mirror of
https://github.com/mozilla/gecko-dev.git
synced 2025-02-28 05:10:49 +00:00
Bug 1165833 - LUL testing: import gtest/gmock based Dwarf CFI tests from toolkit/crashreporter/google-breakpad. r=jimb.
This commit is contained in:
parent
9b1ac68ebb
commit
14bc4ccfab
@ -1062,7 +1062,7 @@ class CallFrameInfo::Handler {
|
||||
// report errors or warn about problems in the data it is parsing.
|
||||
// These messages are sent to the message sink |aLog| provided to the
|
||||
// constructor.
|
||||
class CallFrameInfo::Reporter final {
|
||||
class CallFrameInfo::Reporter {
|
||||
public:
|
||||
// Create an error reporter which attributes troubles to the section
|
||||
// named SECTION in FILENAME.
|
||||
|
@ -16,7 +16,7 @@
|
||||
|
||||
// LUL needs a callback for its logging sink.
|
||||
static void
|
||||
gtest_logging_sink_for_LUL(const char* str) {
|
||||
gtest_logging_sink_for_LulIntegration(const char* str) {
|
||||
if (DEBUG_LUL_TEST == 0) {
|
||||
return;
|
||||
}
|
||||
@ -32,11 +32,11 @@ gtest_logging_sink_for_LUL(const char* str) {
|
||||
}
|
||||
}
|
||||
|
||||
TEST(LUL, unwind_consistency) {
|
||||
TEST(LulIntegration, unwind_consistency) {
|
||||
// Set up LUL and get it to read unwind info for libxul.so, which is
|
||||
// all we care about here, plus (incidentally) practically every
|
||||
// other object in the process too.
|
||||
lul::LUL* lul = new lul::LUL(gtest_logging_sink_for_LUL);
|
||||
lul::LUL* lul = new lul::LUL(gtest_logging_sink_for_LulIntegration);
|
||||
read_procmaps(lul);
|
||||
|
||||
// Run unwind tests and receive information about how many there
|
||||
|
2293
tools/profiler/tests/gtest/LulTestDwarf.cpp
Normal file
2293
tools/profiler/tests/gtest/LulTestDwarf.cpp
Normal file
File diff suppressed because it is too large
Load Diff
491
tools/profiler/tests/gtest/LulTestInfrastructure.cpp
Normal file
491
tools/profiler/tests/gtest/LulTestInfrastructure.cpp
Normal file
@ -0,0 +1,491 @@
|
||||
// Copyright (c) 2010, Google Inc.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without
|
||||
// modification, are permitted provided that the following conditions are
|
||||
// met:
|
||||
//
|
||||
// * Redistributions of source code must retain the above copyright
|
||||
// notice, this list of conditions and the following disclaimer.
|
||||
// * Redistributions in binary form must reproduce the above
|
||||
// copyright notice, this list of conditions and the following disclaimer
|
||||
// in the documentation and/or other materials provided with the
|
||||
// distribution.
|
||||
// * Neither the name of Google Inc. nor the names of its
|
||||
// contributors may be used to endorse or promote products derived from
|
||||
// this software without specific prior written permission.
|
||||
//
|
||||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
// Original author: Jim Blandy <jimb@mozilla.com> <jimb@red-bean.com>
|
||||
|
||||
// Derived from:
|
||||
// test_assembler.cc: Implementation of google_breakpad::TestAssembler.
|
||||
// See test_assembler.h for details.
|
||||
|
||||
// Derived from:
|
||||
// cfi_assembler.cc: Implementation of google_breakpad::CFISection class.
|
||||
// See cfi_assembler.h for details.
|
||||
|
||||
#include "LulTestInfrastructure.h"
|
||||
|
||||
namespace lul_test {
|
||||
namespace test_assembler {
|
||||
|
||||
using std::back_insert_iterator;
|
||||
|
||||
Label::Label() : value_(new Binding()) { }
|
||||
Label::Label(uint64_t value) : value_(new Binding(value)) { }
|
||||
Label::Label(const Label &label) {
|
||||
value_ = label.value_;
|
||||
value_->Acquire();
|
||||
}
|
||||
Label::~Label() {
|
||||
if (value_->Release()) delete value_;
|
||||
}
|
||||
|
||||
Label &Label::operator=(uint64_t value) {
|
||||
value_->Set(NULL, value);
|
||||
return *this;
|
||||
}
|
||||
|
||||
Label &Label::operator=(const Label &label) {
|
||||
value_->Set(label.value_, 0);
|
||||
return *this;
|
||||
}
|
||||
|
||||
Label Label::operator+(uint64_t addend) const {
|
||||
Label l;
|
||||
l.value_->Set(this->value_, addend);
|
||||
return l;
|
||||
}
|
||||
|
||||
Label Label::operator-(uint64_t subtrahend) const {
|
||||
Label l;
|
||||
l.value_->Set(this->value_, -subtrahend);
|
||||
return l;
|
||||
}
|
||||
|
||||
// When NDEBUG is #defined, assert doesn't evaluate its argument. This
|
||||
// means you can't simply use assert to check the return value of a
|
||||
// function with necessary side effects.
|
||||
//
|
||||
// ALWAYS_EVALUATE_AND_ASSERT(x) evaluates x regardless of whether
|
||||
// NDEBUG is #defined; when NDEBUG is not #defined, it further asserts
|
||||
// that x is true.
|
||||
#ifdef NDEBUG
|
||||
#define ALWAYS_EVALUATE_AND_ASSERT(x) x
|
||||
#else
|
||||
#define ALWAYS_EVALUATE_AND_ASSERT(x) assert(x)
|
||||
#endif
|
||||
|
||||
uint64_t Label::operator-(const Label &label) const {
|
||||
uint64_t offset;
|
||||
ALWAYS_EVALUATE_AND_ASSERT(IsKnownOffsetFrom(label, &offset));
|
||||
return offset;
|
||||
}
|
||||
|
||||
bool Label::IsKnownConstant(uint64_t *value_p) const {
|
||||
Binding *base;
|
||||
uint64_t addend;
|
||||
value_->Get(&base, &addend);
|
||||
if (base != NULL) return false;
|
||||
if (value_p) *value_p = addend;
|
||||
return true;
|
||||
}
|
||||
|
||||
bool Label::IsKnownOffsetFrom(const Label &label, uint64_t *offset_p) const
|
||||
{
|
||||
Binding *label_base, *this_base;
|
||||
uint64_t label_addend, this_addend;
|
||||
label.value_->Get(&label_base, &label_addend);
|
||||
value_->Get(&this_base, &this_addend);
|
||||
// If this and label are related, Get will find their final
|
||||
// common ancestor, regardless of how indirect the relation is. This
|
||||
// comparison also handles the constant vs. constant case.
