From 1f26f9ec432840abbd2de402ff79491aa032e544 Mon Sep 17 00:00:00 2001 From: "myk@mozilla.org" Date: Tue, 29 Jan 2008 15:34:19 -0800 Subject: [PATCH] bug 413589: enable fts3 (full text index) sqlite module; r=sdwilsh, a=damons --- db/sqlite3/src/Makefile.in | 4 +- db/sqlite3/src/sqlite3.c | 40605 +++++++++++++++- storage/public/mozIStorageService.idl | 42 +- storage/src/mozStorageService.cpp | 25 + storage/test/unit/head_storage.js | 16 +- .../test/unit/test_storage_fulltextindex.js | 119 + storage/test/unit/test_storage_service.js | 3 +- .../unit/test_storage_service_unshared.js | 68 + 8 files changed, 40822 insertions(+), 60 deletions(-) create mode 100644 storage/test/unit/test_storage_fulltextindex.js create mode 100644 storage/test/unit/test_storage_service_unshared.js diff --git a/db/sqlite3/src/Makefile.in b/db/sqlite3/src/Makefile.in index e37dd2133b70..112ee1ba7e21 100644 --- a/db/sqlite3/src/Makefile.in +++ b/db/sqlite3/src/Makefile.in @@ -86,7 +86,9 @@ CSRCS = \ # -DSQLITE_SECURE_DELETE=1 will cause SQLITE to 0-fill delete data so we # don't have to vacuum to make sure the data is not visible in the file. -DEFINES = -DSQLITE_SECURE_DELETE=1 -DTHREADSAFE=1 +# -DSQLITE_ENABLE_FTS3=1 enables the full-text index module. +# -DSQLITE_CORE=1 statically links that module into the SQLite library. +DEFINES = -DSQLITE_SECURE_DELETE=1 -DTHREADSAFE=1 -DSQLITE_CORE=1 -DSQLITE_ENABLE_FTS3=1 ifeq ($(OS_ARCH),OS2) ifdef MOZ_OS2_HIGH_MEMORY diff --git a/db/sqlite3/src/sqlite3.c b/db/sqlite3/src/sqlite3.c index 8a288afc1d35..09b30c263184 100644 --- a/db/sqlite3/src/sqlite3.c +++ b/db/sqlite3/src/sqlite3.c @@ -40,7 +40,7 @@ ************************************************************************* ** Internal interface definitions for SQLite. ** -** @(#) $Id: sqlite3.c,v 1.12 2008/01/22 13:54:06 mozilla%weilbacher.org Exp $ +** @(#) $Id: sqlite3.c,v 1.13 2008/01/29 23:34:19 myk%mozilla.org Exp $ */ #ifndef _SQLITEINT_H_ #define _SQLITEINT_H_ @@ -104,7 +104,7 @@ ** ** This file defines various limits of what SQLite can process. ** -** @(#) $Id: sqlite3.c,v 1.12 2008/01/22 13:54:06 mozilla%weilbacher.org Exp $ +** @(#) $Id: sqlite3.c,v 1.13 2008/01/29 23:34:19 myk%mozilla.org Exp $ */ /* @@ -395,7 +395,7 @@ ** the version number) and changes its name to "sqlite3.h" as ** part of the build process. ** -** @(#) $Id: sqlite3.c,v 1.12 2008/01/22 13:54:06 mozilla%weilbacher.org Exp $ +** @(#) $Id: sqlite3.c,v 1.13 2008/01/29 23:34:19 myk%mozilla.org Exp $ */ #ifndef _SQLITE3_H_ #define _SQLITE3_H_ @@ -4222,7 +4222,7 @@ SQLITE_API int sqlite3_file_control(sqlite3*, const char *zDbName, int op, void* ** This is the header file for the generic hash-table implemenation ** used in SQLite. ** -** $Id: sqlite3.c,v 1.12 2008/01/22 13:54:06 mozilla%weilbacher.org Exp $ +** $Id: sqlite3.c,v 1.13 2008/01/29 23:34:19 myk%mozilla.org Exp $ */ #ifndef _SQLITE_HASH_H_ #define _SQLITE_HASH_H_ @@ -4655,7 +4655,7 @@ struct BusyHandler { ** subsystem. See comments in the source code for a detailed description ** of what each interface routine does. ** -** @(#) $Id: sqlite3.c,v 1.12 2008/01/22 13:54:06 mozilla%weilbacher.org Exp $ +** @(#) $Id: sqlite3.c,v 1.13 2008/01/29 23:34:19 myk%mozilla.org Exp $ */ #ifndef _BTREE_H_ #define _BTREE_H_ @@ -4865,7 +4865,7 @@ SQLITE_PRIVATE void sqlite3BtreeMutexArrayInsert(BtreeMutexArray*, Btree*); ** or VDBE. The VDBE implements an abstract machine that runs a ** simple program to access and modify the underlying database. ** -** $Id: sqlite3.c,v 1.12 2008/01/22 13:54:06 mozilla%weilbacher.org Exp $ +** $Id: sqlite3.c,v 1.13 2008/01/29 23:34:19 myk%mozilla.org Exp $ */ #ifndef _SQLITE_VDBE_H_ #define _SQLITE_VDBE_H_ @@ -5181,7 +5181,7 @@ SQLITE_PRIVATE void sqlite3VdbeComment(Vdbe*, const char*, ...); ** subsystem. The page cache subsystem reads and writes a file a page ** at a time and provides a journal for rollback. ** -** @(#) $Id: sqlite3.c,v 1.12 2008/01/22 13:54:06 mozilla%weilbacher.org Exp $ +** @(#) $Id: sqlite3.c,v 1.13 2008/01/29 23:34:19 myk%mozilla.org Exp $ */ #ifndef _PAGER_H_ @@ -5656,7 +5656,7 @@ SQLITE_PRIVATE sqlite3_vfs *sqlite3OsDefaultVfs(void); ** Source files should #include the sqliteInt.h file and let that file ** include this one indirectly. ** -** $Id: sqlite3.c,v 1.12 2008/01/22 13:54:06 mozilla%weilbacher.org Exp $ +** $Id: sqlite3.c,v 1.13 2008/01/29 23:34:19 myk%mozilla.org Exp $ */ @@ -7389,7 +7389,7 @@ SQLITE_EXTERN void (*sqlite3_io_trace)(const char*,...); ** sqlite3RegisterDateTimeFunctions() found at the bottom of the file. ** All other code has file scope. ** -** $Id: sqlite3.c,v 1.12 2008/01/22 13:54:06 mozilla%weilbacher.org Exp $ +** $Id: sqlite3.c,v 1.13 2008/01/29 23:34:19 myk%mozilla.org Exp $ ** ** SQLite processes all times and dates as Julian Day numbers. The ** dates and times are stored as the number of days since noon @@ -8715,7 +8715,7 @@ SQLITE_API int sqlite3_vfs_unregister(sqlite3_vfs *pVfs){ ** This file contains the C functions that implement a memory ** allocation subsystem for use by SQLite. ** -** $Id: sqlite3.c,v 1.12 2008/01/22 13:54:06 mozilla%weilbacher.org Exp $ +** $Id: sqlite3.c,v 1.13 2008/01/29 23:34:19 myk%mozilla.org Exp $ */ /* @@ -8949,7 +8949,7 @@ SQLITE_API void *sqlite3_realloc(void *pPrior, int nBytes){ ** This file contains the C functions that implement a memory ** allocation subsystem for use by SQLite. ** -** $Id: sqlite3.c,v 1.12 2008/01/22 13:54:06 mozilla%weilbacher.org Exp $ +** $Id: sqlite3.c,v 1.13 2008/01/29 23:34:19 myk%mozilla.org Exp $ */ /* @@ -9531,7 +9531,7 @@ SQLITE_PRIVATE void sqlite3MallocAllow(void){ ** This version of the memory allocation subsystem is used if ** and only if SQLITE_MEMORY_SIZE is defined. ** -** $Id: sqlite3.c,v 1.12 2008/01/22 13:54:06 mozilla%weilbacher.org Exp $ +** $Id: sqlite3.c,v 1.13 2008/01/29 23:34:19 myk%mozilla.org Exp $ */ /* @@ -10185,7 +10185,7 @@ SQLITE_API void sqlite3_memdebug_dump(const char *zFilename){ ** implementation is suitable for testing. ** debugging purposes ** -** $Id: sqlite3.c,v 1.12 2008/01/22 13:54:06 mozilla%weilbacher.org Exp $ +** $Id: sqlite3.c,v 1.13 2008/01/29 23:34:19 myk%mozilla.org Exp $ */ #ifdef SQLITE_MUTEX_NOOP_DEBUG @@ -10305,7 +10305,7 @@ SQLITE_API int sqlite3_mutex_notheld(sqlite3_mutex *p){ ************************************************************************* ** This file contains the C functions that implement mutexes for OS/2 ** -** $Id: sqlite3.c,v 1.12 2008/01/22 13:54:06 mozilla%weilbacher.org Exp $ +** $Id: sqlite3.c,v 1.13 2008/01/29 23:34:19 myk%mozilla.org Exp $ */ /* @@ -10543,7 +10543,7 @@ SQLITE_API int sqlite3_mutex_notheld(sqlite3_mutex *p){ ************************************************************************* ** This file contains the C functions that implement mutexes for pthreads ** -** $Id: sqlite3.c,v 1.12 2008/01/22 13:54:06 mozilla%weilbacher.org Exp $ +** $Id: sqlite3.c,v 1.13 2008/01/29 23:34:19 myk%mozilla.org Exp $ */ /* @@ -10843,7 +10843,7 @@ SQLITE_API int sqlite3_mutex_notheld(sqlite3_mutex *p){ ************************************************************************* ** This file contains the C functions that implement mutexes for win32 ** -** $Id: sqlite3.c,v 1.12 2008/01/22 13:54:06 mozilla%weilbacher.org Exp $ +** $Id: sqlite3.c,v 1.13 2008/01/29 23:34:19 myk%mozilla.org Exp $ */ /* @@ -11065,7 +11065,7 @@ SQLITE_API int sqlite3_mutex_notheld(sqlite3_mutex *p){ ** Memory allocation functions used throughout sqlite. ** ** -** $Id: sqlite3.c,v 1.12 2008/01/22 13:54:06 mozilla%weilbacher.org Exp $ +** $Id: sqlite3.c,v 1.13 2008/01/29 23:34:19 myk%mozilla.org Exp $ */ /* @@ -12213,7 +12213,7 @@ SQLITE_PRIVATE void sqlite3DebugPrintf(const char *zFormat, ...){ ** Random numbers are used by some of the database backends in order ** to generate random integer keys for tables or random filenames. ** -** $Id: sqlite3.c,v 1.12 2008/01/22 13:54:06 mozilla%weilbacher.org Exp $ +** $Id: sqlite3.c,v 1.13 2008/01/29 23:34:19 myk%mozilla.org Exp $ */ @@ -12315,7 +12315,7 @@ SQLITE_PRIVATE void sqlite3Randomness(int N, void *pBuf){ ** This file contains routines used to translate between UTF-8, ** UTF-16, UTF-16BE, and UTF-16LE. ** -** $Id: sqlite3.c,v 1.12 2008/01/22 13:54:06 mozilla%weilbacher.org Exp $ +** $Id: sqlite3.c,v 1.13 2008/01/29 23:34:19 myk%mozilla.org Exp $ ** ** Notes on UTF-8: ** @@ -13294,7 +13294,7 @@ SQLITE_PRIVATE void sqlite3UtfSelfTest(){ ** This file contains functions for allocating memory, comparing ** strings, and stuff like that. ** -** $Id: sqlite3.c,v 1.12 2008/01/22 13:54:06 mozilla%weilbacher.org Exp $ +** $Id: sqlite3.c,v 1.13 2008/01/29 23:34:19 myk%mozilla.org Exp $ */ @@ -13999,7 +13999,7 @@ SQLITE_PRIVATE int sqlite3SafetyOff(sqlite3 *db){ ** This is the implementation of generic hash-tables ** used in SQLite. ** -** $Id: sqlite3.c,v 1.12 2008/01/22 13:54:06 mozilla%weilbacher.org Exp $ +** $Id: sqlite3.c,v 1.13 2008/01/29 23:34:19 myk%mozilla.org Exp $ */ /* Turn bulk memory into a hash table object by initializing the @@ -20300,7 +20300,7 @@ SQLITE_PRIVATE sqlite3_vfs *sqlite3OsDefaultVfs(void){ ** file simultaneously, or one process from reading the database while ** another is writing. ** -** @(#) $Id: sqlite3.c,v 1.12 2008/01/22 13:54:06 mozilla%weilbacher.org Exp $ +** @(#) $Id: sqlite3.c,v 1.13 2008/01/29 23:34:19 myk%mozilla.org Exp $ */ #ifndef SQLITE_OMIT_DISKIO @@ -25415,7 +25415,7 @@ SQLITE_PRIVATE void sqlite3PagerRefdump(Pager *pPager){ ** ************************************************************************* ** -** $Id: sqlite3.c,v 1.12 2008/01/22 13:54:06 mozilla%weilbacher.org Exp $ +** $Id: sqlite3.c,v 1.13 2008/01/29 23:34:19 myk%mozilla.org Exp $ ** ** This file contains code used to implement mutexes on Btree objects. ** This code really belongs in btree.c. But btree.c is getting too @@ -25435,7 +25435,7 @@ SQLITE_PRIVATE void sqlite3PagerRefdump(Pager *pPager){ ** May you share freely, never taking more than you give. ** ************************************************************************* -** $Id: sqlite3.c,v 1.12 2008/01/22 13:54:06 mozilla%weilbacher.org Exp $ +** $Id: sqlite3.c,v 1.13 2008/01/29 23:34:19 myk%mozilla.org Exp $ ** ** This file implements a external (disk-based) database using BTrees. ** For a detailed discussion of BTrees, refer to @@ -26381,7 +26381,7 @@ SQLITE_PRIVATE void sqlite3BtreeMutexArrayLeave(BtreeMutexArray *pArray){ ** May you share freely, never taking more than you give. ** ************************************************************************* -** $Id: sqlite3.c,v 1.12 2008/01/22 13:54:06 mozilla%weilbacher.org Exp $ +** $Id: sqlite3.c,v 1.13 2008/01/29 23:34:19 myk%mozilla.org Exp $ ** ** This file implements a external (disk-based) database using BTrees. ** See the header comment on "btreeInt.h" for additional information. @@ -37835,7 +37835,7 @@ SQLITE_API sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){ ** in this file for details. If in doubt, do not deviate from existing ** commenting and indentation practices when changing or adding code. ** -** $Id: sqlite3.c,v 1.12 2008/01/22 13:54:06 mozilla%weilbacher.org Exp $ +** $Id: sqlite3.c,v 1.13 2008/01/29 23:34:19 myk%mozilla.org Exp $ */ /* @@ -43109,7 +43109,7 @@ abort_due_to_interrupt: ** ** This file contains code used to implement incremental BLOB I/O. ** -** $Id: sqlite3.c,v 1.12 2008/01/22 13:54:06 mozilla%weilbacher.org Exp $ +** $Id: sqlite3.c,v 1.13 2008/01/29 23:34:19 myk%mozilla.org Exp $ */ @@ -43448,7 +43448,7 @@ SQLITE_API int sqlite3_blob_bytes(sqlite3_blob *pBlob){ ** ************************************************************************* ** -** @(#) $Id: sqlite3.c,v 1.12 2008/01/22 13:54:06 mozilla%weilbacher.org Exp $ +** @(#) $Id: sqlite3.c,v 1.13 2008/01/29 23:34:19 myk%mozilla.org Exp $ */ #ifdef SQLITE_ENABLE_ATOMIC_WRITE @@ -43690,7 +43690,7 @@ SQLITE_PRIVATE int sqlite3JournalSize(sqlite3_vfs *pVfs){ ** This file contains routines used for analyzing expressions and ** for generating VDBE code that evaluates expressions in SQLite. ** -** $Id: sqlite3.c,v 1.12 2008/01/22 13:54:06 mozilla%weilbacher.org Exp $ +** $Id: sqlite3.c,v 1.13 2008/01/29 23:34:19 myk%mozilla.org Exp $ */ /* @@ -46507,7 +46507,7 @@ SQLITE_PRIVATE int sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ ** This file contains C code routines that used to generate VDBE code ** that implements the ALTER TABLE command. ** -** $Id: sqlite3.c,v 1.12 2008/01/22 13:54:06 mozilla%weilbacher.org Exp $ +** $Id: sqlite3.c,v 1.13 2008/01/29 23:34:19 myk%mozilla.org Exp $ */ /* @@ -47136,7 +47136,7 @@ exit_begin_add_column: ************************************************************************* ** This file contains code associated with the ANALYZE command. ** -** @(#) $Id: sqlite3.c,v 1.12 2008/01/22 13:54:06 mozilla%weilbacher.org Exp $ +** @(#) $Id: sqlite3.c,v 1.13 2008/01/29 23:34:19 myk%mozilla.org Exp $ */ #ifndef SQLITE_OMIT_ANALYZE @@ -47558,7 +47558,7 @@ SQLITE_PRIVATE int sqlite3AnalysisLoad(sqlite3 *db, int iDb){ ************************************************************************* ** This file contains code used to implement the ATTACH and DETACH commands. ** -** $Id: sqlite3.c,v 1.12 2008/01/22 13:54:06 mozilla%weilbacher.org Exp $ +** $Id: sqlite3.c,v 1.13 2008/01/29 23:34:19 myk%mozilla.org Exp $ */ #ifndef SQLITE_OMIT_ATTACH @@ -48086,7 +48086,7 @@ SQLITE_PRIVATE int sqlite3FixTriggerStep( ** systems that do not need this facility may omit it by recompiling ** the library with -DSQLITE_OMIT_AUTHORIZATION=1 ** -** $Id: sqlite3.c,v 1.12 2008/01/22 13:54:06 mozilla%weilbacher.org Exp $ +** $Id: sqlite3.c,v 1.13 2008/01/29 23:34:19 myk%mozilla.org Exp $ */ /* @@ -48330,7 +48330,7 @@ SQLITE_PRIVATE void sqlite3AuthContextPop(AuthContext *pContext){ ** COMMIT ** ROLLBACK ** -** $Id: sqlite3.c,v 1.12 2008/01/22 13:54:06 mozilla%weilbacher.org Exp $ +** $Id: sqlite3.c,v 1.13 2008/01/29 23:34:19 myk%mozilla.org Exp $ */ /* @@ -51761,7 +51761,7 @@ SQLITE_PRIVATE KeyInfo *sqlite3IndexKeyinfo(Parse *pParse, Index *pIdx){ ** This file contains functions used to access the internal hash tables ** of user defined functions and collation sequences. ** -** $Id: sqlite3.c,v 1.12 2008/01/22 13:54:06 mozilla%weilbacher.org Exp $ +** $Id: sqlite3.c,v 1.13 2008/01/29 23:34:19 myk%mozilla.org Exp $ */ @@ -52140,7 +52140,7 @@ SQLITE_PRIVATE Schema *sqlite3SchemaGet(sqlite3 *db, Btree *pBt){ ** This file contains C code routines that are called by the parser ** in order to generate code for DELETE FROM statements. ** -** $Id: sqlite3.c,v 1.12 2008/01/22 13:54:06 mozilla%weilbacher.org Exp $ +** $Id: sqlite3.c,v 1.13 2008/01/29 23:34:19 myk%mozilla.org Exp $ */ /* @@ -52617,7 +52617,7 @@ SQLITE_PRIVATE void sqlite3GenerateIndexKey( ** sqliteRegisterBuildinFunctions() found at the bottom of the file. ** All other code has file scope. ** -** $Id: sqlite3.c,v 1.12 2008/01/22 13:54:06 mozilla%weilbacher.org Exp $ +** $Id: sqlite3.c,v 1.13 2008/01/29 23:34:19 myk%mozilla.org Exp $ */ @@ -54186,7 +54186,7 @@ SQLITE_PRIVATE int sqlite3IsLikeFunction(sqlite3 *db, Expr *pExpr, int *pIsNocas ** This file contains C code routines that are called by the parser ** to handle INSERT statements in SQLite. ** -** $Id: sqlite3.c,v 1.12 2008/01/22 13:54:06 mozilla%weilbacher.org Exp $ +** $Id: sqlite3.c,v 1.13 2008/01/29 23:34:19 myk%mozilla.org Exp $ */ /* @@ -55816,7 +55816,7 @@ static int xferOptimization( ** other files are for internal use by SQLite and should not be ** accessed by users of the library. ** -** $Id: sqlite3.c,v 1.12 2008/01/22 13:54:06 mozilla%weilbacher.org Exp $ +** $Id: sqlite3.c,v 1.13 2008/01/29 23:34:19 myk%mozilla.org Exp $ */ @@ -55971,7 +55971,7 @@ exec_out: ** as extensions by SQLite should #include this file instead of ** sqlite3.h. ** -** @(#) $Id: sqlite3.c,v 1.12 2008/01/22 13:54:06 mozilla%weilbacher.org Exp $ +** @(#) $Id: sqlite3.c,v 1.13 2008/01/29 23:34:19 myk%mozilla.org Exp $ */ #ifndef _SQLITE3EXT_H_ #define _SQLITE3EXT_H_ @@ -56817,7 +56817,7 @@ SQLITE_PRIVATE int sqlite3AutoLoadExtensions(sqlite3 *db){ ************************************************************************* ** This file contains code used to implement the PRAGMA command. ** -** $Id: sqlite3.c,v 1.12 2008/01/22 13:54:06 mozilla%weilbacher.org Exp $ +** $Id: sqlite3.c,v 1.13 2008/01/29 23:34:19 myk%mozilla.org Exp $ */ /* Ignore this whole file if pragmas are disabled @@ -58022,7 +58022,7 @@ pragma_out: ** interface, and routines that contribute to loading the database schema ** from disk. ** -** $Id: sqlite3.c,v 1.12 2008/01/22 13:54:06 mozilla%weilbacher.org Exp $ +** $Id: sqlite3.c,v 1.13 2008/01/29 23:34:19 myk%mozilla.org Exp $ */ /* @@ -58787,7 +58787,7 @@ SQLITE_API int sqlite3_prepare16_v2( ** This file contains C code routines that are called by the parser ** to handle SELECT statements in SQLite. ** -** $Id: sqlite3.c,v 1.12 2008/01/22 13:54:06 mozilla%weilbacher.org Exp $ +** $Id: sqlite3.c,v 1.13 2008/01/29 23:34:19 myk%mozilla.org Exp $ */ @@ -63504,7 +63504,7 @@ SQLITE_PRIVATE int sqlite3CodeRowTrigger( ** This file contains C code routines that are called by the parser ** to handle UPDATE statements. ** -** $Id: sqlite3.c,v 1.12 2008/01/22 13:54:06 mozilla%weilbacher.org Exp $ +** $Id: sqlite3.c,v 1.13 2008/01/29 23:34:19 myk%mozilla.org Exp $ */ #ifndef SQLITE_OMIT_VIRTUALTABLE @@ -64147,7 +64147,7 @@ static void updateVirtualTable( ** Most of the code in this file may be omitted by defining the ** SQLITE_OMIT_VACUUM macro. ** -** $Id: sqlite3.c,v 1.12 2008/01/22 13:54:06 mozilla%weilbacher.org Exp $ +** $Id: sqlite3.c,v 1.13 2008/01/29 23:34:19 myk%mozilla.org Exp $ */ #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH) @@ -64408,7 +64408,7 @@ end_of_vacuum: ************************************************************************* ** This file contains code used to help implement virtual tables. ** -** $Id: sqlite3.c,v 1.12 2008/01/22 13:54:06 mozilla%weilbacher.org Exp $ +** $Id: sqlite3.c,v 1.13 2008/01/29 23:34:19 myk%mozilla.org Exp $ */ #ifndef SQLITE_OMIT_VIRTUALTABLE @@ -65212,7 +65212,7 @@ SQLITE_PRIVATE FuncDef *sqlite3VtabOverloadFunction( ** so is applicable. Because this module is responsible for selecting ** indices, you might also think of this module as the "query optimizer". ** -** $Id: sqlite3.c,v 1.12 2008/01/22 13:54:06 mozilla%weilbacher.org Exp $ +** $Id: sqlite3.c,v 1.13 2008/01/29 23:34:19 myk%mozilla.org Exp $ */ /* @@ -71115,7 +71115,7 @@ SQLITE_PRIVATE void sqlite3Parser( ** individual tokens and sends those tokens one-by-one over to the ** parser for analysis. ** -** $Id: sqlite3.c,v 1.12 2008/01/22 13:54:06 mozilla%weilbacher.org Exp $ +** $Id: sqlite3.c,v 1.13 2008/01/29 23:34:19 myk%mozilla.org Exp $ */ /* @@ -71168,7 +71168,7 @@ const unsigned char ebcdicToAscii[] = { ** ** The code in this file has been automatically generated by ** -** $Header: /cvsroot/mozilla/db/sqlite3/src/sqlite3.c,v 1.12 2008/01/22 13:54:06 mozilla%weilbacher.org Exp $ +** $Header: /cvsroot/mozilla/db/sqlite3/src/sqlite3.c,v 1.13 2008/01/29 23:34:19 myk%mozilla.org Exp $ ** ** The code in this file implements a function that determines whether ** or not a given identifier is really an SQL keyword. The same thing @@ -71740,7 +71740,7 @@ abort_parse: ** separating it out, the code will be automatically omitted from ** static links that do not use it. ** -** $Id: sqlite3.c,v 1.12 2008/01/22 13:54:06 mozilla%weilbacher.org Exp $ +** $Id: sqlite3.c,v 1.13 2008/01/29 23:34:19 myk%mozilla.org Exp $ */ #ifndef SQLITE_OMIT_COMPLETE @@ -72011,7 +72011,7 @@ SQLITE_API int sqlite3_complete16(const void *zSql){ ** other files are for internal use by SQLite and should not be ** accessed by users of the library. ** -** $Id: sqlite3.c,v 1.12 2008/01/22 13:54:06 mozilla%weilbacher.org Exp $ +** $Id: sqlite3.c,v 1.13 2008/01/29 23:34:19 myk%mozilla.org Exp $ */ /* @@ -73480,3 +73480,40506 @@ SQLITE_API int sqlite3_file_control(sqlite3 *db, const char *zDbName, int op, vo } /************** End of main.c ************************************************/ +/****************************************************************************** +** This file is an amalgamation of separate C source files from the SQLite +** Full Text Search extension 2 (fts3). By combining all the individual C +** code files into this single large file, the entire code can be compiled +** as a one translation unit. This allows many compilers to do optimizations +** that would not be possible if the files were compiled separately. It also +** makes the code easier to import into other projects. +** +** This amalgamation was generated on 2008-01-26 07:51:19 UTC. +*/ +/************** Begin file fts3.c ********************************************/ +/* +** 2006 Oct 10 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +****************************************************************************** +** +** This is an SQLite module implementing full-text search. +*/ + +/* +** The code in this file is only compiled if: +** +** * The FTS3 module is being built as an extension +** (in which case SQLITE_CORE is not defined), or +** +** * The FTS3 module is being built into the core of +** SQLite (in which case SQLITE_ENABLE_FTS3 is defined). +*/ + +/* TODO(shess) Consider exporting this comment to an HTML file or the +** wiki. +*/ +/* The full-text index is stored in a series of b+tree (-like) +** structures called segments which map terms to doclists. The +** structures are like b+trees in layout, but are constructed from the +** bottom up in optimal fashion and are not updatable. Since trees +** are built from the bottom up, things will be described from the +** bottom up. +** +** +**** Varints **** +** The basic unit of encoding is a variable-length integer called a +** varint. We encode variable-length integers in little-endian order +** using seven bits * per byte as follows: +** +** KEY: +** A = 0xxxxxxx 7 bits of data and one flag bit +** B = 1xxxxxxx 7 bits of data and one flag bit +** +** 7 bits - A +** 14 bits - BA +** 21 bits - BBA +** and so on. +** +** This is identical to how sqlite encodes varints (see util.c). +** +** +**** Document lists **** +** A doclist (document list) holds a docid-sorted list of hits for a +** given term. Doclists hold docids, and can optionally associate +** token positions and offsets with docids. +** +** A DL_POSITIONS_OFFSETS doclist is stored like this: +** +** array { +** varint docid; +** array { (position list for column 0) +** varint position; (delta from previous position plus POS_BASE) +** varint startOffset; (delta from previous startOffset) +** varint endOffset; (delta from startOffset) +** } +** array { +** varint POS_COLUMN; (marks start of position list for new column) +** varint column; (index of new column) +** array { +** varint position; (delta from previous position plus POS_BASE) +** varint startOffset;(delta from previous startOffset) +** varint endOffset; (delta from startOffset) +** } +** } +** varint POS_END; (marks end of positions for this document. +** } +** +** Here, array { X } means zero or more occurrences of X, adjacent in +** memory. A "position" is an index of a token in the token stream +** generated by the tokenizer, while an "offset" is a byte offset, +** both based at 0. Note that POS_END and POS_COLUMN occur in the +** same logical place as the position element, and act as sentinals +** ending a position list array. +** +** A DL_POSITIONS doclist omits the startOffset and endOffset +** information. A DL_DOCIDS doclist omits both the position and +** offset information, becoming an array of varint-encoded docids. +** +** On-disk data is stored as type DL_DEFAULT, so we don't serialize +** the type. Due to how deletion is implemented in the segmentation +** system, on-disk doclists MUST store at least positions. +** +** +**** Segment leaf nodes **** +** Segment leaf nodes store terms and doclists, ordered by term. Leaf +** nodes are written using LeafWriter, and read using LeafReader (to +** iterate through a single leaf node's data) and LeavesReader (to +** iterate through a segment's entire leaf layer). Leaf nodes have +** the format: +** +** varint iHeight; (height from leaf level, always 0) +** varint nTerm; (length of first term) +** char pTerm[nTerm]; (content of first term) +** varint nDoclist; (length of term's associated doclist) +** char pDoclist[nDoclist]; (content of doclist) +** array { +** (further terms are delta-encoded) +** varint nPrefix; (length of prefix shared with previous term) +** varint nSuffix; (length of unshared suffix) +** char pTermSuffix[nSuffix];(unshared suffix of next term) +** varint nDoclist; (length of term's associated doclist) +** char pDoclist[nDoclist]; (content of doclist) +** } +** +** Here, array { X } means zero or more occurrences of X, adjacent in +** memory. +** +** Leaf nodes are broken into blocks which are stored contiguously in +** the %_segments table in sorted order. This means that when the end +** of a node is reached, the next term is in the node with the next +** greater node id. +** +** New data is spilled to a new leaf node when the current node +** exceeds LEAF_MAX bytes (default 2048). New data which itself is +** larger than STANDALONE_MIN (default 1024) is placed in a standalone +** node (a leaf node with a single term and doclist). The goal of +** these settings is to pack together groups of small doclists while +** making it efficient to directly access large doclists. The +** assumption is that large doclists represent terms which are more +** likely to be query targets. +** +** TODO(shess) It may be useful for blocking decisions to be more +** dynamic. For instance, it may make more sense to have a 2.5k leaf +** node rather than splitting into 2k and .5k nodes. My intuition is +** that this might extend through 2x or 4x the pagesize. +** +** +**** Segment interior nodes **** +** Segment interior nodes store blockids for subtree nodes and terms +** to describe what data is stored by the each subtree. Interior +** nodes are written using InteriorWriter, and read using +** InteriorReader. InteriorWriters are created as needed when +** SegmentWriter creates new leaf nodes, or when an interior node +** itself grows too big and must be split. The format of interior +** nodes: +** +** varint iHeight; (height from leaf level, always >0) +** varint iBlockid; (block id of node's leftmost subtree) +** optional { +** varint nTerm; (length of first term) +** char pTerm[nTerm]; (content of first term) +** array { +** (further terms are delta-encoded) +** varint nPrefix; (length of shared prefix with previous term) +** varint nSuffix; (length of unshared suffix) +** char pTermSuffix[nSuffix]; (unshared suffix of next term) +** } +** } +** +** Here, optional { X } means an optional element, while array { X } +** means zero or more occurrences of X, adjacent in memory. +** +** An interior node encodes n terms separating n+1 subtrees. The +** subtree blocks are contiguous, so only the first subtree's blockid +** is encoded. The subtree at iBlockid will contain all terms less +** than the first term encoded (or all terms if no term is encoded). +** Otherwise, for terms greater than or equal to pTerm[i] but less +** than pTerm[i+1], the subtree for that term will be rooted at +** iBlockid+i. Interior nodes only store enough term data to +** distinguish adjacent children (if the rightmost term of the left +** child is "something", and the leftmost term of the right child is +** "wicked", only "w" is stored). +** +** New data is spilled to a new interior node at the same height when +** the current node exceeds INTERIOR_MAX bytes (default 2048). +** INTERIOR_MIN_TERMS (default 7) keeps large terms from monopolizing +** interior nodes and making the tree too skinny. The interior nodes +** at a given height are naturally tracked by interior nodes at +** height+1, and so on. +** +** +**** Segment directory **** +** The segment directory in table %_segdir stores meta-information for +** merging and deleting segments, and also the root node of the +** segment's tree. +** +** The root node is the top node of the segment's tree after encoding +** the entire segment, restricted to ROOT_MAX bytes (default 1024). +** This could be either a leaf node or an interior node. If the top +** node requires more than ROOT_MAX bytes, it is flushed to %_segments +** and a new root interior node is generated (which should always fit +** within ROOT_MAX because it only needs space for 2 varints, the +** height and the blockid of the previous root). +** +** The meta-information in the segment directory is: +** level - segment level (see below) +** idx - index within level +** - (level,idx uniquely identify a segment) +** start_block - first leaf node +** leaves_end_block - last leaf node +** end_block - last block (including interior nodes) +** root - contents of root node +** +** If the root node is a leaf node, then start_block, +** leaves_end_block, and end_block are all 0. +** +** +**** Segment merging **** +** To amortize update costs, segments are groups into levels and +** merged in matches. Each increase in level represents exponentially +** more documents. +** +** New documents (actually, document updates) are tokenized and +** written individually (using LeafWriter) to a level 0 segment, with +** incrementing idx. When idx reaches MERGE_COUNT (default 16), all +** level 0 segments are merged into a single level 1 segment. Level 1 +** is populated like level 0, and eventually MERGE_COUNT level 1 +** segments are merged to a single level 2 segment (representing +** MERGE_COUNT^2 updates), and so on. +** +** A segment merge traverses all segments at a given level in +** parallel, performing a straightforward sorted merge. Since segment +** leaf nodes are written in to the %_segments table in order, this +** merge traverses the underlying sqlite disk structures efficiently. +** After the merge, all segment blocks from the merged level are +** deleted. +** +** MERGE_COUNT controls how often we merge segments. 16 seems to be +** somewhat of a sweet spot for insertion performance. 32 and 64 show +** very similar performance numbers to 16 on insertion, though they're +** a tiny bit slower (perhaps due to more overhead in merge-time +** sorting). 8 is about 20% slower than 16, 4 about 50% slower than +** 16, 2 about 66% slower than 16. +** +** At query time, high MERGE_COUNT increases the number of segments +** which need to be scanned and merged. For instance, with 100k docs +** inserted: +** +** MERGE_COUNT segments +** 16 25 +** 8 12 +** 4 10 +** 2 6 +** +** This appears to have only a moderate impact on queries for very +** frequent terms (which are somewhat dominated by segment merge +** costs), and infrequent and non-existent terms still seem to be fast +** even with many segments. +** +** TODO(shess) That said, it would be nice to have a better query-side +** argument for MERGE_COUNT of 16. Also, it is possible/likely that +** optimizations to things like doclist merging will swing the sweet +** spot around. +** +** +** +**** Handling of deletions and updates **** +** Since we're using a segmented structure, with no docid-oriented +** index into the term index, we clearly cannot simply update the term +** index when a document is deleted or updated. For deletions, we +** write an empty doclist (varint(docid) varint(POS_END)), for updates +** we simply write the new doclist. Segment merges overwrite older +** data for a particular docid with newer data, so deletes or updates +** will eventually overtake the earlier data and knock it out. The +** query logic likewise merges doclists so that newer data knocks out +** older data. +** +** TODO(shess) Provide a VACUUM type operation to clear out all +** deletions and duplications. This would basically be a forced merge +** into a single segment. +*/ + +#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) + +#if defined(SQLITE_ENABLE_FTS3) && !defined(SQLITE_CORE) +# define SQLITE_CORE 1 +#endif + +#include +#include +#include +#include +#include + +/************** Include fts3.h in the middle of fts3.c ***********************/ +/************** Begin file fts3.h ********************************************/ +/* +** 2006 Oct 10 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +****************************************************************************** +** +** This header file is used by programs that want to link against the +** FTS3 library. All it does is declare the sqlite3Fts3Init() interface. +*/ +/************** Include sqlite3.h in the middle of fts3.h ********************/ +/************** Begin file sqlite3.h *****************************************/ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This header file defines the interface that the SQLite library +** presents to client programs. If a C-function, structure, datatype, +** or constant definition does not appear in this file, then it is +** not a published API of SQLite, is subject to change without +** notice, and should not be referenced by programs that use SQLite. +** +** Some of the definitions that are in this file are marked as +** "experimental". Experimental interfaces are normally new +** features recently added to SQLite. We do not anticipate changes +** to experimental interfaces but reserve to make minor changes if +** experience from use "in the wild" suggest such changes are prudent. +** +** The official C-language API documentation for SQLite is derived +** from comments in this file. This file is the authoritative source +** on how SQLite interfaces are suppose to operate. +** +** The name of this file under configuration management is "sqlite.h.in". +** The makefile makes some minor changes to this file (such as inserting +** the version number) and changes its name to "sqlite3.h" as +** part of the build process. +** +** @(#) $Id: sqlite3.c,v 1.13 2008/01/29 23:34:19 myk%mozilla.org Exp $ +*/ +#ifndef _SQLITE3_H_ +#define _SQLITE3_H_ +#include /* Needed for the definition of va_list */ + +/* +** Make sure we can call this stuff from C++. +*/ +#if 0 +extern "C" { +#endif + + +/* +** Add the ability to override 'extern' +*/ +#ifndef SQLITE_EXTERN +# define SQLITE_EXTERN extern +#endif + +/* +** Make sure these symbols where not defined by some previous header +** file. +*/ +#ifdef SQLITE_VERSION +# undef SQLITE_VERSION +#endif +#ifdef SQLITE_VERSION_NUMBER +# undef SQLITE_VERSION_NUMBER +#endif + +/* +** CAPI3REF: Compile-Time Library Version Numbers {F10010} +** +** {F10011} The #define in the sqlite3.h header file named +** SQLITE_VERSION resolves to a string literal that identifies +** the version of the SQLite library in the format "X.Y.Z", where +** X is the major version number, Y is the minor version number and Z +** is the release number. The X.Y.Z might be followed by "alpha" or "beta". +** {END} For example "3.1.1beta". +** +** The X value is always 3 in SQLite. The X value only changes when +** backwards compatibility is broken and we intend to never break +** backwards compatibility. The Y value only changes when +** there are major feature enhancements that are forwards compatible +** but not backwards compatible. The Z value is incremented with +** each release but resets back to 0 when Y is incremented. +** +** {F10014} The SQLITE_VERSION_NUMBER #define resolves to an integer +** with the value (X*1000000 + Y*1000 + Z) where X, Y, and Z are as +** with SQLITE_VERSION. {END} For example, for version "3.1.1beta", +** SQLITE_VERSION_NUMBER is set to 3001001. To detect if they are using +** version 3.1.1 or greater at compile time, programs may use the test +** (SQLITE_VERSION_NUMBER>=3001001). +** +** See also: [sqlite3_libversion()] and [sqlite3_libversion_number()]. +*/ +#define SQLITE_VERSION "3.5.4" +#define SQLITE_VERSION_NUMBER 3005004 + +/* +** CAPI3REF: Run-Time Library Version Numbers {F10020} +** +** {F10021} The sqlite3_libversion_number() interface returns an integer +** equal to [SQLITE_VERSION_NUMBER]. {END} The value returned +** by this routine should only be different from the header values +** if the application is compiled using an sqlite3.h header from a +** different version of SQLite than library. Cautious programmers might +** include a check in their application to verify that +** sqlite3_libversion_number() always returns the value +** [SQLITE_VERSION_NUMBER]. +** +** {F10022} The sqlite3_version[] string constant contains the text of the +** [SQLITE_VERSION] string. {F10023} The sqlite3_libversion() function returns +** a pointer to the sqlite3_version[] string constant. {END} The +** sqlite3_libversion() function +** is provided for DLL users who can only access functions and not +** constants within the DLL. +*/ +SQLITE_EXTERN const char sqlite3_version[]; +const char *sqlite3_libversion(void); +int sqlite3_libversion_number(void); + +/* +** CAPI3REF: Test To See If The Library Is Threadsafe {F10100} +** +** {F10101} The sqlite3_threadsafe() routine returns nonzero +** if SQLite was compiled with its mutexes enabled or zero if +** SQLite was compiled with mutexes disabled. {END} If this +** routine returns false, then it is not safe for simultaneously +** running threads to both invoke SQLite interfaces. +** +** Really all this routine does is return true if SQLite was +** compiled with the -DSQLITE_THREADSAFE=1 option and false if +** compiled with -DSQLITE_THREADSAFE=0. If SQLite uses an +** application-defined mutex subsystem, malloc subsystem, collating +** sequence, VFS, SQL function, progress callback, commit hook, +** extension, or other accessories and these add-ons are not +** threadsafe, then clearly the combination will not be threadsafe +** either. Hence, this routine never reports that the library +** is guaranteed to be threadsafe, only when it is guaranteed not +** to be. +*/ +int sqlite3_threadsafe(void); + +/* +** CAPI3REF: Database Connection Handle {F12000} +** +** Each open SQLite database is represented by pointer to an instance of the +** opaque structure named "sqlite3". It is useful to think of an sqlite3 +** pointer as an object. The [sqlite3_open()], [sqlite3_open16()], and +** [sqlite3_open_v2()] interfaces are its constructors +** and [sqlite3_close()] is its destructor. There are many other interfaces +** (such as [sqlite3_prepare_v2()], [sqlite3_create_function()], and +** [sqlite3_busy_timeout()] to name but three) that are methods on this +** object. +*/ +typedef struct sqlite3 sqlite3; + + +/* +** CAPI3REF: 64-Bit Integer Types {F10200} +** +** Because there is no cross-platform way to specify such types +** SQLite includes typedefs for 64-bit signed and unsigned integers. +** {F10201} The sqlite_int64 and sqlite3_int64 types specify a +** 64-bit signed integer. {F10202} The sqlite_uint64 and +** sqlite3_uint64 types specify a 64-bit unsigned integer. {END} +** +** The sqlite3_int64 and sqlite3_uint64 are the preferred type +** definitions. The sqlite_int64 and sqlite_uint64 types are +** supported for backwards compatibility only. +*/ +#ifdef SQLITE_INT64_TYPE + typedef SQLITE_INT64_TYPE sqlite_int64; + typedef unsigned SQLITE_INT64_TYPE sqlite_uint64; +#elif defined(_MSC_VER) || defined(__BORLANDC__) + typedef __int64 sqlite_int64; + typedef unsigned __int64 sqlite_uint64; +#else + typedef long long int sqlite_int64; + typedef unsigned long long int sqlite_uint64; +#endif +typedef sqlite_int64 sqlite3_int64; +typedef sqlite_uint64 sqlite3_uint64; + +/* +** If compiling for a processor that lacks floating point support, +** substitute integer for floating-point +*/ +#ifdef SQLITE_OMIT_FLOATING_POINT +# define double sqlite3_int64 +#endif + +/* +** CAPI3REF: Closing A Database Connection {F12010} +** +** {F12011} The sqlite3_close() interfaces destroys an [sqlite3] object +** allocated by a prior call to [sqlite3_open()], [sqlite3_open16()], or +** [sqlite3_open_v2()]. {F12012} Sqlite3_close() releases all +** memory used by the connection and closes all open files. {END}. +** +** {F12013} If the database connection contains +** [sqlite3_stmt | prepared statements] that have not been finalized +** by [sqlite3_finalize()], then sqlite3_close() returns SQLITE_BUSY +** and leaves the connection open. {F12014} Giving sqlite3_close() +** a NULL pointer is a harmless no-op. {END} +** +** {U12015} Passing this routine a database connection that has already been +** closed results in undefined behavior. {U12016} If other interfaces that +** reference the same database connection are pending (either in the +** same thread or in different threads) when this routine is called, +** then the behavior is undefined and is almost certainly undesirable. +*/ +int sqlite3_close(sqlite3 *); + +/* +** The type for a callback function. +** This is legacy and deprecated. It is included for historical +** compatibility and is not documented. +*/ +typedef int (*sqlite3_callback)(void*,int,char**, char**); + +/* +** CAPI3REF: One-Step Query Execution Interface {F12100} +** +** {F12101} The sqlite3_exec() interface evaluates zero or more +** UTF-8 encoded, semicolon-separated SQL statements in the zero-terminated +** string of its second argument. {F12102} The SQL +** statements are evaluated in the context of the database connection +** specified by in the first argument. +** {F12103} SQL statements are prepared one by one using +** [sqlite3_prepare()] or the equivalent, evaluated +** using one or more calls to [sqlite3_step()], then destroyed +** using [sqlite3_finalize()]. {F12104} The return value of +** sqlite3_exec() is SQLITE_OK if all SQL statement run +** successfully. +** +** {F12105} If one or more of the SQL statements handed to +** sqlite3_exec() are queries, then +** the callback function specified by the 3rd parameter is +** invoked once for each row of the query result. {F12106} +** If the callback returns a non-zero value then the query +** is aborted, all subsequent SQL statements +** are skipped and the sqlite3_exec() function returns the [SQLITE_ABORT]. +** +** {F12107} The 4th parameter to sqlite3_exec() is an arbitrary pointer +** that is passed through to the callback function as its first parameter. +** +** {F12108} The 2nd parameter to the callback function is the number of +** columns in the query result. {F12109} The 3rd parameter to the callback +** is an array of pointers to strings holding the values for each column +** as extracted using [sqlite3_column_text()]. NULL values in the result +** set result in a NULL pointer. All other value are in their UTF-8 +** string representation. {F12117} +** The 4th parameter to the callback is an array of strings +** obtained using [sqlite3_column_name()] and holding +** the names of each column, also in UTF-8. +** +** {F12110} The callback function may be NULL, even for queries. A NULL +** callback is not an error. It just means that no callback +** will be invoked. +** +** {F12112} If an error occurs while parsing or evaluating the SQL +** then an appropriate error message is written into memory obtained +** from [sqlite3_malloc()] and *errmsg is made to point to that message +** assuming errmsg is not NULL. +** {U12113} The calling function is responsible for freeing the memory +** using [sqlite3_free()]. +** {F12116} If [sqlite3_malloc()] fails while attempting to generate +** the error message, *errmsg is set to NULL. +** {F12114} If errmsg is NULL then no attempt is made to generate an +** error message. Is the return code SQLITE_NOMEM or the original +** error code? What happens if there are multiple errors? +** Do we get code for the first error, or is the choice of reported +** error arbitrary? +** +** {F12115} The return value is is SQLITE_OK if there are no errors and +** some other [SQLITE_OK | return code] if there is an error. +** The particular return value depends on the type of error. {END} +*/ +int sqlite3_exec( + sqlite3*, /* An open database */ + const char *sql, /* SQL to be evaluted */ + int (*callback)(void*,int,char**,char**), /* Callback function */ + void *, /* 1st argument to callback */ + char **errmsg /* Error msg written here */ +); + +/* +** CAPI3REF: Result Codes {F10210} +** KEYWORDS: SQLITE_OK +** +** Many SQLite functions return an integer result code from the set shown +** above in order to indicates success or failure. +** +** {F10211} The result codes shown here are the only ones returned +** by SQLite in its default configuration. {F10212} However, the +** [sqlite3_extended_result_codes()] API can be used to set a database +** connectoin to return more detailed result codes. {END} +** +** See also: [SQLITE_IOERR_READ | extended result codes] +** +*/ +#define SQLITE_OK 0 /* Successful result */ +/* beginning-of-error-codes */ +#define SQLITE_ERROR 1 /* SQL error or missing database */ +#define SQLITE_INTERNAL 2 /* Internal logic error in SQLite */ +#define SQLITE_PERM 3 /* Access permission denied */ +#define SQLITE_ABORT 4 /* Callback routine requested an abort */ +#define SQLITE_BUSY 5 /* The database file is locked */ +#define SQLITE_LOCKED 6 /* A table in the database is locked */ +#define SQLITE_NOMEM 7 /* A malloc() failed */ +#define SQLITE_READONLY 8 /* Attempt to write a readonly database */ +#define SQLITE_INTERRUPT 9 /* Operation terminated by sqlite3_interrupt()*/ +#define SQLITE_IOERR 10 /* Some kind of disk I/O error occurred */ +#define SQLITE_CORRUPT 11 /* The database disk image is malformed */ +#define SQLITE_NOTFOUND 12 /* NOT USED. Table or record not found */ +#define SQLITE_FULL 13 /* Insertion failed because database is full */ +#define SQLITE_CANTOPEN 14 /* Unable to open the database file */ +#define SQLITE_PROTOCOL 15 /* NOT USED. Database lock protocol error */ +#define SQLITE_EMPTY 16 /* Database is empty */ +#define SQLITE_SCHEMA 17 /* The database schema changed */ +#define SQLITE_TOOBIG 18 /* String or BLOB exceeds size limit */ +#define SQLITE_CONSTRAINT 19 /* Abort due to constraint violation */ +#define SQLITE_MISMATCH 20 /* Data type mismatch */ +#define SQLITE_MISUSE 21 /* Library used incorrectly */ +#define SQLITE_NOLFS 22 /* Uses OS features not supported on host */ +#define SQLITE_AUTH 23 /* Authorization denied */ +#define SQLITE_FORMAT 24 /* Auxiliary database format error */ +#define SQLITE_RANGE 25 /* 2nd parameter to sqlite3_bind out of range */ +#define SQLITE_NOTADB 26 /* File opened that is not a database file */ +#define SQLITE_ROW 100 /* sqlite3_step() has another row ready */ +#define SQLITE_DONE 101 /* sqlite3_step() has finished executing */ +/* end-of-error-codes */ + +/* +** CAPI3REF: Extended Result Codes {F10220} +** +** In its default configuration, SQLite API routines return one of 26 integer +** [SQLITE_OK | result codes]. However, experience has shown that +** many of these result codes are too course-grained. They do not provide as +** much information about problems as programmers might like. In an effort to +** address this, newer versions of SQLite (version 3.3.8 and later) include +** support for additional result codes that provide more detailed information +** about errors. {F10221} The extended result codes are enabled or disabled +** for each database connection using the [sqlite3_extended_result_codes()] +** API. {END} +** +** Some of the available extended result codes are listed above. +** We expect the number of extended result codes will be expand +** over time. {U10422} Software that uses extended result codes should expect +** to see new result codes in future releases of SQLite. {END} +** +** {F10223} The symbolic name for an extended result code always contains +** a related primary result code as a prefix. {F10224} Primary result +** codes contain a single "_" character. {F10225} Extended result codes +** contain two or more "_" characters. {F10226} The numeric value of an +** extended result code can be converted to its +** corresponding primary result code by masking off the lower 8 bytes. {END} +** +** The SQLITE_OK result code will never be extended. It will always +** be exactly zero. +*/ +#define SQLITE_IOERR_READ (SQLITE_IOERR | (1<<8)) +#define SQLITE_IOERR_SHORT_READ (SQLITE_IOERR | (2<<8)) +#define SQLITE_IOERR_WRITE (SQLITE_IOERR | (3<<8)) +#define SQLITE_IOERR_FSYNC (SQLITE_IOERR | (4<<8)) +#define SQLITE_IOERR_DIR_FSYNC (SQLITE_IOERR | (5<<8)) +#define SQLITE_IOERR_TRUNCATE (SQLITE_IOERR | (6<<8)) +#define SQLITE_IOERR_FSTAT (SQLITE_IOERR | (7<<8)) +#define SQLITE_IOERR_UNLOCK (SQLITE_IOERR | (8<<8)) +#define SQLITE_IOERR_RDLOCK (SQLITE_IOERR | (9<<8)) +#define SQLITE_IOERR_DELETE (SQLITE_IOERR | (10<<8)) +#define SQLITE_IOERR_BLOCKED (SQLITE_IOERR | (11<<8)) +#define SQLITE_IOERR_NOMEM (SQLITE_IOERR | (12<<8)) + +/* +** CAPI3REF: Flags For File Open Operations {F10230} +** +** {F10231} Some combination of the these bit values are used as the +** third argument to the [sqlite3_open_v2()] interface and +** as fourth argument to the xOpen method of the +** [sqlite3_vfs] object. +*/ +#define SQLITE_OPEN_READONLY 0x00000001 +#define SQLITE_OPEN_READWRITE 0x00000002 +#define SQLITE_OPEN_CREATE 0x00000004 +#define SQLITE_OPEN_DELETEONCLOSE 0x00000008 +#define SQLITE_OPEN_EXCLUSIVE 0x00000010 +#define SQLITE_OPEN_MAIN_DB 0x00000100 +#define SQLITE_OPEN_TEMP_DB 0x00000200 +#define SQLITE_OPEN_TRANSIENT_DB 0x00000400 +#define SQLITE_OPEN_MAIN_JOURNAL 0x00000800 +#define SQLITE_OPEN_TEMP_JOURNAL 0x00001000 +#define SQLITE_OPEN_SUBJOURNAL 0x00002000 +#define SQLITE_OPEN_MASTER_JOURNAL 0x00004000 + +/* +** CAPI3REF: Device Characteristics {F10240} +** +** {F10241} The xDeviceCapabilities method of the [sqlite3_io_methods] +** object returns an integer which is a vector of the these +** bit values expressing I/O characteristics of the mass storage +** device that holds the file that the [sqlite3_io_methods] +** refers to. {END} +** +** {F10242} The SQLITE_IOCAP_ATOMIC property means that all writes of +** any size are atomic. {F10243} The SQLITE_IOCAP_ATOMICnnn values +** mean that writes of blocks that are nnn bytes in size and +** are aligned to an address which is an integer multiple of +** nnn are atomic. {F10244} The SQLITE_IOCAP_SAFE_APPEND value means +** that when data is appended to a file, the data is appended +** first then the size of the file is extended, never the other +** way around. {F10245} The SQLITE_IOCAP_SEQUENTIAL property means that +** information is written to disk in the same order as calls +** to xWrite(). +*/ +#define SQLITE_IOCAP_ATOMIC 0x00000001 +#define SQLITE_IOCAP_ATOMIC512 0x00000002 +#define SQLITE_IOCAP_ATOMIC1K 0x00000004 +#define SQLITE_IOCAP_ATOMIC2K 0x00000008 +#define SQLITE_IOCAP_ATOMIC4K 0x00000010 +#define SQLITE_IOCAP_ATOMIC8K 0x00000020 +#define SQLITE_IOCAP_ATOMIC16K 0x00000040 +#define SQLITE_IOCAP_ATOMIC32K 0x00000080 +#define SQLITE_IOCAP_ATOMIC64K 0x00000100 +#define SQLITE_IOCAP_SAFE_APPEND 0x00000200 +#define SQLITE_IOCAP_SEQUENTIAL 0x00000400 + +/* +** CAPI3REF: File Locking Levels {F10250} +** +** {F10251} SQLite uses one of the following integer values as the second +** argument to calls it makes to the xLock() and xUnlock() methods +** of an [sqlite3_io_methods] object. {END} +*/ +#define SQLITE_LOCK_NONE 0 +#define SQLITE_LOCK_SHARED 1 +#define SQLITE_LOCK_RESERVED 2 +#define SQLITE_LOCK_PENDING 3 +#define SQLITE_LOCK_EXCLUSIVE 4 + +/* +** CAPI3REF: Synchronization Type Flags {F10260} +** +** {F10261} When SQLite invokes the xSync() method of an +** [sqlite3_io_methods] object it uses a combination of the +** these integer values as the second argument. +** +** {F10262} When the SQLITE_SYNC_DATAONLY flag is used, it means that the +** sync operation only needs to flush data to mass storage. Inode +** information need not be flushed. {F10263} The SQLITE_SYNC_NORMAL means +** to use normal fsync() semantics. {F10264} The SQLITE_SYNC_FULL flag means +** to use Mac OS-X style fullsync instead of fsync(). +*/ +#define SQLITE_SYNC_NORMAL 0x00002 +#define SQLITE_SYNC_FULL 0x00003 +#define SQLITE_SYNC_DATAONLY 0x00010 + + +/* +** CAPI3REF: OS Interface Open File Handle {F11110} +** +** An [sqlite3_file] object represents an open file in the OS +** interface layer. Individual OS interface implementations will +** want to subclass this object by appending additional fields +** for their own use. The pMethods entry is a pointer to an +** [sqlite3_io_methods] object that defines methods for performing +** I/O operations on the open file. +*/ +typedef struct sqlite3_file sqlite3_file; +struct sqlite3_file { + const struct sqlite3_io_methods *pMethods; /* Methods for an open file */ +}; + +/* +** CAPI3REF: OS Interface File Virtual Methods Object {F11120} +** +** Every file opened by the [sqlite3_vfs] xOpen method contains a pointer to +** an instance of the this object. This object defines the +** methods used to perform various operations against the open file. +** +** The flags argument to xSync may be one of [SQLITE_SYNC_NORMAL] or +** [SQLITE_SYNC_FULL]. The first choice is the normal fsync(). +* The second choice is an +** OS-X style fullsync. The SQLITE_SYNC_DATA flag may be ORed in to +** indicate that only the data of the file and not its inode needs to be +** synced. +** +** The integer values to xLock() and xUnlock() are one of +**
    +**
  • [SQLITE_LOCK_NONE], +**
  • [SQLITE_LOCK_SHARED], +**
  • [SQLITE_LOCK_RESERVED], +**
  • [SQLITE_LOCK_PENDING], or +**
  • [SQLITE_LOCK_EXCLUSIVE]. +**
+** xLock() increases the lock. xUnlock() decreases the lock. +** The xCheckReservedLock() method looks +** to see if any database connection, either in this +** process or in some other process, is holding an RESERVED, +** PENDING, or EXCLUSIVE lock on the file. It returns true +** if such a lock exists and false if not. +** +** The xFileControl() method is a generic interface that allows custom +** VFS implementations to directly control an open file using the +** [sqlite3_file_control()] interface. The second "op" argument +** is an integer opcode. The third +** argument is a generic pointer which is intended to be a pointer +** to a structure that may contain arguments or space in which to +** write return values. Potential uses for xFileControl() might be +** functions to enable blocking locks with timeouts, to change the +** locking strategy (for example to use dot-file locks), to inquire +** about the status of a lock, or to break stale locks. The SQLite +** core reserves opcodes less than 100 for its own use. +** A [SQLITE_FCNTL_LOCKSTATE | list of opcodes] less than 100 is available. +** Applications that define a custom xFileControl method should use opcodes +** greater than 100 to avoid conflicts. +** +** The xSectorSize() method returns the sector size of the +** device that underlies the file. The sector size is the +** minimum write that can be performed without disturbing +** other bytes in the file. The xDeviceCharacteristics() +** method returns a bit vector describing behaviors of the +** underlying device: +** +**
    +**
  • [SQLITE_IOCAP_ATOMIC] +**
  • [SQLITE_IOCAP_ATOMIC512] +**
  • [SQLITE_IOCAP_ATOMIC1K] +**
  • [SQLITE_IOCAP_ATOMIC2K] +**
  • [SQLITE_IOCAP_ATOMIC4K] +**
  • [SQLITE_IOCAP_ATOMIC8K] +**
  • [SQLITE_IOCAP_ATOMIC16K] +**
  • [SQLITE_IOCAP_ATOMIC32K] +**
  • [SQLITE_IOCAP_ATOMIC64K] +**
  • [SQLITE_IOCAP_SAFE_APPEND] +**
  • [SQLITE_IOCAP_SEQUENTIAL] +**
+** +** The SQLITE_IOCAP_ATOMIC property means that all writes of +** any size are atomic. The SQLITE_IOCAP_ATOMICnnn values +** mean that writes of blocks that are nnn bytes in size and +** are aligned to an address which is an integer multiple of +** nnn are atomic. The SQLITE_IOCAP_SAFE_APPEND value means +** that when data is appended to a file, the data is appended +** first then the size of the file is extended, never the other +** way around. The SQLITE_IOCAP_SEQUENTIAL property means that +** information is written to disk in the same order as calls +** to xWrite(). +*/ +typedef struct sqlite3_io_methods sqlite3_io_methods; +struct sqlite3_io_methods { + int iVersion; + int (*xClose)(sqlite3_file*); + int (*xRead)(sqlite3_file*, void*, int iAmt, sqlite3_int64 iOfst); + int (*xWrite)(sqlite3_file*, const void*, int iAmt, sqlite3_int64 iOfst); + int (*xTruncate)(sqlite3_file*, sqlite3_int64 size); + int (*xSync)(sqlite3_file*, int flags); + int (*xFileSize)(sqlite3_file*, sqlite3_int64 *pSize); + int (*xLock)(sqlite3_file*, int); + int (*xUnlock)(sqlite3_file*, int); + int (*xCheckReservedLock)(sqlite3_file*); + int (*xFileControl)(sqlite3_file*, int op, void *pArg); + int (*xSectorSize)(sqlite3_file*); + int (*xDeviceCharacteristics)(sqlite3_file*); + /* Additional methods may be added in future releases */ +}; + +/* +** CAPI3REF: Standard File Control Opcodes {F11310} +** +** These integer constants are opcodes for the xFileControl method +** of the [sqlite3_io_methods] object and to the [sqlite3_file_control()] +** interface. +** +** {F11311} The [SQLITE_FCNTL_LOCKSTATE] opcode is used for debugging. This +** opcode cases the xFileControl method to write the current state of +** the lock (one of [SQLITE_LOCK_NONE], [SQLITE_LOCK_SHARED], +** [SQLITE_LOCK_RESERVED], [SQLITE_LOCK_PENDING], or [SQLITE_LOCK_EXCLUSIVE]) +** into an integer that the pArg argument points to. {F11312} This capability +** is used during testing and only needs to be supported when SQLITE_TEST +** is defined. +*/ +#define SQLITE_FCNTL_LOCKSTATE 1 + +/* +** CAPI3REF: Mutex Handle {F17110} +** +** The mutex module within SQLite defines [sqlite3_mutex] to be an +** abstract type for a mutex object. {F17111} The SQLite core never looks +** at the internal representation of an [sqlite3_mutex]. {END} It only +** deals with pointers to the [sqlite3_mutex] object. +** +** Mutexes are created using [sqlite3_mutex_alloc()]. +*/ +typedef struct sqlite3_mutex sqlite3_mutex; + +/* +** CAPI3REF: OS Interface Object {F11140} +** +** An instance of this object defines the interface between the +** SQLite core and the underlying operating system. The "vfs" +** in the name of the object stands for "virtual file system". +** +** The iVersion field is initially 1 but may be larger for future +** versions of SQLite. Additional fields may be appended to this +** object when the iVersion value is increased. +** +** The szOsFile field is the size of the subclassed [sqlite3_file] +** structure used by this VFS. mxPathname is the maximum length of +** a pathname in this VFS. +** +** Registered vfs modules are kept on a linked list formed by +** the pNext pointer. The [sqlite3_vfs_register()] +** and [sqlite3_vfs_unregister()] interfaces manage this list +** in a thread-safe way. The [sqlite3_vfs_find()] interface +** searches the list. +** +** The pNext field is the only fields in the sqlite3_vfs +** structure that SQLite will ever modify. SQLite will only access +** or modify this field while holding a particular static mutex. +** The application should never modify anything within the sqlite3_vfs +** object once the object has been registered. +** +** The zName field holds the name of the VFS module. The name must +** be unique across all VFS modules. +** +** {F11141} SQLite will guarantee that the zFilename string passed to +** xOpen() is a full pathname as generated by xFullPathname() and +** that the string will be valid and unchanged until xClose() is +** called. {END} So the [sqlite3_file] can store a pointer to the +** filename if it needs to remember the filename for some reason. +** +** {F11142} The flags argument to xOpen() includes all bits set in +** the flags argument to [sqlite3_open_v2()]. Or if [sqlite3_open()] +** or [sqlite3_open16()] is used, then flags includes at least +** [SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE]. {END} +** If xOpen() opens a file read-only then it sets *pOutFlags to +** include [SQLITE_OPEN_READONLY]. Other bits in *pOutFlags may be +** set. +** +** {F11143} SQLite will also add one of the following flags to the xOpen() +** call, depending on the object being opened: +** +**
    +**
  • [SQLITE_OPEN_MAIN_DB] +**
  • [SQLITE_OPEN_MAIN_JOURNAL] +**
  • [SQLITE_OPEN_TEMP_DB] +**
  • [SQLITE_OPEN_TEMP_JOURNAL] +**
  • [SQLITE_OPEN_TRANSIENT_DB] +**
  • [SQLITE_OPEN_SUBJOURNAL] +**
  • [SQLITE_OPEN_MASTER_JOURNAL] +**
{END} +** +** The file I/O implementation can use the object type flags to +** changes the way it deals with files. For example, an application +** that does not care about crash recovery or rollback, might make +** the open of a journal file a no-op. Writes to this journal are +** also a no-op. Any attempt to read the journal return SQLITE_IOERR. +** Or the implementation might recognize the a database file will +** be doing page-aligned sector reads and writes in a random order +** and set up its I/O subsystem accordingly. +** +** {F11144} SQLite might also add one of the following flags to the xOpen +** method: +** +**
    +**
  • [SQLITE_OPEN_DELETEONCLOSE] +**
  • [SQLITE_OPEN_EXCLUSIVE] +**
+** +** {F11145} The [SQLITE_OPEN_DELETEONCLOSE] flag means the file should be +** deleted when it is closed. {F11146} The [SQLITE_OPEN_DELETEONCLOSE] +** will be set for TEMP databases, journals and for subjournals. +** {F11147} The [SQLITE_OPEN_EXCLUSIVE] flag means the file should be opened +** for exclusive access. This flag is set for all files except +** for the main database file. {END} +** +** {F11148} At least szOsFile bytes of memory is allocated by SQLite +** to hold the [sqlite3_file] structure passed as the third +** argument to xOpen. {END} The xOpen method does not have to +** allocate the structure; it should just fill it in. +** +** {F11149} The flags argument to xAccess() may be [SQLITE_ACCESS_EXISTS] +** to test for the existance of a file, +** or [SQLITE_ACCESS_READWRITE] to test to see +** if a file is readable and writable, or [SQLITE_ACCESS_READ] +** to test to see if a file is at least readable. {END} The file can be a +** directory. +** +** {F11150} SQLite will always allocate at least mxPathname+1 byte for +** the output buffers for xGetTempname and xFullPathname. {F11151} The exact +** size of the output buffer is also passed as a parameter to both +** methods. {END} If the output buffer is not large enough, SQLITE_CANTOPEN +** should be returned. As this is handled as a fatal error by SQLite, +** vfs implementations should endeavor to prevent this by setting +** mxPathname to a sufficiently large value. +** +** The xRandomness(), xSleep(), and xCurrentTime() interfaces +** are not strictly a part of the filesystem, but they are +** included in the VFS structure for completeness. +** The xRandomness() function attempts to return nBytes bytes +** of good-quality randomness into zOut. The return value is +** the actual number of bytes of randomness obtained. The +** xSleep() method cause the calling thread to sleep for at +** least the number of microseconds given. The xCurrentTime() +** method returns a Julian Day Number for the current date and +** time. +*/ +typedef struct sqlite3_vfs sqlite3_vfs; +struct sqlite3_vfs { + int iVersion; /* Structure version number */ + int szOsFile; /* Size of subclassed sqlite3_file */ + int mxPathname; /* Maximum file pathname length */ + sqlite3_vfs *pNext; /* Next registered VFS */ + const char *zName; /* Name of this virtual file system */ + void *pAppData; /* Pointer to application-specific data */ + int (*xOpen)(sqlite3_vfs*, const char *zName, sqlite3_file*, + int flags, int *pOutFlags); + int (*xDelete)(sqlite3_vfs*, const char *zName, int syncDir); + int (*xAccess)(sqlite3_vfs*, const char *zName, int flags); + int (*xGetTempname)(sqlite3_vfs*, int nOut, char *zOut); + int (*xFullPathname)(sqlite3_vfs*, const char *zName, int nOut, char *zOut); + void *(*xDlOpen)(sqlite3_vfs*, const char *zFilename); + void (*xDlError)(sqlite3_vfs*, int nByte, char *zErrMsg); + void *(*xDlSym)(sqlite3_vfs*,void*, const char *zSymbol); + void (*xDlClose)(sqlite3_vfs*, void*); + int (*xRandomness)(sqlite3_vfs*, int nByte, char *zOut); + int (*xSleep)(sqlite3_vfs*, int microseconds); + int (*xCurrentTime)(sqlite3_vfs*, double*); + /* New fields may be appended in figure versions. The iVersion + ** value will increment whenever this happens. */ +}; + +/* +** CAPI3REF: Flags for the xAccess VFS method {F11190} +** +** {F11191} These integer constants can be used as the third parameter to +** the xAccess method of an [sqlite3_vfs] object. {END} They determine +** the kind of what kind of permissions the xAccess method is +** looking for. {F11192} With SQLITE_ACCESS_EXISTS, the xAccess method +** simply checks to see if the file exists. {F11193} With +** SQLITE_ACCESS_READWRITE, the xAccess method checks to see +** if the file is both readable and writable. {F11194} With +** SQLITE_ACCESS_READ the xAccess method +** checks to see if the file is readable. +*/ +#define SQLITE_ACCESS_EXISTS 0 +#define SQLITE_ACCESS_READWRITE 1 +#define SQLITE_ACCESS_READ 2 + +/* +** CAPI3REF: Enable Or Disable Extended Result Codes {F12200} +** +** {F12201} The sqlite3_extended_result_codes() routine enables or disables the +** [SQLITE_IOERR_READ | extended result codes] feature on a database +** connection if its 2nd parameter is +** non-zero or zero, respectively. {F12202} +** By default, SQLite API routines return one of only 26 integer +** [SQLITE_OK | result codes]. {F12203} When extended result codes +** are enabled by this routine, the repetoire of result codes can be +** much larger and can (hopefully) provide more detailed information +** about the cause of an error. +** +** {F12204} The second argument is a boolean value that turns extended result +** codes on and off. {F12205} Extended result codes are off by default for +** backwards compatibility with older versions of SQLite. +*/ +int sqlite3_extended_result_codes(sqlite3*, int onoff); + +/* +** CAPI3REF: Last Insert Rowid {F12220} +** +** {F12221} Each entry in an SQLite table has a unique 64-bit signed +** integer key called the "rowid". {F12222} The rowid is always available +** as an undeclared column named ROWID, OID, or _ROWID_ as long as those +** names are not also used by explicitly declared columns. {F12223} If +** the table has a column of type INTEGER PRIMARY KEY then that column +** is another an alias for the rowid. +** +** {F12224} This routine returns the rowid of the most recent +** successful INSERT into the database from the database connection +** shown in the first argument. {F12225} If no successful inserts +** have ever occurred on this database connection, zero is returned. +** +** {F12226} If an INSERT occurs within a trigger, then the rowid of the +** inserted row is returned by this routine as long as the trigger +** is running. {F12227} But once the trigger terminates, the value returned +** by this routine reverts to the last value inserted before the +** trigger fired. +** +** {F12228} An INSERT that fails due to a constraint violation is not a +** successful insert and does not change the value returned by this +** routine. {F12229} Thus INSERT OR FAIL, INSERT OR IGNORE, INSERT OR ROLLBACK, +** and INSERT OR ABORT make no changes to the return value of this +** routine when their insertion fails. {F12231} When INSERT OR REPLACE +** encounters a constraint violation, it does not fail. The +** INSERT continues to completion after deleting rows that caused +** the constraint problem so INSERT OR REPLACE will always change +** the return value of this interface. +** +** {UF12232} If another thread does a new insert on the same database connection +** while this routine is running and thus changes the last insert rowid, +** then the return value of this routine is undefined. +*/ +sqlite3_int64 sqlite3_last_insert_rowid(sqlite3*); + +/* +** CAPI3REF: Count The Number Of Rows Modified {F12240} +** +** {F12241} This function returns the number of database rows that were changed +** or inserted or deleted by the most recently completed SQL statement +** on the connection specified by the first parameter. {F12242} Only +** changes that are directly specified by the INSERT, UPDATE, or +** DELETE statement are counted. Auxiliary changes caused by +** triggers are not counted. {F12243} Use the [sqlite3_total_changes()] function +** to find the total number of changes including changes caused by triggers. +** +** {F12244} Within the body of a trigger, the sqlite3_changes() interface +** can be called to find the number of +** changes in the most recently completed INSERT, UPDATE, or DELETE +** statement within the body of the same trigger. +** +** {F12245} All changes are counted, even if they are later undone by a +** ROLLBACK or ABORT. {F12246} Except, changes associated with creating and +** dropping tables are not counted. +** +** {F12247} If a callback invokes [sqlite3_exec()] or [sqlite3_step()] +** recursively, then the changes in the inner, recursive call are +** counted together with the changes in the outer call. +** +** {F12248} SQLite implements the command "DELETE FROM table" without +** a WHERE clause by dropping and recreating the table. (This is much +** faster than going through and deleting individual elements from the +** table.) Because of this optimization, the change count for +** "DELETE FROM table" will be zero regardless of the number of elements +** that were originally in the table. {F12251} To get an accurate count +** of the number of rows deleted, use +** "DELETE FROM table WHERE 1" instead. +** +** {UF12252} If another thread makes changes on the same database connection +** while this routine is running then the return value of this routine +** is undefined. +*/ +int sqlite3_changes(sqlite3*); + +/* +** CAPI3REF: Total Number Of Rows Modified {F12260} +*** +** {F12261} This function returns the number of database rows that have been +** modified by INSERT, UPDATE or DELETE statements since the database handle +** was opened. {F12262} The count includes UPDATE, INSERT and DELETE +** statements executed as part of trigger programs. {F12263} All changes +** are counted as soon as the statement that makes them is completed +** (when the statement handle is passed to [sqlite3_reset()] or +** [sqlite3_finalize()]). {END} +** +** See also the [sqlite3_change()] interface. +** +** {F12265} SQLite implements the command "DELETE FROM table" without +** a WHERE clause by dropping and recreating the table. (This is much +** faster than going +** through and deleting individual elements form the table.) Because of +** this optimization, the change count for "DELETE FROM table" will be +** zero regardless of the number of elements that were originally in the +** table. To get an accurate count of the number of rows deleted, use +** "DELETE FROM table WHERE 1" instead. +** +** {U12264} If another thread makes changes on the same database connection +** while this routine is running then the return value of this routine +** is undefined. {END} +*/ +int sqlite3_total_changes(sqlite3*); + +/* +** CAPI3REF: Interrupt A Long-Running Query {F12270} +** +** {F12271} This function causes any pending database operation to abort and +** return at its earliest opportunity. {END} This routine is typically +** called in response to a user action such as pressing "Cancel" +** or Ctrl-C where the user wants a long query operation to halt +** immediately. +** +** {F12272} It is safe to call this routine from a thread different from the +** thread that is currently running the database operation. {U12273} But it +** is not safe to call this routine with a database connection that +** is closed or might close before sqlite3_interrupt() returns. +** +** If an SQL is very nearly finished at the time when sqlite3_interrupt() +** is called, then it might not have an opportunity to be interrupted. +** It might continue to completion. +** {F12274} The SQL operation that is interrupted will return +** [SQLITE_INTERRUPT]. {F12275} If the interrupted SQL operation is an +** INSERT, UPDATE, or DELETE that is inside an explicit transaction, +** then the entire transaction will be rolled back automatically. +** {F12276} A call to sqlite3_interrupt() has no effect on SQL statements +** that are started after sqlite3_interrupt() returns. +*/ +void sqlite3_interrupt(sqlite3*); + +/* +** CAPI3REF: Determine If An SQL Statement Is Complete {F10510} +** +** These routines are useful for command-line input to determine if the +** currently entered text seems to form complete a SQL statement or +** if additional input is needed before sending the text into +** SQLite for parsing. These routines return true if the input string +** appears to be a complete SQL statement. A statement is judged to be +** complete if it ends with a semicolon and is not a fragment of a +** CREATE TRIGGER statement. These routines do not parse the SQL and +** so will not detect syntactically incorrect SQL. +** +** {F10511} These functions return true if the given input string +** ends with a semicolon optionally followed by whitespace or +** comments. {F10512} For sqlite3_complete(), +** the parameter must be a zero-terminated UTF-8 string. {F10513} For +** sqlite3_complete16(), a zero-terminated machine byte order UTF-16 string +** is required. {F10514} These routines return false if the terminal +** semicolon is within a comment, a string literal or a quoted identifier +** (in other words if the final semicolon is not really a separate token +** but part of a larger token) or if the final semicolon is +** in between the BEGIN and END keywords of a CREATE TRIGGER statement. +** {END} +*/ +int sqlite3_complete(const char *sql); +int sqlite3_complete16(const void *sql); + +/* +** CAPI3REF: Register A Callback To Handle SQLITE_BUSY Errors {F12310} +** +** {F12311} This routine identifies a callback function that might be +** invoked whenever an attempt is made to open a database table +** that another thread or process has locked. +** {F12312} If the busy callback is NULL, then [SQLITE_BUSY] +** or [SQLITE_IOERR_BLOCKED] +** is returned immediately upon encountering the lock. +** {F12313} If the busy callback is not NULL, then the +** callback will be invoked with two arguments. {F12314} The +** first argument to the handler is a copy of the void* pointer which +** is the third argument to this routine. {F12315} The second argument to +** the handler is the number of times that the busy handler has +** been invoked for this locking event. {F12316} If the +** busy callback returns 0, then no additional attempts are made to +** access the database and [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED] is returned. +** {F12317} If the callback returns non-zero, then another attempt +** is made to open the database for reading and the cycle repeats. +** +** The presence of a busy handler does not guarantee that +** it will be invoked when there is lock contention. {F12319} +** If SQLite determines that invoking the busy handler could result in +** a deadlock, it will go ahead and return [SQLITE_BUSY] or +** [SQLITE_IOERR_BLOCKED] instead of invoking the +** busy handler. {END} +** Consider a scenario where one process is holding a read lock that +** it is trying to promote to a reserved lock and +** a second process is holding a reserved lock that it is trying +** to promote to an exclusive lock. The first process cannot proceed +** because it is blocked by the second and the second process cannot +** proceed because it is blocked by the first. If both processes +** invoke the busy handlers, neither will make any progress. Therefore, +** SQLite returns [SQLITE_BUSY] for the first process, hoping that this +** will induce the first process to release its read lock and allow +** the second process to proceed. +** +** {F12321} The default busy callback is NULL. {END} +** +** {F12322} The [SQLITE_BUSY] error is converted to [SQLITE_IOERR_BLOCKED] +** when SQLite is in the middle of a large transaction where all the +** changes will not fit into the in-memory cache. {F12323} SQLite will +** already hold a RESERVED lock on the database file, but it needs +** to promote this lock to EXCLUSIVE so that it can spill cache +** pages into the database file without harm to concurrent +** readers. {F12324} If it is unable to promote the lock, then the in-memory +** cache will be left in an inconsistent state and so the error +** code is promoted from the relatively benign [SQLITE_BUSY] to +** the more severe [SQLITE_IOERR_BLOCKED]. {F12325} This error code promotion +** forces an automatic rollback of the changes. {END} See the +** +** CorruptionFollowingBusyError wiki page for a discussion of why +** this is important. +** +** {F12326} Sqlite is re-entrant, so the busy handler may start a new +** query. {END} (It is not clear why anyone would every want to do this, +** but it is allowed, in theory.) {U12327} But the busy handler may not +** close the database. Closing the database from a busy handler will delete +** data structures out from under the executing query and will +** probably result in a segmentation fault or other runtime error. {END} +** +** {F12328} There can only be a single busy handler defined for each database +** connection. Setting a new busy handler clears any previous one. +** {F12329} Note that calling [sqlite3_busy_timeout()] will also set or clear +** the busy handler. +** +** {F12331} When operating in [sqlite3_enable_shared_cache | shared cache mode], +** only a single busy handler can be defined for each database file. +** So if two database connections share a single cache, then changing +** the busy handler on one connection will also change the busy +** handler in the other connection. {F12332} The busy handler is invoked +** in the thread that was running when the lock contention occurs. +*/ +int sqlite3_busy_handler(sqlite3*, int(*)(void*,int), void*); + +/* +** CAPI3REF: Set A Busy Timeout {F12340} +** +** {F12341} This routine sets a [sqlite3_busy_handler | busy handler] +** that sleeps for a while when a +** table is locked. {F12342} The handler will sleep multiple times until +** at least "ms" milliseconds of sleeping have been done. {F12343} After +** "ms" milliseconds of sleeping, the handler returns 0 which +** causes [sqlite3_step()] to return [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED]. +** +** {F12344} Calling this routine with an argument less than or equal to zero +** turns off all busy handlers. +** +** {F12345} There can only be a single busy handler for a particular database +** connection. If another busy handler was defined +** (using [sqlite3_busy_handler()]) prior to calling +** this routine, that other busy handler is cleared. +*/ +int sqlite3_busy_timeout(sqlite3*, int ms); + +/* +** CAPI3REF: Convenience Routines For Running Queries {F12370} +** +** This next routine is a convenience wrapper around [sqlite3_exec()]. +** {F12371} Instead of invoking a user-supplied callback for each row of the +** result, this routine remembers each row of the result in memory +** obtained from [sqlite3_malloc()], then returns all of the result after the +** query has finished. {F12372} +** +** As an example, suppose the query result where this table: +** +**
+**        Name        | Age
+**        -----------------------
+**        Alice       | 43
+**        Bob         | 28
+**        Cindy       | 21
+** 
+** +** If the 3rd argument were &azResult then after the function returns +** azResult will contain the following data: +** +**
+**        azResult[0] = "Name";
+**        azResult[1] = "Age";
+**        azResult[2] = "Alice";
+**        azResult[3] = "43";
+**        azResult[4] = "Bob";
+**        azResult[5] = "28";
+**        azResult[6] = "Cindy";
+**        azResult[7] = "21";
+** 
+** +** Notice that there is an extra row of data containing the column +** headers. But the *nrow return value is still 3. *ncolumn is +** set to 2. In general, the number of values inserted into azResult +** will be ((*nrow) + 1)*(*ncolumn). +** +** {U12374} After the calling function has finished using the result, it should +** pass the result data pointer to sqlite3_free_table() in order to +** release the memory that was malloc-ed. Because of the way the +** [sqlite3_malloc()] happens, the calling function must not try to call +** [sqlite3_free()] directly. Only [sqlite3_free_table()] is able to release +** the memory properly and safely. {END} +** +** {F12373} The return value of this routine is the same as +** from [sqlite3_exec()]. +*/ +int sqlite3_get_table( + sqlite3*, /* An open database */ + const char *sql, /* SQL to be executed */ + char ***resultp, /* Result written to a char *[] that this points to */ + int *nrow, /* Number of result rows written here */ + int *ncolumn, /* Number of result columns written here */ + char **errmsg /* Error msg written here */ +); +void sqlite3_free_table(char **result); + +/* +** CAPI3REF: Formatted String Printing Functions {F17400} +** +** These routines are workalikes of the "printf()" family of functions +** from the standard C library. +** +** {F17401} The sqlite3_mprintf() and sqlite3_vmprintf() routines write their +** results into memory obtained from [sqlite3_malloc()]. +** {U17402} The strings returned by these two routines should be +** released by [sqlite3_free()]. {F17403} Both routines return a +** NULL pointer if [sqlite3_malloc()] is unable to allocate enough +** memory to hold the resulting string. +** +** {F17404} In sqlite3_snprintf() routine is similar to "snprintf()" from +** the standard C library. The result is written into the +** buffer supplied as the second parameter whose size is given by +** the first parameter. {END} Note that the order of the +** first two parameters is reversed from snprintf(). This is an +** historical accident that cannot be fixed without breaking +** backwards compatibility. {F17405} Note also that sqlite3_snprintf() +** returns a pointer to its buffer instead of the number of +** characters actually written into the buffer. {END} We admit that +** the number of characters written would be a more useful return +** value but we cannot change the implementation of sqlite3_snprintf() +** now without breaking compatibility. +** +** {F17406} As long as the buffer size is greater than zero, sqlite3_snprintf() +** guarantees that the buffer is always zero-terminated. {F17407} The first +** parameter "n" is the total size of the buffer, including space for +** the zero terminator. {END} So the longest string that can be completely +** written will be n-1 characters. +** +** These routines all implement some additional formatting +** options that are useful for constructing SQL statements. +** All of the usual printf formatting options apply. In addition, there +** is are "%q", "%Q", and "%z" options. +** +** {F17410} The %q option works like %s in that it substitutes a null-terminated +** string from the argument list. But %q also doubles every '\'' character. +** %q is designed for use inside a string literal. {END} By doubling each '\'' +** character it escapes that character and allows it to be inserted into +** the string. +** +** For example, so some string variable contains text as follows: +** +**
+**  char *zText = "It's a happy day!";
+** 
+** +** One can use this text in an SQL statement as follows: +** +**
+**  char *zSQL = sqlite3_mprintf("INSERT INTO table VALUES('%q')", zText);
+**  sqlite3_exec(db, zSQL, 0, 0, 0);
+**  sqlite3_free(zSQL);
+** 
+** +** Because the %q format string is used, the '\'' character in zText +** is escaped and the SQL generated is as follows: +** +**
+**  INSERT INTO table1 VALUES('It''s a happy day!')
