gecko-dev/xpcom/base/CycleCollectedJSRuntime.cpp

1713 lines
54 KiB
C++
Raw Normal View History

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
// We're dividing JS objects into 3 categories:
//
// 1. "real" roots, held by the JS engine itself or rooted through the root
// and lock JS APIs. Roots from this category are considered black in the
// cycle collector, any cycle they participate in is uncollectable.
//
// 2. certain roots held by C++ objects that are guaranteed to be alive.
// Roots from this category are considered black in the cycle collector,
// and any cycle they participate in is uncollectable. These roots are
// traced from TraceNativeBlackRoots.
//
// 3. all other roots held by C++ objects that participate in cycle
// collection, held by us (see TraceNativeGrayRoots). Roots from this
// category are considered grey in the cycle collector; whether or not
// they are collected depends on the objects that hold them.
//
// Note that if a root is in multiple categories the fact that it is in
// category 1 or 2 that takes precedence, so it will be considered black.
//
// During garbage collection we switch to an additional mark color (gray)
// when tracing inside TraceNativeGrayRoots. This allows us to walk those
// roots later on and add all objects reachable only from them to the
// cycle collector.
//
// Phases:
//
// 1. marking of the roots in category 1 by having the JS GC do its marking
// 2. marking of the roots in category 2 by having the JS GC call us back
// (via JS_SetExtraGCRootsTracer) and running TraceNativeBlackRoots
// 3. marking of the roots in category 3 by TraceNativeGrayRoots using an
// additional color (gray).
// 4. end of GC, GC can sweep its heap
//
// At some later point, when the cycle collector runs:
//
// 5. walk gray objects and add them to the cycle collector, cycle collect
//
// JS objects that are part of cycles the cycle collector breaks will be
// collected by the next JS GC.
//
// If WantAllTraces() is false the cycle collector will not traverse roots
// from category 1 or any JS objects held by them. Any JS objects they hold
// will already be marked by the JS GC and will thus be colored black
// themselves. Any C++ objects they hold will have a missing (untraversed)
// edge from the JS object to the C++ object and so it will be marked black
// too. This decreases the number of objects that the cycle collector has to
// deal with.
// To improve debugging, if WantAllTraces() is true all JS objects are
// traversed.
#include "mozilla/CycleCollectedJSRuntime.h"
#include <algorithm>
#include "mozilla/ArrayUtils.h"
#include "mozilla/AutoRestore.h"
#include "mozilla/CycleCollectedJSContext.h"
#include "mozilla/Move.h"
#include "mozilla/MemoryReporting.h"
#include "mozilla/Sprintf.h"
#include "mozilla/Telemetry.h"
#include "mozilla/TimelineConsumers.h"
#include "mozilla/TimelineMarker.h"
#include "mozilla/Unused.h"
#include "mozilla/DebuggerOnGCRunnable.h"
#include "mozilla/dom/DOMJSClass.h"
#include "mozilla/dom/ProfileTimelineMarkerBinding.h"
#include "mozilla/dom/Promise.h"
#include "mozilla/dom/PromiseBinding.h"
#include "mozilla/dom/PromiseDebugging.h"
#include "mozilla/dom/ScriptSettings.h"
#include "js/Debug.h"
#include "js/GCAPI.h"
#include "nsContentUtils.h"
#include "nsCycleCollectionNoteRootCallback.h"
#include "nsCycleCollectionParticipant.h"
#include "nsCycleCollector.h"
#include "nsDOMJSUtils.h"
#include "nsExceptionHandler.h"
#include "nsJSUtils.h"
#include "nsWrapperCache.h"
#include "nsStringBuffer.h"
#include "GeckoProfiler.h"
#ifdef MOZ_GECKO_PROFILER
#include "ProfilerMarkerPayload.h"
#endif
#include "nsIException.h"
#include "nsIPlatformInfo.h"
#include "nsThread.h"
#include "nsThreadUtils.h"
#include "xpcpublic.h"
#ifdef NIGHTLY_BUILD
// For performance reasons, we make the JS Dev Error Interceptor a Nightly-only feature.
#define MOZ_JS_DEV_ERROR_INTERCEPTOR = 1
#endif // NIGHTLY_BUILD
using namespace mozilla;
using namespace mozilla::dom;
namespace mozilla {
struct DeferredFinalizeFunctionHolder
{
DeferredFinalizeFunction run;
void* data;
};
class IncrementalFinalizeRunnable : public CancelableRunnable
{
typedef AutoTArray<DeferredFinalizeFunctionHolder, 16> DeferredFinalizeArray;
typedef CycleCollectedJSRuntime::DeferredFinalizerTable DeferredFinalizerTable;
CycleCollectedJSRuntime* mRuntime;
DeferredFinalizeArray mDeferredFinalizeFunctions;
uint32_t mFinalizeFunctionToRun;
bool mReleasing;
static const PRTime SliceMillis = 5; /* ms */
public:
IncrementalFinalizeRunnable(CycleCollectedJSRuntime* aRt,
DeferredFinalizerTable& aFinalizerTable);
virtual ~IncrementalFinalizeRunnable();
void ReleaseNow(bool aLimited);
NS_DECL_NSIRUNNABLE
};
} // namespace mozilla
struct NoteWeakMapChildrenTracer : public JS::CallbackTracer
{
NoteWeakMapChildrenTracer(JSRuntime* aRt,
nsCycleCollectionNoteRootCallback& aCb)
: JS::CallbackTracer(aRt), mCb(aCb), mTracedAny(false), mMap(nullptr),
mKey(nullptr), mKeyDelegate(nullptr)
{
setCanSkipJsids(true);
}
void onChild(const JS::GCCellPtr& aThing) override;
nsCycleCollectionNoteRootCallback& mCb;
bool mTracedAny;
JSObject* mMap;
JS::GCCellPtr mKey;
JSObject* mKeyDelegate;
};
void
NoteWeakMapChildrenTracer::onChild(const JS::GCCellPtr& aThing)
{
if (aThing.is<JSString>()) {
return;
}
if (!JS::GCThingIsMarkedGray(aThing) && !mCb.WantAllTraces()) {
return;
}
if (AddToCCKind(aThing.kind())) {
mCb.NoteWeakMapping(mMap, mKey, mKeyDelegate, aThing);
mTracedAny = true;
} else {
JS::TraceChildren(this, aThing);
}
}
struct NoteWeakMapsTracer : public js::WeakMapTracer
{
NoteWeakMapsTracer(JSRuntime* aRt, nsCycleCollectionNoteRootCallback& aCccb)
: js::WeakMapTracer(aRt), mCb(aCccb), mChildTracer(aRt, aCccb)
{
}
void trace(JSObject* aMap, JS::GCCellPtr aKey, JS::GCCellPtr aValue) override;
nsCycleCollectionNoteRootCallback& mCb;
NoteWeakMapChildrenTracer mChildTracer;
};
void
NoteWeakMapsTracer::trace(JSObject* aMap, JS::GCCellPtr aKey,
JS::GCCellPtr aValue)
{
// If nothing that could be held alive by this entry is marked gray, return.
if ((!aKey || !JS::GCThingIsMarkedGray(aKey)) &&
MOZ_LIKELY(!mCb.WantAllTraces())) {
if (!aValue || !JS::GCThingIsMarkedGray(aValue) || aValue.is<JSString>()) {
return;
}
}
// The cycle collector can only properly reason about weak maps if it can
// reason about the liveness of their keys, which in turn requires that
// the key can be represented in the cycle collector graph. All existing
// uses of weak maps use either objects or scripts as keys, which are okay.