|
||||
if (this_base != label_base) return false;
|
||||
if (offset_p) *offset_p = this_addend - label_addend;
|
||||
return true;
|
||||
}
|
||||
|
||||
Label::Binding::Binding() : base_(this), addend_(), reference_count_(1) { }
|
||||
|
||||
Label::Binding::Binding(uint64_t addend)
|
||||
: base_(NULL), addend_(addend), reference_count_(1) { }
|
||||
|
||||
Label::Binding::~Binding() {
|
||||
assert(reference_count_ == 0);
|
||||
if (base_ && base_ != this && base_->Release())
|
||||
delete base_;
|
||||
}
|
||||
|
||||
void Label::Binding::Set(Binding *binding, uint64_t addend) {
|
||||
if (!base_ && !binding) {
|
||||
// We're equating two constants. This could be okay.
|
||||
assert(addend_ == addend);
|
||||
} else if (!base_) {
|
||||
// We are a known constant, but BINDING may not be, so turn the
|
||||
// tables and try to set BINDING's value instead.
|
||||
binding->Set(NULL, addend_ - addend);
|
||||
} else {
|
||||
if (binding) {
|
||||
// Find binding's final value. Since the final value is always either
|
||||
// completely unconstrained or a constant, never a reference to
|
||||
// another variable (otherwise, it wouldn't be final), this
|
||||
// guarantees we won't create cycles here, even for code like this:
|
||||
// l = m, m = n, n = l;
|
||||
uint64_t binding_addend;
|
||||
binding->Get(&binding, &binding_addend);
|
||||
addend += binding_addend;
|
||||
}
|
||||
|
||||
// It seems likely that setting a binding to itself is a bug
|
||||
// (although I can imagine this might turn out to be helpful to
|
||||
// permit).
|
||||
assert(binding != this);
|
||||
|
||||
if (base_ != this) {
|
||||
// Set the other bindings on our chain as well. Note that this
|
||||
// is sufficient even though binding relationships form trees:
|
||||
// All binding operations traverse their chains to the end, and
|
||||
// all bindings related to us share some tail of our chain, so
|
||||
// they will see the changes we make here.
|
||||
base_->Set(binding, addend - addend_);
|
||||
// We're not going to use base_ any more.
|
||||
if (base_->Release()) delete base_;
|
||||
}
|
||||
|
||||
// Adopt BINDING as our base. Note that it should be correct to
|
||||
// acquire here, after the release above, even though the usual
|
||||
// reference-counting rules call for acquiring first, and then
|
||||
// releasing: the self-reference assertion above should have
|
||||
// complained if BINDING were 'this' or anywhere along our chain,
|
||||
// so we didn't release BINDING.
|
||||
if (binding) binding->Acquire();
|
||||
base_ = binding;
|
||||
addend_ = addend;
|
||||
}
|
||||
}
|
||||
|
||||
void Label::Binding::Get(Binding **base, uint64_t *addend) {
|
||||
if (base_ && base_ != this) {
|
||||
// Recurse to find the end of our reference chain (the root of our
|
||||
// tree), and then rewrite every binding along the chain to refer
|
||||
// to it directly, adjusting addends appropriately. (This is why
|
||||
// this member function isn't this-const.)
|
||||
Binding *final_base;
|
||||
uint64_t final_addend;
|
||||
base_->Get(&final_base, &final_addend);
|
||||
if (final_base) final_base->Acquire();
|
||||
if (base_->Release()) delete base_;
|
||||
base_ = final_base;
|
||||
addend_ += final_addend;
|
||||
}
|
||||
*base = base_;
|
||||
*addend = addend_;
|
||||
}
|
||||
|
||||
template<typename Inserter>
|
||||
static inline void InsertEndian(test_assembler::Endianness endianness,
|
||||
size_t size, uint64_t number, Inserter dest) {
|
||||
assert(size > 0);
|
||||
if (endianness == kLittleEndian) {
|
||||
for (size_t i = 0; i < size; i++) {
|
||||
*dest++ = (char) (number & 0xff);
|
||||
number >>= 8;
|
||||
}
|
||||
} else {
|
||||
assert(endianness == kBigEndian);
|
||||
// The loop condition is odd, but it's correct for size_t.
|
||||
for (size_t i = size - 1; i < size; i--)
|
||||
*dest++ = (char) ((number >> (i * 8)) & 0xff);
|
||||
}
|
||||
}
|
||||
|
||||
Section &Section::Append(Endianness endianness, size_t size, uint64_t number) {
|
||||
InsertEndian(endianness, size, number,
|
||||
back_insert_iterator<string>(contents_));
|
||||
return *this;
|
||||
}
|
||||
|
||||
Section &Section::Append(Endianness endianness, size_t size,
|
||||
const Label &label) {
|
||||
// If this label's value is known, there's no reason to waste an
|
||||
// entry in references_ on it.
|
||||
uint64_t value;
|
||||
if (label.IsKnownConstant(&value))
|
||||
return Append(endianness, size, value);
|
||||
|
||||
// This will get caught when the references are resolved, but it's
|
||||
// nicer to find out earlier.
|
||||
assert(endianness != kUnsetEndian);
|
||||
|
||||
references_.push_back(Reference(contents_.size(), endianness, size, label));
|
||||
contents_.append(size, 0);
|
||||
return *this;
|
||||
}
|
||||
|
||||
#define ENDIANNESS_L kLittleEndian
|
||||
#define ENDIANNESS_B kBigEndian
|
||||
#define ENDIANNESS(e) ENDIANNESS_ ## e
|
||||
|
||||
#define DEFINE_SHORT_APPEND_NUMBER_ENDIAN(e, bits) \
|
||||
Section &Section::e ## bits(uint ## bits ## _t v) { \
|
||||
InsertEndian(ENDIANNESS(e), bits / 8, v, \
|
||||
back_insert_iterator<string>(contents_)); \
|
||||
return *this; \
|
||||
}
|
||||
|
||||
#define DEFINE_SHORT_APPEND_LABEL_ENDIAN(e, bits) \
|
||||
Section &Section::e ## bits(const Label &v) { \
|
||||
return Append(ENDIANNESS(e), bits / 8, v); \
|
||||
}
|
||||
|
||||
// Define L16, B32, and friends.