+** 
+** +** This is correct. Had we used %s instead of %q, the generated SQL +** would have looked like this: +** +**
+**  INSERT INTO table1 VALUES('It's a happy day!');
+** 
+** +** This second example is an SQL syntax error. As a general rule you +** should always use %q instead of %s when inserting text into a string +** literal. +** +** {F17411} The %Q option works like %q except it also adds single quotes around +** the outside of the total string. Or if the parameter in the argument +** list is a NULL pointer, %Q substitutes the text "NULL" (without single +** quotes) in place of the %Q option. {END} So, for example, one could say: +** +**
+**  char *zSQL = sqlite3_mprintf("INSERT INTO table VALUES(%Q)", zText);
+**  sqlite3_exec(db, zSQL, 0, 0, 0);
+**  sqlite3_free(zSQL);
+** 
+** +** The code above will render a correct SQL statement in the zSQL +** variable even if the zText variable is a NULL pointer. +** +** {F17412} The "%z" formatting option works exactly like "%s" with the +** addition that after the string has been read and copied into +** the result, [sqlite3_free()] is called on the input string. {END} +*/ +char *sqlite3_mprintf(const char*,...); +char *sqlite3_vmprintf(const char*, va_list); +char *sqlite3_snprintf(int,char*,const char*, ...); + +/* +** CAPI3REF: Memory Allocation Subsystem {F17300} +** +** {F17301} The SQLite core uses these three routines for all of its own +** internal memory allocation needs. {END} "Core" in the previous sentence +** does not include operating-system specific VFS implementation. The +** windows VFS uses native malloc and free for some operations. +** +** {F17302} The sqlite3_malloc() routine returns a pointer to a block +** of memory at least N bytes in length, where N is the parameter. +** {F17303} If sqlite3_malloc() is unable to obtain sufficient free +** memory, it returns a NULL pointer. {F17304} If the parameter N to +** sqlite3_malloc() is zero or negative then sqlite3_malloc() returns +** a NULL pointer. +** +** {F17305} Calling sqlite3_free() with a pointer previously returned +** by sqlite3_malloc() or sqlite3_realloc() releases that memory so +** that it might be reused. {F17306} The sqlite3_free() routine is +** a no-op if is called with a NULL pointer. Passing a NULL pointer +** to sqlite3_free() is harmless. {U17307} After being freed, memory +** should neither be read nor written. Even reading previously freed +** memory might result in a segmentation fault or other severe error. +** {U17309} Memory corruption, a segmentation fault, or other severe error +** might result if sqlite3_free() is called with a non-NULL pointer that +** was not obtained from sqlite3_malloc() or sqlite3_free(). +** +** {F17310} The sqlite3_realloc() interface attempts to resize a +** prior memory allocation to be at least N bytes, where N is the +** second parameter. The memory allocation to be resized is the first +** parameter. {F17311} If the first parameter to sqlite3_realloc() +** is a NULL pointer then its behavior is identical to calling +** sqlite3_malloc(N) where N is the second parameter to sqlite3_realloc(). +** {F17312} If the second parameter to sqlite3_realloc() is zero or +** negative then the behavior is exactly the same as calling +** sqlite3_free(P) where P is the first parameter to sqlite3_realloc(). +** {F17313} Sqlite3_realloc() returns a pointer to a memory allocation +** of at least N bytes in size or NULL if sufficient memory is unavailable. +** {F17314} If M is the size of the prior allocation, then min(N,M) bytes +** of the prior allocation are copied into the beginning of buffer returned +** by sqlite3_realloc() and the prior allocation is freed. +** {F17315} If sqlite3_realloc() returns NULL, then the prior allocation +** is not freed. +** +** {F17316} The memory returned by sqlite3_malloc() and sqlite3_realloc() +** is always aligned to at least an 8 byte boundary. {END} +** +** {F17381} The default implementation +** of the memory allocation subsystem uses the malloc(), realloc() +** and free() provided by the standard C library. {F17382} However, if +** SQLite is compiled with the following C preprocessor macro +** +**
SQLITE_MEMORY_SIZE=NNN
+** +** where NNN is an integer, then SQLite create a static +** array of at least NNN bytes in size and use that array +** for all of its dynamic memory allocation needs. {END} Additional +** memory allocator options may be added in future releases. +** +** In SQLite version 3.5.0 and 3.5.1, it was possible to define +** the SQLITE_OMIT_MEMORY_ALLOCATION which would cause the built-in +** implementation of these routines to be omitted. That capability +** is no longer provided. Only built-in memory allocators can be +** used. +** +** The windows OS interface layer calls +** the system malloc() and free() directly when converting +** filenames between the UTF-8 encoding used by SQLite +** and whatever filename encoding is used by the particular windows +** installation. Memory allocation errors are detected, but +** they are reported back as [SQLITE_CANTOPEN] or +** [SQLITE_IOERR] rather than [SQLITE_NOMEM]. +*/ +void *sqlite3_malloc(int); +void *sqlite3_realloc(void*, int); +void sqlite3_free(void*); + +/* +** CAPI3REF: Memory Allocator Statistics {F17370} +** +** In addition to the basic three allocation routines +** [sqlite3_malloc()], [sqlite3_free()], and [sqlite3_realloc()], +** the memory allocation subsystem included with the SQLite +** sources provides the interfaces shown here. +** +** {F17371} The sqlite3_memory_used() routine returns the +** number of bytes of memory currently outstanding (malloced but not freed). +** {F17372} The value returned by sqlite3_memory_used() includes +** any overhead added by SQLite, but not overhead added by the +** library malloc() that backs the sqlite3_malloc() implementation. +** {F17373} The sqlite3_memory_highwater() routines returns the +** maximum number of bytes that have been outstanding at any time +** since the highwater mark was last reset. +** {F17374} The byte count returned by sqlite3_memory_highwater() +** uses the same byte counting rules as sqlite3_memory_used(). {END} +** In other words, overhead added internally by SQLite is counted, +** but overhead from the underlying system malloc is not. +** {F17375} If the parameter to sqlite3_memory_highwater() is true, +** then the highwater mark is reset to the current value of +** sqlite3_memory_used() and the prior highwater mark (before the +** reset) is returned. {F17376} If the parameter to +** sqlite3_memory_highwater() is zero, then the highwater mark is +** unchanged. +*/ +sqlite3_int64 sqlite3_memory_used(void); +sqlite3_int64 sqlite3_memory_highwater(int resetFlag); + +/* +** CAPI3REF: Compile-Time Authorization Callbacks {F12500} +** +** {F12501} This routine registers a authorizer callback with a particular +** database connection, supplied in the first argument. {F12502} +** The authorizer callback is invoked as SQL statements are being compiled +** by [sqlite3_prepare()] or its variants [sqlite3_prepare_v2()], +** [sqlite3_prepare16()] and [sqlite3_prepare16_v2()]. {F12503} At various +** points during the compilation process, as logic is being created +** to perform various actions, the authorizer callback is invoked to +** see if those actions are allowed. The authorizer callback should +** return SQLITE_OK to allow the action, [SQLITE_IGNORE] to disallow the +** specific action but allow the SQL statement to continue to be +** compiled, or [SQLITE_DENY] to cause the entire SQL statement to be +** rejected with an error. {F12504} If the authorizer callback returns +** any value other than [SQLITE_IGNORE], [SQLITE_OK], or [SQLITE_DENY] +** then [sqlite3_prepare_v2()] or equivalent call that triggered +** the authorizer shall +** fail with an SQLITE_ERROR error code and an appropriate error message. {END} +** +** When the callback returns [SQLITE_OK], that means the operation +** requested is ok. {F12505} When the callback returns [SQLITE_DENY], the +** [sqlite3_prepare_v2()] or equivalent call that triggered the +** authorizer shall fail +** with an SQLITE_ERROR error code and an error message explaining that +** access is denied. {F12506} If the authorizer code (the 2nd parameter +** to the authorizer callback is anything other than [SQLITE_READ], then +** a return of [SQLITE_IGNORE] has the same effect as [SQLITE_DENY]. +** If the authorizer code is [SQLITE_READ] and the callback returns +** [SQLITE_IGNORE] then the prepared statement is constructed to +** insert a NULL value in place of the table column that would have +** been read if [SQLITE_OK] had been returned. {END} +** +** {F12510} The first parameter to the authorizer callback is a copy of +** the third parameter to the sqlite3_set_authorizer() interface. +** {F12511} The second parameter to the callback is an integer +** [SQLITE_COPY | action code] that specifies the particular action +** to be authorized. {END} The available action codes are +** [SQLITE_COPY | documented separately]. {F12512} The third through sixth +** parameters to the callback are zero-terminated strings that contain +** additional details about the action to be authorized. {END} +** +** An authorizer is used when preparing SQL statements from an untrusted +** source, to ensure that the SQL statements do not try to access data +** that they are not allowed to see, or that they do not try to +** execute malicious statements that damage the database. For +** example, an application may allow a user to enter arbitrary +** SQL queries for evaluation by a database. But the application does +** not want the user to be able to make arbitrary changes to the +** database. An authorizer could then be put in place while the +** user-entered SQL is being prepared that disallows everything +** except SELECT statements. +** +** {F12520} Only a single authorizer can be in place on a database connection +** at a time. Each call to sqlite3_set_authorizer overrides the +** previous call. {F12521} A NULL authorizer means that no authorization +** callback is invoked. {F12522} The default authorizer is NULL. {END} +** +** Note that the authorizer callback is invoked only during +** [sqlite3_prepare()] or its variants. {F12523} Authorization is not +** performed during statement evaluation in [sqlite3_step()]. {END} +*/ +int sqlite3_set_authorizer( + sqlite3*, + int (*xAuth)(void*,int,const char*,const char*,const char*,const char*), + void *pUserData +); + +/* +** CAPI3REF: Authorizer Return Codes {F12590} +** +** The [sqlite3_set_authorizer | authorizer callback function] must +** return either [SQLITE_OK] or one of these two constants in order +** to signal SQLite whether or not the action is permitted. See the +** [sqlite3_set_authorizer | authorizer documentation] for additional +** information. +*/ +#define SQLITE_DENY 1 /* Abort the SQL statement with an error */ +#define SQLITE_IGNORE 2 /* Don't allow access, but don't generate an error */ + +/* +** CAPI3REF: Authorizer Action Codes {F12550} +** +** The [sqlite3_set_authorizer()] interface registers a callback function +** that is invoked to authorizer certain SQL statement actions. {F12551} The +** second parameter to the callback is an integer code that specifies +** what action is being authorized. These are the integer action codes that +** the authorizer callback may be passed. {END} +** +** These action code values signify what kind of operation is to be +** authorized. {F12552} The 3rd and 4th parameters to the authorization +** callback function will be parameters or NULL depending on which of these +** codes is used as the second parameter. {F12553} The 5th parameter to the +** authorizer callback is the name of the database ("main", "temp", +** etc.) if applicable. {F12554} The 6th parameter to the authorizer callback +** is the name of the inner-most trigger or view that is responsible for +** the access attempt or NULL if this access attempt is directly from +** top-level SQL code. +*/ +/******************************************* 3rd ************ 4th ***********/ +#define SQLITE_CREATE_INDEX 1 /* Index Name Table Name */ +#define SQLITE_CREATE_TABLE 2 /* Table Name NULL */ +#define SQLITE_CREATE_TEMP_INDEX 3 /* Index Name Table Name */ +#define SQLITE_CREATE_TEMP_TABLE 4 /* Table Name NULL */ +#define SQLITE_CREATE_TEMP_TRIGGER 5 /* Trigger Name Table Name */ +#define SQLITE_CREATE_TEMP_VIEW 6 /* View Name NULL */ +#define SQLITE_CREATE_TRIGGER 7 /* Trigger Name Table Name */ +#define SQLITE_CREATE_VIEW 8 /* View Name NULL */ +#define SQLITE_DELETE 9 /* Table Name NULL */ +#define SQLITE_DROP_INDEX 10 /* Index Name Table Name */ +#define SQLITE_DROP_TABLE 11 /* Table Name NULL */ +#define SQLITE_DROP_TEMP_INDEX 12 /* Index Name Table Name */ +#define SQLITE_DROP_TEMP_TABLE 13 /* Table Name NULL */ +#define SQLITE_DROP_TEMP_TRIGGER 14 /* Trigger Name Table Name */ +#define SQLITE_DROP_TEMP_VIEW 15 /* View Name NULL */ +#define SQLITE_DROP_TRIGGER 16 /* Trigger Name Table Name */ +#define SQLITE_DROP_VIEW 17 /* View Name NULL */ +#define SQLITE_INSERT 18 /* Table Name NULL */ +#define SQLITE_PRAGMA 19 /* Pragma Name 1st arg or NULL */ +#define SQLITE_READ 20 /* Table Name Column Name */ +#define SQLITE_SELECT 21 /* NULL NULL */ +#define SQLITE_TRANSACTION 22 /* NULL NULL */ +#define SQLITE_UPDATE 23 /* Table Name Column Name */ +#define SQLITE_ATTACH 24 /* Filename NULL */ +#define SQLITE_DETACH 25 /* Database Name NULL */ +#define SQLITE_ALTER_TABLE 26 /* Database Name Table Name */ +#define SQLITE_REINDEX 27 /* Index Name NULL */ +#define SQLITE_ANALYZE 28 /* Table Name NULL */ +#define SQLITE_CREATE_VTABLE 29 /* Table Name Module Name */ +#define SQLITE_DROP_VTABLE 30 /* Table Name Module Name */ +#define SQLITE_FUNCTION 31 /* Function Name NULL */ +#define SQLITE_COPY 0 /* No longer used */ + +/* +** CAPI3REF: Tracing And Profiling Functions {F12280} +** +** These routines register callback functions that can be used for +** tracing and profiling the execution of SQL statements. +** +** {F12281} The callback function registered by sqlite3_trace() is invoked +** at the first [sqlite3_step()] for the evaluation of an SQL statement. +** {F12282} Only a single trace callback can be registered at a time. +** Each call to sqlite3_trace() overrides the previous. {F12283} A +** NULL callback for sqlite3_trace() disables tracing. {F12284} The +** first argument to the trace callback is a copy of the pointer which +** was the 3rd argument to sqlite3_trace. {F12285} The second argument +** to the trace callback is a zero-terminated UTF8 string containing +** the original text of the SQL statement as it was passed into +** [sqlite3_prepare_v2()] or the equivalent. {END} Note that the +** host parameter are not expanded in the SQL statement text. +** +** {F12287} The callback function registered by sqlite3_profile() is invoked +** as each SQL statement finishes. {F12288} The first parameter to the +** profile callback is a copy of the 3rd parameter to sqlite3_profile(). +** {F12289} The second parameter to the profile callback is a +** zero-terminated UTF-8 string that contains the complete text of +** the SQL statement as it was processed by [sqlite3_prepare_v2()] or +** the equivalent. {F12290} The third parameter to the profile +** callback is an estimate of the number of nanoseconds of +** wall-clock time required to run the SQL statement from start +** to finish. {END} +** +** The sqlite3_profile() API is currently considered experimental and +** is subject to change. +*/ +void *sqlite3_trace(sqlite3*, void(*xTrace)(void*,const char*), void*); +void *sqlite3_profile(sqlite3*, + void(*xProfile)(void*,const char*,sqlite3_uint64), void*); + +/* +** CAPI3REF: Query Progress Callbacks {F12910} +** +** {F12911} This routine configures a callback function - the +** progress callback - that is invoked periodically during long +** running calls to [sqlite3_exec()], [sqlite3_step()] and +** [sqlite3_get_table()]. {END} An example use for this +** interface is to keep a GUI updated during a large query. +** +** {F12912} The progress callback is invoked once for every N virtual +** machine opcodes, where N is the second argument to this function. +** {F12913} The progress callback itself is identified by the third +** argument to this function. {F12914} The fourth argument to this +** function is a void pointer passed to the progress callback +** function each time it is invoked. {END} +** +** {F12915} If a call to [sqlite3_exec()], [sqlite3_step()], or +** [sqlite3_get_table()] results in fewer than N opcodes being executed, +** then the progress callback is never invoked. {END} +** +** {F12916} Only a single progress callback function may be registered for each +** open database connection. Every call to sqlite3_progress_handler() +** overwrites the results of the previous call. {F12917} +** To remove the progress callback altogether, pass NULL as the third +** argument to this function. {END} +** +** {F12918} If the progress callback returns a result other than 0, then +** the current query is immediately terminated and any database changes +** rolled back. {F12919} +** The containing [sqlite3_exec()], [sqlite3_step()], or +** [sqlite3_get_table()] call returns SQLITE_INTERRUPT. {END} This feature +** can be used, for example, to implement the "Cancel" button on a +** progress dialog box in a GUI. +*/ +void sqlite3_progress_handler(sqlite3*, int, int(*)(void*), void*); + +/* +** CAPI3REF: Opening A New Database Connection {F12700} +** +** {F12701} These routines open an SQLite database file whose name +** is given by the filename argument. +** {F12702} The filename argument is interpreted as UTF-8 +** for [sqlite3_open()] and [sqlite3_open_v2()] and as UTF-16 +** in the native byte order for [sqlite3_open16()]. +** {F12703} An [sqlite3*] handle is returned in *ppDb, even +** if an error occurs. {F12723} (Exception: if SQLite is unable +** to allocate memory to hold the [sqlite3] object, a NULL will +** be written into *ppDb instead of a pointer to the [sqlite3] object.) +** {F12704} If the database is opened (and/or created) +** successfully, then [SQLITE_OK] is returned. {F12705} Otherwise an +** error code is returned. {F12706} The +** [sqlite3_errmsg()] or [sqlite3_errmsg16()] routines can be used to obtain +** an English language description of the error. +** +** {F12707} The default encoding for the database will be UTF-8 if +** [sqlite3_open()] or [sqlite3_open_v2()] is called and +** UTF-16 in the native byte order if [sqlite3_open16()] is used. +** +** {F12708} Whether or not an error occurs when it is opened, resources +** associated with the [sqlite3*] handle should be released by passing it +** to [sqlite3_close()] when it is no longer required. +** +** {F12709} The [sqlite3_open_v2()] interface works like [sqlite3_open()] +** except that it acccepts two additional parameters for additional control +** over the new database connection. {F12710} The flags parameter can be +** one of: +** +**
    +**
  1. [SQLITE_OPEN_READONLY] +**
  2. [SQLITE_OPEN_READWRITE] +**
  3. [SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE] +**
+** +** {F12711} The first value opens the database read-only. +** {F12712} If the database does not previously exist, an error is returned. +** {F12713} The second option opens +** the database for reading and writing if possible, or reading only if +** if the file is write protected. {F12714} In either case the database +** must already exist or an error is returned. {F12715} The third option +** opens the database for reading and writing and creates it if it does +** not already exist. {F12716} +** The third options is behavior that is always used for [sqlite3_open()] +** and [sqlite3_open16()]. +** +** {F12717} If the filename is ":memory:", then an private +** in-memory database is created for the connection. {F12718} This in-memory +** database will vanish when the database connection is closed. {END} Future +** version of SQLite might make use of additional special filenames +** that begin with the ":" character. It is recommended that +** when a database filename really does begin with +** ":" that you prefix the filename with a pathname like "./" to +** avoid ambiguity. +** +** {F12719} If the filename is an empty string, then a private temporary +** on-disk database will be created. {F12720} This private database will be +** automatically deleted as soon as the database connection is closed. +** +** {F12721} The fourth parameter to sqlite3_open_v2() is the name of the +** [sqlite3_vfs] object that defines the operating system +** interface that the new database connection should use. {F12722} If the +** fourth parameter is a NULL pointer then the default [sqlite3_vfs] +** object is used. {END} +** +** Note to windows users: The encoding used for the filename argument +** of [sqlite3_open()] and [sqlite3_open_v2()] must be UTF-8, not whatever +** codepage is currently defined. Filenames containing international +** characters must be converted to UTF-8 prior to passing them into +** [sqlite3_open()] or [sqlite3_open_v2()]. +*/ +int sqlite3_open( + const char *filename, /* Database filename (UTF-8) */ + sqlite3 **ppDb /* OUT: SQLite db handle */ +); +int sqlite3_open16( + const void *filename, /* Database filename (UTF-16) */ + sqlite3 **ppDb /* OUT: SQLite db handle */ +); +int sqlite3_open_v2( + const char *filename, /* Database filename (UTF-8) */ + sqlite3 **ppDb, /* OUT: SQLite db handle */ + int flags, /* Flags */ + const char *zVfs /* Name of VFS module to use */ +); + +/* +** CAPI3REF: Error Codes And Messages {F12800} +** +** {F12801} The sqlite3_errcode() interface returns the numeric +** [SQLITE_OK | result code] or [SQLITE_IOERR_READ | extended result code] +** for the most recent failed sqlite3_* API call associated +** with [sqlite3] handle 'db'. {U12802} If a prior API call failed but the +** most recent API call succeeded, the return value from sqlite3_errcode() +** is undefined. {END} +** +** {F12803} The sqlite3_errmsg() and sqlite3_errmsg16() return English-language +** text that describes the error, as either UTF8 or UTF16 respectively. +** {F12804} Memory to hold the error message string is managed internally. +** {U12805} The +** string may be overwritten or deallocated by subsequent calls to SQLite +** interface functions. {END} +** +** {F12806} Calls to many sqlite3_* functions set the error code and +** string returned by [sqlite3_errcode()], [sqlite3_errmsg()], and +** [sqlite3_errmsg16()] overwriting the previous values. {F12807} +** Except, calls to [sqlite3_errcode()], +** [sqlite3_errmsg()], and [sqlite3_errmsg16()] themselves do not affect the +** results of future invocations. {F12808} Calls to API routines that +** do not return an error code (example: [sqlite3_data_count()]) do not +** change the error code returned by this routine. {F12809} Interfaces that +** are not associated with a specific database connection (examples: +** [sqlite3_mprintf()] or [sqlite3_enable_shared_cache()] do not change +** the return code. {END} +** +** {F12810} Assuming no other intervening sqlite3_* API calls are made, +** the error code returned by this function is associated with the same +** error as the strings returned by [sqlite3_errmsg()] and [sqlite3_errmsg16()]. +*/ +int sqlite3_errcode(sqlite3 *db); +const char *sqlite3_errmsg(sqlite3*); +const void *sqlite3_errmsg16(sqlite3*); + +/* +** CAPI3REF: SQL Statement Object {F13000} +** +** An instance of this object represent single SQL statements. This +** object is variously known as a "prepared statement" or a +** "compiled SQL statement" or simply as a "statement". +** +** The life of a statement object goes something like this: +** +**
    +**
  1. Create the object using [sqlite3_prepare_v2()] or a related +** function. +**
  2. Bind values to host parameters using +** [sqlite3_bind_blob | sqlite3_bind_* interfaces]. +**
  3. Run the SQL by calling [sqlite3_step()] one or more times. +**
  4. Reset the statement using [sqlite3_reset()] then go back +** to step 2. Do this zero or more times. +**
  5. Destroy the object using [sqlite3_finalize()]. +**
+** +** Refer to documentation on individual methods above for additional +** information. +*/ +typedef struct sqlite3_stmt sqlite3_stmt; + +/* +** CAPI3REF: Compiling An SQL Statement {F13010} +** +** To execute an SQL query, it must first be compiled into a byte-code +** program using one of these routines. +** +** {F13011} The first argument "db" is an [sqlite3 | SQLite database handle] +** obtained from a prior call to [sqlite3_open()], [sqlite3_open_v2()] +** or [sqlite3_open16()]. {F13012} +** The second argument "zSql" is the statement to be compiled, encoded +** as either UTF-8 or UTF-16. The sqlite3_prepare() and sqlite3_prepare_v2() +** interfaces uses UTF-8 and sqlite3_prepare16() and sqlite3_prepare16_v2() +** use UTF-16. {END} +** +** {F13013} If the nByte argument is less +** than zero, then zSql is read up to the first zero terminator. +** {F13014} If nByte is non-negative, then it is the maximum number of +** bytes read from zSql. When nByte is non-negative, the +** zSql string ends at either the first '\000' or '\u0000' character or +** until the nByte-th byte, whichever comes first. {END} +** +** {F13015} *pzTail is made to point to the first byte past the end of the +** first SQL statement in zSql. These routines only compiles the first +** statement in zSql, so *pzTail is left pointing to what remains +** uncompiled. {END} +** +** {F13016} *ppStmt is left pointing to a compiled +** [sqlite3_stmt | SQL statement structure] that can be +** executed using [sqlite3_step()]. Or if there is an error, *ppStmt may be +** set to NULL. {F13017} If the input text contains no SQL (if the input +** is and empty string or a comment) then *ppStmt is set to NULL. +** {U13018} The calling procedure is responsible for deleting the +** compiled SQL statement +** using [sqlite3_finalize()] after it has finished with it. +** +** {F13019} On success, [SQLITE_OK] is returned. Otherwise an +** [SQLITE_ERROR | error code] is returned. {END} +** +** The sqlite3_prepare_v2() and sqlite3_prepare16_v2() interfaces are +** recommended for all new programs. The two older interfaces are retained +** for backwards compatibility, but their use is discouraged. +** {F13020} In the "v2" interfaces, the prepared statement +** that is returned (the [sqlite3_stmt] object) contains a copy of the +** original SQL text. {END} This causes the [sqlite3_step()] interface to +** behave a differently in two ways: +** +**
    +**
  1. {F13022} +** If the database schema changes, instead of returning [SQLITE_SCHEMA] as it +** always used to do, [sqlite3_step()] will automatically recompile the SQL +** statement and try to run it again. {F12023} If the schema has changed in +** a way that makes the statement no longer valid, [sqlite3_step()] will still +** return [SQLITE_SCHEMA]. {END} But unlike the legacy behavior, +** [SQLITE_SCHEMA] is now a fatal error. {F12024} Calling +** [sqlite3_prepare_v2()] again will not make the +** error go away. {F12025} Note: use [sqlite3_errmsg()] to find the text +** of the parsing error that results in an [SQLITE_SCHEMA] return. {END} +**
  2. +** +**
  3. +** {F13030} When an error occurs, +** [sqlite3_step()] will return one of the detailed +** [SQLITE_ERROR | result codes] or +** [SQLITE_IOERR_READ | extended result codes]. {F13031} +** The legacy behavior was that [sqlite3_step()] would only return a generic +** [SQLITE_ERROR] result code and you would have to make a second call to +** [sqlite3_reset()] in order to find the underlying cause of the problem. +** {F13032} +** With the "v2" prepare interfaces, the underlying reason for the error is +** returned immediately. {END} +**
  4. +**
+*/ +int sqlite3_prepare( + sqlite3 *db, /* Database handle */ + const char *zSql, /* SQL statement, UTF-8 encoded */ + int nByte, /* Maximum length of zSql in bytes. */ + sqlite3_stmt **ppStmt, /* OUT: Statement handle */ + const char **pzTail /* OUT: Pointer to unused portion of zSql */ +); +int sqlite3_prepare_v2( + sqlite3 *db, /* Database handle */ + const char *zSql, /* SQL statement, UTF-8 encoded */ + int nByte, /* Maximum length of zSql in bytes. */ + sqlite3_stmt **ppStmt, /* OUT: Statement handle */ + const char **pzTail /* OUT: Pointer to unused portion of zSql */ +); +int sqlite3_prepare16( + sqlite3 *db, /* Database handle */ + const void *zSql, /* SQL statement, UTF-16 encoded */ + int nByte, /* Maximum length of zSql in bytes. */ + sqlite3_stmt **ppStmt, /* OUT: Statement handle */ + const void **pzTail /* OUT: Pointer to unused portion of zSql */ +); +int sqlite3_prepare16_v2( + sqlite3 *db, /* Database handle */ + const void *zSql, /* SQL statement, UTF-16 encoded */ + int nByte, /* Maximum length of zSql in bytes. */ + sqlite3_stmt **ppStmt, /* OUT: Statement handle */ + const void **pzTail /* OUT: Pointer to unused portion of zSql */ +); + +/* +** CAPIREF: Retrieving Statement SQL {F13100} +** +** {F13101} If the compiled SQL statement passed as an argument was +** compiled using either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()], +** then this function returns a pointer to a zero-terminated string +** containing a copy of the original SQL statement. {F13102} The +** pointer is valid until the statement +** is deleted using sqlite3_finalize(). +** {F13103} The string returned by sqlite3_sql() is always UTF8 even +** if a UTF16 string was originally entered using [sqlite3_prepare16_v2()] +** or the equivalent. +** +** {F13104} If the statement was compiled using either of the legacy +** interfaces [sqlite3_prepare()] or [sqlite3_prepare16()], this +** function returns NULL. +*/ +const char *sqlite3_sql(sqlite3_stmt *pStmt); + +/* +** CAPI3REF: Dynamically Typed Value Object {F15000} +** +** {F15001} SQLite uses the sqlite3_value object to represent all values +** that are or can be stored in a database table. {END} +** SQLite uses dynamic typing for the values it stores. +** {F15002} Values stored in sqlite3_value objects can be +** be integers, floating point values, strings, BLOBs, or NULL. +*/ +typedef struct Mem sqlite3_value; + +/* +** CAPI3REF: SQL Function Context Object {F16001} +** +** The context in which an SQL function executes is stored in an +** sqlite3_context object. {F16002} A pointer to an sqlite3_context +** object is always first parameter to application-defined SQL functions. +*/ +typedef struct sqlite3_context sqlite3_context; + +/* +** CAPI3REF: Binding Values To Prepared Statements {F13500} +** +** {F13501} In the SQL strings input to [sqlite3_prepare_v2()] and its +** variants, literals may be replace by a parameter in one +** of these forms: +** +**
    +**
  • ? +**
  • ?NNN +**
  • :AAA +**
  • @AAA +**
  • $VVV +**
+** +** In the parameter forms shown above NNN is an integer literal, +** AAA is an alphanumeric identifier and VVV is a variable name according +** to the syntax rules of the TCL programming language. {END} +** The values of these parameters (also called "host parameter names") +** can be set using the sqlite3_bind_*() routines defined here. +** +** {F13502} The first argument to the sqlite3_bind_*() routines always +** is a pointer to the [sqlite3_stmt] object returned from +** [sqlite3_prepare_v2()] or its variants. {F13503} The second +** argument is the index of the parameter to be set. {F13504} The +** first parameter has an index of 1. {F13505} When the same named +** parameter is used more than once, second and subsequent +** occurrences have the same index as the first occurrence. +** {F13506} The index for named parameters can be looked up using the +** [sqlite3_bind_parameter_name()] API if desired. {F13507} The index +** for "?NNN" parameters is the value of NNN. +** {F13508} The NNN value must be between 1 and the compile-time +** parameter SQLITE_MAX_VARIABLE_NUMBER (default value: 999). {END} +** See limits.html for additional information. +** +** {F13509} The third argument is the value to bind to the parameter. {END} +** +** {F13510} In those +** routines that have a fourth argument, its value is the number of bytes +** in the parameter. To be clear: the value is the number of bytes in the +** string, not the number of characters. {F13511} The number +** of bytes does not include the zero-terminator at the end of strings. +** {F13512} +** If the fourth parameter is negative, the length of the string is +** number of bytes up to the first zero terminator. {END} +** +** {F13513} +** The fifth argument to sqlite3_bind_blob(), sqlite3_bind_text(), and +** sqlite3_bind_text16() is a destructor used to dispose of the BLOB or +** text after SQLite has finished with it. {F13514} If the fifth argument is +** the special value [SQLITE_STATIC], then the library assumes that the +** information is in static, unmanaged space and does not need to be freed. +** {F13515} If the fifth argument has the value [SQLITE_TRANSIENT], then +** SQLite makes its own private copy of the data immediately, before +** the sqlite3_bind_*() routine returns. {END} +** +** {F13520} The sqlite3_bind_zeroblob() routine binds a BLOB of length N that +** is filled with zeros. {F13521} A zeroblob uses a fixed amount of memory +** (just an integer to hold it size) while it is being processed. {END} +** Zeroblobs are intended to serve as place-holders for BLOBs whose +** content is later written using +** [sqlite3_blob_open | increment BLOB I/O] routines. {F13522} A negative +** value for the zeroblob results in a zero-length BLOB. {END} +** +** {F13530} The sqlite3_bind_*() routines must be called after +** [sqlite3_prepare_v2()] (and its variants) or [sqlite3_reset()] and +** before [sqlite3_step()]. {F13531} +** Bindings are not cleared by the [sqlite3_reset()] routine. +** {F13532} Unbound parameters are interpreted as NULL. {END} +** +** {F13540} These routines return [SQLITE_OK] on success or an error code if +** anything goes wrong. {F13541} [SQLITE_RANGE] is returned if the parameter +** index is out of range. {F13542} [SQLITE_NOMEM] is returned if malloc fails. +** {F13543} [SQLITE_MISUSE] is returned if these routines are called on a +** virtual machine that is the wrong state or which has already been finalized. +*/ +int sqlite3_bind_blob(sqlite3_stmt*, int, const void*, int n, void(*)(void*)); +int sqlite3_bind_double(sqlite3_stmt*, int, double); +int sqlite3_bind_int(sqlite3_stmt*, int, int); +int sqlite3_bind_int64(sqlite3_stmt*, int, sqlite3_int64); +int sqlite3_bind_null(sqlite3_stmt*, int); +int sqlite3_bind_text(sqlite3_stmt*, int, const char*, int n, void(*)(void*)); +int sqlite3_bind_text16(sqlite3_stmt*, int, const void*, int, void(*)(void*)); +int sqlite3_bind_value(sqlite3_stmt*, int, const sqlite3_value*); +int sqlite3_bind_zeroblob(sqlite3_stmt*, int, int n); + +/* +** CAPI3REF: Number Of Host Parameters {F13600} +** +** {F13601} Return the largest host parameter index in the precompiled +** statement given as the argument. {F13602} When the host parameters +** are of the forms like ":AAA", "$VVV", "@AAA", or "?", +** then they are assigned sequential increasing numbers beginning +** with one, so the value returned is the number of parameters. +** {F13603} However +** if the same host parameter name is used multiple times, each occurrance +** is given the same number, so the value returned in that case is the number +** of unique host parameter names. {F13604} If host parameters of the +** form "?NNN" are used (where NNN is an integer) then there might be +** gaps in the numbering and the value returned by this interface is +** the index of the host parameter with the largest index value. {END} +** +** {U13605} The prepared statement must not be [sqlite3_finalize | finalized] +** prior to this routine returning. Otherwise the results are undefined +** and probably undesirable. +*/ +int sqlite3_bind_parameter_count(sqlite3_stmt*); + +/* +** CAPI3REF: Name Of A Host Parameter {F13620} +** +** {F13621} This routine returns a pointer to the name of the n-th +** parameter in a [sqlite3_stmt | prepared statement]. {F13622} +** Host parameters of the form ":AAA" or "@AAA" or "$VVV" have a name +** which is the string ":AAA" or "@AAA" or "$VVV". +** In other words, the initial ":" or "$" or "@" +** is included as part of the name. {F13626} +** Parameters of the form "?" or "?NNN" have no name. +** +** {F13623} The first host parameter has an index of 1, not 0. +** +** {F13624} If the value n is out of range or if the n-th parameter is +** nameless, then NULL is returned. {F13625} The returned string is +** always in the UTF-8 encoding even if the named parameter was +** originally specified as UTF-16 in [sqlite3_prepare16()] or +** [sqlite3_prepare16_v2()]. +*/ +const char *sqlite3_bind_parameter_name(sqlite3_stmt*, int); + +/* +** CAPI3REF: Index Of A Parameter With A Given Name {F13640} +** +** {F13641} This routine returns the index of a host parameter with the +** given name. {F13642} The name must match exactly. {F13643} +** If no parameter with the given name is found, return 0. +** {F13644} Parameter names must be UTF8. +*/ +int sqlite3_bind_parameter_index(sqlite3_stmt*, const char *zName); + +/* +** CAPI3REF: Reset All Bindings On A Prepared Statement {F13660} +** +** {F13661} Contrary to the intuition of many, [sqlite3_reset()] does not +** reset the [sqlite3_bind_blob | bindings] on a +** [sqlite3_stmt | prepared statement]. {F13662} Use this routine to +** reset all host parameters to NULL. +*/ +int sqlite3_clear_bindings(sqlite3_stmt*); + +/* +** CAPI3REF: Number Of Columns In A Result Set {F13710} +** +** {F13711} Return the number of columns in the result set returned by the +** [sqlite3_stmt | compiled SQL statement]. {F13712} This routine returns 0 +** if pStmt is an SQL statement that does not return data (for +** example an UPDATE). +*/ +int sqlite3_column_count(sqlite3_stmt *pStmt); + +/* +** CAPI3REF: Column Names In A Result Set {F13720} +** +** {F13721} These routines return the name assigned to a particular column +** in the result set of a SELECT statement. {F13722} The sqlite3_column_name() +** interface returns a pointer to a zero-terminated UTF8 string +** and sqlite3_column_name16() returns a pointer to a zero-terminated +** UTF16 string. {F13723} The first parameter is the +** [sqlite3_stmt | prepared statement] that implements the SELECT statement. +** The second parameter is the column number. The left-most column is +** number 0. +** +** {F13724} The returned string pointer is valid until either the +** [sqlite3_stmt | prepared statement] is destroyed by [sqlite3_finalize()] +** or until the next call sqlite3_column_name() or sqlite3_column_name16() +** on the same column. +** +** {F13725} If sqlite3_malloc() fails during the processing of either routine +** (for example during a conversion from UTF-8 to UTF-16) then a +** NULL pointer is returned. +*/ +const char *sqlite3_column_name(sqlite3_stmt*, int N); +const void *sqlite3_column_name16(sqlite3_stmt*, int N); + +/* +** CAPI3REF: Source Of Data In A Query Result {F13740} +** +** {F13741} These routines provide a means to determine what column of what +** table in which database a result of a SELECT statement comes from. +** {F13742} The name of the database or table or column can be returned as +** either a UTF8 or UTF16 string. {F13743} The _database_ routines return +** the database name, the _table_ routines return the table name, and +** the origin_ routines return the column name. {F13744} +** The returned string is valid until +** the [sqlite3_stmt | prepared statement] is destroyed using +** [sqlite3_finalize()] or until the same information is requested +** again in a different encoding. +** +** {F13745} The names returned are the original un-aliased names of the +** database, table, and column. +** +** {F13746} The first argument to the following calls is a +** [sqlite3_stmt | compiled SQL statement]. +** {F13747} These functions return information about the Nth column returned by +** the statement, where N is the second function argument. +** +** {F13748} If the Nth column returned by the statement is an expression +** or subquery and is not a column value, then all of these functions +** return NULL. {F13749} Otherwise, they return the +** name of the attached database, table and column that query result +** column was extracted from. +** +** {F13750} As with all other SQLite APIs, those postfixed with "16" return +** UTF-16 encoded strings, the other functions return UTF-8. {END} +** +** These APIs are only available if the library was compiled with the +** SQLITE_ENABLE_COLUMN_METADATA preprocessor symbol defined. +** +** {U13751} +** If two or more threads call one or more of these routines against the same +** prepared statement and column at the same time then the results are +** undefined. +*/ +const char *sqlite3_column_database_name(sqlite3_stmt*,int); +const void *sqlite3_column_database_name16(sqlite3_stmt*,int); +const char *sqlite3_column_table_name(sqlite3_stmt*,int); +const void *sqlite3_column_table_name16(sqlite3_stmt*,int); +const char *sqlite3_column_origin_name(sqlite3_stmt*,int); +const void *sqlite3_column_origin_name16(sqlite3_stmt*,int); + +/* +** CAPI3REF: Declared Datatype Of A Query Result {F13760} +** +** The first parameter is a [sqlite3_stmt | compiled SQL statement]. +** {F13761} If this statement is a SELECT statement and the Nth column of the +** returned result set of that SELECT is a table column (not an +** expression or subquery) then the declared type of the table +** column is returned. {F13762} If the Nth column of the result set is an +** expression or subquery, then a NULL pointer is returned. +** {F13763} The returned string is always UTF-8 encoded. {END} +** For example, in the database schema: +** +** CREATE TABLE t1(c1 VARIANT); +** +** And the following statement compiled: +** +** SELECT c1 + 1, c1 FROM t1; +** +** Then this routine would return the string "VARIANT" for the second +** result column (i==1), and a NULL pointer for the first result column +** (i==0). +** +** SQLite uses dynamic run-time typing. So just because a column +** is declared to contain a particular type does not mean that the +** data stored in that column is of the declared type. SQLite is +** strongly typed, but the typing is dynamic not static. Type +** is associated with individual values, not with the containers +** used to hold those values. +*/ +const char *sqlite3_column_decltype(sqlite3_stmt *, int i); +const void *sqlite3_column_decltype16(sqlite3_stmt*,int); + +/* +** CAPI3REF: Evaluate An SQL Statement {F13200} +** +** After an [sqlite3_stmt | SQL statement] has been prepared with a call +** to either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()] or to one of +** the legacy interfaces [sqlite3_prepare()] or [sqlite3_prepare16()], +** then this function must be called one or more times to evaluate the +** statement. +** +** The details of the behavior of this sqlite3_step() interface depend +** on whether the statement was prepared using the newer "v2" interface +** [sqlite3_prepare_v2()] and [sqlite3_prepare16_v2()] or the older legacy +** interface [sqlite3_prepare()] and [sqlite3_prepare16()]. The use of the +** new "v2" interface is recommended for new applications but the legacy +** interface will continue to be supported. +** +** In the lagacy interface, the return value will be either [SQLITE_BUSY], +** [SQLITE_DONE], [SQLITE_ROW], [SQLITE_ERROR], or [SQLITE_MISUSE]. +** With the "v2" interface, any of the other [SQLITE_OK | result code] +** or [SQLITE_IOERR_READ | extended result code] might be returned as +** well. +** +** [SQLITE_BUSY] means that the database engine was unable to acquire the +** database locks it needs to do its job. If the statement is a COMMIT +** or occurs outside of an explicit transaction, then you can retry the +** statement. If the statement is not a COMMIT and occurs within a +** explicit transaction then you should rollback the transaction before +** continuing. +** +** [SQLITE_DONE] means that the statement has finished executing +** successfully. sqlite3_step() should not be called again on this virtual +** machine without first calling [sqlite3_reset()] to reset the virtual +** machine back to its initial state. +** +** If the SQL statement being executed returns any data, then +** [SQLITE_ROW] is returned each time a new row of data is ready +** for processing by the caller. The values may be accessed using +** the [sqlite3_column_int | column access functions]. +** sqlite3_step() is called again to retrieve the next row of data. +** +** [SQLITE_ERROR] means that a run-time error (such as a constraint +** violation) has occurred. sqlite3_step() should not be called again on +** the VM. More information may be found by calling [sqlite3_errmsg()]. +** With the legacy interface, a more specific error code (example: +** [SQLITE_INTERRUPT], [SQLITE_SCHEMA], [SQLITE_CORRUPT], and so forth) +** can be obtained by calling [sqlite3_reset()] on the +** [sqlite3_stmt | prepared statement]. In the "v2" interface, +** the more specific error code is returned directly by sqlite3_step(). +** +** [SQLITE_MISUSE] means that the this routine was called inappropriately. +** Perhaps it was called on a [sqlite3_stmt | prepared statement] that has +** already been [sqlite3_finalize | finalized] or on one that had +** previously returned [SQLITE_ERROR] or [SQLITE_DONE]. Or it could +** be the case that the same database connection is being used by two or +** more threads at the same moment in time. +** +** Goofy Interface Alert: +** In the legacy interface, +** the sqlite3_step() API always returns a generic error code, +** [SQLITE_ERROR], following any error other than [SQLITE_BUSY] +** and [SQLITE_MISUSE]. You must call [sqlite3_reset()] or +** [sqlite3_finalize()] in order to find one of the specific +** [SQLITE_ERROR | result codes] that better describes the error. +** We admit that this is a goofy design. The problem has been fixed +** with the "v2" interface. If you prepare all of your SQL statements +** using either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()] instead +** of the legacy [sqlite3_prepare()] and [sqlite3_prepare16()], then the +** more specific [SQLITE_ERROR | result codes] are returned directly +** by sqlite3_step(). The use of the "v2" interface is recommended. +*/ +int sqlite3_step(sqlite3_stmt*); + +/* +** CAPI3REF: Number of columns in a result set {F13770} +** +** Return the number of values in the current row of the result set. +** +** {F13771} After a call to [sqlite3_step()] that returns [SQLITE_ROW], +** this routine +** will return the same value as the [sqlite3_column_count()] function. +** {F13772} +** After [sqlite3_step()] has returned an [SQLITE_DONE], [SQLITE_BUSY], or +** a [SQLITE_ERROR | error code], or before [sqlite3_step()] has been +** called on the [sqlite3_stmt | prepared statement] for the first time, +** this routine returns zero. +*/ +int sqlite3_data_count(sqlite3_stmt *pStmt); + +/* +** CAPI3REF: Fundamental Datatypes {F10265} +** +** {F10266}Every value in SQLite has one of five fundamental datatypes: +** +**
    +**
  • 64-bit signed integer +**
  • 64-bit IEEE floating point number +**
  • string +**
  • BLOB +**
  • NULL +**
{END} +** +** These constants are codes for each of those types. +** +** Note that the SQLITE_TEXT constant was also used in SQLite version 2 +** for a completely different meaning. Software that links against both +** SQLite version 2 and SQLite version 3 should use SQLITE3_TEXT not +** SQLITE_TEXT. +*/ +#define SQLITE_INTEGER 1 +#define SQLITE_FLOAT 2 +#define SQLITE_BLOB 4 +#define SQLITE_NULL 5 +#ifdef SQLITE_TEXT +# undef SQLITE_TEXT +#else +# define SQLITE_TEXT 3 +#endif +#define SQLITE3_TEXT 3 + +/* +** CAPI3REF: Results Values From A Query {F13800} +** +** These routines return information about +** a single column of the current result row of a query. In every +** case the first argument is a pointer to the +** [sqlite3_stmt | SQL statement] that is being +** evaluated (the [sqlite3_stmt*] that was returned from +** [sqlite3_prepare_v2()] or one of its variants) and +** the second argument is the index of the column for which information +** should be returned. The left-most column of the result set +** has an index of 0. +** +** If the SQL statement is not currently point to a valid row, or if the +** the column index is out of range, the result is undefined. +** These routines may only be called when the most recent call to +** [sqlite3_step()] has returned [SQLITE_ROW] and neither +** [sqlite3_reset()] nor [sqlite3_finalize()] has been call subsequently. +** If any of these routines are called after [sqlite3_reset()] or +** [sqlite3_finalize()] or after [sqlite3_step()] has returned +** something other than [SQLITE_ROW], the results are undefined. +** If [sqlite3_step()] or [sqlite3_reset()] or [sqlite3_finalize()] +** are called from a different thread while any of these routines +** are pending, then the results are undefined. +** +** The sqlite3_column_type() routine returns +** [SQLITE_INTEGER | datatype code] for the initial data type +** of the result column. The returned value is one of [SQLITE_INTEGER], +** [SQLITE_FLOAT], [SQLITE_TEXT], [SQLITE_BLOB], or [SQLITE_NULL]. The value +** returned by sqlite3_column_type() is only meaningful if no type +** conversions have occurred as described below. After a type conversion, +** the value returned by sqlite3_column_type() is undefined. Future +** versions of SQLite may change the behavior of sqlite3_column_type() +** following a type conversion. +** +** If the result is a BLOB or UTF-8 string then the sqlite3_column_bytes() +** routine returns the number of bytes in that BLOB or string. +** If the result is a UTF-16 string, then sqlite3_column_bytes() converts +** the string to UTF-8 and then returns the number of bytes. +** If the result is a numeric value then sqlite3_column_bytes() uses +** [sqlite3_snprintf()] to convert that value to a UTF-8 string and returns +** the number of bytes in that string. +** The value returned does not include the zero terminator at the end +** of the string. For clarity: the value returned is the number of +** bytes in the string, not the number of characters. +** +** Strings returned by sqlite3_column_text() and sqlite3_column_text16(), +** even zero-length strings, are always zero terminated. The return +** value from sqlite3_column_blob() for a zero-length blob is an arbitrary +** pointer, possibly even a NULL pointer. +** +** The sqlite3_column_bytes16() routine is similar to sqlite3_column_bytes() +** but leaves the result in UTF-16 instead of UTF-8. +** The zero terminator is not included in this count. +** +** These routines attempt to convert the value where appropriate. For +** example, if the internal representation is FLOAT and a text result +** is requested, [sqlite3_snprintf()] is used internally to do the conversion +** automatically. The following table details the conversions that +** are applied: +** +**
+** +**
Internal
Type
Requested
Type
Conversion +** +**
NULL INTEGER Result is 0 +**
NULL FLOAT Result is 0.0 +**
NULL TEXT Result is NULL pointer +**
NULL BLOB Result is NULL pointer +**
INTEGER FLOAT Convert from integer to float +**
INTEGER TEXT ASCII rendering of the integer +**
INTEGER BLOB Same as for INTEGER->TEXT +**
FLOAT INTEGER Convert from float to integer +**
FLOAT TEXT ASCII rendering of the float +**
FLOAT BLOB Same as FLOAT->TEXT +**
TEXT INTEGER Use atoi() +**
TEXT FLOAT Use atof() +**
TEXT BLOB No change +**
BLOB INTEGER Convert to TEXT then use atoi() +**
BLOB FLOAT Convert to TEXT then use atof() +**
BLOB TEXT Add a zero terminator if needed +**
+**
+** +** The table above makes reference to standard C library functions atoi() +** and atof(). SQLite does not really use these functions. It has its +** on equavalent internal routines. The atoi() and atof() names are +** used in the table for brevity and because they are familiar to most +** C programmers. +** +** Note that when type conversions occur, pointers returned by prior +** calls to sqlite3_column_blob(), sqlite3_column_text(), and/or +** sqlite3_column_text16() may be invalidated. +** Type conversions and pointer invalidations might occur +** in the following cases: +** +**
    +**
  • The initial content is a BLOB and sqlite3_column_text() +** or sqlite3_column_text16() is called. A zero-terminator might +** need to be added to the string.

  • +** +**
  • The initial content is UTF-8 text and sqlite3_column_bytes16() or +** sqlite3_column_text16() is called. The content must be converted +** to UTF-16.

  • +** +**
  • The initial content is UTF-16 text and sqlite3_column_bytes() or +** sqlite3_column_text() is called. The content must be converted +** to UTF-8.

