gecko-dev/gfx/layers/composite/AsyncCompositionManager.cpp

611 lines
24 KiB
C++
Raw Normal View History

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set sw=2 ts=2 et tw=80 : */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "mozilla/layers/AsyncCompositionManager.h"
#include "base/basictypes.h"
#if defined(MOZ_WIDGET_ANDROID)
# include <android/log.h>
# include "AndroidBridge.h"
#endif
#include "CompositorParent.h"
#include "LayerManagerComposite.h"
#include "nsStyleAnimation.h"
#include "nsDisplayList.h"
#include "AnimationCommon.h"
#include "nsAnimationManager.h"
#include "mozilla/layers/AsyncPanZoomController.h"
using namespace mozilla::dom;
namespace mozilla {
namespace layers {
enum Op { Resolve, Detach };
static bool
IsSameDimension(ScreenOrientation o1, ScreenOrientation o2)
{
bool isO1portrait = (o1 == eScreenOrientation_PortraitPrimary || o1 == eScreenOrientation_PortraitSecondary);
bool isO2portrait = (o2 == eScreenOrientation_PortraitPrimary || o2 == eScreenOrientation_PortraitSecondary);
return !(isO1portrait ^ isO2portrait);
}
static bool
ContentMightReflowOnOrientationChange(const nsIntRect& rect)
{
return rect.width != rect.height;
}
template<Op OP>
static void
WalkTheTree(Layer* aLayer,
Layer* aParent,
bool& aReady,
const TargetConfig& aTargetConfig)
{
if (RefLayer* ref = aLayer->AsRefLayer()) {
if (const CompositorParent::LayerTreeState* state = CompositorParent::GetIndirectShadowTree(ref->GetReferentId())) {
if (Layer* referent = state->mRoot) {
if (!ref->GetVisibleRegion().IsEmpty()) {
ScreenOrientation chromeOrientation = aTargetConfig.orientation();
ScreenOrientation contentOrientation = state->mTargetConfig.orientation();
if (!IsSameDimension(chromeOrientation, contentOrientation) &&
ContentMightReflowOnOrientationChange(aTargetConfig.clientBounds())) {
aReady = false;
}
}
if (OP == Resolve) {
ref->ConnectReferentLayer(referent);
if (AsyncPanZoomController* apzc = state->mController) {
referent->SetAsyncPanZoomController(apzc);
}
} else {
ref->DetachReferentLayer(referent);
referent->SetAsyncPanZoomController(nullptr);
}
}
}
}
for (Layer* child = aLayer->GetFirstChild();
child; child = child->GetNextSibling()) {
WalkTheTree<OP>(child, aLayer, aReady, aTargetConfig);
}
}
void
AsyncCompositionManager::ResolveRefLayers()
{
WalkTheTree<Resolve>(mLayerManager->GetRoot(),
nullptr,
mReadyForCompose,
mTargetConfig);
}
void
AsyncCompositionManager::DetachRefLayers()
{
WalkTheTree<Detach>(mLayerManager->GetRoot(),
nullptr,
mReadyForCompose,
mTargetConfig);
}
void
AsyncCompositionManager::ComputeRotation()
{
if (!mTargetConfig.naturalBounds().IsEmpty()) {
mLayerManager->SetWorldTransform(
ComputeTransformForRotation(mTargetConfig.naturalBounds(),
mTargetConfig.rotation()));
}
}
// Do a breadth-first search to find the first layer in the tree that is
// scrollable.
static void
Translate2D(gfx3DMatrix& aTransform, const gfxPoint& aOffset)
{
aTransform._41 += aOffset.x;
aTransform._42 += aOffset.y;
}
void
AsyncCompositionManager::TransformFixedLayers(Layer* aLayer,
const gfxPoint& aTranslation,
const gfxSize& aScaleDiff,
const gfx::Margin& aFixedLayerMargins)
{
if (aLayer->GetIsFixedPosition() &&
!aLayer->GetParent()->GetIsFixedPosition()) {
// When a scale has been applied to a layer, it focuses around (0,0).