|
||||
#define DEFINE_SHORT_APPEND_ENDIAN(e, bits) \
|
||||
DEFINE_SHORT_APPEND_NUMBER_ENDIAN(e, bits) \
|
||||
DEFINE_SHORT_APPEND_LABEL_ENDIAN(e, bits)
|
||||
|
||||
DEFINE_SHORT_APPEND_LABEL_ENDIAN(L, 8);
|
||||
DEFINE_SHORT_APPEND_LABEL_ENDIAN(B, 8);
|
||||
DEFINE_SHORT_APPEND_ENDIAN(L, 16);
|
||||
DEFINE_SHORT_APPEND_ENDIAN(L, 32);
|
||||
DEFINE_SHORT_APPEND_ENDIAN(L, 64);
|
||||
DEFINE_SHORT_APPEND_ENDIAN(B, 16);
|
||||
DEFINE_SHORT_APPEND_ENDIAN(B, 32);
|
||||
DEFINE_SHORT_APPEND_ENDIAN(B, 64);
|
||||
|
||||
#define DEFINE_SHORT_APPEND_NUMBER_DEFAULT(bits) \
|
||||
Section &Section::D ## bits(uint ## bits ## _t v) { \
|
||||
InsertEndian(endianness_, bits / 8, v, \
|
||||
back_insert_iterator<string>(contents_)); \
|
||||
return *this; \
|
||||
}
|
||||
#define DEFINE_SHORT_APPEND_LABEL_DEFAULT(bits) \
|
||||
Section &Section::D ## bits(const Label &v) { \
|
||||
return Append(endianness_, bits / 8, v); \
|
||||
}
|
||||
#define DEFINE_SHORT_APPEND_DEFAULT(bits) \
|
||||
DEFINE_SHORT_APPEND_NUMBER_DEFAULT(bits) \
|
||||
DEFINE_SHORT_APPEND_LABEL_DEFAULT(bits)
|
||||
|
||||
DEFINE_SHORT_APPEND_LABEL_DEFAULT(8)
|
||||
DEFINE_SHORT_APPEND_DEFAULT(16);
|
||||
DEFINE_SHORT_APPEND_DEFAULT(32);
|
||||
DEFINE_SHORT_APPEND_DEFAULT(64);
|
||||
|
||||
Section &Section::LEB128(long long value) {
|
||||
while (value < -0x40 || 0x3f < value) {
|
||||
contents_ += (value & 0x7f) | 0x80;
|
||||
if (value < 0)
|
||||
value = (value >> 7) | ~(((unsigned long long) -1) >> 7);
|
||||
else
|
||||
value = (value >> 7);
|
||||
}
|
||||
contents_ += value & 0x7f;
|
||||
return *this;
|
||||
}
|
||||
|
||||
Section &Section::ULEB128(uint64_t value) {
|
||||
while (value > 0x7f) {
|
||||
contents_ += (value & 0x7f) | 0x80;
|
||||
value = (value >> 7);
|
||||
}
|
||||
contents_ += value;
|
||||
return *this;
|
||||
}
|
||||
|
||||
Section &Section::Align(size_t alignment, uint8_t pad_byte) {
|
||||
// ALIGNMENT must be a power of two.
|
||||
assert(((alignment - 1) & alignment) == 0);
|
||||
size_t new_size = (contents_.size() + alignment - 1) & ~(alignment - 1);
|
||||
contents_.append(new_size - contents_.size(), pad_byte);
|
||||
assert((contents_.size() & (alignment - 1)) == 0);
|
||||
return *this;
|
||||
}
|
||||
|
||||
bool Section::GetContents(string *contents) {
|
||||
// For each label reference, find the label's value, and patch it into
|
||||
// the section's contents.
|
||||
for (size_t i = 0; i < references_.size(); i++) {
|
||||
Reference &r = references_[i];
|
||||
uint64_t value;
|
||||
if (!r.label.IsKnownConstant(&value)) {
|
||||
fprintf(stderr, "Undefined label #%zu at offset 0x%zx\n", i, r.offset);
|
||||
return false;
|
||||
}
|
||||
assert(r.offset < contents_.size());
|
||||
assert(contents_.size() - r.offset >= r.size);
|
||||
InsertEndian(r.endianness, r.size, value, contents_.begin() + r.offset);
|
||||
}
|
||||
contents->clear();
|
||||
std::swap(contents_, *contents);
|
||||
references_.clear();
|
||||
return true;
|
||||
}
|
||||
|
||||
} // namespace test_assembler
|
||||
} // namespace lul_test
|
||||
|
||||
|
||||
namespace lul_test {
|
||||
|
||||
CFISection &CFISection::CIEHeader(uint64_t code_alignment_factor,
|
||||
int data_alignment_factor,
|
||||
unsigned return_address_register,
|
||||
uint8_t version,
|
||||
const string &augmentation,
|
||||
bool dwarf64) {
|
||||
assert(!entry_length_);
|
||||
entry_length_ = new PendingLength();
|
||||
in_fde_ = false;
|
||||
|
||||
if (dwarf64) {
|
||||
D32(kDwarf64InitialLengthMarker);
|
||||
D64(entry_length_->length);
|
||||
entry_length_->start = Here();
|
||||
D64(eh_frame_ ? kEHFrame64CIEIdentifier : kDwarf64CIEIdentifier);
|
||||
} else {
|
||||
D32(entry_length_->length);
|
||||
entry_length_->start = Here();
|
||||
D32(eh_frame_ ? kEHFrame32CIEIdentifier : kDwarf32CIEIdentifier);
|
||||
}
|
||||
D8(version);
|
||||
AppendCString(augmentation);
|
||||
ULEB128(code_alignment_factor);
|
||||
LEB128(data_alignment_factor);
|
||||
if (version == 1)
|
||||
D8(return_address_register);
|
||||
else
|
||||
ULEB128(return_address_register);
|
||||
return *this;
|
||||
}
|
||||
|
||||
CFISection &CFISection::FDEHeader(Label cie_pointer,
|
||||
uint64_t initial_location,
|
||||
uint64_t address_range,
|
||||
bool dwarf64) {
|
||||
assert(!entry_length_);
|
||||
entry_length_ = new PendingLength();
|
||||
in_fde_ = true;
|
||||
fde_start_address_ = initial_location;
|
||||
|
||||
if (dwarf64) {
|
||||
D32(0xffffffff);
|
||||
D64(entry_length_->length);
|
||||
entry_length_->start = Here();
|
||||
if (eh_frame_)
|
||||
D64(Here() - cie_pointer);
|
||||
else
|
||||
D64(cie_pointer);
|
||||
} else {
|
||||
D32(entry_length_->length);
|
||||
entry_length_->start = Here();
|
||||
if (eh_frame_)
|
||||
D32(Here() - cie_pointer);
|
||||
else
|
||||
D32(cie_pointer);
|
||||
}
|
||||
EncodedPointer(initial_location);
|
||||
// The FDE length in an .eh_frame section uses the same encoding as the
|
||||
// initial location, but ignores the base address (selected by the upper
|
||||
// nybble of the encoding), as it's a length, not an address that can be
|
||||
// made relative.
|
||||
EncodedPointer(address_range,
|
||||
DwarfPointerEncoding(pointer_encoding_ & 0x0f));
|
||||
return *this;
|
||||
}
|
||||
|
||||
CFISection &CFISection::FinishEntry() {
|
||||
assert(entry_length_);
|
||||
Align(address_size_, lul::DW_CFA_nop);
|
||||
entry_length_->length = Here() - entry_length_->start;
|
||||
delete entry_length_;
|
||||
entry_length_ = NULL;
|
||||
in_fde_ = false;
|
||||
return *this;
|
||||
}
|
||||
|
||||
CFISection &CFISection::EncodedPointer(uint64_t address,
|
||||
DwarfPointerEncoding encoding,
|
||||
const EncodedPointerBases &bases) {
|
||||
// Omitted data is extremely easy to emit.
