/gfx/cairo/libpixman/src/pixman-access.c
--- a/gfx/cairo/libpixman/src/pixman-access.c
+++ b/gfx/cairo/libpixman/src/pixman-access.c
@@ -933,16 +933,54 @@ store_scanline_x2b10g10r10 (bits_image_t
{
WRITE (image, pixel++,
((values[i] >> 38) & 0x3ff) |
((values[i] >> 12) & 0xffc00) |
((values[i] << 14) & 0x3ff00000));
}
}
+static void
+store_scanline_16 (bits_image_t * image,
+ int x,
+ int y,
+ int width,
+ const uint32_t *v)
+{
+ uint16_t *bits = (uint16_t*)(image->bits + image->rowstride * y);
+ uint16_t *values = (uint16_t *)v;
+ uint16_t *pixel = bits + x;
+ int i;
+
+ for (i = 0; i < width; ++i)
+ {
+ WRITE (image, pixel++, values[i]);
+ }
+}
+
+static void
+fetch_scanline_16 (pixman_image_t *image,
+ int x,
+ int y,
+ int width,
+ uint32_t * b,
+ const uint32_t *mask)
+{
+ const uint16_t *bits = (uint16_t*)(image->bits.bits + y * image->bits.rowstride);
+ const uint16_t *pixel = bits + x;
+ int i;
+ uint16_t *buffer = (uint16_t *)b;
+
+ for (i = 0; i < width; ++i)
+ {
+ *buffer++ = READ (image, pixel++);
+ }
+}
+
+
/*
* Contracts a 64bpp image to 32bpp and then stores it using a regular 32-bit
* store proc. Despite the type, this function expects a uint64_t buffer.
*/
static void
store_scanline_generic_64 (bits_image_t * image,
int x,
int y,
@@ -1044,32 +1082,47 @@ fetch_pixel_generic_lossy_32 (bits_image
pixman_contract (&result, &pixel64, 1);
return result;
}
typedef struct
{
pixman_format_code_t format;
+ fetch_scanline_t fetch_scanline_16;
fetch_scanline_t fetch_scanline_32;
fetch_scanline_t fetch_scanline_64;
fetch_pixel_32_t fetch_pixel_32;
fetch_pixel_64_t fetch_pixel_64;
+ store_scanline_t store_scanline_16;
store_scanline_t store_scanline_32;
store_scanline_t store_scanline_64;
} format_info_t;
#define FORMAT_INFO(format) \
{ \
PIXMAN_ ## format, \
+ NULL, \
fetch_scanline_ ## format, \
fetch_scanline_generic_64, \
fetch_pixel_ ## format, fetch_pixel_generic_64, \
+ NULL, \
store_scanline_ ## format, store_scanline_generic_64 \
}
+#define FORMAT_INFO16(format) \
+ { \
+ PIXMAN_ ## format, \
+ fetch_scanline_16, \
+ fetch_scanline_ ## format, \
+ fetch_scanline_generic_64, \
+ fetch_pixel_ ## format, fetch_pixel_generic_64, \
+ store_scanline_16, \
+ store_scanline_ ## format, store_scanline_generic_64 \
+ }
+
static const format_info_t accessors[] =
{
/* 32 bpp formats */
FORMAT_INFO (a8r8g8b8),
FORMAT_INFO (x8r8g8b8),
FORMAT_INFO (a8b8g8r8),
FORMAT_INFO (x8b8g8r8),
@@ -1079,18 +1132,18 @@ static const format_info_t accessors[] =
FORMAT_INFO (r8g8b8x8),
FORMAT_INFO (x14r6g6b6),
/* 24bpp formats */
FORMAT_INFO (r8g8b8),
FORMAT_INFO (b8g8r8),
/* 16bpp formats */
- FORMAT_INFO (r5g6b5),
- FORMAT_INFO (b5g6r5),
+ FORMAT_INFO16 (r5g6b5),
+ FORMAT_INFO16 (b5g6r5),
FORMAT_INFO (a1r5g5b5),
FORMAT_INFO (x1r5g5b5),
FORMAT_INFO (a1b5g5r5),
FORMAT_INFO (x1b5g5r5),
FORMAT_INFO (a4r4g4b4),
FORMAT_INFO (x4r4g4b4),
FORMAT_INFO (a4b4g4r4),
@@ -1132,62 +1185,64 @@ static const format_info_t accessors[] =
/* 1bpp formats */
FORMAT_INFO (a1),
FORMAT_INFO (g1),
/* Wide formats */
{ PIXMAN_a2r10g10b10,
- NULL, fetch_scanline_a2r10g10b10,
+ NULL, NULL, fetch_scanline_a2r10g10b10,
fetch_pixel_generic_lossy_32, fetch_pixel_a2r10g10b10,
NULL, store_scanline_a2r10g10b10 },
{ PIXMAN_x2r10g10b10,
- NULL, fetch_scanline_x2r10g10b10,
+ NULL, NULL, fetch_scanline_x2r10g10b10,
fetch_pixel_generic_lossy_32, fetch_pixel_x2r10g10b10,
NULL, store_scanline_x2r10g10b10 },
{ PIXMAN_a2b10g10r10,
- NULL, fetch_scanline_a2b10g10r10,
+ NULL, NULL, fetch_scanline_a2b10g10r10,
fetch_pixel_generic_lossy_32, fetch_pixel_a2b10g10r10,
NULL, store_scanline_a2b10g10r10 },
{ PIXMAN_x2b10g10r10,
- NULL, fetch_scanline_x2b10g10r10,
+ NULL, NULL, fetch_scanline_x2b10g10r10,
fetch_pixel_generic_lossy_32, fetch_pixel_x2b10g10r10,
NULL, store_scanline_x2b10g10r10 },
/* YUV formats */
{ PIXMAN_yuy2,
- fetch_scanline_yuy2, fetch_scanline_generic_64,
+ NULL, fetch_scanline_yuy2, fetch_scanline_generic_64,
fetch_pixel_yuy2, fetch_pixel_generic_64,
NULL, NULL },
{ PIXMAN_yv12,
- fetch_scanline_yv12, fetch_scanline_generic_64,
+ NULL, fetch_scanline_yv12, fetch_scanline_generic_64,