// The anchor position is used here as a scale focus point (assuming that
// aScaleDiff has already been applied) to re-focus the scale.
const gfxPoint& anchor = aLayer->GetFixedPositionAnchor();
gfxPoint translation(aTranslation - (anchor - anchor / aScaleDiff));
// Offset this translation by the fixed layer margins, depending on what
// side of the viewport the layer is anchored to, reconciling the
// difference between the current fixed layer margins and the Gecko-side
// fixed layer margins.
// aFixedLayerMargins are the margins we expect to be at at the current
// time, obtained via SyncViewportInfo, and fixedMargins are the margins
// that were used during layout.
// If top/left of fixedMargins are negative, that indicates that this layer
// represents auto-positioned elements, and should not be affected by
// fixed margins at all.
const gfx::Margin& fixedMargins = aLayer->GetFixedPositionMargins();
if (fixedMargins.left >= 0) {
if (anchor.x > 0) {
translation.x -= aFixedLayerMargins.right - fixedMargins.right;
} else {
translation.x += aFixedLayerMargins.left - fixedMargins.left;
}
}
if (fixedMargins.top >= 0) {
if (anchor.y > 0) {
translation.y -= aFixedLayerMargins.bottom - fixedMargins.bottom;
} else {
translation.y += aFixedLayerMargins.top - fixedMargins.top;
}
}
// The transform already takes the resolution scale into account. Since we
// will apply the resolution scale again when computing the effective
// transform, we must apply the inverse resolution scale here.
LayerComposite* layerComposite = aLayer->AsLayerComposite();
gfx3DMatrix layerTransform;
if (layerComposite->GetShadowTransformSetByAnimation()) {
// Start with the animated transform
layerTransform = aLayer->GetLocalTransform();
} else {
layerTransform = aLayer->GetTransform();
}
Translate2D(layerTransform, translation);
if (ContainerLayer* c = aLayer->AsContainerLayer()) {
layerTransform.Scale(1.0f/c->GetPreXScale(),
1.0f/c->GetPreYScale(),
1);
}
layerTransform.ScalePost(1.0f/aLayer->GetPostXScale(),
1.0f/aLayer->GetPostYScale(),
1);
layerComposite->SetShadowTransform(layerTransform);
layerComposite->SetShadowTransformSetByAnimation(false);
const nsIntRect* clipRect = aLayer->GetClipRect();
if (clipRect) {
nsIntRect transformedClipRect(*clipRect);
transformedClipRect.MoveBy(translation.x, translation.y);
layerComposite->SetShadowClipRect(&transformedClipRect);
}
// The transform has now been applied, so there's no need to iterate over
// child layers.
return;
}
for (Layer* child = aLayer->GetFirstChild();
child; child = child->GetNextSibling()) {
TransformFixedLayers(child, aTranslation, aScaleDiff, aFixedLayerMargins);
}
}
static void
SampleValue(float aPortion, Animation& aAnimation, nsStyleAnimation::Value& aStart,
nsStyleAnimation::Value& aEnd, Animatable* aValue)
{
nsStyleAnimation::Value interpolatedValue;
NS_ASSERTION(aStart.GetUnit() == aEnd.GetUnit() ||
aStart.GetUnit() == nsStyleAnimation::eUnit_None ||
aEnd.GetUnit() == nsStyleAnimation::eUnit_None, "Must have same unit");
nsStyleAnimation::Interpolate(aAnimation.property(), aStart, aEnd,
aPortion, interpolatedValue);
if (aAnimation.property() == eCSSProperty_opacity) {
*aValue = interpolatedValue.GetFloatValue();
return;
}
nsCSSValueList* interpolatedList = interpolatedValue.GetCSSValueListValue();
TransformData& data = aAnimation.data().get_TransformData();
nsPoint origin = data.origin();
// we expect all our transform data to arrive in css pixels, so here we must
// adjust to dev pixels.