MOZ_ASSERT(AddToCCKind(aKey.kind()));
// As an emergency fallback for non-debug builds, if the key is not
// representable in the cycle collector graph, we treat it as marked. This
// can cause leaks, but is preferable to ignoring the binding, which could
// cause the cycle collector to free live objects.
if (!AddToCCKind(aKey.kind())) {
aKey = nullptr;
}
JSObject* kdelegate = nullptr;
if (aKey.is<JSObject>()) {
kdelegate = js::GetWeakmapKeyDelegate(&aKey.as<JSObject>());
}
if (AddToCCKind(aValue.kind())) {
mCb.NoteWeakMapping(aMap, aKey, kdelegate, aValue);
} else {
mChildTracer.mTracedAny = false;
mChildTracer.mMap = aMap;
mChildTracer.mKey = aKey;
mChildTracer.mKeyDelegate = kdelegate;
if (!aValue.is<JSString>()) {
JS::TraceChildren(&mChildTracer, aValue);
}
// The delegate could hold alive the key, so report something to the CC
// if we haven't already.
if (!mChildTracer.mTracedAny &&
aKey && JS::GCThingIsMarkedGray(aKey) && kdelegate) {
mCb.NoteWeakMapping(aMap, aKey, kdelegate, nullptr);
}
}
}
// Report whether the key or value of a weak mapping entry are gray but need to
// be marked black.
static void
ShouldWeakMappingEntryBeBlack(JSObject* aMap, JS::GCCellPtr aKey, JS::GCCellPtr aValue,
bool* aKeyShouldBeBlack, bool* aValueShouldBeBlack)
{
*aKeyShouldBeBlack = false;
*aValueShouldBeBlack = false;
// If nothing that could be held alive by this entry is marked gray, return.
bool keyMightNeedMarking = aKey && JS::GCThingIsMarkedGray(aKey);
bool valueMightNeedMarking = aValue && JS::GCThingIsMarkedGray(aValue) &&
aValue.kind() != JS::TraceKind::String;
if (!keyMightNeedMarking && !valueMightNeedMarking) {
return;
}
if (!AddToCCKind(aKey.kind())) {
aKey = nullptr;
}
if (keyMightNeedMarking && aKey.is<JSObject>()) {
JSObject* kdelegate = js::GetWeakmapKeyDelegate(&aKey.as<JSObject>());
if (kdelegate && !JS::ObjectIsMarkedGray(kdelegate) &&
(!aMap || !JS::ObjectIsMarkedGray(aMap)))
{
*aKeyShouldBeBlack = true;
}
}
if (aValue && JS::GCThingIsMarkedGray(aValue) &&
(!aKey || !JS::GCThingIsMarkedGray(aKey)) &&
(!aMap || !JS::ObjectIsMarkedGray(aMap)) &&
aValue.kind() != JS::TraceKind::Shape) {
*aValueShouldBeBlack = true;
}
}
struct FixWeakMappingGrayBitsTracer : public js::WeakMapTracer
{
explicit FixWeakMappingGrayBitsTracer(JSRuntime* aRt)
: js::WeakMapTracer(aRt)
{
}
void
FixAll()
{
do {
mAnyMarked = false;
js::TraceWeakMaps(this);
} while (mAnyMarked);
}
void trace(JSObject* aMap, JS::GCCellPtr aKey, JS::GCCellPtr aValue) override
{
bool keyShouldBeBlack;
bool valueShouldBeBlack;
ShouldWeakMappingEntryBeBlack(aMap, aKey, aValue,
&keyShouldBeBlack, &valueShouldBeBlack);
if (keyShouldBeBlack && JS::UnmarkGrayGCThingRecursively(aKey)) {
mAnyMarked = true;
}
if (valueShouldBeBlack && JS::UnmarkGrayGCThingRecursively(aValue)) {
mAnyMarked = true;
}
}
MOZ_INIT_OUTSIDE_CTOR bool mAnyMarked;
};
#ifdef DEBUG
// Check whether weak maps are marked correctly according to the logic above.
struct CheckWeakMappingGrayBitsTracer : public js::WeakMapTracer
{
explicit CheckWeakMappingGrayBitsTracer(JSRuntime* aRt)
: js::WeakMapTracer(aRt), mFailed(false)
{
}
static bool
Check(JSRuntime* aRt)
{
CheckWeakMappingGrayBitsTracer tracer(aRt);
js::TraceWeakMaps(&tracer);
return !tracer.mFailed;
}
void trace(JSObject* aMap, JS::GCCellPtr aKey, JS::GCCellPtr aValue) override
{
bool keyShouldBeBlack;
bool valueShouldBeBlack;
ShouldWeakMappingEntryBeBlack(aMap, aKey, aValue,
&keyShouldBeBlack, &valueShouldBeBlack);
if (keyShouldBeBlack) {
fprintf(stderr, "Weak mapping key %p of map %p should be black\n",
aKey.asCell(), aMap);
mFailed = true;
}
if (valueShouldBeBlack) {
fprintf(stderr, "Weak mapping value %p of map %p should be black\n",
aValue.asCell(), aMap);
mFailed = true;
}
}
bool mFailed;
};
#endif // DEBUG
static void
CheckParticipatesInCycleCollection(JS::GCCellPtr aThing, const char* aName,
void* aClosure)
{
bool* cycleCollectionEnabled = static_cast<bool*>(aClosure);
if (*cycleCollectionEnabled) {
return;
}
if (AddToCCKind(aThing.kind()) && JS::GCThingIsMarkedGray(aThing)) {
*cycleCollectionEnabled = true;
}
}
NS_IMETHODIMP
JSGCThingParticipant::TraverseNative(void* aPtr,
nsCycleCollectionTraversalCallback& aCb)
{
auto runtime = reinterpret_cast<CycleCollectedJSRuntime*>(
reinterpret_cast<char*>(this) - offsetof(CycleCollectedJSRuntime,
mGCThingCycleCollectorGlobal));
JS::GCCellPtr cellPtr(aPtr, JS::GCThingTraceKind(aPtr));
runtime->TraverseGCThing(CycleCollectedJSRuntime::TRAVERSE_FULL, cellPtr, aCb);
return NS_OK;
}
// NB: This is only used to initialize the participant in
// CycleCollectedJSRuntime. It should never be used directly.
static JSGCThingParticipant sGCThingCycleCollectorGlobal;
NS_IMETHODIMP
JSZoneParticipant::TraverseNative(void* aPtr,
nsCycleCollectionTraversalCallback& aCb)
{
auto runtime = reinterpret_cast<CycleCollectedJSRuntime*>(
reinterpret_cast<char*>(this) - offsetof(CycleCollectedJSRuntime,
mJSZoneCycleCollectorGlobal));
MOZ_ASSERT(!aCb.WantAllTraces());
JS::Zone* zone = static_cast<JS::Zone*>(aPtr);
runtime->TraverseZone(zone, aCb);
return NS_OK;
}
struct TraversalTracer : public JS::CallbackTracer
{
TraversalTracer(JSRuntime* aRt, nsCycleCollectionTraversalCallback& aCb)
: JS::CallbackTracer(aRt, DoNotTraceWeakMaps), mCb(aCb)
{
setCanSkipJsids(true);
}
void onChild(const JS::GCCellPtr& aThing) override;
nsCycleCollectionTraversalCallback& mCb;
};
void
TraversalTracer::onChild(const JS::GCCellPtr& aThing)
{
// Checking strings and symbols for being gray is rather slow, and we don't
// need either of them for the cycle collector.
if (aThing.is<JSString>() || aThing.is<JS::Symbol>()) {
return;
}
// Don't traverse non-gray objects, unless we want all traces.
if (!JS::GCThingIsMarkedGray(aThing) && !mCb.WantAllTraces()) {
return;
}
/*
* This function needs to be careful to avoid stack overflow. Normally, when
* AddToCCKind is true, the recursion terminates immediately as we just add
* |thing| to the CC graph. So overflow is only possible when there are long
* or cyclic chains of non-AddToCCKind GC things. Places where this can occur
* use special APIs to handle such chains iteratively.
*/
if (AddToCCKind(aThing.kind())) {
if (MOZ_UNLIKELY(mCb.WantDebugInfo())) {
char buffer[200];
getTracingEdgeName(buffer, sizeof(buffer));
mCb.NoteNextEdgeName(buffer);
}
mCb.NoteJSChild(aThing);
} else if (aThing.is<js::Shape>()) {
// The maximum depth of traversal when tracing a Shape is unbounded, due to
// the parent pointers on the shape.