|
||||
if (encoding == lul::DW_EH_PE_omit)
|
||||
return *this;
|
||||
|
||||
// If (encoding & lul::DW_EH_PE_indirect) != 0, then we assume
|
||||
// that ADDRESS is the address at which the pointer is stored --- in
|
||||
// other words, that bit has no effect on how we write the pointer.
|
||||
encoding = DwarfPointerEncoding(encoding & ~lul::DW_EH_PE_indirect);
|
||||
|
||||
// Find the base address to which this pointer is relative. The upper
|
||||
// nybble of the encoding specifies this.
|
||||
uint64_t base;
|
||||
switch (encoding & 0xf0) {
|
||||
case lul::DW_EH_PE_absptr: base = 0; break;
|
||||
case lul::DW_EH_PE_pcrel: base = bases.cfi + Size(); break;
|
||||
case lul::DW_EH_PE_textrel: base = bases.text; break;
|
||||
case lul::DW_EH_PE_datarel: base = bases.data; break;
|
||||
case lul::DW_EH_PE_funcrel: base = fde_start_address_; break;
|
||||
case lul::DW_EH_PE_aligned: base = 0; break;
|
||||
default: abort();
|
||||
};
|
||||
|
||||
// Make ADDRESS relative. Yes, this is appropriate even for "absptr"
|
||||
// values; see gcc/unwind-pe.h.
|
||||
address -= base;
|
||||
|
||||
// Align the pointer, if required.
|
||||
if ((encoding & 0xf0) == lul::DW_EH_PE_aligned)
|
||||
Align(AddressSize());
|
||||
|
||||
// Append ADDRESS to this section in the appropriate form. For the
|
||||
// fixed-width forms, we don't need to differentiate between signed and
|
||||
// unsigned encodings, because ADDRESS has already been extended to 64
|
||||
// bits before it was passed to us.
|
||||
switch (encoding & 0x0f) {
|
||||
case lul::DW_EH_PE_absptr:
|
||||
Address(address);
|
||||
break;
|
||||
|
||||
case lul::DW_EH_PE_uleb128:
|
||||
ULEB128(address);
|
||||
break;
|
||||
|
||||
case lul::DW_EH_PE_sleb128:
|
||||
LEB128(address);
|
||||
break;
|
||||
|
||||
case lul::DW_EH_PE_udata2:
|
||||
case lul::DW_EH_PE_sdata2:
|
||||
D16(address);
|
||||
break;
|
||||
|
||||
case lul::DW_EH_PE_udata4:
|
||||
case lul::DW_EH_PE_sdata4:
|
||||
D32(address);
|
||||
break;
|
||||
|
||||
case lul::DW_EH_PE_udata8:
|
||||
case lul::DW_EH_PE_sdata8:
|
||||
D64(address);
|
||||
break;
|
||||
|
||||
default:
|
||||
abort();
|
||||
}
|
||||
|
||||
return *this;
|
||||
};
|
||||
|
||||
} // namespace lul_test
|
666
tools/profiler/tests/gtest/LulTestInfrastructure.h
Normal file
666
tools/profiler/tests/gtest/LulTestInfrastructure.h
Normal file
@ -0,0 +1,666 @@
|
||||
// -*- mode: C++ -*-
|
||||
|
||||
// Copyright (c) 2010, Google Inc.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without
|
||||
// modification, are permitted provided that the following conditions are
|
||||
// met:
|
||||
//
|
||||
// * Redistributions of source code must retain the above copyright
|
||||
// notice, this list of conditions and the following disclaimer.
|
||||
// * Redistributions in binary form must reproduce the above
|
||||
// copyright notice, this list of conditions and the following disclaimer
|
||||
// in the documentation and/or other materials provided with the
|
||||
// distribution.
|
||||
// * Neither the name of Google Inc. nor the names of its
|
||||
// contributors may be used to endorse or promote products derived from
|
||||
// this software without specific prior written permission.
|
||||
//
|
||||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
// Original author: Jim Blandy <jimb@mozilla.com> <jimb@red-bean.com>
|
||||
|
||||
// Derived from:
|
||||
// cfi_assembler.h: Define CFISection, a class for creating properly
|
||||
// (and improperly) formatted DWARF CFI data for unit tests.
|
||||
|
||||
// Derived from:
|
||||
// test-assembler.h: interface to class for building complex binary streams.
|
||||
|
||||
// To test the Breakpad symbol dumper and processor thoroughly, for
|
||||
// all combinations of host system and minidump processor
|
||||
// architecture, we need to be able to easily generate complex test
|
||||
// data like debugging information and minidump files.
|
||||
//
|
||||
// For example, if we want our unit tests to provide full code
|
||||
// coverage for stack walking, it may be difficult to persuade the
|
||||
// compiler to generate every possible sort of stack walking
|
||||
// information that we want to support; there are probably DWARF CFI
|
||||
// opcodes that GCC never emits. Similarly, if we want to test our
|
||||
// error handling, we will need to generate damaged minidumps or
|
||||
// debugging information that (we hope) the client or compiler will
|
||||
// never produce on its own.
|
||||
//
|
||||
// google_breakpad::TestAssembler provides a predictable and
|
||||
// (relatively) simple way to generate complex formatted data streams
|
||||
// like minidumps and CFI. Furthermore, because TestAssembler is
|
||||
// portable, developers without access to (say) Visual Studio or a
|
||||
// SPARC assembler can still work on test data for those targets.
|
||||
|
||||
#ifndef LUL_TEST_INFRASTRUCTURE_H
|
||||
#define LUL_TEST_INFRASTRUCTURE_H
|
||||
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
using std::string;
|
||||
using std::vector;
|
||||
|
||||
namespace lul_test {
|
||||
namespace test_assembler {
|
||||
|
||||
// A Label represents a value not yet known that we need to store in a
|
||||
// section. As long as all the labels a section refers to are defined
|
||||
// by the time we retrieve its contents as bytes, we can use undefined
|
||||
// labels freely in that section's construction.
|
||||
//
|
||||
// A label can be in one of three states:
|
||||
// - undefined,
|
||||
// - defined as the sum of some other label and a constant, or
|
||||
// - a constant.
|
||||
//
|
||||
// A label's value never changes, but it can accumulate constraints.
|
||||
// Adding labels and integers is permitted, and yields a label.
|
||||
// Subtracting a constant from a label is permitted, and also yields a
|
||||
// label. Subtracting two labels that have some relationship to each
|
||||
// other is permitted, and yields a constant.
|
||||
//
|
||||
// For example:
|
||||
//
|
||||
// Label a; // a's value is undefined
|
||||
// Label b; // b's value is undefined
|
||||
// {
|
||||
// Label c = a + 4; // okay, even though a's value is unknown
|
||||
// b = c + 4; // also okay; b is now a+8
|
||||
// }
|
||||
// Label d = b - 2; // okay; d == a+6, even though c is gone
|
||||
// d.Value(); // error: d's value is not yet known
|
||||
// d - a; // is 6, even though their values are not known
|
||||
// a = 12; // now b == 20, and d == 18
|
||||
// d.Value(); // 18: no longer an error
|
||||
// b.Value(); // 20
|
||||
// d = 10; // error: d is already defined.