double cssPerDev = double(nsDeviceContext::AppUnitsPerCSSPixel())
/ double(data.appUnitsPerDevPixel());
gfxPoint3D mozOrigin = data.mozOrigin();
mozOrigin.x = mozOrigin.x * cssPerDev;
mozOrigin.y = mozOrigin.y * cssPerDev;
gfxPoint3D perspectiveOrigin = data.perspectiveOrigin();
perspectiveOrigin.x = perspectiveOrigin.x * cssPerDev;
perspectiveOrigin.y = perspectiveOrigin.y * cssPerDev;
nsDisplayTransform::FrameTransformProperties props(interpolatedList,
mozOrigin,
perspectiveOrigin,
data.perspective());
gfx3DMatrix transform =
nsDisplayTransform::GetResultingTransformMatrix(props, origin,
data.appUnitsPerDevPixel(),
&data.bounds());
gfxPoint3D scaledOrigin =
gfxPoint3D(NS_round(NSAppUnitsToFloatPixels(origin.x, data.appUnitsPerDevPixel())),
NS_round(NSAppUnitsToFloatPixels(origin.y, data.appUnitsPerDevPixel())),
0.0f);
transform.Translate(scaledOrigin);
InfallibleTArray<TransformFunction> functions;
functions.AppendElement(TransformMatrix(transform));
*aValue = functions;
}
static bool
SampleAnimations(Layer* aLayer, TimeStamp aPoint)
{
AnimationArray& animations = aLayer->GetAnimations();
InfallibleTArray<AnimData>& animationData = aLayer->GetAnimationData();
bool activeAnimations = false;
for (uint32_t i = animations.Length(); i-- !=0; ) {
Animation& animation = animations[i];
AnimData& animData = animationData[i];
double numIterations = animation.numIterations() != -1 ?
animation.numIterations() : NS_IEEEPositiveInfinity();
double positionInIteration =
ElementAnimations::GetPositionInIteration(aPoint - animation.startTime(),
animation.duration(),
numIterations,
animation.direction());
NS_ABORT_IF_FALSE(0.0 <= positionInIteration &&
positionInIteration <= 1.0,
"position should be in [0-1]");
int segmentIndex = 0;
AnimationSegment* segment = animation.segments().Elements();
while (segment->endPortion() < positionInIteration) {
++segment;
++segmentIndex;
}
double positionInSegment = (positionInIteration - segment->startPortion()) /
(segment->endPortion() - segment->startPortion());
double portion = animData.mFunctions[segmentIndex]->GetValue(positionInSegment);
activeAnimations = true;
// interpolate the property
Animatable interpolatedValue;
SampleValue(portion, animation, animData.mStartValues[segmentIndex],
animData.mEndValues[segmentIndex], &interpolatedValue);
LayerComposite* layerComposite = aLayer->AsLayerComposite();
switch (animation.property()) {
case eCSSProperty_opacity:
{
layerComposite->SetShadowOpacity(interpolatedValue.get_float());
break;
}
case eCSSProperty_transform:
{
gfx3DMatrix matrix = interpolatedValue.get_ArrayOfTransformFunction()[0].get_TransformMatrix().value();
if (ContainerLayer* c = aLayer->AsContainerLayer()) {
matrix.ScalePost(c->GetInheritedXScale(),
c->GetInheritedYScale(),
1);
}
layerComposite->SetShadowTransform(matrix);
layerComposite->SetShadowTransformSetByAnimation(true);
break;
}
default:
NS_WARNING("Unhandled animated property");
}
}
for (Layer* child = aLayer->GetFirstChild(); child;
child = child->GetNextSibling()) {
activeAnimations |= SampleAnimations(child, aPoint);
}
return activeAnimations;
}
bool
AsyncCompositionManager::ApplyAsyncContentTransformToTree(TimeStamp aCurrentFrame,
Layer *aLayer,
bool* aWantNextFrame)
{
bool appliedTransform = false;
for (Layer* child = aLayer->GetFirstChild();
