gecko-dev/js/src/jsvector.h

790 lines
23 KiB
C
Raw Normal View History

/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* vim: set ts=8 sw=4 et tw=99 ft=cpp:
*
* ***** BEGIN LICENSE BLOCK *****
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is Mozilla SpiderMonkey JavaScript 1.9 code, released
* June 12, 2009.
*
* The Initial Developer of the Original Code is
* the Mozilla Corporation.
*
* Contributor(s):
* Luke Wagner <lw@mozilla.com>
*
* Alternatively, the contents of this file may be used under the terms of
* either of the GNU General Public License Version 2 or later (the "GPL"),
* or the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
* ***** END LICENSE BLOCK ***** */
#ifndef jsvector_h_
#define jsvector_h_
#include "jstl.h"
namespace js {
/*
* This template class provides a default implementation for vector operations
* when the element type is not known to be a POD, as judged by IsPodType.
*/
template <class T, size_t N, class AP, bool IsPod>
struct VectorImpl
{
/* Destroys constructed objects in the range [begin, end). */
static inline void destroy(T *begin, T *end) {
for (T *p = begin; p != end; ++p)
p->~T();
}
/* Constructs objects in the uninitialized range [begin, end). */
static inline void initialize(T *begin, T *end) {
for (T *p = begin; p != end; ++p)
new(p) T();
}
/*
* Copy-constructs objects in the uninitialized range
* [dst, dst+(srcend-srcbeg)) from the range [srcbeg, srcend).
*/
template <class U>
static inline void copyConstruct(T *dst, const U *srcbeg, const U *srcend) {
for (const U *p = srcbeg; p != srcend; ++p, ++dst)
new(dst) T(*p);
}
/*
* Copy-constructs objects in the uninitialized range [dst, dst+n) from the
* same object u.
*/
template <class U>
static inline void copyConstructN(T *dst, size_t n, const U &u) {
for (T *end = dst + n; dst != end; ++dst)
new(dst) T(u);
}
/*
* Grows the given buffer to have capacity newcap, preserving the objects
* constructed in the range [begin, end) and updating v. Assumes that (1)
* newcap has not overflowed, and (2) multiplying newcap by sizeof(T) will
* not overflow.
*/
static inline bool growTo(Vector<T,N,AP> &v, size_t newcap) {
JS_ASSERT(!v.usingInlineStorage());
T *newbuf = reinterpret_cast<T *>(v.malloc(newcap * sizeof(T)));
if (!newbuf)
return false;
for (T *dst = newbuf, *src = v.heapBegin(); src != v.heapEnd(); ++dst, ++src)
new(dst) T(*src);
VectorImpl::destroy(v.heapBegin(), v.heapEnd());
v.free(v.heapBegin());
v.heapEnd() = newbuf + v.heapLength();
v.heapBegin() = newbuf;
v.heapCapacity() = newcap;
return true;
}
};
/*
* This partial template specialization provides a default implementation for
* vector operations when the element type is known to be a POD, as judged by
* IsPodType.
*/
template <class T, size_t N, class AP>
struct VectorImpl<T, N, AP, true>
{
static inline void destroy(T *, T *) {}
static inline void initialize(T *begin, T *end) {
/*
* You would think that memset would be a big win (or even break even)
* when we know T is a POD. But currently it's not. This is probably
* because |append| tends to be given small ranges and memset requires
* a function call that doesn't get inlined.
*
* memset(begin, 0, sizeof(T) * (end-begin));
*/
for (T *p = begin; p != end; ++p)
new(p) T();
}
template <class U>
static inline void copyConstruct(T *dst, const U *srcbeg, const U *srcend) {
/*
* See above memset comment. Also, notice that copyConstruct is
* currently templated (T != U), so memcpy won't work without
* requiring T == U.