  • +**
+** +** Conversions between UTF-16be and UTF-16le are always done in place and do +** not invalidate a prior pointer, though of course the content of the buffer +** that the prior pointer points to will have been modified. Other kinds +** of conversion are done in place when it is possible, but sometime it is +** not possible and in those cases prior pointers are invalidated. +** +** The safest and easiest to remember policy is to invoke these routines +** in one of the following ways: +** +**
    +**
  • sqlite3_column_text() followed by sqlite3_column_bytes()
  • +**
  • sqlite3_column_blob() followed by sqlite3_column_bytes()
  • +**
  • sqlite3_column_text16() followed by sqlite3_column_bytes16()
  • +**
+** +** In other words, you should call sqlite3_column_text(), sqlite3_column_blob(), +** or sqlite3_column_text16() first to force the result into the desired +** format, then invoke sqlite3_column_bytes() or sqlite3_column_bytes16() to +** find the size of the result. Do not mix call to sqlite3_column_text() or +** sqlite3_column_blob() with calls to sqlite3_column_bytes16(). And do not +** mix calls to sqlite3_column_text16() with calls to sqlite3_column_bytes(). +** +** The pointers returned are valid until a type conversion occurs as +** described above, or until [sqlite3_step()] or [sqlite3_reset()] or +** [sqlite3_finalize()] is called. The memory space used to hold strings +** and blobs is freed automatically. Do not pass the pointers returned +** [sqlite3_column_blob()], [sqlite3_column_text()], etc. into +** [sqlite3_free()]. +** +** If a memory allocation error occurs during the evaluation of any +** of these routines, a default value is returned. The default value +** is either the integer 0, the floating point number 0.0, or a NULL +** pointer. Subsequent calls to [sqlite3_errcode()] will return +** [SQLITE_NOMEM]. +*/ +const void *sqlite3_column_blob(sqlite3_stmt*, int iCol); +int sqlite3_column_bytes(sqlite3_stmt*, int iCol); +int sqlite3_column_bytes16(sqlite3_stmt*, int iCol); +double sqlite3_column_double(sqlite3_stmt*, int iCol); +int sqlite3_column_int(sqlite3_stmt*, int iCol); +sqlite3_int64 sqlite3_column_int64(sqlite3_stmt*, int iCol); +const unsigned char *sqlite3_column_text(sqlite3_stmt*, int iCol); +const void *sqlite3_column_text16(sqlite3_stmt*, int iCol); +int sqlite3_column_type(sqlite3_stmt*, int iCol); +sqlite3_value *sqlite3_column_value(sqlite3_stmt*, int iCol); + +/* +** CAPI3REF: Destroy A Prepared Statement Object {F13300} +** +** The sqlite3_finalize() function is called to delete a +** [sqlite3_stmt | compiled SQL statement]. If the statement was +** executed successfully, or not executed at all, then SQLITE_OK is returned. +** If execution of the statement failed then an +** [SQLITE_ERROR | error code] or [SQLITE_IOERR_READ | extended error code] +** is returned. +** +** This routine can be called at any point during the execution of the +** [sqlite3_stmt | virtual machine]. If the virtual machine has not +** completed execution when this routine is called, that is like +** encountering an error or an interrupt. (See [sqlite3_interrupt()].) +** Incomplete updates may be rolled back and transactions cancelled, +** depending on the circumstances, and the +** [SQLITE_ERROR | result code] returned will be [SQLITE_ABORT]. +*/ +int sqlite3_finalize(sqlite3_stmt *pStmt); + +/* +** CAPI3REF: Reset A Prepared Statement Object {F13330} +** +** The sqlite3_reset() function is called to reset a +** [sqlite3_stmt | compiled SQL statement] object. +** back to its initial state, ready to be re-executed. +** Any SQL statement variables that had values bound to them using +** the [sqlite3_bind_blob | sqlite3_bind_*() API] retain their values. +** Use [sqlite3_clear_bindings()] to reset the bindings. +*/ +int sqlite3_reset(sqlite3_stmt *pStmt); + +/* +** CAPI3REF: Create Or Redefine SQL Functions {F16100} +** +** The following two functions are used to add SQL functions or aggregates +** or to redefine the behavior of existing SQL functions or aggregates. The +** difference only between the two is that the second parameter, the +** name of the (scalar) function or aggregate, is encoded in UTF-8 for +** sqlite3_create_function() and UTF-16 for sqlite3_create_function16(). +** +** The first argument is the [sqlite3 | database handle] that holds the +** SQL function or aggregate is to be added or redefined. If a single +** program uses more than one database handle internally, then SQL +** functions or aggregates must be added individually to each database +** handle with which they will be used. +** +** The second parameter is the name of the SQL function to be created +** or redefined. +** The length of the name is limited to 255 bytes, exclusive of the +** zero-terminator. Note that the name length limit is in bytes, not +** characters. Any attempt to create a function with a longer name +** will result in an SQLITE_ERROR error. +** +** The third parameter is the number of arguments that the SQL function or +** aggregate takes. If this parameter is negative, then the SQL function or +** aggregate may take any number of arguments. +** +** The fourth parameter, eTextRep, specifies what +** [SQLITE_UTF8 | text encoding] this SQL function prefers for +** its parameters. Any SQL function implementation should be able to work +** work with UTF-8, UTF-16le, or UTF-16be. But some implementations may be +** more efficient with one encoding than another. It is allowed to +** invoke sqlite3_create_function() or sqlite3_create_function16() multiple +** times with the same function but with different values of eTextRep. +** When multiple implementations of the same function are available, SQLite +** will pick the one that involves the least amount of data conversion. +** If there is only a single implementation which does not care what +** text encoding is used, then the fourth argument should be +** [SQLITE_ANY]. +** +** The fifth parameter is an arbitrary pointer. The implementation +** of the function can gain access to this pointer using +** [sqlite3_user_data()]. +** +** The seventh, eighth and ninth parameters, xFunc, xStep and xFinal, are +** pointers to C-language functions that implement the SQL +** function or aggregate. A scalar SQL function requires an implementation of +** the xFunc callback only, NULL pointers should be passed as the xStep +** and xFinal parameters. An aggregate SQL function requires an implementation +** of xStep and xFinal and NULL should be passed for xFunc. To delete an +** existing SQL function or aggregate, pass NULL for all three function +** callback. +** +** It is permitted to register multiple implementations of the same +** functions with the same name but with either differing numbers of +** arguments or differing perferred text encodings. SQLite will use +** the implementation most closely matches the way in which the +** SQL function is used. +*/ +int sqlite3_create_function( + sqlite3 *, + const char *zFunctionName, + int nArg, + int eTextRep, + void*, + void (*xFunc)(sqlite3_context*,int,sqlite3_value**), + void (*xStep)(sqlite3_context*,int,sqlite3_value**), + void (*xFinal)(sqlite3_context*) +); +int sqlite3_create_function16( + sqlite3*, + const void *zFunctionName, + int nArg, + int eTextRep, + void*, + void (*xFunc)(sqlite3_context*,int,sqlite3_value**), + void (*xStep)(sqlite3_context*,int,sqlite3_value**), + void (*xFinal)(sqlite3_context*) +); + +/* +** CAPI3REF: Text Encodings {F10267} +** +** These constant define integer codes that represent the various +** text encodings supported by SQLite. +*/ +#define SQLITE_UTF8 1 +#define SQLITE_UTF16LE 2 +#define SQLITE_UTF16BE 3 +#define SQLITE_UTF16 4 /* Use native byte order */ +#define SQLITE_ANY 5 /* sqlite3_create_function only */ +#define SQLITE_UTF16_ALIGNED 8 /* sqlite3_create_collation only */ + +/* +** CAPI3REF: Obsolete Functions +** +** These functions are all now obsolete. In order to maintain +** backwards compatibility with older code, we continue to support +** these functions. However, new development projects should avoid +** the use of these functions. To help encourage people to avoid +** using these functions, we are not going to tell you want they do. +*/ +int sqlite3_aggregate_count(sqlite3_context*); +int sqlite3_expired(sqlite3_stmt*); +int sqlite3_transfer_bindings(sqlite3_stmt*, sqlite3_stmt*); +int sqlite3_global_recover(void); +void sqlite3_thread_cleanup(void); +int sqlite3_memory_alarm(void(*)(void*,sqlite3_int64,int),void*,sqlite3_int64); + +/* +** CAPI3REF: Obtaining SQL Function Parameter Values {F15100} +** +** The C-language implementation of SQL functions and aggregates uses +** this set of interface routines to access the parameter values on +** the function or aggregate. +** +** The xFunc (for scalar functions) or xStep (for aggregates) parameters +** to [sqlite3_create_function()] and [sqlite3_create_function16()] +** define callbacks that implement the SQL functions and aggregates. +** The 4th parameter to these callbacks is an array of pointers to +** [sqlite3_value] objects. There is one [sqlite3_value] object for +** each parameter to the SQL function. These routines are used to +** extract values from the [sqlite3_value] objects. +** +** These routines work just like the corresponding +** [sqlite3_column_blob | sqlite3_column_* routines] except that +** these routines take a single [sqlite3_value*] pointer instead +** of an [sqlite3_stmt*] pointer and an integer column number. +** +** The sqlite3_value_text16() interface extracts a UTF16 string +** in the native byte-order of the host machine. The +** sqlite3_value_text16be() and sqlite3_value_text16le() interfaces +** extract UTF16 strings as big-endian and little-endian respectively. +** +** The sqlite3_value_numeric_type() interface attempts to apply +** numeric affinity to the value. This means that an attempt is +** made to convert the value to an integer or floating point. If +** such a conversion is possible without loss of information (in other +** words if the value is a string that looks like a number) +** then the conversion is done. Otherwise no conversion occurs. The +** [SQLITE_INTEGER | datatype] after conversion is returned. +** +** Please pay particular attention to the fact that the pointer that +** is returned from [sqlite3_value_blob()], [sqlite3_value_text()], or +** [sqlite3_value_text16()] can be invalidated by a subsequent call to +** [sqlite3_value_bytes()], [sqlite3_value_bytes16()], [sqlite3_value_text()], +** or [sqlite3_value_text16()]. +** +** These routines must be called from the same thread as +** the SQL function that supplied the sqlite3_value* parameters. +** Or, if the sqlite3_value* argument comes from the [sqlite3_column_value()] +** interface, then these routines should be called from the same thread +** that ran [sqlite3_column_value()]. +** +*/ +const void *sqlite3_value_blob(sqlite3_value*); +int sqlite3_value_bytes(sqlite3_value*); +int sqlite3_value_bytes16(sqlite3_value*); +double sqlite3_value_double(sqlite3_value*); +int sqlite3_value_int(sqlite3_value*); +sqlite3_int64 sqlite3_value_int64(sqlite3_value*); +const unsigned char *sqlite3_value_text(sqlite3_value*); +const void *sqlite3_value_text16(sqlite3_value*); +const void *sqlite3_value_text16le(sqlite3_value*); +const void *sqlite3_value_text16be(sqlite3_value*); +int sqlite3_value_type(sqlite3_value*); +int sqlite3_value_numeric_type(sqlite3_value*); + +/* +** CAPI3REF: Obtain Aggregate Function Context {F16210} +** +** The implementation of aggregate SQL functions use this routine to allocate +** a structure for storing their state. +** {F16211} The first time the sqlite3_aggregate_context() routine is +** is called for a particular aggregate, SQLite allocates nBytes of memory +** zeros that memory, and returns a pointer to it. +** {F16212} On second and subsequent calls to sqlite3_aggregate_context() +** for the same aggregate function index, the same buffer is returned. {END} +** The implementation +** of the aggregate can use the returned buffer to accumulate data. +** +** {F16213} SQLite automatically frees the allocated buffer when the aggregate +** query concludes. {END} +** +** The first parameter should be a copy of the +** [sqlite3_context | SQL function context] that is the first +** parameter to the callback routine that implements the aggregate +** function. +** +** This routine must be called from the same thread in which +** the aggregate SQL function is running. +*/ +void *sqlite3_aggregate_context(sqlite3_context*, int nBytes); + +/* +** CAPI3REF: User Data For Functions {F16240} +** +** {F16241} The sqlite3_user_data() interface returns a copy of +** the pointer that was the pUserData parameter (the 5th parameter) +** of the the [sqlite3_create_function()] +** and [sqlite3_create_function16()] routines that originally +** registered the application defined function. {END} +** +** {U16243} This routine must be called from the same thread in which +** the application-defined function is running. +*/ +void *sqlite3_user_data(sqlite3_context*); + +/* +** CAPI3REF: Function Auxiliary Data {F16270} +** +** The following two functions may be used by scalar SQL functions to +** associate meta-data with argument values. If the same value is passed to +** multiple invocations of the same SQL function during query execution, under +** some circumstances the associated meta-data may be preserved. This may +** be used, for example, to add a regular-expression matching scalar +** function. The compiled version of the regular expression is stored as +** meta-data associated with the SQL value passed as the regular expression +** pattern. The compiled regular expression can be reused on multiple +** invocations of the same function so that the original pattern string +** does not need to be recompiled on each invocation. +** +** {F16271} +** The sqlite3_get_auxdata() interface returns a pointer to the meta-data +** associated by the sqlite3_set_auxdata() function with the Nth argument +** value to the application-defined function. +** {F16272} If no meta-data has been ever been set for the Nth +** argument of the function, or if the cooresponding function parameter +** has changed since the meta-data was set, then sqlite3_get_auxdata() +** returns a NULL pointer. +** +** {F16275} The sqlite3_set_auxdata() interface saves the meta-data +** pointed to by its 3rd parameter as the meta-data for the N-th +** argument of the application-defined function. {END} Subsequent +** calls to sqlite3_get_auxdata() might return this data, if it has +** not been destroyed. +** {F16277} If it is not NULL, SQLite will invoke the destructor +** function given by the 4th parameter to sqlite3_set_auxdata() on +** the meta-data when the corresponding function parameter changes +** or when the SQL statement completes, whichever comes first. {END} +** +** In practice, meta-data is preserved between function calls for +** expressions that are constant at compile time. This includes literal +** values and SQL variables. +** +** These routines must be called from the same thread in which +** the SQL function is running. +*/ +void *sqlite3_get_auxdata(sqlite3_context*, int N); +void sqlite3_set_auxdata(sqlite3_context*, int N, void*, void (*)(void*)); + + +/* +** CAPI3REF: Constants Defining Special Destructor Behavior {F10280} +** +** These are special value for the destructor that is passed in as the +** final argument to routines like [sqlite3_result_blob()]. If the destructor +** argument is SQLITE_STATIC, it means that the content pointer is constant +** and will never change. It does not need to be destroyed. The +** SQLITE_TRANSIENT value means that the content will likely change in +** the near future and that SQLite should make its own private copy of +** the content before returning. +** +** The typedef is necessary to work around problems in certain +** C++ compilers. See ticket #2191. +*/ +typedef void (*sqlite3_destructor_type)(void*); +#define SQLITE_STATIC ((sqlite3_destructor_type)0) +#define SQLITE_TRANSIENT ((sqlite3_destructor_type)-1) + +/* +** CAPI3REF: Setting The Result Of An SQL Function {F16400} +** +** These routines are used by the xFunc or xFinal callbacks that +** implement SQL functions and aggregates. See +** [sqlite3_create_function()] and [sqlite3_create_function16()] +** for additional information. +** +** These functions work very much like the +** [sqlite3_bind_blob | sqlite3_bind_*] family of functions used +** to bind values to host parameters in prepared statements. +** Refer to the +** [sqlite3_bind_blob | sqlite3_bind_* documentation] for +** additional information. +** +** {F16402} The sqlite3_result_blob() interface sets the result from +** an application defined function to be the BLOB whose content is pointed +** to by the second parameter and which is N bytes long where N is the +** third parameter. +** {F16403} The sqlite3_result_zeroblob() inerfaces set the result of +** the application defined function to be a BLOB containing all zero +** bytes and N bytes in size, where N is the value of the 2nd parameter. +** +** {F16407} The sqlite3_result_double() interface sets the result from +** an application defined function to be a floating point value specified +** by its 2nd argument. +** +** {F16409} The sqlite3_result_error() and sqlite3_result_error16() functions +** cause the implemented SQL function to throw an exception. +** {F16411} SQLite uses the string pointed to by the +** 2nd parameter of sqlite3_result_error() or sqlite3_result_error16() +** as the text of an error message. {F16412} SQLite interprets the error +** message string from sqlite3_result_error() as UTF8. {F16413} SQLite +** interprets the string from sqlite3_result_error16() as UTF16 in native +** byte order. {F16414} If the third parameter to sqlite3_result_error() +** or sqlite3_result_error16() is negative then SQLite takes as the error +** message all text up through the first zero character. +** {F16415} If the third parameter to sqlite3_result_error() or +** sqlite3_result_error16() is non-negative then SQLite takes that many +** bytes (not characters) from the 2nd parameter as the error message. +** {F16417} The sqlite3_result_error() and sqlite3_result_error16() +** routines make a copy private copy of the error message text before +** they return. {END} Hence, the calling function can deallocate or +** modify the text after they return without harm. +** +** {F16421} The sqlite3_result_toobig() interface causes SQLite +** to throw an error indicating that a string or BLOB is to long +** to represent. {F16422} The sqlite3_result_nomem() interface +** causes SQLite to throw an exception indicating that the a +** memory allocation failed. +** +** {F16431} The sqlite3_result_int() interface sets the return value +** of the application-defined function to be the 32-bit signed integer +** value given in the 2nd argument. +** {F16432} The sqlite3_result_int64() interface sets the return value +** of the application-defined function to be the 64-bit signed integer +** value given in the 2nd argument. +** +** {F16437} The sqlite3_result_null() interface sets the return value +** of the application-defined function to be NULL. +** +** {F16441} The sqlite3_result_text(), sqlite3_result_text16(), +** sqlite3_result_text16le(), and sqlite3_result_text16be() interfaces +** set the return value of the application-defined function to be +** a text string which is represented as UTF-8, UTF-16 native byte order, +** UTF-16 little endian, or UTF-16 big endian, respectively. +** {F16442} SQLite takes the text result from the application from +** the 2nd parameter of the sqlite3_result_text* interfaces. +** {F16444} If the 3rd parameter to the sqlite3_result_text* interfaces +** is negative, then SQLite takes result text from the 2nd parameter +** through the first zero character. +** {F16447} If the 3rd parameter to the sqlite3_result_text* interfaces +** is non-negative, then as many bytes (not characters) of the text +** pointed to by the 2nd parameter are taken as the application-defined +** function result. +** {F16451} If the 4th parameter to the sqlite3_result_text* interfaces +** or sqlite3_result_blob is a non-NULL pointer, then SQLite calls that +** function as the destructor on the text or blob result when it has +** finished using that result. +** {F16453} If the 4th parameter to the sqlite3_result_text* interfaces +** or sqlite3_result_blob is the special constant SQLITE_STATIC, then +** SQLite assumes that the text or blob result is constant space and +** does not copy the space or call a destructor when it has +** finished using that result. +** {F16454} If the 4th parameter to the sqlite3_result_text* interfaces +** or sqlite3_result_blob is the special constant SQLITE_TRANSIENT +** then SQLite makes a copy of the result into space obtained from +** from [sqlite3_malloc()] before it returns. +** +** {F16461} The sqlite3_result_value() interface sets the result of +** the application-defined function to be a copy the [sqlite3_value] +** object specified by the 2nd parameter. {F16463} The +** sqlite3_result_value() interface makes a copy of the [sqlite3_value] +** so that [sqlite3_value] specified in the parameter may change or +** be deallocated after sqlite3_result_value() returns without harm. +** +** {U16491} These routines are called from within the different thread +** than the one containing the application-defined function that recieved +** the [sqlite3_context] pointer, the results are undefined. +*/ +void sqlite3_result_blob(sqlite3_context*, const void*, int, void(*)(void*)); +void sqlite3_result_double(sqlite3_context*, double); +void sqlite3_result_error(sqlite3_context*, const char*, int); +void sqlite3_result_error16(sqlite3_context*, const void*, int); +void sqlite3_result_error_toobig(sqlite3_context*); +void sqlite3_result_error_nomem(sqlite3_context*); +void sqlite3_result_int(sqlite3_context*, int); +void sqlite3_result_int64(sqlite3_context*, sqlite3_int64); +void sqlite3_result_null(sqlite3_context*); +void sqlite3_result_text(sqlite3_context*, const char*, int, void(*)(void*)); +void sqlite3_result_text16(sqlite3_context*, const void*, int, void(*)(void*)); +void sqlite3_result_text16le(sqlite3_context*, const void*, int,void(*)(void*)); +void sqlite3_result_text16be(sqlite3_context*, const void*, int,void(*)(void*)); +void sqlite3_result_value(sqlite3_context*, sqlite3_value*); +void sqlite3_result_zeroblob(sqlite3_context*, int n); + +/* +** CAPI3REF: Define New Collating Sequences {F16600} +** +** {F16601} +** These functions are used to add new collation sequences to the +** [sqlite3*] handle specified as the first argument. +** +** {F16602} +** The name of the new collation sequence is specified as a UTF-8 string +** for sqlite3_create_collation() and sqlite3_create_collation_v2() +** and a UTF-16 string for sqlite3_create_collation16(). {F16603} In all cases +** the name is passed as the second function argument. +** +** {F16604} +** The third argument may be one of the constants [SQLITE_UTF8], +** [SQLITE_UTF16LE] or [SQLITE_UTF16BE], indicating that the user-supplied +** routine expects to be passed pointers to strings encoded using UTF-8, +** UTF-16 little-endian or UTF-16 big-endian respectively. {F16605} The +** third argument might also be [SQLITE_UTF16_ALIGNED] to indicate that +** the routine expects pointers to 16-bit word aligned strings +** of UTF16 in the native byte order of the host computer. +** +** {F16607} +** A pointer to the user supplied routine must be passed as the fifth +** argument. {F16609} If it is NULL, this is the same as deleting the collation +** sequence (so that SQLite cannot call it anymore). +** {F16611} Each time the application +** supplied function is invoked, it is passed a copy of the void* passed as +** the fourth argument to sqlite3_create_collation() or +** sqlite3_create_collation16() as its first parameter. +** +** {F16612} +** The remaining arguments to the application-supplied routine are two strings, +** each represented by a [length, data] pair and encoded in the encoding +** that was passed as the third argument when the collation sequence was +** registered. {END} The application defined collation routine should +** return negative, zero or positive if +** the first string is less than, equal to, or greater than the second +** string. i.e. (STRING1 - STRING2). +** +** {F16615} +** The sqlite3_create_collation_v2() works like sqlite3_create_collation() +** excapt that it takes an extra argument which is a destructor for +** the collation. {F16617} The destructor is called when the collation is +** destroyed and is passed a copy of the fourth parameter void* pointer +** of the sqlite3_create_collation_v2(). +** {F16618} Collations are destroyed when +** they are overridden by later calls to the collation creation functions +** or when the [sqlite3*] database handle is closed using [sqlite3_close()]. +*/ +int sqlite3_create_collation( + sqlite3*, + const char *zName, + int eTextRep, + void*, + int(*xCompare)(void*,int,const void*,int,const void*) +); +int sqlite3_create_collation_v2( + sqlite3*, + const char *zName, + int eTextRep, + void*, + int(*xCompare)(void*,int,const void*,int,const void*), + void(*xDestroy)(void*) +); +int sqlite3_create_collation16( + sqlite3*, + const char *zName, + int eTextRep, + void*, + int(*xCompare)(void*,int,const void*,int,const void*) +); + +/* +** CAPI3REF: Collation Needed Callbacks {F16700} +** +** {F16701} +** To avoid having to register all collation sequences before a database +** can be used, a single callback function may be registered with the +** database handle to be called whenever an undefined collation sequence is +** required. +** +** {F16702} +** If the function is registered using the sqlite3_collation_needed() API, +** then it is passed the names of undefined collation sequences as strings +** encoded in UTF-8. {F16703} If sqlite3_collation_needed16() is used, the names +** are passed as UTF-16 in machine native byte order. {F16704} A call to either +** function replaces any existing callback. +** +** {F16705} When the callback is invoked, the first argument passed is a copy +** of the second argument to sqlite3_collation_needed() or +** sqlite3_collation_needed16(). {F16706} The second argument is the database +** handle. {F16707} The third argument is one of [SQLITE_UTF8], +** [SQLITE_UTF16BE], or [SQLITE_UTF16LE], indicating the most +** desirable form of the collation sequence function required. +** {F16708} The fourth parameter is the name of the +** required collation sequence. {END} +** +** The callback function should register the desired collation using +** [sqlite3_create_collation()], [sqlite3_create_collation16()], or +** [sqlite3_create_collation_v2()]. +*/ +int sqlite3_collation_needed( + sqlite3*, + void*, + void(*)(void*,sqlite3*,int eTextRep,const char*) +); +int sqlite3_collation_needed16( + sqlite3*, + void*, + void(*)(void*,sqlite3*,int eTextRep,const void*) +); + +/* +** Specify the key for an encrypted database. This routine should be +** called right after sqlite3_open(). +** +** The code to implement this API is not available in the public release +** of SQLite. +*/ +int sqlite3_key( + sqlite3 *db, /* Database to be rekeyed */ + const void *pKey, int nKey /* The key */ +); + +/* +** Change the key on an open database. If the current database is not +** encrypted, this routine will encrypt it. If pNew==0 or nNew==0, the +** database is decrypted. +** +** The code to implement this API is not available in the public release +** of SQLite. +*/ +int sqlite3_rekey( + sqlite3 *db, /* Database to be rekeyed */ + const void *pKey, int nKey /* The new key */ +); + +/* +** CAPI3REF: Suspend Execution For A Short Time {F10530} +** +** {F10531} The sqlite3_sleep() function +** causes the current thread to suspend execution +** for at least a number of milliseconds specified in its parameter. +** +** {F10532} If the operating system does not support sleep requests with +** millisecond time resolution, then the time will be rounded up to +** the nearest second. {F10533} The number of milliseconds of sleep actually +** requested from the operating system is returned. +** +** {F10534} SQLite implements this interface by calling the xSleep() +** method of the default [sqlite3_vfs] object. {END} +*/ +int sqlite3_sleep(int); + +/* +** CAPI3REF: Name Of The Folder Holding Temporary Files {F10310} +** +** If this global variable is made to point to a string which is +** the name of a folder (a.ka. directory), then all temporary files +** created by SQLite will be placed in that directory. If this variable +** is NULL pointer, then SQLite does a search for an appropriate temporary +** file directory. +** +** It is not safe to modify this variable once a database connection +** has been opened. It is intended that this variable be set once +** as part of process initialization and before any SQLite interface +** routines have been call and remain unchanged thereafter. +*/ +SQLITE_EXTERN char *sqlite3_temp_directory; + +/* +** CAPI3REF: Test To See If The Database Is In Auto-Commit Mode {F12930} +** +** {F12931} The sqlite3_get_autocommit() interfaces returns non-zero or +** zero if the given database connection is or is not in autocommit mode, +** respectively. {F12932} Autocommit mode is on +** by default. {F12933} Autocommit mode is disabled by a BEGIN statement. +** {F12934} Autocommit mode is reenabled by a COMMIT or ROLLBACK. {END} +** +** If certain kinds of errors occur on a statement within a multi-statement +** transactions (errors including [SQLITE_FULL], [SQLITE_IOERR], +** [SQLITE_NOMEM], [SQLITE_BUSY], and [SQLITE_INTERRUPT]) then the +** transaction might be rolled back automatically. {F12935} The only way to +** find out if SQLite automatically rolled back the transaction after +** an error is to use this function. {END} +** +** {U12936} If another thread changes the autocommit status of the database +** connection while this routine is running, then the return value +** is undefined. {END} +*/ +int sqlite3_get_autocommit(sqlite3*); + +/* +** CAPI3REF: Find The Database Handle Of A Prepared Statement {F13120} +** +** {F13121} The sqlite3_db_handle interface +** returns the [sqlite3*] database handle to which a +** [sqlite3_stmt | prepared statement] belongs. +** {F13122} the database handle returned by sqlite3_db_handle +** is the same database handle that was +** the first argument to the [sqlite3_prepare_v2()] or its variants +** that was used to create the statement in the first place. +*/ +sqlite3 *sqlite3_db_handle(sqlite3_stmt*); + + +/* +** CAPI3REF: Commit And Rollback Notification Callbacks {F12950} +** +** {F12951} The sqlite3_commit_hook() interface registers a callback +** function to be invoked whenever a transaction is committed. +** {F12952} Any callback set by a previous call to sqlite3_commit_hook() +** for the same database connection is overridden. +** {F12953} The sqlite3_rollback_hook() interface registers a callback +** function to be invoked whenever a transaction is committed. +** {F12954} Any callback set by a previous call to sqlite3_commit_hook() +** for the same database connection is overridden. +** {F12956} The pArg argument is passed through +** to the callback. {F12957} If the callback on a commit hook function +** returns non-zero, then the commit is converted into a rollback. +** +** {F12958} If another function was previously registered, its +** pArg value is returned. Otherwise NULL is returned. +** +** {F12959} Registering a NULL function disables the callback. +** +** {F12961} For the purposes of this API, a transaction is said to have been +** rolled back if an explicit "ROLLBACK" statement is executed, or +** an error or constraint causes an implicit rollback to occur. +** {F12962} The rollback callback is not invoked if a transaction is +** automatically rolled back because the database connection is closed. +** {F12964} The rollback callback is not invoked if a transaction is +** rolled back because a commit callback returned non-zero. +** Check on this {END} +** +** These are experimental interfaces and are subject to change. +*/ +void *sqlite3_commit_hook(sqlite3*, int(*)(void*), void*); +void *sqlite3_rollback_hook(sqlite3*, void(*)(void *), void*); + +/* +** CAPI3REF: Data Change Notification Callbacks {F12970} +** +** {F12971} The sqlite3_update_hook() interface +** registers a callback function with the database connection identified by the +** first argument to be invoked whenever a row is updated, inserted or deleted. +** {F12972} Any callback set by a previous call to this function for the same +** database connection is overridden. +** +** {F12974} The second argument is a pointer to the function to invoke when a +** row is updated, inserted or deleted. +** {F12976} The first argument to the callback is +** a copy of the third argument to sqlite3_update_hook(). +** {F12977} The second callback +** argument is one of [SQLITE_INSERT], [SQLITE_DELETE] or [SQLITE_UPDATE], +** depending on the operation that caused the callback to be invoked. +** {F12978} The third and +** fourth arguments to the callback contain pointers to the database and +** table name containing the affected row. +** {F12979} The final callback parameter is +** the rowid of the row. +** {F12981} In the case of an update, this is the rowid after +** the update takes place. +** +** {F12983} The update hook is not invoked when internal system tables are +** modified (i.e. sqlite_master and sqlite_sequence). +** +** {F12984} If another function was previously registered, its pArg value +** is returned. {F12985} Otherwise NULL is returned. +*/ +void *sqlite3_update_hook( + sqlite3*, + void(*)(void *,int ,char const *,char const *,sqlite3_int64), + void* +); + +/* +** CAPI3REF: Enable Or Disable Shared Pager Cache {F10330} +** +** {F10331} +** This routine enables or disables the sharing of the database cache +** and schema data structures between connections to the same database. +** {F10332} +** Sharing is enabled if the argument is true and disabled if the argument +** is false. +** +** {F10333} Cache sharing is enabled and disabled +** for an entire process. {END} This is a change as of SQLite version 3.5.0. +** In prior versions of SQLite, sharing was +** enabled or disabled for each thread separately. +** +** {F10334} +** The cache sharing mode set by this interface effects all subsequent +** calls to [sqlite3_open()], [sqlite3_open_v2()], and [sqlite3_open16()]. +** {F10335} Existing database connections continue use the sharing mode +** that was in effect at the time they were opened. {END} +** +** Virtual tables cannot be used with a shared cache. {F10336} When shared +** cache is enabled, the [sqlite3_create_module()] API used to register +** virtual tables will always return an error. {END} +** +** {F10337} This routine returns [SQLITE_OK] if shared cache was +** enabled or disabled successfully. {F10338} An [SQLITE_ERROR | error code] +** is returned otherwise. {END} +** +** {F10339} Shared cache is disabled by default. {END} But this might change in +** future releases of SQLite. Applications that care about shared +** cache setting should set it explicitly. +*/ +int sqlite3_enable_shared_cache(int); + +/* +** CAPI3REF: Attempt To Free Heap Memory {F17340} +** +** {F17341} The sqlite3_release_memory() interface attempts to +** free N bytes of heap memory by deallocating non-essential memory +** allocations held by the database labrary. {END} Memory used +** to cache database pages to improve performance is an example of +** non-essential memory. {F16342} sqlite3_release_memory() returns +** the number of bytes actually freed, which might be more or less +** than the amount requested. +*/ +int sqlite3_release_memory(int); + +/* +** CAPI3REF: Impose A Limit On Heap Size {F17350} +** +** {F16351} The sqlite3_soft_heap_limit() interface +** places a "soft" limit on the amount of heap memory that may be allocated +** by SQLite. {F16352} If an internal allocation is requested +** that would exceed the soft heap limit, [sqlite3_release_memory()] is +** invoked one or more times to free up some space before the allocation +** is made. {END} +** +** {F16353} The limit is called "soft", because if +** [sqlite3_release_memory()] cannot +** free sufficient memory to prevent the limit from being exceeded, +** the memory is allocated anyway and the current operation proceeds. +** +** {F16354} +** A negative or zero value for N means that there is no soft heap limit and +** [sqlite3_release_memory()] will only be called when memory is exhausted. +** {F16355} The default value for the soft heap limit is zero. +** +** SQLite makes a best effort to honor the soft heap limit. +** {F16356} But if the soft heap limit cannot honored, execution will +** continue without error or notification. {END} This is why the limit is +** called a "soft" limit. It is advisory only. +** +** Prior to SQLite version 3.5.0, this routine only constrained the memory +** allocated by a single thread - the same thread in which this routine +** runs. Beginning with SQLite version 3.5.0, the soft heap limit is +** applied to all threads. {F16357} The value specified for the soft heap limit +** is an upper bound on the total memory allocation for all threads. {END} In +** version 3.5.0 there is no mechanism for limiting the heap usage for +** individual threads. +*/ +void sqlite3_soft_heap_limit(int); + +/* +** CAPI3REF: Extract Metadata About A Column Of A Table {F12850} +** +** This routine +** returns meta-data about a specific column of a specific database +** table accessible using the connection handle passed as the first function +** argument. +** +** The column is identified by the second, third and fourth parameters to +** this function. The second parameter is either the name of the database +** (i.e. "main", "temp" or an attached database) containing the specified +** table or NULL. If it is NULL, then all attached databases are searched +** for the table using the same algorithm as the database engine uses to +** resolve unqualified table references. +** +** The third and fourth parameters to this function are the table and column +** name of the desired column, respectively. Neither of these parameters +** may be NULL. +** +** Meta information is returned by writing to the memory locations passed as +** the 5th and subsequent parameters to this function. Any of these +** arguments may be NULL, in which case the corresponding element of meta +** information is ommitted. +** +**
+** Parameter     Output Type      Description
+** -----------------------------------
+**
+**   5th         const char*      Data type
+**   6th         const char*      Name of the default collation sequence 
+**   7th         int              True if the column has a NOT NULL constraint
+**   8th         int              True if the column is part of the PRIMARY KEY
+**   9th         int              True if the column is AUTOINCREMENT
+** 
+** +** +** The memory pointed to by the character pointers returned for the +** declaration type and collation sequence is valid only until the next +** call to any sqlite API function. +** +** If the specified table is actually a view, then an error is returned. +** +** If the specified column is "rowid", "oid" or "_rowid_" and an +** INTEGER PRIMARY KEY column has been explicitly declared, then the output +** parameters are set for the explicitly declared column. If there is no +** explicitly declared IPK column, then the output parameters are set as +** follows: +** +**
+**     data type: "INTEGER"
+**     collation sequence: "BINARY"
+**     not null: 0
+**     primary key: 1
+**     auto increment: 0
+** 
+** +** This function may load one or more schemas from database files. If an +** error occurs during this process, or if the requested table or column +** cannot be found, an SQLITE error code is returned and an error message +** left in the database handle (to be retrieved using sqlite3_errmsg()). +** +** This API is only available if the library was compiled with the +** SQLITE_ENABLE_COLUMN_METADATA preprocessor symbol defined. +*/ +int sqlite3_table_column_metadata( + sqlite3 *db, /* Connection handle */ + const char *zDbName, /* Database name or NULL */ + const char *zTableName, /* Table name */ + const char *zColumnName, /* Column name */ + char const **pzDataType, /* OUTPUT: Declared data type */ + char const **pzCollSeq, /* OUTPUT: Collation sequence name */ + int *pNotNull, /* OUTPUT: True if NOT NULL constraint exists */ + int *pPrimaryKey, /* OUTPUT: True if column part of PK */ + int *pAutoinc /* OUTPUT: True if column is auto-increment */ +); + +/* +** CAPI3REF: Load An Extension {F12600} +** +** {F12601} The sqlite3_load_extension() interface +** attempts to load an SQLite extension library contained in the file +** zFile. {F12602} The entry point is zProc. {F12603} zProc may be 0 +** in which case the name of the entry point defaults +** to "sqlite3_extension_init". +** +** {F12604} The sqlite3_load_extension() interface shall +** return [SQLITE_OK] on success and [SQLITE_ERROR] if something goes wrong. +** +** {F12605} +** If an error occurs and pzErrMsg is not 0, then the +** sqlite3_load_extension() interface shall attempt to fill *pzErrMsg with +** error message text stored in memory obtained from [sqlite3_malloc()]. +** {END} The calling function should free this memory +** by calling [sqlite3_free()]. +** +** {F12606} +** Extension loading must be enabled using [sqlite3_enable_load_extension()] +** prior to calling this API or an error will be returned. +*/ +int sqlite3_load_extension( + sqlite3 *db, /* Load the extension into this database connection */ + const char *zFile, /* Name of the shared library containing extension */ + const char *zProc, /* Entry point. Derived from zFile if 0 */ + char **pzErrMsg /* Put error message here if not 0 */ +); + +/* +** CAPI3REF: Enable Or Disable Extension Loading {F12620} +** +** So as not to open security holes in older applications that are +** unprepared to deal with extension loading, and as a means of disabling +** extension loading while evaluating user-entered SQL, the following +** API is provided to turn the [sqlite3_load_extension()] mechanism on and +** off. {F12622} It is off by default. {END} See ticket #1863. +** +** {F12621} Call the sqlite3_enable_load_extension() routine +** with onoff==1 to turn extension loading on +** and call it with onoff==0 to turn it back off again. {END} +*/ +int sqlite3_enable_load_extension(sqlite3 *db, int onoff); + +/* +** CAPI3REF: Make Arrangements To Automatically Load An Extension {F12640} +** +** {F12641} This function +** registers an extension entry point that is automatically invoked +** whenever a new database connection is opened using +** [sqlite3_open()], [sqlite3_open16()], or [sqlite3_open_v2()]. {END} +** +** This API can be invoked at program startup in order to register +** one or more statically linked extensions that will be available +** to all new database connections. +** +** {F12642} Duplicate extensions are detected so calling this routine multiple +** times with the same extension is harmless. +** +** {F12643} This routine stores a pointer to the extension in an array +** that is obtained from sqlite_malloc(). {END} If you run a memory leak +** checker on your program and it reports a leak because of this +** array, then invoke [sqlite3_reset_auto_extension()] prior +** to shutdown to free the memory. +** +** {F12644} Automatic extensions apply across all threads. {END} +** +** This interface is experimental and is subject to change or +** removal in future releases of SQLite. +*/ +int sqlite3_auto_extension(void *xEntryPoint); + + +/* +** CAPI3REF: Reset Automatic Extension Loading {F12660} +** +** {F12661} This function disables all previously registered +** automatic extensions. {END} This +** routine undoes the effect of all prior [sqlite3_automatic_extension()] +** calls. +** +** {F12662} This call disabled automatic extensions in all threads. {END} +** +** This interface is experimental and is subject to change or +** removal in future releases of SQLite. +*/ +void sqlite3_reset_auto_extension(void); + + +/* +****** EXPERIMENTAL - subject to change without notice ************** +** +** The interface to the virtual-table mechanism is currently considered +** to be experimental. The interface might change in incompatible ways. +** If this is a problem for you, do not use the interface at this time. +** +** When the virtual-table mechanism stablizes, we will declare the +** interface fixed, support it indefinitely, and remove this comment. +*/ + +/* +** Structures used by the virtual table interface +*/ +typedef struct sqlite3_vtab sqlite3_vtab; +typedef struct sqlite3_index_info sqlite3_index_info; +typedef struct sqlite3_vtab_cursor sqlite3_vtab_cursor; +typedef struct sqlite3_module sqlite3_module; + +/* +** A module is a class of virtual tables. Each module is defined +** by an instance of the following structure. This structure consists +** mostly of methods for the module. +*/ +struct sqlite3_module { + int iVersion; + int (*xCreate)(sqlite3*, void *pAux, + int argc, const char *const*argv, + sqlite3_vtab **ppVTab, char**); + int (*xConnect)(sqlite3*, void *pAux, + int argc, const char *const*argv, + sqlite3_vtab **ppVTab, char**); + int (*xBestIndex)(sqlite3_vtab *pVTab, sqlite3_index_info*); + int (*xDisconnect)(sqlite3_vtab *pVTab); + int (*xDestroy)(sqlite3_vtab *pVTab); + int (*xOpen)(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor); + int (*xClose)(sqlite3_vtab_cursor*); + int (*xFilter)(sqlite3_vtab_cursor*, int idxNum, const char *idxStr, + int argc, sqlite3_value **argv); + int (*xNext)(sqlite3_vtab_cursor*); + int (*xEof)(sqlite3_vtab_cursor*); + int (*xColumn)(sqlite3_vtab_cursor*, sqlite3_context*, int); + int (*xRowid)(sqlite3_vtab_cursor*, sqlite3_int64 *pRowid); + int (*xUpdate)(sqlite3_vtab *, int, sqlite3_value **, sqlite3_int64 *); + int (*xBegin)(sqlite3_vtab *pVTab); + int (*xSync)(sqlite3_vtab *pVTab); + int (*xCommit)(sqlite3_vtab *pVTab); + int (*xRollback)(sqlite3_vtab *pVTab); + int (*xFindFunction)(sqlite3_vtab *pVtab, int nArg, const char *zName, + void (**pxFunc)(sqlite3_context*,int,sqlite3_value**), + void **ppArg); + + int (*xRename)(sqlite3_vtab *pVtab, const char *zNew); +}; + +/* +** The sqlite3_index_info structure and its substructures is used to +** pass information into and receive the reply from the xBestIndex +** method of an sqlite3_module. The fields under **Inputs** are the +** inputs to xBestIndex and are read-only. xBestIndex inserts its +** results into the **Outputs** fields. +** +** The aConstraint[] array records WHERE clause constraints of the +** form: +** +** column OP expr +** +** Where OP is =, <, <=, >, or >=. +** The particular operator is stored +** in aConstraint[].op. The index of the column is stored in +** aConstraint[].iColumn. aConstraint[].usable is TRUE if the +** expr on the right-hand side can be evaluated (and thus the constraint +** is usable) and false if it cannot. +** +** The optimizer automatically inverts terms of the form "expr OP column" +** and makes other simplifications to the WHERE clause in an attempt to +** get as many WHERE clause terms into the form shown above as possible. +** The aConstraint[] array only reports WHERE clause terms in the correct +** form that refer to the particular virtual table being queried. +** +** Information about the ORDER BY clause is stored in aOrderBy[]. +** Each term of aOrderBy records a column of the ORDER BY clause. +** +** The xBestIndex method must fill aConstraintUsage[] with information +** about what parameters to pass to xFilter. If argvIndex>0 then +** the right-hand side of the corresponding aConstraint[] is evaluated +** and becomes the argvIndex-th entry in argv. If aConstraintUsage[].omit +** is true, then the constraint is assumed to be fully handled by the +** virtual table and is not checked again by SQLite. +** +** The idxNum and idxPtr values are recorded and passed into xFilter. +** sqlite3_free() is used to free idxPtr if needToFreeIdxPtr is true. +** +** The orderByConsumed means that output from xFilter will occur in +** the correct order to satisfy the ORDER BY clause so that no separate +** sorting step is required. +** +** The estimatedCost value is an estimate of the cost of doing the +** particular lookup. A full scan of a table with N entries should have +** a cost of N. A binary search of a table of N entries should have a +** cost of approximately log(N). +*/ +struct sqlite3_index_info { + /* Inputs */ + int nConstraint; /* Number of entries in aConstraint */ + struct sqlite3_index_constraint { + int iColumn; /* Column on left-hand side of constraint */ + unsigned char op; /* Constraint operator */ + unsigned char usable; /* True if this constraint is usable */ + int iTermOffset; /* Used internally - xBestIndex should ignore */ + } *aConstraint; /* Table of WHERE clause constraints */ + int nOrderBy; /* Number of terms in the ORDER BY clause */ + struct sqlite3_index_orderby { + int iColumn; /* Column number */ + unsigned char desc; /* True for DESC. False for ASC. */ + } *aOrderBy; /* The ORDER BY clause */ + + /* Outputs */ + struct sqlite3_index_constraint_usage { + int argvIndex; /* if >0, constraint is part of argv to xFilter */ + unsigned char omit; /* Do not code a test for this constraint */ + } *aConstraintUsage; + int idxNum; /* Number used to identify the index */ + char *idxStr; /* String, possibly obtained from sqlite3_malloc */ + int needToFreeIdxStr; /* Free idxStr using sqlite3_free() if true */ + int orderByConsumed; /* True if output is already ordered */ + double estimatedCost; /* Estimated cost of using this index */ +}; +#define SQLITE_INDEX_CONSTRAINT_EQ 2 +#define SQLITE_INDEX_CONSTRAINT_GT 4 +#define SQLITE_INDEX_CONSTRAINT_LE 8 +#define SQLITE_INDEX_CONSTRAINT_LT 16 +#define SQLITE_INDEX_CONSTRAINT_GE 32 +#define SQLITE_INDEX_CONSTRAINT_MATCH 64 + +/* +** This routine is used to register a new module name with an SQLite +** connection. Module names must be registered before creating new +** virtual tables on the module, or before using preexisting virtual +** tables of the module. +*/ +int sqlite3_create_module( + sqlite3 *db, /* SQLite connection to register module with */ + const char *zName, /* Name of the module */ + const sqlite3_module *, /* Methods for the module */ + void * /* Client data for xCreate/xConnect */ +); + +/* +** This routine is identical to the sqlite3_create_module() method above, +** except that it allows a destructor function to be specified. It is +** even more experimental than the rest of the virtual tables API. +*/ +int sqlite3_create_module_v2( + sqlite3 *db, /* SQLite connection to register module with */ + const char *zName, /* Name of the module */ + const sqlite3_module *, /* Methods for the module */ + void *, /* Client data for xCreate/xConnect */ + void(*xDestroy)(void*) /* Module destructor function */ +); + +/* +** Every module implementation uses a subclass of the following structure +** to describe a particular instance of the module. Each subclass will +** be tailored to the specific needs of the module implementation. The +** purpose of this superclass is to define certain fields that are common +** to all module implementations. +** +** Virtual tables methods can set an error message by assigning a +** string obtained from sqlite3_mprintf() to zErrMsg. The method should +** take care that any prior string is freed by a call to sqlite3_free() +** prior to assigning a new string to zErrMsg. After the error message +** is delivered up to the client application, the string will be automatically +** freed by sqlite3_free() and the zErrMsg field will be zeroed. Note +** that sqlite3_mprintf() and sqlite3_free() are used on the zErrMsg field +** since virtual tables are commonly implemented in loadable extensions which +** do not have access to sqlite3MPrintf() or sqlite3Free(). +*/ +struct sqlite3_vtab { + const sqlite3_module *pModule; /* The module for this virtual table */ + int nRef; /* Used internally */ + char *zErrMsg; /* Error message from sqlite3_mprintf() */ + /* Virtual table implementations will typically add additional fields */ +}; + +/* Every module implementation uses a subclass of the following structure +** to describe cursors that point into the virtual table and are used +** to loop through the virtual table. Cursors are created using the +** xOpen method of the module. Each module implementation will define +** the content of a cursor structure to suit its own needs. +** +** This superclass exists in order to define fields of the cursor that +** are common to all implementations. +*/ +struct sqlite3_vtab_cursor { + sqlite3_vtab *pVtab; /* Virtual table of this cursor */ + /* Virtual table implementations will typically add additional fields */ +}; + +/* +** The xCreate and xConnect methods of a module use the following API +** to declare the format (the names and datatypes of the columns) of +** the virtual tables they implement. +*/ +int sqlite3_declare_vtab(sqlite3*, const char *zCreateTable); + +/* +** Virtual tables can provide alternative implementations of functions +** using the xFindFunction method. But global versions of those functions +** must exist in order to be overloaded. +** +** This API makes sure a global version of a function with a particular +** name and number of parameters exists. If no such function exists +** before this API is called, a new function is created. The implementation +** of the new function always causes an exception to be thrown. So +** the new function is not good for anything by itself. Its only +** purpose is to be a place-holder function that can be overloaded +** by virtual tables. +** +** This API should be considered part of the virtual table interface, +** which is experimental and subject to change. +*/ +int sqlite3_overload_function(sqlite3*, const char *zFuncName, int nArg); + +/* +** The interface to the virtual-table mechanism defined above (back up +** to a comment remarkably similar to this one) is currently considered +** to be experimental. The interface might change in incompatible ways. +** If this is a problem for you, do not use the interface at this time. +** +** When the virtual-table mechanism stabilizes, we will declare the +** interface fixed, support it indefinitely, and remove this comment. +** +****** EXPERIMENTAL - subject to change without notice ************** +*/ + +/* +** CAPI3REF: A Handle To An Open BLOB {F17800} +** +** An instance of the following opaque structure is used to +** represent an blob-handle. A blob-handle is created by +** [sqlite3_blob_open()] and destroyed by [sqlite3_blob_close()]. +** The [sqlite3_blob_read()] and [sqlite3_blob_write()] interfaces +** can be used to read or write small subsections of the blob. +** The [sqlite3_blob_bytes()] interface returns the size of the +** blob in bytes. +*/ +typedef struct sqlite3_blob sqlite3_blob; + +/* +** CAPI3REF: Open A BLOB For Incremental I/O {F17810} +** +** {F17811} This interfaces opens a handle to the blob located +** in row iRow,, column zColumn, table zTable in database zDb; +** in other words, the same blob that would be selected by: +** +**
+**     SELECT zColumn FROM zDb.zTable WHERE rowid = iRow;
+** 
{END} +** +** {F17812} If the flags parameter is non-zero, the blob is opened for +** read and write access. If it is zero, the blob is opened for read +** access. {END} +** +** {F17813} On success, [SQLITE_OK] is returned and the new +** [sqlite3_blob | blob handle] is written to *ppBlob. +** {F17814} Otherwise an error code is returned and +** any value written to *ppBlob should not be used by the caller. +** {F17815} This function sets the database-handle error code and message +** accessible via [sqlite3_errcode()] and [sqlite3_errmsg()]. +** We should go through and mark all interfaces that behave this +** way with a similar statement +*/ +int sqlite3_blob_open( + sqlite3*, + const char *zDb, + const char *zTable, + const char *zColumn, + sqlite3_int64 iRow, + int flags, + sqlite3_blob **ppBlob +); + +/* +** CAPI3REF: Close A BLOB Handle {F17830} +** +** Close an open [sqlite3_blob | blob handle]. +** +** {F17831} Closing a BLOB shall cause the current transaction to commit +** if there are no other BLOBs, no pending prepared statements, and the +** database connection is in autocommit mode. +** {F17832} If any writes were made to the BLOB, they might be held in cache +** until the close operation if they will fit. {END} +** Closing the BLOB often forces the changes +** out to disk and so if any I/O errors occur, they will likely occur +** at the time when the BLOB is closed. {F17833} Any errors that occur during +** closing are reported as a non-zero return value. +** +** {F17839} The BLOB is closed unconditionally. Even if this routine returns +** an error code, the BLOB is still closed. +*/ +int sqlite3_blob_close(sqlite3_blob *); + +/* +** CAPI3REF: Return The Size Of An Open BLOB {F17805} +** +** {F16806} Return the size in bytes of the blob accessible via the open +** [sqlite3_blob | blob-handle] passed as an argument. +*/ +int sqlite3_blob_bytes(sqlite3_blob *); + +/* +** CAPI3REF: Read Data From A BLOB Incrementally {F17850} +** +** This function is used to read data from an open +** [sqlite3_blob | blob-handle] into a caller supplied buffer. +** {F17851} n bytes of data are copied into buffer +** z from the open blob, starting at offset iOffset. +** +** {F17852} If offset iOffset is less than n bytes from the end of the blob, +** [SQLITE_ERROR] is returned and no data is read. {F17853} If n is +** less than zero [SQLITE_ERROR] is returned and no data is read. +** +** {F17854} On success, SQLITE_OK is returned. Otherwise, an +** [SQLITE_ERROR | SQLite error code] or an +** [SQLITE_IOERR_READ | extended error code] is returned. +*/ +int sqlite3_blob_read(sqlite3_blob *, void *z, int n, int iOffset); + +/* +** CAPI3REF: Write Data Into A BLOB Incrementally {F17870} +** +** This function is used to write data into an open +** [sqlite3_blob | blob-handle] from a user supplied buffer. +** {F17871} n bytes of data are copied from the buffer +** pointed to by z into the open blob, starting at offset iOffset. +** +** {F17872} If the [sqlite3_blob | blob-handle] passed as the first argument +** was not opened for writing (the flags parameter to [sqlite3_blob_open()] +*** was zero), this function returns [SQLITE_READONLY]. +** +** {F17873} This function may only modify the contents of the blob; it is +** not possible to increase the size of a blob using this API. +** {F17874} If offset iOffset is less than n bytes from the end of the blob, +** [SQLITE_ERROR] is returned and no data is written. {F17875} If n is +** less than zero [SQLITE_ERROR] is returned and no data is written. +** +** {F17876} On success, SQLITE_OK is returned. Otherwise, an +** [SQLITE_ERROR | SQLite error code] or an +** [SQLITE_IOERR_READ | extended error code] is returned. +*/ +int sqlite3_blob_write(sqlite3_blob *, const void *z, int n, int iOffset); + +/* +** CAPI3REF: Virtual File System Objects {F11200} +** +** A virtual filesystem (VFS) is an [sqlite3_vfs] object +** that SQLite uses to interact +** with the underlying operating system. Most builds come with a +** single default VFS that is appropriate for the host computer. +** New VFSes can be registered and existing VFSes can be unregistered. +** The following interfaces are provided. +** +** {F11201} The sqlite3_vfs_find() interface returns a pointer to +** a VFS given its name. {F11202} Names are case sensitive. +** {F11203} Names are zero-terminated UTF-8 strings. +** {F11204} If there is no match, a NULL +** pointer is returned. {F11205} If zVfsName is NULL then the default +** VFS is returned. {END} +** +** {F11210} New VFSes are registered with sqlite3_vfs_register(). +** {F11211} Each new VFS becomes the default VFS if the makeDflt flag is set. +** {F11212} The same VFS can be registered multiple times without injury. +** {F11213} To make an existing VFS into the default VFS, register it again +** with the makeDflt flag set. {U11214} If two different VFSes with the +** same name are registered, the behavior is undefined. {U11215} If a +** VFS is registered with a name that is NULL or an empty string, +** then the behavior is undefined. +** +** {F11220} Unregister a VFS with the sqlite3_vfs_unregister() interface. +** {F11221} If the default VFS is unregistered, another VFS is chosen as +** the default. The choice for the new VFS is arbitrary. +*/ +sqlite3_vfs *sqlite3_vfs_find(const char *zVfsName); +int sqlite3_vfs_register(sqlite3_vfs*, int makeDflt); +int sqlite3_vfs_unregister(sqlite3_vfs*); + +/* +** CAPI3REF: Mutexes {F17000} +** +** The SQLite core uses these routines for thread +** synchronization. Though they are intended for internal +** use by SQLite, code that links against SQLite is +** permitted to use any of these routines. +** +** The SQLite source code contains multiple implementations +** of these mutex routines. An appropriate implementation +** is selected automatically at compile-time. The following +** implementations are available in the SQLite core: +** +**
    +**
  • SQLITE_MUTEX_OS2 +**
  • SQLITE_MUTEX_PTHREAD +**
  • SQLITE_MUTEX_W32 +**
  • SQLITE_MUTEX_NOOP +**
+** +** The SQLITE_MUTEX_NOOP implementation is a set of routines +** that does no real locking and is appropriate for use in +** a single-threaded application. The SQLITE_MUTEX_OS2, +** SQLITE_MUTEX_PTHREAD, and SQLITE_MUTEX_W32 implementations +** are appropriate for use on os/2, unix, and windows. +** +** If SQLite is compiled with the SQLITE_MUTEX_APPDEF preprocessor +** macro defined (with "-DSQLITE_MUTEX_APPDEF=1"), then no mutex +** implementation is included with the library. The +** mutex interface routines defined here become external +** references in the SQLite library for which implementations +** must be provided by the application. This facility allows an +** application that links against SQLite to provide its own mutex +** implementation without having to modify the SQLite core. +** +** {F17011} The sqlite3_mutex_alloc() routine allocates a new +** mutex and returns a pointer to it. {F17012} If it returns NULL +** that means that a mutex could not be allocated. {F17013} SQLite +** will unwind its stack and return an error. {F17014} The argument +** to sqlite3_mutex_alloc() is one of these integer constants: +** +**
    +**
  • SQLITE_MUTEX_FAST +**
  • SQLITE_MUTEX_RECURSIVE +**
  • SQLITE_MUTEX_STATIC_MASTER +**
  • SQLITE_MUTEX_STATIC_MEM +**
  • SQLITE_MUTEX_STATIC_MEM2 +**
  • SQLITE_MUTEX_STATIC_PRNG +**
  • SQLITE_MUTEX_STATIC_LRU +**