|
||||
//
|
||||
// Label objects' lifetimes are unconstrained: notice that, in the
|
||||
// above example, even though a and b are only related through c, and
|
||||
// c goes out of scope, the assignment to a sets b's value as well. In
|
||||
// particular, it's not necessary to ensure that a Label lives beyond
|
||||
// Sections that refer to it.
|
||||
class Label {
|
||||
public:
|
||||
Label(); // An undefined label.
|
||||
explicit Label(uint64_t value); // A label with a fixed value
|
||||
Label(const Label &value); // A label equal to another.
|
||||
~Label();
|
||||
|
||||
Label &operator=(uint64_t value);
|
||||
Label &operator=(const Label &value);
|
||||
Label operator+(uint64_t addend) const;
|
||||
Label operator-(uint64_t subtrahend) const;
|
||||
uint64_t operator-(const Label &subtrahend) const;
|
||||
|
||||
// We could also provide == and != that work on undefined, but
|
||||
// related, labels.
|
||||
|
||||
// Return true if this label's value is known. If VALUE_P is given,
|
||||
// set *VALUE_P to the known value if returning true.
|
||||
bool IsKnownConstant(uint64_t *value_p = NULL) const;
|
||||
|
||||
// Return true if the offset from LABEL to this label is known. If
|
||||
// OFFSET_P is given, set *OFFSET_P to the offset when returning true.
|
||||
//
|
||||
// You can think of l.KnownOffsetFrom(m, &d) as being like 'd = l-m',
|
||||
// except that it also returns a value indicating whether the
|
||||
// subtraction is possible given what we currently know of l and m.
|
||||
// It can be possible even if we don't know l and m's values. For
|
||||
// example:
|
||||
//
|
||||
// Label l, m;
|
||||
// m = l + 10;
|
||||
// l.IsKnownConstant(); // false
|
||||
// m.IsKnownConstant(); // false
|
||||
// uint64_t d;
|
||||
// l.IsKnownOffsetFrom(m, &d); // true, and sets d to -10.
|
||||
// l-m // -10
|
||||
// m-l // 10
|
||||
// m.Value() // error: m's value is not known
|
||||
bool IsKnownOffsetFrom(const Label &label, uint64_t *offset_p = NULL) const;
|
||||
|
||||
private:
|
||||
// A label's value, or if that is not yet known, how the value is
|
||||
// related to other labels' values. A binding may be:
|
||||
// - a known constant,
|
||||
// - constrained to be equal to some other binding plus a constant, or
|
||||
// - unconstrained, and free to take on any value.
|
||||
//
|
||||
// Many labels may point to a single binding, and each binding may
|
||||
// refer to another, so bindings and labels form trees whose leaves
|
||||
// are labels, whose interior nodes (and roots) are bindings, and
|
||||
// where links point from children to parents. Bindings are
|
||||
// reference counted, allowing labels to be lightweight, copyable,
|
||||
// assignable, placed in containers, and so on.
|
||||
class Binding {
|
||||
public:
|
||||
Binding();
|
||||
explicit Binding(uint64_t addend);
|
||||
~Binding();
|
||||
|
||||
// Increment our reference count.
|
||||
void Acquire() { reference_count_++; };
|
||||
// Decrement our reference count, and return true if it is zero.
|
||||
bool Release() { return --reference_count_ == 0; }
|
||||
|
||||
// Set this binding to be equal to BINDING + ADDEND. If BINDING is
|
||||
// NULL, then set this binding to the known constant ADDEND.
|
||||
// Update every binding on this binding's chain to point directly
|
||||
// to BINDING, or to be a constant, with addends adjusted
|
||||
// appropriately.
|
||||
void Set(Binding *binding, uint64_t value);
|
||||
|
||||
// Return what we know about the value of this binding.
|
||||
// - If this binding's value is a known constant, set BASE to
|
||||
// NULL, and set ADDEND to its value.
|
||||
// - If this binding is not a known constant but related to other
|
||||
// bindings, set BASE to the binding at the end of the relation
|
||||
// chain (which will always be unconstrained), and set ADDEND to the
|
||||
// value to add to that binding's value to get this binding's
|
||||
// value.
|
||||
// - If this binding is unconstrained, set BASE to this, and leave
|
||||
// ADDEND unchanged.
|
||||
void Get(Binding **base, uint64_t *addend);
|
||||
|
||||
private:
|
||||
// There are three cases:
|
||||
//
|
||||
// - A binding representing a known constant value has base_ NULL,
|
||||
// and addend_ equal to the value.
|
||||
//
|
||||
// - A binding representing a completely unconstrained value has
|
||||
// base_ pointing to this; addend_ is unused.
|
||||
//
|
||||
// - A binding whose value is related to some other binding's
|
||||
// value has base_ pointing to that other binding, and addend_
|
||||
// set to the amount to add to that binding's value to get this
|
||||
// binding's value. We only represent relationships of the form
|
||||
// x = y+c.
|
||||
//
|
||||
// Thus, the bind_ links form a chain terminating in either a
|
||||
// known constant value or a completely unconstrained value. Most
|
||||
// operations on bindings do path compression: they change every
|
||||
// binding on the chain to point directly to the final value,
|
||||
// adjusting addends as appropriate.
|
||||
Binding *base_;
|
||||
uint64_t addend_;
|
||||
|
||||
// The number of Labels and Bindings pointing to this binding.
|
||||
// (When a binding points to itself, indicating a completely
|
||||
// unconstrained binding, that doesn't count as a reference.)
|
||||
int reference_count_;
|
||||
};
|
||||
|
||||
// This label's value.
|
||||
Binding *value_;
|
||||
};
|
||||
|
||||
// Conventions for representing larger numbers as sequences of bytes.
|
||||
enum Endianness {
|
||||
kBigEndian, // Big-endian: the most significant byte comes first.
|
||||
kLittleEndian, // Little-endian: the least significant byte comes first.
|
||||
kUnsetEndian, // used internally
|
||||
};
|
||||
|
||||
// A section is a sequence of bytes, constructed by appending bytes
|
||||
// to the end. Sections have a convenient and flexible set of member
|
||||
// functions for appending data in various formats: big-endian and
|
||||
// little-endian signed and unsigned values of different sizes;
|
||||
// LEB128 and ULEB128 values (see below), and raw blocks of bytes.
|
||||
//
|
||||
// If you need to append a value to a section that is not convenient
|
||||
// to compute immediately, you can create a label, append the
|
||||
// label's value to the section, and then set the label's value
|
||||
// later, when it's convenient to do so. Once a label's value is
|
||||
// known, the section class takes care of updating all previously
|
||||
// appended references to it.
|
||||
//
|
||||
// Once all the labels to which a section refers have had their
|
||||
// values determined, you can get a copy of the section's contents
|
||||
// as a string.