*
* memcpy(dst, srcbeg, sizeof(T) * (srcend - srcbeg));
*/
for (const U *p = srcbeg; p != srcend; ++p, ++dst)
*dst = *p;
}
static inline void copyConstructN(T *dst, size_t n, const T &t) {
for (T *p = dst, *end = dst + n; p != end; ++p)
*p = t;
}
static inline bool growTo(Vector<T,N,AP> &v, size_t newcap) {
JS_ASSERT(!v.usingInlineStorage());
size_t bytes = sizeof(T) * newcap;
T *newbuf = reinterpret_cast<T *>(v.realloc(v.heapBegin(), bytes));
if (!newbuf)
return false;
v.heapEnd() = newbuf + v.heapLength();
v.heapBegin() = newbuf;
v.heapCapacity() = newcap;
return true;
}
};
/*
* JS-friendly, STL-like container providing a short-lived, dynamic buffer.
* Vector calls the constructors/destructors of all elements stored in
* its internal buffer, so non-PODs may be safely used. Additionally,
* Vector will store the first N elements in-place before resorting to
* dynamic allocation.
*
* T requirements:
* - default and copy constructible, assignable, destructible
* - operations do not throw
* N requirements:
* - any value, however, N is clamped to min/max values
* AllocPolicy:
* - see "Allocation policies" in jstl.h (default ContextAllocPolicy)
*
* N.B: Vector is not reentrant: T member functions called during Vector member
* functions must not call back into the same object.
*/
template <class T, size_t N, class AllocPolicy>
class Vector : AllocPolicy
{
/* utilities */
static const bool sElemIsPod = tl::IsPodType<T>::result;
typedef VectorImpl<T, N, AllocPolicy, sElemIsPod> Impl;
friend struct VectorImpl<T, N, AllocPolicy, sElemIsPod>;
bool calculateNewCapacity(size_t curLength, size_t lengthInc, size_t &newCap);
bool growHeapStorageBy(size_t lengthInc);
bool convertToHeapStorage(size_t lengthInc);
2010-07-15 06:19:36 +00:00
template <bool InitNewElems> inline bool growByImpl(size_t inc);
/* magic constants */
static const int sMaxInlineBytes = 1024;
/* compute constants */
/*
* Pointers to the heap-allocated buffer. Only [heapBegin(), heapEnd())
* hold valid constructed T objects. The range [heapEnd(), heapBegin() +
* heapCapacity()) holds uninitialized memory.
*/
struct BufferPtrs {
2009-09-10 23:44:01 +00:00
T *mBegin, *mEnd;
};
/*
* Since a vector either stores elements inline or in a heap-allocated
2009-09-10 23:44:01 +00:00
* buffer, reuse the storage. mLengthOrCapacity serves as the union
* discriminator. In inline mode (when elements are stored in u.storage),
2009-09-10 23:44:01 +00:00
* mLengthOrCapacity holds the vector's length. In heap mode (when elements
* are stored in [u.ptrs.mBegin, u.ptrs.mEnd)), mLengthOrCapacity holds the
* vector's capacity.
*/
static const size_t sInlineCapacity =
tl::Clamp<N, sizeof(BufferPtrs) / sizeof(T),
sMaxInlineBytes / sizeof(T)>::result;
/* Calculate inline buffer size; avoid 0-sized array. */
static const size_t sInlineBytes =
tl::Max<1, sInlineCapacity * sizeof(T)>::result;
/* member data */
2009-09-10 23:44:01 +00:00
size_t mLengthOrCapacity;
bool usingInlineStorage() const { return mLengthOrCapacity <= sInlineCapacity; }
union {
BufferPtrs ptrs;
AlignedStorage<sInlineBytes> storage;
} u;
/* Only valid when usingInlineStorage() */
size_t &inlineLength() {
JS_ASSERT(usingInlineStorage());
2009-09-10 23:44:01 +00:00
return mLengthOrCapacity;
}
size_t inlineLength() const {
JS_ASSERT(usingInlineStorage());
2009-09-10 23:44:01 +00:00
return mLengthOrCapacity;
}
T *inlineBegin() const {
