gecko-dev/tools/reorder/garope.cpp

798 lines
22 KiB
C++
Raw Normal View History

2001-12-01 01:07:39 +00:00
/* ***** BEGIN LICENSE BLOCK *****
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is ``garope''
*
* The Initial Developer of the Original Code is Netscape
* Communications Corp. Portions created by the Initial Developer are
* Copyright (C) 2001 the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Chris Waterson <waterson@netscape.com>
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
* ***** END LICENSE BLOCK ***** */
/*
A program that attempts to find an optimal function ordering for an
executable using a genetic algorithm whose fitness function is
computed using runtime profile information.
The fitness function was inspired by Nat Friedman's <nat@nat.org>
work on `grope':
_GNU Rope - A Subroutine Position Optimizer_
<http://www.hungry.com/~shaver/grope/grope.ps>
Brendan Eich <brendan@mozilla.org> told me tales about Scott Furman
doing something like this, which sort of made me want to try it.
As far as I can tell, it would take a lot of computers a lot of time
to actually find something useful on a non-trivial program using
this.
*/
#include <assert.h>
#include <fstream>
#include <hash_map>
#include <vector>
#include <limits.h>
#include <unistd.h>
#include <stdio.h>
#include <fcntl.h>
#include "elf_symbol_table.h"
#define _GNU_SOURCE
#include <getopt.h>
#define PAGE_SIZE 4096
#define SYMBOL_ALIGN 4
//----------------------------------------------------------------------
class call_pair
{
public:
const Elf32_Sym *m_lo;
const Elf32_Sym *m_hi;
call_pair(const Elf32_Sym *site1, const Elf32_Sym *site2)
{
if (site1 < site2) {
m_lo = site1;
m_hi = site2;
}
else {
m_hi = site1;
m_lo = site2;
}
}
friend bool
operator==(const call_pair &lhs, const call_pair &rhs)
{
return (lhs.m_lo == rhs.m_lo) && (lhs.m_hi == rhs.m_hi);
}
};
// Straight outta plhash.c!
#define GOLDEN_RATIO 0x9E3779B9U
template<>
struct hash<call_pair>
{
size_t operator()(const call_pair &pair) const
{
size_t h = (reinterpret_cast<size_t>(pair.m_hi) >> 4);
h += (reinterpret_cast<size_t>(pair.m_lo) >> 4);
h *= GOLDEN_RATIO;
return h;
}
};
//----------------------------------------------------------------------
struct hash<const Elf32_Sym *>
{
size_t operator()(const Elf32_Sym *sym) const
{
return (reinterpret_cast<size_t>(sym) >> 4) * GOLDEN_RATIO;
}
};
//----------------------------------------------------------------------
typedef hash_map<call_pair, unsigned int> call_graph_t;
call_graph_t call_graph;
typedef hash_map<const Elf32_Sym *, unsigned int> histogram_t;
histogram_t histogram;
long long total_calls = 0;
elf_symbol_table symtab;
bool opt_debug = false;
int opt_generations = 10;
int opt_mutate = 0;
const char *opt_out = "order.out";
int opt_population_size = 100;
int opt_tick = 0;
bool opt_verbose = false;
int opt_window = 0;
static struct option long_options[] = {
{ "debug", no_argument, 0, 'd' },
{ "exe", required_argument, 0, 'e' },
{ "generations", required_argument, 0, 'g' },
{ "help", no_argument, 0, '?' },
{ "mutate", required_argument, 0, 'm' },
{ "out", required_argument, 0, 'o' },
{ "population", required_argument, 0, 'p' },
{ "seed", required_argument, 0, 's' },
{ "tick", optional_argument, 0, 't' },
{ "verbose", no_argument, 0, 'v' },
{ "window", required_argument, 0, 'w' },
{ 0, 0, 0, 0 }
};
//----------------------------------------------------------------------
static long long
llrand()
{
long long result;
result = (long long) rand();
result *= (long long) (unsigned int) (RAND_MAX + 1);
result += (long long) rand();
return result;
}
//----------------------------------------------------------------------
class symbol_order {
public:
typedef vector<const Elf32_Sym *> vector_t;
typedef long long score_t;
static const score_t max_score;
/**
* A vector of symbols that is this ordering.
*/
vector_t m_ordering;
/**
* The symbol ordering's score.
*/
score_t m_score;
symbol_order() : m_score(0) {}
/**
* ``Shuffle'' a symbol ordering, randomizing it.
*/
void shuffle();
/**
* Initialize this symbol ordering by performing a crossover from
* two ``parent'' symbol orderings.
*/
void crossover_from(const symbol_order *father, const symbol_order *mother);
/**
* Randomly mutate this symbol ordering.