JS_TraceShapeCycleCollectorChildren(this, aThing);
} else if (aThing.is<js::ObjectGroup>()) {
// The maximum depth of traversal when tracing an ObjectGroup is unbounded,
// due to information attached to the groups which can lead other groups to
// be traced.
JS_TraceObjectGroupCycleCollectorChildren(this, aThing);
} else {
JS::TraceChildren(this, aThing);
}
}
static void
NoteJSChildGrayWrapperShim(void* aData, JS::GCCellPtr aThing)
{
TraversalTracer* trc = static_cast<TraversalTracer*>(aData);
trc->onChild(aThing);
}
/*
* The cycle collection participant for a Zone is intended to produce the same
* results as if all of the gray GCthings in a zone were merged into a single node,
* except for self-edges. This avoids the overhead of representing all of the GCthings in
* the zone in the cycle collector graph, which should be much faster if many of
* the GCthings in the zone are gray.
*
* Zone merging should not always be used, because it is a conservative
* approximation of the true cycle collector graph that can incorrectly identify some
* garbage objects as being live. For instance, consider two cycles that pass through a
* zone, where one is garbage and the other is live. If we merge the entire
* zone, the cycle collector will think that both are alive.
*
* We don't have to worry about losing track of a garbage cycle, because any such garbage
* cycle incorrectly identified as live must contain at least one C++ to JS edge, and
* XPConnect will always add the C++ object to the CC graph. (This is in contrast to pure
* C++ garbage cycles, which must always be properly identified, because we clear the
* purple buffer during every CC, which may contain the last reference to a garbage
* cycle.)
*/
// NB: This is only used to initialize the participant in
// CycleCollectedJSRuntime. It should never be used directly.
static const JSZoneParticipant sJSZoneCycleCollectorGlobal;
static
void JSObjectsTenuredCb(JSContext* aContext, void* aData)
{
static_cast<CycleCollectedJSRuntime*>(aData)->JSObjectsTenured();
}
bool
mozilla::GetBuildId(JS::BuildIdCharVector* aBuildID)
{
nsCOMPtr<nsIPlatformInfo> info = do_GetService("@mozilla.org/xre/app-info;1");
if (!info) {
return false;
}
nsCString buildID;
nsresult rv = info->GetPlatformBuildID(buildID);
NS_ENSURE_SUCCESS(rv, false);
if (!aBuildID->resize(buildID.Length())) {
return false;
}
for (size_t i = 0; i < buildID.Length(); i++) {
(*aBuildID)[i] = buildID[i];
}
return true;
}
static void
MozCrashWarningReporter(JSContext*, JSErrorReport*)
{
MOZ_CRASH("Why is someone touching JSAPI without an AutoJSAPI?");
}
CycleCollectedJSRuntime::CycleCollectedJSRuntime(JSContext* aCx)
: mGCThingCycleCollectorGlobal(sGCThingCycleCollectorGlobal)
, mJSZoneCycleCollectorGlobal(sJSZoneCycleCollectorGlobal)
, mJSRuntime(JS_GetRuntime(aCx))
, mHasPendingIdleGCTask(false)
, mPrevGCSliceCallback(nullptr)
, mPrevGCNurseryCollectionCallback(nullptr)
, mJSHolderMap(256)
, mOutOfMemoryState(OOMState::OK)
, mLargeAllocationFailureState(OOMState::OK)
#ifdef DEBUG
, mShutdownCalled(false)
#endif
{
MOZ_COUNT_CTOR(CycleCollectedJSRuntime);
MOZ_ASSERT(aCx);
MOZ_ASSERT(mJSRuntime);
if (!JS_AddExtraGCRootsTracer(aCx, TraceBlackJS, this)) {
MOZ_CRASH("JS_AddExtraGCRootsTracer failed");
}
JS_SetGrayGCRootsTracer(aCx, TraceGrayJS, this);
JS_SetGCCallback(aCx, GCCallback, this);
mPrevGCSliceCallback = JS::SetGCSliceCallback(aCx, GCSliceCallback);
if (NS_IsMainThread()) {
// We would like to support all threads here, but the way timeline consumers
// are set up currently, you can either add a marker for one specific
// docshell, or for every consumer globally. We would like to add a marker
// for every consumer observing anything on this thread, but that is not
// currently possible. For now, add global markers only when we are on the
// main thread, since the UI for this tracing data only displays data
// relevant to the main-thread.
mPrevGCNurseryCollectionCallback = JS::SetGCNurseryCollectionCallback(
aCx, GCNurseryCollectionCallback);
}
JS_SetObjectsTenuredCallback(aCx, JSObjectsTenuredCb, this);
JS::SetOutOfMemoryCallback(aCx, OutOfMemoryCallback, this);
JS_SetExternalStringSizeofCallback(aCx, SizeofExternalStringCallback);
JS::SetBuildIdOp(aCx, GetBuildId);
JS::SetWarningReporter(aCx, MozCrashWarningReporter);
js::AutoEnterOOMUnsafeRegion::setAnnotateOOMAllocationSizeCallback(
CrashReporter::AnnotateOOMAllocationSize);
static js::DOMCallbacks DOMcallbacks = {
InstanceClassHasProtoAtDepth
};
SetDOMCallbacks(aCx, &DOMcallbacks);
js::SetScriptEnvironmentPreparer(aCx, &mEnvironmentPreparer);
JS::dbg::SetDebuggerMallocSizeOf(aCx, moz_malloc_size_of);
#ifdef MOZ_JS_DEV_ERROR_INTERCEPTOR
JS_SetErrorInterceptorCallback(mJSRuntime, &mErrorInterceptor);
#endif // MOZ_JS_DEV_ERROR_INTERCEPTOR
}
void
CycleCollectedJSRuntime::Shutdown(JSContext* cx)
{
#ifdef MOZ_JS_DEV_ERROR_INTERCEPTOR
mErrorInterceptor.Shutdown(mJSRuntime);
#endif // MOZ_JS_DEV_ERROR_INTERCEPTOR
JS_RemoveExtraGCRootsTracer(cx, TraceBlackJS, this);
JS_RemoveExtraGCRootsTracer(cx, TraceGrayJS, this);
#ifdef DEBUG
mShutdownCalled = true;
#endif
}
CycleCollectedJSRuntime::~CycleCollectedJSRuntime()
{
MOZ_COUNT_DTOR(CycleCollectedJSRuntime);
MOZ_ASSERT(!mDeferredFinalizerTable.Count());
MOZ_ASSERT(mShutdownCalled);
}
void
CycleCollectedJSRuntime::AddContext(CycleCollectedJSContext* aContext)
{
mContexts.insertBack(aContext);
}
void
CycleCollectedJSRuntime::RemoveContext(CycleCollectedJSContext* aContext)
{
aContext->removeFrom(mContexts);
}
size_t
CycleCollectedJSRuntime::SizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const
{
size_t n = 0;
// We're deliberately not measuring anything hanging off the entries in
// mJSHolders.
n += mJSHolders.SizeOfExcludingThis(aMallocSizeOf);
n += mJSHolderMap.ShallowSizeOfExcludingThis(aMallocSizeOf);
return n;
}
void
CycleCollectedJSRuntime::UnmarkSkippableJSHolders()
{
// Prevent nsWrapperCaches accessed under CanSkip from adding recorded events
// which might not replay in the same order.
recordreplay::AutoDisallowThreadEvents disallow;
for (auto iter = mJSHolders.Iter(); !iter.Done(); iter.Next()) {
void* holder = iter.Get().mHolder;
nsScriptObjectTracer* tracer = iter.Get().mTracer;
tracer->CanSkip(holder, true);
}
}
void
CycleCollectedJSRuntime::DescribeGCThing(bool aIsMarked, JS::GCCellPtr aThing,
nsCycleCollectionTraversalCallback& aCb) const
{
if (!aCb.WantDebugInfo()) {
aCb.DescribeGCedNode(aIsMarked, "JS Object");
return;
}
char name[72];
uint64_t compartmentAddress = 0;
if (aThing.is<JSObject>()) {
JSObject* obj = &aThing.as<JSObject>();
compartmentAddress = (uint64_t)js::GetObjectCompartment(obj);
const js::Class* clasp = js::GetObjectClass(obj);
// Give the subclass a chance to do something
if (DescribeCustomObjects(obj, clasp, name)) {
// Nothing else to do!