child; child = child->GetNextSibling()) {
appliedTransform |=
ApplyAsyncContentTransformToTree(aCurrentFrame, child, aWantNextFrame);
}
ContainerLayer* container = aLayer->AsContainerLayer();
if (!container) {
return appliedTransform;
}
if (AsyncPanZoomController* controller = aLayer->GetAsyncPanZoomController()) {
LayerComposite* layerComposite = aLayer->AsLayerComposite();
ViewTransform treeTransform;
ScreenPoint scrollOffset;
*aWantNextFrame |=
controller->SampleContentTransformForFrame(aCurrentFrame,
container,
&treeTransform,
scrollOffset);
const gfx3DMatrix& rootTransform = mLayerManager->GetRoot()->GetTransform();
const FrameMetrics& metrics = container->GetFrameMetrics();
CSSToLayerScale paintScale = metrics.mDevPixelsPerCSSPixel
/ LayerToLayoutDeviceScale(rootTransform.GetXScale(), rootTransform.GetYScale());
CSSRect displayPort(metrics.mCriticalDisplayPort.IsEmpty() ?
metrics.mDisplayPort : metrics.mCriticalDisplayPort);
gfx::Margin fixedLayerMargins(0, 0, 0, 0);
ScreenPoint offset(0, 0);
SyncFrameMetrics(scrollOffset, treeTransform.mScale.scale, metrics.mScrollableRect,
mLayersUpdated, displayPort, paintScale,
mIsFirstPaint, fixedLayerMargins, offset);
mIsFirstPaint = false;
mLayersUpdated = false;
// Apply the render offset
mLayerManager->GetCompositor()->SetScreenRenderOffset(offset);
gfx3DMatrix transform(gfx3DMatrix(treeTransform) * aLayer->GetTransform());
// The transform already takes the resolution scale into account. Since we
// will apply the resolution scale again when computing the effective
// transform, we must apply the inverse resolution scale here.
transform.Scale(1.0f/container->GetPreXScale(),
1.0f/container->GetPreYScale(),
1);
transform.ScalePost(1.0f/aLayer->GetPostXScale(),
1.0f/aLayer->GetPostYScale(),
1);
layerComposite->SetShadowTransform(transform);
NS_ASSERTION(!layerComposite->GetShadowTransformSetByAnimation(),
"overwriting animated transform!");
TransformFixedLayers(
aLayer,
gfxPoint(-treeTransform.mTranslation.x, -treeTransform.mTranslation.y),
gfxSize(treeTransform.mScale.scale, treeTransform.mScale.scale),
fixedLayerMargins);
appliedTransform = true;
}
return appliedTransform;
}
void
AsyncCompositionManager::TransformScrollableLayer(Layer* aLayer, const gfx3DMatrix& aRootTransform)
{
LayerComposite* layerComposite = aLayer->AsLayerComposite();
ContainerLayer* container = aLayer->AsContainerLayer();
const FrameMetrics& metrics = container->GetFrameMetrics();
// We must apply the resolution scale before a pan/zoom transform, so we call
// GetTransform here.
const gfx3DMatrix& currentTransform = aLayer->GetTransform();
gfx3DMatrix treeTransform;
CSSToLayerScale geckoZoom = metrics.mDevPixelsPerCSSPixel /
LayerToLayoutDeviceScale(aRootTransform.GetXScale(), aRootTransform.GetYScale());
LayerIntPoint scrollOffsetLayerPixels = RoundedToInt(metrics.mScrollOffset * geckoZoom);
if (mIsFirstPaint) {
mContentRect = metrics.mScrollableRect;
SetFirstPaintViewport(scrollOffsetLayerPixels,
geckoZoom,
mContentRect);
mIsFirstPaint = false;
} else if (!metrics.mScrollableRect.IsEqualEdges(mContentRect)) {
mContentRect = metrics.mScrollableRect;
SetPageRect(mContentRect);
}
// We synchronise the viewport information with Java after sending the above
// notifications, so that Java can take these into account in its response.