{END} +** +** {F17015} The first two constants cause sqlite3_mutex_alloc() to create +** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE +** is used but not necessarily so when SQLITE_MUTEX_FAST is used. {END} +** The mutex implementation does not need to make a distinction +** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does +** not want to. {F17016} But SQLite will only request a recursive mutex in +** cases where it really needs one. {END} If a faster non-recursive mutex +** implementation is available on the host platform, the mutex subsystem +** might return such a mutex in response to SQLITE_MUTEX_FAST. +** +** {F17017} The other allowed parameters to sqlite3_mutex_alloc() each return +** a pointer to a static preexisting mutex. {END} Four static mutexes are +** used by the current version of SQLite. Future versions of SQLite +** may add additional static mutexes. Static mutexes are for internal +** use by SQLite only. Applications that use SQLite mutexes should +** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or +** SQLITE_MUTEX_RECURSIVE. +** +** {F17018} Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST +** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc() +** returns a different mutex on every call. {F17034} But for the static +** mutex types, the same mutex is returned on every call that has +** the same type number. {END} +** +** {F17019} The sqlite3_mutex_free() routine deallocates a previously +** allocated dynamic mutex. {F17020} SQLite is careful to deallocate every +** dynamic mutex that it allocates. {U17021} The dynamic mutexes must not be in +** use when they are deallocated. {U17022} Attempting to deallocate a static +** mutex results in undefined behavior. {F17023} SQLite never deallocates +** a static mutex. {END} +** +** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt +** to enter a mutex. {F17024} If another thread is already within the mutex, +** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return +** SQLITE_BUSY. {F17025} The sqlite3_mutex_try() interface returns SQLITE_OK +** upon successful entry. {F17026} Mutexes created using +** SQLITE_MUTEX_RECURSIVE can be entered multiple times by the same thread. +** {F17027} In such cases the, +** mutex must be exited an equal number of times before another thread +** can enter. {U17028} If the same thread tries to enter any other +** kind of mutex more than once, the behavior is undefined. +** {F17029} SQLite will never exhibit +** such behavior in its own use of mutexes. {END} +** +** Some systems (ex: windows95) do not the operation implemented by +** sqlite3_mutex_try(). On those systems, sqlite3_mutex_try() will +** always return SQLITE_BUSY. {F17030} The SQLite core only ever uses +** sqlite3_mutex_try() as an optimization so this is acceptable behavior. {END} +** +** {F17031} The sqlite3_mutex_leave() routine exits a mutex that was +** previously entered by the same thread. {U17032} The behavior +** is undefined if the mutex is not currently entered by the +** calling thread or is not currently allocated. {F17033} SQLite will +** never do either. {END} +** +** See also: [sqlite3_mutex_held()] and [sqlite3_mutex_notheld()]. +*/ +sqlite3_mutex *sqlite3_mutex_alloc(int); +void sqlite3_mutex_free(sqlite3_mutex*); +void sqlite3_mutex_enter(sqlite3_mutex*); +int sqlite3_mutex_try(sqlite3_mutex*); +void sqlite3_mutex_leave(sqlite3_mutex*); + +/* +** CAPI3REF: Mutex Verifcation Routines {F17080} +** +** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routines +** are intended for use inside assert() statements. {F17081} The SQLite core +** never uses these routines except inside an assert() and applications +** are advised to follow the lead of the core. {F17082} The core only +** provides implementations for these routines when it is compiled +** with the SQLITE_DEBUG flag. {U17087} External mutex implementations +** are only required to provide these routines if SQLITE_DEBUG is +** defined and if NDEBUG is not defined. +** +** {F17083} These routines should return true if the mutex in their argument +** is held or not held, respectively, by the calling thread. {END} +** +** {X17084} The implementation is not required to provided versions of these +** routines that actually work. +** If the implementation does not provide working +** versions of these routines, it should at least provide stubs +** that always return true so that one does not get spurious +** assertion failures. {END} +** +** {F17085} If the argument to sqlite3_mutex_held() is a NULL pointer then +** the routine should return 1. {END} This seems counter-intuitive since +** clearly the mutex cannot be held if it does not exist. But the +** the reason the mutex does not exist is because the build is not +** using mutexes. And we do not want the assert() containing the +** call to sqlite3_mutex_held() to fail, so a non-zero return is +** the appropriate thing to do. {F17086} The sqlite3_mutex_notheld() +** interface should also return 1 when given a NULL pointer. +*/ +int sqlite3_mutex_held(sqlite3_mutex*); +int sqlite3_mutex_notheld(sqlite3_mutex*); + +/* +** CAPI3REF: Mutex Types {F17001} +** +** {F17002} The [sqlite3_mutex_alloc()] interface takes a single argument +** which is one of these integer constants. {END} +*/ +#define SQLITE_MUTEX_FAST 0 +#define SQLITE_MUTEX_RECURSIVE 1 +#define SQLITE_MUTEX_STATIC_MASTER 2 +#define SQLITE_MUTEX_STATIC_MEM 3 /* sqlite3_malloc() */ +#define SQLITE_MUTEX_STATIC_MEM2 4 /* sqlite3_release_memory() */ +#define SQLITE_MUTEX_STATIC_PRNG 5 /* sqlite3_random() */ +#define SQLITE_MUTEX_STATIC_LRU 6 /* lru page list */ + +/* +** CAPI3REF: Low-Level Control Of Database Files {F11300} +** +** {F11301} The [sqlite3_file_control()] interface makes a direct call to the +** xFileControl method for the [sqlite3_io_methods] object associated +** with a particular database identified by the second argument. {F11302} The +** name of the database is the name assigned to the database by the +** ATTACH SQL command that opened the +** database. {F11303} To control the main database file, use the name "main" +** or a NULL pointer. {F11304} The third and fourth parameters to this routine +** are passed directly through to the second and third parameters of +** the xFileControl method. {F11305} The return value of the xFileControl +** method becomes the return value of this routine. +** +** {F11306} If the second parameter (zDbName) does not match the name of any +** open database file, then SQLITE_ERROR is returned. {F11307} This error +** code is not remembered and will not be recalled by [sqlite3_errcode()] +** or [sqlite3_errmsg()]. {U11308} The underlying xFileControl method might +** also return SQLITE_ERROR. {U11309} There is no way to distinguish between +** an incorrect zDbName and an SQLITE_ERROR return from the underlying +** xFileControl method. {END} +** +** See also: [SQLITE_FCNTL_LOCKSTATE] +*/ +int sqlite3_file_control(sqlite3*, const char *zDbName, int op, void*); + +/* +** Undo the hack that converts floating point types to integer for +** builds on processors without floating point support. +*/ +#ifdef SQLITE_OMIT_FLOATING_POINT +# undef double +#endif + +#if 0 +} /* End of the 'extern "C"' block */ +#endif +#endif + +/************** End of sqlite3.h *********************************************/ +/************** Continuing where we left off in fts3.h ***********************/ + +#if 0 +extern "C" { +#endif /* __cplusplus */ + +int sqlite3Fts3Init(sqlite3 *db); + +#if 0 +} /* extern "C" */ +#endif /* __cplusplus */ + +/************** End of fts3.h ************************************************/ +/************** Continuing where we left off in fts3.c ***********************/ +/************** Include fts3_hash.h in the middle of fts3.c ******************/ +/************** Begin file fts3_hash.h ***************************************/ +/* +** 2001 September 22 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This is the header file for the generic hash-table implemenation +** used in SQLite. We've modified it slightly to serve as a standalone +** hash table implementation for the full-text indexing module. +** +*/ +#ifndef _FTS3_HASH_H_ +#define _FTS3_HASH_H_ + +/* Forward declarations of structures. */ +typedef struct fts3Hash fts3Hash; +typedef struct fts3HashElem fts3HashElem; + +/* A complete hash table is an instance of the following structure. +** The internals of this structure are intended to be opaque -- client +** code should not attempt to access or modify the fields of this structure +** directly. Change this structure only by using the routines below. +** However, many of the "procedures" and "functions" for modifying and +** accessing this structure are really macros, so we can't really make +** this structure opaque. +*/ +struct fts3Hash { + char keyClass; /* HASH_INT, _POINTER, _STRING, _BINARY */ + char copyKey; /* True if copy of key made on insert */ + int count; /* Number of entries in this table */ + fts3HashElem *first; /* The first element of the array */ + int htsize; /* Number of buckets in the hash table */ + struct _fts3ht { /* the hash table */ + int count; /* Number of entries with this hash */ + fts3HashElem *chain; /* Pointer to first entry with this hash */ + } *ht; +}; + +/* Each element in the hash table is an instance of the following +** structure. All elements are stored on a single doubly-linked list. +** +** Again, this structure is intended to be opaque, but it can't really +** be opaque because it is used by macros. +*/ +struct fts3HashElem { + fts3HashElem *next, *prev; /* Next and previous elements in the table */ + void *data; /* Data associated with this element */ + void *pKey; int nKey; /* Key associated with this element */ +}; + +/* +** There are 2 different modes of operation for a hash table: +** +** FTS3_HASH_STRING pKey points to a string that is nKey bytes long +** (including the null-terminator, if any). Case +** is respected in comparisons. +** +** FTS3_HASH_BINARY pKey points to binary data nKey bytes long. +** memcmp() is used to compare keys. +** +** A copy of the key is made if the copyKey parameter to fts3HashInit is 1. +*/ +#define FTS3_HASH_STRING 1 +#define FTS3_HASH_BINARY 2 + +/* +** Access routines. To delete, insert a NULL pointer. +*/ +void sqlite3Fts3HashInit(fts3Hash*, int keytype, int copyKey); +void *sqlite3Fts3HashInsert(fts3Hash*, const void *pKey, int nKey, void *pData); +void *sqlite3Fts3HashFind(const fts3Hash*, const void *pKey, int nKey); +void sqlite3Fts3HashClear(fts3Hash*); + +/* +** Shorthand for the functions above +*/ +#define fts3HashInit sqlite3Fts3HashInit +#define fts3HashInsert sqlite3Fts3HashInsert +#define fts3HashFind sqlite3Fts3HashFind +#define fts3HashClear sqlite3Fts3HashClear + +/* +** Macros for looping over all elements of a hash table. The idiom is +** like this: +** +** fts3Hash h; +** fts3HashElem *p; +** ... +** for(p=fts3HashFirst(&h); p; p=fts3HashNext(p)){ +** SomeStructure *pData = fts3HashData(p); +** // do something with pData +** } +*/ +#define fts3HashFirst(H) ((H)->first) +#define fts3HashNext(E) ((E)->next) +#define fts3HashData(E) ((E)->data) +#define fts3HashKey(E) ((E)->pKey) +#define fts3HashKeysize(E) ((E)->nKey) + +/* +** Number of entries in a hash table +*/ +#define fts3HashCount(H) ((H)->count) + +#endif /* _FTS3_HASH_H_ */ + +/************** End of fts3_hash.h *******************************************/ +/************** Continuing where we left off in fts3.c ***********************/ +/************** Include fts3_tokenizer.h in the middle of fts3.c *************/ +/************** Begin file fts3_tokenizer.h **********************************/ +/* +** 2006 July 10 +** +** The author disclaims copyright to this source code. +** +************************************************************************* +** Defines the interface to tokenizers used by fulltext-search. There +** are three basic components: +** +** sqlite3_tokenizer_module is a singleton defining the tokenizer +** interface functions. This is essentially the class structure for +** tokenizers. +** +** sqlite3_tokenizer is used to define a particular tokenizer, perhaps +** including customization information defined at creation time. +** +** sqlite3_tokenizer_cursor is generated by a tokenizer to generate +** tokens from a particular input. +*/ +#ifndef _FTS3_TOKENIZER_H_ +#define _FTS3_TOKENIZER_H_ + +/* TODO(shess) Only used for SQLITE_OK and SQLITE_DONE at this time. +** If tokenizers are to be allowed to call sqlite3_*() functions, then +** we will need a way to register the API consistently. +*/ +/************** Include sqlite3.h in the middle of fts3_tokenizer.h **********/ +/************** Begin file sqlite3.h *****************************************/ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This header file defines the interface that the SQLite library +** presents to client programs. If a C-function, structure, datatype, +** or constant definition does not appear in this file, then it is +** not a published API of SQLite, is subject to change without +** notice, and should not be referenced by programs that use SQLite. +** +** Some of the definitions that are in this file are marked as +** "experimental". Experimental interfaces are normally new +** features recently added to SQLite. We do not anticipate changes +** to experimental interfaces but reserve to make minor changes if +** experience from use "in the wild" suggest such changes are prudent. +** +** The official C-language API documentation for SQLite is derived +** from comments in this file. This file is the authoritative source +** on how SQLite interfaces are suppose to operate. +** +** The name of this file under configuration management is "sqlite.h.in". +** The makefile makes some minor changes to this file (such as inserting +** the version number) and changes its name to "sqlite3.h" as +** part of the build process. +** +** @(#) $Id: sqlite3.c,v 1.13 2008/01/29 23:34:19 myk%mozilla.org Exp $ +*/ +#ifndef _SQLITE3_H_ +#define _SQLITE3_H_ + +/* +** Make sure we can call this stuff from C++. +*/ +#if 0 +extern "C" { +#endif + + +/* +** Add the ability to override 'extern' +*/ +#ifndef SQLITE_EXTERN +# define SQLITE_EXTERN extern +#endif + +/* +** Make sure these symbols where not defined by some previous header +** file. +*/ +#ifdef SQLITE_VERSION +# undef SQLITE_VERSION +#endif +#ifdef SQLITE_VERSION_NUMBER +# undef SQLITE_VERSION_NUMBER +#endif + +/* +** CAPI3REF: Compile-Time Library Version Numbers {F10010} +** +** {F10011} The #define in the sqlite3.h header file named +** SQLITE_VERSION resolves to a string literal that identifies +** the version of the SQLite library in the format "X.Y.Z", where +** X is the major version number, Y is the minor version number and Z +** is the release number. The X.Y.Z might be followed by "alpha" or "beta". +** {END} For example "3.1.1beta". +** +** The X value is always 3 in SQLite. The X value only changes when +** backwards compatibility is broken and we intend to never break +** backwards compatibility. The Y value only changes when +** there are major feature enhancements that are forwards compatible +** but not backwards compatible. The Z value is incremented with +** each release but resets back to 0 when Y is incremented. +** +** {F10014} The SQLITE_VERSION_NUMBER #define resolves to an integer +** with the value (X*1000000 + Y*1000 + Z) where X, Y, and Z are as +** with SQLITE_VERSION. {END} For example, for version "3.1.1beta", +** SQLITE_VERSION_NUMBER is set to 3001001. To detect if they are using +** version 3.1.1 or greater at compile time, programs may use the test +** (SQLITE_VERSION_NUMBER>=3001001). +** +** See also: [sqlite3_libversion()] and [sqlite3_libversion_number()]. +*/ +#define SQLITE_VERSION "3.5.4" +#define SQLITE_VERSION_NUMBER 3005004 + +/* +** CAPI3REF: Run-Time Library Version Numbers {F10020} +** +** {F10021} The sqlite3_libversion_number() interface returns an integer +** equal to [SQLITE_VERSION_NUMBER]. {END} The value returned +** by this routine should only be different from the header values +** if the application is compiled using an sqlite3.h header from a +** different version of SQLite than library. Cautious programmers might +** include a check in their application to verify that +** sqlite3_libversion_number() always returns the value +** [SQLITE_VERSION_NUMBER]. +** +** {F10022} The sqlite3_version[] string constant contains the text of the +** [SQLITE_VERSION] string. {F10023} The sqlite3_libversion() function returns +** a pointer to the sqlite3_version[] string constant. {END} The +** sqlite3_libversion() function +** is provided for DLL users who can only access functions and not +** constants within the DLL. +*/ +SQLITE_EXTERN const char sqlite3_version[]; +const char *sqlite3_libversion(void); +int sqlite3_libversion_number(void); + +/* +** CAPI3REF: Test To See If The Library Is Threadsafe {F10100} +** +** {F10101} The sqlite3_threadsafe() routine returns nonzero +** if SQLite was compiled with its mutexes enabled or zero if +** SQLite was compiled with mutexes disabled. {END} If this +** routine returns false, then it is not safe for simultaneously +** running threads to both invoke SQLite interfaces. +** +** Really all this routine does is return true if SQLite was +** compiled with the -DSQLITE_THREADSAFE=1 option and false if +** compiled with -DSQLITE_THREADSAFE=0. If SQLite uses an +** application-defined mutex subsystem, malloc subsystem, collating +** sequence, VFS, SQL function, progress callback, commit hook, +** extension, or other accessories and these add-ons are not +** threadsafe, then clearly the combination will not be threadsafe +** either. Hence, this routine never reports that the library +** is guaranteed to be threadsafe, only when it is guaranteed not +** to be. +*/ +int sqlite3_threadsafe(void); + +/* +** CAPI3REF: Database Connection Handle {F12000} +** +** Each open SQLite database is represented by pointer to an instance of the +** opaque structure named "sqlite3". It is useful to think of an sqlite3 +** pointer as an object. The [sqlite3_open()], [sqlite3_open16()], and +** [sqlite3_open_v2()] interfaces are its constructors +** and [sqlite3_close()] is its destructor. There are many other interfaces +** (such as [sqlite3_prepare_v2()], [sqlite3_create_function()], and +** [sqlite3_busy_timeout()] to name but three) that are methods on this +** object. +*/ +typedef struct sqlite3 sqlite3; + + +/* +** CAPI3REF: 64-Bit Integer Types {F10200} +** +** Because there is no cross-platform way to specify such types +** SQLite includes typedefs for 64-bit signed and unsigned integers. +** {F10201} The sqlite_int64 and sqlite3_int64 types specify a +** 64-bit signed integer. {F10202} The sqlite_uint64 and +** sqlite3_uint64 types specify a 64-bit unsigned integer. {END} +** +** The sqlite3_int64 and sqlite3_uint64 are the preferred type +** definitions. The sqlite_int64 and sqlite_uint64 types are +** supported for backwards compatibility only. +*/ +#ifdef SQLITE_INT64_TYPE + typedef SQLITE_INT64_TYPE sqlite_int64; + typedef unsigned SQLITE_INT64_TYPE sqlite_uint64; +#elif defined(_MSC_VER) || defined(__BORLANDC__) + typedef __int64 sqlite_int64; + typedef unsigned __int64 sqlite_uint64; +#else + typedef long long int sqlite_int64; + typedef unsigned long long int sqlite_uint64; +#endif +typedef sqlite_int64 sqlite3_int64; +typedef sqlite_uint64 sqlite3_uint64; + +/* +** If compiling for a processor that lacks floating point support, +** substitute integer for floating-point +*/ +#ifdef SQLITE_OMIT_FLOATING_POINT +# define double sqlite3_int64 +#endif + +/* +** CAPI3REF: Closing A Database Connection {F12010} +** +** {F12011} The sqlite3_close() interfaces destroys an [sqlite3] object +** allocated by a prior call to [sqlite3_open()], [sqlite3_open16()], or +** [sqlite3_open_v2()]. {F12012} Sqlite3_close() releases all +** memory used by the connection and closes all open files. {END}. +** +** {F12013} If the database connection contains +** [sqlite3_stmt | prepared statements] that have not been finalized +** by [sqlite3_finalize()], then sqlite3_close() returns SQLITE_BUSY +** and leaves the connection open. {F12014} Giving sqlite3_close() +** a NULL pointer is a harmless no-op. {END} +** +** {U12015} Passing this routine a database connection that has already been +** closed results in undefined behavior. {U12016} If other interfaces that +** reference the same database connection are pending (either in the +** same thread or in different threads) when this routine is called, +** then the behavior is undefined and is almost certainly undesirable. +*/ +int sqlite3_close(sqlite3 *); + +/* +** The type for a callback function. +** This is legacy and deprecated. It is included for historical +** compatibility and is not documented. +*/ +typedef int (*sqlite3_callback)(void*,int,char**, char**); + +/* +** CAPI3REF: One-Step Query Execution Interface {F12100} +** +** {F12101} The sqlite3_exec() interface evaluates zero or more +** UTF-8 encoded, semicolon-separated SQL statements in the zero-terminated +** string of its second argument. {F12102} The SQL +** statements are evaluated in the context of the database connection +** specified by in the first argument. +** {F12103} SQL statements are prepared one by one using +** [sqlite3_prepare()] or the equivalent, evaluated +** using one or more calls to [sqlite3_step()], then destroyed +** using [sqlite3_finalize()]. {F12104} The return value of +** sqlite3_exec() is SQLITE_OK if all SQL statement run +** successfully. +** +** {F12105} If one or more of the SQL statements handed to +** sqlite3_exec() are queries, then +** the callback function specified by the 3rd parameter is +** invoked once for each row of the query result. {F12106} +** If the callback returns a non-zero value then the query +** is aborted, all subsequent SQL statements +** are skipped and the sqlite3_exec() function returns the [SQLITE_ABORT]. +** +** {F12107} The 4th parameter to sqlite3_exec() is an arbitrary pointer +** that is passed through to the callback function as its first parameter. +** +** {F12108} The 2nd parameter to the callback function is the number of +** columns in the query result. {F12109} The 3rd parameter to the callback +** is an array of pointers to strings holding the values for each column +** as extracted using [sqlite3_column_text()]. NULL values in the result +** set result in a NULL pointer. All other value are in their UTF-8 +** string representation. {F12117} +** The 4th parameter to the callback is an array of strings +** obtained using [sqlite3_column_name()] and holding +** the names of each column, also in UTF-8. +** +** {F12110} The callback function may be NULL, even for queries. A NULL +** callback is not an error. It just means that no callback +** will be invoked. +** +** {F12112} If an error occurs while parsing or evaluating the SQL +** then an appropriate error message is written into memory obtained +** from [sqlite3_malloc()] and *errmsg is made to point to that message +** assuming errmsg is not NULL. +** {U12113} The calling function is responsible for freeing the memory +** using [sqlite3_free()]. +** {F12116} If [sqlite3_malloc()] fails while attempting to generate +** the error message, *errmsg is set to NULL. +** {F12114} If errmsg is NULL then no attempt is made to generate an +** error message. Is the return code SQLITE_NOMEM or the original +** error code? What happens if there are multiple errors? +** Do we get code for the first error, or is the choice of reported +** error arbitrary? +** +** {F12115} The return value is is SQLITE_OK if there are no errors and +** some other [SQLITE_OK | return code] if there is an error. +** The particular return value depends on the type of error. {END} +*/ +int sqlite3_exec( + sqlite3*, /* An open database */ + const char *sql, /* SQL to be evaluted */ + int (*callback)(void*,int,char**,char**), /* Callback function */ + void *, /* 1st argument to callback */ + char **errmsg /* Error msg written here */ +); + +/* +** CAPI3REF: Result Codes {F10210} +** KEYWORDS: SQLITE_OK +** +** Many SQLite functions return an integer result code from the set shown +** above in order to indicates success or failure. +** +** {F10211} The result codes shown here are the only ones returned +** by SQLite in its default configuration. {F10212} However, the +** [sqlite3_extended_result_codes()] API can be used to set a database +** connectoin to return more detailed result codes. {END} +** +** See also: [SQLITE_IOERR_READ | extended result codes] +** +*/ +#define SQLITE_OK 0 /* Successful result */ +/* beginning-of-error-codes */ +#define SQLITE_ERROR 1 /* SQL error or missing database */ +#define SQLITE_INTERNAL 2 /* Internal logic error in SQLite */ +#define SQLITE_PERM 3 /* Access permission denied */ +#define SQLITE_ABORT 4 /* Callback routine requested an abort */ +#define SQLITE_BUSY 5 /* The database file is locked */ +#define SQLITE_LOCKED 6 /* A table in the database is locked */ +#define SQLITE_NOMEM 7 /* A malloc() failed */ +#define SQLITE_READONLY 8 /* Attempt to write a readonly database */ +#define SQLITE_INTERRUPT 9 /* Operation terminated by sqlite3_interrupt()*/ +#define SQLITE_IOERR 10 /* Some kind of disk I/O error occurred */ +#define SQLITE_CORRUPT 11 /* The database disk image is malformed */ +#define SQLITE_NOTFOUND 12 /* NOT USED. Table or record not found */ +#define SQLITE_FULL 13 /* Insertion failed because database is full */ +#define SQLITE_CANTOPEN 14 /* Unable to open the database file */ +#define SQLITE_PROTOCOL 15 /* NOT USED. Database lock protocol error */ +#define SQLITE_EMPTY 16 /* Database is empty */ +#define SQLITE_SCHEMA 17 /* The database schema changed */ +#define SQLITE_TOOBIG 18 /* String or BLOB exceeds size limit */ +#define SQLITE_CONSTRAINT 19 /* Abort due to constraint violation */ +#define SQLITE_MISMATCH 20 /* Data type mismatch */ +#define SQLITE_MISUSE 21 /* Library used incorrectly */ +#define SQLITE_NOLFS 22 /* Uses OS features not supported on host */ +#define SQLITE_AUTH 23 /* Authorization denied */ +#define SQLITE_FORMAT 24 /* Auxiliary database format error */ +#define SQLITE_RANGE 25 /* 2nd parameter to sqlite3_bind out of range */ +#define SQLITE_NOTADB 26 /* File opened that is not a database file */ +#define SQLITE_ROW 100 /* sqlite3_step() has another row ready */ +#define SQLITE_DONE 101 /* sqlite3_step() has finished executing */ +/* end-of-error-codes */ + +/* +** CAPI3REF: Extended Result Codes {F10220} +** +** In its default configuration, SQLite API routines return one of 26 integer +** [SQLITE_OK | result codes]. However, experience has shown that +** many of these result codes are too course-grained. They do not provide as +** much information about problems as programmers might like. In an effort to +** address this, newer versions of SQLite (version 3.3.8 and later) include +** support for additional result codes that provide more detailed information +** about errors. {F10221} The extended result codes are enabled or disabled +** for each database connection using the [sqlite3_extended_result_codes()] +** API. {END} +** +** Some of the available extended result codes are listed above. +** We expect the number of extended result codes will be expand +** over time. {U10422} Software that uses extended result codes should expect +** to see new result codes in future releases of SQLite. {END} +** +** {F10223} The symbolic name for an extended result code always contains +** a related primary result code as a prefix. {F10224} Primary result +** codes contain a single "_" character. {F10225} Extended result codes +** contain two or more "_" characters. {F10226} The numeric value of an +** extended result code can be converted to its +** corresponding primary result code by masking off the lower 8 bytes. {END} +** +** The SQLITE_OK result code will never be extended. It will always +** be exactly zero. +*/ +#define SQLITE_IOERR_READ (SQLITE_IOERR | (1<<8)) +#define SQLITE_IOERR_SHORT_READ (SQLITE_IOERR | (2<<8)) +#define SQLITE_IOERR_WRITE (SQLITE_IOERR | (3<<8)) +#define SQLITE_IOERR_FSYNC (SQLITE_IOERR | (4<<8)) +#define SQLITE_IOERR_DIR_FSYNC (SQLITE_IOERR | (5<<8)) +#define SQLITE_IOERR_TRUNCATE (SQLITE_IOERR | (6<<8)) +#define SQLITE_IOERR_FSTAT (SQLITE_IOERR | (7<<8)) +#define SQLITE_IOERR_UNLOCK (SQLITE_IOERR | (8<<8)) +#define SQLITE_IOERR_RDLOCK (SQLITE_IOERR | (9<<8)) +#define SQLITE_IOERR_DELETE (SQLITE_IOERR | (10<<8)) +#define SQLITE_IOERR_BLOCKED (SQLITE_IOERR | (11<<8)) +#define SQLITE_IOERR_NOMEM (SQLITE_IOERR | (12<<8)) + +/* +** CAPI3REF: Flags For File Open Operations {F10230} +** +** {F10231} Some combination of the these bit values are used as the +** third argument to the [sqlite3_open_v2()] interface and +** as fourth argument to the xOpen method of the +** [sqlite3_vfs] object. +*/ +#define SQLITE_OPEN_READONLY 0x00000001 +#define SQLITE_OPEN_READWRITE 0x00000002 +#define SQLITE_OPEN_CREATE 0x00000004 +#define SQLITE_OPEN_DELETEONCLOSE 0x00000008 +#define SQLITE_OPEN_EXCLUSIVE 0x00000010 +#define SQLITE_OPEN_MAIN_DB 0x00000100 +#define SQLITE_OPEN_TEMP_DB 0x00000200 +#define SQLITE_OPEN_TRANSIENT_DB 0x00000400 +#define SQLITE_OPEN_MAIN_JOURNAL 0x00000800 +#define SQLITE_OPEN_TEMP_JOURNAL 0x00001000 +#define SQLITE_OPEN_SUBJOURNAL 0x00002000 +#define SQLITE_OPEN_MASTER_JOURNAL 0x00004000 + +/* +** CAPI3REF: Device Characteristics {F10240} +** +** {F10241} The xDeviceCapabilities method of the [sqlite3_io_methods] +** object returns an integer which is a vector of the these +** bit values expressing I/O characteristics of the mass storage +** device that holds the file that the [sqlite3_io_methods] +** refers to. {END} +** +** {F10242} The SQLITE_IOCAP_ATOMIC property means that all writes of +** any size are atomic. {F10243} The SQLITE_IOCAP_ATOMICnnn values +** mean that writes of blocks that are nnn bytes in size and +** are aligned to an address which is an integer multiple of +** nnn are atomic. {F10244} The SQLITE_IOCAP_SAFE_APPEND value means +** that when data is appended to a file, the data is appended +** first then the size of the file is extended, never the other +** way around. {F10245} The SQLITE_IOCAP_SEQUENTIAL property means that +** information is written to disk in the same order as calls +** to xWrite(). +*/ +#define SQLITE_IOCAP_ATOMIC 0x00000001 +#define SQLITE_IOCAP_ATOMIC512 0x00000002 +#define SQLITE_IOCAP_ATOMIC1K 0x00000004 +#define SQLITE_IOCAP_ATOMIC2K 0x00000008 +#define SQLITE_IOCAP_ATOMIC4K 0x00000010 +#define SQLITE_IOCAP_ATOMIC8K 0x00000020 +#define SQLITE_IOCAP_ATOMIC16K 0x00000040 +#define SQLITE_IOCAP_ATOMIC32K 0x00000080 +#define SQLITE_IOCAP_ATOMIC64K 0x00000100 +#define SQLITE_IOCAP_SAFE_APPEND 0x00000200 +#define SQLITE_IOCAP_SEQUENTIAL 0x00000400 + +/* +** CAPI3REF: File Locking Levels {F10250} +** +** {F10251} SQLite uses one of the following integer values as the second +** argument to calls it makes to the xLock() and xUnlock() methods +** of an [sqlite3_io_methods] object. {END} +*/ +#define SQLITE_LOCK_NONE 0 +#define SQLITE_LOCK_SHARED 1 +#define SQLITE_LOCK_RESERVED 2 +#define SQLITE_LOCK_PENDING 3 +#define SQLITE_LOCK_EXCLUSIVE 4 + +/* +** CAPI3REF: Synchronization Type Flags {F10260} +** +** {F10261} When SQLite invokes the xSync() method of an +** [sqlite3_io_methods] object it uses a combination of the +** these integer values as the second argument. +** +** {F10262} When the SQLITE_SYNC_DATAONLY flag is used, it means that the +** sync operation only needs to flush data to mass storage. Inode +** information need not be flushed. {F10263} The SQLITE_SYNC_NORMAL means +** to use normal fsync() semantics. {F10264} The SQLITE_SYNC_FULL flag means +** to use Mac OS-X style fullsync instead of fsync(). +*/ +#define SQLITE_SYNC_NORMAL 0x00002 +#define SQLITE_SYNC_FULL 0x00003 +#define SQLITE_SYNC_DATAONLY 0x00010 + + +/* +** CAPI3REF: OS Interface Open File Handle {F11110} +** +** An [sqlite3_file] object represents an open file in the OS +** interface layer. Individual OS interface implementations will +** want to subclass this object by appending additional fields +** for their own use. The pMethods entry is a pointer to an +** [sqlite3_io_methods] object that defines methods for performing +** I/O operations on the open file. +*/ +typedef struct sqlite3_file sqlite3_file; +struct sqlite3_file { + const struct sqlite3_io_methods *pMethods; /* Methods for an open file */ +}; + +/* +** CAPI3REF: OS Interface File Virtual Methods Object {F11120} +** +** Every file opened by the [sqlite3_vfs] xOpen method contains a pointer to +** an instance of the this object. This object defines the +** methods used to perform various operations against the open file. +** +** The flags argument to xSync may be one of [SQLITE_SYNC_NORMAL] or +** [SQLITE_SYNC_FULL]. The first choice is the normal fsync(). +* The second choice is an +** OS-X style fullsync. The SQLITE_SYNC_DATA flag may be ORed in to +** indicate that only the data of the file and not its inode needs to be +** synced. +** +** The integer values to xLock() and xUnlock() are one of +**
    +**
  • [SQLITE_LOCK_NONE], +**
  • [SQLITE_LOCK_SHARED], +**
  • [SQLITE_LOCK_RESERVED], +**
  • [SQLITE_LOCK_PENDING], or +**
  • [SQLITE_LOCK_EXCLUSIVE]. +**
+** xLock() increases the lock. xUnlock() decreases the lock. +** The xCheckReservedLock() method looks +** to see if any database connection, either in this +** process or in some other process, is holding an RESERVED, +** PENDING, or EXCLUSIVE lock on the file. It returns true +** if such a lock exists and false if not. +** +** The xFileControl() method is a generic interface that allows custom +** VFS implementations to directly control an open file using the +** [sqlite3_file_control()] interface. The second "op" argument +** is an integer opcode. The third +** argument is a generic pointer which is intended to be a pointer +** to a structure that may contain arguments or space in which to +** write return values. Potential uses for xFileControl() might be +** functions to enable blocking locks with timeouts, to change the +** locking strategy (for example to use dot-file locks), to inquire +** about the status of a lock, or to break stale locks. The SQLite +** core reserves opcodes less than 100 for its own use. +** A [SQLITE_FCNTL_LOCKSTATE | list of opcodes] less than 100 is available. +** Applications that define a custom xFileControl method should use opcodes +** greater than 100 to avoid conflicts. +** +** The xSectorSize() method returns the sector size of the +** device that underlies the file. The sector size is the +** minimum write that can be performed without disturbing +** other bytes in the file. The xDeviceCharacteristics() +** method returns a bit vector describing behaviors of the +** underlying device: +** +**
    +**
  • [SQLITE_IOCAP_ATOMIC] +**
  • [SQLITE_IOCAP_ATOMIC512] +**
  • [SQLITE_IOCAP_ATOMIC1K] +**
  • [SQLITE_IOCAP_ATOMIC2K] +**
  • [SQLITE_IOCAP_ATOMIC4K] +**
  • [SQLITE_IOCAP_ATOMIC8K] +**
  • [SQLITE_IOCAP_ATOMIC16K] +**
  • [SQLITE_IOCAP_ATOMIC32K] +**
  • [SQLITE_IOCAP_ATOMIC64K] +**
  • [SQLITE_IOCAP_SAFE_APPEND] +**
  • [SQLITE_IOCAP_SEQUENTIAL] +**
+** +** The SQLITE_IOCAP_ATOMIC property means that all writes of +** any size are atomic. The SQLITE_IOCAP_ATOMICnnn values +** mean that writes of blocks that are nnn bytes in size and +** are aligned to an address which is an integer multiple of +** nnn are atomic. The SQLITE_IOCAP_SAFE_APPEND value means +** that when data is appended to a file, the data is appended +** first then the size of the file is extended, never the other +** way around. The SQLITE_IOCAP_SEQUENTIAL property means that +** information is written to disk in the same order as calls +** to xWrite(). +*/ +typedef struct sqlite3_io_methods sqlite3_io_methods; +struct sqlite3_io_methods { + int iVersion; + int (*xClose)(sqlite3_file*); + int (*xRead)(sqlite3_file*, void*, int iAmt, sqlite3_int64 iOfst); + int (*xWrite)(sqlite3_file*, const void*, int iAmt, sqlite3_int64 iOfst); + int (*xTruncate)(sqlite3_file*, sqlite3_int64 size); + int (*xSync)(sqlite3_file*, int flags); + int (*xFileSize)(sqlite3_file*, sqlite3_int64 *pSize); + int (*xLock)(sqlite3_file*, int); + int (*xUnlock)(sqlite3_file*, int); + int (*xCheckReservedLock)(sqlite3_file*); + int (*xFileControl)(sqlite3_file*, int op, void *pArg); + int (*xSectorSize)(sqlite3_file*); + int (*xDeviceCharacteristics)(sqlite3_file*); + /* Additional methods may be added in future releases */ +}; + +/* +** CAPI3REF: Standard File Control Opcodes {F11310} +** +** These integer constants are opcodes for the xFileControl method +** of the [sqlite3_io_methods] object and to the [sqlite3_file_control()] +** interface. +** +** {F11311} The [SQLITE_FCNTL_LOCKSTATE] opcode is used for debugging. This +** opcode cases the xFileControl method to write the current state of +** the lock (one of [SQLITE_LOCK_NONE], [SQLITE_LOCK_SHARED], +** [SQLITE_LOCK_RESERVED], [SQLITE_LOCK_PENDING], or [SQLITE_LOCK_EXCLUSIVE]) +** into an integer that the pArg argument points to. {F11312} This capability +** is used during testing and only needs to be supported when SQLITE_TEST +** is defined. +*/ +#define SQLITE_FCNTL_LOCKSTATE 1 + +/* +** CAPI3REF: Mutex Handle {F17110} +** +** The mutex module within SQLite defines [sqlite3_mutex] to be an +** abstract type for a mutex object. {F17111} The SQLite core never looks +** at the internal representation of an [sqlite3_mutex]. {END} It only +** deals with pointers to the [sqlite3_mutex] object. +** +** Mutexes are created using [sqlite3_mutex_alloc()]. +*/ +typedef struct sqlite3_mutex sqlite3_mutex; + +/* +** CAPI3REF: OS Interface Object {F11140} +** +** An instance of this object defines the interface between the +** SQLite core and the underlying operating system. The "vfs" +** in the name of the object stands for "virtual file system". +** +** The iVersion field is initially 1 but may be larger for future +** versions of SQLite. Additional fields may be appended to this +** object when the iVersion value is increased. +** +** The szOsFile field is the size of the subclassed [sqlite3_file] +** structure used by this VFS. mxPathname is the maximum length of +** a pathname in this VFS. +** +** Registered vfs modules are kept on a linked list formed by +** the pNext pointer. The [sqlite3_vfs_register()] +** and [sqlite3_vfs_unregister()] interfaces manage this list +** in a thread-safe way. The [sqlite3_vfs_find()] interface +** searches the list. +** +** The pNext field is the only fields in the sqlite3_vfs +** structure that SQLite will ever modify. SQLite will only access +** or modify this field while holding a particular static mutex. +** The application should never modify anything within the sqlite3_vfs +** object once the object has been registered. +** +** The zName field holds the name of the VFS module. The name must +** be unique across all VFS modules. +** +** {F11141} SQLite will guarantee that the zFilename string passed to +** xOpen() is a full pathname as generated by xFullPathname() and +** that the string will be valid and unchanged until xClose() is +** called. {END} So the [sqlite3_file] can store a pointer to the +** filename if it needs to remember the filename for some reason. +** +** {F11142} The flags argument to xOpen() includes all bits set in +** the flags argument to [sqlite3_open_v2()]. Or if [sqlite3_open()] +** or [sqlite3_open16()] is used, then flags includes at least +** [SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE]. {END} +** If xOpen() opens a file read-only then it sets *pOutFlags to +** include [SQLITE_OPEN_READONLY]. Other bits in *pOutFlags may be +** set. +** +** {F11143} SQLite will also add one of the following flags to the xOpen() +** call, depending on the object being opened: +** +**
    +**
  • [SQLITE_OPEN_MAIN_DB] +**
  • [SQLITE_OPEN_MAIN_JOURNAL] +**
  • [SQLITE_OPEN_TEMP_DB] +**
  • [SQLITE_OPEN_TEMP_JOURNAL] +**
  • [SQLITE_OPEN_TRANSIENT_DB] +**
  • [SQLITE_OPEN_SUBJOURNAL] +**
  • [SQLITE_OPEN_MASTER_JOURNAL] +**
{END} +** +** The file I/O implementation can use the object type flags to +** changes the way it deals with files. For example, an application +** that does not care about crash recovery or rollback, might make +** the open of a journal file a no-op. Writes to this journal are +** also a no-op. Any attempt to read the journal return SQLITE_IOERR. +** Or the implementation might recognize the a database file will +** be doing page-aligned sector reads and writes in a random order +** and set up its I/O subsystem accordingly. +** +** {F11144} SQLite might also add one of the following flags to the xOpen +** method: +** +**
    +**
  • [SQLITE_OPEN_DELETEONCLOSE] +**
  • [SQLITE_OPEN_EXCLUSIVE] +**
+** +** {F11145} The [SQLITE_OPEN_DELETEONCLOSE] flag means the file should be +** deleted when it is closed. {F11146} The [SQLITE_OPEN_DELETEONCLOSE] +** will be set for TEMP databases, journals and for subjournals. +** {F11147} The [SQLITE_OPEN_EXCLUSIVE] flag means the file should be opened +** for exclusive access. This flag is set for all files except +** for the main database file. {END} +** +** {F11148} At least szOsFile bytes of memory is allocated by SQLite +** to hold the [sqlite3_file] structure passed as the third +** argument to xOpen. {END} The xOpen method does not have to +** allocate the structure; it should just fill it in. +** +** {F11149} The flags argument to xAccess() may be [SQLITE_ACCESS_EXISTS] +** to test for the existance of a file, +** or [SQLITE_ACCESS_READWRITE] to test to see +** if a file is readable and writable, or [SQLITE_ACCESS_READ] +** to test to see if a file is at least readable. {END} The file can be a +** directory. +** +** {F11150} SQLite will always allocate at least mxPathname+1 byte for +** the output buffers for xGetTempname and xFullPathname. {F11151} The exact +** size of the output buffer is also passed as a parameter to both +** methods. {END} If the output buffer is not large enough, SQLITE_CANTOPEN +** should be returned. As this is handled as a fatal error by SQLite, +** vfs implementations should endeavor to prevent this by setting +** mxPathname to a sufficiently large value. +** +** The xRandomness(), xSleep(), and xCurrentTime() interfaces +** are not strictly a part of the filesystem, but they are +** included in the VFS structure for completeness. +** The xRandomness() function attempts to return nBytes bytes +** of good-quality randomness into zOut. The return value is +** the actual number of bytes of randomness obtained. The +** xSleep() method cause the calling thread to sleep for at +** least the number of microseconds given. The xCurrentTime() +** method returns a Julian Day Number for the current date and +** time. +*/ +typedef struct sqlite3_vfs sqlite3_vfs; +struct sqlite3_vfs { + int iVersion; /* Structure version number */ + int szOsFile; /* Size of subclassed sqlite3_file */ + int mxPathname; /* Maximum file pathname length */ + sqlite3_vfs *pNext; /* Next registered VFS */ + const char *zName; /* Name of this virtual file system */ + void *pAppData; /* Pointer to application-specific data */ + int (*xOpen)(sqlite3_vfs*, const char *zName, sqlite3_file*, + int flags, int *pOutFlags); + int (*xDelete)(sqlite3_vfs*, const char *zName, int syncDir); + int (*xAccess)(sqlite3_vfs*, const char *zName, int flags); + int (*xGetTempname)(sqlite3_vfs*, int nOut, char *zOut); + int (*xFullPathname)(sqlite3_vfs*, const char *zName, int nOut, char *zOut); + void *(*xDlOpen)(sqlite3_vfs*, const char *zFilename); + void (*xDlError)(sqlite3_vfs*, int nByte, char *zErrMsg); + void *(*xDlSym)(sqlite3_vfs*,void*, const char *zSymbol); + void (*xDlClose)(sqlite3_vfs*, void*); + int (*xRandomness)(sqlite3_vfs*, int nByte, char *zOut); + int (*xSleep)(sqlite3_vfs*, int microseconds); + int (*xCurrentTime)(sqlite3_vfs*, double*); + /* New fields may be appended in figure versions. The iVersion + ** value will increment whenever this happens. */ +}; + +/* +** CAPI3REF: Flags for the xAccess VFS method {F11190} +** +** {F11191} These integer constants can be used as the third parameter to +** the xAccess method of an [sqlite3_vfs] object. {END} They determine +** the kind of what kind of permissions the xAccess method is +** looking for. {F11192} With SQLITE_ACCESS_EXISTS, the xAccess method +** simply checks to see if the file exists. {F11193} With +** SQLITE_ACCESS_READWRITE, the xAccess method checks to see +** if the file is both readable and writable. {F11194} With +** SQLITE_ACCESS_READ the xAccess method +** checks to see if the file is readable. +*/ +#define SQLITE_ACCESS_EXISTS 0 +#define SQLITE_ACCESS_READWRITE 1 +#define SQLITE_ACCESS_READ 2 + +/* +** CAPI3REF: Enable Or Disable Extended Result Codes {F12200} +** +** {F12201} The sqlite3_extended_result_codes() routine enables or disables the +** [SQLITE_IOERR_READ | extended result codes] feature on a database +** connection if its 2nd parameter is +** non-zero or zero, respectively. {F12202} +** By default, SQLite API routines return one of only 26 integer +** [SQLITE_OK | result codes]. {F12203} When extended result codes +** are enabled by this routine, the repetoire of result codes can be +** much larger and can (hopefully) provide more detailed information +** about the cause of an error. +** +** {F12204} The second argument is a boolean value that turns extended result +** codes on and off. {F12205} Extended result codes are off by default for +** backwards compatibility with older versions of SQLite. +*/ +int sqlite3_extended_result_codes(sqlite3*, int onoff); + +/* +** CAPI3REF: Last Insert Rowid {F12220} +** +** {F12221} Each entry in an SQLite table has a unique 64-bit signed +** integer key called the "rowid". {F12222} The rowid is always available +** as an undeclared column named ROWID, OID, or _ROWID_ as long as those +** names are not also used by explicitly declared columns. {F12223} If +** the table has a column of type INTEGER PRIMARY KEY then that column +** is another an alias for the rowid. +** +** {F12224} This routine returns the rowid of the most recent +** successful INSERT into the database from the database connection +** shown in the first argument. {F12225} If no successful inserts +** have ever occurred on this database connection, zero is returned. +** +** {F12226} If an INSERT occurs within a trigger, then the rowid of the +** inserted row is returned by this routine as long as the trigger +** is running. {F12227} But once the trigger terminates, the value returned +** by this routine reverts to the last value inserted before the +** trigger fired. +** +** {F12228} An INSERT that fails due to a constraint violation is not a +** successful insert and does not change the value returned by this +** routine. {F12229} Thus INSERT OR FAIL, INSERT OR IGNORE, INSERT OR ROLLBACK, +** and INSERT OR ABORT make no changes to the return value of this +** routine when their insertion fails. {F12231} When INSERT OR REPLACE +** encounters a constraint violation, it does not fail. The +** INSERT continues to completion after deleting rows that caused +** the constraint problem so INSERT OR REPLACE will always change +** the return value of this interface. +** +** {UF12232} If another thread does a new insert on the same database connection +** while this routine is running and thus changes the last insert rowid, +** then the return value of this routine is undefined. +*/ +sqlite3_int64 sqlite3_last_insert_rowid(sqlite3*); + +/* +** CAPI3REF: Count The Number Of Rows Modified {F12240} +** +** {F12241} This function returns the number of database rows that were changed +** or inserted or deleted by the most recently completed SQL statement +** on the connection specified by the first parameter. {F12242} Only +** changes that are directly specified by the INSERT, UPDATE, or +** DELETE statement are counted. Auxiliary changes caused by +** triggers are not counted. {F12243} Use the [sqlite3_total_changes()] function +** to find the total number of changes including changes caused by triggers. +** +** {F12244} Within the body of a trigger, the sqlite3_changes() interface +** can be called to find the number of +** changes in the most recently completed INSERT, UPDATE, or DELETE +** statement within the body of the same trigger. +** +** {F12245} All changes are counted, even if they are later undone by a +** ROLLBACK or ABORT. {F12246} Except, changes associated with creating and +** dropping tables are not counted. +** +** {F12247} If a callback invokes [sqlite3_exec()] or [sqlite3_step()] +** recursively, then the changes in the inner, recursive call are +** counted together with the changes in the outer call. +** +** {F12248} SQLite implements the command "DELETE FROM table" without +** a WHERE clause by dropping and recreating the table. (This is much +** faster than going through and deleting individual elements from the +** table.) Because of this optimization, the change count for +** "DELETE FROM table" will be zero regardless of the number of elements +** that were originally in the table. {F12251} To get an accurate count +** of the number of rows deleted, use +** "DELETE FROM table WHERE 1" instead. +** +** {UF12252} If another thread makes changes on the same database connection +** while this routine is running then the return value of this routine +** is undefined. +*/ +int sqlite3_changes(sqlite3*); + +/* +** CAPI3REF: Total Number Of Rows Modified {F12260} +*** +** {F12261} This function returns the number of database rows that have been +** modified by INSERT, UPDATE or DELETE statements since the database handle +** was opened. {F12262} The count includes UPDATE, INSERT and DELETE +** statements executed as part of trigger programs. {F12263} All changes +** are counted as soon as the statement that makes them is completed +** (when the statement handle is passed to [sqlite3_reset()] or +** [sqlite3_finalize()]). {END} +** +** See also the [sqlite3_change()] interface. +** +** {F12265} SQLite implements the command "DELETE FROM table" without +** a WHERE clause by dropping and recreating the table. (This is much +** faster than going +** through and deleting individual elements form the table.) Because of +** this optimization, the change count for "DELETE FROM table" will be +** zero regardless of the number of elements that were originally in the +** table. To get an accurate count of the number of rows deleted, use +** "DELETE FROM table WHERE 1" instead. +** +** {U12264} If another thread makes changes on the same database connection +** while this routine is running then the return value of this routine +** is undefined. {END} +*/ +int sqlite3_total_changes(sqlite3*); + +/* +** CAPI3REF: Interrupt A Long-Running Query {F12270} +** +** {F12271} This function causes any pending database operation to abort and +** return at its earliest opportunity. {END} This routine is typically +** called in response to a user action such as pressing "Cancel" +** or Ctrl-C where the user wants a long query operation to halt +** immediately. +** +** {F12272} It is safe to call this routine from a thread different from the +** thread that is currently running the database operation. {U12273} But it +** is not safe to call this routine with a database connection that +** is closed or might close before sqlite3_interrupt() returns. +** +** If an SQL is very nearly finished at the time when sqlite3_interrupt() +** is called, then it might not have an opportunity to be interrupted. +** It might continue to completion. +** {F12274} The SQL operation that is interrupted will return +** [SQLITE_INTERRUPT]. {F12275} If the interrupted SQL operation is an +** INSERT, UPDATE, or DELETE that is inside an explicit transaction, +** then the entire transaction will be rolled back automatically. +** {F12276} A call to sqlite3_interrupt() has no effect on SQL statements +** that are started after sqlite3_interrupt() returns. +*/ +void sqlite3_interrupt(sqlite3*); + +/* +** CAPI3REF: Determine If An SQL Statement Is Complete {F10510} +** +** These routines are useful for command-line input to determine if the +** currently entered text seems to form complete a SQL statement or +** if additional input is needed before sending the text into +** SQLite for parsing. These routines return true if the input string +** appears to be a complete SQL statement. A statement is judged to be +** complete if it ends with a semicolon and is not a fragment of a +** CREATE TRIGGER statement. These routines do not parse the SQL and +** so will not detect syntactically incorrect SQL. +** +** {F10511} These functions return true if the given input string +** ends with a semicolon optionally followed by whitespace or +** comments. {F10512} For sqlite3_complete(), +** the parameter must be a zero-terminated UTF-8 string. {F10513} For +** sqlite3_complete16(), a zero-terminated machine byte order UTF-16 string +** is required. {F10514} These routines return false if the terminal +** semicolon is within a comment, a string literal or a quoted identifier +** (in other words if the final semicolon is not really a separate token +** but part of a larger token) or if the final semicolon is +** in between the BEGIN and END keywords of a CREATE TRIGGER statement. +** {END} +*/ +int sqlite3_complete(const char *sql); +int sqlite3_complete16(const void *sql); + +/* +** CAPI3REF: Register A Callback To Handle SQLITE_BUSY Errors {F12310} +** +** {F12311} This routine identifies a callback function that might be +** invoked whenever an attempt is made to open a database table +** that another thread or process has locked. +** {F12312} If the busy callback is NULL, then [SQLITE_BUSY] +** or [SQLITE_IOERR_BLOCKED] +** is returned immediately upon encountering the lock. +** {F12313} If the busy callback is not NULL, then the +** callback will be invoked with two arguments. {F12314} The +** first argument to the handler is a copy of the void* pointer which +** is the third argument to this routine. {F12315} The second argument to +** the handler is the number of times that the busy handler has +** been invoked for this locking event. {F12316} If the +** busy callback returns 0, then no additional attempts are made to +** access the database and [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED] is returned. +** {F12317} If the callback returns non-zero, then another attempt +** is made to open the database for reading and the cycle repeats. +** +** The presence of a busy handler does not guarantee that +** it will be invoked when there is lock contention. {F12319} +** If SQLite determines that invoking the busy handler could result in +** a deadlock, it will go ahead and return [SQLITE_BUSY] or +** [SQLITE_IOERR_BLOCKED] instead of invoking the +** busy handler. {END} +** Consider a scenario where one process is holding a read lock that +** it is trying to promote to a reserved lock and +** a second process is holding a reserved lock that it is trying +** to promote to an exclusive lock. The first process cannot proceed +** because it is blocked by the second and the second process cannot +** proceed because it is blocked by the first. If both processes +** invoke the busy handlers, neither will make any progress. Therefore, +** SQLite returns [SQLITE_BUSY] for the first process, hoping that this +** will induce the first process to release its read lock and allow +** the second process to proceed. +** +** {F12321} The default busy callback is NULL. {END} +** +** {F12322} The [SQLITE_BUSY] error is converted to [SQLITE_IOERR_BLOCKED] +** when SQLite is in the middle of a large transaction where all the +** changes will not fit into the in-memory cache. {F12323} SQLite will +** already hold a RESERVED lock on the database file, but it needs +** to promote this lock to EXCLUSIVE so that it can spill cache +** pages into the database file without harm to concurrent +** readers. {F12324} If it is unable to promote the lock, then the in-memory +** cache will be left in an inconsistent state and so the error +** code is promoted from the relatively benign [SQLITE_BUSY] to +** the more severe [SQLITE_IOERR_BLOCKED]. {F12325} This error code promotion +** forces an automatic rollback of the changes. {END} See the +** +** CorruptionFollowingBusyError wiki page for a discussion of why +** this is important. +** +** {F12326} Sqlite is re-entrant, so the busy handler may start a new +** query. {END} (It is not clear why anyone would every want to do this, +** but it is allowed, in theory.) {U12327} But the busy handler may not +** close the database. Closing the database from a busy handler will delete +** data structures out from under the executing query and will +** probably result in a segmentation fault or other runtime error. {END} +** +** {F12328} There can only be a single busy handler defined for each database +** connection. Setting a new busy handler clears any previous one. +** {F12329} Note that calling [sqlite3_busy_timeout()] will also set or clear +** the busy handler. +** +** {F12331} When operating in [sqlite3_enable_shared_cache | shared cache mode], +** only a single busy handler can be defined for each database file. +** So if two database connections share a single cache, then changing +** the busy handler on one connection will also change the busy +** handler in the other connection. {F12332} The busy handler is invoked +** in the thread that was running when the lock contention occurs. +*/ +int sqlite3_busy_handler(sqlite3*, int(*)(void*,int), void*); + +/* +** CAPI3REF: Set A Busy Timeout {F12340} +** +** {F12341} This routine sets a [sqlite3_busy_handler | busy handler] +** that sleeps for a while when a +** table is locked. {F12342} The handler will sleep multiple times until +** at least "ms" milliseconds of sleeping have been done. {F12343} After +** "ms" milliseconds of sleeping, the handler returns 0 which +** causes [sqlite3_step()] to return [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED]. +** +** {F12344} Calling this routine with an argument less than or equal to zero +** turns off all busy handlers. +** +** {F12345} There can only be a single busy handler for a particular database +** connection. If another busy handler was defined +** (using [sqlite3_busy_handler()]) prior to calling +** this routine, that other busy handler is cleared. +*/ +int sqlite3_busy_timeout(sqlite3*, int ms); + +/* +** CAPI3REF: Convenience Routines For Running Queries {F12370} +** +** This next routine is a convenience wrapper around [sqlite3_exec()]. +** {F12371} Instead of invoking a user-supplied callback for each row of the +** result, this routine remembers each row of the result in memory +** obtained from [sqlite3_malloc()], then returns all of the result after the +** query has finished. {F12372} +** +** As an example, suppose the query result where this table: +** +**
+**        Name        | Age
+**        -----------------------
+**        Alice       | 43
+**        Bob         | 28
+**        Cindy       | 21
+** 
+** +** If the 3rd argument were &azResult then after the function returns +** azResult will contain the following data: +** +**
+**        azResult[0] = "Name";
+**        azResult[1] = "Age";
+**        azResult[2] = "Alice";
+**        azResult[3] = "43";
+**        azResult[4] = "Bob";
+**        azResult[5] = "28";
+**        azResult[6] = "Cindy";
+**        azResult[7] = "21";
+** 
+** +** Notice that there is an extra row of data containing the column +** headers. But the *nrow return value is still 3. *ncolumn is +** set to 2. In general, the number of values inserted into azResult +** will be ((*nrow) + 1)*(*ncolumn). +** +** {U12374} After the calling function has finished using the result, it should +** pass the result data pointer to sqlite3_free_table() in order to +** release the memory that was malloc-ed. Because of the way the +** [sqlite3_malloc()] happens, the calling function must not try to call +** [sqlite3_free()] directly. Only [sqlite3_free_table()] is able to release +** the memory properly and safely. {END} +** +** {F12373} The return value of this routine is the same as +** from [sqlite3_exec()]. +*/ +int sqlite3_get_table( + sqlite3*, /* An open database */ + const char *sql, /* SQL to be executed */ + char ***resultp, /* Result written to a char *[] that this points to */ + int *nrow, /* Number of result rows written here */ + int *ncolumn, /* Number of result columns written here */ + char **errmsg /* Error msg written here */ +); +void sqlite3_free_table(char **result); + +/* +** CAPI3REF: Formatted String Printing Functions {F17400} +** +** These routines are workalikes of the "printf()" family of functions +** from the standard C library. +** +** {F17401} The sqlite3_mprintf() and sqlite3_vmprintf() routines write their +** results into memory obtained from [sqlite3_malloc()]. +** {U17402} The strings returned by these two routines should be +** released by [sqlite3_free()]. {F17403} Both routines return a +** NULL pointer if [sqlite3_malloc()] is unable to allocate enough +** memory to hold the resulting string. +** +** {F17404} In sqlite3_snprintf() routine is similar to "snprintf()" from +** the standard C library. The result is written into the +** buffer supplied as the second parameter whose size is given by +** the first parameter. {END} Note that the order of the +** first two parameters is reversed from snprintf(). This is an +** historical accident that cannot be fixed without breaking +** backwards compatibility. {F17405} Note also that sqlite3_snprintf() +** returns a pointer to its buffer instead of the number of +** characters actually written into the buffer. {END} We admit that +** the number of characters written would be a more useful return +** value but we cannot change the implementation of sqlite3_snprintf() +** now without breaking compatibility. +** +** {F17406} As long as the buffer size is greater than zero, sqlite3_snprintf() +** guarantees that the buffer is always zero-terminated. {F17407} The first +** parameter "n" is the total size of the buffer, including space for +** the zero terminator. {END} So the longest string that can be completely +** written will be n-1 characters. +** +** These routines all implement some additional formatting +** options that are useful for constructing SQL statements. +** All of the usual printf formatting options apply. In addition, there +** is are "%q", "%Q", and "%z" options. +** +** {F17410} The %q option works like %s in that it substitutes a null-terminated +** string from the argument list. But %q also doubles every '\'' character. +** %q is designed for use inside a string literal. {END} By doubling each '\'' +** character it escapes that character and allows it to be inserted into +** the string. +** +** For example, so some string variable contains text as follows: +** +**
+**  char *zText = "It's a happy day!";
+** 
+** +** One can use this text in an SQL statement as follows: +** +**
+**  char *zSQL = sqlite3_mprintf("INSERT INTO table VALUES('%q')", zText);
+**  sqlite3_exec(db, zSQL, 0, 0, 0);
+**  sqlite3_free(zSQL);
+** 
+** +** Because the %q format string is used, the '\'' character in zText +** is escaped and the SQL generated is as follows: +** +**
+**  INSERT INTO table1 VALUES('It''s a happy day!')