} else if (js::IsFunctionObject(obj)) {
JSFunction* fun = JS_GetObjectFunction(obj);
JSString* str = JS_GetFunctionDisplayId(fun);
if (str) {
JSFlatString* flat = JS_ASSERT_STRING_IS_FLAT(str);
nsAutoString chars;
AssignJSFlatString(chars, flat);
NS_ConvertUTF16toUTF8 fname(chars);
SprintfLiteral(name, "JS Object (Function - %s)", fname.get());
} else {
SprintfLiteral(name, "JS Object (Function)");
}
} else {
SprintfLiteral(name, "JS Object (%s)", clasp->name);
}
} else {
SprintfLiteral(name, "JS %s", JS::GCTraceKindToAscii(aThing.kind()));
}
// Disable printing global for objects while we figure out ObjShrink fallout.
aCb.DescribeGCedNode(aIsMarked, name, compartmentAddress);
}
void
CycleCollectedJSRuntime::NoteGCThingJSChildren(JS::GCCellPtr aThing,
nsCycleCollectionTraversalCallback& aCb) const
{
TraversalTracer trc(mJSRuntime, aCb);
JS::TraceChildren(&trc, aThing);
}
void
CycleCollectedJSRuntime::NoteGCThingXPCOMChildren(const js::Class* aClasp,
JSObject* aObj,
nsCycleCollectionTraversalCallback& aCb) const
{
MOZ_ASSERT(aClasp);
MOZ_ASSERT(aClasp == js::GetObjectClass(aObj));
if (NoteCustomGCThingXPCOMChildren(aClasp, aObj, aCb)) {
// Nothing else to do!
return;
}
// XXX This test does seem fragile, we should probably whitelist classes
// that do hold a strong reference, but that might not be possible.
else if (aClasp->flags & JSCLASS_HAS_PRIVATE &&
aClasp->flags & JSCLASS_PRIVATE_IS_NSISUPPORTS) {
NS_CYCLE_COLLECTION_NOTE_EDGE_NAME(aCb, "js::GetObjectPrivate(obj)");
aCb.NoteXPCOMChild(static_cast<nsISupports*>(js::GetObjectPrivate(aObj)));
} else {
const DOMJSClass* domClass = GetDOMClass(aObj);
if (domClass) {
NS_CYCLE_COLLECTION_NOTE_EDGE_NAME(aCb, "UnwrapDOMObject(obj)");
// It's possible that our object is an unforgeable holder object, in
// which case it doesn't actually have a C++ DOM object associated with
// it. Use UnwrapPossiblyNotInitializedDOMObject, which produces null in
// that case, since NoteXPCOMChild/NoteNativeChild are null-safe.
if (domClass->mDOMObjectIsISupports) {
aCb.NoteXPCOMChild(UnwrapPossiblyNotInitializedDOMObject<nsISupports>(aObj));
} else if (domClass->mParticipant) {
aCb.NoteNativeChild(UnwrapPossiblyNotInitializedDOMObject<void>(aObj),
domClass->mParticipant);
}
}
}
}
void
CycleCollectedJSRuntime::TraverseGCThing(TraverseSelect aTs, JS::GCCellPtr aThing,
nsCycleCollectionTraversalCallback& aCb)
{
bool isMarkedGray = JS::GCThingIsMarkedGray(aThing);
if (aTs == TRAVERSE_FULL) {
DescribeGCThing(!isMarkedGray, aThing, aCb);
}
// If this object is alive, then all of its children are alive. For JS objects,
// the black-gray invariant ensures the children are also marked black. For C++
// objects, the ref count from this object will keep them alive. Thus we don't
// need to trace our children, unless we are debugging using WantAllTraces.
if (!isMarkedGray && !aCb.WantAllTraces()) {
return;
}
if (aTs == TRAVERSE_FULL) {
NoteGCThingJSChildren(aThing, aCb);
}
if (aThing.is<JSObject>()) {
JSObject* obj = &aThing.as<JSObject>();
NoteGCThingXPCOMChildren(js::GetObjectClass(obj), obj, aCb);
}
}
struct TraverseObjectShimClosure
{
nsCycleCollectionTraversalCallback& cb;
CycleCollectedJSRuntime* self;
};
void
CycleCollectedJSRuntime::TraverseZone(JS::Zone* aZone,
nsCycleCollectionTraversalCallback& aCb)
{
/*
* We treat the zone as being gray. We handle non-gray GCthings in the
* zone by not reporting their children to the CC. The black-gray invariant
* ensures that any JS children will also be non-gray, and thus don't need to be
* added to the graph. For C++ children, not representing the edge from the
* non-gray JS GCthings to the C++ object will keep the child alive.
*
* We don't allow zone merging in a WantAllTraces CC, because then these
* assumptions don't hold.
*/
aCb.DescribeGCedNode(false, "JS Zone");
/*
* Every JS child of everything in the zone is either in the zone
* or is a cross-compartment wrapper. In the former case, we don't need to
* represent these edges in the CC graph because JS objects are not ref counted.
* In the latter case, the JS engine keeps a map of these wrappers, which we
* iterate over. Edges between compartments in the same zone will add
* unnecessary loop edges to the graph (bug 842137).
*/
TraversalTracer trc(mJSRuntime, aCb);
js::VisitGrayWrapperTargets(aZone, NoteJSChildGrayWrapperShim, &trc);
/*
* To find C++ children of things in the zone, we scan every JS Object in
* the zone. Only JS Objects can have C++ children.
*/
TraverseObjectShimClosure closure = { aCb, this };
js::IterateGrayObjects(aZone, TraverseObjectShim, &closure);
}
/* static */ void
CycleCollectedJSRuntime::TraverseObjectShim(void* aData, JS::GCCellPtr aThing)
{
TraverseObjectShimClosure* closure =
static_cast<TraverseObjectShimClosure*>(aData);
MOZ_ASSERT(aThing.is<JSObject>());
closure->self->TraverseGCThing(CycleCollectedJSRuntime::TRAVERSE_CPP,
aThing, closure->cb);
}
void
CycleCollectedJSRuntime::TraverseNativeRoots(nsCycleCollectionNoteRootCallback& aCb)
{
// NB: This is here just to preserve the existing XPConnect order. I doubt it
// would hurt to do this after the JS holders.