fetch_pixel_yv12, fetch_pixel_generic_64,
NULL, NULL },
{ PIXMAN_null },
};
static void
setup_accessors (bits_image_t *image)
{
const format_info_t *info = accessors;
while (info->format != PIXMAN_null)
{
if (info->format == image->format)
{
+ image->fetch_scanline_16 = info->fetch_scanline_16;
image->fetch_scanline_32 = info->fetch_scanline_32;
image->fetch_scanline_64 = info->fetch_scanline_64;
image->fetch_pixel_32 = info->fetch_pixel_32;
image->fetch_pixel_64 = info->fetch_pixel_64;
+ image->store_scanline_16 = info->store_scanline_16;
image->store_scanline_32 = info->store_scanline_32;
image->store_scanline_64 = info->store_scanline_64;
return;
}
info++;
}
diff --git a/gfx/cairo/libpixman/src/pixman-bits-image.c b/gfx/cairo/libpixman/src/pixman-bits-image.c
--- a/gfx/cairo/libpixman/src/pixman-bits-image.c
+++ b/gfx/cairo/libpixman/src/pixman-bits-image.c
@@ -1247,16 +1247,31 @@ src_get_scanline_wide (pixman_iter_t *it
void
_pixman_bits_image_src_iter_init (pixman_image_t *image, pixman_iter_t *iter)
{
if (iter->flags & ITER_NARROW)
iter->get_scanline = src_get_scanline_narrow;
else
iter->get_scanline = src_get_scanline_wide;
+
+}
+
+static uint32_t *
+dest_get_scanline_16 (pixman_iter_t *iter, const uint32_t *mask)
+{
+ pixman_image_t *image = iter->image;
+ int x = iter->x;
+ int y = iter->y;
+ int width = iter->width;
+ uint32_t * buffer = iter->buffer;
+
+ image->bits.fetch_scanline_16 (image, x, y, width, buffer, mask);
+
+ return iter->buffer;
}
static uint32_t *
dest_get_scanline_narrow (pixman_iter_t *iter, const uint32_t *mask)
{
pixman_image_t *image = iter->image;
int x = iter->x;
int y = iter->y;
@@ -1327,16 +1342,30 @@ dest_get_scanline_wide (pixman_iter_t *i
free (alpha);
}
}
return iter->buffer;
}
static void
+dest_write_back_16 (pixman_iter_t *iter)
+{
+ bits_image_t * image = &iter->image->bits;
+ int x = iter->x;
+ int y = iter->y;
+ int width = iter->width;
+ const uint32_t *buffer = iter->buffer;
+
+ image->store_scanline_16 (image, x, y, width, buffer);
+
+ iter->y++;
+}
+
+static void
dest_write_back_narrow (pixman_iter_t *iter)
{
bits_image_t * image = &iter->image->bits;
int x = iter->x;
int y = iter->y;
int width = iter->width;
const uint32_t *buffer = iter->buffer;
@@ -1375,28 +1404,41 @@ dest_write_back_wide (pixman_iter_t *ite
}
iter->y++;
}
void
_pixman_bits_image_dest_iter_init (pixman_image_t *image, pixman_iter_t *iter)
{
- if (iter->flags & ITER_NARROW)
+ if (iter->flags & ITER_16)
+ {
+ if ((iter->flags & (ITER_IGNORE_RGB | ITER_IGNORE_ALPHA)) ==
+ (ITER_IGNORE_RGB | ITER_IGNORE_ALPHA))
+ {
+ iter->get_scanline = _pixman_iter_get_scanline_noop;
+ }
+ else
+ {
+ iter->get_scanline = dest_get_scanline_16;
+ }
+ iter->write_back = dest_write_back_16;
+ }
+ else if (iter->flags & ITER_NARROW)
{
if ((iter->flags & (ITER_IGNORE_RGB | ITER_IGNORE_ALPHA)) ==
(ITER_IGNORE_RGB | ITER_IGNORE_ALPHA))
{
iter->get_scanline = _pixman_iter_get_scanline_noop;
}
else
{
iter->get_scanline = dest_get_scanline_narrow;
}
-
+
iter->write_back = dest_write_back_narrow;
}
else
{
iter->get_scanline = dest_get_scanline_wide;
iter->write_back = dest_write_back_wide;
}
}
diff --git a/gfx/cairo/libpixman/src/pixman-combine16.c b/gfx/cairo/libpixman/src/pixman-combine16.c
new file mode 100644
--- /dev/null
+++ b/gfx/cairo/libpixman/src/pixman-combine16.c
@@ -0,0 +1,124 @@
+#ifdef HAVE_CONFIG_H
+#include <config.h>
+#endif
+
+#include <math.h>
+#include <string.h>
+
+#include "pixman-private.h"
+
+#include "pixman-combine32.h"
+
+static force_inline uint32_t
+combine_mask (const uint32_t src, const uint32_t mask)
+{
+ uint32_t s, m;
+
+ m = mask >> A_SHIFT;
+
+ if (!m)
+ return 0;
+ s = src;
+
+ UN8x4_MUL_UN8 (s, m);
+
+ return s;
+}
+
+static inline uint32_t convert_0565_to_8888(uint16_t color)
+{
+ return CONVERT_0565_TO_8888(color);
+}
+
+static inline uint16_t convert_8888_to_0565(uint32_t color)
+{
+ return CONVERT_8888_TO_0565(color);
+}
+
+static void
+combine_src_u (pixman_implementation_t *imp,
+ pixman_op_t op,
+ uint32_t * dest,
+ const uint32_t * src,
+ const uint32_t * mask,