JS_ASSERT(usingInlineStorage());
return (T *)u.storage.addr();
}
T *inlineEnd() const {
JS_ASSERT(usingInlineStorage());
return (T *)u.storage.addr() + mLengthOrCapacity;
}
/* Only valid when !usingInlineStorage() */
size_t heapLength() const {
JS_ASSERT(!usingInlineStorage());
/* Guaranteed by calculateNewCapacity. */
2009-09-10 23:44:01 +00:00
JS_ASSERT(size_t(u.ptrs.mEnd - u.ptrs.mBegin) ==
((size_t(u.ptrs.mEnd) - size_t(u.ptrs.mBegin)) / sizeof(T)));
return u.ptrs.mEnd - u.ptrs.mBegin;
}
size_t &heapCapacity() {
JS_ASSERT(!usingInlineStorage());
2009-09-10 23:44:01 +00:00
return mLengthOrCapacity;
}
T *&heapBegin() {
JS_ASSERT(!usingInlineStorage());
2009-09-10 23:44:01 +00:00
return u.ptrs.mBegin;
}
T *&heapEnd() {
JS_ASSERT(!usingInlineStorage());
2009-09-10 23:44:01 +00:00
return u.ptrs.mEnd;
}
size_t heapCapacity() const {
JS_ASSERT(!usingInlineStorage());
2009-09-10 23:44:01 +00:00
return mLengthOrCapacity;
}
T *heapBegin() const {
JS_ASSERT(!usingInlineStorage());
2009-09-10 23:44:01 +00:00
return u.ptrs.mBegin;
}
T *heapEnd() const {
JS_ASSERT(!usingInlineStorage());
2009-09-10 23:44:01 +00:00
return u.ptrs.mEnd;
}
#ifdef DEBUG
friend class ReentrancyGuard;
bool entered;
#endif
Vector(const Vector &);
Vector &operator=(const Vector &);
public:
Vector(AllocPolicy = AllocPolicy());
~Vector();
/* accessors */
size_t length() const {
return usingInlineStorage() ? inlineLength() : heapLength();
}
bool empty() const {
return usingInlineStorage() ? inlineLength() == 0 : heapBegin() == heapEnd();
}
size_t capacity() const {
return usingInlineStorage() ? sInlineCapacity : heapCapacity();
}
T *begin() {
JS_ASSERT(!entered);
return usingInlineStorage() ? inlineBegin() : heapBegin();
}
const T *begin() const {
JS_ASSERT(!entered);
return usingInlineStorage() ? inlineBegin() : heapBegin();
}
T *end() {
JS_ASSERT(!entered);
return usingInlineStorage() ? inlineEnd() : heapEnd();
}
const T *end() const {
JS_ASSERT(!entered);
return usingInlineStorage() ? inlineEnd() : heapEnd();
}
T &operator[](size_t i) {
JS_ASSERT(!entered && i < length());
return begin()[i];
}
const T &operator[](size_t i) const {
JS_ASSERT(!entered && i < length());
return begin()[i];
}
T &back() {
JS_ASSERT(!entered && !empty());
return *(end() - 1);
}
const T &back() const {
JS_ASSERT(!entered && !empty());
return *(end() - 1);
}
/* mutators */
/* If reserve(N) succeeds, the N next appends are guaranteed to succeed. */
bool reserve(size_t capacity);
/* Destroy elements in the range [begin() + incr, end()). */
void shrinkBy(size_t incr);
/* Grow the vector by incr elements. */
bool growBy(size_t incr);
/* Call shrinkBy or growBy based on whether newSize > length(). */
bool resize(size_t newLength);
2010-07-15 06:19:36 +00:00
/* Leave new elements as uninitialized memory. */
bool growByUninitialized(size_t incr);
void clear();
bool append(const T &t);
bool appendN(const T &t, size_t n);
template <class U> bool append(const U *begin, const U *end);
template <class U> bool append(const U *begin, size_t length);
void popBack();
/*
* Transfers ownership of the internal buffer used by Vector to the caller.
* After this call, the Vector is empty. Since the returned buffer may need
* to be allocated (if the elements are currently stored in-place), the
* call can fail, returning NULL.
*
* N.B. Although a T*, only the range [0, length()) is constructed.