TraverseAdditionalNativeRoots(aCb);
for (auto iter = mJSHolders.Iter(); !iter.Done(); iter.Next()) {
void* holder = iter.Get().mHolder;
nsScriptObjectTracer* tracer = iter.Get().mTracer;
bool noteRoot = false;
if (MOZ_UNLIKELY(aCb.WantAllTraces())) {
noteRoot = true;
} else {
tracer->Trace(holder,
TraceCallbackFunc(CheckParticipatesInCycleCollection),
&noteRoot);
}
if (noteRoot) {
aCb.NoteNativeRoot(holder, tracer);
}
}
}
/* static */ void
CycleCollectedJSRuntime::TraceBlackJS(JSTracer* aTracer, void* aData)
{
CycleCollectedJSRuntime* self = static_cast<CycleCollectedJSRuntime*>(aData);
self->TraceNativeBlackRoots(aTracer);
}
/* static */ void
CycleCollectedJSRuntime::TraceGrayJS(JSTracer* aTracer, void* aData)
{
CycleCollectedJSRuntime* self = static_cast<CycleCollectedJSRuntime*>(aData);
// Mark these roots as gray so the CC can walk them later.
self->TraceNativeGrayRoots(aTracer);
}
/* static */ void
CycleCollectedJSRuntime::GCCallback(JSContext* aContext,
JSGCStatus aStatus,
void* aData)
{
CycleCollectedJSRuntime* self = static_cast<CycleCollectedJSRuntime*>(aData);
MOZ_ASSERT(CycleCollectedJSContext::Get()->Context() == aContext);
MOZ_ASSERT(CycleCollectedJSContext::Get()->Runtime() == self);
self->OnGC(aContext, aStatus);
}
/* static */ void
CycleCollectedJSRuntime::GCSliceCallback(JSContext* aContext,
JS::GCProgress aProgress,
const JS::GCDescription& aDesc)
{
CycleCollectedJSRuntime* self = CycleCollectedJSRuntime::Get();
MOZ_ASSERT(CycleCollectedJSContext::Get()->Context() == aContext);
#ifdef MOZ_GECKO_PROFILER
if (profiler_is_active()) {
if (aProgress == JS::GC_CYCLE_END) {
profiler_add_marker(
"GCMajor",
MakeUnique<GCMajorMarkerPayload>(aDesc.startTime(aContext),
aDesc.endTime(aContext),
aDesc.summaryToJSON(aContext)));
} else if (aProgress == JS::GC_SLICE_END) {
profiler_add_marker(
"GCSlice",
MakeUnique<GCSliceMarkerPayload>(aDesc.lastSliceStart(aContext),
aDesc.lastSliceEnd(aContext),
aDesc.sliceToJSON(aContext)));
}
}
#endif
if (aProgress == JS::GC_CYCLE_END &&
JS::dbg::FireOnGarbageCollectionHookRequired(aContext)) {
JS::gcreason::Reason reason = aDesc.reason_;
Unused <<
NS_WARN_IF(NS_FAILED(DebuggerOnGCRunnable::Enqueue(aContext, aDesc)) &&
reason != JS::gcreason::SHUTDOWN_CC &&
reason != JS::gcreason::DESTROY_RUNTIME &&
reason != JS::gcreason::XPCONNECT_SHUTDOWN);
}
if (self->mPrevGCSliceCallback) {
self->mPrevGCSliceCallback(aContext, aProgress, aDesc);
}
}
class MinorGCMarker : public TimelineMarker
{
private:
JS::gcreason::Reason mReason;
public:
MinorGCMarker(MarkerTracingType aTracingType,
JS::gcreason::Reason aReason)
: TimelineMarker("MinorGC",
aTracingType,
MarkerStackRequest::NO_STACK)
, mReason(aReason)
{
MOZ_ASSERT(aTracingType == MarkerTracingType::START ||
aTracingType == MarkerTracingType::END);
}
MinorGCMarker(JS::GCNurseryProgress aProgress,
JS::gcreason::Reason aReason)
: TimelineMarker("MinorGC",
aProgress == JS::GCNurseryProgress::GC_NURSERY_COLLECTION_START
? MarkerTracingType::START
: MarkerTracingType::END,
MarkerStackRequest::NO_STACK)
, mReason(aReason)
{ }
virtual void
AddDetails(JSContext* aCx,
dom::ProfileTimelineMarker& aMarker) override
{
TimelineMarker::AddDetails(aCx, aMarker);
if (GetTracingType() == MarkerTracingType::START) {
auto reason = JS::gcreason::ExplainReason(mReason);
aMarker.mCauseName.Construct(NS_ConvertUTF8toUTF16(reason));
}
}
virtual UniquePtr<AbstractTimelineMarker>
Clone() override
{
auto clone = MakeUnique<MinorGCMarker>(GetTracingType(), mReason);
clone->SetCustomTime(GetTime());
return UniquePtr<AbstractTimelineMarker>(std::move(clone));
}
};
/* static */ void
CycleCollectedJSRuntime::GCNurseryCollectionCallback(JSContext* aContext,
JS::GCNurseryProgress aProgress,
JS::gcreason::Reason aReason)
{
CycleCollectedJSRuntime* self = CycleCollectedJSRuntime::Get();
MOZ_ASSERT(CycleCollectedJSContext::Get()->Context() == aContext);
MOZ_ASSERT(NS_IsMainThread());
RefPtr<TimelineConsumers> timelines = TimelineConsumers::Get();
if (timelines && !timelines->IsEmpty()) {
UniquePtr<AbstractTimelineMarker> abstractMarker(
MakeUnique<MinorGCMarker>(aProgress, aReason));
timelines->AddMarkerForAllObservedDocShells(abstractMarker);
}
if (aProgress == JS::GCNurseryProgress::GC_NURSERY_COLLECTION_START) {
self->mLatestNurseryCollectionStart = TimeStamp::Now();
}
#ifdef MOZ_GECKO_PROFILER
else if (aProgress == JS::GCNurseryProgress::GC_NURSERY_COLLECTION_END &&
profiler_is_active())
{
profiler_add_marker(
"GCMinor",
MakeUnique<GCMinorMarkerPayload>(self->mLatestNurseryCollectionStart,
TimeStamp::Now(),
JS::MinorGcToJSON(aContext)));
}
#endif
if (self->mPrevGCNurseryCollectionCallback) {
self->mPrevGCNurseryCollectionCallback(aContext, aProgress, aReason);
}
}
/* static */ void
CycleCollectedJSRuntime::OutOfMemoryCallback(JSContext* aContext,
void* aData)
{
CycleCollectedJSRuntime* self = static_cast<CycleCollectedJSRuntime*>(aData);
MOZ_ASSERT(CycleCollectedJSContext::Get()->Context() == aContext);
MOZ_ASSERT(CycleCollectedJSContext::Get()->Runtime() == self);
self->OnOutOfMemory();
}
/* static */ size_t
CycleCollectedJSRuntime::SizeofExternalStringCallback(JSString* aStr,
MallocSizeOf aMallocSizeOf)
{
// We promised the JS engine we would not GC. Enforce that:
JS::AutoCheckCannotGC autoCannotGC;
if (!XPCStringConvert::IsDOMString(aStr)) {
// Might be a literal or something we don't understand. Just claim 0.
return 0;
}
const char16_t* chars = JS_GetTwoByteExternalStringChars(aStr);
const nsStringBuffer* buf = nsStringBuffer::FromData((void*)chars);
// We want sizeof including this, because the entire string buffer is owned by
// the external string. But only report here if we're unshared; if we're
// shared then we don't know who really owns this data.
return buf->SizeOfIncludingThisIfUnshared(aMallocSizeOf);
}
struct JsGcTracer : public TraceCallbacks
{
virtual void Trace(JS::Heap<JS::Value>* aPtr, const char* aName,
void* aClosure) const override
{
JS::TraceEdge(static_cast<JSTracer*>(aClosure), aPtr, aName);
}
virtual void Trace(JS::Heap<jsid>* aPtr, const char* aName,
void* aClosure) const override
{
JS::TraceEdge(static_cast<JSTracer*>(aClosure), aPtr, aName);
}
virtual void Trace(JS::Heap<JSObject*>* aPtr, const char* aName,
void* aClosure) const override
{
JS::TraceEdge(static_cast<JSTracer*>(aClosure), aPtr, aName);
}
virtual void Trace(JSObject** aPtr, const char* aName,
void* aClosure) const override
{
js::UnsafeTraceManuallyBarrieredEdge(static_cast<JSTracer*>(aClosure), aPtr, aName);
}
virtual void Trace(JS::TenuredHeap<JSObject*>* aPtr, const char* aName,
void* aClosure) const override
{
JS::TraceEdge(static_cast<JSTracer*>(aClosure), aPtr, aName);
}
virtual void Trace(JS::Heap<JSString*>* aPtr, const char* aName,
void* aClosure) const override
{
JS::TraceEdge(static_cast<JSTracer*>(aClosure), aPtr, aName);
}
virtual void Trace(JS::Heap<JSScript*>* aPtr, const char* aName,
void* aClosure) const override
{
JS::TraceEdge(static_cast<JSTracer*>(aClosure), aPtr, aName);
}
virtual void Trace(JS::Heap<JSFunction*>* aPtr, const char* aName,
void* aClosure) const override
{
JS::TraceEdge(static_cast<JSTracer*>(aClosure), aPtr, aName);
}
};
void
mozilla::TraceScriptHolder(nsISupports* aHolder, JSTracer* aTracer)
{
nsXPCOMCycleCollectionParticipant* participant = nullptr;
CallQueryInterface(aHolder, &participant);
participant->Trace(aHolder, JsGcTracer(), aTracer);
}
void
CycleCollectedJSRuntime::TraceNativeGrayRoots(JSTracer* aTracer)
{
// NB: This is here just to preserve the existing XPConnect order. I doubt it
// would hurt to do this after the JS holders.