+ int width)
+{
+ int i;
+
+ if (!mask)
+ memcpy (dest, src, width * sizeof (uint16_t));
+ else
+ {
+ uint16_t *d = (uint16_t*)dest;
+ uint16_t *src16 = (uint16_t*)src;
+ for (i = 0; i < width; ++i)
+ {
+ if ((*mask & 0xff000000) == 0xff000000) {
+ // it's likely worth special casing
+ // fully opaque because it avoids
+ // the cost of conversion as well the multiplication
+ *(d + i) = *src16;
+ } else {
+ // the mask is still 32bits
+ uint32_t s = combine_mask (convert_0565_to_8888(*src16), *mask);
+ *(d + i) = convert_8888_to_0565(s);
+ }
+ mask++;
+ src16++;
+ }
+ }
+
+}
+
+static void
+combine_over_u (pixman_implementation_t *imp,
+ pixman_op_t op,
+ uint32_t * dest,
+ const uint32_t * src,
+ const uint32_t * mask,
+ int width)
+{
+ int i;
+
+ if (!mask)
+ memcpy (dest, src, width * sizeof (uint16_t));
+ else
+ {
+ uint16_t *d = (uint16_t*)dest;
+ uint16_t *src16 = (uint16_t*)src;
+ for (i = 0; i < width; ++i)
+ {
+ if ((*mask & 0xff000000) == 0xff000000) {
+ // it's likely worth special casing
+ // fully opaque because it avoids
+ // the cost of conversion as well the multiplication
+ *(d + i) = *src16;
+ } else if ((*mask & 0xff000000) == 0x00000000) {
+ // keep the dest the same
+ } else {
+ // the mask is still 32bits
+ uint32_t s = combine_mask (convert_0565_to_8888(*src16), *mask);
+ uint32_t ia = ALPHA_8 (~s);
+ uint32_t d32 = convert_0565_to_8888(*(d + i));
+ UN8x4_MUL_UN8_ADD_UN8x4 (d32, ia, s);
+ *(d + i) = convert_8888_to_0565(d32);
+ }
+ mask++;
+ src16++;
+ }
+ }
+
+}
+
+
+void
+_pixman_setup_combiner_functions_16 (pixman_implementation_t *imp)
+{
+ int i;
+ for (i = 0; i < PIXMAN_N_OPERATORS; i++) {
+ imp->combine_16[i] = NULL;
+ }
+ imp->combine_16[PIXMAN_OP_SRC] = combine_src_u;
+ imp->combine_16[PIXMAN_OP_OVER] = combine_over_u;
+}
+
diff --git a/gfx/cairo/libpixman/src/pixman-general.c b/gfx/cairo/libpixman/src/pixman-general.c
--- a/gfx/cairo/libpixman/src/pixman-general.c
+++ b/gfx/cairo/libpixman/src/pixman-general.c
@@ -106,46 +106,61 @@ general_composite_rect (pixman_implemen
PIXMAN_COMPOSITE_ARGS (info);
uint64_t stack_scanline_buffer[(SCANLINE_BUFFER_LENGTH * 3 + 7) / 8];
uint8_t *scanline_buffer = (uint8_t *) stack_scanline_buffer;
uint8_t *src_buffer, *mask_buffer, *dest_buffer;
pixman_iter_t src_iter, mask_iter, dest_iter;
pixman_combine_32_func_t compose;
pixman_bool_t component_alpha;
iter_flags_t narrow, src_flags;
+ iter_flags_t rgb16;
int Bpp;
int i;
if ((src_image->common.flags & FAST_PATH_NARROW_FORMAT) &&
(!mask_image || mask_image->common.flags & FAST_PATH_NARROW_FORMAT) &&
(dest_image->common.flags & FAST_PATH_NARROW_FORMAT))
{
narrow = ITER_NARROW;
Bpp = 4;
}
else
{
narrow = 0;
Bpp = 8;
}
+ // XXX: This special casing is bad. Ideally, we'd keep the general code general perhaps
+ // by having it deal more specifically with different intermediate formats
+ if (
+ (dest_image->common.flags & FAST_PATH_16_FORMAT && (src_image->type == LINEAR || src_image->type == RADIAL)) &&
+ ( op == PIXMAN_OP_SRC ||
+ (op == PIXMAN_OP_OVER && (src_image->common.flags & FAST_PATH_IS_OPAQUE))
+ )
+ ) {
+ rgb16 = ITER_16;
+ } else {
+ rgb16 = 0;
+ }
+
+
if (width * Bpp > SCANLINE_BUFFER_LENGTH)
{
scanline_buffer = pixman_malloc_abc (width, 3, Bpp);
if (!scanline_buffer)
return;
}
src_buffer = scanline_buffer;
mask_buffer = src_buffer + width * Bpp;
dest_buffer = mask_buffer + width * Bpp;
/* src iter */
- src_flags = narrow | op_flags[op].src;
+ src_flags = narrow | op_flags[op].src | rgb16;
_pixman_implementation_src_iter_init (imp->toplevel, &src_iter, src_image,
src_x, src_y, width, height,
src_buffer, src_flags);
/* mask iter */
if ((src_flags & (ITER_IGNORE_ALPHA | ITER_IGNORE_RGB)) ==
(ITER_IGNORE_ALPHA | ITER_IGNORE_RGB))
@@ -164,20 +179,20 @@ general_composite_rect (pixman_implemen
_pixman_implementation_src_iter_init (
imp->toplevel, &mask_iter, mask_image, mask_x, mask_y, width, height,
mask_buffer, narrow | (component_alpha? 0 : ITER_IGNORE_RGB));
/* dest iter */
_pixman_implementation_dest_iter_init (
imp->toplevel, &dest_iter, dest_image, dest_x, dest_y, width, height,