*/
T *extractRawBuffer();
/*
* Transfer ownership of an array of objects into the Vector.
* N.B. This call assumes that there are no uninitialized elements in the
* passed array.
*/
void replaceRawBuffer(T *p, size_t length);
};
/* Helper functions */
/*
* This helper function is specialized for appending the characters of a string
* literal to a vector. This could not be done generically since one must take
* care not to append the terminating '\0'.
*/
template <class T, size_t N, class AP, size_t ArrayLength>
JS_ALWAYS_INLINE bool
js_AppendLiteral(Vector<T,N,AP> &v, const char (&array)[ArrayLength])
{
return v.append(array, array + ArrayLength - 1);
}
/* Vector Implementation */
template <class T, size_t N, class AllocPolicy>
JS_ALWAYS_INLINE
Vector<T,N,AllocPolicy>::Vector(AllocPolicy ap)
: AllocPolicy(ap), mLengthOrCapacity(0)
#ifdef DEBUG
, entered(false)
#endif
{}
template <class T, size_t N, class AP>
JS_ALWAYS_INLINE
Vector<T,N,AP>::~Vector()
{
ReentrancyGuard g(*this);
if (usingInlineStorage()) {
Impl::destroy(inlineBegin(), inlineEnd());
} else {
Impl::destroy(heapBegin(), heapEnd());
this->free(heapBegin());
}
}
/*
* Calculate a new capacity that is at least lengthInc greater than
* curLength and check for overflow.
*/
template <class T, size_t N, class AP>
inline bool
Vector<T,N,AP>::calculateNewCapacity(size_t curLength, size_t lengthInc,
size_t &newCap)
{
size_t newMinCap = curLength + lengthInc;
/*
* Check for overflow in the above addition, below CEILING_LOG2, and later
* multiplication by sizeof(T).
*/
if (newMinCap < curLength ||
newMinCap & tl::MulOverflowMask<2 * sizeof(T)>::result) {
this->reportAllocOverflow();
return false;
}
/* Round up to next power of 2. */
newCap = RoundUpPow2(newMinCap);
/*
* Do not allow a buffer large enough that the expression ((char *)end() -
* (char *)begin()) overflows ptrdiff_t. See Bug 510319.
*/
if (newCap & tl::UnsafeRangeSizeMask<T>::result) {
this->reportAllocOverflow();
return false;
}
return true;
}
/*
* This function will grow the current heap capacity to have capacity
* (heapLength() + lengthInc) and fail on OOM or integer overflow.
*/
template <class T, size_t N, class AP>
JS_ALWAYS_INLINE bool
Vector<T,N,AP>::growHeapStorageBy(size_t lengthInc)
{
size_t newCap;
return calculateNewCapacity(heapLength(), lengthInc, newCap) &&
Impl::growTo(*this, newCap);
}
/*
* This function will create a new heap buffer with capacity (inlineLength() +
* lengthInc()), move all elements in the inline buffer to this new buffer,
* and fail on OOM or integer overflow.