*/
void mutate();
/**
* Score a symbol ordering based on paginated locality.
*/
score_t compute_score_page();
/**
* Score a symbol ordering based on a sliding window.
*/
score_t compute_score_window(int window_size);
static score_t compute_score(symbol_order &order);
/**
* Use the symbol table to dump the ordered symbolic constants.
*/
void dump_symbols() const;
friend ostream &
operator<<(ostream &out, const symbol_order &order);
};
const symbol_order::score_t
symbol_order::max_score = ~((symbol_order::score_t)1 << ((sizeof(symbol_order::score_t) * 8) - 1));
symbol_order::score_t
symbol_order::compute_score_page()
{
m_score = 0;
unsigned int off = 0; // XXX in reality, probably not page-aligned to start
vector_t::const_iterator end = m_ordering.end(),
last = end,
sym = m_ordering.begin();
while (sym != end) {
vector_t page;
// If we had a symbol that spilled over from the last page,
// then include it here.
if (last != end)
page.push_back(*last);
// Pack symbols into the page
do {
page.push_back(*sym);
int size = (*sym)->st_size;
size += SYMBOL_ALIGN - 1;
size &= ~(SYMBOL_ALIGN - 1);
off += size;
} while (++sym != end && off < PAGE_SIZE);
// Remember if there was spill-over.
off %= PAGE_SIZE;
last = (off != 0) ? sym : end;
// Now score the page as the count of all calls to symbols on
// the page, less calls between the symbols on the page.
vector_t::const_iterator page_end = page.end();
for (vector_t::const_iterator i = page.begin(); i != page_end; ++i) {
histogram_t::const_iterator func = histogram.find(*i);
if (func == histogram.end())
continue;
m_score += func->second;
vector_t::const_iterator j = i;
for (++j; j != page_end; ++j) {
call_graph_t::const_iterator call =
call_graph.find(call_pair(*i, *j));
if (call != call_graph.end())
m_score -= call->second;
}
}
}
assert(m_score >= 0);
// Integer reciprocal so we minimize instead of maximize.
if (m_score == 0)
m_score = 1;
m_score = (total_calls / m_score) + 1;
return m_score;
}
symbol_order::score_t
symbol_order::compute_score_window(int window_size)
{
m_score = 0;
vector_t::const_iterator *window = new vector_t::const_iterator[window_size];
int window_fill = 0;
vector_t::const_iterator end = m_ordering.end(),
sym = m_ordering.begin();
for (; sym != end; ++sym) {
histogram_t::const_iterator func = histogram.find(*sym);
if (func != histogram.end()) {
long long scale = ((long long) 1) << window_size;
m_score += func->second * scale * 2;
vector_t::const_iterator *limit = window + window_fill;
vector_t::const_iterator *iter;
for (iter = window ; iter < limit; ++iter) {
call_graph_t::const_iterator call =
call_graph.find(call_pair(*sym, **iter));
if (call != call_graph.end())
m_score -= (call->second * scale);
scale >>= 1;
}
}
// Slide the window.
vector_t::const_iterator *begin = window;
vector_t::const_iterator *iter;
for (iter = window + (window_size - 1); iter > begin; --iter)
*iter = *(iter - 1);
if (window_fill < window_size)
++window_fill;
*window = sym;
}
delete[] window;
assert(m_score >= 0);
// Integer reciprocal so we minimize instead of maximize.