// Calculate the absolute display port to send to Java
LayerIntRect displayPort = RoundedToInt(
(metrics.mCriticalDisplayPort.IsEmpty()
? metrics.mDisplayPort
: metrics.mCriticalDisplayPort
) * geckoZoom);
displayPort += scrollOffsetLayerPixels;
gfx::Margin fixedLayerMargins(0, 0, 0, 0);
ScreenPoint offset(0, 0);
// Ideally we would initialize userZoom to AsyncPanZoomController::CalculateResolution(metrics)
// but this causes a reftest-ipc test to fail (see bug 883646 comment 27). The reason for this
// appears to be that metrics.mZoom is poorly initialized in some scenarios. In these scenarios,
// however, we can assume there is no async zooming in progress and so the following statement
// works fine.
CSSToScreenScale userZoom(metrics.mDevPixelsPerCSSPixel.scale * metrics.mResolution.scale);
ScreenPoint userScroll = metrics.mScrollOffset * userZoom;
SyncViewportInfo(displayPort, geckoZoom, mLayersUpdated,
userScroll, userZoom, fixedLayerMargins,
offset);
mLayersUpdated = false;
// Apply the render offset
mLayerManager->GetCompositor()->SetScreenRenderOffset(offset);
// Handle transformations for asynchronous panning and zooming. We determine the
// zoom used by Gecko from the transformation set on the root layer, and we
// determine the scroll offset used by Gecko from the frame metrics of the
// primary scrollable layer. We compare this to the user zoom and scroll
// offset in the view transform we obtained from Java in order to compute the
// transformation we need to apply.
LayerToScreenScale zoomAdjust = userZoom / geckoZoom;
LayerIntPoint geckoScroll(0, 0);
if (metrics.IsScrollable()) {
geckoScroll = scrollOffsetLayerPixels;
}
LayerPoint translation = (userScroll / zoomAdjust) - geckoScroll;
treeTransform = gfx3DMatrix(ViewTransform(-translation, userZoom / metrics.mDevPixelsPerCSSPixel));
// Translate fixed position layers so that they stay in the correct position
// when userScroll and geckoScroll differ.
gfxPoint fixedOffset;
gfxSize scaleDiff;
LayerRect content = mContentRect * geckoZoom;
// If the contents can fit entirely within the widget area on a particular
// dimension, we need to translate and scale so that the fixed layers remain
// within the page boundaries.
if (mContentRect.width * userZoom.scale < metrics.mCompositionBounds.width) {
fixedOffset.x = -geckoScroll.x;
scaleDiff.width = std::min(1.0f, metrics.mCompositionBounds.width / content.width);
} else {
fixedOffset.x = clamped(userScroll.x / zoomAdjust.scale, content.x,
content.XMost() - metrics.mCompositionBounds.width / zoomAdjust.scale) - geckoScroll.x;
scaleDiff.width = zoomAdjust.scale;
}
if (mContentRect.height * userZoom.scale < metrics.mCompositionBounds.height) {
fixedOffset.y = -geckoScroll.y;
scaleDiff.height = std::min(1.0f, metrics.mCompositionBounds.height / content.height);
} else {
fixedOffset.y = clamped(userScroll.y / zoomAdjust.scale, content.y,
content.YMost() - metrics.mCompositionBounds.height / zoomAdjust.scale) - geckoScroll.y;
scaleDiff.height = zoomAdjust.scale;
}
// The transform already takes the resolution scale into account. Since we
// will apply the resolution scale again when computing the effective
// transform, we must apply the inverse resolution scale here.