*/
template <class T, size_t N, class AP>
inline bool
Vector<T,N,AP>::convertToHeapStorage(size_t lengthInc)
{
size_t newCap;
if (!calculateNewCapacity(inlineLength(), lengthInc, newCap))
return false;
/* Allocate buffer. */
T *newBuf = reinterpret_cast<T *>(this->malloc(newCap * sizeof(T)));
if (!newBuf)
return false;
/* Copy inline elements into heap buffer. */
size_t length = inlineLength();
Impl::copyConstruct(newBuf, inlineBegin(), inlineEnd());
Impl::destroy(inlineBegin(), inlineEnd());
/* Switch in heap buffer. */
2009-09-10 23:44:01 +00:00
mLengthOrCapacity = newCap; /* marks us as !usingInlineStorage() */
heapBegin() = newBuf;
heapEnd() = newBuf + length;
return true;
}
template <class T, size_t N, class AP>
inline bool
Vector<T,N,AP>::reserve(size_t request)
{
ReentrancyGuard g(*this);
if (usingInlineStorage()) {
if (request > sInlineCapacity)
return convertToHeapStorage(request - inlineLength());
} else {
if (request > heapCapacity())
return growHeapStorageBy(request - heapLength());
}
return true;
}
template <class T, size_t N, class AP>
inline void
Vector<T,N,AP>::shrinkBy(size_t incr)
{
ReentrancyGuard g(*this);
JS_ASSERT(incr <= length());
if (usingInlineStorage()) {
Impl::destroy(inlineEnd() - incr, inlineEnd());
inlineLength() -= incr;
} else {
Impl::destroy(heapEnd() - incr, heapEnd());
heapEnd() -= incr;
}
}
template <class T, size_t N, class AP>
2010-07-15 06:19:36 +00:00
template <bool InitNewElems>
JS_ALWAYS_INLINE bool
Vector<T,N,AP>::growByImpl(size_t incr)
{
ReentrancyGuard g(*this);
if (usingInlineStorage()) {
size_t freespace = sInlineCapacity - inlineLength();
if (incr <= freespace) {
T *newend = inlineEnd() + incr;
2010-07-15 06:19:36 +00:00
if (InitNewElems)
Impl::initialize(inlineEnd(), newend);
inlineLength() += incr;
JS_ASSERT(usingInlineStorage());
return true;
}
if (!convertToHeapStorage(incr))
return false;
}
else {
/* grow if needed */
size_t freespace = heapCapacity() - heapLength();
if (incr > freespace) {
if (!growHeapStorageBy(incr))
return false;
}
}
/* We are !usingInlineStorage(). Initialize new elements. */
JS_ASSERT(heapCapacity() - heapLength() >= incr);
T *newend = heapEnd() + incr;
2010-07-15 06:19:36 +00:00
if (InitNewElems)
Impl::initialize(heapEnd(), newend);
heapEnd() = newend;
return true;
}
2010-07-15 06:19:36 +00:00
template <class T, size_t N, class AP>
JS_ALWAYS_INLINE bool
2010-07-15 06:19:36 +00:00
Vector<T,N,AP>::growBy(size_t incr)
{
return growByImpl<true>(incr);
}
template <class T, size_t N, class AP>
JS_ALWAYS_INLINE bool
2010-07-15 06:19:36 +00:00
Vector<T,N,AP>::growByUninitialized(size_t incr)
{
return growByImpl<false>(incr);
}
template <class T, size_t N, class AP>
inline bool
Vector<T,N,AP>::resize(size_t newLength)
{
size_t curLength = length();
if (newLength > curLength)
return growBy(newLength - curLength);
shrinkBy(curLength - newLength);
return true;
}
template <class T, size_t N, class AP>
inline void
Vector<T,N,AP>::clear()
{
ReentrancyGuard g(*this);
if (usingInlineStorage()) {
Impl::destroy(inlineBegin(), inlineEnd());
inlineLength() = 0;
}
else {
Impl::destroy(heapBegin(), heapEnd());
heapEnd() = heapBegin();
}
}
template <class T, size_t N, class AP>
JS_ALWAYS_INLINE bool
Vector<T,N,AP>::append(const T &t)
{
ReentrancyGuard g(*this);
if (usingInlineStorage()) {
if (inlineLength() < sInlineCapacity) {
new(inlineEnd()) T(t);
++inlineLength();
JS_ASSERT(usingInlineStorage());
return true;
}
if (!convertToHeapStorage(1))
return false;
} else {
if (heapLength() == heapCapacity() && !growHeapStorageBy(1))
return false;
}
/* We are !usingInlineStorage(). Initialize new elements. */