+** 
+** +** This is correct. Had we used %s instead of %q, the generated SQL +** would have looked like this: +** +**
+**  INSERT INTO table1 VALUES('It's a happy day!');
+** 
+** +** This second example is an SQL syntax error. As a general rule you +** should always use %q instead of %s when inserting text into a string +** literal. +** +** {F17411} The %Q option works like %q except it also adds single quotes around +** the outside of the total string. Or if the parameter in the argument +** list is a NULL pointer, %Q substitutes the text "NULL" (without single +** quotes) in place of the %Q option. {END} So, for example, one could say: +** +**
+**  char *zSQL = sqlite3_mprintf("INSERT INTO table VALUES(%Q)", zText);
+**  sqlite3_exec(db, zSQL, 0, 0, 0);
+**  sqlite3_free(zSQL);
+** 
+** +** The code above will render a correct SQL statement in the zSQL +** variable even if the zText variable is a NULL pointer. +** +** {F17412} The "%z" formatting option works exactly like "%s" with the +** addition that after the string has been read and copied into +** the result, [sqlite3_free()] is called on the input string. {END} +*/ +char *sqlite3_mprintf(const char*,...); +char *sqlite3_vmprintf(const char*, va_list); +char *sqlite3_snprintf(int,char*,const char*, ...); + +/* +** CAPI3REF: Memory Allocation Subsystem {F17300} +** +** {F17301} The SQLite core uses these three routines for all of its own +** internal memory allocation needs. {END} "Core" in the previous sentence +** does not include operating-system specific VFS implementation. The +** windows VFS uses native malloc and free for some operations. +** +** {F17302} The sqlite3_malloc() routine returns a pointer to a block +** of memory at least N bytes in length, where N is the parameter. +** {F17303} If sqlite3_malloc() is unable to obtain sufficient free +** memory, it returns a NULL pointer. {F17304} If the parameter N to +** sqlite3_malloc() is zero or negative then sqlite3_malloc() returns +** a NULL pointer. +** +** {F17305} Calling sqlite3_free() with a pointer previously returned +** by sqlite3_malloc() or sqlite3_realloc() releases that memory so +** that it might be reused. {F17306} The sqlite3_free() routine is +** a no-op if is called with a NULL pointer. Passing a NULL pointer +** to sqlite3_free() is harmless. {U17307} After being freed, memory +** should neither be read nor written. Even reading previously freed +** memory might result in a segmentation fault or other severe error. +** {U17309} Memory corruption, a segmentation fault, or other severe error +** might result if sqlite3_free() is called with a non-NULL pointer that +** was not obtained from sqlite3_malloc() or sqlite3_free(). +** +** {F17310} The sqlite3_realloc() interface attempts to resize a +** prior memory allocation to be at least N bytes, where N is the +** second parameter. The memory allocation to be resized is the first +** parameter. {F17311} If the first parameter to sqlite3_realloc() +** is a NULL pointer then its behavior is identical to calling +** sqlite3_malloc(N) where N is the second parameter to sqlite3_realloc(). +** {F17312} If the second parameter to sqlite3_realloc() is zero or +** negative then the behavior is exactly the same as calling +** sqlite3_free(P) where P is the first parameter to sqlite3_realloc(). +** {F17313} Sqlite3_realloc() returns a pointer to a memory allocation +** of at least N bytes in size or NULL if sufficient memory is unavailable. +** {F17314} If M is the size of the prior allocation, then min(N,M) bytes +** of the prior allocation are copied into the beginning of buffer returned +** by sqlite3_realloc() and the prior allocation is freed. +** {F17315} If sqlite3_realloc() returns NULL, then the prior allocation +** is not freed. +** +** {F17316} The memory returned by sqlite3_malloc() and sqlite3_realloc() +** is always aligned to at least an 8 byte boundary. {END} +** +** {F17381} The default implementation +** of the memory allocation subsystem uses the malloc(), realloc() +** and free() provided by the standard C library. {F17382} However, if +** SQLite is compiled with the following C preprocessor macro +** +**
SQLITE_MEMORY_SIZE=NNN
+** +** where NNN is an integer, then SQLite create a static +** array of at least NNN bytes in size and use that array +** for all of its dynamic memory allocation needs. {END} Additional +** memory allocator options may be added in future releases. +** +** In SQLite version 3.5.0 and 3.5.1, it was possible to define +** the SQLITE_OMIT_MEMORY_ALLOCATION which would cause the built-in +** implementation of these routines to be omitted. That capability +** is no longer provided. Only built-in memory allocators can be +** used. +** +** The windows OS interface layer calls +** the system malloc() and free() directly when converting +** filenames between the UTF-8 encoding used by SQLite +** and whatever filename encoding is used by the particular windows +** installation. Memory allocation errors are detected, but +** they are reported back as [SQLITE_CANTOPEN] or +** [SQLITE_IOERR] rather than [SQLITE_NOMEM]. +*/ +void *sqlite3_malloc(int); +void *sqlite3_realloc(void*, int); +void sqlite3_free(void*); + +/* +** CAPI3REF: Memory Allocator Statistics {F17370} +** +** In addition to the basic three allocation routines +** [sqlite3_malloc()], [sqlite3_free()], and [sqlite3_realloc()], +** the memory allocation subsystem included with the SQLite +** sources provides the interfaces shown here. +** +** {F17371} The sqlite3_memory_used() routine returns the +** number of bytes of memory currently outstanding (malloced but not freed). +** {F17372} The value returned by sqlite3_memory_used() includes +** any overhead added by SQLite, but not overhead added by the +** library malloc() that backs the sqlite3_malloc() implementation. +** {F17373} The sqlite3_memory_highwater() routines returns the +** maximum number of bytes that have been outstanding at any time +** since the highwater mark was last reset. +** {F17374} The byte count returned by sqlite3_memory_highwater() +** uses the same byte counting rules as sqlite3_memory_used(). {END} +** In other words, overhead added internally by SQLite is counted, +** but overhead from the underlying system malloc is not. +** {F17375} If the parameter to sqlite3_memory_highwater() is true, +** then the highwater mark is reset to the current value of +** sqlite3_memory_used() and the prior highwater mark (before the +** reset) is returned. {F17376} If the parameter to +** sqlite3_memory_highwater() is zero, then the highwater mark is +** unchanged. +*/ +sqlite3_int64 sqlite3_memory_used(void); +sqlite3_int64 sqlite3_memory_highwater(int resetFlag); + +/* +** CAPI3REF: Compile-Time Authorization Callbacks {F12500} +** +** {F12501} This routine registers a authorizer callback with a particular +** database connection, supplied in the first argument. {F12502} +** The authorizer callback is invoked as SQL statements are being compiled +** by [sqlite3_prepare()] or its variants [sqlite3_prepare_v2()], +** [sqlite3_prepare16()] and [sqlite3_prepare16_v2()]. {F12503} At various +** points during the compilation process, as logic is being created +** to perform various actions, the authorizer callback is invoked to +** see if those actions are allowed. The authorizer callback should +** return SQLITE_OK to allow the action, [SQLITE_IGNORE] to disallow the +** specific action but allow the SQL statement to continue to be +** compiled, or [SQLITE_DENY] to cause the entire SQL statement to be +** rejected with an error. {F12504} If the authorizer callback returns +** any value other than [SQLITE_IGNORE], [SQLITE_OK], or [SQLITE_DENY] +** then [sqlite3_prepare_v2()] or equivalent call that triggered +** the authorizer shall +** fail with an SQLITE_ERROR error code and an appropriate error message. {END} +** +** When the callback returns [SQLITE_OK], that means the operation +** requested is ok. {F12505} When the callback returns [SQLITE_DENY], the +** [sqlite3_prepare_v2()] or equivalent call that triggered the +** authorizer shall fail +** with an SQLITE_ERROR error code and an error message explaining that +** access is denied. {F12506} If the authorizer code (the 2nd parameter +** to the authorizer callback is anything other than [SQLITE_READ], then +** a return of [SQLITE_IGNORE] has the same effect as [SQLITE_DENY]. +** If the authorizer code is [SQLITE_READ] and the callback returns +** [SQLITE_IGNORE] then the prepared statement is constructed to +** insert a NULL value in place of the table column that would have +** been read if [SQLITE_OK] had been returned. {END} +** +** {F12510} The first parameter to the authorizer callback is a copy of +** the third parameter to the sqlite3_set_authorizer() interface. +** {F12511} The second parameter to the callback is an integer +** [SQLITE_COPY | action code] that specifies the particular action +** to be authorized. {END} The available action codes are +** [SQLITE_COPY | documented separately]. {F12512} The third through sixth +** parameters to the callback are zero-terminated strings that contain +** additional details about the action to be authorized. {END} +** +** An authorizer is used when preparing SQL statements from an untrusted +** source, to ensure that the SQL statements do not try to access data +** that they are not allowed to see, or that they do not try to +** execute malicious statements that damage the database. For +** example, an application may allow a user to enter arbitrary +** SQL queries for evaluation by a database. But the application does +** not want the user to be able to make arbitrary changes to the +** database. An authorizer could then be put in place while the +** user-entered SQL is being prepared that disallows everything +** except SELECT statements. +** +** {F12520} Only a single authorizer can be in place on a database connection +** at a time. Each call to sqlite3_set_authorizer overrides the +** previous call. {F12521} A NULL authorizer means that no authorization +** callback is invoked. {F12522} The default authorizer is NULL. {END} +** +** Note that the authorizer callback is invoked only during +** [sqlite3_prepare()] or its variants. {F12523} Authorization is not +** performed during statement evaluation in [sqlite3_step()]. {END} +*/ +int sqlite3_set_authorizer( + sqlite3*, + int (*xAuth)(void*,int,const char*,const char*,const char*,const char*), + void *pUserData +); + +/* +** CAPI3REF: Authorizer Return Codes {F12590} +** +** The [sqlite3_set_authorizer | authorizer callback function] must +** return either [SQLITE_OK] or one of these two constants in order +** to signal SQLite whether or not the action is permitted. See the +** [sqlite3_set_authorizer | authorizer documentation] for additional +** information. +*/ +#define SQLITE_DENY 1 /* Abort the SQL statement with an error */ +#define SQLITE_IGNORE 2 /* Don't allow access, but don't generate an error */ + +/* +** CAPI3REF: Authorizer Action Codes {F12550} +** +** The [sqlite3_set_authorizer()] interface registers a callback function +** that is invoked to authorizer certain SQL statement actions. {F12551} The +** second parameter to the callback is an integer code that specifies +** what action is being authorized. These are the integer action codes that +** the authorizer callback may be passed. {END} +** +** These action code values signify what kind of operation is to be +** authorized. {F12552} The 3rd and 4th parameters to the authorization +** callback function will be parameters or NULL depending on which of these +** codes is used as the second parameter. {F12553} The 5th parameter to the +** authorizer callback is the name of the database ("main", "temp", +** etc.) if applicable. {F12554} The 6th parameter to the authorizer callback +** is the name of the inner-most trigger or view that is responsible for +** the access attempt or NULL if this access attempt is directly from +** top-level SQL code. +*/ +/******************************************* 3rd ************ 4th ***********/ +#define SQLITE_CREATE_INDEX 1 /* Index Name Table Name */ +#define SQLITE_CREATE_TABLE 2 /* Table Name NULL */ +#define SQLITE_CREATE_TEMP_INDEX 3 /* Index Name Table Name */ +#define SQLITE_CREATE_TEMP_TABLE 4 /* Table Name NULL */ +#define SQLITE_CREATE_TEMP_TRIGGER 5 /* Trigger Name Table Name */ +#define SQLITE_CREATE_TEMP_VIEW 6 /* View Name NULL */ +#define SQLITE_CREATE_TRIGGER 7 /* Trigger Name Table Name */ +#define SQLITE_CREATE_VIEW 8 /* View Name NULL */ +#define SQLITE_DELETE 9 /* Table Name NULL */ +#define SQLITE_DROP_INDEX 10 /* Index Name Table Name */ +#define SQLITE_DROP_TABLE 11 /* Table Name NULL */ +#define SQLITE_DROP_TEMP_INDEX 12 /* Index Name Table Name */ +#define SQLITE_DROP_TEMP_TABLE 13 /* Table Name NULL */ +#define SQLITE_DROP_TEMP_TRIGGER 14 /* Trigger Name Table Name */ +#define SQLITE_DROP_TEMP_VIEW 15 /* View Name NULL */ +#define SQLITE_DROP_TRIGGER 16 /* Trigger Name Table Name */ +#define SQLITE_DROP_VIEW 17 /* View Name NULL */ +#define SQLITE_INSERT 18 /* Table Name NULL */ +#define SQLITE_PRAGMA 19 /* Pragma Name 1st arg or NULL */ +#define SQLITE_READ 20 /* Table Name Column Name */ +#define SQLITE_SELECT 21 /* NULL NULL */ +#define SQLITE_TRANSACTION 22 /* NULL NULL */ +#define SQLITE_UPDATE 23 /* Table Name Column Name */ +#define SQLITE_ATTACH 24 /* Filename NULL */ +#define SQLITE_DETACH 25 /* Database Name NULL */ +#define SQLITE_ALTER_TABLE 26 /* Database Name Table Name */ +#define SQLITE_REINDEX 27 /* Index Name NULL */ +#define SQLITE_ANALYZE 28 /* Table Name NULL */ +#define SQLITE_CREATE_VTABLE 29 /* Table Name Module Name */ +#define SQLITE_DROP_VTABLE 30 /* Table Name Module Name */ +#define SQLITE_FUNCTION 31 /* Function Name NULL */ +#define SQLITE_COPY 0 /* No longer used */ + +/* +** CAPI3REF: Tracing And Profiling Functions {F12280} +** +** These routines register callback functions that can be used for +** tracing and profiling the execution of SQL statements. +** +** {F12281} The callback function registered by sqlite3_trace() is invoked +** at the first [sqlite3_step()] for the evaluation of an SQL statement. +** {F12282} Only a single trace callback can be registered at a time. +** Each call to sqlite3_trace() overrides the previous. {F12283} A +** NULL callback for sqlite3_trace() disables tracing. {F12284} The +** first argument to the trace callback is a copy of the pointer which +** was the 3rd argument to sqlite3_trace. {F12285} The second argument +** to the trace callback is a zero-terminated UTF8 string containing +** the original text of the SQL statement as it was passed into +** [sqlite3_prepare_v2()] or the equivalent. {END} Note that the +** host parameter are not expanded in the SQL statement text. +** +** {F12287} The callback function registered by sqlite3_profile() is invoked +** as each SQL statement finishes. {F12288} The first parameter to the +** profile callback is a copy of the 3rd parameter to sqlite3_profile(). +** {F12289} The second parameter to the profile callback is a +** zero-terminated UTF-8 string that contains the complete text of +** the SQL statement as it was processed by [sqlite3_prepare_v2()] or +** the equivalent. {F12290} The third parameter to the profile +** callback is an estimate of the number of nanoseconds of +** wall-clock time required to run the SQL statement from start +** to finish. {END} +** +** The sqlite3_profile() API is currently considered experimental and +** is subject to change. +*/ +void *sqlite3_trace(sqlite3*, void(*xTrace)(void*,const char*), void*); +void *sqlite3_profile(sqlite3*, + void(*xProfile)(void*,const char*,sqlite3_uint64), void*); + +/* +** CAPI3REF: Query Progress Callbacks {F12910} +** +** {F12911} This routine configures a callback function - the +** progress callback - that is invoked periodically during long +** running calls to [sqlite3_exec()], [sqlite3_step()] and +** [sqlite3_get_table()]. {END} An example use for this +** interface is to keep a GUI updated during a large query. +** +** {F12912} The progress callback is invoked once for every N virtual +** machine opcodes, where N is the second argument to this function. +** {F12913} The progress callback itself is identified by the third +** argument to this function. {F12914} The fourth argument to this +** function is a void pointer passed to the progress callback +** function each time it is invoked. {END} +** +** {F12915} If a call to [sqlite3_exec()], [sqlite3_step()], or +** [sqlite3_get_table()] results in fewer than N opcodes being executed, +** then the progress callback is never invoked. {END} +** +** {F12916} Only a single progress callback function may be registered for each +** open database connection. Every call to sqlite3_progress_handler() +** overwrites the results of the previous call. {F12917} +** To remove the progress callback altogether, pass NULL as the third +** argument to this function. {END} +** +** {F12918} If the progress callback returns a result other than 0, then +** the current query is immediately terminated and any database changes +** rolled back. {F12919} +** The containing [sqlite3_exec()], [sqlite3_step()], or +** [sqlite3_get_table()] call returns SQLITE_INTERRUPT. {END} This feature +** can be used, for example, to implement the "Cancel" button on a +** progress dialog box in a GUI. +*/ +void sqlite3_progress_handler(sqlite3*, int, int(*)(void*), void*); + +/* +** CAPI3REF: Opening A New Database Connection {F12700} +** +** {F12701} These routines open an SQLite database file whose name +** is given by the filename argument. +** {F12702} The filename argument is interpreted as UTF-8 +** for [sqlite3_open()] and [sqlite3_open_v2()] and as UTF-16 +** in the native byte order for [sqlite3_open16()]. +** {F12703} An [sqlite3*] handle is returned in *ppDb, even +** if an error occurs. {F12723} (Exception: if SQLite is unable +** to allocate memory to hold the [sqlite3] object, a NULL will +** be written into *ppDb instead of a pointer to the [sqlite3] object.) +** {F12704} If the database is opened (and/or created) +** successfully, then [SQLITE_OK] is returned. {F12705} Otherwise an +** error code is returned. {F12706} The +** [sqlite3_errmsg()] or [sqlite3_errmsg16()] routines can be used to obtain +** an English language description of the error. +** +** {F12707} The default encoding for the database will be UTF-8 if +** [sqlite3_open()] or [sqlite3_open_v2()] is called and +** UTF-16 in the native byte order if [sqlite3_open16()] is used. +** +** {F12708} Whether or not an error occurs when it is opened, resources +** associated with the [sqlite3*] handle should be released by passing it +** to [sqlite3_close()] when it is no longer required. +** +** {F12709} The [sqlite3_open_v2()] interface works like [sqlite3_open()] +** except that it acccepts two additional parameters for additional control +** over the new database connection. {F12710} The flags parameter can be +** one of: +** +**
    +**
  1. [SQLITE_OPEN_READONLY] +**
  2. [SQLITE_OPEN_READWRITE] +**
  3. [SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE] +**
+** +** {F12711} The first value opens the database read-only. +** {F12712} If the database does not previously exist, an error is returned. +** {F12713} The second option opens +** the database for reading and writing if possible, or reading only if +** if the file is write protected. {F12714} In either case the database +** must already exist or an error is returned. {F12715} The third option +** opens the database for reading and writing and creates it if it does +** not already exist. {F12716} +** The third options is behavior that is always used for [sqlite3_open()] +** and [sqlite3_open16()]. +** +** {F12717} If the filename is ":memory:", then an private +** in-memory database is created for the connection. {F12718} This in-memory +** database will vanish when the database connection is closed. {END} Future +** version of SQLite might make use of additional special filenames +** that begin with the ":" character. It is recommended that +** when a database filename really does begin with +** ":" that you prefix the filename with a pathname like "./" to +** avoid ambiguity. +** +** {F12719} If the filename is an empty string, then a private temporary +** on-disk database will be created. {F12720} This private database will be +** automatically deleted as soon as the database connection is closed. +** +** {F12721} The fourth parameter to sqlite3_open_v2() is the name of the +** [sqlite3_vfs] object that defines the operating system +** interface that the new database connection should use. {F12722} If the +** fourth parameter is a NULL pointer then the default [sqlite3_vfs] +** object is used. {END} +** +** Note to windows users: The encoding used for the filename argument +** of [sqlite3_open()] and [sqlite3_open_v2()] must be UTF-8, not whatever +** codepage is currently defined. Filenames containing international +** characters must be converted to UTF-8 prior to passing them into +** [sqlite3_open()] or [sqlite3_open_v2()]. +*/ +int sqlite3_open( + const char *filename, /* Database filename (UTF-8) */ + sqlite3 **ppDb /* OUT: SQLite db handle */ +); +int sqlite3_open16( + const void *filename, /* Database filename (UTF-16) */ + sqlite3 **ppDb /* OUT: SQLite db handle */ +); +int sqlite3_open_v2( + const char *filename, /* Database filename (UTF-8) */ + sqlite3 **ppDb, /* OUT: SQLite db handle */ + int flags, /* Flags */ + const char *zVfs /* Name of VFS module to use */ +); + +/* +** CAPI3REF: Error Codes And Messages {F12800} +** +** {F12801} The sqlite3_errcode() interface returns the numeric +** [SQLITE_OK | result code] or [SQLITE_IOERR_READ | extended result code] +** for the most recent failed sqlite3_* API call associated +** with [sqlite3] handle 'db'. {U12802} If a prior API call failed but the +** most recent API call succeeded, the return value from sqlite3_errcode() +** is undefined. {END} +** +** {F12803} The sqlite3_errmsg() and sqlite3_errmsg16() return English-language +** text that describes the error, as either UTF8 or UTF16 respectively. +** {F12804} Memory to hold the error message string is managed internally. +** {U12805} The +** string may be overwritten or deallocated by subsequent calls to SQLite +** interface functions. {END} +** +** {F12806} Calls to many sqlite3_* functions set the error code and +** string returned by [sqlite3_errcode()], [sqlite3_errmsg()], and +** [sqlite3_errmsg16()] overwriting the previous values. {F12807} +** Except, calls to [sqlite3_errcode()], +** [sqlite3_errmsg()], and [sqlite3_errmsg16()] themselves do not affect the +** results of future invocations. {F12808} Calls to API routines that +** do not return an error code (example: [sqlite3_data_count()]) do not +** change the error code returned by this routine. {F12809} Interfaces that +** are not associated with a specific database connection (examples: +** [sqlite3_mprintf()] or [sqlite3_enable_shared_cache()] do not change +** the return code. {END} +** +** {F12810} Assuming no other intervening sqlite3_* API calls are made, +** the error code returned by this function is associated with the same +** error as the strings returned by [sqlite3_errmsg()] and [sqlite3_errmsg16()]. +*/ +int sqlite3_errcode(sqlite3 *db); +const char *sqlite3_errmsg(sqlite3*); +const void *sqlite3_errmsg16(sqlite3*); + +/* +** CAPI3REF: SQL Statement Object {F13000} +** +** An instance of this object represent single SQL statements. This +** object is variously known as a "prepared statement" or a +** "compiled SQL statement" or simply as a "statement". +** +** The life of a statement object goes something like this: +** +**
    +**
  1. Create the object using [sqlite3_prepare_v2()] or a related +** function. +**
  2. Bind values to host parameters using +** [sqlite3_bind_blob | sqlite3_bind_* interfaces]. +**
  3. Run the SQL by calling [sqlite3_step()] one or more times. +**
  4. Reset the statement using [sqlite3_reset()] then go back +** to step 2. Do this zero or more times. +**
  5. Destroy the object using [sqlite3_finalize()]. +**
+** +** Refer to documentation on individual methods above for additional +** information. +*/ +typedef struct sqlite3_stmt sqlite3_stmt; + +/* +** CAPI3REF: Compiling An SQL Statement {F13010} +** +** To execute an SQL query, it must first be compiled into a byte-code +** program using one of these routines. +** +** {F13011} The first argument "db" is an [sqlite3 | SQLite database handle] +** obtained from a prior call to [sqlite3_open()], [sqlite3_open_v2()] +** or [sqlite3_open16()]. {F13012} +** The second argument "zSql" is the statement to be compiled, encoded +** as either UTF-8 or UTF-16. The sqlite3_prepare() and sqlite3_prepare_v2() +** interfaces uses UTF-8 and sqlite3_prepare16() and sqlite3_prepare16_v2() +** use UTF-16. {END} +** +** {F13013} If the nByte argument is less +** than zero, then zSql is read up to the first zero terminator. +** {F13014} If nByte is non-negative, then it is the maximum number of +** bytes read from zSql. When nByte is non-negative, the +** zSql string ends at either the first '\000' or '\u0000' character or +** until the nByte-th byte, whichever comes first. {END} +** +** {F13015} *pzTail is made to point to the first byte past the end of the +** first SQL statement in zSql. These routines only compiles the first +** statement in zSql, so *pzTail is left pointing to what remains +** uncompiled. {END} +** +** {F13016} *ppStmt is left pointing to a compiled +** [sqlite3_stmt | SQL statement structure] that can be +** executed using [sqlite3_step()]. Or if there is an error, *ppStmt may be +** set to NULL. {F13017} If the input text contains no SQL (if the input +** is and empty string or a comment) then *ppStmt is set to NULL. +** {U13018} The calling procedure is responsible for deleting the +** compiled SQL statement +** using [sqlite3_finalize()] after it has finished with it. +** +** {F13019} On success, [SQLITE_OK] is returned. Otherwise an +** [SQLITE_ERROR | error code] is returned. {END} +** +** The sqlite3_prepare_v2() and sqlite3_prepare16_v2() interfaces are +** recommended for all new programs. The two older interfaces are retained +** for backwards compatibility, but their use is discouraged. +** {F13020} In the "v2" interfaces, the prepared statement +** that is returned (the [sqlite3_stmt] object) contains a copy of the +** original SQL text. {END} This causes the [sqlite3_step()] interface to +** behave a differently in two ways: +** +**
    +**
  1. {F13022} +** If the database schema changes, instead of returning [SQLITE_SCHEMA] as it +** always used to do, [sqlite3_step()] will automatically recompile the SQL +** statement and try to run it again. {F12023} If the schema has changed in +** a way that makes the statement no longer valid, [sqlite3_step()] will still +** return [SQLITE_SCHEMA]. {END} But unlike the legacy behavior, +** [SQLITE_SCHEMA] is now a fatal error. {F12024} Calling +** [sqlite3_prepare_v2()] again will not make the +** error go away. {F12025} Note: use [sqlite3_errmsg()] to find the text +** of the parsing error that results in an [SQLITE_SCHEMA] return. {END} +**
  2. +** +**
  3. +** {F13030} When an error occurs, +** [sqlite3_step()] will return one of the detailed +** [SQLITE_ERROR | result codes] or +** [SQLITE_IOERR_READ | extended result codes]. {F13031} +** The legacy behavior was that [sqlite3_step()] would only return a generic +** [SQLITE_ERROR] result code and you would have to make a second call to +** [sqlite3_reset()] in order to find the underlying cause of the problem. +** {F13032} +** With the "v2" prepare interfaces, the underlying reason for the error is +** returned immediately. {END} +**
  4. +**
+*/ +int sqlite3_prepare( + sqlite3 *db, /* Database handle */ + const char *zSql, /* SQL statement, UTF-8 encoded */ + int nByte, /* Maximum length of zSql in bytes. */ + sqlite3_stmt **ppStmt, /* OUT: Statement handle */ + const char **pzTail /* OUT: Pointer to unused portion of zSql */ +); +int sqlite3_prepare_v2( + sqlite3 *db, /* Database handle */ + const char *zSql, /* SQL statement, UTF-8 encoded */ + int nByte, /* Maximum length of zSql in bytes. */ + sqlite3_stmt **ppStmt, /* OUT: Statement handle */ + const char **pzTail /* OUT: Pointer to unused portion of zSql */ +); +int sqlite3_prepare16( + sqlite3 *db, /* Database handle */ + const void *zSql, /* SQL statement, UTF-16 encoded */ + int nByte, /* Maximum length of zSql in bytes. */ + sqlite3_stmt **ppStmt, /* OUT: Statement handle */ + const void **pzTail /* OUT: Pointer to unused portion of zSql */ +); +int sqlite3_prepare16_v2( + sqlite3 *db, /* Database handle */ + const void *zSql, /* SQL statement, UTF-16 encoded */ + int nByte, /* Maximum length of zSql in bytes. */ + sqlite3_stmt **ppStmt, /* OUT: Statement handle */ + const void **pzTail /* OUT: Pointer to unused portion of zSql */ +); + +/* +** CAPIREF: Retrieving Statement SQL {F13100} +** +** {F13101} If the compiled SQL statement passed as an argument was +** compiled using either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()], +** then this function returns a pointer to a zero-terminated string +** containing a copy of the original SQL statement. {F13102} The +** pointer is valid until the statement +** is deleted using sqlite3_finalize(). +** {F13103} The string returned by sqlite3_sql() is always UTF8 even +** if a UTF16 string was originally entered using [sqlite3_prepare16_v2()] +** or the equivalent. +** +** {F13104} If the statement was compiled using either of the legacy +** interfaces [sqlite3_prepare()] or [sqlite3_prepare16()], this +** function returns NULL. +*/ +const char *sqlite3_sql(sqlite3_stmt *pStmt); + +/* +** CAPI3REF: Dynamically Typed Value Object {F15000} +** +** {F15001} SQLite uses the sqlite3_value object to represent all values +** that are or can be stored in a database table. {END} +** SQLite uses dynamic typing for the values it stores. +** {F15002} Values stored in sqlite3_value objects can be +** be integers, floating point values, strings, BLOBs, or NULL. +*/ +typedef struct Mem sqlite3_value; + +/* +** CAPI3REF: SQL Function Context Object {F16001} +** +** The context in which an SQL function executes is stored in an +** sqlite3_context object. {F16002} A pointer to an sqlite3_context +** object is always first parameter to application-defined SQL functions. +*/ +typedef struct sqlite3_context sqlite3_context; + +/* +** CAPI3REF: Binding Values To Prepared Statements {F13500} +** +** {F13501} In the SQL strings input to [sqlite3_prepare_v2()] and its +** variants, literals may be replace by a parameter in one +** of these forms: +** +**
    +**
  • ? +**
  • ?NNN +**
  • :AAA +**
  • @AAA +**
  • $VVV +**
+** +** In the parameter forms shown above NNN is an integer literal, +** AAA is an alphanumeric identifier and VVV is a variable name according +** to the syntax rules of the TCL programming language. {END} +** The values of these parameters (also called "host parameter names") +** can be set using the sqlite3_bind_*() routines defined here. +** +** {F13502} The first argument to the sqlite3_bind_*() routines always +** is a pointer to the [sqlite3_stmt] object returned from +** [sqlite3_prepare_v2()] or its variants. {F13503} The second +** argument is the index of the parameter to be set. {F13504} The +** first parameter has an index of 1. {F13505} When the same named +** parameter is used more than once, second and subsequent +** occurrences have the same index as the first occurrence. +** {F13506} The index for named parameters can be looked up using the +** [sqlite3_bind_parameter_name()] API if desired. {F13507} The index +** for "?NNN" parameters is the value of NNN. +** {F13508} The NNN value must be between 1 and the compile-time +** parameter SQLITE_MAX_VARIABLE_NUMBER (default value: 999). {END} +** See limits.html for additional information. +** +** {F13509} The third argument is the value to bind to the parameter. {END} +** +** {F13510} In those +** routines that have a fourth argument, its value is the number of bytes +** in the parameter. To be clear: the value is the number of bytes in the +** string, not the number of characters. {F13511} The number +** of bytes does not include the zero-terminator at the end of strings. +** {F13512} +** If the fourth parameter is negative, the length of the string is +** number of bytes up to the first zero terminator. {END} +** +** {F13513} +** The fifth argument to sqlite3_bind_blob(), sqlite3_bind_text(), and +** sqlite3_bind_text16() is a destructor used to dispose of the BLOB or +** text after SQLite has finished with it. {F13514} If the fifth argument is +** the special value [SQLITE_STATIC], then the library assumes that the +** information is in static, unmanaged space and does not need to be freed. +** {F13515} If the fifth argument has the value [SQLITE_TRANSIENT], then +** SQLite makes its own private copy of the data immediately, before +** the sqlite3_bind_*() routine returns. {END} +** +** {F13520} The sqlite3_bind_zeroblob() routine binds a BLOB of length N that +** is filled with zeros. {F13521} A zeroblob uses a fixed amount of memory +** (just an integer to hold it size) while it is being processed. {END} +** Zeroblobs are intended to serve as place-holders for BLOBs whose +** content is later written using +** [sqlite3_blob_open | increment BLOB I/O] routines. {F13522} A negative +** value for the zeroblob results in a zero-length BLOB. {END} +** +** {F13530} The sqlite3_bind_*() routines must be called after +** [sqlite3_prepare_v2()] (and its variants) or [sqlite3_reset()] and +** before [sqlite3_step()]. {F13531} +** Bindings are not cleared by the [sqlite3_reset()] routine. +** {F13532} Unbound parameters are interpreted as NULL. {END} +** +** {F13540} These routines return [SQLITE_OK] on success or an error code if +** anything goes wrong. {F13541} [SQLITE_RANGE] is returned if the parameter +** index is out of range. {F13542} [SQLITE_NOMEM] is returned if malloc fails. +** {F13543} [SQLITE_MISUSE] is returned if these routines are called on a +** virtual machine that is the wrong state or which has already been finalized. +*/ +int sqlite3_bind_blob(sqlite3_stmt*, int, const void*, int n, void(*)(void*)); +int sqlite3_bind_double(sqlite3_stmt*, int, double); +int sqlite3_bind_int(sqlite3_stmt*, int, int); +int sqlite3_bind_int64(sqlite3_stmt*, int, sqlite3_int64); +int sqlite3_bind_null(sqlite3_stmt*, int); +int sqlite3_bind_text(sqlite3_stmt*, int, const char*, int n, void(*)(void*)); +int sqlite3_bind_text16(sqlite3_stmt*, int, const void*, int, void(*)(void*)); +int sqlite3_bind_value(sqlite3_stmt*, int, const sqlite3_value*); +int sqlite3_bind_zeroblob(sqlite3_stmt*, int, int n); + +/* +** CAPI3REF: Number Of Host Parameters {F13600} +** +** {F13601} Return the largest host parameter index in the precompiled +** statement given as the argument. {F13602} When the host parameters +** are of the forms like ":AAA", "$VVV", "@AAA", or "?", +** then they are assigned sequential increasing numbers beginning +** with one, so the value returned is the number of parameters. +** {F13603} However +** if the same host parameter name is used multiple times, each occurrance +** is given the same number, so the value returned in that case is the number +** of unique host parameter names. {F13604} If host parameters of the +** form "?NNN" are used (where NNN is an integer) then there might be +** gaps in the numbering and the value returned by this interface is +** the index of the host parameter with the largest index value. {END} +** +** {U13605} The prepared statement must not be [sqlite3_finalize | finalized] +** prior to this routine returning. Otherwise the results are undefined +** and probably undesirable. +*/ +int sqlite3_bind_parameter_count(sqlite3_stmt*); + +/* +** CAPI3REF: Name Of A Host Parameter {F13620} +** +** {F13621} This routine returns a pointer to the name of the n-th +** parameter in a [sqlite3_stmt | prepared statement]. {F13622} +** Host parameters of the form ":AAA" or "@AAA" or "$VVV" have a name +** which is the string ":AAA" or "@AAA" or "$VVV". +** In other words, the initial ":" or "$" or "@" +** is included as part of the name. {F13626} +** Parameters of the form "?" or "?NNN" have no name. +** +** {F13623} The first host parameter has an index of 1, not 0. +** +** {F13624} If the value n is out of range or if the n-th parameter is +** nameless, then NULL is returned. {F13625} The returned string is +** always in the UTF-8 encoding even if the named parameter was +** originally specified as UTF-16 in [sqlite3_prepare16()] or +** [sqlite3_prepare16_v2()]. +*/ +const char *sqlite3_bind_parameter_name(sqlite3_stmt*, int); + +/* +** CAPI3REF: Index Of A Parameter With A Given Name {F13640} +** +** {F13641} This routine returns the index of a host parameter with the +** given name. {F13642} The name must match exactly. {F13643} +** If no parameter with the given name is found, return 0. +** {F13644} Parameter names must be UTF8. +*/ +int sqlite3_bind_parameter_index(sqlite3_stmt*, const char *zName); + +/* +** CAPI3REF: Reset All Bindings On A Prepared Statement {F13660} +** +** {F13661} Contrary to the intuition of many, [sqlite3_reset()] does not +** reset the [sqlite3_bind_blob | bindings] on a +** [sqlite3_stmt | prepared statement]. {F13662} Use this routine to +** reset all host parameters to NULL. +*/ +int sqlite3_clear_bindings(sqlite3_stmt*); + +/* +** CAPI3REF: Number Of Columns In A Result Set {F13710} +** +** {F13711} Return the number of columns in the result set returned by the +** [sqlite3_stmt | compiled SQL statement]. {F13712} This routine returns 0 +** if pStmt is an SQL statement that does not return data (for +** example an UPDATE). +*/ +int sqlite3_column_count(sqlite3_stmt *pStmt); + +/* +** CAPI3REF: Column Names In A Result Set {F13720} +** +** {F13721} These routines return the name assigned to a particular column +** in the result set of a SELECT statement. {F13722} The sqlite3_column_name() +** interface returns a pointer to a zero-terminated UTF8 string +** and sqlite3_column_name16() returns a pointer to a zero-terminated +** UTF16 string. {F13723} The first parameter is the +** [sqlite3_stmt | prepared statement] that implements the SELECT statement. +** The second parameter is the column number. The left-most column is +** number 0. +** +** {F13724} The returned string pointer is valid until either the +** [sqlite3_stmt | prepared statement] is destroyed by [sqlite3_finalize()] +** or until the next call sqlite3_column_name() or sqlite3_column_name16() +** on the same column. +** +** {F13725} If sqlite3_malloc() fails during the processing of either routine +** (for example during a conversion from UTF-8 to UTF-16) then a +** NULL pointer is returned. +*/ +const char *sqlite3_column_name(sqlite3_stmt*, int N); +const void *sqlite3_column_name16(sqlite3_stmt*, int N); + +/* +** CAPI3REF: Source Of Data In A Query Result {F13740} +** +** {F13741} These routines provide a means to determine what column of what +** table in which database a result of a SELECT statement comes from. +** {F13742} The name of the database or table or column can be returned as +** either a UTF8 or UTF16 string. {F13743} The _database_ routines return +** the database name, the _table_ routines return the table name, and +** the origin_ routines return the column name. {F13744} +** The returned string is valid until +** the [sqlite3_stmt | prepared statement] is destroyed using +** [sqlite3_finalize()] or until the same information is requested +** again in a different encoding. +** +** {F13745} The names returned are the original un-aliased names of the +** database, table, and column. +** +** {F13746} The first argument to the following calls is a +** [sqlite3_stmt | compiled SQL statement]. +** {F13747} These functions return information about the Nth column returned by +** the statement, where N is the second function argument. +** +** {F13748} If the Nth column returned by the statement is an expression +** or subquery and is not a column value, then all of these functions +** return NULL. {F13749} Otherwise, they return the +** name of the attached database, table and column that query result +** column was extracted from. +** +** {F13750} As with all other SQLite APIs, those postfixed with "16" return +** UTF-16 encoded strings, the other functions return UTF-8. {END} +** +** These APIs are only available if the library was compiled with the +** SQLITE_ENABLE_COLUMN_METADATA preprocessor symbol defined. +** +** {U13751} +** If two or more threads call one or more of these routines against the same +** prepared statement and column at the same time then the results are +** undefined. +*/ +const char *sqlite3_column_database_name(sqlite3_stmt*,int); +const void *sqlite3_column_database_name16(sqlite3_stmt*,int); +const char *sqlite3_column_table_name(sqlite3_stmt*,int); +const void *sqlite3_column_table_name16(sqlite3_stmt*,int); +const char *sqlite3_column_origin_name(sqlite3_stmt*,int); +const void *sqlite3_column_origin_name16(sqlite3_stmt*,int); + +/* +** CAPI3REF: Declared Datatype Of A Query Result {F13760} +** +** The first parameter is a [sqlite3_stmt | compiled SQL statement]. +** {F13761} If this statement is a SELECT statement and the Nth column of the +** returned result set of that SELECT is a table column (not an +** expression or subquery) then the declared type of the table +** column is returned. {F13762} If the Nth column of the result set is an +** expression or subquery, then a NULL pointer is returned. +** {F13763} The returned string is always UTF-8 encoded. {END} +** For example, in the database schema: +** +** CREATE TABLE t1(c1 VARIANT); +** +** And the following statement compiled: +** +** SELECT c1 + 1, c1 FROM t1; +** +** Then this routine would return the string "VARIANT" for the second +** result column (i==1), and a NULL pointer for the first result column +** (i==0). +** +** SQLite uses dynamic run-time typing. So just because a column +** is declared to contain a particular type does not mean that the +** data stored in that column is of the declared type. SQLite is +** strongly typed, but the typing is dynamic not static. Type +** is associated with individual values, not with the containers +** used to hold those values. +*/ +const char *sqlite3_column_decltype(sqlite3_stmt *, int i); +const void *sqlite3_column_decltype16(sqlite3_stmt*,int); + +/* +** CAPI3REF: Evaluate An SQL Statement {F13200} +** +** After an [sqlite3_stmt | SQL statement] has been prepared with a call +** to either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()] or to one of +** the legacy interfaces [sqlite3_prepare()] or [sqlite3_prepare16()], +** then this function must be called one or more times to evaluate the +** statement. +** +** The details of the behavior of this sqlite3_step() interface depend +** on whether the statement was prepared using the newer "v2" interface +** [sqlite3_prepare_v2()] and [sqlite3_prepare16_v2()] or the older legacy +** interface [sqlite3_prepare()] and [sqlite3_prepare16()]. The use of the +** new "v2" interface is recommended for new applications but the legacy +** interface will continue to be supported. +** +** In the lagacy interface, the return value will be either [SQLITE_BUSY], +** [SQLITE_DONE], [SQLITE_ROW], [SQLITE_ERROR], or [SQLITE_MISUSE]. +** With the "v2" interface, any of the other [SQLITE_OK | result code] +** or [SQLITE_IOERR_READ | extended result code] might be returned as +** well. +** +** [SQLITE_BUSY] means that the database engine was unable to acquire the +** database locks it needs to do its job. If the statement is a COMMIT +** or occurs outside of an explicit transaction, then you can retry the +** statement. If the statement is not a COMMIT and occurs within a +** explicit transaction then you should rollback the transaction before +** continuing. +** +** [SQLITE_DONE] means that the statement has finished executing +** successfully. sqlite3_step() should not be called again on this virtual +** machine without first calling [sqlite3_reset()] to reset the virtual +** machine back to its initial state. +** +** If the SQL statement being executed returns any data, then +** [SQLITE_ROW] is returned each time a new row of data is ready +** for processing by the caller. The values may be accessed using +** the [sqlite3_column_int | column access functions]. +** sqlite3_step() is called again to retrieve the next row of data. +** +** [SQLITE_ERROR] means that a run-time error (such as a constraint +** violation) has occurred. sqlite3_step() should not be called again on +** the VM. More information may be found by calling [sqlite3_errmsg()]. +** With the legacy interface, a more specific error code (example: +** [SQLITE_INTERRUPT], [SQLITE_SCHEMA], [SQLITE_CORRUPT], and so forth) +** can be obtained by calling [sqlite3_reset()] on the +** [sqlite3_stmt | prepared statement]. In the "v2" interface, +** the more specific error code is returned directly by sqlite3_step(). +** +** [SQLITE_MISUSE] means that the this routine was called inappropriately. +** Perhaps it was called on a [sqlite3_stmt | prepared statement] that has +** already been [sqlite3_finalize | finalized] or on one that had +** previously returned [SQLITE_ERROR] or [SQLITE_DONE]. Or it could +** be the case that the same database connection is being used by two or +** more threads at the same moment in time. +** +** Goofy Interface Alert: +** In the legacy interface, +** the sqlite3_step() API always returns a generic error code, +** [SQLITE_ERROR], following any error other than [SQLITE_BUSY] +** and [SQLITE_MISUSE]. You must call [sqlite3_reset()] or +** [sqlite3_finalize()] in order to find one of the specific +** [SQLITE_ERROR | result codes] that better describes the error. +** We admit that this is a goofy design. The problem has been fixed +** with the "v2" interface. If you prepare all of your SQL statements +** using either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()] instead +** of the legacy [sqlite3_prepare()] and [sqlite3_prepare16()], then the +** more specific [SQLITE_ERROR | result codes] are returned directly +** by sqlite3_step(). The use of the "v2" interface is recommended. +*/ +int sqlite3_step(sqlite3_stmt*); + +/* +** CAPI3REF: Number of columns in a result set {F13770} +** +** Return the number of values in the current row of the result set. +** +** {F13771} After a call to [sqlite3_step()] that returns [SQLITE_ROW], +** this routine +** will return the same value as the [sqlite3_column_count()] function. +** {F13772} +** After [sqlite3_step()] has returned an [SQLITE_DONE], [SQLITE_BUSY], or +** a [SQLITE_ERROR | error code], or before [sqlite3_step()] has been +** called on the [sqlite3_stmt | prepared statement] for the first time, +** this routine returns zero. +*/ +int sqlite3_data_count(sqlite3_stmt *pStmt); + +/* +** CAPI3REF: Fundamental Datatypes {F10265} +** +** {F10266}Every value in SQLite has one of five fundamental datatypes: +** +**
    +**
  • 64-bit signed integer +**
  • 64-bit IEEE floating point number +**
  • string +**
  • BLOB +**
  • NULL +**
{END} +** +** These constants are codes for each of those types. +** +** Note that the SQLITE_TEXT constant was also used in SQLite version 2 +** for a completely different meaning. Software that links against both +** SQLite version 2 and SQLite version 3 should use SQLITE3_TEXT not +** SQLITE_TEXT. +*/ +#define SQLITE_INTEGER 1 +#define SQLITE_FLOAT 2 +#define SQLITE_BLOB 4 +#define SQLITE_NULL 5 +#ifdef SQLITE_TEXT +# undef SQLITE_TEXT +#else +# define SQLITE_TEXT 3 +#endif +#define SQLITE3_TEXT 3 + +/* +** CAPI3REF: Results Values From A Query {F13800} +** +** These routines return information about +** a single column of the current result row of a query. In every +** case the first argument is a pointer to the +** [sqlite3_stmt | SQL statement] that is being +** evaluated (the [sqlite3_stmt*] that was returned from +** [sqlite3_prepare_v2()] or one of its variants) and +** the second argument is the index of the column for which information +** should be returned. The left-most column of the result set +** has an index of 0. +** +** If the SQL statement is not currently point to a valid row, or if the +** the column index is out of range, the result is undefined. +** These routines may only be called when the most recent call to +** [sqlite3_step()] has returned [SQLITE_ROW] and neither +** [sqlite3_reset()] nor [sqlite3_finalize()] has been call subsequently. +** If any of these routines are called after [sqlite3_reset()] or +** [sqlite3_finalize()] or after [sqlite3_step()] has returned +** something other than [SQLITE_ROW], the results are undefined. +** If [sqlite3_step()] or [sqlite3_reset()] or [sqlite3_finalize()] +** are called from a different thread while any of these routines +** are pending, then the results are undefined. +** +** The sqlite3_column_type() routine returns +** [SQLITE_INTEGER | datatype code] for the initial data type +** of the result column. The returned value is one of [SQLITE_INTEGER], +** [SQLITE_FLOAT], [SQLITE_TEXT], [SQLITE_BLOB], or [SQLITE_NULL]. The value +** returned by sqlite3_column_type() is only meaningful if no type +** conversions have occurred as described below. After a type conversion, +** the value returned by sqlite3_column_type() is undefined. Future +** versions of SQLite may change the behavior of sqlite3_column_type() +** following a type conversion. +** +** If the result is a BLOB or UTF-8 string then the sqlite3_column_bytes() +** routine returns the number of bytes in that BLOB or string. +** If the result is a UTF-16 string, then sqlite3_column_bytes() converts +** the string to UTF-8 and then returns the number of bytes. +** If the result is a numeric value then sqlite3_column_bytes() uses +** [sqlite3_snprintf()] to convert that value to a UTF-8 string and returns +** the number of bytes in that string. +** The value returned does not include the zero terminator at the end +** of the string. For clarity: the value returned is the number of +** bytes in the string, not the number of characters. +** +** Strings returned by sqlite3_column_text() and sqlite3_column_text16(), +** even zero-length strings, are always zero terminated. The return +** value from sqlite3_column_blob() for a zero-length blob is an arbitrary +** pointer, possibly even a NULL pointer. +** +** The sqlite3_column_bytes16() routine is similar to sqlite3_column_bytes() +** but leaves the result in UTF-16 instead of UTF-8. +** The zero terminator is not included in this count. +** +** These routines attempt to convert the value where appropriate. For +** example, if the internal representation is FLOAT and a text result +** is requested, [sqlite3_snprintf()] is used internally to do the conversion +** automatically. The following table details the conversions that +** are applied: +** +**
+** +**
Internal
Type
Requested
Type
Conversion +** +**
NULL INTEGER Result is 0 +**
NULL FLOAT Result is 0.0 +**
NULL TEXT Result is NULL pointer +**
NULL BLOB Result is NULL pointer +**
INTEGER FLOAT Convert from integer to float +**
INTEGER TEXT ASCII rendering of the integer +**
INTEGER BLOB Same as for INTEGER->TEXT +**
FLOAT INTEGER Convert from float to integer +**
FLOAT TEXT ASCII rendering of the float +**
FLOAT BLOB Same as FLOAT->TEXT +**
TEXT INTEGER Use atoi() +**
TEXT FLOAT Use atof() +**
TEXT BLOB No change +**
BLOB INTEGER Convert to TEXT then use atoi() +**
BLOB FLOAT Convert to TEXT then use atof() +**
BLOB TEXT Add a zero terminator if needed +**
+**
+** +** The table above makes reference to standard C library functions atoi() +** and atof(). SQLite does not really use these functions. It has its +** on equavalent internal routines. The atoi() and atof() names are +** used in the table for brevity and because they are familiar to most +** C programmers. +** +** Note that when type conversions occur, pointers returned by prior +** calls to sqlite3_column_blob(), sqlite3_column_text(), and/or +** sqlite3_column_text16() may be invalidated. +** Type conversions and pointer invalidations might occur +** in the following cases: +** +**
    +**
  • The initial content is a BLOB and sqlite3_column_text() +** or sqlite3_column_text16() is called. A zero-terminator might +** need to be added to the string.

  • +** +**
  • The initial content is UTF-8 text and sqlite3_column_bytes16() or +** sqlite3_column_text16() is called. The content must be converted +** to UTF-16.

  • +** +**
  • The initial content is UTF-16 text and sqlite3_column_bytes() or +** sqlite3_column_text() is called. The content must be converted +** to UTF-8.

  • +**
+** +** Conversions between UTF-16be and UTF-16le are always done in place and do +** not invalidate a prior pointer, though of course the content of the buffer +** that the prior pointer points to will have been modified. Other kinds +** of conversion are done in place when it is possible, but sometime it is +** not possible and in those cases prior pointers are invalidated. +** +** The safest and easiest to remember policy is to invoke these routines +** in one of the following ways: +** +**
    +**
  • sqlite3_column_text() followed by sqlite3_column_bytes()
  • +**
  • sqlite3_column_blob() followed by sqlite3_column_bytes()
  • +**
  • sqlite3_column_text16() followed by sqlite3_column_bytes16()
  • +**
+** +** In other words, you should call sqlite3_column_text(), sqlite3_column_blob(), +** or sqlite3_column_text16() first to force the result into the desired +** format, then invoke sqlite3_column_bytes() or sqlite3_column_bytes16() to +** find the size of the result. Do not mix call to sqlite3_column_text() or +** sqlite3_column_blob() with calls to sqlite3_column_bytes16(). And do not +** mix calls to sqlite3_column_text16() with calls to sqlite3_column_bytes(). +** +** The pointers returned are valid until a type conversion occurs as +** described above, or until [sqlite3_step()] or [sqlite3_reset()] or +** [sqlite3_finalize()] is called. The memory space used to hold strings +** and blobs is freed automatically. Do not pass the pointers returned +** [sqlite3_column_blob()], [sqlite3_column_text()], etc. into +** [sqlite3_free()]. +** +** If a memory allocation error occurs during the evaluation of any +** of these routines, a default value is returned. The default value +** is either the integer 0, the floating point number 0.0, or a NULL +** pointer. Subsequent calls to [sqlite3_errcode()] will return +** [SQLITE_NOMEM]. +*/ +const void *sqlite3_column_blob(sqlite3_stmt*, int iCol); +int sqlite3_column_bytes(sqlite3_stmt*, int iCol); +int sqlite3_column_bytes16(sqlite3_stmt*, int iCol); +double sqlite3_column_double(sqlite3_stmt*, int iCol); +int sqlite3_column_int(sqlite3_stmt*, int iCol); +sqlite3_int64 sqlite3_column_int64(sqlite3_stmt*, int iCol); +const unsigned char *sqlite3_column_text(sqlite3_stmt*, int iCol); +const void *sqlite3_column_text16(sqlite3_stmt*, int iCol); +int sqlite3_column_type(sqlite3_stmt*, int iCol); +sqlite3_value *sqlite3_column_value(sqlite3_stmt*, int iCol); + +/* +** CAPI3REF: Destroy A Prepared Statement Object {F13300} +** +** The sqlite3_finalize() function is called to delete a +** [sqlite3_stmt | compiled SQL statement]. If the statement was +** executed successfully, or not executed at all, then SQLITE_OK is returned. +** If execution of the statement failed then an +** [SQLITE_ERROR | error code] or [SQLITE_IOERR_READ | extended error code] +** is returned. +** +** This routine can be called at any point during the execution of the +** [sqlite3_stmt | virtual machine]. If the virtual machine has not +** completed execution when this routine is called, that is like +** encountering an error or an interrupt. (See [sqlite3_interrupt()].) +** Incomplete updates may be rolled back and transactions cancelled, +** depending on the circumstances, and the +** [SQLITE_ERROR | result code] returned will be [SQLITE_ABORT]. +*/ +int sqlite3_finalize(sqlite3_stmt *pStmt); + +/* +** CAPI3REF: Reset A Prepared Statement Object {F13330} +** +** The sqlite3_reset() function is called to reset a +** [sqlite3_stmt | compiled SQL statement] object. +** back to its initial state, ready to be re-executed. +** Any SQL statement variables that had values bound to them using +** the [sqlite3_bind_blob | sqlite3_bind_*() API] retain their values. +** Use [sqlite3_clear_bindings()] to reset the bindings. +*/ +int sqlite3_reset(sqlite3_stmt *pStmt); + +/* +** CAPI3REF: Create Or Redefine SQL Functions {F16100} +** +** The following two functions are used to add SQL functions or aggregates +** or to redefine the behavior of existing SQL functions or aggregates. The +** difference only between the two is that the second parameter, the +** name of the (scalar) function or aggregate, is encoded in UTF-8 for +** sqlite3_create_function() and UTF-16 for sqlite3_create_function16(). +** +** The first argument is the [sqlite3 | database handle] that holds the +** SQL function or aggregate is to be added or redefined. If a single +** program uses more than one database handle internally, then SQL +** functions or aggregates must be added individually to each database +** handle with which they will be used. +** +** The second parameter is the name of the SQL function to be created +** or redefined. +** The length of the name is limited to 255 bytes, exclusive of the +** zero-terminator. Note that the name length limit is in bytes, not +** characters. Any attempt to create a function with a longer name +** will result in an SQLITE_ERROR error. +** +** The third parameter is the number of arguments that the SQL function or +** aggregate takes. If this parameter is negative, then the SQL function or +** aggregate may take any number of arguments. +** +** The fourth parameter, eTextRep, specifies what +** [SQLITE_UTF8 | text encoding] this SQL function prefers for +** its parameters. Any SQL function implementation should be able to work +** work with UTF-8, UTF-16le, or UTF-16be. But some implementations may be +** more efficient with one encoding than another. It is allowed to +** invoke sqlite3_create_function() or sqlite3_create_function16() multiple +** times with the same function but with different values of eTextRep. +** When multiple implementations of the same function are available, SQLite +** will pick the one that involves the least amount of data conversion. +** If there is only a single implementation which does not care what +** text encoding is used, then the fourth argument should be +** [SQLITE_ANY]. +** +** The fifth parameter is an arbitrary pointer. The implementation +** of the function can gain access to this pointer using +** [sqlite3_user_data()]. +** +** The seventh, eighth and ninth parameters, xFunc, xStep and xFinal, are +** pointers to C-language functions that implement the SQL +** function or aggregate. A scalar SQL function requires an implementation of +** the xFunc callback only, NULL pointers should be passed as the xStep +** and xFinal parameters. An aggregate SQL function requires an implementation +** of xStep and xFinal and NULL should be passed for xFunc. To delete an +** existing SQL function or aggregate, pass NULL for all three function +** callback. +** +** It is permitted to register multiple implementations of the same +** functions with the same name but with either differing numbers of +** arguments or differing perferred text encodings. SQLite will use +** the implementation most closely matches the way in which the +** SQL function is used. +*/ +int sqlite3_create_function( + sqlite3 *, + const char *zFunctionName, + int nArg, + int eTextRep, + void*, + void (*xFunc)(sqlite3_context*,int,sqlite3_value**), + void (*xStep)(sqlite3_context*,int,sqlite3_value**), + void (*xFinal)(sqlite3_context*) +); +int sqlite3_create_function16( + sqlite3*, + const void *zFunctionName, + int nArg, + int eTextRep, + void*, + void (*xFunc)(sqlite3_context*,int,sqlite3_value**), + void (*xStep)(sqlite3_context*,int,sqlite3_value**), + void (*xFinal)(sqlite3_context*) +); + +/* +** CAPI3REF: Text Encodings {F10267} +** +** These constant define integer codes that represent the various +** text encodings supported by SQLite. +*/ +#define SQLITE_UTF8 1 +#define SQLITE_UTF16LE 2 +#define SQLITE_UTF16BE 3 +#define SQLITE_UTF16 4 /* Use native byte order */ +#define SQLITE_ANY 5 /* sqlite3_create_function only */ +#define SQLITE_UTF16_ALIGNED 8 /* sqlite3_create_collation only */ + +/* +** CAPI3REF: Obsolete Functions +** +** These functions are all now obsolete. In order to maintain +** backwards compatibility with older code, we continue to support +** these functions. However, new development projects should avoid +** the use of these functions. To help encourage people to avoid +** using these functions, we are not going to tell you want they do. +*/ +int sqlite3_aggregate_count(sqlite3_context*); +int sqlite3_expired(sqlite3_stmt*); +int sqlite3_transfer_bindings(sqlite3_stmt*, sqlite3_stmt*); +int sqlite3_global_recover(void); +void sqlite3_thread_cleanup(void); +int sqlite3_memory_alarm(void(*)(void*,sqlite3_int64,int),void*,sqlite3_int64); + +/* +** CAPI3REF: Obtaining SQL Function Parameter Values {F15100} +** +** The C-language implementation of SQL functions and aggregates uses +** this set of interface routines to access the parameter values on +** the function or aggregate. +** +** The xFunc (for scalar functions) or xStep (for aggregates) parameters +** to [sqlite3_create_function()] and [sqlite3_create_function16()] +** define callbacks that implement the SQL functions and aggregates. +** The 4th parameter to these callbacks is an array of pointers to +** [sqlite3_value] objects. There is one [sqlite3_value] object for +** each parameter to the SQL function. These routines are used to +** extract values from the [sqlite3_value] objects. +** +** These routines work just like the corresponding +** [sqlite3_column_blob | sqlite3_column_* routines] except that +** these routines take a single [sqlite3_value*] pointer instead +** of an [sqlite3_stmt*] pointer and an integer column number. +** +** The sqlite3_value_text16() interface extracts a UTF16 string +** in the native byte-order of the host machine. The +** sqlite3_value_text16be() and sqlite3_value_text16le() interfaces +** extract UTF16 strings as big-endian and little-endian respectively. +** +** The sqlite3_value_numeric_type() interface attempts to apply +** numeric affinity to the value. This means that an attempt is +** made to convert the value to an integer or floating point. If +** such a conversion is possible without loss of information (in other +** words if the value is a string that looks like a number) +** then the conversion is done. Otherwise no conversion occurs. The +** [SQLITE_INTEGER | datatype] after conversion is returned. +** +** Please pay particular attention to the fact that the pointer that +** is returned from [sqlite3_value_blob()], [sqlite3_value_text()], or +** [sqlite3_value_text16()] can be invalidated by a subsequent call to +** [sqlite3_value_bytes()], [sqlite3_value_bytes16()], [sqlite3_value_text()], +** or [sqlite3_value_text16()]. +** +** These routines must be called from the same thread as +** the SQL function that supplied the sqlite3_value* parameters. +** Or, if the sqlite3_value* argument comes from the [sqlite3_column_value()] +** interface, then these routines should be called from the same thread +** that ran [sqlite3_column_value()]. +** +*/ +const void *sqlite3_value_blob(sqlite3_value*); +int sqlite3_value_bytes(sqlite3_value*); +int sqlite3_value_bytes16(sqlite3_value*); +double sqlite3_value_double(sqlite3_value*); +int sqlite3_value_int(sqlite3_value*); +sqlite3_int64 sqlite3_value_int64(sqlite3_value*); +const unsigned char *sqlite3_value_text(sqlite3_value*); +const void *sqlite3_value_text16(sqlite3_value*); +const void *sqlite3_value_text16le(sqlite3_value*); +const void *sqlite3_value_text16be(sqlite3_value*); +int sqlite3_value_type(sqlite3_value*); +int sqlite3_value_numeric_type(sqlite3_value*); + +/* +** CAPI3REF: Obtain Aggregate Function Context {F16210} +** +** The implementation of aggregate SQL functions use this routine to allocate +** a structure for storing their state. +** {F16211} The first time the sqlite3_aggregate_context() routine is +** is called for a particular aggregate, SQLite allocates nBytes of memory +** zeros that memory, and returns a pointer to it. +** {F16212} On second and subsequent calls to sqlite3_aggregate_context() +** for the same aggregate function index, the same buffer is returned. {END} +** The implementation +** of the aggregate can use the returned buffer to accumulate data. +** +** {F16213} SQLite automatically frees the allocated buffer when the aggregate +** query concludes. {END} +** +** The first parameter should be a copy of the +** [sqlite3_context | SQL function context] that is the first +** parameter to the callback routine that implements the aggregate +** function. +** +** This routine must be called from the same thread in which +** the aggregate SQL function is running. +*/ +void *sqlite3_aggregate_context(sqlite3_context*, int nBytes); + +/* +** CAPI3REF: User Data For Functions {F16240} +** +** {F16241} The sqlite3_user_data() interface returns a copy of +** the pointer that was the pUserData parameter (the 5th parameter) +** of the the [sqlite3_create_function()] +** and [sqlite3_create_function16()] routines that originally +** registered the application defined function. {END} +** +** {U16243} This routine must be called from the same thread in which +** the application-defined function is running. +*/ +void *sqlite3_user_data(sqlite3_context*); + +/* +** CAPI3REF: Function Auxiliary Data {F16270} +** +** The following two functions may be used by scalar SQL functions to +** associate meta-data with argument values. If the same value is passed to +** multiple invocations of the same SQL function during query execution, under +** some circumstances the associated meta-data may be preserved. This may +** be used, for example, to add a regular-expression matching scalar +** function. The compiled version of the regular expression is stored as +** meta-data associated with the SQL value passed as the regular expression +** pattern. The compiled regular expression can be reused on multiple +** invocations of the same function so that the original pattern string +** does not need to be recompiled on each invocation. +** +** {F16271} +** The sqlite3_get_auxdata() interface returns a pointer to the meta-data +** associated by the sqlite3_set_auxdata() function with the Nth argument +** value to the application-defined function. +** {F16272} If no meta-data has been ever been set for the Nth +** argument of the function, or if the cooresponding function parameter +** has changed since the meta-data was set, then sqlite3_get_auxdata() +** returns a NULL pointer. +** +** {F16275} The sqlite3_set_auxdata() interface saves the meta-data +** pointed to by its 3rd parameter as the meta-data for the N-th +** argument of the application-defined function. {END} Subsequent +** calls to sqlite3_get_auxdata() might return this data, if it has +** not been destroyed. +** {F16277} If it is not NULL, SQLite will invoke the destructor +** function given by the 4th parameter to sqlite3_set_auxdata() on +** the meta-data when the corresponding function parameter changes +** or when the SQL statement completes, whichever comes first. {END} +** +** In practice, meta-data is preserved between function calls for +** expressions that are constant at compile time. This includes literal +** values and SQL variables. +** +** These routines must be called from the same thread in which +** the SQL function is running. +*/ +void *sqlite3_get_auxdata(sqlite3_context*, int N); +void sqlite3_set_auxdata(sqlite3_context*, int N, void*, void (*)(void*)); + + +/* +** CAPI3REF: Constants Defining Special Destructor Behavior {F10280} +** +** These are special value for the destructor that is passed in as the +** final argument to routines like [sqlite3_result_blob()]. If the destructor +** argument is SQLITE_STATIC, it means that the content pointer is constant +** and will never change. It does not need to be destroyed. The +** SQLITE_TRANSIENT value means that the content will likely change in +** the near future and that SQLite should make its own private copy of +** the content before returning. +** +** The typedef is necessary to work around problems in certain +** C++ compilers. See ticket #2191. +*/ +typedef void (*sqlite3_destructor_type)(void*); +#define SQLITE_STATIC ((sqlite3_destructor_type)0) +#define SQLITE_TRANSIENT ((sqlite3_destructor_type)-1) + +/* +** CAPI3REF: Setting The Result Of An SQL Function {F16400} +** +** These routines are used by the xFunc or xFinal callbacks that +** implement SQL functions and aggregates. See +** [sqlite3_create_function()] and [sqlite3_create_function16()] +** for additional information. +** +** These functions work very much like the +** [sqlite3_bind_blob | sqlite3_bind_*] family of functions used +** to bind values to host parameters in prepared statements. +** Refer to the +** [sqlite3_bind_blob | sqlite3_bind_* documentation] for +** additional information. +** +** {F16402} The sqlite3_result_blob() interface sets the result from +** an application defined function to be the BLOB whose content is pointed +** to by the second parameter and which is N bytes long where N is the +** third