- dest_buffer, narrow | op_flags[op].dst);
+ dest_buffer, narrow | op_flags[op].dst | rgb16);
compose = _pixman_implementation_lookup_combiner (
- imp->toplevel, op, component_alpha, narrow);
+ imp->toplevel, op, component_alpha, narrow, !!rgb16);
if (!compose)
return;
for (i = 0; i < height; ++i)
{
uint32_t *s, *m, *d;
@@ -234,16 +249,17 @@ general_fill (pixman_implementation_t *i
return FALSE;
}
pixman_implementation_t *
_pixman_implementation_create_general (void)
{
pixman_implementation_t *imp = _pixman_implementation_create (NULL, general_fast_path);
+ _pixman_setup_combiner_functions_16 (imp);
_pixman_setup_combiner_functions_32 (imp);
_pixman_setup_combiner_functions_64 (imp);
imp->blt = general_blt;
imp->fill = general_fill;
imp->src_iter_init = general_src_iter_init;
imp->dest_iter_init = general_dest_iter_init;
diff --git a/gfx/cairo/libpixman/src/pixman-image.c b/gfx/cairo/libpixman/src/pixman-image.c
--- a/gfx/cairo/libpixman/src/pixman-image.c
+++ b/gfx/cairo/libpixman/src/pixman-image.c
@@ -451,16 +451,20 @@ compute_image_info (pixman_image_t *imag
flags |= FAST_PATH_IS_OPAQUE;
}
if (image->bits.read_func || image->bits.write_func)
flags &= ~FAST_PATH_NO_ACCESSORS;
if (PIXMAN_FORMAT_IS_WIDE (image->bits.format))
flags &= ~FAST_PATH_NARROW_FORMAT;
+
+ if (image->bits.format == PIXMAN_r5g6b5)
+ flags |= FAST_PATH_16_FORMAT;
+
break;
case RADIAL:
code = PIXMAN_unknown;
/*
* As explained in pixman-radial-gradient.c, every point of
* the plane has a valid associated radius (and thus will be
diff --git a/gfx/cairo/libpixman/src/pixman-implementation.c b/gfx/cairo/libpixman/src/pixman-implementation.c
--- a/gfx/cairo/libpixman/src/pixman-implementation.c
+++ b/gfx/cairo/libpixman/src/pixman-implementation.c
@@ -101,45 +101,51 @@ pixman_implementation_t *
imp->fill = delegate_fill;
imp->src_iter_init = delegate_src_iter_init;
imp->dest_iter_init = delegate_dest_iter_init;
imp->fast_paths = fast_paths;
for (i = 0; i < PIXMAN_N_OPERATORS; ++i)
{
+ imp->combine_16[i] = NULL;
imp->combine_32[i] = NULL;
imp->combine_64[i] = NULL;
imp->combine_32_ca[i] = NULL;
imp->combine_64_ca[i] = NULL;
}
return imp;
}
pixman_combine_32_func_t
_pixman_implementation_lookup_combiner (pixman_implementation_t *imp,
pixman_op_t op,
pixman_bool_t component_alpha,
- pixman_bool_t narrow)
+ pixman_bool_t narrow,
+ pixman_bool_t rgb16)
{
pixman_combine_32_func_t f;
do
{
pixman_combine_32_func_t (*combiners[]) =
{
(pixman_combine_32_func_t *)imp->combine_64,
(pixman_combine_32_func_t *)imp->combine_64_ca,
imp->combine_32,
imp->combine_32_ca,
+ (pixman_combine_32_func_t *)imp->combine_16,
+ NULL,
};
-
- f = combiners[component_alpha | (narrow << 1)][op];
-
+ if (rgb16) {
+ f = combiners[4][op];
+ } else {
+ f = combiners[component_alpha + (narrow << 1)][op];
+ }
imp = imp->delegate;
}
while (!f);
return f;
}
pixman_bool_t
diff --git a/gfx/cairo/libpixman/src/pixman-linear-gradient.c b/gfx/cairo/libpixman/src/pixman-linear-gradient.c
--- a/gfx/cairo/libpixman/src/pixman-linear-gradient.c
+++ b/gfx/cairo/libpixman/src/pixman-linear-gradient.c
@@ -217,42 +217,185 @@ linear_get_scanline_narrow (pixman_iter_
}
}
iter->y++;
return iter->buffer;
}
+static uint16_t convert_8888_to_0565(uint32_t color)
+{
+ return CONVERT_8888_TO_0565(color);
+}
+
+static uint32_t *
+linear_get_scanline_16 (pixman_iter_t *iter,
+ const uint32_t *mask)
+{
+ pixman_image_t *image = iter->image;
+ int x = iter->x;
+ int y = iter->y;
+ int width = iter->width;
+ uint16_t * buffer = (uint16_t*)iter->buffer;
+
+ pixman_vector_t v, unit;
+ pixman_fixed_32_32_t l;
+ pixman_fixed_48_16_t dx, dy;
+ gradient_t *gradient = (gradient_t *)image;
+ linear_gradient_t *linear = (linear_gradient_t *)image;
+ uint16_t *end = buffer + width;
+ pixman_gradient_walker_t walker;
+
+ _pixman_gradient_walker_init (&walker, gradient, image->common.repeat);
+
+ /* reference point is the center of the pixel */
+ v.vector[0] = pixman_int_to_fixed (x) + pixman_fixed_1 / 2;
+ v.vector[1] = pixman_int_to_fixed (y) + pixman_fixed_1 / 2;
+ v.vector[2] = pixman_fixed_1;
+