|
||||
//
|
||||
// Note that there is no specified "start of section" label. This is
|
||||
// because there are typically several different meanings for "the
|
||||
// start of a section": the offset of the section within an object
|
||||
// file, the address in memory at which the section's content appear,
|
||||
// and so on. It's up to the code that uses the Section class to
|
||||
// keep track of these explicitly, as they depend on the application.
|
||||
class Section {
|
||||
public:
|
||||
explicit Section(Endianness endianness = kUnsetEndian)
|
||||
: endianness_(endianness) { };
|
||||
|
||||
// A base class destructor should be either public and virtual,
|
||||
// or protected and nonvirtual.
|
||||
virtual ~Section() { };
|
||||
|
||||
// Return the default endianness of this section.
|
||||
Endianness endianness() const { return endianness_; }
|
||||
|
||||
// Append the SIZE bytes at DATA to the end of this section. Return
|
||||
// a reference to this section.
|
||||
Section &Append(const string &data) {
|
||||
contents_.append(data);
|
||||
return *this;
|
||||
};
|
||||
|
||||
// Append SIZE copies of BYTE to the end of this section. Return a
|
||||
// reference to this section.
|
||||
Section &Append(size_t size, uint8_t byte) {
|
||||
contents_.append(size, (char) byte);
|
||||
return *this;
|
||||
}
|
||||
|
||||
// Append NUMBER to this section. ENDIANNESS is the endianness to
|
||||
// use to write the number. SIZE is the length of the number in
|
||||
// bytes. Return a reference to this section.
|
||||
Section &Append(Endianness endianness, size_t size, uint64_t number);
|
||||
Section &Append(Endianness endianness, size_t size, const Label &label);
|
||||
|
||||
// Append SECTION to the end of this section. The labels SECTION
|
||||
// refers to need not be defined yet.
|
||||
//
|
||||
// Note that this has no effect on any Labels' values, or on
|
||||
// SECTION. If placing SECTION within 'this' provides new
|
||||
// constraints on existing labels' values, then it's up to the
|
||||
// caller to fiddle with those labels as needed.
|
||||
Section &Append(const Section §ion);
|
||||
|
||||
// Append the contents of DATA as a series of bytes terminated by
|
||||
// a NULL character.
|
||||
Section &AppendCString(const string &data) {
|
||||
Append(data);
|
||||
contents_ += '\0';
|
||||
return *this;
|
||||
}
|
||||
|
||||
// Append VALUE or LABEL to this section, with the given bit width and
|
||||
// endianness. Return a reference to this section.
|
||||
//
|
||||
// The names of these functions have the form <ENDIANNESS><BITWIDTH>:
|
||||
// <ENDIANNESS> is either 'L' (little-endian, least significant byte first),
|
||||
// 'B' (big-endian, most significant byte first), or
|
||||
// 'D' (default, the section's default endianness)
|
||||
// <BITWIDTH> is 8, 16, 32, or 64.
|
||||
//
|
||||
// Since endianness doesn't matter for a single byte, all the
|
||||
// <BITWIDTH>=8 functions are equivalent.
|
||||
//
|
||||
// These can be used to write both signed and unsigned values, as
|
||||
// the compiler will properly sign-extend a signed value before
|
||||
// passing it to the function, at which point the function's
|
||||
// behavior is the same either way.
|
||||
Section &L8(uint8_t value) { contents_ += value; return *this; }
|
||||
Section &B8(uint8_t value) { contents_ += value; return *this; }
|
||||
Section &D8(uint8_t value) { contents_ += value; return *this; }
|
||||
Section &L16(uint16_t), &L32(uint32_t), &L64(uint64_t),
|
||||
&B16(uint16_t), &B32(uint32_t), &B64(uint64_t),
|
||||
&D16(uint16_t), &D32(uint32_t), &D64(uint64_t);
|
||||
Section &L8(const Label &label), &L16(const Label &label),
|
||||
&L32(const Label &label), &L64(const Label &label),
|
||||
&B8(const Label &label), &B16(const Label &label),
|
||||
&B32(const Label &label), &B64(const Label &label),
|
||||
&D8(const Label &label), &D16(const Label &label),
|
||||
&D32(const Label &label), &D64(const Label &label);
|
||||
|
||||
// Append VALUE in a signed LEB128 (Little-Endian Base 128) form.
|
||||
//
|
||||
// The signed LEB128 representation of an integer N is a variable
|
||||
// number of bytes:
|
||||
//
|
||||
// - If N is between -0x40 and 0x3f, then its signed LEB128
|
||||
// representation is a single byte whose value is N.
|
||||
//
|
||||
// - Otherwise, its signed LEB128 representation is (N & 0x7f) |
|
||||
// 0x80, followed by the signed LEB128 representation of N / 128,
|
||||
// rounded towards negative infinity.
|
||||
//
|
||||
// In other words, we break VALUE into groups of seven bits, put
|
||||
// them in little-endian order, and then write them as eight-bit
|
||||
// bytes with the high bit on all but the last.
|
||||
//
|
||||
// Note that VALUE cannot be a Label (we would have to implement
|
||||
// relaxation).
|
||||
Section &LEB128(long long value);
|
||||
|
||||
// Append VALUE in unsigned LEB128 (Little-Endian Base 128) form.
|
||||
//
|
||||
// The unsigned LEB128 representation of an integer N is a variable
|
||||
// number of bytes:
|
||||
//
|
||||
// - If N is between 0 and 0x7f, then its unsigned LEB128
|
||||
// representation is a single byte whose value is N.
|
||||
//
|
||||
// - Otherwise, its unsigned LEB128 representation is (N & 0x7f) |
|
||||
// 0x80, followed by the unsigned LEB128 representation of N /
|
||||
// 128, rounded towards negative infinity.
|
||||
//
|
||||
// Note that VALUE cannot be a Label (we would have to implement
|
||||
// relaxation).
|
||||
Section &ULEB128(uint64_t value);
|
||||
|
||||
// Jump to the next location aligned on an ALIGNMENT-byte boundary,
|
||||
// relative to the start of the section. Fill the gap with PAD_BYTE.
|
||||
// ALIGNMENT must be a power of two. Return a reference to this
|
||||
// section.
|
||||
Section &Align(size_t alignment, uint8_t pad_byte = 0);
|
||||
|
||||
// Return the current size of the section.
|
||||
size_t Size() const { return contents_.size(); }
|
||||
|
||||
// Return a label representing the start of the section.
|
||||
//
|
||||
// It is up to the user whether this label represents the section's
|
||||
// position in an object file, the section's address in memory, or
|
||||
// what have you; some applications may need both, in which case
|
||||
// this simple-minded interface won't be enough. This class only
|
||||
// provides a single start label, for use with the Here and Mark
|
||||
// member functions.
|
||||
//
|
||||
// Ideally, we'd provide this in a subclass that actually knows more
|
||||
// about the application at hand and can provide an appropriate
|
||||
// collection of start labels. But then the appending member
|
||||
// functions like Append and D32 would return a reference to the
|
||||
// base class, not the derived class, and the chaining won't work.