parameter. +** {F16403} The sqlite3_result_zeroblob() inerfaces set the result of +** the application defined function to be a BLOB containing all zero +** bytes and N bytes in size, where N is the value of the 2nd parameter. +** +** {F16407} The sqlite3_result_double() interface sets the result from +** an application defined function to be a floating point value specified +** by its 2nd argument. +** +** {F16409} The sqlite3_result_error() and sqlite3_result_error16() functions +** cause the implemented SQL function to throw an exception. +** {F16411} SQLite uses the string pointed to by the +** 2nd parameter of sqlite3_result_error() or sqlite3_result_error16() +** as the text of an error message. {F16412} SQLite interprets the error +** message string from sqlite3_result_error() as UTF8. {F16413} SQLite +** interprets the string from sqlite3_result_error16() as UTF16 in native +** byte order. {F16414} If the third parameter to sqlite3_result_error() +** or sqlite3_result_error16() is negative then SQLite takes as the error +** message all text up through the first zero character. +** {F16415} If the third parameter to sqlite3_result_error() or +** sqlite3_result_error16() is non-negative then SQLite takes that many +** bytes (not characters) from the 2nd parameter as the error message. +** {F16417} The sqlite3_result_error() and sqlite3_result_error16() +** routines make a copy private copy of the error message text before +** they return. {END} Hence, the calling function can deallocate or +** modify the text after they return without harm. +** +** {F16421} The sqlite3_result_toobig() interface causes SQLite +** to throw an error indicating that a string or BLOB is to long +** to represent. {F16422} The sqlite3_result_nomem() interface +** causes SQLite to throw an exception indicating that the a +** memory allocation failed. +** +** {F16431} The sqlite3_result_int() interface sets the return value +** of the application-defined function to be the 32-bit signed integer +** value given in the 2nd argument. +** {F16432} The sqlite3_result_int64() interface sets the return value +** of the application-defined function to be the 64-bit signed integer +** value given in the 2nd argument. +** +** {F16437} The sqlite3_result_null() interface sets the return value +** of the application-defined function to be NULL. +** +** {F16441} The sqlite3_result_text(), sqlite3_result_text16(), +** sqlite3_result_text16le(), and sqlite3_result_text16be() interfaces +** set the return value of the application-defined function to be +** a text string which is represented as UTF-8, UTF-16 native byte order, +** UTF-16 little endian, or UTF-16 big endian, respectively. +** {F16442} SQLite takes the text result from the application from +** the 2nd parameter of the sqlite3_result_text* interfaces. +** {F16444} If the 3rd parameter to the sqlite3_result_text* interfaces +** is negative, then SQLite takes result text from the 2nd parameter +** through the first zero character. +** {F16447} If the 3rd parameter to the sqlite3_result_text* interfaces +** is non-negative, then as many bytes (not characters) of the text +** pointed to by the 2nd parameter are taken as the application-defined +** function result. +** {F16451} If the 4th parameter to the sqlite3_result_text* interfaces +** or sqlite3_result_blob is a non-NULL pointer, then SQLite calls that +** function as the destructor on the text or blob result when it has +** finished using that result. +** {F16453} If the 4th parameter to the sqlite3_result_text* interfaces +** or sqlite3_result_blob is the special constant SQLITE_STATIC, then +** SQLite assumes that the text or blob result is constant space and +** does not copy the space or call a destructor when it has +** finished using that result. +** {F16454} If the 4th parameter to the sqlite3_result_text* interfaces +** or sqlite3_result_blob is the special constant SQLITE_TRANSIENT +** then SQLite makes a copy of the result into space obtained from +** from [sqlite3_malloc()] before it returns. +** +** {F16461} The sqlite3_result_value() interface sets the result of +** the application-defined function to be a copy the [sqlite3_value] +** object specified by the 2nd parameter. {F16463} The +** sqlite3_result_value() interface makes a copy of the [sqlite3_value] +** so that [sqlite3_value] specified in the parameter may change or +** be deallocated after sqlite3_result_value() returns without harm. +** +** {U16491} These routines are called from within the different thread +** than the one containing the application-defined function that recieved +** the [sqlite3_context] pointer, the results are undefined. +*/ +void sqlite3_result_blob(sqlite3_context*, const void*, int, void(*)(void*)); +void sqlite3_result_double(sqlite3_context*, double); +void sqlite3_result_error(sqlite3_context*, const char*, int); +void sqlite3_result_error16(sqlite3_context*, const void*, int); +void sqlite3_result_error_toobig(sqlite3_context*); +void sqlite3_result_error_nomem(sqlite3_context*); +void sqlite3_result_int(sqlite3_context*, int); +void sqlite3_result_int64(sqlite3_context*, sqlite3_int64); +void sqlite3_result_null(sqlite3_context*); +void sqlite3_result_text(sqlite3_context*, const char*, int, void(*)(void*)); +void sqlite3_result_text16(sqlite3_context*, const void*, int, void(*)(void*)); +void sqlite3_result_text16le(sqlite3_context*, const void*, int,void(*)(void*)); +void sqlite3_result_text16be(sqlite3_context*, const void*, int,void(*)(void*)); +void sqlite3_result_value(sqlite3_context*, sqlite3_value*); +void sqlite3_result_zeroblob(sqlite3_context*, int n); + +/* +** CAPI3REF: Define New Collating Sequences {F16600} +** +** {F16601} +** These functions are used to add new collation sequences to the +** [sqlite3*] handle specified as the first argument. +** +** {F16602} +** The name of the new collation sequence is specified as a UTF-8 string +** for sqlite3_create_collation() and sqlite3_create_collation_v2() +** and a UTF-16 string for sqlite3_create_collation16(). {F16603} In all cases +** the name is passed as the second function argument. +** +** {F16604} +** The third argument may be one of the constants [SQLITE_UTF8], +** [SQLITE_UTF16LE] or [SQLITE_UTF16BE], indicating that the user-supplied +** routine expects to be passed pointers to strings encoded using UTF-8, +** UTF-16 little-endian or UTF-16 big-endian respectively. {F16605} The +** third argument might also be [SQLITE_UTF16_ALIGNED] to indicate that +** the routine expects pointers to 16-bit word aligned strings +** of UTF16 in the native byte order of the host computer. +** +** {F16607} +** A pointer to the user supplied routine must be passed as the fifth +** argument. {F16609} If it is NULL, this is the same as deleting the collation +** sequence (so that SQLite cannot call it anymore). +** {F16611} Each time the application +** supplied function is invoked, it is passed a copy of the void* passed as +** the fourth argument to sqlite3_create_collation() or +** sqlite3_create_collation16() as its first parameter. +** +** {F16612} +** The remaining arguments to the application-supplied routine are two strings, +** each represented by a [length, data] pair and encoded in the encoding +** that was passed as the third argument when the collation sequence was +** registered. {END} The application defined collation routine should +** return negative, zero or positive if +** the first string is less than, equal to, or greater than the second +** string. i.e. (STRING1 - STRING2). +** +** {F16615} +** The sqlite3_create_collation_v2() works like sqlite3_create_collation() +** excapt that it takes an extra argument which is a destructor for +** the collation. {F16617} The destructor is called when the collation is +** destroyed and is passed a copy of the fourth parameter void* pointer +** of the sqlite3_create_collation_v2(). +** {F16618} Collations are destroyed when +** they are overridden by later calls to the collation creation functions +** or when the [sqlite3*] database handle is closed using [sqlite3_close()]. +*/ +int sqlite3_create_collation( + sqlite3*, + const char *zName, + int eTextRep, + void*, + int(*xCompare)(void*,int,const void*,int,const void*) +); +int sqlite3_create_collation_v2( + sqlite3*, + const char *zName, + int eTextRep, + void*, + int(*xCompare)(void*,int,const void*,int,const void*), + void(*xDestroy)(void*) +); +int sqlite3_create_collation16( + sqlite3*, + const char *zName, + int eTextRep, + void*, + int(*xCompare)(void*,int,const void*,int,const void*) +); + +/* +** CAPI3REF: Collation Needed Callbacks {F16700} +** +** {F16701} +** To avoid having to register all collation sequences before a database +** can be used, a single callback function may be registered with the +** database handle to be called whenever an undefined collation sequence is +** required. +** +** {F16702} +** If the function is registered using the sqlite3_collation_needed() API, +** then it is passed the names of undefined collation sequences as strings +** encoded in UTF-8. {F16703} If sqlite3_collation_needed16() is used, the names +** are passed as UTF-16 in machine native byte order. {F16704} A call to either +** function replaces any existing callback. +** +** {F16705} When the callback is invoked, the first argument passed is a copy +** of the second argument to sqlite3_collation_needed() or +** sqlite3_collation_needed16(). {F16706} The second argument is the database +** handle. {F16707} The third argument is one of [SQLITE_UTF8], +** [SQLITE_UTF16BE], or [SQLITE_UTF16LE], indicating the most +** desirable form of the collation sequence function required. +** {F16708} The fourth parameter is the name of the +** required collation sequence. {END} +** +** The callback function should register the desired collation using +** [sqlite3_create_collation()], [sqlite3_create_collation16()], or +** [sqlite3_create_collation_v2()]. +*/ +int sqlite3_collation_needed( + sqlite3*, + void*, + void(*)(void*,sqlite3*,int eTextRep,const char*) +); +int sqlite3_collation_needed16( + sqlite3*, + void*, + void(*)(void*,sqlite3*,int eTextRep,const void*) +); + +/* +** Specify the key for an encrypted database. This routine should be +** called right after sqlite3_open(). +** +** The code to implement this API is not available in the public release +** of SQLite. +*/ +int sqlite3_key( + sqlite3 *db, /* Database to be rekeyed */ + const void *pKey, int nKey /* The key */ +); + +/* +** Change the key on an open database. If the current database is not +** encrypted, this routine will encrypt it. If pNew==0 or nNew==0, the +** database is decrypted. +** +** The code to implement this API is not available in the public release +** of SQLite. +*/ +int sqlite3_rekey( + sqlite3 *db, /* Database to be rekeyed */ + const void *pKey, int nKey /* The new key */ +); + +/* +** CAPI3REF: Suspend Execution For A Short Time {F10530} +** +** {F10531} The sqlite3_sleep() function +** causes the current thread to suspend execution +** for at least a number of milliseconds specified in its parameter. +** +** {F10532} If the operating system does not support sleep requests with +** millisecond time resolution, then the time will be rounded up to +** the nearest second. {F10533} The number of milliseconds of sleep actually +** requested from the operating system is returned. +** +** {F10534} SQLite implements this interface by calling the xSleep() +** method of the default [sqlite3_vfs] object. {END} +*/ +int sqlite3_sleep(int); + +/* +** CAPI3REF: Name Of The Folder Holding Temporary Files {F10310} +** +** If this global variable is made to point to a string which is +** the name of a folder (a.ka. directory), then all temporary files +** created by SQLite will be placed in that directory. If this variable +** is NULL pointer, then SQLite does a search for an appropriate temporary +** file directory. +** +** It is not safe to modify this variable once a database connection +** has been opened. It is intended that this variable be set once +** as part of process initialization and before any SQLite interface +** routines have been call and remain unchanged thereafter. +*/ +SQLITE_EXTERN char *sqlite3_temp_directory; + +/* +** CAPI3REF: Test To See If The Database Is In Auto-Commit Mode {F12930} +** +** {F12931} The sqlite3_get_autocommit() interfaces returns non-zero or +** zero if the given database connection is or is not in autocommit mode, +** respectively. {F12932} Autocommit mode is on +** by default. {F12933} Autocommit mode is disabled by a BEGIN statement. +** {F12934} Autocommit mode is reenabled by a COMMIT or ROLLBACK. {END} +** +** If certain kinds of errors occur on a statement within a multi-statement +** transactions (errors including [SQLITE_FULL], [SQLITE_IOERR], +** [SQLITE_NOMEM], [SQLITE_BUSY], and [SQLITE_INTERRUPT]) then the +** transaction might be rolled back automatically. {F12935} The only way to +** find out if SQLite automatically rolled back the transaction after +** an error is to use this function. {END} +** +** {U12936} If another thread changes the autocommit status of the database +** connection while this routine is running, then the return value +** is undefined. {END} +*/ +int sqlite3_get_autocommit(sqlite3*); + +/* +** CAPI3REF: Find The Database Handle Of A Prepared Statement {F13120} +** +** {F13121} The sqlite3_db_handle interface +** returns the [sqlite3*] database handle to which a +** [sqlite3_stmt | prepared statement] belongs. +** {F13122} the database handle returned by sqlite3_db_handle +** is the same database handle that was +** the first argument to the [sqlite3_prepare_v2()] or its variants +** that was used to create the statement in the first place. +*/ +sqlite3 *sqlite3_db_handle(sqlite3_stmt*); + + +/* +** CAPI3REF: Commit And Rollback Notification Callbacks {F12950} +** +** {F12951} The sqlite3_commit_hook() interface registers a callback +** function to be invoked whenever a transaction is committed. +** {F12952} Any callback set by a previous call to sqlite3_commit_hook() +** for the same database connection is overridden. +** {F12953} The sqlite3_rollback_hook() interface registers a callback +** function to be invoked whenever a transaction is committed. +** {F12954} Any callback set by a previous call to sqlite3_commit_hook() +** for the same database connection is overridden. +** {F12956} The pArg argument is passed through +** to the callback. {F12957} If the callback on a commit hook function +** returns non-zero, then the commit is converted into a rollback. +** +** {F12958} If another function was previously registered, its +** pArg value is returned. Otherwise NULL is returned. +** +** {F12959} Registering a NULL function disables the callback. +** +** {F12961} For the purposes of this API, a transaction is said to have been +** rolled back if an explicit "ROLLBACK" statement is executed, or +** an error or constraint causes an implicit rollback to occur. +** {F12962} The rollback callback is not invoked if a transaction is +** automatically rolled back because the database connection is closed. +** {F12964} The rollback callback is not invoked if a transaction is +** rolled back because a commit callback returned non-zero. +** Check on this {END} +** +** These are experimental interfaces and are subject to change. +*/ +void *sqlite3_commit_hook(sqlite3*, int(*)(void*), void*); +void *sqlite3_rollback_hook(sqlite3*, void(*)(void *), void*); + +/* +** CAPI3REF: Data Change Notification Callbacks {F12970} +** +** {F12971} The sqlite3_update_hook() interface +** registers a callback function with the database connection identified by the +** first argument to be invoked whenever a row is updated, inserted or deleted. +** {F12972} Any callback set by a previous call to this function for the same +** database connection is overridden. +** +** {F12974} The second argument is a pointer to the function to invoke when a +** row is updated, inserted or deleted. +** {F12976} The first argument to the callback is +** a copy of the third argument to sqlite3_update_hook(). +** {F12977} The second callback +** argument is one of [SQLITE_INSERT], [SQLITE_DELETE] or [SQLITE_UPDATE], +** depending on the operation that caused the callback to be invoked. +** {F12978} The third and +** fourth arguments to the callback contain pointers to the database and +** table name containing the affected row. +** {F12979} The final callback parameter is +** the rowid of the row. +** {F12981} In the case of an update, this is the rowid after +** the update takes place. +** +** {F12983} The update hook is not invoked when internal system tables are +** modified (i.e. sqlite_master and sqlite_sequence). +** +** {F12984} If another function was previously registered, its pArg value +** is returned. {F12985} Otherwise NULL is returned. +*/ +void *sqlite3_update_hook( + sqlite3*, + void(*)(void *,int ,char const *,char const *,sqlite3_int64), + void* +); + +/* +** CAPI3REF: Enable Or Disable Shared Pager Cache {F10330} +** +** {F10331} +** This routine enables or disables the sharing of the database cache +** and schema data structures between connections to the same database. +** {F10332} +** Sharing is enabled if the argument is true and disabled if the argument +** is false. +** +** {F10333} Cache sharing is enabled and disabled +** for an entire process. {END} This is a change as of SQLite version 3.5.0. +** In prior versions of SQLite, sharing was +** enabled or disabled for each thread separately. +** +** {F10334} +** The cache sharing mode set by this interface effects all subsequent +** calls to [sqlite3_open()], [sqlite3_open_v2()], and [sqlite3_open16()]. +** {F10335} Existing database connections continue use the sharing mode +** that was in effect at the time they were opened. {END} +** +** Virtual tables cannot be used with a shared cache. {F10336} When shared +** cache is enabled, the [sqlite3_create_module()] API used to register +** virtual tables will always return an error. {END} +** +** {F10337} This routine returns [SQLITE_OK] if shared cache was +** enabled or disabled successfully. {F10338} An [SQLITE_ERROR | error code] +** is returned otherwise. {END} +** +** {F10339} Shared cache is disabled by default. {END} But this might change in +** future releases of SQLite. Applications that care about shared +** cache setting should set it explicitly. +*/ +int sqlite3_enable_shared_cache(int); + +/* +** CAPI3REF: Attempt To Free Heap Memory {F17340} +** +** {F17341} The sqlite3_release_memory() interface attempts to +** free N bytes of heap memory by deallocating non-essential memory +** allocations held by the database labrary. {END} Memory used +** to cache database pages to improve performance is an example of +** non-essential memory. {F16342} sqlite3_release_memory() returns +** the number of bytes actually freed, which might be more or less +** than the amount requested. +*/ +int sqlite3_release_memory(int); + +/* +** CAPI3REF: Impose A Limit On Heap Size {F17350} +** +** {F16351} The sqlite3_soft_heap_limit() interface +** places a "soft" limit on the amount of heap memory that may be allocated +** by SQLite. {F16352} If an internal allocation is requested +** that would exceed the soft heap limit, [sqlite3_release_memory()] is +** invoked one or more times to free up some space before the allocation +** is made. {END} +** +** {F16353} The limit is called "soft", because if +** [sqlite3_release_memory()] cannot +** free sufficient memory to prevent the limit from being exceeded, +** the memory is allocated anyway and the current operation proceeds. +** +** {F16354} +** A negative or zero value for N means that there is no soft heap limit and +** [sqlite3_release_memory()] will only be called when memory is exhausted. +** {F16355} The default value for the soft heap limit is zero. +** +** SQLite makes a best effort to honor the soft heap limit. +** {F16356} But if the soft heap limit cannot honored, execution will +** continue without error or notification. {END} This is why the limit is +** called a "soft" limit. It is advisory only. +** +** Prior to SQLite version 3.5.0, this routine only constrained the memory +** allocated by a single thread - the same thread in which this routine +** runs. Beginning with SQLite version 3.5.0, the soft heap limit is +** applied to all threads. {F16357} The value specified for the soft heap limit +** is an upper bound on the total memory allocation for all threads. {END} In +** version 3.5.0 there is no mechanism for limiting the heap usage for +** individual threads. +*/ +void sqlite3_soft_heap_limit(int); + +/* +** CAPI3REF: Extract Metadata About A Column Of A Table {F12850} +** +** This routine +** returns meta-data about a specific column of a specific database +** table accessible using the connection handle passed as the first function +** argument. +** +** The column is identified by the second, third and fourth parameters to +** this function. The second parameter is either the name of the database +** (i.e. "main", "temp" or an attached database) containing the specified +** table or NULL. If it is NULL, then all attached databases are searched +** for the table using the same algorithm as the database engine uses to +** resolve unqualified table references. +** +** The third and fourth parameters to this function are the table and column +** name of the desired column, respectively. Neither of these parameters +** may be NULL. +** +** Meta information is returned by writing to the memory locations passed as +** the 5th and subsequent parameters to this function. Any of these +** arguments may be NULL, in which case the corresponding element of meta +** information is ommitted. +** +**
+** Parameter     Output Type      Description
+** -----------------------------------
+**
+**   5th         const char*      Data type
+**   6th         const char*      Name of the default collation sequence 
+**   7th         int              True if the column has a NOT NULL constraint
+**   8th         int              True if the column is part of the PRIMARY KEY
+**   9th         int              True if the column is AUTOINCREMENT
+** 
+** +** +** The memory pointed to by the character pointers returned for the +** declaration type and collation sequence is valid only until the next +** call to any sqlite API function. +** +** If the specified table is actually a view, then an error is returned. +** +** If the specified column is "rowid", "oid" or "_rowid_" and an +** INTEGER PRIMARY KEY column has been explicitly declared, then the output +** parameters are set for the explicitly declared column. If there is no +** explicitly declared IPK column, then the output parameters are set as +** follows: +** +**
+**     data type: "INTEGER"
+**     collation sequence: "BINARY"
+**     not null: 0
+**     primary key: 1
+**     auto increment: 0
+** 
+** +** This function may load one or more schemas from database files. If an +** error occurs during this process, or if the requested table or column +** cannot be found, an SQLITE error code is returned and an error message +** left in the database handle (to be retrieved using sqlite3_errmsg()). +** +** This API is only available if the library was compiled with the +** SQLITE_ENABLE_COLUMN_METADATA preprocessor symbol defined. +*/ +int sqlite3_table_column_metadata( + sqlite3 *db, /* Connection handle */ + const char *zDbName, /* Database name or NULL */ + const char *zTableName, /* Table name */ + const char *zColumnName, /* Column name */ + char const **pzDataType, /* OUTPUT: Declared data type */ + char const **pzCollSeq, /* OUTPUT: Collation sequence name */ + int *pNotNull, /* OUTPUT: True if NOT NULL constraint exists */ + int *pPrimaryKey, /* OUTPUT: True if column part of PK */ + int *pAutoinc /* OUTPUT: True if column is auto-increment */ +); + +/* +** CAPI3REF: Load An Extension {F12600} +** +** {F12601} The sqlite3_load_extension() interface +** attempts to load an SQLite extension library contained in the file +** zFile. {F12602} The entry point is zProc. {F12603} zProc may be 0 +** in which case the name of the entry point defaults +** to "sqlite3_extension_init". +** +** {F12604} The sqlite3_load_extension() interface shall +** return [SQLITE_OK] on success and [SQLITE_ERROR] if something goes wrong. +** +** {F12605} +** If an error occurs and pzErrMsg is not 0, then the +** sqlite3_load_extension() interface shall attempt to fill *pzErrMsg with +** error message text stored in memory obtained from [sqlite3_malloc()]. +** {END} The calling function should free this memory +** by calling [sqlite3_free()]. +** +** {F12606} +** Extension loading must be enabled using [sqlite3_enable_load_extension()] +** prior to calling this API or an error will be returned. +*/ +int sqlite3_load_extension( + sqlite3 *db, /* Load the extension into this database connection */ + const char *zFile, /* Name of the shared library containing extension */ + const char *zProc, /* Entry point. Derived from zFile if 0 */ + char **pzErrMsg /* Put error message here if not 0 */ +); + +/* +** CAPI3REF: Enable Or Disable Extension Loading {F12620} +** +** So as not to open security holes in older applications that are +** unprepared to deal with extension loading, and as a means of disabling +** extension loading while evaluating user-entered SQL, the following +** API is provided to turn the [sqlite3_load_extension()] mechanism on and +** off. {F12622} It is off by default. {END} See ticket #1863. +** +** {F12621} Call the sqlite3_enable_load_extension() routine +** with onoff==1 to turn extension loading on +** and call it with onoff==0 to turn it back off again. {END} +*/ +int sqlite3_enable_load_extension(sqlite3 *db, int onoff); + +/* +** CAPI3REF: Make Arrangements To Automatically Load An Extension {F12640} +** +** {F12641} This function +** registers an extension entry point that is automatically invoked +** whenever a new database connection is opened using +** [sqlite3_open()], [sqlite3_open16()], or [sqlite3_open_v2()]. {END} +** +** This API can be invoked at program startup in order to register +** one or more statically linked extensions that will be available +** to all new database connections. +** +** {F12642} Duplicate extensions are detected so calling this routine multiple +** times with the same extension is harmless. +** +** {F12643} This routine stores a pointer to the extension in an array +** that is obtained from sqlite_malloc(). {END} If you run a memory leak +** checker on your program and it reports a leak because of this +** array, then invoke [sqlite3_reset_auto_extension()] prior +** to shutdown to free the memory. +** +** {F12644} Automatic extensions apply across all threads. {END} +** +** This interface is experimental and is subject to change or +** removal in future releases of SQLite. +*/ +int sqlite3_auto_extension(void *xEntryPoint); + + +/* +** CAPI3REF: Reset Automatic Extension Loading {F12660} +** +** {F12661} This function disables all previously registered +** automatic extensions. {END} This +** routine undoes the effect of all prior [sqlite3_automatic_extension()] +** calls. +** +** {F12662} This call disabled automatic extensions in all threads. {END} +** +** This interface is experimental and is subject to change or +** removal in future releases of SQLite. +*/ +void sqlite3_reset_auto_extension(void); + + +/* +****** EXPERIMENTAL - subject to change without notice ************** +** +** The interface to the virtual-table mechanism is currently considered +** to be experimental. The interface might change in incompatible ways. +** If this is a problem for you, do not use the interface at this time. +** +** When the virtual-table mechanism stablizes, we will declare the +** interface fixed, support it indefinitely, and remove this comment. +*/ + +/* +** Structures used by the virtual table interface +*/ +typedef struct sqlite3_vtab sqlite3_vtab; +typedef struct sqlite3_index_info sqlite3_index_info; +typedef struct sqlite3_vtab_cursor sqlite3_vtab_cursor; +typedef struct sqlite3_module sqlite3_module; + +/* +** A module is a class of virtual tables. Each module is defined +** by an instance of the following structure. This structure consists +** mostly of methods for the module. +*/ +struct sqlite3_module { + int iVersion; + int (*xCreate)(sqlite3*, void *pAux, + int argc, const char *const*argv, + sqlite3_vtab **ppVTab, char**); + int (*xConnect)(sqlite3*, void *pAux, + int argc, const char *const*argv, + sqlite3_vtab **ppVTab, char**); + int (*xBestIndex)(sqlite3_vtab *pVTab, sqlite3_index_info*); + int (*xDisconnect)(sqlite3_vtab *pVTab); + int (*xDestroy)(sqlite3_vtab *pVTab); + int (*xOpen)(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor); + int (*xClose)(sqlite3_vtab_cursor*); + int (*xFilter)(sqlite3_vtab_cursor*, int idxNum, const char *idxStr, + int argc, sqlite3_value **argv); + int (*xNext)(sqlite3_vtab_cursor*); + int (*xEof)(sqlite3_vtab_cursor*); + int (*xColumn)(sqlite3_vtab_cursor*, sqlite3_context*, int); + int (*xRowid)(sqlite3_vtab_cursor*, sqlite3_int64 *pRowid); + int (*xUpdate)(sqlite3_vtab *, int, sqlite3_value **, sqlite3_int64 *); + int (*xBegin)(sqlite3_vtab *pVTab); + int (*xSync)(sqlite3_vtab *pVTab); + int (*xCommit)(sqlite3_vtab *pVTab); + int (*xRollback)(sqlite3_vtab *pVTab); + int (*xFindFunction)(sqlite3_vtab *pVtab, int nArg, const char *zName, + void (**pxFunc)(sqlite3_context*,int,sqlite3_value**), + void **ppArg); + + int (*xRename)(sqlite3_vtab *pVtab, const char *zNew); +}; + +/* +** The sqlite3_index_info structure and its substructures is used to +** pass information into and receive the reply from the xBestIndex +** method of an sqlite3_module. The fields under **Inputs** are the +** inputs to xBestIndex and are read-only. xBestIndex inserts its +** results into the **Outputs** fields. +** +** The aConstraint[] array records WHERE clause constraints of the +** form: +** +** column OP expr +** +** Where OP is =, <, <=, >, or >=. +** The particular operator is stored +** in aConstraint[].op. The index of the column is stored in +** aConstraint[].iColumn. aConstraint[].usable is TRUE if the +** expr on the right-hand side can be evaluated (and thus the constraint +** is usable) and false if it cannot. +** +** The optimizer automatically inverts terms of the form "expr OP column" +** and makes other simplifications to the WHERE clause in an attempt to +** get as many WHERE clause terms into the form shown above as possible. +** The aConstraint[] array only reports WHERE clause terms in the correct +** form that refer to the particular virtual table being queried. +** +** Information about the ORDER BY clause is stored in aOrderBy[]. +** Each term of aOrderBy records a column of the ORDER BY clause. +** +** The xBestIndex method must fill aConstraintUsage[] with information +** about what parameters to pass to xFilter. If argvIndex>0 then +** the right-hand side of the corresponding aConstraint[] is evaluated +** and becomes the argvIndex-th entry in argv. If aConstraintUsage[].omit +** is true, then the constraint is assumed to be fully handled by the +** virtual table and is not checked again by SQLite. +** +** The idxNum and idxPtr values are recorded and passed into xFilter. +** sqlite3_free() is used to free idxPtr if needToFreeIdxPtr is true. +** +** The orderByConsumed means that output from xFilter will occur in +** the correct order to satisfy the ORDER BY clause so that no separate +** sorting step is required. +** +** The estimatedCost value is an estimate of the cost of doing the +** particular lookup. A full scan of a table with N entries should have +** a cost of N. A binary search of a table of N entries should have a +** cost of approximately log(N). +*/ +struct sqlite3_index_info { + /* Inputs */ + int nConstraint; /* Number of entries in aConstraint */ + struct sqlite3_index_constraint { + int iColumn; /* Column on left-hand side of constraint */ + unsigned char op; /* Constraint operator */ + unsigned char usable; /* True if this constraint is usable */ + int iTermOffset; /* Used internally - xBestIndex should ignore */ + } *aConstraint; /* Table of WHERE clause constraints */ + int nOrderBy; /* Number of terms in the ORDER BY clause */ + struct sqlite3_index_orderby { + int iColumn; /* Column number */ + unsigned char desc; /* True for DESC. False for ASC. */ + } *aOrderBy; /* The ORDER BY clause */ + + /* Outputs */ + struct sqlite3_index_constraint_usage { + int argvIndex; /* if >0, constraint is part of argv to xFilter */ + unsigned char omit; /* Do not code a test for this constraint */ + } *aConstraintUsage; + int idxNum; /* Number used to identify the index */ + char *idxStr; /* String, possibly obtained from sqlite3_malloc */ + int needToFreeIdxStr; /* Free idxStr using sqlite3_free() if true */ + int orderByConsumed; /* True if output is already ordered */ + double estimatedCost; /* Estimated cost of using this index */ +}; +#define SQLITE_INDEX_CONSTRAINT_EQ 2 +#define SQLITE_INDEX_CONSTRAINT_GT 4 +#define SQLITE_INDEX_CONSTRAINT_LE 8 +#define SQLITE_INDEX_CONSTRAINT_LT 16 +#define SQLITE_INDEX_CONSTRAINT_GE 32 +#define SQLITE_INDEX_CONSTRAINT_MATCH 64 + +/* +** This routine is used to register a new module name with an SQLite +** connection. Module names must be registered before creating new +** virtual tables on the module, or before using preexisting virtual +** tables of the module. +*/ +int sqlite3_create_module( + sqlite3 *db, /* SQLite connection to register module with */ + const char *zName, /* Name of the module */ + const sqlite3_module *, /* Methods for the module */ + void * /* Client data for xCreate/xConnect */ +); + +/* +** This routine is identical to the sqlite3_create_module() method above, +** except that it allows a destructor function to be specified. It is +** even more experimental than the rest of the virtual tables API. +*/ +int sqlite3_create_module_v2( + sqlite3 *db, /* SQLite connection to register module with */ + const char *zName, /* Name of the module */ + const sqlite3_module *, /* Methods for the module */ + void *, /* Client data for xCreate/xConnect */ + void(*xDestroy)(void*) /* Module destructor function */ +); + +/* +** Every module implementation uses a subclass of the following structure +** to describe a particular instance of the module. Each subclass will +** be tailored to the specific needs of the module implementation. The +** purpose of this superclass is to define certain fields that are common +** to all module implementations. +** +** Virtual tables methods can set an error message by assigning a +** string obtained from sqlite3_mprintf() to zErrMsg. The method should +** take care that any prior string is freed by a call to sqlite3_free() +** prior to assigning a new string to zErrMsg. After the error message +** is delivered up to the client application, the string will be automatically +** freed by sqlite3_free() and the zErrMsg field will be zeroed. Note +** that sqlite3_mprintf() and sqlite3_free() are used on the zErrMsg field +** since virtual tables are commonly implemented in loadable extensions which +** do not have access to sqlite3MPrintf() or sqlite3Free(). +*/ +struct sqlite3_vtab { + const sqlite3_module *pModule; /* The module for this virtual table */ + int nRef; /* Used internally */ + char *zErrMsg; /* Error message from sqlite3_mprintf() */ + /* Virtual table implementations will typically add additional fields */ +}; + +/* Every module implementation uses a subclass of the following structure +** to describe cursors that point into the virtual table and are used +** to loop through the virtual table. Cursors are created using the +** xOpen method of the module. Each module implementation will define +** the content of a cursor structure to suit its own needs. +** +** This superclass exists in order to define fields of the cursor that +** are common to all implementations. +*/ +struct sqlite3_vtab_cursor { + sqlite3_vtab *pVtab; /* Virtual table of this cursor */ + /* Virtual table implementations will typically add additional fields */ +}; + +/* +** The xCreate and xConnect methods of a module use the following API +** to declare the format (the names and datatypes of the columns) of +** the virtual tables they implement. +*/ +int sqlite3_declare_vtab(sqlite3*, const char *zCreateTable); + +/* +** Virtual tables can provide alternative implementations of functions +** using the xFindFunction method. But global versions of those functions +** must exist in order to be overloaded. +** +** This API makes sure a global version of a function with a particular +** name and number of parameters exists. If no such function exists +** before this API is called, a new function is created. The implementation +** of the new function always causes an exception to be thrown. So +** the new function is not good for anything by itself. Its only +** purpose is to be a place-holder function that can be overloaded +** by virtual tables. +** +** This API should be considered part of the virtual table interface, +** which is experimental and subject to change. +*/ +int sqlite3_overload_function(sqlite3*, const char *zFuncName, int nArg); + +/* +** The interface to the virtual-table mechanism defined above (back up +** to a comment remarkably similar to this one) is currently considered +** to be experimental. The interface might change in incompatible ways. +** If this is a problem for you, do not use the interface at this time. +** +** When the virtual-table mechanism stabilizes, we will declare the +** interface fixed, support it indefinitely, and remove this comment. +** +****** EXPERIMENTAL - subject to change without notice ************** +*/ + +/* +** CAPI3REF: A Handle To An Open BLOB {F17800} +** +** An instance of the following opaque structure is used to +** represent an blob-handle. A blob-handle is created by +** [sqlite3_blob_open()] and destroyed by [sqlite3_blob_close()]. +** The [sqlite3_blob_read()] and [sqlite3_blob_write()] interfaces +** can be used to read or write small subsections of the blob. +** The [sqlite3_blob_bytes()] interface returns the size of the +** blob in bytes. +*/ +typedef struct sqlite3_blob sqlite3_blob; + +/* +** CAPI3REF: Open A BLOB For Incremental I/O {F17810} +** +** {F17811} This interfaces opens a handle to the blob located +** in row iRow,, column zColumn, table zTable in database zDb; +** in other words, the same blob that would be selected by: +** +**
+**     SELECT zColumn FROM zDb.zTable WHERE rowid = iRow;
+** 
{END} +** +** {F17812} If the flags parameter is non-zero, the blob is opened for +** read and write access. If it is zero, the blob is opened for read +** access. {END} +** +** {F17813} On success, [SQLITE_OK] is returned and the new +** [sqlite3_blob | blob handle] is written to *ppBlob. +** {F17814} Otherwise an error code is returned and +** any value written to *ppBlob should not be used by the caller. +** {F17815} This function sets the database-handle error code and message +** accessible via [sqlite3_errcode()] and [sqlite3_errmsg()]. +** We should go through and mark all interfaces that behave this +** way with a similar statement +*/ +int sqlite3_blob_open( + sqlite3*, + const char *zDb, + const char *zTable, + const char *zColumn, + sqlite3_int64 iRow, + int flags, + sqlite3_blob **ppBlob +); + +/* +** CAPI3REF: Close A BLOB Handle {F17830} +** +** Close an open [sqlite3_blob | blob handle]. +** +** {F17831} Closing a BLOB shall cause the current transaction to commit +** if there are no other BLOBs, no pending prepared statements, and the +** database connection is in autocommit mode. +** {F17832} If any writes were made to the BLOB, they might be held in cache +** until the close operation if they will fit. {END} +** Closing the BLOB often forces the changes +** out to disk and so if any I/O errors occur, they will likely occur +** at the time when the BLOB is closed. {F17833} Any errors that occur during +** closing are reported as a non-zero return value. +** +** {F17839} The BLOB is closed unconditionally. Even if this routine returns +** an error code, the BLOB is still closed. +*/ +int sqlite3_blob_close(sqlite3_blob *); + +/* +** CAPI3REF: Return The Size Of An Open BLOB {F17805} +** +** {F16806} Return the size in bytes of the blob accessible via the open +** [sqlite3_blob | blob-handle] passed as an argument. +*/ +int sqlite3_blob_bytes(sqlite3_blob *); + +/* +** CAPI3REF: Read Data From A BLOB Incrementally {F17850} +** +** This function is used to read data from an open +** [sqlite3_blob | blob-handle] into a caller supplied buffer. +** {F17851} n bytes of data are copied into buffer +** z from the open blob, starting at offset iOffset. +** +** {F17852} If offset iOffset is less than n bytes from the end of the blob, +** [SQLITE_ERROR] is returned and no data is read. {F17853} If n is +** less than zero [SQLITE_ERROR] is returned and no data is read. +** +** {F17854} On success, SQLITE_OK is returned. Otherwise, an +** [SQLITE_ERROR | SQLite error code] or an +** [SQLITE_IOERR_READ | extended error code] is returned. +*/ +int sqlite3_blob_read(sqlite3_blob *, void *z, int n, int iOffset); + +/* +** CAPI3REF: Write Data Into A BLOB Incrementally {F17870} +** +** This function is used to write data into an open +** [sqlite3_blob | blob-handle] from a user supplied buffer. +** {F17871} n bytes of data are copied from the buffer +** pointed to by z into the open blob, starting at offset iOffset. +** +** {F17872} If the [sqlite3_blob | blob-handle] passed as the first argument +** was not opened for writing (the flags parameter to [sqlite3_blob_open()] +*** was zero), this function returns [SQLITE_READONLY]. +** +** {F17873} This function may only modify the contents of the blob; it is +** not possible to increase the size of a blob using this API. +** {F17874} If offset iOffset is less than n bytes from the end of the blob, +** [SQLITE_ERROR] is returned and no data is written. {F17875} If n is +** less than zero [SQLITE_ERROR] is returned and no data is written. +** +** {F17876} On success, SQLITE_OK is returned. Otherwise, an +** [SQLITE_ERROR | SQLite error code] or an +** [SQLITE_IOERR_READ | extended error code] is returned. +*/ +int sqlite3_blob_write(sqlite3_blob *, const void *z, int n, int iOffset); + +/* +** CAPI3REF: Virtual File System Objects {F11200} +** +** A virtual filesystem (VFS) is an [sqlite3_vfs] object +** that SQLite uses to interact +** with the underlying operating system. Most builds come with a +** single default VFS that is appropriate for the host computer. +** New VFSes can be registered and existing VFSes can be unregistered. +** The following interfaces are provided. +** +** {F11201} The sqlite3_vfs_find() interface returns a pointer to +** a VFS given its name. {F11202} Names are case sensitive. +** {F11203} Names are zero-terminated UTF-8 strings. +** {F11204} If there is no match, a NULL +** pointer is returned. {F11205} If zVfsName is NULL then the default +** VFS is returned. {END} +** +** {F11210} New VFSes are registered with sqlite3_vfs_register(). +** {F11211} Each new VFS becomes the default VFS if the makeDflt flag is set. +** {F11212} The same VFS can be registered multiple times without injury. +** {F11213} To make an existing VFS into the default VFS, register it again +** with the makeDflt flag set. {U11214} If two different VFSes with the +** same name are registered, the behavior is undefined. {U11215} If a +** VFS is registered with a name that is NULL or an empty string, +** then the behavior is undefined. +** +** {F11220} Unregister a VFS with the sqlite3_vfs_unregister() interface. +** {F11221} If the default VFS is unregistered, another VFS is chosen as +** the default. The choice for the new VFS is arbitrary. +*/ +sqlite3_vfs *sqlite3_vfs_find(const char *zVfsName); +int sqlite3_vfs_register(sqlite3_vfs*, int makeDflt); +int sqlite3_vfs_unregister(sqlite3_vfs*); + +/* +** CAPI3REF: Mutexes {F17000} +** +** The SQLite core uses these routines for thread +** synchronization. Though they are intended for internal +** use by SQLite, code that links against SQLite is +** permitted to use any of these routines. +** +** The SQLite source code contains multiple implementations +** of these mutex routines. An appropriate implementation +** is selected automatically at compile-time. The following +** implementations are available in the SQLite core: +** +**
    +**
  • SQLITE_MUTEX_OS2 +**
  • SQLITE_MUTEX_PTHREAD +**
  • SQLITE_MUTEX_W32 +**
  • SQLITE_MUTEX_NOOP +**
+** +** The SQLITE_MUTEX_NOOP implementation is a set of routines +** that does no real locking and is appropriate for use in +** a single-threaded application. The SQLITE_MUTEX_OS2, +** SQLITE_MUTEX_PTHREAD, and SQLITE_MUTEX_W32 implementations +** are appropriate for use on os/2, unix, and windows. +** +** If SQLite is compiled with the SQLITE_MUTEX_APPDEF preprocessor +** macro defined (with "-DSQLITE_MUTEX_APPDEF=1"), then no mutex +** implementation is included with the library. The +** mutex interface routines defined here become external +** references in the SQLite library for which implementations +** must be provided by the application. This facility allows an +** application that links against SQLite to provide its own mutex +** implementation without having to modify the SQLite core. +** +** {F17011} The sqlite3_mutex_alloc() routine allocates a new +** mutex and returns a pointer to it. {F17012} If it returns NULL +** that means that a mutex could not be allocated. {F17013} SQLite +** will unwind its stack and return an error. {F17014} The argument +** to sqlite3_mutex_alloc() is one of these integer constants: +** +**
    +**
  • SQLITE_MUTEX_FAST +**
  • SQLITE_MUTEX_RECURSIVE +**
  • SQLITE_MUTEX_STATIC_MASTER +**
  • SQLITE_MUTEX_STATIC_MEM +**
  • SQLITE_MUTEX_STATIC_MEM2 +**
  • SQLITE_MUTEX_STATIC_PRNG +**
  • SQLITE_MUTEX_STATIC_LRU +**
{END} +** +** {F17015} The first two constants cause sqlite3_mutex_alloc() to create +** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE +** is used but not necessarily so when SQLITE_MUTEX_FAST is used. {END} +** The mutex implementation does not need to make a distinction +** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does +** not want to. {F17016} But SQLite will only request a recursive mutex in +** cases where it really needs one. {END} If a faster non-recursive mutex +** implementation is available on the host platform, the mutex subsystem +** might return such a mutex in response to SQLITE_MUTEX_FAST. +** +** {F17017} The other allowed parameters to sqlite3_mutex_alloc() each return +** a pointer to a static preexisting mutex. {END} Four static mutexes are +** used by the current version of SQLite. Future versions of SQLite +** may add additional static mutexes. Static mutexes are for internal +** use by SQLite only. Applications that use SQLite mutexes should +** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or +** SQLITE_MUTEX_RECURSIVE. +** +** {F17018} Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST +** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc() +** returns a different mutex on every call. {F17034} But for the static +** mutex types, the same mutex is returned on every call that has +** the same type number. {END} +** +** {F17019} The sqlite3_mutex_free() routine deallocates a previously +** allocated dynamic mutex. {F17020} SQLite is careful to deallocate every +** dynamic mutex that it allocates. {U17021} The dynamic mutexes must not be in +** use when they are deallocated. {U17022} Attempting to deallocate a static +** mutex results in undefined behavior. {F17023} SQLite never deallocates +** a static mutex. {END} +** +** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt +** to enter a mutex. {F17024} If another thread is already within the mutex, +** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return +** SQLITE_BUSY. {F17025} The sqlite3_mutex_try() interface returns SQLITE_OK +** upon successful entry. {F17026} Mutexes created using +** SQLITE_MUTEX_RECURSIVE can be entered multiple times by the same thread. +** {F17027} In such cases the, +** mutex must be exited an equal number of times before another thread +** can enter. {U17028} If the same thread tries to enter any other +** kind of mutex more than once, the behavior is undefined. +** {F17029} SQLite will never exhibit +** such behavior in its own use of mutexes. {END} +** +** Some systems (ex: windows95) do not the operation implemented by +** sqlite3_mutex_try(). On those systems, sqlite3_mutex_try() will +** always return SQLITE_BUSY. {F17030} The SQLite core only ever uses +** sqlite3_mutex_try() as an optimization so this is acceptable behavior. {END} +** +** {F17031} The sqlite3_mutex_leave() routine exits a mutex that was +** previously entered by the same thread. {U17032} The behavior +** is undefined if the mutex is not currently entered by the +** calling thread or is not currently allocated. {F17033} SQLite will +** never do either. {END} +** +** See also: [sqlite3_mutex_held()] and [sqlite3_mutex_notheld()]. +*/ +sqlite3_mutex *sqlite3_mutex_alloc(int); +void sqlite3_mutex_free(sqlite3_mutex*); +void sqlite3_mutex_enter(sqlite3_mutex*); +int sqlite3_mutex_try(sqlite3_mutex*); +void sqlite3_mutex_leave(sqlite3_mutex*); + +/* +** CAPI3REF: Mutex Verifcation Routines {F17080} +** +** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routines +** are intended for use inside assert() statements. {F17081} The SQLite core +** never uses these routines except inside an assert() and applications +** are advised to follow the lead of the core. {F17082} The core only +** provides implementations for these routines when it is compiled +** with the SQLITE_DEBUG flag. {U17087} External mutex implementations +** are only required to provide these routines if SQLITE_DEBUG is +** defined and if NDEBUG is not defined. +** +** {F17083} These routines should return true if the mutex in their argument +** is held or not held, respectively, by the calling thread. {END} +** +** {X17084} The implementation is not required to provided versions of these +** routines that actually work. +** If the implementation does not provide working +** versions of these routines, it should at least provide stubs +** that always return true so that one does not get spurious +** assertion failures. {END} +** +** {F17085} If the argument to sqlite3_mutex_held() is a NULL pointer then +** the routine should return 1. {END} This seems counter-intuitive since +** clearly the mutex cannot be held if it does not exist. But the +** the reason the mutex does not exist is because the build is not +** using mutexes. And we do not want the assert() containing the +** call to sqlite3_mutex_held() to fail, so a non-zero return is +** the appropriate thing to do. {F17086} The sqlite3_mutex_notheld() +** interface should also return 1 when given a NULL pointer. +*/ +int sqlite3_mutex_held(sqlite3_mutex*); +int sqlite3_mutex_notheld(sqlite3_mutex*); + +/* +** CAPI3REF: Mutex Types {F17001} +** +** {F17002} The [sqlite3_mutex_alloc()] interface takes a single argument +** which is one of these integer constants. {END} +*/ +#define SQLITE_MUTEX_FAST 0 +#define SQLITE_MUTEX_RECURSIVE 1 +#define SQLITE_MUTEX_STATIC_MASTER 2 +#define SQLITE_MUTEX_STATIC_MEM 3 /* sqlite3_malloc() */ +#define SQLITE_MUTEX_STATIC_MEM2 4 /* sqlite3_release_memory() */ +#define SQLITE_MUTEX_STATIC_PRNG 5 /* sqlite3_random() */ +#define SQLITE_MUTEX_STATIC_LRU 6 /* lru page list */ + +/* +** CAPI3REF: Low-Level Control Of Database Files {F11300} +** +** {F11301} The [sqlite3_file_control()] interface makes a direct call to the +** xFileControl method for the [sqlite3_io_methods] object associated +** with a particular database identified by the second argument. {F11302} The +** name of the database is the name assigned to the database by the +** ATTACH SQL command that opened the +** database. {F11303} To control the main database file, use the name "main" +** or a NULL pointer. {F11304} The third and fourth parameters to this routine +** are passed directly through to the second and third parameters of +** the xFileControl method. {F11305} The return value of the xFileControl +** method becomes the return value of this routine. +** +** {F11306} If the second parameter (zDbName) does not match the name of any +** open database file, then SQLITE_ERROR is returned. {F11307} This error +** code is not remembered and will not be recalled by [sqlite3_errcode()] +** or [sqlite3_errmsg()]. {U11308} The underlying xFileControl method might +** also return SQLITE_ERROR. {U11309} There is no way to distinguish between +** an incorrect zDbName and an SQLITE_ERROR return from the underlying +** xFileControl method. {END} +** +** See also: [SQLITE_FCNTL_LOCKSTATE] +*/ +int sqlite3_file_control(sqlite3*, const char *zDbName, int op, void*); + +/* +** Undo the hack that converts floating point types to integer for +** builds on processors without floating point support. +*/ +#ifdef SQLITE_OMIT_FLOATING_POINT +# undef double +#endif + +#if 0 +} /* End of the 'extern "C"' block */ +#endif +#endif + +/************** End of sqlite3.h *********************************************/ +/************** Continuing where we left off in fts3_tokenizer.h *************/ + +/* +** Structures used by the tokenizer interface. When a new tokenizer +** implementation is registered, the caller provides a pointer to +** an sqlite3_tokenizer_module containing pointers to the callback +** functions that make up an implementation. +** +** When an fts3 table is created, it passes any arguments passed to +** the tokenizer clause of the CREATE VIRTUAL TABLE statement to the +** sqlite3_tokenizer_module.xCreate() function of the requested tokenizer +** implementation. The xCreate() function in turn returns an +** sqlite3_tokenizer structure representing the specific tokenizer to +** be used for the fts3 table (customized by the tokenizer clause arguments). +** +** To tokenize an input buffer, the sqlite3_tokenizer_module.xOpen() +** method is called. It returns an sqlite3_tokenizer_cursor object +** that may be used to tokenize a specific input buffer based on +** the tokenization rules supplied by a specific sqlite3_tokenizer +** object. +*/ +typedef struct sqlite3_tokenizer_module sqlite3_tokenizer_module; +typedef struct sqlite3_tokenizer sqlite3_tokenizer; +typedef struct sqlite3_tokenizer_cursor sqlite3_tokenizer_cursor; + +struct sqlite3_tokenizer_module { + + /* + ** Structure version. Should always be set to 0. + */ + int iVersion; + + /* + ** Create a new tokenizer. The values in the argv[] array are the + ** arguments passed to the "tokenizer" clause of the CREATE VIRTUAL + ** TABLE statement that created the fts3 table. For example, if + ** the following SQL is executed: + ** + ** CREATE .. USING fts3( ... , tokenizer arg1 arg2) + ** + ** then argc is set to 2, and the argv[] array contains pointers + ** to the strings "arg1" and "arg2". + ** + ** This method should return either SQLITE_OK (0), or an SQLite error + ** code. If SQLITE_OK is returned, then *ppTokenizer should be set + ** to point at the newly created tokenizer structure. The generic + ** sqlite3_tokenizer.pModule variable should not be initialised by + ** this callback. The caller will do so. + */ + int (*xCreate)( + int argc, /* Size of argv array */ + const char *const*argv, /* Tokenizer argument strings */ + sqlite3_tokenizer **ppTokenizer /* OUT: Created tokenizer */ + ); + + /* + ** Destroy an existing tokenizer. The fts3 module calls this method + ** exactly once for each successful call to xCreate(). + */ + int (*xDestroy)(sqlite3_tokenizer *pTokenizer); + + /* + ** Create a tokenizer cursor to tokenize an input buffer. The caller + ** is responsible for ensuring that the input buffer remains valid + ** until the cursor is closed (using the xClose() method). + */ + int (*xOpen)( + sqlite3_tokenizer *pTokenizer, /* Tokenizer object */ + const char *pInput, int nBytes, /* Input buffer */ + sqlite3_tokenizer_cursor **ppCursor /* OUT: Created tokenizer cursor */ + ); + + /* + ** Destroy an existing tokenizer cursor. The fts3 module calls this + ** method exactly once for each successful call to xOpen(). + */ + int (*xClose)(sqlite3_tokenizer_cursor *pCursor); + + /* + ** Retrieve the next token from the tokenizer cursor pCursor. This + ** method should either return SQLITE_OK and set the values of the + ** "OUT" variables identified below, or SQLITE_DONE to indicate that + ** the end of the buffer has been reached, or an SQLite error code. + ** + ** *ppToken should be set to point at a buffer containing the + ** normalized version of the token (i.e. after any case-folding and/or + ** stemming has been performed). *pnBytes should be set to the length + ** of this buffer in bytes. The input text that generated the token is + ** identified by the byte offsets returned in *piStartOffset and + ** *piEndOffset. + ** + ** The buffer *ppToken is set to point at is managed by the tokenizer + ** implementation. It is only required to be valid until the next call + ** to xNext() or xClose(). + */ + /* TODO(shess) current implementation requires pInput to be + ** nul-terminated. This should either be fixed, or pInput/nBytes + ** should be converted to zInput. + */ + int (*xNext)( + sqlite3_tokenizer_cursor *pCursor, /* Tokenizer cursor */ + const char **ppToken, int *pnBytes, /* OUT: Normalized text for token */ + int *piStartOffset, /* OUT: Byte offset of token in input buffer */ + int *piEndOffset, /* OUT: Byte offset of end of token in input buffer */ + int *piPosition /* OUT: Number of tokens returned before this one */ + ); +}; + +struct sqlite3_tokenizer { + const sqlite3_tokenizer_module *pModule; /* The module for this tokenizer */ + /* Tokenizer implementations will typically add additional fields */ +}; + +struct sqlite3_tokenizer_cursor { + sqlite3_tokenizer *pTokenizer; /* Tokenizer for this cursor. */ + /* Tokenizer implementations will typically add additional fields */ +}; + +#endif /* _FTS3_TOKENIZER_H_ */ + +/************** End of fts3_tokenizer.h **************************************/ +/************** Continuing where we left off in fts3.c ***********************/ +#ifndef SQLITE_CORE + #include "sqlite3ext.h" + SQLITE_EXTENSION_INIT1 +#endif + + +/* TODO(shess) MAN, this thing needs some refactoring. At minimum, it +** would be nice to order the file better, perhaps something along the +** lines of: +** +** - utility functions +** - table setup functions +** - table update functions +** - table query functions +** +** Put the query functions last because they're likely to reference +** typedefs or functions from the table update section. +*/ + +#if 0 +# define FTSTRACE(A) printf A; fflush(stdout) +#else +# define FTSTRACE(A) +#endif + +/* +** Default span for NEAR operators. +*/ +#define SQLITE_FTS3_DEFAULT_NEAR_PARAM 10 + +/* It is not safe to call isspace(), tolower(), or isalnum() on +** hi-bit-set characters. This is the same solution used in the +** tokenizer. +*/ +/* TODO(shess) The snippet-generation code should be using the +** tokenizer-generated tokens rather than doing its own local +** tokenization. +*/ +/* TODO(shess) Is __isascii() a portable version of (c&0x80)==0? */ +static int safe_isspace(char c){ + return (c&0x80)==0 ? isspace(c) : 0; +} +static int safe_tolower(char c){ + return (c&0x80)==0 ? tolower(c) : c; +} +static int safe_isalnum(char c){ + return (c&0x80)==0 ? isalnum(c) : 0; +} + +typedef enum DocListType { + DL_DOCIDS, /* docids only */ + DL_POSITIONS, /* docids + positions */ + DL_POSITIONS_OFFSETS /* docids + positions + offsets */ +} DocListType; + +/* +** By default, only positions and not offsets are stored in the doclists. +** To change this so that offsets are stored too, compile with +** +** -DDL_DEFAULT=DL_POSITIONS_OFFSETS +** +** If DL_DEFAULT is set to DL_DOCIDS, your table can only be inserted +** into (no deletes or updates). +*/ +#ifndef DL_DEFAULT +# define DL_DEFAULT DL_POSITIONS +#endif + +enum { + POS_END = 0, /* end of this position list */ + POS_COLUMN, /* followed by new column number */ + POS_BASE +}; + +/* MERGE_COUNT controls how often we merge segments (see comment at +** top of file). +*/ +#define MERGE_COUNT 16 + +/* utility functions */ + +/* CLEAR() and SCRAMBLE() abstract memset() on a pointer to a single +** record to prevent errors of the form: +** +** my_function(SomeType *b){ +** memset(b, '\0', sizeof(b)); // sizeof(b)!=sizeof(*b) +** } +*/ +/* TODO(shess) Obvious candidates for a header file. */ +#define CLEAR(b) memset(b, '\0', sizeof(*(b))) + +#ifndef NDEBUG +# define SCRAMBLE(b) memset(b, 0x55, sizeof(*(b))) +#else +# define SCRAMBLE(b) +#endif + +/* We may need up to VARINT_MAX bytes to store an encoded 64-bit integer. */ +#define VARINT_MAX 10 + +/* Write a 64-bit variable-length integer to memory starting at p[0]. + * The length of data written will be between 1 and VARINT_MAX bytes. + * The number of bytes written is returned. */ +static int fts3PutVarint(char *p, sqlite_int64 v){ + unsigned char *q = (unsigned char *) p; + sqlite_uint64 vu = v; + do{ + *q++ = (unsigned char) ((vu & 0x7f) | 0x80); + vu >>= 7; + }while( vu!=0 ); + q[-1] &= 0x7f; /* turn off high bit in final byte */ + assert( q - (unsigned char *)p <= VARINT_MAX ); + return (int) (q - (unsigned char *)p); +} + +/* Read a 64-bit variable-length integer from memory starting at p[0]. + * Return the number of bytes read, or 0 on error. + * The value is stored in *v. */ +static int fts3GetVarint(const char *p, sqlite_int64 *v){ + const unsigned char *q = (const unsigned char *) p; + sqlite_uint64 x = 0, y = 1; + while( (*q & 0x80) == 0x80 ){ + x += y * (*q++ & 0x7f); + y <<= 7; + if( q - (unsigned char *)p >= VARINT_MAX ){ /* bad data */ + assert( 0 ); + return 0; + } + } + x += y * (*q++); + *v = (sqlite_int64) x; + return (int) (q - (unsigned char *)p); +} + +static int fts3GetVarint32(const char *p, int *pi){ + sqlite_int64 i; + int ret = fts3GetVarint(p, &i); + *pi = (int) i; + assert( *pi==i ); + return ret; +} + +/*******************************************************************/ +/* DataBuffer is used to collect data into a buffer in piecemeal +** fashion. It implements the usual distinction between amount of +** data currently stored (nData) and buffer capacity (nCapacity). +** +** dataBufferInit - create a buffer with given initial capacity. +** dataBufferReset - forget buffer's data, retaining capacity. +** dataBufferDestroy - free buffer's data. +** dataBufferSwap - swap contents of two buffers. +** dataBufferExpand - expand capacity without adding data. +** dataBufferAppend - append data. +** dataBufferAppend2 - append two pieces of data at once. +** dataBufferReplace - replace buffer's data. +*/ +typedef struct DataBuffer { + char *pData; /* Pointer to malloc'ed buffer. */ + int nCapacity; /* Size of pData buffer. */ + int nData; /* End of data loaded into pData. */ +} DataBuffer; + +static void dataBufferInit(DataBuffer *pBuffer, int nCapacity){ + assert( nCapacity>=0 ); + pBuffer->nData = 0; + pBuffer->nCapacity = nCapacity; + pBuffer->pData = nCapacity==0 ? NULL : sqlite3_malloc(nCapacity); +} +static void dataBufferReset(DataBuffer *pBuffer){ + pBuffer->nData = 0; +} +static void dataBufferDestroy(DataBuffer *pBuffer){ + if( pBuffer->pData!=NULL ) sqlite3_free(pBuffer->pData); + SCRAMBLE(pBuffer); +} +static void dataBufferSwap(DataBuffer *pBuffer1, DataBuffer *pBuffer2){ + DataBuffer tmp = *pBuffer1; + *pBuffer1 = *pBuffer2; + *pBuffer2 = tmp; +} +static void dataBufferExpand(DataBuffer *pBuffer, int nAddCapacity){ + assert( nAddCapacity>0 ); + /* TODO(shess) Consider expanding more aggressively. Note that the + ** underlying malloc implementation may take care of such things for + ** us already. + */ + if( pBuffer->nData+nAddCapacity>pBuffer->nCapacity ){ + pBuffer->nCapacity = pBuffer->nData+nAddCapacity; + pBuffer->pData = sqlite3_realloc(pBuffer->pData, pBuffer->nCapacity); + } +} +static void dataBufferAppend(DataBuffer *pBuffer, + const char *pSource, int nSource){ + assert( nSource>0 && pSource!=NULL ); + dataBufferExpand(pBuffer, nSource); + memcpy(pBuffer->pData+pBuffer->nData, pSource, nSource); + pBuffer->nData += nSource; +} +static void dataBufferAppend2(DataBuffer *pBuffer, + const char *pSource1, int nSource1, + const char *pSource2, int nSource2){ + assert( nSource1>0 && pSource1!=NULL ); + assert( nSource2>0 && pSource2!=NULL ); + dataBufferExpand(pBuffer, nSource1+nSource2); + memcpy(pBuffer->pData+pBuffer->nData, pSource1, nSource1); + memcpy(pBuffer->pData+pBuffer->nData+nSource1, pSource2, nSource2); + pBuffer->nData += nSource1+nSource2; +} +static void dataBufferReplace(DataBuffer *pBuffer, + const char *pSource, int nSource){ + dataBufferReset(pBuffer); + dataBufferAppend(pBuffer, pSource, nSource); +} + +/* StringBuffer is a null-terminated version of DataBuffer. */ +typedef struct StringBuffer { + DataBuffer b; /* Includes null terminator. */ +} StringBuffer; + +static void initStringBuffer(StringBuffer *sb){ + dataBufferInit(&sb->b, 100); + dataBufferReplace(&sb->b, "", 1); +} +static int stringBufferLength(StringBuffer *sb){ + return sb->b.nData-1; +} +static char *stringBufferData(StringBuffer *sb){ + return sb->b.pData; +} +static void stringBufferDestroy(StringBuffer *sb){ + dataBufferDestroy(&sb->b); +} + +static void nappend(StringBuffer *sb, const char *zFrom, int nFrom){ + assert( sb->b.nData>0 ); + if( nFrom>0 ){ + sb->b.nData--; + dataBufferAppend2(&sb->b, zFrom, nFrom, "", 1); + } +} +static void append(StringBuffer *sb, const char *zFrom){ + nappend(sb, zFrom, strlen(zFrom)); +} + +/* Append a list of strings separated by commas. */ +static void appendList(StringBuffer *sb, int nString, char **azString){ + int i; + for(i=0; i0 ) append(sb, ", "); + append(sb, azString[i]); + } +} + +static int endsInWhiteSpace(StringBuffer *p){ + return stringBufferLength(p)>0 && + safe_isspace(stringBufferData(p)[stringBufferLength(p)-1]); +} + +/* If the StringBuffer ends in something other than white space, add a +** single space character to the end. +*/ +static void appendWhiteSpace(StringBuffer *p){ + if( stringBufferLength(p)==0 ) return; + if( !endsInWhiteSpace(p) ) append(p, " "); +} + +/* Remove white space from the end of the StringBuffer */ +static void trimWhiteSpace(StringBuffer *p){ + while( endsInWhiteSpace(p) ){ + p->b.pData[--p->b.nData-1] = '\0'; + } +} + +/*******************************************************************/ +/* DLReader is used to read document elements from a doclist. The +** current docid is cached, so dlrDocid() is fast. DLReader does not +** own the doclist buffer. +** +** dlrAtEnd - true if there's no more data to read. +** dlrDocid - docid of current document. +** dlrDocData - doclist data for current document (including docid). +** dlrDocDataBytes - length of same. +** dlrAllDataBytes - length of all remaining data. +** dlrPosData - position data for current document. +** dlrPosDataLen - length of pos data for current document (incl POS_END). +** dlrStep - step to current document. +** dlrInit - initial for doclist of given type against given data. +** dlrDestroy - clean up. +** +** Expected usage is something like: +** +** DLReader reader; +** dlrInit(&reader, pData, nData); +** while( !dlrAtEnd(&reader) ){ +** // calls to dlrDocid() and kin. +** dlrStep(&reader); +** } +** dlrDestroy(&reader); +*/ +typedef struct DLReader { + DocListType iType; + const char *pData; + int nData; + + sqlite_int64 iDocid; + int nElement; +} DLReader; + +static int dlrAtEnd(DLReader *pReader){ + assert( pReader->nData>=0 ); + return pReader->nData==0; +} +static sqlite_int64 dlrDocid(DLReader *pReader){ + assert( !dlrAtEnd(pReader) ); + return pReader->iDocid; +} +static const char *dlrDocData(DLReader *pReader){ + assert( !dlrAtEnd(pReader) ); + return pReader->pData; +} +static int dlrDocDataBytes(DLReader *pReader){ + assert( !dlrAtEnd(pReader) ); + return pReader->nElement; +} +static int dlrAllDataBytes(DLReader *pReader){ + assert( !dlrAtEnd(pReader) ); + return pReader->nData; +} +/* TODO(shess) Consider adding a field to track iDocid varint length +** to make these two functions faster. This might matter (a tiny bit) +** for queries. +*/ +static const char *dlrPosData(DLReader *pReader){ + sqlite_int64 iDummy; + int n = fts3GetVarint(pReader->pData, &iDummy); + assert( !dlrAtEnd(pReader) ); + return pReader->pData+n; +} +static int dlrPosDataLen(DLReader *pReader){ + sqlite_int64 iDummy; + int n = fts3GetVarint(pReader->pData, &iDummy); + assert( !dlrAtEnd(pReader) ); + return pReader->nElement-n; +} +static void dlrStep(DLReader *pReader){ + assert( !dlrAtEnd(pReader) ); + + /* Skip past current doclist element. */ + assert( pReader->nElement<=pReader->nData ); + pReader->pData += pReader->nElement; + pReader->nData -= pReader->nElement; + + /* If there is more data, read the next doclist element. */ + if( pReader->nData!=0 ){ + sqlite_int64 iDocidDelta; + int iDummy, n = fts3GetVarint(pReader->pData, &iDocidDelta); + pReader->iDocid += iDocidDelta; + if( pReader->iType>=DL_POSITIONS ){ + assert( nnData ); + while( 1 ){ + n += fts3GetVarint32(pReader->pData+n, &iDummy); + assert( n<=pReader->nData ); + if( iDummy==POS_END ) break; + if( iDummy==POS_COLUMN ){ + n += fts3GetVarint32(pReader->pData+n, &iDummy); + assert( nnData ); + }else if( pReader->iType==DL_POSITIONS_OFFSETS ){ + n += fts3GetVarint32(pReader->pData+n, &iDummy); + n += fts3GetVarint32(pReader->pData+n, &iDummy); + assert( nnData ); + } + } + } + pReader->nElement = n; + assert( pReader->nElement<=pReader->nData ); + } +} +static void dlrInit(DLReader *pReader, DocListType iType, + const char *pData, int nData){ + assert( pData!