TraceAdditionalNativeGrayRoots(aTracer);
for (auto iter = mJSHolders.Iter(); !iter.Done(); iter.Next()) {
void* holder = iter.Get().mHolder;
nsScriptObjectTracer* tracer = iter.Get().mTracer;
tracer->Trace(holder, JsGcTracer(), aTracer);
}
}
void
CycleCollectedJSRuntime::AddJSHolder(void* aHolder, nsScriptObjectTracer* aTracer)
{
auto entry = mJSHolderMap.LookupForAdd(aHolder);
if (entry) {
JSHolderInfo* info = entry.Data();
MOZ_ASSERT(info->mHolder == aHolder);
info->mTracer = aTracer;
return;
}
mJSHolders.InfallibleAppend(JSHolderInfo {aHolder, aTracer});
entry.OrInsert([&] {return &mJSHolders.GetLast();});
}
struct ClearJSHolder : public TraceCallbacks
{
virtual void Trace(JS::Heap<JS::Value>* aPtr, const char*, void*) const override
{
aPtr->setUndefined();
}
virtual void Trace(JS::Heap<jsid>* aPtr, const char*, void*) const override
{
*aPtr = JSID_VOID;
}
virtual void Trace(JS::Heap<JSObject*>* aPtr, const char*, void*) const override
{
*aPtr = nullptr;
}
virtual void Trace(JSObject** aPtr, const char* aName,
void* aClosure) const override
{
*aPtr = nullptr;
}
virtual void Trace(JS::TenuredHeap<JSObject*>* aPtr, const char*, void*) const override
{
*aPtr = nullptr;
}
virtual void Trace(JS::Heap<JSString*>* aPtr, const char*, void*) const override
{
*aPtr = nullptr;
}
virtual void Trace(JS::Heap<JSScript*>* aPtr, const char*, void*) const override
{
*aPtr = nullptr;
}
virtual void Trace(JS::Heap<JSFunction*>* aPtr, const char*, void*) const override
{
*aPtr = nullptr;
}
};
void
CycleCollectedJSRuntime::RemoveJSHolder(void* aHolder)
{
auto entry = mJSHolderMap.Lookup(aHolder);
if (entry) {
JSHolderInfo* info = entry.Data();
MOZ_ASSERT(info->mHolder == aHolder);
info->mTracer->Trace(aHolder, ClearJSHolder(), nullptr);
JSHolderInfo* lastInfo = &mJSHolders.GetLast();
bool updateLast = (info != lastInfo);
if (updateLast) {
*info = *lastInfo;
}
mJSHolders.PopLast();
entry.Remove();
if (updateLast) {
// We have to do this after removing the entry above to ensure that we
// don't trip over the hashtable generation number assertion.
mJSHolderMap.Put(info->mHolder, info);
}
}
}
#ifdef DEBUG
bool
CycleCollectedJSRuntime::IsJSHolder(void* aHolder)
{
return mJSHolderMap.Get(aHolder, nullptr);
}
static void
AssertNoGcThing(JS::GCCellPtr aGCThing, const char* aName, void* aClosure)
{
MOZ_ASSERT(!aGCThing);
}
void
CycleCollectedJSRuntime::AssertNoObjectsToTrace(void* aPossibleJSHolder)
{
JSHolderInfo* info = nullptr;
if (!mJSHolderMap.Get(aPossibleJSHolder, &info)) {
return;
}
MOZ_ASSERT(info->mHolder == aPossibleJSHolder);
info->mTracer->Trace(aPossibleJSHolder, TraceCallbackFunc(AssertNoGcThing), nullptr);
}
#endif
nsCycleCollectionParticipant*
CycleCollectedJSRuntime::GCThingParticipant()
{
return &mGCThingCycleCollectorGlobal;
}
nsCycleCollectionParticipant*
CycleCollectedJSRuntime::ZoneParticipant()
{
return &mJSZoneCycleCollectorGlobal;
}
nsresult
CycleCollectedJSRuntime::TraverseRoots(nsCycleCollectionNoteRootCallback& aCb)
{
TraverseNativeRoots(aCb);
NoteWeakMapsTracer trc(mJSRuntime, aCb);
js::TraceWeakMaps(&trc);
return NS_OK;
}
bool
CycleCollectedJSRuntime::UsefulToMergeZones() const
{
return false;
}
void
CycleCollectedJSRuntime::FixWeakMappingGrayBits() const
{
MOZ_ASSERT(!JS::IsIncrementalGCInProgress(mJSRuntime),
"Don't call FixWeakMappingGrayBits during a GC.");
FixWeakMappingGrayBitsTracer fixer(mJSRuntime);
fixer.FixAll();
}
void
CycleCollectedJSRuntime::CheckGrayBits() const
{
MOZ_ASSERT(!JS::IsIncrementalGCInProgress(mJSRuntime),
"Don't call CheckGrayBits during a GC.");
#ifndef ANDROID
// Bug 1346874 - The gray state check is expensive. Android tests are already
// slow enough that this check can easily push them over the threshold to a
// timeout.
