gecko-dev/dom/crypto/KeyAlgorithmProxy.cpp

229 lines
6.6 KiB
C++
Raw Normal View History

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim:set ts=2 sw=2 sts=2 et cindent: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "mozilla/dom/KeyAlgorithmProxy.h"
#include "mozilla/dom/WebCryptoCommon.h"
namespace mozilla {
namespace dom {
bool
KeyAlgorithmProxy::WriteStructuredClone(JSStructuredCloneWriter* aWriter) const
{
if (!WriteString(aWriter, mName) ||
!JS_WriteUint32Pair(aWriter, mType, KEY_ALGORITHM_SC_VERSION)) {
return false;
}
switch (mType) {
case AES:
return JS_WriteUint32Pair(aWriter, mAes.mLength, 0);
case HMAC:
return JS_WriteUint32Pair(aWriter, mHmac.mLength, 0) &&
WriteString(aWriter, mHmac.mHash.mName);
case RSA: {
return JS_WriteUint32Pair(aWriter, mRsa.mModulusLength, 0) &&
WriteBuffer(aWriter, mRsa.mPublicExponent) &&
WriteString(aWriter, mRsa.mHash.mName);
}
case EC:
return WriteString(aWriter, mEc.mNamedCurve);
case DH: {
return WriteBuffer(aWriter, mDh.mPrime) &&
WriteBuffer(aWriter, mDh.mGenerator);
}
}
return false;
}
bool
KeyAlgorithmProxy::ReadStructuredClone(JSStructuredCloneReader* aReader)
{
uint32_t type, version, dummy;
if (!ReadString(aReader, mName) ||
!JS_ReadUint32Pair(aReader, &type, &version)) {
return false;
}
if (version != KEY_ALGORITHM_SC_VERSION) {
return false;
}
mType = (KeyAlgorithmType) type;
switch (mType) {
case AES: {
uint32_t length;
if (!JS_ReadUint32Pair(aReader, &length, &dummy)) {
return false;
}
mAes.mLength = length;
mAes.mName = mName;
return true;
}
case HMAC: {
if (!JS_ReadUint32Pair(aReader, &mHmac.mLength, &dummy) ||
!ReadString(aReader, mHmac.mHash.mName)) {
return false;
}
mHmac.mName = mName;
return true;
}
case RSA: {
uint32_t modulusLength;
nsString hashName;
if (!JS_ReadUint32Pair(aReader, &modulusLength, &dummy) ||
!ReadBuffer(aReader, mRsa.mPublicExponent) ||
!ReadString(aReader, mRsa.mHash.mName)) {
return false;
}
mRsa.mModulusLength = modulusLength;
mRsa.mName = mName;
return true;
}
case EC: {
nsString namedCurve;
if (!ReadString(aReader, mEc.mNamedCurve)) {
return false;
}
mEc.mName = mName;
return true;
}
case DH: {
if (!ReadBuffer(aReader, mDh.mPrime) ||
!ReadBuffer(aReader, mDh.mGenerator)) {
return false;
}
mDh.mName = mName;
return true;
}
}
return false;
}
CK_MECHANISM_TYPE
KeyAlgorithmProxy::Mechanism() const
{
if (mType == HMAC) {
return GetMechanism(mHmac);
}
return MapAlgorithmNameToMechanism(mName);
}
nsString
KeyAlgorithmProxy::JwkAlg() const
{
if (mName.EqualsLiteral(WEBCRYPTO_ALG_AES_CBC)) {
switch (mAes.mLength) {
case 128: return NS_LITERAL_STRING(JWK_ALG_A128CBC);
case 192: return NS_LITERAL_STRING(JWK_ALG_A192CBC);
case 256: return NS_LITERAL_STRING(JWK_ALG_A256CBC);
}
}
if (mName.EqualsLiteral(WEBCRYPTO_ALG_AES_CTR)) {
switch (mAes.mLength) {
case 128: return NS_LITERAL_STRING(JWK_ALG_A128CTR);
case 192: return NS_LITERAL_STRING(JWK_ALG_A192CTR);