+ if (image->common.transform)
+ {
+ if (!pixman_transform_point_3d (image->common.transform, &v))
+ return iter->buffer;
+
+ unit.vector[0] = image->common.transform->matrix[0][0];
+ unit.vector[1] = image->common.transform->matrix[1][0];
+ unit.vector[2] = image->common.transform->matrix[2][0];
+ }
+ else
+ {
+ unit.vector[0] = pixman_fixed_1;
+ unit.vector[1] = 0;
+ unit.vector[2] = 0;
+ }
+
+ dx = linear->p2.x - linear->p1.x;
+ dy = linear->p2.y - linear->p1.y;
+
+ l = dx * dx + dy * dy;
+
+ if (l == 0 || unit.vector[2] == 0)
+ {
+ /* affine transformation only */
+ pixman_fixed_32_32_t t, next_inc;
+ double inc;
+
+ if (l == 0 || v.vector[2] == 0)
+ {
+ t = 0;
+ inc = 0;
+ }
+ else
+ {
+ double invden, v2;
+
+ invden = pixman_fixed_1 * (double) pixman_fixed_1 /
+ (l * (double) v.vector[2]);
+ v2 = v.vector[2] * (1. / pixman_fixed_1);
+ t = ((dx * v.vector[0] + dy * v.vector[1]) -
+ (dx * linear->p1.x + dy * linear->p1.y) * v2) * invden;
+ inc = (dx * unit.vector[0] + dy * unit.vector[1]) * invden;
+ }
+ next_inc = 0;
+
+ if (((pixman_fixed_32_32_t )(inc * width)) == 0)
+ {
+ register uint16_t color;
+
+ color = convert_8888_to_0565(_pixman_gradient_walker_pixel (&walker, t));
+ while (buffer < end)
+ *buffer++ = color;
+ }
+ else
+ {
+ int i;
+
+ i = 0;
+ while (buffer < end)
+ {
+ if (!mask || *mask++)
+ {
+ *buffer = convert_8888_to_0565(_pixman_gradient_walker_pixel (&walker,
+ t + next_inc));
+ }
+ i++;
+ next_inc = inc * i;
+ buffer++;
+ }
+ }
+ }
+ else
+ {
+ /* projective transformation */
+ double t;
+
+ t = 0;
+
+ while (buffer < end)
+ {
+ if (!mask || *mask++)
+ {
+ if (v.vector[2] != 0)
+ {
+ double invden, v2;
+
+ invden = pixman_fixed_1 * (double) pixman_fixed_1 /
+ (l * (double) v.vector[2]);
+ v2 = v.vector[2] * (1. / pixman_fixed_1);
+ t = ((dx * v.vector[0] + dy * v.vector[1]) -
+ (dx * linear->p1.x + dy * linear->p1.y) * v2) * invden;
+ }
+
+ *buffer = convert_8888_to_0565(_pixman_gradient_walker_pixel (&walker, t));
+ }
+
+ ++buffer;
+
+ v.vector[0] += unit.vector[0];
+ v.vector[1] += unit.vector[1];
+ v.vector[2] += unit.vector[2];
+ }
+ }
+
+ iter->y++;
+
+ return iter->buffer;
+}
+
static uint32_t *
linear_get_scanline_wide (pixman_iter_t *iter, const uint32_t *mask)
{
uint32_t *buffer = linear_get_scanline_narrow (iter, NULL);
pixman_expand ((uint64_t *)buffer, buffer, PIXMAN_a8r8g8b8, iter->width);
return buffer;
}
void
_pixman_linear_gradient_iter_init (pixman_image_t *image, pixman_iter_t *iter)
{
if (linear_gradient_is_horizontal (
iter->image, iter->x, iter->y, iter->width, iter->height))
{
- if (iter->flags & ITER_NARROW)
+ if (iter->flags & ITER_16)
+ linear_get_scanline_16 (iter, NULL);
+ else if (iter->flags & ITER_NARROW)
linear_get_scanline_narrow (iter, NULL);
else
linear_get_scanline_wide (iter, NULL);
iter->get_scanline = _pixman_iter_get_scanline_noop;
}
else
{
- if (iter->flags & ITER_NARROW)
+ if (iter->flags & ITER_16)
+ iter->get_scanline = linear_get_scanline_16;
+ else if (iter->flags & ITER_NARROW)
iter->get_scanline = linear_get_scanline_narrow;
else
iter->get_scanline = linear_get_scanline_wide;
}
}
PIXMAN_EXPORT pixman_image_t *
pixman_image_create_linear_gradient (pixman_point_fixed_t * p1,
diff --git a/gfx/cairo/libpixman/src/pixman-private.h b/gfx/cairo/libpixman/src/pixman-private.h
--- a/gfx/cairo/libpixman/src/pixman-private.h
+++ b/gfx/cairo/libpixman/src/pixman-private.h
@@ -152,24 +152,28 @@ struct bits_image
int height;
uint32_t * bits;
uint32_t * free_me;
int rowstride; /* in number of uint32_t's */
fetch_scanline_t get_scanline_32;
fetch_scanline_t get_scanline_64;
+ fetch_scanline_t fetch_scanline_16;
+
fetch_scanline_t fetch_scanline_32;
fetch_pixel_32_t fetch_pixel_32;
store_scanline_t store_scanline_32;
fetch_scanline_t fetch_scanline_64;
fetch_pixel_64_t fetch_pixel_64;
store_scanline_t store_scanline_64;
+ store_scanline_t store_scanline_16;
+
/* Used for indirect access to the bits */
pixman_read_memory_func_t read_func;
pixman_write_memory_func_t write_func;
};
union pixman_image
{
image_type_t type;
@@ -202,17 +206,24 @@ typedef enum
* destination.