if (m_score == 0)
m_score = 1;
m_score = (total_calls / m_score) + 1;
return m_score;
}
symbol_order::score_t
symbol_order::compute_score(symbol_order &order)
{
if (opt_window)
return order.compute_score_window(opt_window);
return order.compute_score_page();
}
void
symbol_order::shuffle()
{
vector_t::iterator sym = m_ordering.begin();
vector_t::iterator end = m_ordering.end();
for (; sym != end; ++sym) {
int i = rand() % m_ordering.size();
const Elf32_Sym *temp = *sym;
*sym = m_ordering[i];
m_ordering[i] = temp;
}
}
void
symbol_order::crossover_from(const symbol_order *father, const symbol_order *mother)
{
histogram_t used;
m_ordering = vector_t(father->m_ordering.size(), 0);
vector_t::const_iterator parent_sym = father->m_ordering.begin();
vector_t::iterator sym = m_ordering.begin();
vector_t::iterator end = m_ordering.end();
for (; sym != end; ++sym, ++parent_sym) {
if (rand() % 2) {
*sym = *parent_sym;
used[*parent_sym] = 1;
}
}
parent_sym = mother->m_ordering.begin();
sym = m_ordering.begin();
for (; sym != end; ++sym) {
if (! *sym) {
while (used[*parent_sym])
++parent_sym;
*sym = *parent_sym++;
}
}
}
void
symbol_order::mutate()
{
int i, j;
i = rand() % m_ordering.size();
j = rand() % m_ordering.size();
const Elf32_Sym *temp = m_ordering[i];
m_ordering[i] = m_ordering[j];
m_ordering[j] = temp;
}
void
symbol_order::dump_symbols() const
{
ofstream out(opt_out);
vector_t::const_iterator sym = m_ordering.begin();
vector_t::const_iterator end = m_ordering.end();
for (; sym != end; ++sym)
out << symtab.get_symbol_name(*sym) << endl;
out.close();
}
ostream &
operator<<(ostream &out, const symbol_order &order)
{
out << "symbol_order(" << order.m_score << ") ";
symbol_order::vector_t::const_iterator sym = order.m_ordering.begin();
symbol_order::vector_t::const_iterator end = order.m_ordering.end();
for (; sym != end; ++sym)
out.form("%08x ", *sym);
out << endl;
return out;
}
//----------------------------------------------------------------------
static void
usage(const char *name)
{
cerr << "usage: " << name << " [options] [<file> ...]" << endl;
cerr << " Options:" << endl;
cerr << " --debug, -d" << endl;
cerr << " Print lots of verbose debugging cruft." << endl;
cerr << " --exe=<image>, -e <image> (required)" << endl;
cerr << " Specify the executable image from which to read symbol information." << endl;
cerr << " --generations=<num>, -g <num>" << endl;
cerr << " Specify the number of generations to run the GA (default is 10)." << endl;
cerr << " --help, -?" << endl;
cerr << " Print this message and exit." << endl;
cerr << " --mutate=<num>, -m <num>" << endl;
cerr << " Mutate every <num>th individual, or zero for no mutation (default)." << endl;
cerr << " --out=<file>, -o <file>" << endl;
cerr << " Specify the output file to which to dump the symbol ordering of the" << endl;
cerr << " best individual (default is `order.out')." << endl;
cerr << " --population=<num>, -p <num>" << endl;
cerr << " Set the population size to <num> individuals (default is 100)." << endl;
cerr << " --seed=<num>, -s <num>" << endl;
cerr << " Specify a seed to srand()." << endl;
cerr << " --tick[=<num>], -t [<num>]" << endl;
cerr << " When reading address data, print a dot to stderr every <num>th" << endl;
cerr << " address processed from the call trace. If specified with no argument," << endl;
cerr << " a dot will be printed for every million addresses processed." << endl;
cerr << " --verbose, -v" << endl;
cerr << " Issue progress messages to stderr." << endl;
cerr << " --window=<num>, -w <num>" << endl;
cerr << " Use a sliding window instead of pagination to score orderings." << endl;
cerr << endl;
cerr << "This program uses a genetic algorithm to produce an `optimal' ordering for" << endl;
cerr << "an executable based on call patterns." << endl;
cerr << endl;
cerr << "Addresses from a call trace are read as binary data from the files" << endl;
cerr << "specified, or from stdin if no files are specified. These addresses" << endl;
cerr << "are used with the symbolic information from the executable to create" << endl;
cerr << "a call graph. This call graph is used to `score' arbitrary symbol" << endl;
cerr << "orderings, and provides the fitness function for the GA." << endl;
cerr << endl;
}
/**
* Using the symbol table, map a stream of address references into a
* callgraph and a histogram.
*/
static void
map_addrs(int fd)
{
const Elf32_Sym *last = 0;
unsigned int buf[128];
ssize_t cb;
unsigned int count = 0;
while ((cb = read(fd, buf, sizeof buf)) > 0) {
if (cb % sizeof buf[0])
fprintf(stderr, "unaligned read\n");
unsigned int *addr = buf;
unsigned int *limit = buf + (cb / 4);
for (; addr < limit; ++addr) {
const Elf32_Sym *sym = symtab.lookup(*addr);
if (last && sym && last != sym) {
++total_calls;
++histogram[sym];
++call_graph[call_pair(last, sym)];
if (opt_tick && (++count % opt_tick == 0)) {
cerr << ".";
flush(cerr);
}
}
last = sym;
}
}
if (opt_tick)
cerr << endl;
cerr << "Total calls: " << total_calls << endl;
total_calls *= 1024;
if (opt_window)
total_calls <<= (opt_window + 1);
}
static symbol_order *
pick_parent(symbol_order *ordering, int max, int index)
{
while (1) {
index -= ordering->m_score;
if (index < 0)
break;
++ordering;
}
return ordering;
}
/**
* The main program
*/
int
main(int argc, char *argv[])
{
const char *opt_exe = 0;
int c;
while (1) {
int option_index = 0;
c = getopt_long(argc, argv, "?de:g:m:o:p:s:t:vw:", long_options, &option_index);
if (c < 0)
break;
switch (c) {
case '?':
usage(argv[0]);
return 0;
case 'd':
opt_debug = true;
break;
case 'e':
opt_exe = optarg;
break;
case 'g':
opt_generations = atoi(optarg);
break;
case 'm':
opt_mutate = atoi(optarg);
break;
case 'o':
opt_out = optarg;
break;
case 'p':
opt_population_size = atoi(optarg);
break;
case 's':
srand(atoi(optarg));
break;
case 't':
opt_tick = optarg ? atoi(optarg) : 1000000;
break;
case 'v':
opt_verbose = true;
break;
case 'w':
opt_window = atoi(optarg);
if (opt_window < 0 || opt_window > 8) {
cerr << "invalid window size: " << opt_window << endl;
return 1;
}
break;
default:
usage(argv[0]);
return 1;
}
}
// Make sure an image was specified
if (! opt_exe) {
usage(argv[0]);
return 1;
}
// Read the sym table.