case 256: return NS_LITERAL_STRING(JWK_ALG_A256CTR);
}
}
if (mName.EqualsLiteral(WEBCRYPTO_ALG_AES_GCM)) {
switch (mAes.mLength) {
case 128: return NS_LITERAL_STRING(JWK_ALG_A128GCM);
case 192: return NS_LITERAL_STRING(JWK_ALG_A192GCM);
case 256: return NS_LITERAL_STRING(JWK_ALG_A256GCM);
}
}
if (mName.EqualsLiteral(WEBCRYPTO_ALG_AES_KW)) {
switch (mAes.mLength) {
case 128: return NS_LITERAL_STRING(JWK_ALG_A128KW);
case 192: return NS_LITERAL_STRING(JWK_ALG_A192KW);
case 256: return NS_LITERAL_STRING(JWK_ALG_A256KW);
}
}
if (mName.EqualsLiteral(WEBCRYPTO_ALG_HMAC)) {
nsString hashName = mHmac.mHash.mName;
if (hashName.EqualsLiteral(WEBCRYPTO_ALG_SHA1)) {
return NS_LITERAL_STRING(JWK_ALG_HS1);
} else if (hashName.EqualsLiteral(WEBCRYPTO_ALG_SHA256)) {
return NS_LITERAL_STRING(JWK_ALG_HS256);
} else if (hashName.EqualsLiteral(WEBCRYPTO_ALG_SHA384)) {
return NS_LITERAL_STRING(JWK_ALG_HS384);
} else if (hashName.EqualsLiteral(WEBCRYPTO_ALG_SHA512)) {
return NS_LITERAL_STRING(JWK_ALG_HS512);
}
}
if (mName.EqualsLiteral(WEBCRYPTO_ALG_RSASSA_PKCS1)) {
nsString hashName = mRsa.mHash.mName;
if (hashName.EqualsLiteral(WEBCRYPTO_ALG_SHA1)) {
return NS_LITERAL_STRING(JWK_ALG_RS1);
} else if (hashName.EqualsLiteral(WEBCRYPTO_ALG_SHA256)) {
return NS_LITERAL_STRING(JWK_ALG_RS256);
} else if (hashName.EqualsLiteral(WEBCRYPTO_ALG_SHA384)) {
return NS_LITERAL_STRING(JWK_ALG_RS384);
} else if (hashName.EqualsLiteral(WEBCRYPTO_ALG_SHA512)) {
return NS_LITERAL_STRING(JWK_ALG_RS512);
}
}
if (mName.EqualsLiteral(WEBCRYPTO_ALG_RSA_OAEP)) {
nsString hashName = mRsa.mHash.mName;
if (hashName.EqualsLiteral(WEBCRYPTO_ALG_SHA1)) {
return NS_LITERAL_STRING(JWK_ALG_RSA_OAEP);
} else if (hashName.EqualsLiteral(WEBCRYPTO_ALG_SHA256)) {
return NS_LITERAL_STRING(JWK_ALG_RSA_OAEP_256);
} else if (hashName.EqualsLiteral(WEBCRYPTO_ALG_SHA384)) {
return NS_LITERAL_STRING(JWK_ALG_RSA_OAEP_384);
} else if (hashName.EqualsLiteral(WEBCRYPTO_ALG_SHA512)) {
return NS_LITERAL_STRING(JWK_ALG_RSA_OAEP_512);
}
}
return nsString();
}
CK_MECHANISM_TYPE
KeyAlgorithmProxy::GetMechanism(const KeyAlgorithm& aAlgorithm)
{
// For everything but HMAC, the name determines the mechanism
// HMAC is handled by the specialization below
return MapAlgorithmNameToMechanism(aAlgorithm.mName);
}
CK_MECHANISM_TYPE
KeyAlgorithmProxy::GetMechanism(const HmacKeyAlgorithm& aAlgorithm)
{
// The use of HmacKeyAlgorithm doesn't completely prevent this
// method from being called with dictionaries that don't really
// represent HMAC key algorithms.
MOZ_ASSERT(aAlgorithm.mName.EqualsLiteral(WEBCRYPTO_ALG_HMAC));
CK_MECHANISM_TYPE hashMech;
hashMech = MapAlgorithmNameToMechanism(aAlgorithm.mHash.mName);
switch (hashMech) {
case CKM_SHA_1: return CKM_SHA_1_HMAC;
case CKM_SHA256: return CKM_SHA256_HMAC;
case CKM_SHA384: return CKM_SHA384_HMAC;
case CKM_SHA512: return CKM_SHA512_HMAC;
}
return UNKNOWN_CK_MECHANISM;
}
} // namespace dom
} // namespace mozilla