*
* When he destination is xRGB, this is useful knowledge, because then
* we can treat it as if it were ARGB, which means in some cases we can
* avoid copying it to a temporary buffer.
*/
ITER_LOCALIZED_ALPHA = (1 << 1),
ITER_IGNORE_ALPHA = (1 << 2),
- ITER_IGNORE_RGB = (1 << 3)
+ ITER_IGNORE_RGB = (1 << 3),
+
+ /* With the addition of ITER_16 we now have two flags that to represent
+ * 3 pipelines. This means that there can be an invalid state when
+ * both ITER_NARROW and ITER_16 are set. In this case
+ * ITER_16 overrides NARROW and we should use the 16 bit pipeline.
+ * Note: ITER_16 still has a 32 bit mask, which is a bit weird. */
+ ITER_16 = (1 << 4)
} iter_flags_t;
struct pixman_iter_t
{
/* These are initialized by _pixman_implementation_{src,dest}_init */
pixman_image_t * image;
uint32_t * buffer;
int x, y;
@@ -429,16 +440,17 @@ typedef pixman_bool_t (*pixman_fill_func
int x,
int y,
int width,
int height,
uint32_t xor);
typedef void (*pixman_iter_init_func_t) (pixman_implementation_t *imp,
pixman_iter_t *iter);
+void _pixman_setup_combiner_functions_16 (pixman_implementation_t *imp);
void _pixman_setup_combiner_functions_32 (pixman_implementation_t *imp);
void _pixman_setup_combiner_functions_64 (pixman_implementation_t *imp);
typedef struct
{
pixman_op_t op;
pixman_format_code_t src_format;
uint32_t src_flags;
@@ -459,32 +471,34 @@ struct pixman_implementation_t
pixman_fill_func_t fill;
pixman_iter_init_func_t src_iter_init;
pixman_iter_init_func_t dest_iter_init;
pixman_combine_32_func_t combine_32[PIXMAN_N_OPERATORS];
pixman_combine_32_func_t combine_32_ca[PIXMAN_N_OPERATORS];
pixman_combine_64_func_t combine_64[PIXMAN_N_OPERATORS];
pixman_combine_64_func_t combine_64_ca[PIXMAN_N_OPERATORS];
+ pixman_combine_64_func_t combine_16[PIXMAN_N_OPERATORS];
};
uint32_t
_pixman_image_get_solid (pixman_implementation_t *imp,
pixman_image_t * image,
pixman_format_code_t format);
pixman_implementation_t *
_pixman_implementation_create (pixman_implementation_t *delegate,
const pixman_fast_path_t *fast_paths);
pixman_combine_32_func_t
_pixman_implementation_lookup_combiner (pixman_implementation_t *imp,
pixman_op_t op,
pixman_bool_t component_alpha,
- pixman_bool_t wide);
+ pixman_bool_t wide,
+ pixman_bool_t rgb16);
pixman_bool_t
_pixman_implementation_blt (pixman_implementation_t *imp,
uint32_t * src_bits,
uint32_t * dst_bits,
int src_stride,
int dst_stride,
int src_bpp,
@@ -613,16 +627,17 @@ uint32_t *
#define FAST_PATH_Y_UNIT_ZERO (1 << 18)
#define FAST_PATH_BILINEAR_FILTER (1 << 19)
#define FAST_PATH_ROTATE_90_TRANSFORM (1 << 20)
#define FAST_PATH_ROTATE_180_TRANSFORM (1 << 21)
#define FAST_PATH_ROTATE_270_TRANSFORM (1 << 22)
#define FAST_PATH_SAMPLES_COVER_CLIP_NEAREST (1 << 23)
#define FAST_PATH_SAMPLES_COVER_CLIP_BILINEAR (1 << 24)
#define FAST_PATH_BITS_IMAGE (1 << 25)
+#define FAST_PATH_16_FORMAT (1 << 26)
#define FAST_PATH_PAD_REPEAT \
(FAST_PATH_NO_NONE_REPEAT | \
FAST_PATH_NO_NORMAL_REPEAT | \
FAST_PATH_NO_REFLECT_REPEAT)
#define FAST_PATH_NORMAL_REPEAT \
(FAST_PATH_NO_NONE_REPEAT | \
diff --git a/gfx/cairo/libpixman/src/pixman-radial-gradient.c b/gfx/cairo/libpixman/src/pixman-radial-gradient.c
--- a/gfx/cairo/libpixman/src/pixman-radial-gradient.c
+++ b/gfx/cairo/libpixman/src/pixman-radial-gradient.c
@@ -395,35 +395,289 @@ radial_get_scanline_narrow (pixman_iter_
v.vector[2] += unit.vector[2];
}
}
iter->y++;
return iter->buffer;
}
+static uint16_t convert_8888_to_0565(uint32_t color)
+{
+ return CONVERT_8888_TO_0565(color);
+}
+
+static uint32_t *
+radial_get_scanline_16 (pixman_iter_t *iter, const uint32_t *mask)
+{
+ /*
+ * Implementation of radial gradients following the PDF specification.