gfx3DMatrix computedTransform = treeTransform * currentTransform;
computedTransform.Scale(1.0f/container->GetPreXScale(),
1.0f/container->GetPreYScale(),
1);
computedTransform.ScalePost(1.0f/container->GetPostXScale(),
1.0f/container->GetPostYScale(),
1);
layerComposite->SetShadowTransform(computedTransform);
NS_ASSERTION(!layerComposite->GetShadowTransformSetByAnimation(),
"overwriting animated transform!");
TransformFixedLayers(aLayer, fixedOffset, scaleDiff, fixedLayerMargins);
}
bool
AsyncCompositionManager::TransformShadowTree(TimeStamp aCurrentFrame)
{
Layer* root = mLayerManager->GetRoot();
// NB: we must sample animations *before* sampling pan/zoom
// transforms.
bool wantNextFrame = SampleAnimations(root, aCurrentFrame);
const gfx3DMatrix& rootTransform = root->GetTransform();
// FIXME/bug 775437: unify this interface with the ~native-fennec
// derived code
//
// Attempt to apply an async content transform to any layer that has
// an async pan zoom controller (which means that it is rendered
// async using Gecko). If this fails, fall back to transforming the
// primary scrollable layer. "Failing" here means that we don't
// find a frame that is async scrollable. Note that the fallback
// code also includes Fennec which is rendered async. Fennec uses
// its own platform-specific async rendering that is done partially
// in Gecko and partially in Java.
if (!ApplyAsyncContentTransformToTree(aCurrentFrame, root, &wantNextFrame)) {
nsAutoTArray<Layer*,1> scrollableLayers;
#ifdef MOZ_WIDGET_ANDROID
scrollableLayers.AppendElement(mLayerManager->GetPrimaryScrollableLayer());
#else
mLayerManager->GetScrollableLayers(scrollableLayers);
#endif
for (uint32_t i = 0; i < scrollableLayers.Length(); i++) {
if (scrollableLayers[i]) {
TransformScrollableLayer(scrollableLayers[i], rootTransform);
}
}
}
return wantNextFrame;
}
void
AsyncCompositionManager::SetFirstPaintViewport(const LayerIntPoint& aOffset,
const CSSToLayerScale& aZoom,
const CSSRect& aCssPageRect)
{
#ifdef MOZ_WIDGET_ANDROID
AndroidBridge::Bridge()->SetFirstPaintViewport(aOffset, aZoom, aCssPageRect);
#endif
}
void
AsyncCompositionManager::SetPageRect(const CSSRect& aCssPageRect)
{
#ifdef MOZ_WIDGET_ANDROID
AndroidBridge::Bridge()->SetPageRect(aCssPageRect);
#endif
}
void
AsyncCompositionManager::SyncViewportInfo(const LayerIntRect& aDisplayPort,
const CSSToLayerScale& aDisplayResolution,
bool aLayersUpdated,
ScreenPoint& aScrollOffset,
CSSToScreenScale& aScale,
gfx::Margin& aFixedLayerMargins,
ScreenPoint& aOffset)
{
#ifdef MOZ_WIDGET_ANDROID
AndroidBridge::Bridge()->SyncViewportInfo(aDisplayPort,
aDisplayResolution,
aLayersUpdated,
aScrollOffset,
aScale,
aFixedLayerMargins,
aOffset);
#endif
}
void
AsyncCompositionManager::SyncFrameMetrics(const ScreenPoint& aScrollOffset,
float aZoom,
const CSSRect& aCssPageRect,
bool aLayersUpdated,
const CSSRect& aDisplayPort,
const CSSToLayerScale& aDisplayResolution,
bool aIsFirstPaint,
gfx::Margin& aFixedLayerMargins,
ScreenPoint& aOffset)
{
#ifdef MOZ_WIDGET_ANDROID
AndroidBridge::Bridge()->SyncFrameMetrics(aScrollOffset, aZoom, aCssPageRect,
aLayersUpdated, aDisplayPort,
aDisplayResolution, aIsFirstPaint,
aFixedLayerMargins, aOffset);
#endif
}
} // namespace layers
} // namespace mozilla