MOZ_ASSERT(js::CheckGrayMarkingState(mJSRuntime));
MOZ_ASSERT(CheckWeakMappingGrayBitsTracer::Check(mJSRuntime));
#endif
}
bool
CycleCollectedJSRuntime::AreGCGrayBitsValid() const
{
return js::AreGCGrayBitsValid(mJSRuntime);
}
void
CycleCollectedJSRuntime::GarbageCollect(uint32_t aReason) const
{
MOZ_ASSERT(aReason < JS::gcreason::NUM_REASONS);
JS::gcreason::Reason gcreason = static_cast<JS::gcreason::Reason>(aReason);
JSContext* cx = CycleCollectedJSContext::Get()->Context();
JS::PrepareForFullGC(cx);
JS::NonIncrementalGC(cx, GC_NORMAL, gcreason);
}
void
CycleCollectedJSRuntime::JSObjectsTenured()
{
for (auto iter = mNurseryObjects.Iter(); !iter.Done(); iter.Next()) {
nsWrapperCache* cache = iter.Get();
JSObject* wrapper = cache->GetWrapperMaybeDead();
MOZ_DIAGNOSTIC_ASSERT(wrapper || recordreplay::IsReplaying());
if (!JS::ObjectIsTenured(wrapper)) {
MOZ_ASSERT(!cache->PreservingWrapper());
const JSClass* jsClass = js::GetObjectJSClass(wrapper);
jsClass->doFinalize(nullptr, wrapper);
}
}
#ifdef DEBUG
for (auto iter = mPreservedNurseryObjects.Iter(); !iter.Done(); iter.Next()) {
MOZ_ASSERT(JS::ObjectIsTenured(iter.Get().get()));
}
#endif
mNurseryObjects.Clear();
mPreservedNurseryObjects.Clear();
}
void
CycleCollectedJSRuntime::NurseryWrapperAdded(nsWrapperCache* aCache)
{
MOZ_ASSERT(aCache);
MOZ_ASSERT(aCache->GetWrapperMaybeDead());
MOZ_ASSERT(!JS::ObjectIsTenured(aCache->GetWrapperMaybeDead()));
mNurseryObjects.InfallibleAppend(aCache);
}
void
CycleCollectedJSRuntime::NurseryWrapperPreserved(JSObject* aWrapper)
{
mPreservedNurseryObjects.InfallibleAppend(
JS::PersistentRooted<JSObject*>(mJSRuntime, aWrapper));
}
void
CycleCollectedJSRuntime::DeferredFinalize(DeferredFinalizeAppendFunction aAppendFunc,
DeferredFinalizeFunction aFunc,
void* aThing)
{
if (auto entry = mDeferredFinalizerTable.LookupForAdd(aFunc)) {
aAppendFunc(entry.Data(), aThing);
} else {
entry.OrInsert(
[aAppendFunc, aThing] () { return aAppendFunc(nullptr, aThing); });
}
}
void
CycleCollectedJSRuntime::DeferredFinalize(nsISupports* aSupports)
{
typedef DeferredFinalizerImpl<nsISupports> Impl;
DeferredFinalize(Impl::AppendDeferredFinalizePointer, Impl::DeferredFinalize,
aSupports);
}
void
CycleCollectedJSRuntime::DumpJSHeap(FILE* aFile)
{
JSContext* cx = CycleCollectedJSContext::Get()->Context();
js::DumpHeap(cx, aFile, js::CollectNurseryBeforeDump);
}
IncrementalFinalizeRunnable::IncrementalFinalizeRunnable(CycleCollectedJSRuntime* aRt,
DeferredFinalizerTable& aFinalizers)
: CancelableRunnable("IncrementalFinalizeRunnable")
, mRuntime(aRt)
, mFinalizeFunctionToRun(0)
, mReleasing(false)
{
for (auto iter = aFinalizers.Iter(); !iter.Done(); iter.Next()) {
DeferredFinalizeFunction& function = iter.Key();
void*& data = iter.Data();
DeferredFinalizeFunctionHolder* holder =
mDeferredFinalizeFunctions.AppendElement();
holder->run = function;
holder->data = data;
iter.Remove();
}
}
IncrementalFinalizeRunnable::~IncrementalFinalizeRunnable()
{
MOZ_ASSERT(this != mRuntime->mFinalizeRunnable);
}
void
IncrementalFinalizeRunnable::ReleaseNow(bool aLimited)
{
if (mReleasing) {
NS_WARNING("Re-entering ReleaseNow");
return;
}
{
mozilla::AutoRestore<bool> ar(mReleasing);
mReleasing = true;
MOZ_ASSERT(mDeferredFinalizeFunctions.Length() != 0,
"We should have at least ReleaseSliceNow to run");
MOZ_ASSERT(mFinalizeFunctionToRun < mDeferredFinalizeFunctions.Length(),
"No more finalizers to run?");
if (recordreplay::IsRecordingOrReplaying()) {
aLimited = false;
}
TimeDuration sliceTime = TimeDuration::FromMilliseconds(SliceMillis);
TimeStamp started = aLimited ? TimeStamp::Now() : TimeStamp();
bool timeout = false;
do {
const DeferredFinalizeFunctionHolder& function =
mDeferredFinalizeFunctions[mFinalizeFunctionToRun];
if (aLimited) {
bool done = false;
while (!timeout && !done) {
/*
* We don't want to read the clock too often, so we try to
* release slices of 100 items.
*/
done = function.run(100, function.data);
timeout = TimeStamp::Now() - started >= sliceTime;
}
if (done) {
++mFinalizeFunctionToRun;
}
if (timeout) {
break;
}
} else {
while (!function.run(UINT32_MAX, function.data));
++mFinalizeFunctionToRun;
}
} while (mFinalizeFunctionToRun < mDeferredFinalizeFunctions.Length());
}
if (mFinalizeFunctionToRun == mDeferredFinalizeFunctions.Length()) {
MOZ_ASSERT(mRuntime->mFinalizeRunnable == this);
mDeferredFinalizeFunctions.Clear();
// NB: This may delete this!
mRuntime->mFinalizeRunnable = nullptr;
}
}
NS_IMETHODIMP
IncrementalFinalizeRunnable::Run()
{
AUTO_PROFILER_LABEL("IncrementalFinalizeRunnable::Run", GCCC);
if (mRuntime->mFinalizeRunnable != this) {
/* These items were already processed synchronously in JSGC_END. */
MOZ_ASSERT(!mDeferredFinalizeFunctions.Length());
return NS_OK;
}
TimeStamp start = TimeStamp::Now();
ReleaseNow(true);
if (mDeferredFinalizeFunctions.Length()) {
nsresult rv = NS_DispatchToCurrentThread(this);
if (NS_FAILED(rv)) {
ReleaseNow(false);
}
}
uint32_t duration = (uint32_t)((TimeStamp::Now() - start).ToMilliseconds());
Telemetry::Accumulate(Telemetry::DEFERRED_FINALIZE_ASYNC, duration);
return NS_OK;
}
void
CycleCollectedJSRuntime::FinalizeDeferredThings(CycleCollectedJSContext::DeferredFinalizeType aType)
{
/*
* If the previous GC created a runnable to finalize objects
* incrementally, and if it hasn't finished yet, finish it now. We
* don't want these to build up. We also don't want to allow any
* existing incremental finalize runnables to run after a
* non-incremental GC, since they are often used to detect leaks.
*/
if (mFinalizeRunnable) {
mFinalizeRunnable->ReleaseNow(false);
if (mFinalizeRunnable) {
// If we re-entered ReleaseNow, we couldn't delete mFinalizeRunnable and
// we need to just continue processing it.
return;
}
}
if (mDeferredFinalizerTable.Count() == 0) {
return;
}
mFinalizeRunnable = new IncrementalFinalizeRunnable(this,
mDeferredFinalizerTable);
// Everything should be gone now.
MOZ_ASSERT(mDeferredFinalizerTable.Count() == 0);
if (aType == CycleCollectedJSContext::FinalizeIncrementally) {
NS_IdleDispatchToCurrentThread(do_AddRef(mFinalizeRunnable), 2500);
} else {
mFinalizeRunnable->ReleaseNow(false);
MOZ_ASSERT(!mFinalizeRunnable);
}
}
const char*
CycleCollectedJSRuntime::OOMStateToString(const OOMState aOomState) const
{
switch (aOomState) {
case OOMState::OK:
return "OK";
case OOMState::Reporting:
return "Reporting";
case OOMState::Reported:
return "Reported";
case OOMState::Recovered:
return "Recovered";
default:
MOZ_ASSERT_UNREACHABLE("OOMState holds an invalid value");
return "Unknown";
}
}
void
CycleCollectedJSRuntime::AnnotateAndSetOutOfMemory(OOMState* aStatePtr,
OOMState aNewState)
{
*aStatePtr = aNewState;
CrashReporter::Annotation annotation = (aStatePtr == &mOutOfMemoryState)
? CrashReporter::Annotation::JSOutOfMemory
: CrashReporter::Annotation::JSLargeAllocationFailure;
CrashReporter::AnnotateCrashReport(
annotation, nsDependentCString(OOMStateToString(aNewState)));
}
void
CycleCollectedJSRuntime::OnGC(JSContext* aContext,
JSGCStatus aStatus)
{
switch (aStatus) {
case JSGC_BEGIN:
nsCycleCollector_prepareForGarbageCollection();
mZonesWaitingForGC.Clear();
break;
case JSGC_END: {
if (mOutOfMemoryState == OOMState::Reported) {
AnnotateAndSetOutOfMemory(&mOutOfMemoryState, OOMState::Recovered);
}
if (mLargeAllocationFailureState == OOMState::Reported) {
AnnotateAndSetOutOfMemory(&mLargeAllocationFailureState, OOMState::Recovered);
}
// Do any deferred finalization of native objects. Normally we do this
// incrementally for an incremental GC, and immediately for a
// non-incremental GC, on the basis that the type of GC reflects how
// urgently resources should be destroyed. However under some circumstances
// (such as in js::InternalCallOrConstruct) we can end up running a
// non-incremental GC when there is a pending exception, and the finalizers
// are not set up to handle that. In that case, just run them later, after
// we've returned to the event loop.