=NULL && nData!=0 ); + pReader->iType = iType; + pReader->pData = pData; + pReader->nData = nData; + pReader->nElement = 0; + pReader->iDocid = 0; + + /* Load the first element's data. There must be a first element. */ + dlrStep(pReader); +} +static void dlrDestroy(DLReader *pReader){ + SCRAMBLE(pReader); +} + +#ifndef NDEBUG +/* Verify that the doclist can be validly decoded. Also returns the +** last docid found because it is convenient in other assertions for +** DLWriter. +*/ +static void docListValidate(DocListType iType, const char *pData, int nData, + sqlite_int64 *pLastDocid){ + sqlite_int64 iPrevDocid = 0; + assert( nData>0 ); + assert( pData!=0 ); + assert( pData+nData>pData ); + while( nData!=0 ){ + sqlite_int64 iDocidDelta; + int n = fts3GetVarint(pData, &iDocidDelta); + iPrevDocid += iDocidDelta; + if( iType>DL_DOCIDS ){ + int iDummy; + while( 1 ){ + n += fts3GetVarint32(pData+n, &iDummy); + if( iDummy==POS_END ) break; + if( iDummy==POS_COLUMN ){ + n += fts3GetVarint32(pData+n, &iDummy); + }else if( iType>DL_POSITIONS ){ + n += fts3GetVarint32(pData+n, &iDummy); + n += fts3GetVarint32(pData+n, &iDummy); + } + assert( n<=nData ); + } + } + assert( n<=nData ); + pData += n; + nData -= n; + } + if( pLastDocid ) *pLastDocid = iPrevDocid; +} +#define ASSERT_VALID_DOCLIST(i, p, n, o) docListValidate(i, p, n, o) +#else +#define ASSERT_VALID_DOCLIST(i, p, n, o) assert( 1 ) +#endif + +/*******************************************************************/ +/* DLWriter is used to write doclist data to a DataBuffer. DLWriter +** always appends to the buffer and does not own it. +** +** dlwInit - initialize to write a given type doclistto a buffer. +** dlwDestroy - clear the writer's memory. Does not free buffer. +** dlwAppend - append raw doclist data to buffer. +** dlwCopy - copy next doclist from reader to writer. +** dlwAdd - construct doclist element and append to buffer. +** Only apply dlwAdd() to DL_DOCIDS doclists (else use PLWriter). +*/ +typedef struct DLWriter { + DocListType iType; + DataBuffer *b; + sqlite_int64 iPrevDocid; +#ifndef NDEBUG + int has_iPrevDocid; +#endif +} DLWriter; + +static void dlwInit(DLWriter *pWriter, DocListType iType, DataBuffer *b){ + pWriter->b = b; + pWriter->iType = iType; + pWriter->iPrevDocid = 0; +#ifndef NDEBUG + pWriter->has_iPrevDocid = 0; +#endif +} +static void dlwDestroy(DLWriter *pWriter){ + SCRAMBLE(pWriter); +} +/* iFirstDocid is the first docid in the doclist in pData. It is +** needed because pData may point within a larger doclist, in which +** case the first item would be delta-encoded. +** +** iLastDocid is the final docid in the doclist in pData. It is +** needed to create the new iPrevDocid for future delta-encoding. The +** code could decode the passed doclist to recreate iLastDocid, but +** the only current user (docListMerge) already has decoded this +** information. +*/ +/* TODO(shess) This has become just a helper for docListMerge. +** Consider a refactor to make this cleaner. +*/ +static void dlwAppend(DLWriter *pWriter, + const char *pData, int nData, + sqlite_int64 iFirstDocid, sqlite_int64 iLastDocid){ + sqlite_int64 iDocid = 0; + char c[VARINT_MAX]; + int nFirstOld, nFirstNew; /* Old and new varint len of first docid. */ +#ifndef NDEBUG + sqlite_int64 iLastDocidDelta; +#endif + + /* Recode the initial docid as delta from iPrevDocid. */ + nFirstOld = fts3GetVarint(pData, &iDocid); + assert( nFirstOldiType==DL_DOCIDS) ); + nFirstNew = fts3PutVarint(c, iFirstDocid-pWriter->iPrevDocid); + + /* Verify that the incoming doclist is valid AND that it ends with + ** the expected docid. This is essential because we'll trust this + ** docid in future delta-encoding. + */ + ASSERT_VALID_DOCLIST(pWriter->iType, pData, nData, &iLastDocidDelta); + assert( iLastDocid==iFirstDocid-iDocid+iLastDocidDelta ); + + /* Append recoded initial docid and everything else. Rest of docids + ** should have been delta-encoded from previous initial docid. + */ + if( nFirstOldb, c, nFirstNew, + pData+nFirstOld, nData-nFirstOld); + }else{ + dataBufferAppend(pWriter->b, c, nFirstNew); + } + pWriter->iPrevDocid = iLastDocid; +} +static void dlwCopy(DLWriter *pWriter, DLReader *pReader){ + dlwAppend(pWriter, dlrDocData(pReader), dlrDocDataBytes(pReader), + dlrDocid(pReader), dlrDocid(pReader)); +} +static void dlwAdd(DLWriter *pWriter, sqlite_int64 iDocid){ + char c[VARINT_MAX]; + int n = fts3PutVarint(c, iDocid-pWriter->iPrevDocid); + + /* Docids must ascend. */ + assert( !pWriter->has_iPrevDocid || iDocid>pWriter->iPrevDocid ); + assert( pWriter->iType==DL_DOCIDS ); + + dataBufferAppend(pWriter->b, c, n); + pWriter->iPrevDocid = iDocid; +#ifndef NDEBUG + pWriter->has_iPrevDocid = 1; +#endif +} + +/*******************************************************************/ +/* PLReader is used to read data from a document's position list. As +** the caller steps through the list, data is cached so that varints +** only need to be decoded once. +** +** plrInit, plrDestroy - create/destroy a reader. +** plrColumn, plrPosition, plrStartOffset, plrEndOffset - accessors +** plrAtEnd - at end of stream, only call plrDestroy once true. +** plrStep - step to the next element. +*/ +typedef struct PLReader { + /* These refer to the next position's data. nData will reach 0 when + ** reading the last position, so plrStep() signals EOF by setting + ** pData to NULL. + */ + const char *pData; + int nData; + + DocListType iType; + int iColumn; /* the last column read */ + int iPosition; /* the last position read */ + int iStartOffset; /* the last start offset read */ + int iEndOffset; /* the last end offset read */ +} PLReader; + +static int plrAtEnd(PLReader *pReader){ + return pReader->pData==NULL; +} +static int plrColumn(PLReader *pReader){ + assert( !plrAtEnd(pReader) ); + return pReader->iColumn; +} +static int plrPosition(PLReader *pReader){ + assert( !plrAtEnd(pReader) ); + return pReader->iPosition; +} +static int plrStartOffset(PLReader *pReader){ + assert( !plrAtEnd(pReader) ); + return pReader->iStartOffset; +} +static int plrEndOffset(PLReader *pReader){ + assert( !plrAtEnd(pReader) ); + return pReader->iEndOffset; +} +static void plrStep(PLReader *pReader){ + int i, n; + + assert( !plrAtEnd(pReader) ); + + if( pReader->nData==0 ){ + pReader->pData = NULL; + return; + } + + n = fts3GetVarint32(pReader->pData, &i); + if( i==POS_COLUMN ){ + n += fts3GetVarint32(pReader->pData+n, &pReader->iColumn); + pReader->iPosition = 0; + pReader->iStartOffset = 0; + n += fts3GetVarint32(pReader->pData+n, &i); + } + /* Should never see adjacent column changes. */ + assert( i!=POS_COLUMN ); + + if( i==POS_END ){ + pReader->nData = 0; + pReader->pData = NULL; + return; + } + + pReader->iPosition += i-POS_BASE; + if( pReader->iType==DL_POSITIONS_OFFSETS ){ + n += fts3GetVarint32(pReader->pData+n, &i); + pReader->iStartOffset += i; + n += fts3GetVarint32(pReader->pData+n, &i); + pReader->iEndOffset = pReader->iStartOffset+i; + } + assert( n<=pReader->nData ); + pReader->pData += n; + pReader->nData -= n; +} + +static void plrInit(PLReader *pReader, DLReader *pDLReader){ + pReader->pData = dlrPosData(pDLReader); + pReader->nData = dlrPosDataLen(pDLReader); + pReader->iType = pDLReader->iType; + pReader->iColumn = 0; + pReader->iPosition = 0; + pReader->iStartOffset = 0; + pReader->iEndOffset = 0; + plrStep(pReader); +} +static void plrDestroy(PLReader *pReader){ + SCRAMBLE(pReader); +} + +/*******************************************************************/ +/* PLWriter is used in constructing a document's position list. As a +** convenience, if iType is DL_DOCIDS, PLWriter becomes a no-op. +** PLWriter writes to the associated DLWriter's buffer. +** +** plwInit - init for writing a document's poslist. +** plwDestroy - clear a writer. +** plwAdd - append position and offset information. +** plwCopy - copy next position's data from reader to writer. +** plwTerminate - add any necessary doclist terminator. +** +** Calling plwAdd() after plwTerminate() may result in a corrupt +** doclist. +*/ +/* TODO(shess) Until we've written the second item, we can cache the +** first item's information. Then we'd have three states: +** +** - initialized with docid, no positions. +** - docid and one position. +** - docid and multiple positions. +** +** Only the last state needs to actually write to dlw->b, which would +** be an improvement in the DLCollector case. +*/ +typedef struct PLWriter { + DLWriter *dlw; + + int iColumn; /* the last column written */ + int iPos; /* the last position written */ + int iOffset; /* the last start offset written */ +} PLWriter; + +/* TODO(shess) In the case where the parent is reading these values +** from a PLReader, we could optimize to a copy if that PLReader has +** the same type as pWriter. +*/ +static void plwAdd(PLWriter *pWriter, int iColumn, int iPos, + int iStartOffset, int iEndOffset){ + /* Worst-case space for POS_COLUMN, iColumn, iPosDelta, + ** iStartOffsetDelta, and iEndOffsetDelta. + */ + char c[5*VARINT_MAX]; + int n = 0; + + /* Ban plwAdd() after plwTerminate(). */ + assert( pWriter->iPos!=-1 ); + + if( pWriter->dlw->iType==DL_DOCIDS ) return; + + if( iColumn!=pWriter->iColumn ){ + n += fts3PutVarint(c+n, POS_COLUMN); + n += fts3PutVarint(c+n, iColumn); + pWriter->iColumn = iColumn; + pWriter->iPos = 0; + pWriter->iOffset = 0; + } + assert( iPos>=pWriter->iPos ); + n += fts3PutVarint(c+n, POS_BASE+(iPos-pWriter->iPos)); + pWriter->iPos = iPos; + if( pWriter->dlw->iType==DL_POSITIONS_OFFSETS ){ + assert( iStartOffset>=pWriter->iOffset ); + n += fts3PutVarint(c+n, iStartOffset-pWriter->iOffset); + pWriter->iOffset = iStartOffset; + assert( iEndOffset>=iStartOffset ); + n += fts3PutVarint(c+n, iEndOffset-iStartOffset); + } + dataBufferAppend(pWriter->dlw->b, c, n); +} +static void plwCopy(PLWriter *pWriter, PLReader *pReader){ + plwAdd(pWriter, plrColumn(pReader), plrPosition(pReader), + plrStartOffset(pReader), plrEndOffset(pReader)); +} +static void plwInit(PLWriter *pWriter, DLWriter *dlw, sqlite_int64 iDocid){ + char c[VARINT_MAX]; + int n; + + pWriter->dlw = dlw; + + /* Docids must ascend. */ + assert( !pWriter->dlw->has_iPrevDocid || iDocid>pWriter->dlw->iPrevDocid ); + n = fts3PutVarint(c, iDocid-pWriter->dlw->iPrevDocid); + dataBufferAppend(pWriter->dlw->b, c, n); + pWriter->dlw->iPrevDocid = iDocid; +#ifndef NDEBUG + pWriter->dlw->has_iPrevDocid = 1; +#endif + + pWriter->iColumn = 0; + pWriter->iPos = 0; + pWriter->iOffset = 0; +} +/* TODO(shess) Should plwDestroy() also terminate the doclist? But +** then plwDestroy() would no longer be just a destructor, it would +** also be doing work, which isn't consistent with the overall idiom. +** Another option would be for plwAdd() to always append any necessary +** terminator, so that the output is always correct. But that would +** add incremental work to the common case with the only benefit being +** API elegance. Punt for now. +*/ +static void plwTerminate(PLWriter *pWriter){ + if( pWriter->dlw->iType>DL_DOCIDS ){ + char c[VARINT_MAX]; + int n = fts3PutVarint(c, POS_END); + dataBufferAppend(pWriter->dlw->b, c, n); + } +#ifndef NDEBUG + /* Mark as terminated for assert in plwAdd(). */ + pWriter->iPos = -1; +#endif +} +static void plwDestroy(PLWriter *pWriter){ + SCRAMBLE(pWriter); +} + +/*******************************************************************/ +/* DLCollector wraps PLWriter and DLWriter to provide a +** dynamically-allocated doclist area to use during tokenization. +** +** dlcNew - malloc up and initialize a collector. +** dlcDelete - destroy a collector and all contained items. +** dlcAddPos - append position and offset information. +** dlcAddDoclist - add the collected doclist to the given buffer. +** dlcNext - terminate the current document and open another. +*/ +typedef struct DLCollector { + DataBuffer b; + DLWriter dlw; + PLWriter plw; +} DLCollector; + +/* TODO(shess) This could also be done by calling plwTerminate() and +** dataBufferAppend(). I tried that, expecting nominal performance +** differences, but it seemed to pretty reliably be worth 1% to code +** it this way. I suspect it is the incremental malloc overhead (some +** percentage of the plwTerminate() calls will cause a realloc), so +** this might be worth revisiting if the DataBuffer implementation +** changes. +*/ +static void dlcAddDoclist(DLCollector *pCollector, DataBuffer *b){ + if( pCollector->dlw.iType>DL_DOCIDS ){ + char c[VARINT_MAX]; + int n = fts3PutVarint(c, POS_END); + dataBufferAppend2(b, pCollector->b.pData, pCollector->b.nData, c, n); + }else{ + dataBufferAppend(b, pCollector->b.pData, pCollector->b.nData); + } +} +static void dlcNext(DLCollector *pCollector, sqlite_int64 iDocid){ + plwTerminate(&pCollector->plw); + plwDestroy(&pCollector->plw); + plwInit(&pCollector->plw, &pCollector->dlw, iDocid); +} +static void dlcAddPos(DLCollector *pCollector, int iColumn, int iPos, + int iStartOffset, int iEndOffset){ + plwAdd(&pCollector->plw, iColumn, iPos, iStartOffset, iEndOffset); +} + +static DLCollector *dlcNew(sqlite_int64 iDocid, DocListType iType){ + DLCollector *pCollector = sqlite3_malloc(sizeof(DLCollector)); + dataBufferInit(&pCollector->b, 0); + dlwInit(&pCollector->dlw, iType, &pCollector->b); + plwInit(&pCollector->plw, &pCollector->dlw, iDocid); + return pCollector; +} +static void dlcDelete(DLCollector *pCollector){ + plwDestroy(&pCollector->plw); + dlwDestroy(&pCollector->dlw); + dataBufferDestroy(&pCollector->b); + SCRAMBLE(pCollector); + sqlite3_free(pCollector); +} + + +/* Copy the doclist data of iType in pData/nData into *out, trimming +** unnecessary data as we go. Only columns matching iColumn are +** copied, all columns copied if iColumn is -1. Elements with no +** matching columns are dropped. The output is an iOutType doclist. +*/ +/* NOTE(shess) This code is only valid after all doclists are merged. +** If this is run before merges, then doclist items which represent +** deletion will be trimmed, and will thus not effect a deletion +** during the merge. +*/ +static void docListTrim(DocListType iType, const char *pData, int nData, + int iColumn, DocListType iOutType, DataBuffer *out){ + DLReader dlReader; + DLWriter dlWriter; + + assert( iOutType<=iType ); + + dlrInit(&dlReader, iType, pData, nData); + dlwInit(&dlWriter, iOutType, out); + + while( !dlrAtEnd(&dlReader) ){ + PLReader plReader; + PLWriter plWriter; + int match = 0; + + plrInit(&plReader, &dlReader); + + while( !plrAtEnd(&plReader) ){ + if( iColumn==-1 || plrColumn(&plReader)==iColumn ){ + if( !match ){ + plwInit(&plWriter, &dlWriter, dlrDocid(&dlReader)); + match = 1; + } + plwAdd(&plWriter, plrColumn(&plReader), plrPosition(&plReader), + plrStartOffset(&plReader), plrEndOffset(&plReader)); + } + plrStep(&plReader); + } + if( match ){ + plwTerminate(&plWriter); + plwDestroy(&plWriter); + } + + plrDestroy(&plReader); + dlrStep(&dlReader); + } + dlwDestroy(&dlWriter); + dlrDestroy(&dlReader); +} + +/* Used by docListMerge() to keep doclists in the ascending order by +** docid, then ascending order by age (so the newest comes first). +*/ +typedef struct OrderedDLReader { + DLReader *pReader; + + /* TODO(shess) If we assume that docListMerge pReaders is ordered by + ** age (which we do), then we could use pReader comparisons to break + ** ties. + */ + int idx; +} OrderedDLReader; + +/* Order eof to end, then by docid asc, idx desc. */ +static int orderedDLReaderCmp(OrderedDLReader *r1, OrderedDLReader *r2){ + if( dlrAtEnd(r1->pReader) ){ + if( dlrAtEnd(r2->pReader) ) return 0; /* Both atEnd(). */ + return 1; /* Only r1 atEnd(). */ + } + if( dlrAtEnd(r2->pReader) ) return -1; /* Only r2 atEnd(). */ + + if( dlrDocid(r1->pReader)pReader) ) return -1; + if( dlrDocid(r1->pReader)>dlrDocid(r2->pReader) ) return 1; + + /* Descending on idx. */ + return r2->idx-r1->idx; +} + +/* Bubble p[0] to appropriate place in p[1..n-1]. Assumes that +** p[1..n-1] is already sorted. +*/ +/* TODO(shess) Is this frequent enough to warrant a binary search? +** Before implementing that, instrument the code to check. In most +** current usage, I expect that p[0] will be less than p[1] a very +** high proportion of the time. +*/ +static void orderedDLReaderReorder(OrderedDLReader *p, int n){ + while( n>1 && orderedDLReaderCmp(p, p+1)>0 ){ + OrderedDLReader tmp = p[0]; + p[0] = p[1]; + p[1] = tmp; + n--; + p++; + } +} + +/* Given an array of doclist readers, merge their doclist elements +** into out in sorted order (by docid), dropping elements from older +** readers when there is a duplicate docid. pReaders is assumed to be +** ordered by age, oldest first. +*/ +/* TODO(shess) nReaders must be <= MERGE_COUNT. This should probably +** be fixed. +*/ +static void docListMerge(DataBuffer *out, + DLReader *pReaders, int nReaders){ + OrderedDLReader readers[MERGE_COUNT]; + DLWriter writer; + int i, n; + const char *pStart = 0; + int nStart = 0; + sqlite_int64 iFirstDocid = 0, iLastDocid = 0; + + assert( nReaders>0 ); + if( nReaders==1 ){ + dataBufferAppend(out, dlrDocData(pReaders), dlrAllDataBytes(pReaders)); + return; + } + + assert( nReaders<=MERGE_COUNT ); + n = 0; + for(i=0; i0 ){ + orderedDLReaderReorder(readers+i, nReaders-i); + } + + dlwInit(&writer, pReaders[0].iType, out); + while( !dlrAtEnd(readers[0].pReader) ){ + sqlite_int64 iDocid = dlrDocid(readers[0].pReader); + + /* If this is a continuation of the current buffer to copy, extend + ** that buffer. memcpy() seems to be more efficient if it has a + ** lots of data to copy. + */ + if( dlrDocData(readers[0].pReader)==pStart+nStart ){ + nStart += dlrDocDataBytes(readers[0].pReader); + }else{ + if( pStart!=0 ){ + dlwAppend(&writer, pStart, nStart, iFirstDocid, iLastDocid); + } + pStart = dlrDocData(readers[0].pReader); + nStart = dlrDocDataBytes(readers[0].pReader); + iFirstDocid = iDocid; + } + iLastDocid = iDocid; + dlrStep(readers[0].pReader); + + /* Drop all of the older elements with the same docid. */ + for(i=1; i0 ){ + orderedDLReaderReorder(readers+i, nReaders-i); + } + } + + /* Copy over any remaining elements. */ + if( nStart>0 ) dlwAppend(&writer, pStart, nStart, iFirstDocid, iLastDocid); + dlwDestroy(&writer); +} + +/* Helper function for posListUnion(). Compares the current position +** between left and right, returning as standard C idiom of <0 if +** left0 if left>right, and 0 if left==right. "End" always +** compares greater. +*/ +static int posListCmp(PLReader *pLeft, PLReader *pRight){ + assert( pLeft->iType==pRight->iType ); + if( pLeft->iType==DL_DOCIDS ) return 0; + + if( plrAtEnd(pLeft) ) return plrAtEnd(pRight) ? 0 : 1; + if( plrAtEnd(pRight) ) return -1; + + if( plrColumn(pLeft)plrColumn(pRight) ) return 1; + + if( plrPosition(pLeft)plrPosition(pRight) ) return 1; + if( pLeft->iType==DL_POSITIONS ) return 0; + + if( plrStartOffset(pLeft)plrStartOffset(pRight) ) return 1; + + if( plrEndOffset(pLeft)plrEndOffset(pRight) ) return 1; + + return 0; +} + +/* Write the union of position lists in pLeft and pRight to pOut. +** "Union" in this case meaning "All unique position tuples". Should +** work with any doclist type, though both inputs and the output +** should be the same type. +*/ +static void posListUnion(DLReader *pLeft, DLReader *pRight, DLWriter *pOut){ + PLReader left, right; + PLWriter writer; + + assert( dlrDocid(pLeft)==dlrDocid(pRight) ); + assert( pLeft->iType==pRight->iType ); + assert( pLeft->iType==pOut->iType ); + + plrInit(&left, pLeft); + plrInit(&right, pRight); + plwInit(&writer, pOut, dlrDocid(pLeft)); + + while( !plrAtEnd(&left) || !plrAtEnd(&right) ){ + int c = posListCmp(&left, &right); + if( c<0 ){ + plwCopy(&writer, &left); + plrStep(&left); + }else if( c>0 ){ + plwCopy(&writer, &right); + plrStep(&right); + }else{ + plwCopy(&writer, &left); + plrStep(&left); + plrStep(&right); + } + } + + plwTerminate(&writer); + plwDestroy(&writer); + plrDestroy(&left); + plrDestroy(&right); +} + +/* Write the union of doclists in pLeft and pRight to pOut. For +** docids in common between the inputs, the union of the position +** lists is written. Inputs and outputs are always type DL_DEFAULT. +*/ +static void docListUnion( + const char *pLeft, int nLeft, + const char *pRight, int nRight, + DataBuffer *pOut /* Write the combined doclist here */ +){ + DLReader left, right; + DLWriter writer; + + if( nLeft==0 ){ + if( nRight!=0) dataBufferAppend(pOut, pRight, nRight); + return; + } + if( nRight==0 ){ + dataBufferAppend(pOut, pLeft, nLeft); + return; + } + + dlrInit(&left, DL_DEFAULT, pLeft, nLeft); + dlrInit(&right, DL_DEFAULT, pRight, nRight); + dlwInit(&writer, DL_DEFAULT, pOut); + + while( !dlrAtEnd(&left) || !dlrAtEnd(&right) ){ + if( dlrAtEnd(&right) ){ + dlwCopy(&writer, &left); + dlrStep(&left); + }else if( dlrAtEnd(&left) ){ + dlwCopy(&writer, &right); + dlrStep(&right); + }else if( dlrDocid(&left)dlrDocid(&right) ){ + dlwCopy(&writer, &right); + dlrStep(&right); + }else{ + posListUnion(&left, &right, &writer); + dlrStep(&left); + dlrStep(&right); + } + } + + dlrDestroy(&left); + dlrDestroy(&right); + dlwDestroy(&writer); +} + +/* +** This function is used as part of the implementation of phrase and +** NEAR matching. +** +** pLeft and pRight are DLReaders positioned to the same docid in +** lists of type DL_POSITION. This function writes an entry to the +** DLWriter pOut for each position in pRight that is less than +** (nNear+1) greater (but not equal to or smaller) than a position +** in pLeft. For example, if nNear is 0, and the positions contained +** by pLeft and pRight are: +** +** pLeft: 5 10 15 20 +** pRight: 6 9 17 21 +** +** then the docid is added to pOut. If pOut is of type DL_POSITIONS, +** then a positionids "6" and "21" are also added to pOut. +** +** If boolean argument isSaveLeft is true, then positionids are copied +** from pLeft instead of pRight. In the example above, the positions "5" +** and "20" would be added instead of "6" and "21". +*/ +static void posListPhraseMerge( + DLReader *pLeft, + DLReader *pRight, + int nNear, + int isSaveLeft, + DLWriter *pOut +){ + PLReader left, right; + PLWriter writer; + int match = 0; + + assert( dlrDocid(pLeft)==dlrDocid(pRight) ); + assert( pOut->iType!=DL_POSITIONS_OFFSETS ); + + plrInit(&left, pLeft); + plrInit(&right, pRight); + + while( !plrAtEnd(&left) && !plrAtEnd(&right) ){ + if( plrColumn(&left)plrColumn(&right) ){ + plrStep(&right); + }else if( plrPosition(&left)>=plrPosition(&right) ){ + plrStep(&right); + }else{ + if( (plrPosition(&right)-plrPosition(&left))<=(nNear+1) ){ + if( !match ){ + plwInit(&writer, pOut, dlrDocid(pLeft)); + match = 1; + } + if( !isSaveLeft ){ + plwAdd(&writer, plrColumn(&right), plrPosition(&right), 0, 0); + }else{ + plwAdd(&writer, plrColumn(&left), plrPosition(&left), 0, 0); + } + plrStep(&right); + }else{ + plrStep(&left); + } + } + } + + if( match ){ + plwTerminate(&writer); + plwDestroy(&writer); + } + + plrDestroy(&left); + plrDestroy(&right); +} + +/* +** Compare the values pointed to by the PLReaders passed as arguments. +** Return -1 if the value pointed to by pLeft is considered less than +** the value pointed to by pRight, +1 if it is considered greater +** than it, or 0 if it is equal. i.e. +** +** (*pLeft - *pRight) +** +** A PLReader that is in the EOF condition is considered greater than +** any other. If neither argument is in EOF state, the return value of +** plrColumn() is used. If the plrColumn() values are equal, the +** comparison is on the basis of plrPosition(). +*/ +static int plrCompare(PLReader *pLeft, PLReader *pRight){ + assert(!plrAtEnd(pLeft) || !plrAtEnd(pRight)); + + if( plrAtEnd(pRight) || plrAtEnd(pLeft) ){ + return (plrAtEnd(pRight) ? -1 : 1); + } + if( plrColumn(pLeft)!=plrColumn(pRight) ){ + return ((plrColumn(pLeft)0) +** and write the results into pOut. +** +** A phrase intersection means that two documents only match +** if pLeft.iPos+1==pRight.iPos. +** +** A NEAR intersection means that two documents only match if +** (abs(pLeft.iPos-pRight.iPos) one AND (two OR three) + * [one OR two three] ==> (one OR two) AND three + * + * A "-" before a term matches all entries that lack that term. + * The "-" must occur immediately before the term with in intervening + * space. This is how the search engines do it. + * + * A NOT term cannot be the right-hand operand of an OR. If this + * occurs in the query string, the NOT is ignored: + * + * [one OR -two] ==> one OR two + * + */ +typedef struct Query { + fulltext_vtab *pFts; /* The full text index */ + int nTerms; /* Number of terms in the query */ + QueryTerm *pTerms; /* Array of terms. Space obtained from malloc() */ + int nextIsOr; /* Set the isOr flag on the next inserted term */ + int nextIsNear; /* Set the isOr flag on the next inserted term */ + int nextColumn; /* Next word parsed must be in this column */ + int dfltColumn; /* The default column */ +} Query; + + +/* +** An instance of the following structure keeps track of generated +** matching-word offset information and snippets. +*/ +typedef struct Snippet { + int nMatch; /* Total number of matches */ + int nAlloc; /* Space allocated for aMatch[] */ + struct snippetMatch { /* One entry for each matching term */ + char snStatus; /* Status flag for use while constructing snippets */ + short int iCol; /* The column that contains the match */ + short int iTerm; /* The index in Query.pTerms[] of the matching term */ + int iToken; /* The index of the matching document token */ + short int nByte; /* Number of bytes in the term */ + int iStart; /* The offset to the first character of the term */ + } *aMatch; /* Points to space obtained from malloc */ + char *zOffset; /* Text rendering of aMatch[] */ + int nOffset; /* strlen(zOffset) */ + char *zSnippet; /* Snippet text */ + int nSnippet; /* strlen(zSnippet) */ +} Snippet; + + +typedef enum QueryType { + QUERY_GENERIC, /* table scan */ + QUERY_DOCID, /* lookup by docid */ + QUERY_FULLTEXT /* QUERY_FULLTEXT + [i] is a full-text search for column i*/ +} QueryType; + +typedef enum fulltext_statement { + CONTENT_INSERT_STMT, + CONTENT_SELECT_STMT, + CONTENT_UPDATE_STMT, + CONTENT_DELETE_STMT, + + BLOCK_INSERT_STMT, + BLOCK_SELECT_STMT, + BLOCK_DELETE_STMT, + + SEGDIR_MAX_INDEX_STMT, + SEGDIR_SET_STMT, + SEGDIR_SELECT_STMT, + SEGDIR_SPAN_STMT, + SEGDIR_DELETE_STMT, + SEGDIR_SELECT_ALL_STMT, + + MAX_STMT /* Always at end! */ +} fulltext_statement; + +/* These must exactly match the enum above. */ +/* TODO(shess): Is there some risk that a statement will be used in two +** cursors at once, e.g. if a query joins a virtual table to itself? +** If so perhaps we should move some of these to the cursor object. +*/ +static const char *const fulltext_zStatement[MAX_STMT] = { + /* CONTENT_INSERT */ NULL, /* generated in contentInsertStatement() */ + /* CONTENT_SELECT */ NULL, /* generated in contentSelectStatement() */ + /* CONTENT_UPDATE */ NULL, /* generated in contentUpdateStatement() */ + /* CONTENT_DELETE */ "delete from %_content where docid = ?", + + /* BLOCK_INSERT */ + "insert into %_segments (blockid, block) values (null, ?)", + /* BLOCK_SELECT */ "select block from %_segments where blockid = ?", + /* BLOCK_DELETE */ "delete from %_segments where blockid between ? and ?", + + /* SEGDIR_MAX_INDEX */ "select max(idx) from %_segdir where level = ?", + /* SEGDIR_SET */ "insert into %_segdir values (?, ?, ?, ?, ?, ?)", + /* SEGDIR_SELECT */ + "select start_block, leaves_end_block, root from %_segdir " + " where level = ? order by idx", + /* SEGDIR_SPAN */ + "select min(start_block), max(end_block) from %_segdir " + " where level = ? and start_block <> 0", + /* SEGDIR_DELETE */ "delete from %_segdir where level = ?", + /* SEGDIR_SELECT_ALL */ + "select root, leaves_end_block from %_segdir order by level desc, idx", +}; + +/* +** A connection to a fulltext index is an instance of the following +** structure. The xCreate and xConnect methods create an instance +** of this structure and xDestroy and xDisconnect free that instance. +** All other methods receive a pointer to the structure as one of their +** arguments. +*/ +struct fulltext_vtab { + sqlite3_vtab base; /* Base class used by SQLite core */ + sqlite3 *db; /* The database connection */ + const char *zDb; /* logical database name */ + const char *zName; /* virtual table name */ + int nColumn; /* number of columns in virtual table */ + char **azColumn; /* column names. malloced */ + char **azContentColumn; /* column names in content table; malloced */ + sqlite3_tokenizer *pTokenizer; /* tokenizer for inserts and queries */ + + /* Precompiled statements which we keep as long as the table is + ** open. + */ + sqlite3_stmt *pFulltextStatements[MAX_STMT]; + + /* Precompiled statements used for segment merges. We run a + ** separate select across the leaf level of each tree being merged. + */ + sqlite3_stmt *pLeafSelectStmts[MERGE_COUNT]; + /* The statement used to prepare pLeafSelectStmts. */ +#define LEAF_SELECT \ + "select block from %_segments where blockid between ? and ? order by blockid" + + /* These buffer pending index updates during transactions. + ** nPendingData estimates the memory size of the pending data. It + ** doesn't include the hash-bucket overhead, nor any malloc + ** overhead. When nPendingData exceeds kPendingThreshold, the + ** buffer is flushed even before the transaction closes. + ** pendingTerms stores the data, and is only valid when nPendingData + ** is >=0 (nPendingData<0 means pendingTerms has not been + ** initialized). iPrevDocid is the last docid written, used to make + ** certain we're inserting in sorted order. + */ + int nPendingData; +#define kPendingThreshold (1*1024*1024) + sqlite_int64 iPrevDocid; + fts3Hash pendingTerms; +}; + +/* +** When the core wants to do a query, it create a cursor using a +** call to xOpen. This structure is an instance of a cursor. It +** is destroyed by xClose. +*/ +typedef struct fulltext_cursor { + sqlite3_vtab_cursor base; /* Base class used by SQLite core */ + QueryType iCursorType; /* Copy of sqlite3_index_info.idxNum */ + sqlite3_stmt *pStmt; /* Prepared statement in use by the cursor */ + int eof; /* True if at End Of Results */ + Query q; /* Parsed query string */ + Snippet snippet; /* Cached snippet for the current row */ + int iColumn; /* Column being searched */ + DataBuffer result; /* Doclist results from fulltextQuery */ + DLReader reader; /* Result reader if result not empty */ +} fulltext_cursor; + +static struct fulltext_vtab *cursor_vtab(fulltext_cursor *c){ + return (fulltext_vtab *) c->base.pVtab; +} + +static const sqlite3_module fts3Module; /* forward declaration */ + +/* Return a dynamically generated statement of the form + * insert into %_content (docid, ...) values (?, ...) + */ +static const char *contentInsertStatement(fulltext_vtab *v){ + StringBuffer sb; + int i; + + initStringBuffer(&sb); + append(&sb, "insert into %_content (docid, "); + appendList(&sb, v->nColumn, v->azContentColumn); + append(&sb, ") values (?"); + for(i=0; inColumn; ++i) + append(&sb, ", ?"); + append(&sb, ")"); + return stringBufferData(&sb); +} + +/* Return a dynamically generated statement of the form + * select from %_content where docid = ? + */ +static const char *contentSelectStatement(fulltext_vtab *v){ + StringBuffer sb; + initStringBuffer(&sb); + append(&sb, "SELECT "); + appendList(&sb, v->nColumn, v->azContentColumn); + append(&sb, " FROM %_content WHERE docid = ?"); + return stringBufferData(&sb); +} + +/* Return a dynamically generated statement of the form + * update %_content set [col_0] = ?, [col_1] = ?, ... + * where docid = ? + */ +static const char *contentUpdateStatement(fulltext_vtab *v){ + StringBuffer sb; + int i; + + initStringBuffer(&sb); + append(&sb, "update %_content set "); + for(i=0; inColumn; ++i) { + if( i>0 ){ + append(&sb, ", "); + } + append(&sb, v->azContentColumn[i]); + append(&sb, " = ?"); + } + append(&sb, " where docid = ?"); + return stringBufferData(&sb); +} + +/* Puts a freshly-prepared statement determined by iStmt in *ppStmt. +** If the indicated statement has never been prepared, it is prepared +** and cached, otherwise the cached version is reset. +*/ +static int sql_get_statement(fulltext_vtab *v, fulltext_statement iStmt, + sqlite3_stmt **ppStmt){ + assert( iStmtpFulltextStatements[iStmt]==NULL ){ + const char *zStmt; + int rc; + switch( iStmt ){ + case CONTENT_INSERT_STMT: + zStmt = contentInsertStatement(v); break; + case CONTENT_SELECT_STMT: + zStmt = contentSelectStatement(v); break; + case CONTENT_UPDATE_STMT: + zStmt = contentUpdateStatement(v); break; + default: + zStmt = fulltext_zStatement[iStmt]; + } + rc = sql_prepare(v->db, v->zDb, v->zName, &v->pFulltextStatements[iStmt], + zStmt); + if( zStmt != fulltext_zStatement[iStmt]) sqlite3_free((void *) zStmt); + if( rc!=SQLITE_OK ) return rc; + } else { + int rc = sqlite3_reset(v->pFulltextStatements[iStmt]); + if( rc!=SQLITE_OK ) return rc; + } + + *ppStmt = v->pFulltextStatements[iStmt]; + return SQLITE_OK; +} + +/* Like sqlite3_step(), but convert SQLITE_DONE to SQLITE_OK and +** SQLITE_ROW to SQLITE_ERROR. Useful for statements like UPDATE, +** where we expect no results. +*/ +static int sql_single_step(sqlite3_stmt *s){ + int rc = sqlite3_step(s); + return (rc==SQLITE_DONE) ? SQLITE_OK : rc; +} + +/* Like sql_get_statement(), but for special replicated LEAF_SELECT +** statements. +*/ +/* TODO(shess) Write version for generic statements and then share +** that between the cached-statement functions. +*/ +static int sql_get_leaf_statement(fulltext_vtab *v, int idx, + sqlite3_stmt **ppStmt){ + assert( idx>=0 && idxpLeafSelectStmts[idx]==NULL ){ + int rc = sql_prepare(v->db, v->zDb, v->zName, &v->pLeafSelectStmts[idx], + LEAF_SELECT); + if( rc!=SQLITE_OK ) return rc; + }else{ + int rc = sqlite3_reset(v->pLeafSelectStmts[idx]); + if( rc!=SQLITE_OK ) return rc; + } + + *ppStmt = v->pLeafSelectStmts[idx]; + return SQLITE_OK; +} + +/* insert into %_content (docid, ...) values ([docid], [pValues]) +** If the docid contains SQL NULL, then a unique docid will be +** generated. +*/ +static int content_insert(fulltext_vtab *v, sqlite3_value *docid, + sqlite3_value **pValues){ + sqlite3_stmt *s; + int i; + int rc = sql_get_statement(v, CONTENT_INSERT_STMT, &s); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3_bind_value(s, 1, docid); + if( rc!=SQLITE_OK ) return rc; + + for(i=0; inColumn; ++i){ + rc = sqlite3_bind_value(s, 2+i, pValues[i]); + if( rc!=SQLITE_OK ) return rc; + } + + return sql_single_step(s); +} + +/* update %_content set col0 = pValues[0], col1 = pValues[1], ... + * where docid = [iDocid] */ +static int content_update(fulltext_vtab *v, sqlite3_value **pValues, + sqlite_int64 iDocid){ + sqlite3_stmt *s; + int i; + int rc = sql_get_statement(v, CONTENT_UPDATE_STMT, &s); + if( rc!=SQLITE_OK ) return rc; + + for(i=0; inColumn; ++i){ + rc = sqlite3_bind_value(s, 1+i, pValues[i]); + if( rc!=SQLITE_OK ) return rc; + } + + rc = sqlite3_bind_int64(s, 1+v->nColumn, iDocid); + if( rc!=SQLITE_OK ) return rc; + + return sql_single_step(s); +} + +static void freeStringArray(int nString, const char **pString){ + int i; + + for (i=0 ; i < nString ; ++i) { + if( pString[i]!=NULL ) sqlite3_free((void *) pString[i]); + } + sqlite3_free((void *) pString); +} + +/* select * from %_content where docid = [iDocid] + * The caller must delete the returned array and all strings in it. + * null fields will be NULL in the returned array. + * + * TODO: Perhaps we should return pointer/length strings here for consistency + * with other code which uses pointer/length. */ +static int content_select(fulltext_vtab *v, sqlite_int64 iDocid, + const char ***pValues){ + sqlite3_stmt *s; + const char **values; + int i; + int rc; + + *pValues = NULL; + + rc = sql_get_statement(v, CONTENT_SELECT_STMT, &s); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3_bind_int64(s, 1, iDocid); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3_step(s); + if( rc!=SQLITE_ROW ) return rc; + + values = (const char **) sqlite3_malloc(v->nColumn * sizeof(const char *)); + for(i=0; inColumn; ++i){ + if( sqlite3_column_type(s, i)==SQLITE_NULL ){ + values[i] = NULL; + }else{ + values[i] = string_dup((char*)sqlite3_column_text(s, i)); + } + } + + /* We expect only one row. We must execute another sqlite3_step() + * to complete the iteration; otherwise the table will remain locked. */ + rc = sqlite3_step(s); + if( rc==SQLITE_DONE ){ + *pValues = values; + return SQLITE_OK; + } + + freeStringArray(v->nColumn, values); + return rc; +} + +/* delete from %_content where docid = [iDocid ] */ +static int content_delete(fulltext_vtab *v, sqlite_int64 iDocid){ + sqlite3_stmt *s; + int rc = sql_get_statement(v, CONTENT_DELETE_STMT, &s); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3_bind_int64(s, 1, iDocid); + if( rc!=SQLITE_OK ) return rc; + + return sql_single_step(s); +} + +/* insert into %_segments values ([pData]) +** returns assigned blockid in *piBlockid +*/ +static int block_insert(fulltext_vtab *v, const char *pData, int nData, + sqlite_int64 *piBlockid){ + sqlite3_stmt *s; + int rc = sql_get_statement(v, BLOCK_INSERT_STMT, &s); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3_bind_blob(s, 1, pData, nData, SQLITE_STATIC); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3_step(s); + if( rc==SQLITE_ROW ) return SQLITE_ERROR; + if( rc!=SQLITE_DONE ) return rc; + + /* blockid column is an alias for rowid. */ + *piBlockid = sqlite3_last_insert_rowid(v->db); + return SQLITE_OK; +} + +/* delete from %_segments +** where blockid between [iStartBlockid] and [iEndBlockid] +** +** Deletes the range of blocks, inclusive, used to delete the blocks +** which form a segment. +*/ +static int block_delete(fulltext_vtab *v, + sqlite_int64 iStartBlockid, sqlite_int64 iEndBlockid){ + sqlite3_stmt *s; + int rc = sql_get_statement(v, BLOCK_DELETE_STMT, &s); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3_bind_int64(s, 1, iStartBlockid); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3_bind_int64(s, 2, iEndBlockid); + if( rc!=SQLITE_OK ) return rc; + + return sql_single_step(s); +} + +/* Returns SQLITE_ROW with *pidx set to the maximum segment idx found +** at iLevel. Returns SQLITE_DONE if there are no segments at +** iLevel. Otherwise returns an error. +*/ +static int segdir_max_index(fulltext_vtab *v, int iLevel, int *pidx){ + sqlite3_stmt *s; + int rc = sql_get_statement(v, SEGDIR_MAX_INDEX_STMT, &s); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3_bind_int(s, 1, iLevel); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3_step(s); + /* Should always get at least one row due to how max() works. */ + if( rc==SQLITE_DONE ) return SQLITE_DONE; + if( rc!=SQLITE_ROW ) return rc; + + /* NULL means that there were no inputs to max(). */ + if( SQLITE_NULL==sqlite3_column_type(s, 0) ){ + rc = sqlite3_step(s); + if( rc==SQLITE_ROW ) return SQLITE_ERROR; + return rc; + } + + *pidx = sqlite3_column_int(s, 0); + + /* We expect only one row. We must execute another sqlite3_step() + * to complete the iteration; otherwise the table will remain locked. */ + rc = sqlite3_step(s); + if( rc==SQLITE_ROW ) return SQLITE_ERROR; + if( rc!=SQLITE_DONE ) return rc; + return SQLITE_ROW; +} + +/* insert into %_segdir values ( +** [iLevel], [idx], +** [iStartBlockid], [iLeavesEndBlockid], [iEndBlockid], +** [pRootData] +** ) +*/ +static int segdir_set(fulltext_vtab *v, int iLevel, int idx, + sqlite_int64 iStartBlockid, + sqlite_int64 iLeavesEndBlockid, + sqlite_int64 iEndBlockid, + const char *pRootData, int nRootData){ + sqlite3_stmt *s; + int rc = sql_get_statement(v, SEGDIR_SET_STMT, &s); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3_bind_int(s, 1, iLevel); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3_bind_int(s, 2, idx); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3_bind_int64(s, 3, iStartBlockid); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3_bind_int64(s, 4, iLeavesEndBlockid); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3_bind_int64(s, 5, iEndBlockid); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3_bind_blob(s, 6, pRootData, nRootData, SQLITE_STATIC); + if( rc!=SQLITE_OK ) return rc; + + return sql_single_step(s); +} + +/* Queries %_segdir for the block span of the segments in level +** iLevel. Returns SQLITE_DONE if there are no blocks for iLevel, +** SQLITE_ROW if there are blocks, else an error. +*/ +static int segdir_span(fulltext_vtab *v, int iLevel, + sqlite_int64 *piStartBlockid, + sqlite_int64 *piEndBlockid){ + sqlite3_stmt *s; + int rc = sql_get_statement(v, SEGDIR_SPAN_STMT, &s); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3_bind_int(s, 1, iLevel); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3_step(s); + if( rc==SQLITE_DONE ) return SQLITE_DONE; /* Should never happen */ + if( rc!=SQLITE_ROW ) return rc; + + /* This happens if all segments at this level are entirely inline. */ + if( SQLITE_NULL==sqlite3_column_type(s, 0) ){ + /* We expect only one row. We must execute another sqlite3_step() + * to complete the iteration; otherwise the table will remain locked. */ + int rc2 = sqlite3_step(s); + if( rc2==SQLITE_ROW ) return SQLITE_ERROR; + return rc2; + } + + *piStartBlockid = sqlite3_column_int64(s, 0); + *piEndBlockid = sqlite3_column_int64(s, 1); + + /* We expect only one row. We must execute another sqlite3_step() + * to complete the iteration; otherwise the table will remain locked. */ + rc = sqlite3_step(s); + if( rc==SQLITE_ROW ) return SQLITE_ERROR; + if( rc!=SQLITE_DONE ) return rc; + return SQLITE_ROW; +} + +/* Delete the segment blocks and segment directory records for all +** segments at iLevel. +*/ +static int segdir_delete(fulltext_vtab *v, int iLevel){ + sqlite3_stmt *s; + sqlite_int64 iStartBlockid, iEndBlockid; + int rc = segdir_span(v, iLevel, &iStartBlockid, &iEndBlockid); + if( rc!=SQLITE_ROW && rc!=SQLITE_DONE ) return rc; + + if( rc==SQLITE_ROW ){ + rc = block_delete(v, iStartBlockid, iEndBlockid); + if( rc!=SQLITE_OK ) return rc; + } + + /* Delete the segment directory itself. */ + rc = sql_get_statement(v, SEGDIR_DELETE_STMT, &s); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3_bind_int64(s, 1, iLevel); + if( rc!=SQLITE_OK ) return rc; + + return sql_single_step(s); +} + +/* TODO(shess) clearPendingTerms() is far down the file because +** writeZeroSegment() is far down the file because LeafWriter is far +** down the file. Consider refactoring the code to move the non-vtab +** code above the vtab code so that we don't need this forward +** reference. +*/ +static int clearPendingTerms(fulltext_vtab *v); + +/* +** Free the memory used to contain a fulltext_vtab structure. +*/ +static void fulltext_vtab_destroy(fulltext_vtab *v){ + int iStmt, i; + + FTSTRACE(("FTS3 Destroy %p\n", v)); + for( iStmt=0; iStmtpFulltextStatements[iStmt]!=NULL ){ + sqlite3_finalize(v->pFulltextStatements[iStmt]); + v->pFulltextStatements[iStmt] = NULL; + } + } + + for( i=0; ipLeafSelectStmts[i]!=NULL ){ + sqlite3_finalize(v->pLeafSelectStmts[i]); + v->pLeafSelectStmts[i] = NULL; + } + } + + if( v->pTokenizer!=NULL ){ + v->pTokenizer->pModule->xDestroy(v->pTokenizer); + v->pTokenizer = NULL; + } + + clearPendingTerms(v); + + sqlite3_free(v->azColumn); + for(i = 0; i < v->nColumn; ++i) { + sqlite3_free(v->azContentColumn[i]); + } + sqlite3_free(v->azContentColumn); + sqlite3_free(v); +} + +/* +** Token types for parsing the arguments to xConnect or xCreate. +*/ +#define TOKEN_EOF 0 /* End of file */ +#define TOKEN_SPACE 1 /* Any kind of whitespace */ +#define TOKEN_ID 2 /* An identifier */ +#define TOKEN_STRING 3 /* A string literal */ +#define TOKEN_PUNCT 4 /* A single punctuation character */ + +/* +** If X is a character that can be used in an identifier then +** ftsIdChar(X) will be true. Otherwise it is false. +** +** For ASCII, any character with the high-order bit set is +** allowed in an identifier. For 7-bit characters, +** isFtsIdChar[X] must be 1. +** +** Ticket #1066. the SQL standard does not allow '$' in the +** middle of identfiers. But many SQL implementations do. +** SQLite will allow '$' in identifiers for compatibility. +** But the feature is undocumented. +*/ +static const char isFtsIdChar[] = { +/* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */ + 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 2x */ + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 3x */ + 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 4x */ + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, /* 5x */ + 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6x */ + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* 7x */ +}; +#define ftsIdChar(C) (((c=C)&0x80)!=0 || (c>0x1f && isFtsIdChar[c-0x20])) + + +/* +** Return the length of the token that begins at z[0]. +** Store the token type in *tokenType before returning. +*/ +static int ftsGetToken(const char *z, int *tokenType){ + int i, c; + switch( *z ){ + case 0: { + *tokenType = TOKEN_EOF; + return 0; + } + case ' ': case '\t': case '\n': case '\f': case '\r': { + for(i=1; safe_isspace(z[i]); i++){} + *tokenType = TOKEN_SPACE; + return i; + } + case '`': + case '\'': + case '"': { + int delim = z[0]; + for(i=1; (c=z[i])!=0; i++){ + if( c==delim ){ + if( z[i+1]==delim ){ + i++; + }else{ + break; + } + } + } + *tokenType = TOKEN_STRING; + return i + (c!=0); + } + case '[': { + for(i=1, c=z[0]; c!=']' && (c=z[i])!=0; i++){} + *tokenType = TOKEN_ID; + return i; + } + default: { + if( !ftsIdChar(*z) ){ + break; + } + for(i=1; ftsIdChar(z[i]); i++){} + *tokenType = TOKEN_ID; + return i; + } + } + *tokenType = TOKEN_PUNCT; + return 1; +} + +/* +** A token extracted from a string is an instance of the following +** structure. +*/ +typedef struct FtsToken { + const char *z; /* Pointer to token text. Not '\000' terminated */ + short int n; /* Length of the token text in bytes. */ +} FtsToken; + +/* +** Given a input string (which is really one of the argv[] parameters +** passed into xConnect or xCreate) split the string up into tokens. +** Return an array of pointers to '\000' terminated strings, one string +** for each non-whitespace token. +** +** The returned array is terminated by a single NULL pointer. +** +** Space to hold the returned array is obtained from a single +** malloc and should be freed by passing the return value to free(). +** The individual strings within the token list are all a part of +** the single memory allocation and will all be freed at once. +*/ +static char **tokenizeString(const char *z, int *pnToken){ + int nToken = 0; + FtsToken *aToken = sqlite3_malloc( strlen(z) * sizeof(aToken[0]) ); + int n = 1; + int e, i; + int totalSize = 0; + char **azToken; + char *zCopy; + while( n>0 ){ + n = ftsGetToken(z, &e); + if( e!=TOKEN_SPACE ){ + aToken[nToken].z = z; + aToken[nToken].n = n; + nToken++; + totalSize += n+1; + } + z += n; + } + azToken = (char**)sqlite3_malloc( nToken*sizeof(char*) + totalSize ); + zCopy = (char*)&azToken[nToken]; + nToken--; + for(i=0; i=0 ){ + azIn[j] = azIn[i]; + } + j++; + } + } + azIn[j] = 0; + } +} + + +/* +** Find the first alphanumeric token in the string zIn. Null-terminate +** this token. Remove any quotation marks. And return a pointer to +** the result. +*/ +static char *firstToken(char *zIn, char **pzTail){ + int n, ttype; + while(1){ + n = ftsGetToken(zIn, &ttype); + if( ttype==TOKEN_SPACE ){ + zIn += n; + }else if( ttype==TOKEN_EOF ){ + *pzTail = zIn; + return 0; + }else{ + zIn[n] = 0; + *pzTail = &zIn[1]; + dequoteString(zIn); + return zIn; + } + } + /*NOTREACHED*/ +} + +/* Return true if... +** +** * s begins with the string t, ignoring case +** * s is longer than t +** * The first character of s beyond t is not a alphanumeric +** +** Ignore leading space in *s. +** +** To put it another way, return true if the first token of +** s[] is t[]. +*/ +static int startsWith(const char *s, const char *t){ + while( safe_isspace(*s) ){ s++; } + while( *t ){ + if( safe_tolower(*s++)!=safe_tolower(*t++) ) return 0; + } + return *s!='_' && !safe_isalnum(*s); +} + +/* +** An instance of this structure defines the "spec" of a +** full text index. This structure is populated by parseSpec +** and use by fulltextConnect and fulltextCreate. +*/ +typedef struct TableSpec { + const char *zDb; /* Logical database name */ + const char *zName; /* Name of the full-text index */ + int nColumn; /* Number of columns to be indexed */ + char **azColumn; /* Original names of columns to be indexed */ + char **azContentColumn; /* Column names for %_content */ + char **azTokenizer; /* Name of tokenizer and its arguments */ +} TableSpec; + +/* +** Reclaim all of the memory used by a TableSpec +*/ +static void clearTableSpec(TableSpec *p) { + sqlite3_free(p->azColumn); + sqlite3_free(p->azContentColumn); + sqlite3_free(p->azTokenizer); +} + +/* Parse a CREATE VIRTUAL TABLE statement, which looks like this: + * + * CREATE VIRTUAL TABLE email + * USING fts3(subject, body, tokenize mytokenizer(myarg)) + * + * We return parsed information in a TableSpec structure. + * + */ +static int parseSpec(TableSpec *pSpec, int argc, const char *const*argv, + char**pzErr){ + int i, n; + char *z, *zDummy; + char **azArg; + const char *zTokenizer = 0; /* argv[] entry describing the tokenizer */ + + assert( argc>=3 ); + /* Current interface: + ** argv[0] - module name + ** argv[1] - database name + ** argv[2] - table name + ** argv[3..] - columns, optionally followed by tokenizer specification + ** and snippet delimiters specification. + */ + + /* Make a copy of the complete argv[][] array in a single allocation. + ** The argv[][] array is read-only and transient. We can write to the + ** copy in order to modify things and the copy is persistent. + */ + CLEAR(pSpec); + for(i=n=0; izDb = azArg[1]; + pSpec->zName = azArg[2]; + pSpec->nColumn = 0; + pSpec->azColumn = azArg; + zTokenizer = "tokenize simple"; + for(i=3; inColumn] = firstToken(azArg[i], &zDummy); + pSpec->nColumn++; + } + } + if( pSpec->nColumn==0 ){ + azArg[0] = "content"; + pSpec->nColumn = 1; + } + + /* + ** Construct the list of content column names. + ** + ** Each content column name will be of the form cNNAAAA + ** where NN is the column number and AAAA is the sanitized + ** column name. "sanitized" means that special characters are + ** converted to "_". The cNN prefix guarantees that all column + ** names are unique. + ** + ** The AAAA suffix is not strictly necessary. It is included + ** for the convenience of people who might examine the generated + ** %_content table and wonder what the columns are used for. + */ + pSpec->azContentColumn = sqlite3_malloc( pSpec->nColumn * sizeof(char *) ); + if( pSpec->azContentColumn==0 ){ + clearTableSpec(pSpec); + return SQLITE_NOMEM; + } + for(i=0; inColumn; i++){ + char *p; + pSpec->azContentColumn[i] = sqlite3_mprintf("c%d%s", i, azArg[i]); + for (p = pSpec->azContentColumn[i]; *p ; ++p) { + if( !safe_isalnum(*p) ) *p = '_'; + } + } + + /* + ** Parse the tokenizer specification string. + */ + pSpec->azTokenizer = tokenizeString(zTokenizer, &n); + tokenListToIdList(pSpec->azTokenizer); + + return SQLITE_OK; +} + +/* +** Generate a CREATE TABLE statement that describes the schema of +** the virtual table. Return a pointer to this schema string. +** +** Space is obtained from sqlite3_mprintf() and should be freed +** using sqlite3_free(). +*/ +static char *fulltextSchema( + int nColumn, /* Number of columns */ + const char *const* azColumn, /* List of columns */ + const char *zTableName /* Name of the table */ +){ + int i; + char *zSchema, *zNext; + const char *zSep = "("; + zSchema = sqlite3_mprintf("CREATE TABLE x"); + for(i=0; ibase */ + v->db = db; + v->zDb = spec->zDb; /* Freed when azColumn is freed */ + v->zName = spec->zName; /* Freed when azColumn is freed */ + v->nColumn = spec->nColumn; + v->azContentColumn = spec->azContentColumn; + spec->azContentColumn = 0; + v->azColumn = spec->azColumn; + spec->azColumn = 0; + + if( spec->azTokenizer==0 ){ + return SQLITE_NOMEM; + } + + zTok = spec->azTokenizer[0]; + if( !zTok ){ + zTok = "simple"; + } + nTok = strlen(zTok)+1; + + m = (sqlite3_tokenizer_module *)sqlite3Fts3HashFind(pHash, zTok, nTok); + if( !m ){ + *pzErr = sqlite3_mprintf("unknown tokenizer: %s", spec->azTokenizer[0]); + rc = SQLITE_ERROR; + goto err; + } + + for(n=0; spec->azTokenizer[n]; n++){} + if( n ){ + rc = m->xCreate(n-1, (const char*const*)&spec->azTokenizer[1], + &v->pTokenizer); + }else{ + rc = m->xCreate(0, 0, &v->pTokenizer); + } + if( rc!=SQLITE_OK ) goto err; + v->pTokenizer->pModule = m; + + /* TODO: verify the existence of backing tables foo_content, foo_term */ + + schema = fulltextSchema(v->nColumn, (const char*const*)v->azColumn, + spec->zName); + rc = sqlite3_declare_vtab(db, schema); + sqlite3_free(schema); + if( rc!=SQLITE_OK ) goto err; + + memset(v->pFulltextStatements, 0, sizeof(v->pFulltextStatements)); + + /* Indicate that the buffer is not live. */ + v->nPendingData = -1; + + *ppVTab = &v->base; + FTSTRACE(("FTS3 Connect %p\n", v)); + + return rc; + +err: + fulltext_vtab_destroy(v); + return rc; +} + +static int fulltextConnect( + sqlite3 *db, + void *pAux, + int argc, const char *const*argv, + sqlite3_vtab **ppVTab, + char **pzErr +){ + TableSpec spec; + int rc = parseSpec(&spec, argc, argv, pzErr); + if( rc!=SQLITE_OK ) return rc; + + rc = constructVtab(db, (fts3Hash *)pAux, &spec, ppVTab, pzErr); + clearTableSpec(&spec); + return rc; +} + +/* The %_content table holds the text of each document, with +** the docid column exposed as the SQLite rowid for the table. +*/ +/* TODO(shess) This comment needs elaboration to match the updated +** code. Work it into the top-of-file comment at that time. +*/ +static int fulltextCreate(sqlite3 *db, void *pAux, + int argc, const char * const *argv, + sqlite3_vtab **ppVTab, char **pzErr){ + int rc; + TableSpec spec; + StringBuffer schema; + FTSTRACE(("FTS3 Create\n")); + + rc = parseSpec(&spec, argc, argv, pzErr); + if( rc!=SQLITE_OK ) return rc; + + initStringBuffer(&schema); + append(&schema, "CREATE TABLE %_content("); + append(&schema, " docid INTEGER PRIMARY KEY,"); + appendList(&schema, spec.nColumn, spec.azContentColumn); + append(&schema, ")"); + rc = sql_exec(db, spec.zDb, spec.zName, stringBufferData(&schema)); + stringBufferDestroy(&schema); + if( rc!=SQLITE_OK ) goto out; + + rc = sql_exec(db, spec.zDb, spec.zName, + "create table %_segments(" + " blockid INTEGER PRIMARY KEY," + " block blob" + ");" + ); + if( rc!=SQLITE_OK ) goto out; + + rc = sql_exec(db, spec.zDb, spec.zName, + "create table %_segdir(" + " level integer," + " idx integer," + " start_block integer," + " leaves_end_block integer," + " end_block integer," + " root blob," + " primary key(level, idx)" + ");"); + if( rc!=SQLITE_OK ) goto out; + + rc = constructVtab(db, (fts3Hash *)pAux, &spec, ppVTab, pzErr); + +out: + clearTableSpec(&spec); + return rc; +} + +/* Decide how to handle an SQL query. */ +static int fulltextBestIndex(sqlite3_vtab *pVTab, sqlite3_index_info *pInfo){ + fulltext_vtab *v = (fulltext_vtab *)pVTab; + int i; + FTSTRACE(("FTS3 BestIndex\n")); + + for(i=0; inConstraint; ++i){ + const struct sqlite3_index_constraint *pConstraint; + pConstraint = &pInfo->aConstraint[i]; + if( pConstraint->usable ) { + if( (pConstraint->iColumn==-1 || pConstraint->iColumn==v->nColumn+1) && + pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ ){ + pInfo->idxNum = QUERY_DOCID; /* lookup by docid */ + FTSTRACE(("FTS3 QUERY_DOCID\n")); + } else if( pConstraint->iColumn>=0 && pConstraint->iColumn<=v->nColumn && + pConstraint->op==SQLITE_INDEX_CONSTRAINT_MATCH ){ + /* full-text search */ + pInfo->idxNum = QUERY_FULLTEXT + pConstraint->iColumn; + FTSTRACE(("FTS3 QUERY_FULLTEXT %d\n", pConstraint->iColumn)); + } else continue; + + pInfo->aConstraintUsage[i].argvIndex = 1; + pInfo->aConstraintUsage[i].omit = 1; + + /* An arbitrary value for now. + * TODO: Perhaps docid matches should be considered cheaper than + * full-text searches. */ + pInfo->estimatedCost = 1.0; + + return SQLITE_OK; + } + } + pInfo->idxNum = QUERY_GENERIC; + return SQLITE_OK; +} + +static int fulltextDisconnect(sqlite3_vtab *pVTab){ + FTSTRACE(("FTS3 Disconnect %p\n", pVTab)); + fulltext_vtab_destroy((fulltext_vtab *)pVTab); + return SQLITE_OK; +} + +static int fulltextDestroy(sqlite3_vtab *pVTab){ + fulltext_vtab *v = (fulltext_vtab *)pVTab; + int rc; + + FTSTRACE(("FTS3 Destroy %p\n", pVTab)); + rc = sql_exec(v->db, v->zDb, v->zName, + "drop table if exists %_content;" + "drop table if exists %_segments;" + "drop table if exists %_segdir;" + ); + if( rc!=SQLITE_OK ) return rc; + + fulltext_vtab_destroy((fulltext_vtab *)pVTab); + return SQLITE_OK; +} + +static int fulltextOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){ + fulltext_cursor *c; + + c = (fulltext_cursor *) sqlite3_malloc(sizeof(fulltext_cursor)); + if( c ){ + memset(c, 0, sizeof(fulltext_cursor)); + /* sqlite will initialize c->base */ + *ppCursor = &c->base; + FTSTRACE(("FTS3 Open %p: %p\n", pVTab, c)); + return SQLITE_OK; + }else{ + return SQLITE_NOMEM; + } +} + + +/* Free all of the dynamically allocated memory held by *q +*/ +static void queryClear(Query *q){ + int i; + for(i = 0; i < q->nTerms; ++i){ + sqlite3_free(q->pTerms[i].pTerm); + } + sqlite3_free(q->pTerms); + CLEAR(q); +} + +/* Free all of the dynamically allocated memory held by the +** Snippet +*/ +static void snippetClear(Snippet *p){ + sqlite3_free(p->aMatch); + sqlite3_free(p->zOffset); + sqlite3_free(p->zSnippet); + CLEAR(p); +} +/* +** Append a single entry to the p->aMatch[] log. +*/ +static void snippetAppendMatch( + Snippet *p, /* Append the entry to this snippet */ + int iCol, int iTerm, /* The column and query term */ + int iToken, /* Matching token in document */ + int iStart, int nByte /* Offset and size of the match */ +){ + int i; + struct snippetMatch *pMatch; + if( p->nMatch+1>=p->nAlloc ){ + p->nAlloc = p->nAlloc*2 + 10; + p->aMatch = sqlite3_realloc(p->aMatch, p->nAlloc*sizeof(p->aMatch[0]) ); + if( p->aMatch==0 ){ + p->nMatch = 0; + p->nAlloc = 0; + return; + } + } + i = p->nMatch++; + pMatch = &p->aMatch[i]; + pMatch->iCol = iCol; + pMatch->iTerm = iTerm; + pMatch->iToken = iToken; + pMatch->iStart = iStart; + pMatch->nByte = nByte; +} + +/* +** Sizing information for the circular buffer used in snippetOffsetsOfColumn() +*/ +#define FTS3_ROTOR_SZ (32) +#define FTS3_ROTOR_MASK (FTS3_ROTOR_SZ-1) + +/* +** Add entries to pSnippet->aMatch[] for every match that occurs against +** document zDoc[0..nDoc-1] which is stored in column iColumn. +*/ +static void snippetOffsetsOfColumn( + Query *pQuery, + Snippet *pSnippet, + int iColumn, + const char *zDoc, + int nDoc +){ + const sqlite3_tokenizer_module *pTModule; /* The tokenizer module */ + sqlite3_tokenizer *pTokenizer; /* The specific tokenizer */ + sqlite3_tokenizer_cursor *pTCursor; /* Tokenizer cursor */ + fulltext_vtab *pVtab; /* The full text index */ + int nColumn; /* Number of columns in the index */ + const QueryTerm *aTerm; /* Query string terms */ + int nTerm; /* Number of query string terms */ + int i, j; /* Loop counters */ + int rc; /* Return code */ + unsigned int match, prevMatch; /* Phrase search bitmasks */ + const char *zToken; /* Next token from the tokenizer */ + int nToken; /* Size of zToken */ + int iBegin, iEnd, iPos; /* Offsets of beginning and end */ + + /* The following variables keep a circular buffer of the last + ** few tokens */ + unsigned int iRotor = 0; /* Index of current token */ + int iRotorBegin[FTS3_ROTOR_SZ]; /* Beginning offset of token */ + int iRotorLen[FTS3_ROTOR_SZ]; /* Length of token */ + + pVtab = pQuery->pFts; + nColumn = pVtab->nColumn; + pTokenizer = pVtab->pTokenizer; + pTModule = pTokenizer->pModule; + rc = pTModule->xOpen(pTokenizer, zDoc, nDoc, &pTCursor); + if( rc ) return; + pTCursor->pTokenizer = pTokenizer; + aTerm = pQuery->pTerms; + nTerm = pQuery->nTerms; + if( nTerm>=FTS3_ROTOR_SZ ){ + nTerm = FTS3_ROTOR_SZ - 1; + } + prevMatch = 0; + while(1){ + rc = pTModule->xNext(pTCursor, &zToken, &nToken, &iBegin, &iEnd, &iPos); + if( rc ) break; + iRotorBegin[iRotor&FTS3_ROTOR_MASK] = iBegin; + iRotorLen[iRotor&FTS3_ROTOR_MASK] = iEnd-iBegin; + match = 0; + for(i=0; i=0 && iColnToken ) continue; + if( !aTerm[i].isPrefix && aTerm[i].nTerm1 && (prevMatch & (1<=0; j--){ + int k = (iRotor-j) & FTS3_ROTOR_MASK; + snippetAppendMatch(pSnippet, iColumn, i-j, iPos-j, + iRotorBegin[k], iRotorLen[k]); + } + } + } + prevMatch = match<<1; + iRotor++; + } + pTModule->xClose(pTCursor); +} + +/* +** Remove entries from the pSnippet structure to account for the NEAR +** operator. When this is called, pSnippet contains the list of token +** offsets produced by treating all NEAR operators as AND operators. +** This function removes any entries that should not be present after +** accounting for the NEAR restriction. For example, if the queried +** document is: +** +** "A B C D E A" +** +** and the query is: +** +** A NEAR/0 E +** +** then when this function is called the Snippet contains token offsets +** 0, 4 and 5. This function removes the "0" entry (because the first A +** is not near enough to an E). +*/ +static void trimSnippetOffsetsForNear(Query *pQuery, Snippet *pSnippet){ + int ii; + int iDir = 1; + + while(iDir>-2) { + assert( iDir==1 || iDir==-1 ); + for(ii=0; iinMatch; ii++){ + int jj; + int nNear; + struct snippetMatch *pMatch = &pSnippet->aMatch[ii]; + QueryTerm *pQueryTerm = &pQuery->pTerms[pMatch->iTerm]; + + if( (pMatch->iTerm+iDir)<0 + || (pMatch->iTerm+iDir)>=pQuery->nTerms + ){ + continue; + } + + nNear = pQueryTerm->nNear; + if( iDir<0 ){ + nNear = pQueryTerm[-1].nNear; + } + + if( pMatch->iTerm>=0 && nNear ){ + int isOk = 0; + int iNextTerm = pMatch->iTerm+iDir; + int iPrevTerm = iNextTerm; + + int iEndToken; + int iStartToken; + + if( iDir<0 ){ + int nPhrase = 1; + iStartToken = pMatch->iToken; + while( (pMatch->iTerm+nPhrase)nTerms + && pQuery->pTerms[pMatch->iTerm+nPhrase].iPhrase>1 + ){ + nPhrase++; + } + iEndToken = iStartToken + nPhrase - 1; + }else{ + iEndToken = pMatch->iToken; + iStartToken = pMatch->iToken+1-pQueryTerm->iPhrase; + } + + while( pQuery->pTerms[iNextTerm].iPhrase>1 ){ + iNextTerm--; + } + while( (iPrevTerm+1)nTerms && + pQuery->pTerms[iPrevTerm+1].iPhrase>1 + ){ + iPrevTerm++; + } + + for(jj=0; isOk==0 && jjnMatch; jj++){ + struct snippetMatch *p = &pSnippet->aMatch[jj]; + if( p->iCol==pMatch->iCol && (( + p->iTerm==iNextTerm && + p->iToken>iEndToken && + p->iToken<=iEndToken+nNear + ) || ( + p->iTerm==iPrevTerm && + p->iTokeniToken>=iStartToken-nNear + ))){ + isOk = 1; + } + } + if( !isOk ){ + for(jj=1-pQueryTerm->iPhrase; jj<=0; jj++){ + pMatch[jj].iTerm = -1; + } + ii = -1; + iDir = 1; + } + } + } + iDir -= 2; + } +} + +/* +** Compute all offsets for the current row of the query. +** If the offsets have already been computed, this routine is a no-op. +*/ +static void snippetAllOffsets(fulltext_cursor *p){ + int nColumn; + int iColumn, i; + int iFirst, iLast; + fulltext_vtab *pFts; + + if( p->snippet.nMatch ) return; + if( p->q.nTerms==0 ) return; + pFts = p->q.pFts; + nColumn = pFts->nColumn; + iColumn = (p->iCursorType - QUERY_FULLTEXT); + if( iColumn<0 || iColumn>=nColumn ){ + iFirst = 0; + iLast = nColumn-1; + }else{ + iFirst = iColumn; + iLast = iColumn; + } + for(i=iFirst; i<=iLast; i++){ + const char *zDoc; + int nDoc; + zDoc = (const char*)sqlite3_column_text(p->pStmt, i+1); + nDoc = sqlite3_column_bytes(p->pStmt, i+1); + snippetOffsetsOfColumn(&p->q, &p->snippet, i, zDoc, nDoc); + } + + trimSnippetOffsetsForNear(&p->q, &p->snippet); +} + +/* +** Convert the information in the aMatch[] array of the snippet +** into the string zOffset[0..nOffset-1]. +*/ +static void snippetOffsetText(Snippet *p){ + int i; + int cnt = 0; + StringBuffer sb; + char zBuf[200]; + if( p->zOffset ) return; + initStringBuffer(&sb); + for(i=0; inMatch; i++){ + struct snippetMatch *pMatch = &p->aMatch[i]; + if( pMatch->iTerm>=0 ){ + /* If snippetMatch.iTerm is less than 0, then the match was + ** discarded as part of processing the NEAR operator (see the + ** trimSnippetOffsetsForNear() function for details). Ignore + ** it in this case + */ + zBuf[0] = ' '; + sprintf(&zBuf[cnt>0], "%d %d %d %d", pMatch->iCol, + pMatch->iTerm, pMatch->iStart, pMatch->nByte); + append(&sb, zBuf); + cnt++; + } + } + p->zOffset = stringBufferData(&sb); + p->nOffset = stringBufferLength(&sb); +} + +/* +** zDoc[0..nDoc-1] is phrase of text. aMatch[0..nMatch-1] are a set +** of matching words some of which might be in zDoc. zDoc is column +** number iCol. +** +** iBreak is suggested spot in zDoc where we could begin or end an +** excerpt. Return a value similar to iBreak but possibly adjusted +** to be a little left or right so that the break point is better. +*/ +static int wordBoundary( + int iBreak, /* The suggested break point */ + const char *zDoc, /* Document text */ + int nDoc, /* Number of bytes in zDoc[] */ + struct snippetMatch *aMatch, /* Matching words */ + int nMatch, /* Number of entries in aMatch[] */ + int iCol /* The column number for zDoc[] */ +){ + int i; + if( iBreak<=10 ){ + return 0; + } + if( iBreak>=nDoc-10 ){ + return nDoc; + } + for(i=0; i0 && aMatch[i-1].iStart+aMatch[i-1].nByte>=iBreak ){ + return aMatch[i-1].iStart; + } + } + for(i=1; i<=10; i++){ + if( safe_isspace(zDoc[iBreak-i]) ){ + return iBreak - i + 1; + } + if( safe_isspace(zDoc[iBreak+i]) ){ + return iBreak + i + 1; + } + } + return iBreak; +} + + + +/* +** Allowed values for Snippet.aMatch[].snStatus +*/ +#define SNIPPET_IGNORE 0 /* It is ok to omit this match from the snippet */ +#define SNIPPET_DESIRED 1 /* We want to include this match in the snippet */ + +/* +** Generate the text of a snippet. +*/ +static void snippetText( + fulltext_cursor *pCursor, /* The cursor we need the snippet for */ + const char *zStartMark, /* Markup to appear before each match */ + const char *zEndMark, /* Markup to appear after each match */ + const char *zEllipsis /* Ellipsis mark */ +){ + int i, j; + struct snippetMatch *aMatch; + int nMatch; + int nDesired; + StringBuffer sb; + int tailCol; + int tailOffset; + int iCol; + int nDoc; + const char *zDoc; + int iStart, iEnd; + int tailEllipsis = 0; + int iMatch; + + + sqlite3_free(pCursor->snippet.zSnippet); + pCursor->snippet.zSnippet = 0; + aMatch = pCursor->snippet.aMatch; + nMatch = pCursor->snippet.nMatch; + initStringBuffer(&sb); + + for(i=0; iq.nTerms; i++){ + for(j=0; j0; i++){ + if( aMatch[i].snStatus!=SNIPPET_DESIRED ) continue; + nDesired--; + iCol = aMatch[i].iCol; + zDoc = (const char*)sqlite3_column_text(pCursor->pStmt, iCol+1); + nDoc = sqlite3_column_bytes(pCursor->pStmt, iCol+1); + iStart = aMatch[i].iStart - 40; + iStart = wordBoundary(iStart, zDoc, nDoc, aMatch, nMatch, iCol); + if( iStart<=10 ){ + iStart = 0; + } + if( iCol==tailCol && iStart<=tailOffset+20 ){ + iStart = tailOffset; + } + if( (iCol!=tailCol && tailCol>=0) || iStart!=tailOffset ){ + trimWhiteSpace(&sb); + appendWhiteSpace(&sb); + append(&sb, zEllipsis); + appendWhiteSpace(&sb); + } + iEnd = aMatch[i].iStart + aMatch[i].nByte + 40; + iEnd = wordBoundary(iEnd, zDoc, nDoc, aMatch, nMatch, iCol); + if( iEnd>=nDoc-10 ){ + iEnd = nDoc; + tailEllipsis = 0; + }else{ + tailEllipsis = 1; + } + while( iMatchsnippet.zSnippet = stringBufferData(&sb); + pCursor->snippet.nSnippet = stringBufferLength(&sb); +} + + +/* +** Close the cursor. For additional information see the documentation +** on the xClose method of the virtual table interface. +*/ +static int fulltextClose(sqlite3_vtab_cursor *pCursor){ + fulltext_cursor *c = (fulltext_cursor *) pCursor; + FTSTRACE(("FTS3 Close %p\n", c)); + sqlite3_finalize(c->pStmt); + queryClear(&c->q); + snippetClear(&c->snippet); + if( c->result.nData!=0 ) dlrDestroy(&c->reader); + dataBufferDestroy(&c->result); + sqlite3_free(c); + return SQLITE_OK; +} + +static int fulltextNext(sqlite3_vtab_cursor *pCursor){ + fulltext_cursor *c = (fulltext_cursor *) pCursor; + int rc; + + FTSTRACE(("FTS3 Next %p\n", pCursor)); + snippetClear(&c->snippet); + if( c->iCursorType < QUERY_FULLTEXT ){ + /* TODO(shess) Handle SQLITE_SCHEMA AND SQLITE_BUSY. */ + rc = sqlite3_step(c->pStmt); + switch( rc ){ + case SQLITE_ROW: + c->eof = 0; + return SQLITE_OK; + case SQLITE_DONE: + c->eof = 1; + return SQLITE_OK; + default: + c->eof = 1; + return rc; + } + } else { /* full-text query */ + rc = sqlite3_reset(c->pStmt); + if( rc!=SQLITE_OK ) return rc; + + if( c->result.nData==0 || dlrAtEnd(&c->reader) ){ + c->eof = 1; + return SQLITE_OK; + } + rc = sqlite3_bind_int64(c->pStmt, 1, dlrDocid(&c->reader)); + dlrStep(&c->reader); + if( rc!=SQLITE_OK ) return rc; + /* TODO(shess) Handle SQLITE_SCHEMA AND SQLITE_BUSY. */ + rc = sqlite3_step(c->pStmt); + if( rc==SQLITE_ROW ){ /* the case we expect */ + c->eof = 0; + return SQLITE_OK; + } + /* an error occurred; abort */ + return rc==SQLITE_DONE ? SQLITE_ERROR : rc; + } +} + + +/* TODO(shess) If we pushed LeafReader to the top of the file, or to +** another file, term_select() could be pushed above +** docListOfTerm(). +*/ +static int termSelect(fulltext_vtab *v, int iColumn, + const char *pTerm, int nTerm, int isPrefix, + DocListType iType, DataBuffer *out); + +/* Return a DocList corresponding to the query term *pTerm. If *pTerm +** is the first term of a phrase query, go ahead and evaluate the phrase +** query and return the doclist for the entire phrase query. +** +** The resulting DL_DOCIDS doclist is stored in pResult, which is +** overwritten. +*/ +static int docListOfTerm( + fulltext_vtab *v, /* The full text index */ + int iColumn, /* column to restrict to. No restriction if >=nColumn */ + QueryTerm *pQTerm, /* Term we are looking for, or 1st term of a phrase */ + DataBuffer *pResult /* Write the result here */ +){ + DataBuffer left, right, new; + int i, rc; + + /* No phrase search if no position info. */ + assert( pQTerm->nPhrase==0 || DL_DEFAULT!