+ * See section 8.7.4.5.4 Type 3 (Radial) Shadings of the PDF Reference
+ * Manual (PDF 32000-1:2008 at the time of this writing).
+ *
+ * In the radial gradient problem we are given two circles (c₁,r₁) and
+ * (c₂,r₂) that define the gradient itself.
+ *
+ * Mathematically the gradient can be defined as the family of circles
+ *
+ * ((1-t)·c₁ + t·(c₂), (1-t)·r₁ + t·r₂)
+ *
+ * excluding those circles whose radius would be < 0. When a point
+ * belongs to more than one circle, the one with a bigger t is the only
+ * one that contributes to its color. When a point does not belong
+ * to any of the circles, it is transparent black, i.e. RGBA (0, 0, 0, 0).
+ * Further limitations on the range of values for t are imposed when
+ * the gradient is not repeated, namely t must belong to [0,1].
+ *
+ * The graphical result is the same as drawing the valid (radius > 0)
+ * circles with increasing t in [-inf, +inf] (or in [0,1] if the gradient
+ * is not repeated) using SOURCE operator composition.
+ *
+ * It looks like a cone pointing towards the viewer if the ending circle
+ * is smaller than the starting one, a cone pointing inside the page if
+ * the starting circle is the smaller one and like a cylinder if they
+ * have the same radius.
+ *
+ * What we actually do is, given the point whose color we are interested
+ * in, compute the t values for that point, solving for t in:
+ *
+ * length((1-t)·c₁ + t·(c₂) - p) = (1-t)·r₁ + t·r₂
+ *
+ * Let's rewrite it in a simpler way, by defining some auxiliary
+ * variables:
+ *
+ * cd = c₂ - c₁
+ * pd = p - c₁
+ * dr = r₂ - r₁
+ * length(t·cd - pd) = r₁ + t·dr
+ *
+ * which actually means
+ *
+ * hypot(t·cdx - pdx, t·cdy - pdy) = r₁ + t·dr
+ *
+ * or
+ *
+ * ⎷((t·cdx - pdx)² + (t·cdy - pdy)²) = r₁ + t·dr.
+ *
+ * If we impose (as stated earlier) that r₁ + t·dr >= 0, it becomes:
+ *
+ * (t·cdx - pdx)² + (t·cdy - pdy)² = (r₁ + t·dr)²
+ *
+ * where we can actually expand the squares and solve for t:
+ *
+ * t²cdx² - 2t·cdx·pdx + pdx² + t²cdy² - 2t·cdy·pdy + pdy² =
+ * = r₁² + 2·r₁·t·dr + t²·dr²
+ *
+ * (cdx² + cdy² - dr²)t² - 2(cdx·pdx + cdy·pdy + r₁·dr)t +
+ * (pdx² + pdy² - r₁²) = 0
+ *
+ * A = cdx² + cdy² - dr²
+ * B = pdx·cdx + pdy·cdy + r₁·dr
+ * C = pdx² + pdy² - r₁²
+ * At² - 2Bt + C = 0
+ *
+ * The solutions (unless the equation degenerates because of A = 0) are:
+ *
+ * t = (B ± ⎷(B² - A·C)) / A
+ *
+ * The solution we are going to prefer is the bigger one, unless the
+ * radius associated to it is negative (or it falls outside the valid t
+ * range).
+ *
+ * Additional observations (useful for optimizations):
+ * A does not depend on p
+ *
+ * A < 0 <=> one of the two circles completely contains the other one
+ * <=> for every p, the radiuses associated with the two t solutions
+ * have opposite sign
+ */
+ pixman_image_t *image = iter->image;
+ int x = iter->x;
+ int y = iter->y;
+ int width = iter->width;
+ uint16_t *buffer = iter->buffer;
+
+ gradient_t *gradient = (gradient_t *)image;
+ radial_gradient_t *radial = (radial_gradient_t *)image;
+ uint16_t *end = buffer + width;
+ pixman_gradient_walker_t walker;
+ pixman_vector_t v, unit;
+
+ /* reference point is the center of the pixel */
+ v.vector[0] = pixman_int_to_fixed (x) + pixman_fixed_1 / 2;
+ v.vector[1] = pixman_int_to_fixed (y) + pixman_fixed_1 / 2;
+ v.vector[2] = pixman_fixed_1;
+
+ _pixman_gradient_walker_init (&walker, gradient, image->common.repeat);
+
+ if (image->common.transform)
+ {
+ if (!pixman_transform_point_3d (image->common.transform, &v))
+ return iter->buffer;
+
+ unit.vector[0] = image->common.transform->matrix[0][0];
+ unit.vector[1] = image->common.transform->matrix[1][0];
+ unit.vector[2] = image->common.transform->matrix[2][0];
+ }
+ else
+ {
+ unit.vector[0] = pixman_fixed_1;
+ unit.vector[1] = 0;
+ unit.vector[2] = 0;
+ }
+
+ if (unit.vector[2] == 0 && v.vector[2] == pixman_fixed_1)
+ {
+ /*
+ * Given:
+ *
+ * t = (B ± ⎷(B² - A·C)) / A
+ *
+ * where
+ *
+ * A = cdx² + cdy² - dr²
+ * B = pdx·cdx + pdy·cdy + r₁·dr
+ * C = pdx² + pdy² - r₁²
+ * det = B² - A·C
+ *
+ * Since we have an affine transformation, we know that (pdx, pdy)
+ * increase linearly with each pixel,
+ *
+ * pdx = pdx₀ + n·ux,
+ * pdy = pdy₀ + n·uy,
+ *
+ * we can then express B, C and det through multiple differentiation.