|
||||
// Since the only value here is in pretty notation, that's a fatal
|
||||
// flaw.
|
||||
Label start() const { return start_; }
|
||||
|
||||
// Return a label representing the point at which the next Appended
|
||||
// item will appear in the section, relative to start().
|
||||
Label Here() const { return start_ + Size(); }
|
||||
|
||||
// Set *LABEL to Here, and return a reference to this section.
|
||||
Section &Mark(Label *label) { *label = Here(); return *this; }
|
||||
|
||||
// If there are no undefined label references left in this
|
||||
// section, set CONTENTS to the contents of this section, as a
|
||||
// string, and clear this section. Return true on success, or false
|
||||
// if there were still undefined labels.
|
||||
bool GetContents(string *contents);
|
||||
|
||||
private:
|
||||
// Used internally. A reference to a label's value.
|
||||
struct Reference {
|
||||
Reference(size_t set_offset, Endianness set_endianness, size_t set_size,
|
||||
const Label &set_label)
|
||||
: offset(set_offset), endianness(set_endianness), size(set_size),
|
||||
label(set_label) { }
|
||||
|
||||
// The offset of the reference within the section.
|
||||
size_t offset;
|
||||
|
||||
// The endianness of the reference.
|
||||
Endianness endianness;
|
||||
|
||||
// The size of the reference.
|
||||
size_t size;
|
||||
|
||||
// The label to which this is a reference.
|
||||
Label label;
|
||||
};
|
||||
|
||||
// The default endianness of this section.
|
||||
Endianness endianness_;
|
||||
|
||||
// The contents of the section.
|
||||
string contents_;
|
||||
|
||||
// References to labels within those contents.
|
||||
vector<Reference> references_;
|
||||
|
||||
// A label referring to the beginning of the section.
|
||||
Label start_;
|
||||
};
|
||||
|
||||
} // namespace test_assembler
|
||||
} // namespace lul_test
|
||||
|
||||
|
||||
namespace lul_test {
|
||||
|
||||
using lul::DwarfPointerEncoding;
|
||||
using lul_test::test_assembler::Endianness;
|
||||
using lul_test::test_assembler::Label;
|
||||
using lul_test::test_assembler::Section;
|
||||
|
||||
class CFISection: public Section {
|
||||
public:
|
||||
|
||||
// CFI augmentation strings beginning with 'z', defined by the
|
||||
// Linux/IA-64 C++ ABI, can specify interesting encodings for
|
||||
// addresses appearing in FDE headers and call frame instructions (and
|
||||
// for additional fields whose presence the augmentation string
|
||||
// specifies). In particular, pointers can be specified to be relative
|
||||
// to various base address: the start of the .text section, the
|
||||
// location holding the address itself, and so on. These allow the
|
||||
// frame data to be position-independent even when they live in
|
||||
// write-protected pages. These variants are specified at the
|
||||
// following two URLs:
|
||||
//
|
||||
// http://refspecs.linux-foundation.org/LSB_4.0.0/LSB-Core-generic/LSB-Core-generic/dwarfext.html
|
||||
// http://refspecs.linux-foundation.org/LSB_4.0.0/LSB-Core-generic/LSB-Core-generic/ehframechpt.html
|
||||
//
|
||||
// CFISection leaves the production of well-formed 'z'-augmented CIEs and
|
||||
// FDEs to the user, but does provide EncodedPointer, to emit
|
||||
// properly-encoded addresses for a given pointer encoding.
|
||||
// EncodedPointer uses an instance of this structure to find the base
|
||||
// addresses it should use; you can establish a default for all encoded
|
||||
// pointers appended to this section with SetEncodedPointerBases.
|
||||
struct EncodedPointerBases {
|
||||
EncodedPointerBases() : cfi(), text(), data() { }
|
||||
|
||||
// The starting address of this CFI section in memory, for
|
||||
// DW_EH_PE_pcrel. DW_EH_PE_pcrel pointers may only be used in data
|
||||
// that has is loaded into the program's address space.
|
||||
uint64_t cfi;
|
||||
|
||||
// The starting address of this file's .text section, for DW_EH_PE_textrel.
|
||||
uint64_t text;
|
||||
|
||||
// The starting address of this file's .got or .eh_frame_hdr section,
|
||||
// for DW_EH_PE_datarel.
|
||||
uint64_t data;
|
||||
};
|
||||
|
||||
// Create a CFISection whose endianness is ENDIANNESS, and where
|
||||
// machine addresses are ADDRESS_SIZE bytes long. If EH_FRAME is
|
||||
// true, use the .eh_frame format, as described by the Linux
|
||||
// Standards Base Core Specification, instead of the DWARF CFI
|
||||
// format.
|
||||
CFISection(Endianness endianness, size_t address_size,
|
||||
bool eh_frame = false)
|
||||
: Section(endianness), address_size_(address_size), eh_frame_(eh_frame),
|
||||
pointer_encoding_(lul::DW_EH_PE_absptr),
|
||||
encoded_pointer_bases_(), entry_length_(NULL), in_fde_(false) {
|
||||
// The 'start', 'Here', and 'Mark' members of a CFISection all refer
|
||||
// to section offsets.
|
||||
start() = 0;
|
||||
}
|
||||
|
||||
// Return this CFISection's address size.
|
||||
size_t AddressSize() const { return address_size_; }
|
||||
|
||||
// Return true if this CFISection uses the .eh_frame format, or
|
||||
// false if it contains ordinary DWARF CFI data.
|
||||
bool ContainsEHFrame() const { return eh_frame_; }
|
||||
|
||||
// Use ENCODING for pointers in calls to FDEHeader and EncodedPointer.
|
||||
void SetPointerEncoding(DwarfPointerEncoding encoding) {
|
||||
pointer_encoding_ = encoding;
|
||||
}
|
||||
|
||||
// Use the addresses in BASES as the base addresses for encoded
|
||||
// pointers in subsequent calls to FDEHeader or EncodedPointer.
|
||||
// This function makes a copy of BASES.
|
||||
void SetEncodedPointerBases(const EncodedPointerBases &bases) {
|
||||
encoded_pointer_bases_ = bases;
|
||||
}
|
||||
|
||||
// Append a Common Information Entry header to this section with the
|
||||
// given values. If dwarf64 is true, use the 64-bit DWARF initial
|
||||
// length format for the CIE's initial length. Return a reference to
|
||||
// this section. You should call FinishEntry after writing the last
|
||||
// instruction for the CIE.
|
||||
//
|
||||
// Before calling this function, you will typically want to use Mark
|
||||
// or Here to make a label to pass to FDEHeader that refers to this
|
||||
// CIE's position in the section.