symtab.init(opt_exe);
// Process addresses to construct the call graph.
if (optind >= argc) {
map_addrs(STDIN_FILENO);
}
else {
do {
int fd = open(argv[optind], O_RDONLY);
if (fd < 0) {
perror(argv[optind]);
return 1;
}
map_addrs(fd);
close(fd);
} while (++optind < argc);
}
if (opt_debug) {
cerr << "Call graph:" << endl;
call_graph_t::const_iterator limit = call_graph.end();
call_graph_t::const_iterator i;
for (i = call_graph.begin(); i != limit; ++i) {
const call_pair& pair = i->first;
cerr.form("%08x %08x %10d\n",
pair.m_lo->st_value,
pair.m_hi->st_value,
i->second);
}
}
// Collect the symbols into a vector
symbol_order::vector_t ordering;
elf_symbol_table::const_iterator end = symtab.end();
for (elf_symbol_table::const_iterator sym = symtab.begin(); sym != end; ++sym) {
if (symtab.is_function(sym))
ordering.push_back(sym);
}
if (opt_verbose) {
symbol_order initial;
initial.m_ordering = ordering;
cerr << "created initial ordering, score=" << symbol_order::compute_score(initial) << endl;
if (opt_debug)
cerr << initial;
}
// Create a population.
if (opt_verbose)
cerr << "creating population" << endl;
symbol_order *population = new symbol_order[opt_population_size];
symbol_order::score_t total = 0, min = symbol_order::max_score, max = 0;
// Score it.
symbol_order *order = population;
symbol_order *limit = population + opt_population_size;
for (; order < limit; ++order) {
order->m_ordering = ordering;
order->shuffle();
symbol_order::score_t score = symbol_order::compute_score(*order);
if (opt_debug)
cerr << *order;
if (min > score)
min = score;
if (max < score)
max = score;
total += score;
}
if (opt_verbose) {
cerr << "Initial population";
cerr << ": min=" << min;
cerr << ", max=" << max;
cerr << " mean=" << (total / opt_population_size);
cerr << endl;
}
// Run the GA.
if (opt_verbose)
cerr << "begininng ga" << endl;
symbol_order::score_t best = 0;
for (int generation = 1; generation <= opt_generations; ++generation) {
// Create a new population.
symbol_order *offspring = new symbol_order[opt_population_size];
symbol_order *kid = offspring;
symbol_order *offspring_limit = offspring + opt_population_size;
for (; kid < offspring_limit; ++kid) {
// Pick parents.
symbol_order *father, *mother;
father = pick_parent(population, max, llrand() % total);
mother = pick_parent(population, max, llrand() % total);
// Create a kid.
kid->crossover_from(father, mother);
// Mutate, possibly.
if (opt_mutate) {
if (rand() % opt_mutate == 0)
kid->mutate();
}
}
delete[] population;
population = offspring;
// Score the new population.
total = 0;
min = symbol_order::max_score;
max = 0;
symbol_order *fittest = 0;
limit = offspring_limit;
for (order = population; order < limit; ++order) {
symbol_order::score_t score = symbol_order::compute_score(*order);
if (opt_debug)
cerr << *order;
if (min > score)
min = score;
if (max < score)
max = score;
if (best < score) {
best = score;
fittest = order;
}
total += score;
}
if (opt_verbose) {
cerr << "Generation " << generation;
cerr << ": min=" << min;
cerr << ", max=" << max;
if (fittest)
cerr << "*";
cerr << " mean=" << (total / opt_population_size);
cerr << endl;
}
// If we've found a new ``best'' individual, dump it.
if (fittest)
fittest->dump_symbols();
}
delete[] population;
return 0;
}