JS_ASSERT(heapLength() <= heapCapacity() && heapCapacity() - heapLength() >= 1);
new(heapEnd()++) T(t);
return true;
}
template <class T, size_t N, class AP>
JS_ALWAYS_INLINE bool
Vector<T,N,AP>::appendN(const T &t, size_t needed)
{
ReentrancyGuard g(*this);
if (usingInlineStorage()) {
size_t freespace = sInlineCapacity - inlineLength();
if (needed <= freespace) {
Impl::copyConstructN(inlineEnd(), needed, t);
inlineLength() += needed;
JS_ASSERT(usingInlineStorage());
return true;
}
if (!convertToHeapStorage(needed))
return false;
} else {
size_t freespace = heapCapacity() - heapLength();
if (needed > freespace && !growHeapStorageBy(needed))
return false;
}
/* We are !usingInlineStorage(). Initialize new elements. */
JS_ASSERT(heapLength() <= heapCapacity() && heapCapacity() - heapLength() >= needed);
Impl::copyConstructN(heapEnd(), needed, t);
heapEnd() += needed;
return true;
}
template <class T, size_t N, class AP>
template <class U>
JS_ALWAYS_INLINE bool
Vector<T,N,AP>::append(const U *insBegin, const U *insEnd)
{
ReentrancyGuard g(*this);
size_t needed = PointerRangeSize(insBegin, insEnd);
if (usingInlineStorage()) {
size_t freespace = sInlineCapacity - inlineLength();
if (needed <= freespace) {
Impl::copyConstruct(inlineEnd(), insBegin, insEnd);
inlineLength() += needed;
JS_ASSERT(usingInlineStorage());
return true;
}
if (!convertToHeapStorage(needed))
return false;
} else {
size_t freespace = heapCapacity() - heapLength();
if (needed > freespace && !growHeapStorageBy(needed))
return false;
}
/* We are !usingInlineStorage(). Initialize new elements. */
JS_ASSERT(heapLength() <= heapCapacity() && heapCapacity() - heapLength() >= needed);
Impl::copyConstruct(heapEnd(), insBegin, insEnd);
heapEnd() += needed;
return true;
}
template <class T, size_t N, class AP>
template <class U>
JS_ALWAYS_INLINE bool
Vector<T,N,AP>::append(const U *insBegin, size_t length)
{
return this->append(insBegin, insBegin + length);
}
template <class T, size_t N, class AP>
JS_ALWAYS_INLINE void
Vector<T,N,AP>::popBack()
{
ReentrancyGuard g(*this);
JS_ASSERT(!empty());
if (usingInlineStorage()) {
--inlineLength();
inlineEnd()->~T();
} else {
--heapEnd();
heapEnd()->~T();
}
}
template <class T, size_t N, class AP>
inline T *
Vector<T,N,AP>::extractRawBuffer()
{
if (usingInlineStorage()) {
T *ret = reinterpret_cast<T *>(this->malloc(inlineLength() * sizeof(T)));
if (!ret)
return NULL;
Impl::copyConstruct(ret, inlineBegin(), inlineEnd());
Impl::destroy(inlineBegin(), inlineEnd());
inlineLength() = 0;
return ret;
}
T *ret = heapBegin();
2009-09-10 23:44:01 +00:00
mLengthOrCapacity = 0; /* marks us as !usingInlineStorage() */
return ret;
}
template <class T, size_t N, class AP>
inline void
Vector<T,N,AP>::replaceRawBuffer(T *p, size_t length)
{
ReentrancyGuard g(*this);
/* Destroy what we have. */
if (usingInlineStorage()) {
Impl::destroy(inlineBegin(), inlineEnd());
inlineLength() = 0;
} else {
Impl::destroy(heapBegin(), heapEnd());
this->free(heapBegin());
}
/* Take in the new buffer. */
if (length <= sInlineCapacity) {
/*
2009-09-10 23:44:01 +00:00
* (mLengthOrCapacity <= sInlineCapacity) means inline storage, so we
* MUST use inline storage, even though p might otherwise be acceptable.
*/
2009-09-10 23:44:01 +00:00
mLengthOrCapacity = length; /* marks us as usingInlineStorage() */
Impl::copyConstruct(inlineBegin(), p, p + length);
Impl::destroy(p, p + length);
this->free(p);
} else {
2009-09-10 23:44:01 +00:00
mLengthOrCapacity = length; /* marks us as !usingInlineStorage() */
heapBegin() = p;
heapEnd() = heapBegin() + length;
}
}
} /* namespace js */
#endif /* jsvector_h_ */