|
||||
CFISection &CIEHeader(uint64_t code_alignment_factor,
|
||||
int data_alignment_factor,
|
||||
unsigned return_address_register,
|
||||
uint8_t version = 3,
|
||||
const string &augmentation = "",
|
||||
bool dwarf64 = false);
|
||||
|
||||
// Append a Frame Description Entry header to this section with the
|
||||
// given values. If dwarf64 is true, use the 64-bit DWARF initial
|
||||
// length format for the CIE's initial length. Return a reference to
|
||||
// this section. You should call FinishEntry after writing the last
|
||||
// instruction for the CIE.
|
||||
//
|
||||
// This function doesn't support entries that are longer than
|
||||
// 0xffffff00 bytes. (The "initial length" is always a 32-bit
|
||||
// value.) Nor does it support .debug_frame sections longer than
|
||||
// 0xffffff00 bytes.
|
||||
CFISection &FDEHeader(Label cie_pointer,
|
||||
uint64_t initial_location,
|
||||
uint64_t address_range,
|
||||
bool dwarf64 = false);
|
||||
|
||||
// Note the current position as the end of the last CIE or FDE we
|
||||
// started, after padding with DW_CFA_nops for alignment. This
|
||||
// defines the label representing the entry's length, cited in the
|
||||
// entry's header. Return a reference to this section.
|
||||
CFISection &FinishEntry();
|
||||
|
||||
// Append the contents of BLOCK as a DW_FORM_block value: an
|
||||
// unsigned LEB128 length, followed by that many bytes of data.
|
||||
CFISection &Block(const string &block) {
|
||||
ULEB128(block.size());
|
||||
Append(block);
|
||||
return *this;
|
||||
}
|
||||
|
||||
// Append ADDRESS to this section, in the appropriate size and
|
||||
// endianness. Return a reference to this section.
|
||||
CFISection &Address(uint64_t address) {
|
||||
Section::Append(endianness(), address_size_, address);
|
||||
return *this;
|
||||
}
|
||||
|
||||
// Append ADDRESS to this section, using ENCODING and BASES. ENCODING
|
||||
// defaults to this section's default encoding, established by
|
||||
// SetPointerEncoding. BASES defaults to this section's bases, set by
|
||||
// SetEncodedPointerBases. If the DW_EH_PE_indirect bit is set in the
|
||||
// encoding, assume that ADDRESS is where the true address is stored.
|
||||
// Return a reference to this section.
|
||||
//
|
||||
// (C++ doesn't let me use default arguments here, because I want to
|
||||
// refer to members of *this in the default argument expression.)
|
||||
CFISection &EncodedPointer(uint64_t address) {
|
||||
return EncodedPointer(address, pointer_encoding_, encoded_pointer_bases_);
|
||||
}
|
||||
CFISection &EncodedPointer(uint64_t address, DwarfPointerEncoding encoding) {
|
||||
return EncodedPointer(address, encoding, encoded_pointer_bases_);
|
||||
}
|
||||
CFISection &EncodedPointer(uint64_t address, DwarfPointerEncoding encoding,
|
||||
const EncodedPointerBases &bases);
|
||||
|
||||
// Restate some member functions, to keep chaining working nicely.
|
||||
CFISection &Mark(Label *label) { Section::Mark(label); return *this; }
|
||||
CFISection &D8(uint8_t v) { Section::D8(v); return *this; }
|
||||
CFISection &D16(uint16_t v) { Section::D16(v); return *this; }
|
||||
CFISection &D16(Label v) { Section::D16(v); return *this; }
|
||||
CFISection &D32(uint32_t v) { Section::D32(v); return *this; }
|
||||
CFISection &D32(const Label &v) { Section::D32(v); return *this; }
|
||||
CFISection &D64(uint64_t v) { Section::D64(v); return *this; }
|
||||
CFISection &D64(const Label &v) { Section::D64(v); return *this; }
|
||||
CFISection &LEB128(long long v) { Section::LEB128(v); return *this; }
|
||||
CFISection &ULEB128(uint64_t v) { Section::ULEB128(v); return *this; }
|
||||
|
||||
private:
|
||||
// A length value that we've appended to the section, but is not yet
|
||||
// known. LENGTH is the appended value; START is a label referring
|
||||
// to the start of the data whose length was cited.
|
||||
struct PendingLength {
|
||||
Label length;
|
||||
Label start;
|
||||
};
|
||||
|
||||
// Constants used in CFI/.eh_frame data:
|
||||
|
||||
// If the first four bytes of an "initial length" are this constant, then
|
||||
// the data uses the 64-bit DWARF format, and the length itself is the
|
||||
// subsequent eight bytes.
|
||||
static const uint32_t kDwarf64InitialLengthMarker = 0xffffffffU;
|
||||
|
||||
// The CIE identifier for 32- and 64-bit DWARF CFI and .eh_frame data.
|
||||
static const uint32_t kDwarf32CIEIdentifier = ~(uint32_t)0;
|
||||
static const uint64_t kDwarf64CIEIdentifier = ~(uint64_t)0;
|
||||
static const uint32_t kEHFrame32CIEIdentifier = 0;
|
||||
static const uint64_t kEHFrame64CIEIdentifier = 0;
|
||||
|
||||
// The size of a machine address for the data in this section.
|
||||
size_t address_size_;
|
||||
|
||||
// If true, we are generating a Linux .eh_frame section, instead of
|
||||
// a standard DWARF .debug_frame section.
|
||||
bool eh_frame_;
|
||||
|
||||
// The encoding to use for FDE pointers.
|
||||
DwarfPointerEncoding pointer_encoding_;
|
||||
|
||||
// The base addresses to use when emitting encoded pointers.
|
||||
EncodedPointerBases encoded_pointer_bases_;
|
||||
|
||||
// The length value for the current entry.
|
||||
//
|
||||
// Oddly, this must be dynamically allocated. Labels never get new
|
||||
// values; they only acquire constraints on the value they already
|
||||
// have, or assert if you assign them something incompatible. So
|
||||
// each header needs truly fresh Label objects to cite in their
|
||||
// headers and track their positions. The alternative is explicit
|
||||
// destructor invocation and a placement new. Ick.
|
||||
PendingLength *entry_length_;
|
||||
|
||||
// True if we are currently emitting an FDE --- that is, we have
|
||||
// called FDEHeader but have not yet called FinishEntry.
|
||||
bool in_fde_;
|
||||
|
||||
// If in_fde_ is true, this is its starting address. We use this for
|
||||
// emitting DW_EH_PE_funcrel pointers.
|
||||
uint64_t fde_start_address_;
|
||||
};
|
||||
|
||||
} // namespace lul_test
|
||||
|
||||
#endif // LUL_TEST_INFRASTRUCTURE_H
|
@ -7,6 +7,8 @@
|
||||
if CONFIG['OS_TARGET'] in ('Android', 'Linux'):
|
||||
UNIFIED_SOURCES += [
|
||||
'LulTest.cpp',
|
||||
'LulTestDwarf.cpp',
|
||||
'LulTestInfrastructure.cpp',
|
||||
]
|
||||
|
||||
LOCAL_INCLUDES += [
|
||||
|
Loading…
x
Reference in New Issue
Block a user