bool finalizeIncrementally = JS::WasIncrementalGC(mJSRuntime) || JS_IsExceptionPending(aContext);
FinalizeDeferredThings(finalizeIncrementally
? CycleCollectedJSContext::FinalizeIncrementally
: CycleCollectedJSContext::FinalizeNow);
break;
}
default:
MOZ_CRASH();
}
CustomGCCallback(aStatus);
}
void
CycleCollectedJSRuntime::OnOutOfMemory()
{
AnnotateAndSetOutOfMemory(&mOutOfMemoryState, OOMState::Reporting);
CustomOutOfMemoryCallback();
AnnotateAndSetOutOfMemory(&mOutOfMemoryState, OOMState::Reported);
}
void
CycleCollectedJSRuntime::SetLargeAllocationFailure(OOMState aNewState)
{
AnnotateAndSetOutOfMemory(&mLargeAllocationFailureState, aNewState);
}
void
CycleCollectedJSRuntime::PrepareWaitingZonesForGC()
{
JSContext* cx = CycleCollectedJSContext::Get()->Context();
if (mZonesWaitingForGC.Count() == 0) {
JS::PrepareForFullGC(cx);
} else {
for (auto iter = mZonesWaitingForGC.Iter(); !iter.Done(); iter.Next()) {
JS::PrepareZoneForGC(iter.Get()->GetKey());
}
mZonesWaitingForGC.Clear();
}
}
void
CycleCollectedJSRuntime::EnvironmentPreparer::invoke(JS::HandleObject global,
js::ScriptEnvironmentPreparer::Closure& closure)
{
MOZ_ASSERT(JS_IsGlobalObject(global));
nsIGlobalObject* nativeGlobal = xpc::NativeGlobal(global);
// Not much we can do if we simply don't have a usable global here...
NS_ENSURE_TRUE_VOID(nativeGlobal && nativeGlobal->GetGlobalJSObject());
AutoEntryScript aes(nativeGlobal, "JS-engine-initiated execution");
MOZ_ASSERT(!JS_IsExceptionPending(aes.cx()));
DebugOnly<bool> ok = closure(aes.cx());
MOZ_ASSERT_IF(ok, !JS_IsExceptionPending(aes.cx()));
// The AutoEntryScript will check for JS_IsExceptionPending on the
// JSContext and report it as needed as it comes off the stack.
}
/* static */ CycleCollectedJSRuntime*
CycleCollectedJSRuntime::Get()
{
auto context = CycleCollectedJSContext::Get();
if (context) {
return context->Runtime();
}
return nullptr;
}
#ifdef MOZ_JS_DEV_ERROR_INTERCEPTOR
namespace js {
extern void DumpValue(const JS::Value& val);
}
void
CycleCollectedJSRuntime::ErrorInterceptor::Shutdown(JSRuntime* rt)
{
JS_SetErrorInterceptorCallback(rt, nullptr);
mThrownError.reset();
}
/* virtual */ void
CycleCollectedJSRuntime::ErrorInterceptor::interceptError(JSContext* cx, const JS::Value& exn)
{
if (mThrownError) {
// We already have an error, we don't need anything more.
return;
}
if (!nsContentUtils::ThreadsafeIsSystemCaller(cx)) {
// We are only interested in chrome code.
return;
}
const auto type = JS_GetErrorType(exn);
if (!type) {
// This is not one of the primitive error types.
return;
}
switch (*type) {
case JSExnType::JSEXN_REFERENCEERR:
case JSExnType::JSEXN_SYNTAXERR:
case JSExnType::JSEXN_TYPEERR:
break;
default:
// Not one of the errors we are interested in.
return;
}
// Now copy the details of the exception locally.
// While copying the details of an exception could be expensive, in most runs,
// this will be done at most once during the execution of the process, so the
// total cost should be reasonable.
JS::RootedValue value(cx, exn);
ErrorDetails details;
details.mType = *type;
// If `exn` isn't an exception object, `ExtractErrorValues` could end up calling
// `toString()`, which could in turn end up throwing an error. While this should
// work, we want to avoid that complex use case.
// Fortunately, we have already checked above that `exn` is an exception object,
// so nothing such should happen.
nsContentUtils::ExtractErrorValues(cx, value, details.mFilename, &details.mLine, &details.mColumn, details.mMessage);
JS::UniqueChars buf = JS::FormatStackDump(cx, nullptr, /* showArgs = */ false, /* showLocals = */ false, /* showThisProps = */ false);
Bug 1402247 - Use encoding_rs for XPCOM string encoding conversions. r=Nika,erahm,froydnj. Correctness improvements: * UTF errors are handled safely per spec instead of dangerously truncating strings. * There are fewer converter implementations. Performance improvements: * The old code did exact buffer length math, which meant doing UTF math twice on each input string (once for length calculation and another time for conversion). Exact length math is more complicated when handling errors properly, which the old code didn't do. The new code does UTF math on the string content only once (when converting) but risks allocating more than once. There are heuristics in place to lower the probability of reallocation in cases where the double math avoidance isn't enough of a saving to absorb an allocation and memcpy. * Previously, in UTF-16 <-> UTF-8 conversions, an ASCII prefix was optimized but a single non-ASCII code point pessimized the rest of the string. The new code tries to get back on the fast ASCII path. * UTF-16 to Latin1 conversion guarantees less about handling of out-of-range input to eliminate an operation from the inner loop on x86/x86_64. * When assigning to a pre-existing string, the new code tries to reuse the old buffer instead of first releasing the old buffer and then allocating a new one. * When reallocating from the new code, the memcpy covers only the data that is part of the logical length of the old string instead of memcpying the whole capacity. (For old callers old excess memcpy behavior is preserved due to bogus callers. See bug 1472113.) * UTF-8 strings in XPConnect that are in the Latin1 range are passed to SpiderMonkey as Latin1. New features: * Conversion between UTF-8 and Latin1 is added in order to enable faster future interop between Rust code (or otherwise UTF-8-using code) and text node and SpiderMonkey code that uses Latin1. MozReview-Commit-ID: JaJuExfILM9
2018-07-06 07:44:43 +00:00
CopyUTF8toUTF16(mozilla::MakeStringSpan(buf.get()), details.mStack);
mThrownError.emplace(std::move(details));
}
void
CycleCollectedJSRuntime::ClearRecentDevError()
{
mErrorInterceptor.mThrownError.reset();
}
bool
CycleCollectedJSRuntime::GetRecentDevError(JSContext*cx, JS::MutableHandle<JS::Value> error)
{
if (!mErrorInterceptor.mThrownError) {
return true;
}
// Create a copy of the exception.
JS::RootedObject obj(cx, JS_NewPlainObject(cx));
if (!obj) {
return false;
}
JS::RootedValue message(cx);
JS::RootedValue filename(cx);
JS::RootedValue stack(cx);
if (!ToJSValue(cx, mErrorInterceptor.mThrownError->mMessage, &message) ||
!ToJSValue(cx, mErrorInterceptor.mThrownError->mFilename, &filename) ||
!ToJSValue(cx, mErrorInterceptor.mThrownError->mStack, &stack)) {
return false;
}
// Build the object.
const auto FLAGS = JSPROP_READONLY | JSPROP_ENUMERATE | JSPROP_PERMANENT;
if (!JS_DefineProperty(cx, obj, "message", message, FLAGS) ||
!JS_DefineProperty(cx, obj, "fileName", filename, FLAGS) ||
!JS_DefineProperty(cx, obj, "lineNumber", mErrorInterceptor.mThrownError->mLine, FLAGS) ||
!JS_DefineProperty(cx, obj, "stack", stack, FLAGS)) {
return false;
}
// Pass the result.
error.setObject(*obj);
return true;
}
#endif // MOZ_JS_DEV_ERROR_INTERCEPTOR
#undef MOZ_JS_DEV_ERROR_INTERCEPTOR