+ */
+ pixman_fixed_32_32_t b, db, c, dc, ddc;
+
+ /* warning: this computation may overflow */
+ v.vector[0] -= radial->c1.x;
+ v.vector[1] -= radial->c1.y;
+
+ /*
+ * B and C are computed and updated exactly.
+ * If fdot was used instead of dot, in the worst case it would
+ * lose 11 bits of precision in each of the multiplication and
+ * summing up would zero out all the bit that were preserved,
+ * thus making the result 0 instead of the correct one.
+ * This would mean a worst case of unbound relative error or
+ * about 2^10 absolute error
+ */
+ b = dot (v.vector[0], v.vector[1], radial->c1.radius,
+ radial->delta.x, radial->delta.y, radial->delta.radius);
+ db = dot (unit.vector[0], unit.vector[1], 0,
+ radial->delta.x, radial->delta.y, 0);
+
+ c = dot (v.vector[0], v.vector[1],
+ -((pixman_fixed_48_16_t) radial->c1.radius),
+ v.vector[0], v.vector[1], radial->c1.radius);
+ dc = dot (2 * (pixman_fixed_48_16_t) v.vector[0] + unit.vector[0],
+ 2 * (pixman_fixed_48_16_t) v.vector[1] + unit.vector[1],
+ 0,
+ unit.vector[0], unit.vector[1], 0);
+ ddc = 2 * dot (unit.vector[0], unit.vector[1], 0,
+ unit.vector[0], unit.vector[1], 0);
+
+ while (buffer < end)
+ {
+ if (!mask || *mask++)
+ {
+ *buffer = convert_8888_to_0565(
+ radial_compute_color (radial->a, b, c,
+ radial->inva,
+ radial->delta.radius,
+ radial->mindr,
+ &walker,
+ image->common.repeat));
+ }
+
+ b += db;
+ c += dc;
+ dc += ddc;
+ ++buffer;
+ }
+ }
+ else
+ {
+ /* projective */
+ /* Warning:
+ * error propagation guarantees are much looser than in the affine case
+ */
+ while (buffer < end)
+ {
+ if (!mask || *mask++)
+ {
+ if (v.vector[2] != 0)
+ {
+ double pdx, pdy, invv2, b, c;
+
+ invv2 = 1. * pixman_fixed_1 / v.vector[2];
+
+ pdx = v.vector[0] * invv2 - radial->c1.x;
+ /* / pixman_fixed_1 */
+
+ pdy = v.vector[1] * invv2 - radial->c1.y;
+ /* / pixman_fixed_1 */
+
+ b = fdot (pdx, pdy, radial->c1.radius,
+ radial->delta.x, radial->delta.y,
+ radial->delta.radius);
+ /* / pixman_fixed_1 / pixman_fixed_1 */
+
+ c = fdot (pdx, pdy, -radial->c1.radius,
+ pdx, pdy, radial->c1.radius);
+ /* / pixman_fixed_1 / pixman_fixed_1 */
+
+ *buffer = convert_8888_to_0565 (
+ radial_compute_color (radial->a, b, c,
+ radial->inva,
+ radial->delta.radius,
+ radial->mindr,
+ &walker,
+ image->common.repeat));
+ }
+ else
+ {
+ *buffer = 0;
+ }
+ }
+
+ ++buffer;
+
+ v.vector[0] += unit.vector[0];
+ v.vector[1] += unit.vector[1];
+ v.vector[2] += unit.vector[2];
+ }
+ }
+
+ iter->y++;
+ return iter->buffer;
+}
static uint32_t *
radial_get_scanline_wide (pixman_iter_t *iter, const uint32_t *mask)
{
uint32_t *buffer = radial_get_scanline_narrow (iter, NULL);
pixman_expand ((uint64_t *)buffer, buffer, PIXMAN_a8r8g8b8, iter->width);
return buffer;
}
void
_pixman_radial_gradient_iter_init (pixman_image_t *image, pixman_iter_t *iter)
{
- if (iter->flags & ITER_NARROW)
+ if (iter->flags & ITER_16)
+ iter->get_scanline = radial_get_scanline_16;
+ else if (iter->flags & ITER_NARROW)
iter->get_scanline = radial_get_scanline_narrow;
else
iter->get_scanline = radial_get_scanline_wide;
}
+
PIXMAN_EXPORT pixman_image_t *
pixman_image_create_radial_gradient (pixman_point_fixed_t * inner,
pixman_point_fixed_t * outer,
pixman_fixed_t inner_radius,
pixman_fixed_t outer_radius,
const pixman_gradient_stop_t *stops,
int n_stops)
{