=DL_DOCIDS ); + + /* This code should never be called with buffered updates. */ + assert( v->nPendingData<0 ); + + dataBufferInit(&left, 0); + rc = termSelect(v, iColumn, pQTerm->pTerm, pQTerm->nTerm, pQTerm->isPrefix, + (0nPhrase ? DL_POSITIONS : DL_DOCIDS), &left); + if( rc ) return rc; + for(i=1; i<=pQTerm->nPhrase && left.nData>0; i++){ + /* If this token is connected to the next by a NEAR operator, and + ** the next token is the start of a phrase, then set nPhraseRight + ** to the number of tokens in the phrase. Otherwise leave it at 1. + */ + int nPhraseRight = 1; + while( (i+nPhraseRight)<=pQTerm->nPhrase + && pQTerm[i+nPhraseRight].nNear==0 + ){ + nPhraseRight++; + } + + dataBufferInit(&right, 0); + rc = termSelect(v, iColumn, pQTerm[i].pTerm, pQTerm[i].nTerm, + pQTerm[i].isPrefix, DL_POSITIONS, &right); + if( rc ){ + dataBufferDestroy(&left); + return rc; + } + dataBufferInit(&new, 0); + docListPhraseMerge(left.pData, left.nData, right.pData, right.nData, + pQTerm[i-1].nNear, pQTerm[i-1].iPhrase + nPhraseRight, + ((inPhrase) ? DL_POSITIONS : DL_DOCIDS), + &new); + dataBufferDestroy(&left); + dataBufferDestroy(&right); + left = new; + } + *pResult = left; + return SQLITE_OK; +} + +/* Add a new term pTerm[0..nTerm-1] to the query *q. +*/ +static void queryAdd(Query *q, const char *pTerm, int nTerm){ + QueryTerm *t; + ++q->nTerms; + q->pTerms = sqlite3_realloc(q->pTerms, q->nTerms * sizeof(q->pTerms[0])); + if( q->pTerms==0 ){ + q->nTerms = 0; + return; + } + t = &q->pTerms[q->nTerms - 1]; + CLEAR(t); + t->pTerm = sqlite3_malloc(nTerm+1); + memcpy(t->pTerm, pTerm, nTerm); + t->pTerm[nTerm] = 0; + t->nTerm = nTerm; + t->isOr = q->nextIsOr; + t->isPrefix = 0; + q->nextIsOr = 0; + t->iColumn = q->nextColumn; + q->nextColumn = q->dfltColumn; +} + +/* +** Check to see if the string zToken[0...nToken-1] matches any +** column name in the virtual table. If it does, +** return the zero-indexed column number. If not, return -1. +*/ +static int checkColumnSpecifier( + fulltext_vtab *pVtab, /* The virtual table */ + const char *zToken, /* Text of the token */ + int nToken /* Number of characters in the token */ +){ + int i; + for(i=0; inColumn; i++){ + if( memcmp(pVtab->azColumn[i], zToken, nToken)==0 + && pVtab->azColumn[i][nToken]==0 ){ + return i; + } + } + return -1; +} + +/* +** Parse the text at pSegment[0..nSegment-1]. Add additional terms +** to the query being assemblied in pQuery. +** +** inPhrase is true if pSegment[0..nSegement-1] is contained within +** double-quotes. If inPhrase is true, then the first term +** is marked with the number of terms in the phrase less one and +** OR and "-" syntax is ignored. If inPhrase is false, then every +** term found is marked with nPhrase=0 and OR and "-" syntax is significant. +*/ +static int tokenizeSegment( + sqlite3_tokenizer *pTokenizer, /* The tokenizer to use */ + const char *pSegment, int nSegment, /* Query expression being parsed */ + int inPhrase, /* True if within "..." */ + Query *pQuery /* Append results here */ +){ + const sqlite3_tokenizer_module *pModule = pTokenizer->pModule; + sqlite3_tokenizer_cursor *pCursor; + int firstIndex = pQuery->nTerms; + int iCol; + int nTerm = 1; + + int rc = pModule->xOpen(pTokenizer, pSegment, nSegment, &pCursor); + if( rc!=SQLITE_OK ) return rc; + pCursor->pTokenizer = pTokenizer; + + while( 1 ){ + const char *pToken; + int nToken, iBegin, iEnd, iPos; + + rc = pModule->xNext(pCursor, + &pToken, &nToken, + &iBegin, &iEnd, &iPos); + if( rc!=SQLITE_OK ) break; + if( !inPhrase && + pSegment[iEnd]==':' && + (iCol = checkColumnSpecifier(pQuery->pFts, pToken, nToken))>=0 ){ + pQuery->nextColumn = iCol; + continue; + } + if( !inPhrase && pQuery->nTerms>0 && nToken==2 + && pSegment[iBegin+0]=='O' + && pSegment[iBegin+1]=='R' + ){ + pQuery->nextIsOr = 1; + continue; + } + if( !inPhrase && pQuery->nTerms>0 && !pQuery->nextIsOr && nToken==4 + && pSegment[iBegin+0]=='N' + && pSegment[iBegin+1]=='E' + && pSegment[iBegin+2]=='A' + && pSegment[iBegin+3]=='R' + ){ + QueryTerm *pTerm = &pQuery->pTerms[pQuery->nTerms-1]; + if( (iBegin+6)='0' && pSegment[iBegin+5]<='9' + ){ + pTerm->nNear = (pSegment[iBegin+5] - '0'); + nToken += 2; + if( pSegment[iBegin+6]>='0' && pSegment[iBegin+6]<=9 ){ + pTerm->nNear = pTerm->nNear * 10 + (pSegment[iBegin+6] - '0'); + iEnd++; + } + pModule->xNext(pCursor, &pToken, &nToken, &iBegin, &iEnd, &iPos); + } else { + pTerm->nNear = SQLITE_FTS3_DEFAULT_NEAR_PARAM; + } + pTerm->nNear++; + continue; + } + + queryAdd(pQuery, pToken, nToken); + if( !inPhrase && iBegin>0 && pSegment[iBegin-1]=='-' ){ + pQuery->pTerms[pQuery->nTerms-1].isNot = 1; + } + if( iEndpTerms[pQuery->nTerms-1].isPrefix = 1; + } + pQuery->pTerms[pQuery->nTerms-1].iPhrase = nTerm; + if( inPhrase ){ + nTerm++; + } + } + + if( inPhrase && pQuery->nTerms>firstIndex ){ + pQuery->pTerms[firstIndex].nPhrase = pQuery->nTerms - firstIndex - 1; + } + + return pModule->xClose(pCursor); +} + +/* Parse a query string, yielding a Query object pQuery. +** +** The calling function will need to queryClear() to clean up +** the dynamically allocated memory held by pQuery. +*/ +static int parseQuery( + fulltext_vtab *v, /* The fulltext index */ + const char *zInput, /* Input text of the query string */ + int nInput, /* Size of the input text */ + int dfltColumn, /* Default column of the index to match against */ + Query *pQuery /* Write the parse results here. */ +){ + int iInput, inPhrase = 0; + int ii; + QueryTerm *aTerm; + + if( zInput==0 ) nInput = 0; + if( nInput<0 ) nInput = strlen(zInput); + pQuery->nTerms = 0; + pQuery->pTerms = NULL; + pQuery->nextIsOr = 0; + pQuery->nextColumn = dfltColumn; + pQuery->dfltColumn = dfltColumn; + pQuery->pFts = v; + + for(iInput=0; iInputiInput ){ + tokenizeSegment(v->pTokenizer, zInput+iInput, i-iInput, inPhrase, + pQuery); + } + iInput = i; + if( ipTerms; + for(ii=0; iinTerms; ii++){ + if( aTerm[ii].nNear || aTerm[ii].nPhrase ){ + while (aTerm[ii+aTerm[ii].nPhrase].nNear) { + aTerm[ii].nPhrase += (1 + aTerm[ii+aTerm[ii].nPhrase+1].nPhrase); + } + } + } + + return SQLITE_OK; +} + +/* TODO(shess) Refactor the code to remove this forward decl. */ +static int flushPendingTerms(fulltext_vtab *v); + +/* Perform a full-text query using the search expression in +** zInput[0..nInput-1]. Return a list of matching documents +** in pResult. +** +** Queries must match column iColumn. Or if iColumn>=nColumn +** they are allowed to match against any column. +*/ +static int fulltextQuery( + fulltext_vtab *v, /* The full text index */ + int iColumn, /* Match against this column by default */ + const char *zInput, /* The query string */ + int nInput, /* Number of bytes in zInput[] */ + DataBuffer *pResult, /* Write the result doclist here */ + Query *pQuery /* Put parsed query string here */ +){ + int i, iNext, rc; + DataBuffer left, right, or, new; + int nNot = 0; + QueryTerm *aTerm; + + /* TODO(shess) Instead of flushing pendingTerms, we could query for + ** the relevant term and merge the doclist into what we receive from + ** the database. Wait and see if this is a common issue, first. + ** + ** A good reason not to flush is to not generate update-related + ** error codes from here. + */ + + /* Flush any buffered updates before executing the query. */ + rc = flushPendingTerms(v); + if( rc!=SQLITE_OK ) return rc; + + /* TODO(shess) I think that the queryClear() calls below are not + ** necessary, because fulltextClose() already clears the query. + */ + rc = parseQuery(v, zInput, nInput, iColumn, pQuery); + if( rc!=SQLITE_OK ) return rc; + + /* Empty or NULL queries return no results. */ + if( pQuery->nTerms==0 ){ + dataBufferInit(pResult, 0); + return SQLITE_OK; + } + + /* Merge AND terms. */ + /* TODO(shess) I think we can early-exit if( i>nNot && left.nData==0 ). */ + aTerm = pQuery->pTerms; + for(i = 0; inTerms; i=iNext){ + if( aTerm[i].isNot ){ + /* Handle all NOT terms in a separate pass */ + nNot++; + iNext = i + aTerm[i].nPhrase+1; + continue; + } + iNext = i + aTerm[i].nPhrase + 1; + rc = docListOfTerm(v, aTerm[i].iColumn, &aTerm[i], &right); + if( rc ){ + if( i!=nNot ) dataBufferDestroy(&left); + queryClear(pQuery); + return rc; + } + while( iNextnTerms && aTerm[iNext].isOr ){ + rc = docListOfTerm(v, aTerm[iNext].iColumn, &aTerm[iNext], &or); + iNext += aTerm[iNext].nPhrase + 1; + if( rc ){ + if( i!=nNot ) dataBufferDestroy(&left); + dataBufferDestroy(&right); + queryClear(pQuery); + return rc; + } + dataBufferInit(&new, 0); + docListOrMerge(right.pData, right.nData, or.pData, or.nData, &new); + dataBufferDestroy(&right); + dataBufferDestroy(&or); + right = new; + } + if( i==nNot ){ /* first term processed. */ + left = right; + }else{ + dataBufferInit(&new, 0); + docListAndMerge(left.pData, left.nData, right.pData, right.nData, &new); + dataBufferDestroy(&right); + dataBufferDestroy(&left); + left = new; + } + } + + if( nNot==pQuery->nTerms ){ + /* We do not yet know how to handle a query of only NOT terms */ + return SQLITE_ERROR; + } + + /* Do the EXCEPT terms */ + for(i=0; inTerms; i += aTerm[i].nPhrase + 1){ + if( !aTerm[i].isNot ) continue; + rc = docListOfTerm(v, aTerm[i].iColumn, &aTerm[i], &right); + if( rc ){ + queryClear(pQuery); + dataBufferDestroy(&left); + return rc; + } + dataBufferInit(&new, 0); + docListExceptMerge(left.pData, left.nData, right.pData, right.nData, &new); + dataBufferDestroy(&right); + dataBufferDestroy(&left); + left = new; + } + + *pResult = left; + return rc; +} + +/* +** This is the xFilter interface for the virtual table. See +** the virtual table xFilter method documentation for additional +** information. +** +** If idxNum==QUERY_GENERIC then do a full table scan against +** the %_content table. +** +** If idxNum==QUERY_DOCID then do a docid lookup for a single entry +** in the %_content table. +** +** If idxNum>=QUERY_FULLTEXT then use the full text index. The +** column on the left-hand side of the MATCH operator is column +** number idxNum-QUERY_FULLTEXT, 0 indexed. argv[0] is the right-hand +** side of the MATCH operator. +*/ +/* TODO(shess) Upgrade the cursor initialization and destruction to +** account for fulltextFilter() being called multiple times on the +** same cursor. The current solution is very fragile. Apply fix to +** fts3 as appropriate. +*/ +static int fulltextFilter( + sqlite3_vtab_cursor *pCursor, /* The cursor used for this query */ + int idxNum, const char *idxStr, /* Which indexing scheme to use */ + int argc, sqlite3_value **argv /* Arguments for the indexing scheme */ +){ + fulltext_cursor *c = (fulltext_cursor *) pCursor; + fulltext_vtab *v = cursor_vtab(c); + int rc; + StringBuffer sb; + + FTSTRACE(("FTS3 Filter %p\n",pCursor)); + + initStringBuffer(&sb); + append(&sb, "SELECT docid, "); + appendList(&sb, v->nColumn, v->azContentColumn); + append(&sb, " FROM %_content"); + if( idxNum!=QUERY_GENERIC ) append(&sb, " WHERE docid = ?"); + sqlite3_finalize(c->pStmt); + rc = sql_prepare(v->db, v->zDb, v->zName, &c->pStmt, stringBufferData(&sb)); + stringBufferDestroy(&sb); + if( rc!=SQLITE_OK ) return rc; + + c->iCursorType = idxNum; + switch( idxNum ){ + case QUERY_GENERIC: + break; + + case QUERY_DOCID: + rc = sqlite3_bind_int64(c->pStmt, 1, sqlite3_value_int64(argv[0])); + if( rc!=SQLITE_OK ) return rc; + break; + + default: /* full-text search */ + { + const char *zQuery = (const char *)sqlite3_value_text(argv[0]); + assert( idxNum<=QUERY_FULLTEXT+v->nColumn); + assert( argc==1 ); + queryClear(&c->q); + if( c->result.nData!=0 ){ + /* This case happens if the same cursor is used repeatedly. */ + dlrDestroy(&c->reader); + dataBufferReset(&c->result); + }else{ + dataBufferInit(&c->result, 0); + } + rc = fulltextQuery(v, idxNum-QUERY_FULLTEXT, zQuery, -1, &c->result, &c->q); + if( rc!=SQLITE_OK ) return rc; + if( c->result.nData!=0 ){ + dlrInit(&c->reader, DL_DOCIDS, c->result.pData, c->result.nData); + } + break; + } + } + + return fulltextNext(pCursor); +} + +/* This is the xEof method of the virtual table. The SQLite core +** calls this routine to find out if it has reached the end of +** a query's results set. +*/ +static int fulltextEof(sqlite3_vtab_cursor *pCursor){ + fulltext_cursor *c = (fulltext_cursor *) pCursor; + return c->eof; +} + +/* This is the xColumn method of the virtual table. The SQLite +** core calls this method during a query when it needs the value +** of a column from the virtual table. This method needs to use +** one of the sqlite3_result_*() routines to store the requested +** value back in the pContext. +*/ +static int fulltextColumn(sqlite3_vtab_cursor *pCursor, + sqlite3_context *pContext, int idxCol){ + fulltext_cursor *c = (fulltext_cursor *) pCursor; + fulltext_vtab *v = cursor_vtab(c); + + if( idxColnColumn ){ + sqlite3_value *pVal = sqlite3_column_value(c->pStmt, idxCol+1); + sqlite3_result_value(pContext, pVal); + }else if( idxCol==v->nColumn ){ + /* The extra column whose name is the same as the table. + ** Return a blob which is a pointer to the cursor + */ + sqlite3_result_blob(pContext, &c, sizeof(c), SQLITE_TRANSIENT); + }else if( idxCol==v->nColumn+1 ){ + /* The docid column, which is an alias for rowid. */ + sqlite3_value *pVal = sqlite3_column_value(c->pStmt, 0); + sqlite3_result_value(pContext, pVal); + } + return SQLITE_OK; +} + +/* This is the xRowid method. The SQLite core calls this routine to +** retrieve the rowid for the current row of the result set. fts3 +** exposes %_content.docid as the rowid for the virtual table. The +** rowid should be written to *pRowid. +*/ +static int fulltextRowid(sqlite3_vtab_cursor *pCursor, sqlite_int64 *pRowid){ + fulltext_cursor *c = (fulltext_cursor *) pCursor; + + *pRowid = sqlite3_column_int64(c->pStmt, 0); + return SQLITE_OK; +} + +/* Add all terms in [zText] to pendingTerms table. If [iColumn] > 0, +** we also store positions and offsets in the hash table using that +** column number. +*/ +static int buildTerms(fulltext_vtab *v, sqlite_int64 iDocid, + const char *zText, int iColumn){ + sqlite3_tokenizer *pTokenizer = v->pTokenizer; + sqlite3_tokenizer_cursor *pCursor; + const char *pToken; + int nTokenBytes; + int iStartOffset, iEndOffset, iPosition; + int rc; + + rc = pTokenizer->pModule->xOpen(pTokenizer, zText, -1, &pCursor); + if( rc!=SQLITE_OK ) return rc; + + pCursor->pTokenizer = pTokenizer; + while( SQLITE_OK==(rc=pTokenizer->pModule->xNext(pCursor, + &pToken, &nTokenBytes, + &iStartOffset, &iEndOffset, + &iPosition)) ){ + DLCollector *p; + int nData; /* Size of doclist before our update. */ + + /* Positions can't be negative; we use -1 as a terminator + * internally. Token can't be NULL or empty. */ + if( iPosition<0 || pToken == NULL || nTokenBytes == 0 ){ + rc = SQLITE_ERROR; + break; + } + + p = fts3HashFind(&v->pendingTerms, pToken, nTokenBytes); + if( p==NULL ){ + nData = 0; + p = dlcNew(iDocid, DL_DEFAULT); + fts3HashInsert(&v->pendingTerms, pToken, nTokenBytes, p); + + /* Overhead for our hash table entry, the key, and the value. */ + v->nPendingData += sizeof(struct fts3HashElem)+sizeof(*p)+nTokenBytes; + }else{ + nData = p->b.nData; + if( p->dlw.iPrevDocid!=iDocid ) dlcNext(p, iDocid); + } + if( iColumn>=0 ){ + dlcAddPos(p, iColumn, iPosition, iStartOffset, iEndOffset); + } + + /* Accumulate data added by dlcNew or dlcNext, and dlcAddPos. */ + v->nPendingData += p->b.nData-nData; + } + + /* TODO(shess) Check return? Should this be able to cause errors at + ** this point? Actually, same question about sqlite3_finalize(), + ** though one could argue that failure there means that the data is + ** not durable. *ponder* + */ + pTokenizer->pModule->xClose(pCursor); + if( SQLITE_DONE == rc ) return SQLITE_OK; + return rc; +} + +/* Add doclists for all terms in [pValues] to pendingTerms table. */ +static int insertTerms(fulltext_vtab *v, sqlite_int64 iDocid, + sqlite3_value **pValues){ + int i; + for(i = 0; i < v->nColumn ; ++i){ + char *zText = (char*)sqlite3_value_text(pValues[i]); + int rc = buildTerms(v, iDocid, zText, i); + if( rc!=SQLITE_OK ) return rc; + } + return SQLITE_OK; +} + +/* Add empty doclists for all terms in the given row's content to +** pendingTerms. +*/ +static int deleteTerms(fulltext_vtab *v, sqlite_int64 iDocid){ + const char **pValues; + int i, rc; + + /* TODO(shess) Should we allow such tables at all? */ + if( DL_DEFAULT==DL_DOCIDS ) return SQLITE_ERROR; + + rc = content_select(v, iDocid, &pValues); + if( rc!=SQLITE_OK ) return rc; + + for(i = 0 ; i < v->nColumn; ++i) { + rc = buildTerms(v, iDocid, pValues[i], -1); + if( rc!=SQLITE_OK ) break; + } + + freeStringArray(v->nColumn, pValues); + return SQLITE_OK; +} + +/* TODO(shess) Refactor the code to remove this forward decl. */ +static int initPendingTerms(fulltext_vtab *v, sqlite_int64 iDocid); + +/* Insert a row into the %_content table; set *piDocid to be the ID of the +** new row. Add doclists for terms to pendingTerms. +*/ +static int index_insert(fulltext_vtab *v, sqlite3_value *pRequestDocid, + sqlite3_value **pValues, sqlite_int64 *piDocid){ + int rc; + + rc = content_insert(v, pRequestDocid, pValues); /* execute an SQL INSERT */ + if( rc!=SQLITE_OK ) return rc; + + /* docid column is an alias for rowid. */ + *piDocid = sqlite3_last_insert_rowid(v->db); + rc = initPendingTerms(v, *piDocid); + if( rc!=SQLITE_OK ) return rc; + + return insertTerms(v, *piDocid, pValues); +} + +/* Delete a row from the %_content table; add empty doclists for terms +** to pendingTerms. +*/ +static int index_delete(fulltext_vtab *v, sqlite_int64 iRow){ + int rc = initPendingTerms(v, iRow); + if( rc!=SQLITE_OK ) return rc; + + rc = deleteTerms(v, iRow); + if( rc!=SQLITE_OK ) return rc; + + return content_delete(v, iRow); /* execute an SQL DELETE */ +} + +/* Update a row in the %_content table; add delete doclists to +** pendingTerms for old terms not in the new data, add insert doclists +** to pendingTerms for terms in the new data. +*/ +static int index_update(fulltext_vtab *v, sqlite_int64 iRow, + sqlite3_value **pValues){ + int rc = initPendingTerms(v, iRow); + if( rc!=SQLITE_OK ) return rc; + + /* Generate an empty doclist for each term that previously appeared in this + * row. */ + rc = deleteTerms(v, iRow); + if( rc!=SQLITE_OK ) return rc; + + rc = content_update(v, pValues, iRow); /* execute an SQL UPDATE */ + if( rc!=SQLITE_OK ) return rc; + + /* Now add positions for terms which appear in the updated row. */ + return insertTerms(v, iRow, pValues); +} + +/*******************************************************************/ +/* InteriorWriter is used to collect terms and block references into +** interior nodes in %_segments. See commentary at top of file for +** format. +*/ + +/* How large interior nodes can grow. */ +#define INTERIOR_MAX 2048 + +/* Minimum number of terms per interior node (except the root). This +** prevents large terms from making the tree too skinny - must be >0 +** so that the tree always makes progress. Note that the min tree +** fanout will be INTERIOR_MIN_TERMS+1. +*/ +#define INTERIOR_MIN_TERMS 7 +#if INTERIOR_MIN_TERMS<1 +# error INTERIOR_MIN_TERMS must be greater than 0. +#endif + +/* ROOT_MAX controls how much data is stored inline in the segment +** directory. +*/ +/* TODO(shess) Push ROOT_MAX down to whoever is writing things. It's +** only here so that interiorWriterRootInfo() and leafWriterRootInfo() +** can both see it, but if the caller passed it in, we wouldn't even +** need a define. +*/ +#define ROOT_MAX 1024 +#if ROOT_MAXterm, 0); + dataBufferReplace(&block->term, pTerm, nTerm); + + n = fts3PutVarint(c, iHeight); + n += fts3PutVarint(c+n, iChildBlock); + dataBufferInit(&block->data, INTERIOR_MAX); + dataBufferReplace(&block->data, c, n); + } + return block; +} + +#ifndef NDEBUG +/* Verify that the data is readable as an interior node. */ +static void interiorBlockValidate(InteriorBlock *pBlock){ + const char *pData = pBlock->data.pData; + int nData = pBlock->data.nData; + int n, iDummy; + sqlite_int64 iBlockid; + + assert( nData>0 ); + assert( pData!=0 ); + assert( pData+nData>pData ); + + /* Must lead with height of node as a varint(n), n>0 */ + n = fts3GetVarint32(pData, &iDummy); + assert( n>0 ); + assert( iDummy>0 ); + assert( n0 ); + assert( n<=nData ); + pData += n; + nData -= n; + + /* Zero or more terms of positive length */ + if( nData!=0 ){ + /* First term is not delta-encoded. */ + n = fts3GetVarint32(pData, &iDummy); + assert( n>0 ); + assert( iDummy>0 ); + assert( n+iDummy>0); + assert( n+iDummy<=nData ); + pData += n+iDummy; + nData -= n+iDummy; + + /* Following terms delta-encoded. */ + while( nData!=0 ){ + /* Length of shared prefix. */ + n = fts3GetVarint32(pData, &iDummy); + assert( n>0 ); + assert( iDummy>=0 ); + assert( n0 ); + assert( iDummy>0 ); + assert( n+iDummy>0); + assert( n+iDummy<=nData ); + pData += n+iDummy; + nData -= n+iDummy; + } + } +} +#define ASSERT_VALID_INTERIOR_BLOCK(x) interiorBlockValidate(x) +#else +#define ASSERT_VALID_INTERIOR_BLOCK(x) assert( 1 ) +#endif + +typedef struct InteriorWriter { + int iHeight; /* from 0 at leaves. */ + InteriorBlock *first, *last; + struct InteriorWriter *parentWriter; + + DataBuffer term; /* Last term written to block "last". */ + sqlite_int64 iOpeningChildBlock; /* First child block in block "last". */ +#ifndef NDEBUG + sqlite_int64 iLastChildBlock; /* for consistency checks. */ +#endif +} InteriorWriter; + +/* Initialize an interior node where pTerm[nTerm] marks the leftmost +** term in the tree. iChildBlock is the leftmost child block at the +** next level down the tree. +*/ +static void interiorWriterInit(int iHeight, const char *pTerm, int nTerm, + sqlite_int64 iChildBlock, + InteriorWriter *pWriter){ + InteriorBlock *block; + assert( iHeight>0 ); + CLEAR(pWriter); + + pWriter->iHeight = iHeight; + pWriter->iOpeningChildBlock = iChildBlock; +#ifndef NDEBUG + pWriter->iLastChildBlock = iChildBlock; +#endif + block = interiorBlockNew(iHeight, iChildBlock, pTerm, nTerm); + pWriter->last = pWriter->first = block; + ASSERT_VALID_INTERIOR_BLOCK(pWriter->last); + dataBufferInit(&pWriter->term, 0); +} + +/* Append the child node rooted at iChildBlock to the interior node, +** with pTerm[nTerm] as the leftmost term in iChildBlock's subtree. +*/ +static void interiorWriterAppend(InteriorWriter *pWriter, + const char *pTerm, int nTerm, + sqlite_int64 iChildBlock){ + char c[VARINT_MAX+VARINT_MAX]; + int n, nPrefix = 0; + + ASSERT_VALID_INTERIOR_BLOCK(pWriter->last); + + /* The first term written into an interior node is actually + ** associated with the second child added (the first child was added + ** in interiorWriterInit, or in the if clause at the bottom of this + ** function). That term gets encoded straight up, with nPrefix left + ** at 0. + */ + if( pWriter->term.nData==0 ){ + n = fts3PutVarint(c, nTerm); + }else{ + while( nPrefixterm.nData && + pTerm[nPrefix]==pWriter->term.pData[nPrefix] ){ + nPrefix++; + } + + n = fts3PutVarint(c, nPrefix); + n += fts3PutVarint(c+n, nTerm-nPrefix); + } + +#ifndef NDEBUG + pWriter->iLastChildBlock++; +#endif + assert( pWriter->iLastChildBlock==iChildBlock ); + + /* Overflow to a new block if the new term makes the current block + ** too big, and the current block already has enough terms. + */ + if( pWriter->last->data.nData+n+nTerm-nPrefix>INTERIOR_MAX && + iChildBlock-pWriter->iOpeningChildBlock>INTERIOR_MIN_TERMS ){ + pWriter->last->next = interiorBlockNew(pWriter->iHeight, iChildBlock, + pTerm, nTerm); + pWriter->last = pWriter->last->next; + pWriter->iOpeningChildBlock = iChildBlock; + dataBufferReset(&pWriter->term); + }else{ + dataBufferAppend2(&pWriter->last->data, c, n, + pTerm+nPrefix, nTerm-nPrefix); + dataBufferReplace(&pWriter->term, pTerm, nTerm); + } + ASSERT_VALID_INTERIOR_BLOCK(pWriter->last); +} + +/* Free the space used by pWriter, including the linked-list of +** InteriorBlocks, and parentWriter, if present. +*/ +static int interiorWriterDestroy(InteriorWriter *pWriter){ + InteriorBlock *block = pWriter->first; + + while( block!=NULL ){ + InteriorBlock *b = block; + block = block->next; + dataBufferDestroy(&b->term); + dataBufferDestroy(&b->data); + sqlite3_free(b); + } + if( pWriter->parentWriter!=NULL ){ + interiorWriterDestroy(pWriter->parentWriter); + sqlite3_free(pWriter->parentWriter); + } + dataBufferDestroy(&pWriter->term); + SCRAMBLE(pWriter); + return SQLITE_OK; +} + +/* If pWriter can fit entirely in ROOT_MAX, return it as the root info +** directly, leaving *piEndBlockid unchanged. Otherwise, flush +** pWriter to %_segments, building a new layer of interior nodes, and +** recursively ask for their root into. +*/ +static int interiorWriterRootInfo(fulltext_vtab *v, InteriorWriter *pWriter, + char **ppRootInfo, int *pnRootInfo, + sqlite_int64 *piEndBlockid){ + InteriorBlock *block = pWriter->first; + sqlite_int64 iBlockid = 0; + int rc; + + /* If we can fit the segment inline */ + if( block==pWriter->last && block->data.nDatadata.pData; + *pnRootInfo = block->data.nData; + return SQLITE_OK; + } + + /* Flush the first block to %_segments, and create a new level of + ** interior node. + */ + ASSERT_VALID_INTERIOR_BLOCK(block); + rc = block_insert(v, block->data.pData, block->data.nData, &iBlockid); + if( rc!=SQLITE_OK ) return rc; + *piEndBlockid = iBlockid; + + pWriter->parentWriter = sqlite3_malloc(sizeof(*pWriter->parentWriter)); + interiorWriterInit(pWriter->iHeight+1, + block->term.pData, block->term.nData, + iBlockid, pWriter->parentWriter); + + /* Flush additional blocks and append to the higher interior + ** node. + */ + for(block=block->next; block!=NULL; block=block->next){ + ASSERT_VALID_INTERIOR_BLOCK(block); + rc = block_insert(v, block->data.pData, block->data.nData, &iBlockid); + if( rc!=SQLITE_OK ) return rc; + *piEndBlockid = iBlockid; + + interiorWriterAppend(pWriter->parentWriter, + block->term.pData, block->term.nData, iBlockid); + } + + /* Parent node gets the chance to be the root. */ + return interiorWriterRootInfo(v, pWriter->parentWriter, + ppRootInfo, pnRootInfo, piEndBlockid); +} + +/****************************************************************/ +/* InteriorReader is used to read off the data from an interior node +** (see comment at top of file for the format). +*/ +typedef struct InteriorReader { + const char *pData; + int nData; + + DataBuffer term; /* previous term, for decoding term delta. */ + + sqlite_int64 iBlockid; +} InteriorReader; + +static void interiorReaderDestroy(InteriorReader *pReader){ + dataBufferDestroy(&pReader->term); + SCRAMBLE(pReader); +} + +/* TODO(shess) The assertions are great, but what if we're in NDEBUG +** and the blob is empty or otherwise contains suspect data? +*/ +static void interiorReaderInit(const char *pData, int nData, + InteriorReader *pReader){ + int n, nTerm; + + /* Require at least the leading flag byte */ + assert( nData>0 ); + assert( pData[0]!='\0' ); + + CLEAR(pReader); + + /* Decode the base blockid, and set the cursor to the first term. */ + n = fts3GetVarint(pData+1, &pReader->iBlockid); + assert( 1+n<=nData ); + pReader->pData = pData+1+n; + pReader->nData = nData-(1+n); + + /* A single-child interior node (such as when a leaf node was too + ** large for the segment directory) won't have any terms. + ** Otherwise, decode the first term. + */ + if( pReader->nData==0 ){ + dataBufferInit(&pReader->term, 0); + }else{ + n = fts3GetVarint32(pReader->pData, &nTerm); + dataBufferInit(&pReader->term, nTerm); + dataBufferReplace(&pReader->term, pReader->pData+n, nTerm); + assert( n+nTerm<=pReader->nData ); + pReader->pData += n+nTerm; + pReader->nData -= n+nTerm; + } +} + +static int interiorReaderAtEnd(InteriorReader *pReader){ + return pReader->term.nData==0; +} + +static sqlite_int64 interiorReaderCurrentBlockid(InteriorReader *pReader){ + return pReader->iBlockid; +} + +static int interiorReaderTermBytes(InteriorReader *pReader){ + assert( !interiorReaderAtEnd(pReader) ); + return pReader->term.nData; +} +static const char *interiorReaderTerm(InteriorReader *pReader){ + assert( !interiorReaderAtEnd(pReader) ); + return pReader->term.pData; +} + +/* Step forward to the next term in the node. */ +static void interiorReaderStep(InteriorReader *pReader){ + assert( !interiorReaderAtEnd(pReader) ); + + /* If the last term has been read, signal eof, else construct the + ** next term. + */ + if( pReader->nData==0 ){ + dataBufferReset(&pReader->term); + }else{ + int n, nPrefix, nSuffix; + + n = fts3GetVarint32(pReader->pData, &nPrefix); + n += fts3GetVarint32(pReader->pData+n, &nSuffix); + + /* Truncate the current term and append suffix data. */ + pReader->term.nData = nPrefix; + dataBufferAppend(&pReader->term, pReader->pData+n, nSuffix); + + assert( n+nSuffix<=pReader->nData ); + pReader->pData += n+nSuffix; + pReader->nData -= n+nSuffix; + } + pReader->iBlockid++; +} + +/* Compare the current term to pTerm[nTerm], returning strcmp-style +** results. If isPrefix, equality means equal through nTerm bytes. +*/ +static int interiorReaderTermCmp(InteriorReader *pReader, + const char *pTerm, int nTerm, int isPrefix){ + const char *pReaderTerm = interiorReaderTerm(pReader); + int nReaderTerm = interiorReaderTermBytes(pReader); + int c, n = nReaderTerm0 ) return -1; + if( nTerm>0 ) return 1; + return 0; + } + + c = memcmp(pReaderTerm, pTerm, n); + if( c!=0 ) return c; + if( isPrefix && n==nTerm ) return 0; + return nReaderTerm - nTerm; +} + +/****************************************************************/ +/* LeafWriter is used to collect terms and associated doclist data +** into leaf blocks in %_segments (see top of file for format info). +** Expected usage is: +** +** LeafWriter writer; +** leafWriterInit(0, 0, &writer); +** while( sorted_terms_left_to_process ){ +** // data is doclist data for that term. +** rc = leafWriterStep(v, &writer, pTerm, nTerm, pData, nData); +** if( rc!=SQLITE_OK ) goto err; +** } +** rc = leafWriterFinalize(v, &writer); +**err: +** leafWriterDestroy(&writer); +** return rc; +** +** leafWriterStep() may write a collected leaf out to %_segments. +** leafWriterFinalize() finishes writing any buffered data and stores +** a root node in %_segdir. leafWriterDestroy() frees all buffers and +** InteriorWriters allocated as part of writing this segment. +** +** TODO(shess) Document leafWriterStepMerge(). +*/ + +/* Put terms with data this big in their own block. */ +#define STANDALONE_MIN 1024 + +/* Keep leaf blocks below this size. */ +#define LEAF_MAX 2048 + +typedef struct LeafWriter { + int iLevel; + int idx; + sqlite_int64 iStartBlockid; /* needed to create the root info */ + sqlite_int64 iEndBlockid; /* when we're done writing. */ + + DataBuffer term; /* previous encoded term */ + DataBuffer data; /* encoding buffer */ + + /* bytes of first term in the current node which distinguishes that + ** term from the last term of the previous node. + */ + int nTermDistinct; + + InteriorWriter parentWriter; /* if we overflow */ + int has_parent; +} LeafWriter; + +static void leafWriterInit(int iLevel, int idx, LeafWriter *pWriter){ + CLEAR(pWriter); + pWriter->iLevel = iLevel; + pWriter->idx = idx; + + dataBufferInit(&pWriter->term, 32); + + /* Start out with a reasonably sized block, though it can grow. */ + dataBufferInit(&pWriter->data, LEAF_MAX); +} + +#ifndef NDEBUG +/* Verify that the data is readable as a leaf node. */ +static void leafNodeValidate(const char *pData, int nData){ + int n, iDummy; + + if( nData==0 ) return; + assert( nData>0 ); + assert( pData!=0 ); + assert( pData+nData>pData ); + + /* Must lead with a varint(0) */ + n = fts3GetVarint32(pData, &iDummy); + assert( iDummy==0 ); + assert( n>0 ); + assert( n0 ); + assert( iDummy>0 ); + assert( n+iDummy>0 ); + assert( n+iDummy0 ); + assert( iDummy>0 ); + assert( n+iDummy>0 ); + assert( n+iDummy<=nData ); + ASSERT_VALID_DOCLIST(DL_DEFAULT, pData+n, iDummy, NULL); + pData += n+iDummy; + nData -= n+iDummy; + + /* Verify that trailing terms and doclists also are readable. */ + while( nData!=0 ){ + n = fts3GetVarint32(pData, &iDummy); + assert( n>0 ); + assert( iDummy>=0 ); + assert( n0 ); + assert( iDummy>0 ); + assert( n+iDummy>0 ); + assert( n+iDummy0 ); + assert( iDummy>0 ); + assert( n+iDummy>0 ); + assert( n+iDummy<=nData ); + ASSERT_VALID_DOCLIST(DL_DEFAULT, pData+n, iDummy, NULL); + pData += n+iDummy; + nData -= n+iDummy; + } +} +#define ASSERT_VALID_LEAF_NODE(p, n) leafNodeValidate(p, n) +#else +#define ASSERT_VALID_LEAF_NODE(p, n) assert( 1 ) +#endif + +/* Flush the current leaf node to %_segments, and adding the resulting +** blockid and the starting term to the interior node which will +** contain it. +*/ +static int leafWriterInternalFlush(fulltext_vtab *v, LeafWriter *pWriter, + int iData, int nData){ + sqlite_int64 iBlockid = 0; + const char *pStartingTerm; + int nStartingTerm, rc, n; + + /* Must have the leading varint(0) flag, plus at least some + ** valid-looking data. + */ + assert( nData>2 ); + assert( iData>=0 ); + assert( iData+nData<=pWriter->data.nData ); + ASSERT_VALID_LEAF_NODE(pWriter->data.pData+iData, nData); + + rc = block_insert(v, pWriter->data.pData+iData, nData, &iBlockid); + if( rc!=SQLITE_OK ) return rc; + assert( iBlockid!=0 ); + + /* Reconstruct the first term in the leaf for purposes of building + ** the interior node. + */ + n = fts3GetVarint32(pWriter->data.pData+iData+1, &nStartingTerm); + pStartingTerm = pWriter->data.pData+iData+1+n; + assert( pWriter->data.nData>iData+1+n+nStartingTerm ); + assert( pWriter->nTermDistinct>0 ); + assert( pWriter->nTermDistinct<=nStartingTerm ); + nStartingTerm = pWriter->nTermDistinct; + + if( pWriter->has_parent ){ + interiorWriterAppend(&pWriter->parentWriter, + pStartingTerm, nStartingTerm, iBlockid); + }else{ + interiorWriterInit(1, pStartingTerm, nStartingTerm, iBlockid, + &pWriter->parentWriter); + pWriter->has_parent = 1; + } + + /* Track the span of this segment's leaf nodes. */ + if( pWriter->iEndBlockid==0 ){ + pWriter->iEndBlockid = pWriter->iStartBlockid = iBlockid; + }else{ + pWriter->iEndBlockid++; + assert( iBlockid==pWriter->iEndBlockid ); + } + + return SQLITE_OK; +} +static int leafWriterFlush(fulltext_vtab *v, LeafWriter *pWriter){ + int rc = leafWriterInternalFlush(v, pWriter, 0, pWriter->data.nData); + if( rc!=SQLITE_OK ) return rc; + + /* Re-initialize the output buffer. */ + dataBufferReset(&pWriter->data); + + return SQLITE_OK; +} + +/* Fetch the root info for the segment. If the entire leaf fits +** within ROOT_MAX, then it will be returned directly, otherwise it +** will be flushed and the root info will be returned from the +** interior node. *piEndBlockid is set to the blockid of the last +** interior or leaf node written to disk (0 if none are written at +** all). +*/ +static int leafWriterRootInfo(fulltext_vtab *v, LeafWriter *pWriter, + char **ppRootInfo, int *pnRootInfo, + sqlite_int64 *piEndBlockid){ + /* we can fit the segment entirely inline */ + if( !pWriter->has_parent && pWriter->data.nDatadata.pData; + *pnRootInfo = pWriter->data.nData; + *piEndBlockid = 0; + return SQLITE_OK; + } + + /* Flush remaining leaf data. */ + if( pWriter->data.nData>0 ){ + int rc = leafWriterFlush(v, pWriter); + if( rc!=SQLITE_OK ) return rc; + } + + /* We must have flushed a leaf at some point. */ + assert( pWriter->has_parent ); + + /* Tenatively set the end leaf blockid as the end blockid. If the + ** interior node can be returned inline, this will be the final + ** blockid, otherwise it will be overwritten by + ** interiorWriterRootInfo(). + */ + *piEndBlockid = pWriter->iEndBlockid; + + return interiorWriterRootInfo(v, &pWriter->parentWriter, + ppRootInfo, pnRootInfo, piEndBlockid); +} + +/* Collect the rootInfo data and store it into the segment directory. +** This has the effect of flushing the segment's leaf data to +** %_segments, and also flushing any interior nodes to %_segments. +*/ +static int leafWriterFinalize(fulltext_vtab *v, LeafWriter *pWriter){ + sqlite_int64 iEndBlockid; + char *pRootInfo; + int rc, nRootInfo; + + rc = leafWriterRootInfo(v, pWriter, &pRootInfo, &nRootInfo, &iEndBlockid); + if( rc!=SQLITE_OK ) return rc; + + /* Don't bother storing an entirely empty segment. */ + if( iEndBlockid==0 && nRootInfo==0 ) return SQLITE_OK; + + return segdir_set(v, pWriter->iLevel, pWriter->idx, + pWriter->iStartBlockid, pWriter->iEndBlockid, + iEndBlockid, pRootInfo, nRootInfo); +} + +static void leafWriterDestroy(LeafWriter *pWriter){ + if( pWriter->has_parent ) interiorWriterDestroy(&pWriter->parentWriter); + dataBufferDestroy(&pWriter->term); + dataBufferDestroy(&pWriter->data); +} + +/* Encode a term into the leafWriter, delta-encoding as appropriate. +** Returns the length of the new term which distinguishes it from the +** previous term, which can be used to set nTermDistinct when a node +** boundary is crossed. +*/ +static int leafWriterEncodeTerm(LeafWriter *pWriter, + const char *pTerm, int nTerm){ + char c[VARINT_MAX+VARINT_MAX]; + int n, nPrefix = 0; + + assert( nTerm>0 ); + while( nPrefixterm.nData && + pTerm[nPrefix]==pWriter->term.pData[nPrefix] ){ + nPrefix++; + /* Failing this implies that the terms weren't in order. */ + assert( nPrefixdata.nData==0 ){ + /* Encode the node header and leading term as: + ** varint(0) + ** varint(nTerm) + ** char pTerm[nTerm] + */ + n = fts3PutVarint(c, '\0'); + n += fts3PutVarint(c+n, nTerm); + dataBufferAppend2(&pWriter->data, c, n, pTerm, nTerm); + }else{ + /* Delta-encode the term as: + ** varint(nPrefix) + ** varint(nSuffix) + ** char pTermSuffix[nSuffix] + */ + n = fts3PutVarint(c, nPrefix); + n += fts3PutVarint(c+n, nTerm-nPrefix); + dataBufferAppend2(&pWriter->data, c, n, pTerm+nPrefix, nTerm-nPrefix); + } + dataBufferReplace(&pWriter->term, pTerm, nTerm); + + return nPrefix+1; +} + +/* Used to avoid a memmove when a large amount of doclist data is in +** the buffer. This constructs a node and term header before +** iDoclistData and flushes the resulting complete node using +** leafWriterInternalFlush(). +*/ +static int leafWriterInlineFlush(fulltext_vtab *v, LeafWriter *pWriter, + const char *pTerm, int nTerm, + int iDoclistData){ + char c[VARINT_MAX+VARINT_MAX]; + int iData, n = fts3PutVarint(c, 0); + n += fts3PutVarint(c+n, nTerm); + + /* There should always be room for the header. Even if pTerm shared + ** a substantial prefix with the previous term, the entire prefix + ** could be constructed from earlier data in the doclist, so there + ** should be room. + */ + assert( iDoclistData>=n+nTerm ); + + iData = iDoclistData-(n+nTerm); + memcpy(pWriter->data.pData+iData, c, n); + memcpy(pWriter->data.pData+iData+n, pTerm, nTerm); + + return leafWriterInternalFlush(v, pWriter, iData, pWriter->data.nData-iData); +} + +/* Push pTerm[nTerm] along with the doclist data to the leaf layer of +** %_segments. +*/ +static int leafWriterStepMerge(fulltext_vtab *v, LeafWriter *pWriter, + const char *pTerm, int nTerm, + DLReader *pReaders, int nReaders){ + char c[VARINT_MAX+VARINT_MAX]; + int iTermData = pWriter->data.nData, iDoclistData; + int i, nData, n, nActualData, nActual, rc, nTermDistinct; + + ASSERT_VALID_LEAF_NODE(pWriter->data.pData, pWriter->data.nData); + nTermDistinct = leafWriterEncodeTerm(pWriter, pTerm, nTerm); + + /* Remember nTermDistinct if opening a new node. */ + if( iTermData==0 ) pWriter->nTermDistinct = nTermDistinct; + + iDoclistData = pWriter->data.nData; + + /* Estimate the length of the merged doclist so we can leave space + ** to encode it. + */ + for(i=0, nData=0; idata, c, n); + + docListMerge(&pWriter->data, pReaders, nReaders); + ASSERT_VALID_DOCLIST(DL_DEFAULT, + pWriter->data.pData+iDoclistData+n, + pWriter->data.nData-iDoclistData-n, NULL); + + /* The actual amount of doclist data at this point could be smaller + ** than the length we encoded. Additionally, the space required to + ** encode this length could be smaller. For small doclists, this is + ** not a big deal, we can just use memmove() to adjust things. + */ + nActualData = pWriter->data.nData-(iDoclistData+n); + nActual = fts3PutVarint(c, nActualData); + assert( nActualData<=nData ); + assert( nActual<=n ); + + /* If the new doclist is big enough for force a standalone leaf + ** node, we can immediately flush it inline without doing the + ** memmove(). + */ + /* TODO(shess) This test matches leafWriterStep(), which does this + ** test before it knows the cost to varint-encode the term and + ** doclist lengths. At some point, change to + ** pWriter->data.nData-iTermData>STANDALONE_MIN. + */ + if( nTerm+nActualData>STANDALONE_MIN ){ + /* Push leaf node from before this term. */ + if( iTermData>0 ){ + rc = leafWriterInternalFlush(v, pWriter, 0, iTermData); + if( rc!=SQLITE_OK ) return rc; + + pWriter->nTermDistinct = nTermDistinct; + } + + /* Fix the encoded doclist length. */ + iDoclistData += n - nActual; + memcpy(pWriter->data.pData+iDoclistData, c, nActual); + + /* Push the standalone leaf node. */ + rc = leafWriterInlineFlush(v, pWriter, pTerm, nTerm, iDoclistData); + if( rc!=SQLITE_OK ) return rc; + + /* Leave the node empty. */ + dataBufferReset(&pWriter->data); + + return rc; + } + + /* At this point, we know that the doclist was small, so do the + ** memmove if indicated. + */ + if( nActualdata.pData+iDoclistData+nActual, + pWriter->data.pData+iDoclistData+n, + pWriter->data.nData-(iDoclistData+n)); + pWriter->data.nData -= n-nActual; + } + + /* Replace written length with actual length. */ + memcpy(pWriter->data.pData+iDoclistData, c, nActual); + + /* If the node is too large, break things up. */ + /* TODO(shess) This test matches leafWriterStep(), which does this + ** test before it knows the cost to varint-encode the term and + ** doclist lengths. At some point, change to + ** pWriter->data.nData>LEAF_MAX. + */ + if( iTermData+nTerm+nActualData>LEAF_MAX ){ + /* Flush out the leading data as a node */ + rc = leafWriterInternalFlush(v, pWriter, 0, iTermData); + if( rc!=SQLITE_OK ) return rc; + + pWriter->nTermDistinct = nTermDistinct; + + /* Rebuild header using the current term */ + n = fts3PutVarint(pWriter->data.pData, 0); + n += fts3PutVarint(pWriter->data.pData+n, nTerm); + memcpy(pWriter->data.pData+n, pTerm, nTerm); + n += nTerm; + + /* There should always be room, because the previous encoding + ** included all data necessary to construct the term. + */ + assert( ndata.nData-iDoclistDatadata.pData+n, + pWriter->data.pData+iDoclistData, + pWriter->data.nData-iDoclistData); + pWriter->data.nData -= iDoclistData-n; + } + ASSERT_VALID_LEAF_NODE(pWriter->data.pData, pWriter->data.nData); + + return SQLITE_OK; +} + +/* Push pTerm[nTerm] along with the doclist data to the leaf layer of +** %_segments. +*/ +/* TODO(shess) Revise writeZeroSegment() so that doclists are +** constructed directly in pWriter->data. +*/ +static int leafWriterStep(fulltext_vtab *v, LeafWriter *pWriter, + const char *pTerm, int nTerm, + const char *pData, int nData){ + int rc; + DLReader reader; + + dlrInit(&reader, DL_DEFAULT, pData, nData); + rc = leafWriterStepMerge(v, pWriter, pTerm, nTerm, &reader, 1); + dlrDestroy(&reader); + + return rc; +} + + +/****************************************************************/ +/* LeafReader is used to iterate over an individual leaf node. */ +typedef struct LeafReader { + DataBuffer term; /* copy of current term. */ + + const char *pData; /* data for current term. */ + int nData; +} LeafReader; + +static void leafReaderDestroy(LeafReader *pReader){ + dataBufferDestroy(&pReader->term); + SCRAMBLE(pReader); +} + +static int leafReaderAtEnd(LeafReader *pReader){ + return pReader->nData<=0; +} + +/* Access the current term. */ +static int leafReaderTermBytes(LeafReader *pReader){ + return pReader->term.nData; +} +static const char *leafReaderTerm(LeafReader *pReader){ + assert( pReader->term.nData>0 ); + return pReader->term.pData; +} + +/* Access the doclist data for the current term. */ +static int leafReaderDataBytes(LeafReader *pReader){ + int nData; + assert( pReader->term.nData>0 ); + fts3GetVarint32(pReader->pData, &nData); + return nData; +} +static const char *leafReaderData(LeafReader *pReader){ + int n, nData; + assert( pReader->term.nData>0 ); + n = fts3GetVarint32(pReader->pData, &nData); + return pReader->pData+n; +} + +static void leafReaderInit(const char *pData, int nData, + LeafReader *pReader){ + int nTerm, n; + + assert( nData>0 ); + assert( pData[0]=='\0' ); + + CLEAR(pReader); + + /* Read the first term, skipping the header byte. */ + n = fts3GetVarint32(pData+1, &nTerm); + dataBufferInit(&pReader->term, nTerm); + dataBufferReplace(&pReader->term, pData+1+n, nTerm); + + /* Position after the first term. */ + assert( 1+n+nTermpData = pData+1+n+nTerm; + pReader->nData = nData-1-n-nTerm; +} + +/* Step the reader forward to the next term. */ +static void leafReaderStep(LeafReader *pReader){ + int n, nData, nPrefix, nSuffix; + assert( !leafReaderAtEnd(pReader) ); + + /* Skip previous entry's data block. */ + n = fts3GetVarint32(pReader->pData, &nData); + assert( n+nData<=pReader->nData ); + pReader->pData += n+nData; + pReader->nData -= n+nData; + + if( !leafReaderAtEnd(pReader) ){ + /* Construct the new term using a prefix from the old term plus a + ** suffix from the leaf data. + */ + n = fts3GetVarint32(pReader->pData, &nPrefix); + n += fts3GetVarint32(pReader->pData+n, &nSuffix); + assert( n+nSuffixnData ); + pReader->term.nData = nPrefix; + dataBufferAppend(&pReader->term, pReader->pData+n, nSuffix); + + pReader->pData += n+nSuffix; + pReader->nData -= n+nSuffix; + } +} + +/* strcmp-style comparison of pReader's current term against pTerm. +** If isPrefix, equality means equal through nTerm bytes. +*/ +static int leafReaderTermCmp(LeafReader *pReader, + const char *pTerm, int nTerm, int isPrefix){ + int c, n = pReader->term.nDataterm.nData : nTerm; + if( n==0 ){ + if( pReader->term.nData>0 ) return -1; + if(nTerm>0 ) return 1; + return 0; + } + + c = memcmp(pReader->term.pData, pTerm, n); + if( c!=0 ) return c; + if( isPrefix && n==nTerm ) return 0; + return pReader->term.nData - nTerm; +} + + +/****************************************************************/ +/* LeavesReader wraps LeafReader to allow iterating over the entire +** leaf layer of the tree. +*/ +typedef struct LeavesReader { + int idx; /* Index within the segment. */ + + sqlite3_stmt *pStmt; /* Statement we're streaming leaves from. */ + int eof; /* we've seen SQLITE_DONE from pStmt. */ + + LeafReader leafReader; /* reader for the current leaf. */ + DataBuffer rootData; /* root data for inline. */ +} LeavesReader; + +/* Access the current term. */ +static int leavesReaderTermBytes(LeavesReader *pReader){ + assert( !pReader->eof ); + return leafReaderTermBytes(&pReader->leafReader); +} +static const char *leavesReaderTerm(LeavesReader *pReader){ + assert( !pReader->eof ); + return leafReaderTerm(&pReader->leafReader); +} + +/* Access the doclist data for the current term. */ +static int leavesReaderDataBytes(LeavesReader *pReader){ + assert( !pReader->eof ); + return leafReaderDataBytes(&pReader->leafReader); +} +static const char *leavesReaderData(LeavesReader *pReader){ + assert( !pReader->eof ); + return leafReaderData(&pReader->leafReader); +} + +static int leavesReaderAtEnd(LeavesReader *pReader){ + return pReader->eof; +} + +/* loadSegmentLeaves() may not read all the way to SQLITE_DONE, thus +** leaving the statement handle open, which locks the table. +*/ +/* TODO(shess) This "solution" is not satisfactory. Really, there +** should be check-in function for all statement handles which +** arranges to call sqlite3_reset(). This most likely will require +** modification to control flow all over the place, though, so for now +** just punt. +** +** Note the the current system assumes that segment merges will run to +** completion, which is why this particular probably hasn't arisen in +** this case. Probably a brittle assumption. +*/ +static int leavesReaderReset(LeavesReader *pReader){ + return sqlite3_reset(pReader->pStmt); +} + +static void leavesReaderDestroy(LeavesReader *pReader){ + leafReaderDestroy(&pReader->leafReader); + dataBufferDestroy(&pReader->rootData); + SCRAMBLE(pReader); +} + +/* Initialize pReader with the given root data (if iStartBlockid==0 +** the leaf data was entirely contained in the root), or from the +** stream of blocks between iStartBlockid and iEndBlockid, inclusive. +*/ +static int leavesReaderInit(fulltext_vtab *v, + int idx, + sqlite_int64 iStartBlockid, + sqlite_int64 iEndBlockid, + const char *pRootData, int nRootData, + LeavesReader *pReader){ + CLEAR(pReader); + pReader->idx = idx; + + dataBufferInit(&pReader->rootData, 0); + if( iStartBlockid==0 ){ + /* Entire leaf level fit in root data. */ + dataBufferReplace(&pReader->rootData, pRootData, nRootData); + leafReaderInit(pReader->rootData.pData, pReader->rootData.nData, + &pReader->leafReader); + }else{ + sqlite3_stmt *s; + int rc = sql_get_leaf_statement(v, idx, &s); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3_bind_int64(s, 1, iStartBlockid); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3_bind_int64(s, 2, iEndBlockid); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3_step(s); + if( rc==SQLITE_DONE ){ + pReader->eof = 1; + return SQLITE_OK; + } + if( rc!=SQLITE_ROW ) return rc; + + pReader->pStmt = s; + leafReaderInit(sqlite3_column_blob(pReader->pStmt, 0), + sqlite3_column_bytes(pReader->pStmt, 0), + &pReader->leafReader); + } + return SQLITE_OK; +} + +/* Step the current leaf forward to the next term. If we reach the +** end of the current leaf, step forward to the next leaf block. +*/ +static int leavesReaderStep(fulltext_vtab *v, LeavesReader *pReader){ + assert( !leavesReaderAtEnd(pReader) ); + leafReaderStep(&pReader->leafReader); + + if( leafReaderAtEnd(&pReader->leafReader) ){ + int rc; + if( pReader->rootData.pData ){ + pReader->eof = 1; + return SQLITE_OK; + } + rc = sqlite3_step(pReader->pStmt); + if( rc!=SQLITE_ROW ){ + pReader->eof = 1; + return rc==SQLITE_DONE ? SQLITE_OK : rc; + } + leafReaderDestroy(&pReader->leafReader); + leafReaderInit(sqlite3_column_blob(pReader->pStmt, 0), + sqlite3_column_bytes(pReader->pStmt, 0), + &pReader->leafReader); + } + return SQLITE_OK; +} + +/* Order LeavesReaders by their term, ignoring idx. Readers at eof +** always sort to the end. +*/ +static int leavesReaderTermCmp(LeavesReader *lr1, LeavesReader *lr2){ + if( leavesReaderAtEnd(lr1) ){ + if( leavesReaderAtEnd(lr2) ) return 0; + return 1; + } + if( leavesReaderAtEnd(lr2) ) return -1; + + return leafReaderTermCmp(&lr1->leafReader, + leavesReaderTerm(lr2), leavesReaderTermBytes(lr2), + 0); +} + +/* Similar to leavesReaderTermCmp(), with additional ordering by idx +** so that older segments sort before newer segments. +*/ +static int leavesReaderCmp(LeavesReader *lr1, LeavesReader *lr2){ + int c = leavesReaderTermCmp(lr1, lr2); + if( c!=0 ) return c; + return lr1->idx-lr2->idx; +} + +/* Assume that pLr[1]..pLr[nLr] are sorted. Bubble pLr[0] into its +** sorted position. +*/ +static void leavesReaderReorder(LeavesReader *pLr, int nLr){ + while( nLr>1 && leavesReaderCmp(pLr, pLr+1)>0 ){ + LeavesReader tmp = pLr[0]; + pLr[0] = pLr[1]; + pLr[1] = tmp; + nLr--; + pLr++; + } +} + +/* Initializes pReaders with the segments from level iLevel, returning +** the number of segments in *piReaders. Leaves pReaders in sorted +** order. +*/ +static int leavesReadersInit(fulltext_vtab *v, int iLevel, + LeavesReader *pReaders, int *piReaders){ + sqlite3_stmt *s; + int i, rc = sql_get_statement(v, SEGDIR_SELECT_STMT, &s); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3_bind_int(s, 1, iLevel); + if( rc!=SQLITE_OK ) return rc; + + i = 0; + while( (rc = sqlite3_step(s))==SQLITE_ROW ){ + sqlite_int64 iStart = sqlite3_column_int64(s, 0); + sqlite_int64 iEnd = sqlite3_column_int64(s, 1); + const char *pRootData = sqlite3_column_blob(s, 2); + int nRootData = sqlite3_column_bytes(s, 2); + + assert( i0 ){ + leavesReaderDestroy(&pReaders[i]); + } + return rc; + } + + *piReaders = i; + + /* Leave our results sorted by term, then age. */ + while( i-- ){ + leavesReaderReorder(pReaders+i, *piReaders-i); + } + return SQLITE_OK; +} + +/* Merge doclists from pReaders[nReaders] into a single doclist, which +** is written to pWriter. Assumes pReaders is ordered oldest to +** newest. +*/ +/* TODO(shess) Consider putting this inline in segmentMerge(). */ +static int leavesReadersMerge(fulltext_vtab *v, + LeavesReader *pReaders, int nReaders, + LeafWriter *pWriter){ + DLReader dlReaders[MERGE_COUNT]; + const char *pTerm = leavesReaderTerm(pReaders); + int i, nTerm = leavesReaderTermBytes(pReaders); + + assert( nReaders<=MERGE_COUNT ); + + for(i=0; i0 ){ + rc = leavesReaderStep(v, lrs+i); + if( rc!=SQLITE_OK ) goto err; + + /* Reorder by term, then by age. */ + leavesReaderReorder(lrs+i, MERGE_COUNT-i); + } + } + + for(i=0; i0 ); + + for(rc=SQLITE_OK; rc==SQLITE_OK && !leavesReaderAtEnd(pReader); + rc=leavesReaderStep(v, pReader)){ + /* TODO(shess) Really want leavesReaderTermCmp(), but that name is + ** already taken to compare the terms of two LeavesReaders. Think + ** on a better name. [Meanwhile, break encapsulation rather than + ** use a confusing name.] + */ + int c = leafReaderTermCmp(&pReader->leafReader, pTerm, nTerm, isPrefix); + if( c>0 ) break; /* Past any possible matches. */ + if( c==0 ){ + const char *pData = leavesReaderData(pReader); + int iBuffer, nData = leavesReaderDataBytes(pReader); + + /* Find the first empty buffer. */ + for(iBuffer=0; iBuffer0 ){ + assert(pBuffers!=NULL); + memcpy(p, pBuffers, nBuffers*sizeof(*pBuffers)); + sqlite3_free(pBuffers); + } + pBuffers = p; + } + dataBufferInit(&(pBuffers[nBuffers]), 0); + nBuffers++; + } + + /* At this point, must have an empty at iBuffer. */ + assert(iBufferpData, p->nData); + + /* dataBufferReset() could allow a large doclist to blow up + ** our memory requirements. + */ + if( p->nCapacity<1024 ){ + dataBufferReset(p); + }else{ + dataBufferDestroy(p); + dataBufferInit(p, 0); + } + } + } + } + } + + /* Union all the doclists together into *out. */ + /* TODO(shess) What if *out is big? Sigh. */ + if( rc==SQLITE_OK && nBuffers>0 ){ + int iBuffer; + for(iBuffer=0; iBuffer0 ){ + if( out->nData==0 ){ + dataBufferSwap(out, &(pBuffers[iBuffer])); + }else{ + docListAccumulateUnion(out, pBuffers[iBuffer].pData, + pBuffers[iBuffer].nData); + } + } + } + } + + while( nBuffers-- ){ + dataBufferDestroy(&(pBuffers[nBuffers])); + } + if( pBuffers!=NULL ) sqlite3_free(pBuffers); + + return rc; +} + +/* Call loadSegmentLeavesInt() with pData/nData as input. */ +static int loadSegmentLeaf(fulltext_vtab *v, const char *pData, int nData, + const char *pTerm, int nTerm, int isPrefix, + DataBuffer *out){ + LeavesReader reader; + int rc; + + assert( nData>1 ); + assert( *pData=='\0' ); + rc = leavesReaderInit(v, 0, 0, 0, pData, nData, &reader); + if( rc!=SQLITE_OK ) return rc; + + rc = loadSegmentLeavesInt(v, &reader, pTerm, nTerm, isPrefix, out); + leavesReaderReset(&reader); + leavesReaderDestroy(&reader); + return rc; +} + +/* Call loadSegmentLeavesInt() with the leaf nodes from iStartLeaf to +** iEndLeaf (inclusive) as input, and merge the resulting doclist into +** out. +*/ +static int loadSegmentLeaves(fulltext_vtab *v, + sqlite_int64 iStartLeaf, sqlite_int64 iEndLeaf, + const char *pTerm, int nTerm, int isPrefix, + DataBuffer *out){ + int rc; + LeavesReader reader; + + assert( iStartLeaf<=iEndLeaf ); + rc = leavesReaderInit(v, 0, iStartLeaf, iEndLeaf, NULL, 0, &reader); + if( rc!=SQLITE_OK ) return rc; + + rc = loadSegmentLeavesInt(v, &reader, pTerm, nTerm, isPrefix, out); + leavesReaderReset(&reader); + leavesReaderDestroy(&reader); + return rc; +} + +/* Taking pData/nData as an interior node, find the sequence of child +** nodes which could include pTerm/nTerm/isPrefix. Note that the +** interior node terms logically come between the blocks, so there is +** one more blockid than there are terms (that block contains terms >= +** the last interior-node term). +*/ +/* TODO(shess) The calling code may already know that the end child is +** not worth calculating, because the end may be in a later sibling +** node. Consider whether breaking symmetry is worthwhile. I suspect +** it is not worthwhile. +*/ +static void getChildrenContaining(const char *pData, int nData, + const char *pTerm, int nTerm, int isPrefix, + sqlite_int64 *piStartChild, + sqlite_int64 *piEndChild){ + InteriorReader reader; + + assert( nData>1 ); + assert( *pData!='\0' ); + interiorReaderInit(pData, nData, &reader); + + /* Scan for the first child which could contain pTerm/nTerm. */ + while( !interiorReaderAtEnd(&reader) ){ + if( interiorReaderTermCmp(&reader, pTerm, nTerm, 0)>0 ) break; + interiorReaderStep(&reader); + } + *piStartChild = interiorReaderCurrentBlockid(&reader); + + /* Keep scanning to find a term greater than our term, using prefix + ** comparison if indicated. If isPrefix is false, this will be the + ** same blockid as the starting block. + */ + while( !interiorReaderAtEnd(&reader) ){ + if( interiorReaderTermCmp(&reader, pTerm, nTerm, isPrefix)>0 ) break; + interiorReaderStep(&reader); + } + *piEndChild = interiorReaderCurrentBlockid(&reader); + + interiorReaderDestroy(&reader); + + /* Children must ascend, and if !prefix, both must be the same. */ + assert( *piEndChild>=*piStartChild ); + assert( isPrefix || *piStartChild==*piEndChild ); +} + +/* Read block at iBlockid and pass it with other params to +** getChildrenContaining(). +*/ +static int loadAndGetChildrenContaining( + fulltext_vtab *v, + sqlite_int64 iBlockid, + const char *pTerm, int nTerm, int isPrefix, + sqlite_int64 *piStartChild, sqlite_int64 *piEndChild +){ + sqlite3_stmt *s = NULL; + int rc; + + assert( iBlockid!=0 ); + assert( pTerm!=NULL ); + assert( nTerm!=0 ); /* TODO(shess) Why not allow this? */ + assert( piStartChild!=NULL ); + assert( piEndChild!=NULL ); + + rc = sql_get_statement(v, BLOCK_SELECT_STMT, &s); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3_bind_int64(s, 1, iBlockid); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3_step(s); + if( rc==SQLITE_DONE ) return SQLITE_ERROR; + if( rc!=SQLITE_ROW ) return rc; + + getChildrenContaining(sqlite3_column_blob(s, 0), sqlite3_column_bytes(s, 0), + pTerm, nTerm, isPrefix, piStartChild, piEndChild); + + /* We expect only one row. We must execute another sqlite3_step() + * to complete the iteration; otherwise the table will remain + * locked. */ + rc = sqlite3_step(s); + if( rc==SQLITE_ROW ) return SQLITE_ERROR; + if( rc!=SQLITE_DONE ) return rc; + + return SQLITE_OK; +} + +/* Traverse the tree represented by pData[nData] looking for +** pTerm[nTerm], placing its doclist into *out. This is internal to +** loadSegment() to make error-handling cleaner. +*/ +static int loadSegmentInt(fulltext_vtab *v, const char *pData, int nData, + sqlite_int64 iLeavesEnd, + const char *pTerm, int nTerm, int isPrefix, + DataBuffer *out){ + /* Special case where root is a leaf. */ + if( *pData=='\0' ){ + return loadSegmentLeaf(v, pData, nData, pTerm, nTerm, isPrefix, out); + }else{ + int rc; + sqlite_int64 iStartChild, iEndChild; + + /* Process pData as an interior node, then loop down the tree + ** until we find the set of leaf nodes to scan for the term. + */ + getChildrenContaining(pData, nData, pTerm, nTerm, isPrefix, + &iStartChild, &iEndChild); + while( iStartChild>iLeavesEnd ){ + sqlite_int64 iNextStart, iNextEnd; + rc = loadAndGetChildrenContaining(v, iStartChild, pTerm, nTerm, isPrefix, + &iNextStart, &iNextEnd); + if( rc!=SQLITE_OK ) return rc; + + /* If we've branched, follow the end branch, too. */ + if( iStartChild!=iEndChild ){ + sqlite_int64 iDummy; + rc = loadAndGetChildrenContaining(v, iEndChild, pTerm, nTerm, isPrefix, + &iDummy, &iNextEnd); + if( rc!=SQLITE_OK ) return rc; + } + + assert( iNextStart<=iNextEnd ); + iStartChild = iNextStart; + iEndChild = iNextEnd; + } + assert( iStartChild<=iLeavesEnd ); + assert( iEndChild<=iLeavesEnd ); + + /* Scan through the leaf segments for doclists. */ + return loadSegmentLeaves(v, iStartChild, iEndChild, + pTerm, nTerm, isPrefix, out); + } +} + +/* Call loadSegmentInt() to collect the doclist for pTerm/nTerm, then +** merge its doclist over *out (any duplicate doclists read from the +** segment rooted at pData will overwrite those in *out). +*/ +/* TODO(shess) Consider changing this to determine the depth of the +** leaves using either the first characters of interior nodes (when +** ==1, we're one level above the leaves), or the first character of +** the root (which will describe the height of the tree directly). +** Either feels somewhat tricky to me. +*/ +/* TODO(shess) The current merge is likely to be slow for large +** doclists (though it should process from newest/smallest to +** oldest/largest, so it may not be that bad). It might be useful to +** modify things to allow for N-way merging. This could either be +** within a segment, with pairwise merges across segments, or across +** all segments at once. +*/ +static int loadSegment(fulltext_vtab *v, const char *pData, int nData, + sqlite_int64 iLeavesEnd, + const char *pTerm, int nTerm, int isPrefix, + DataBuffer *out){ + DataBuffer result; + int rc; + + assert( nData>1 ); + + /* This code should never be called with buffered updates. */ + assert( v->nPendingData<0 ); + + dataBufferInit(&result, 0); + rc = loadSegmentInt(v, pData, nData, iLeavesEnd, + pTerm, nTerm, isPrefix, &result); + if( rc==SQLITE_OK && result.nData>0 ){ + if( out->nData==0 ){ + DataBuffer tmp = *out; + *out = result; + result = tmp; + }else{ + DataBuffer merged; + DLReader readers[2]; + + dlrInit(&readers[0], DL_DEFAULT, out->pData, out->nData); + dlrInit(&readers[1], DL_DEFAULT, result.pData, result.nData); + dataBufferInit(&merged, out->nData+result.nData); + docListMerge(&merged, readers, 2); + dataBufferDestroy(out); + *out = merged; + dlrDestroy(&readers[0]); + dlrDestroy(&readers[1]); + } + } + dataBufferDestroy(&result); + return rc; +} + +/* Scan the database and merge together the posting lists for the term +** into *out. +*/ +static int termSelect(fulltext_vtab *v, int iColumn, + const char *pTerm, int nTerm, int isPrefix, + DocListType iType, DataBuffer *out){ + DataBuffer doclist; + sqlite3_stmt *s; + int rc = sql_get_statement(v, SEGDIR_SELECT_ALL_STMT, &s); + if( rc!=SQLITE_OK ) return rc; + + /* This code should never be called with buffered updates. */ + assert( v->nPendingData<0 ); + + dataBufferInit(&doclist, 0); + + /* Traverse the segments from oldest to newest so that newer doclist + ** elements for given docids overwrite older elements. + */ + while( (rc = sqlite3_step(s))==SQLITE_ROW ){ + const char *pData = sqlite3_column_blob(s, 0); + const int nData = sqlite3_column_bytes(s, 0); + const sqlite_int64 iLeavesEnd = sqlite3_column_int64(s, 1); + rc = loadSegment(v, pData, nData, iLeavesEnd, pTerm, nTerm, isPrefix, + &doclist); + if( rc!=SQLITE_OK ) goto err; + } + if( rc==SQLITE_DONE ){ + if( doclist.nData!=0 ){ + /* TODO(shess) The old term_select_all() code applied the column + ** restrict as we merged segments, leading to smaller buffers. + ** This is probably worthwhile to bring back, once the new storage + ** system is checked in. + */ + if( iColumn==v->nColumn) iColumn = -1; + docListTrim(DL_DEFAULT, doclist.pData, doclist.nData, + iColumn, iType, out); + } + rc = SQLITE_OK; + } + + err: + dataBufferDestroy(&doclist); + return rc; +} + +/****************************************************************/ +/* Used to hold hashtable data for sorting. */ +typedef struct TermData { + const char *pTerm; + int nTerm; + DLCollector *pCollector; +} TermData; + +/* Orders TermData elements in strcmp fashion ( <0 for less-than, 0 +** for equal, >0 for greater-than). +*/ +static int termDataCmp(const void *av, const void *bv){ + const TermData *a = (const TermData *)av; + const TermData *b = (const TermData *)bv; + int n = a->nTermnTerm ? a->nTerm : b->nTerm; + int c = memcmp(a->pTerm, b->pTerm, n); + if( c!=0 ) return c; + return a->nTerm-b->nTerm; +} + +/* Order pTerms data by term, then write a new level 0 segment using +** LeafWriter. +*/ +static int writeZeroSegment(fulltext_vtab *v, fts3Hash *pTerms){ + fts3HashElem *e; + int idx, rc, i, n; + TermData *pData; + LeafWriter writer; + DataBuffer dl; + + /* Determine the next index at level 0, merging as necessary. */ + rc = segdirNextIndex(v, 0, &idx); + if( rc!=SQLITE_OK ) return rc; + + n = fts3HashCount(pTerms); + pData = sqlite3_malloc(n*sizeof(TermData)); + + for(i = 0, e = fts3HashFirst(pTerms); e; i++, e = fts3HashNext(e)){ + assert( i1 ) qsort(pData, n, sizeof(*pData), termDataCmp); + + /* TODO(shess) Refactor so that we can write directly to the segment + ** DataBuffer, as happens for segment merges. + */ + leafWriterInit(0, idx, &writer); + dataBufferInit(&dl, 0); + for(i=0; inPendingData>=0 ){ + fts3HashElem *e; + for(e=fts3HashFirst(&v->pendingTerms); e; e=fts3HashNext(e)){ + dlcDelete(fts3HashData(e)); + } + fts3HashClear(&v->pendingTerms); + v->nPendingData = -1; + } + return SQLITE_OK; +} + +/* If pendingTerms has data, flush it to a level-zero segment, and +** free it. +*/ +static int flushPendingTerms(fulltext_vtab *v){ + if( v->nPendingData>=0 ){ + int rc = writeZeroSegment(v, &v->pendingTerms); + if( rc==SQLITE_OK ) clearPendingTerms(v); + return rc; + } + return SQLITE_OK; +} + +/* If pendingTerms is "too big", or docid is out of order, flush it. +** Regardless, be certain that pendingTerms is initialized for use. +*/ +static int initPendingTerms(fulltext_vtab *v, sqlite_int64 iDocid){ + /* TODO(shess) Explore whether partially flushing the buffer on + ** forced-flush would provide better performance. I suspect that if + ** we ordered the doclists by size and flushed the largest until the + ** buffer was half empty, that would let the less frequent terms + ** generate longer doclists. + */ + if( iDocid<=v->iPrevDocid || v->nPendingData>kPendingThreshold ){ + int rc = flushPendingTerms(v); + if( rc!=SQLITE_OK ) return rc; + } + if( v->nPendingData<0 ){ + fts3HashInit(&v->pendingTerms, FTS3_HASH_STRING, 1); + v->nPendingData = 0; + } + v->iPrevDocid = iDocid; + return SQLITE_OK; +} + +/* This function implements the xUpdate callback; it is the top-level entry + * point for inserting, deleting or updating a row in a full-text table. */ +static int fulltextUpdate(sqlite3_vtab *pVtab, int nArg, sqlite3_value **ppArg, + sqlite_int64 *pRowid){ + fulltext_vtab *v = (fulltext_vtab *) pVtab; + int rc; + + FTSTRACE(("FTS3 Update %p\n", pVtab)); + + if( nArg<2 ){ + rc = index_delete(v, sqlite3_value_int64(ppArg[0])); + } else if( sqlite3_value_type(ppArg[0]) != SQLITE_NULL ){ + /* An update: + * ppArg[0] = old rowid + * ppArg[1] = new rowid + * ppArg[2..2+v->nColumn-1] = values + * ppArg[2+v->nColumn] = value for magic column (we ignore this) + * ppArg[2+v->nColumn+1] = value for docid + */ + sqlite_int64 rowid = sqlite3_value_int64(ppArg[0]); + if( sqlite3_value_type(ppArg[1]) != SQLITE_INTEGER || + sqlite3_value_int64(ppArg[1]) != rowid ){ + rc = SQLITE_ERROR; /* we don't allow changing the rowid */ + }else if( sqlite3_value_type(ppArg[2+v->nColumn+1]) != SQLITE_INTEGER || + sqlite3_value_int64(ppArg[2+v->nColumn+1]) != rowid ){ + rc = SQLITE_ERROR; /* we don't allow changing the docid */ + }else{ + assert( nArg==2+v->nColumn+2); + rc = index_update(v, rowid, &ppArg[2]); + } + } else { + /* An insert: + * ppArg[1] = requested rowid + * ppArg[2..2+v->nColumn-1] = values + * ppArg[2+v->nColumn] = value for magic column (we ignore this) + * ppArg[2+v->nColumn+1] = value for docid + */ + sqlite3_value *pRequestDocid = ppArg[2+v->nColumn+1]; + assert( nArg==2+v->nColumn+2); + if( SQLITE_NULL != sqlite3_value_type(pRequestDocid) && + SQLITE_NULL != sqlite3_value_type(ppArg[1]) ){ + /* TODO(shess) Consider allowing this to work if the values are + ** identical. I'm inclined to discourage that usage, though, + ** given that both rowid and docid are special columns. Better + ** would be to define one or the other as the default winner, + ** but should it be fts3-centric (docid) or SQLite-centric + ** (rowid)? + */ + rc = SQLITE_ERROR; + }else{ + if( SQLITE_NULL == sqlite3_value_type(pRequestDocid) ){ + pRequestDocid = ppArg[1]; + } + rc = index_insert(v, pRequestDocid, &ppArg[2], pRowid); + } + } + + return rc; +} + +static int fulltextSync(sqlite3_vtab *pVtab){ + FTSTRACE(("FTS3 xSync()\n")); + return flushPendingTerms((fulltext_vtab *)pVtab); +} + +static int fulltextBegin(sqlite3_vtab *pVtab){ + fulltext_vtab *v = (fulltext_vtab *) pVtab; + FTSTRACE(("FTS3 xBegin()\n")); + + /* Any buffered updates should have been cleared by the previous + ** transaction. + */ + assert( v->nPendingData<0 ); + return clearPendingTerms(v); +} + +static int fulltextCommit(sqlite3_vtab *pVtab){ + fulltext_vtab *v = (fulltext_vtab *) pVtab; + FTSTRACE(("FTS3 xCommit()\n")); + + /* Buffered updates should have been cleared by fulltextSync(). */ + assert( v->nPendingData<0 ); + return clearPendingTerms(v); +} + +static int fulltextRollback(sqlite3_vtab *pVtab){ + FTSTRACE(("FTS3 xRollback()\n")); + return clearPendingTerms((fulltext_vtab *)pVtab); +} + +/* +** Implementation of the snippet() function for FTS3 +*/ +static void snippetFunc( + sqlite3_context *pContext, + int argc, + sqlite3_value **argv +){ + fulltext_cursor *pCursor; + if( argc<1 ) return; + if( sqlite3_value_type(argv[0])!=SQLITE_BLOB || + sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){ + sqlite3_result_error(pContext, "illegal first argument to html_snippet",-1); + }else{ + const char *zStart = ""; + const char *zEnd = ""; + const char *zEllipsis = "..."; + memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor)); + if( argc>=2 ){ + zStart = (const char*)sqlite3_value_text(argv[1]); + if( argc>=3 ){ + zEnd = (const char*)sqlite3_value_text(argv[2]); + if( argc>=4 ){ + zEllipsis = (const char*)sqlite3_value_text(argv[3]); + } + } + } + snippetAllOffsets(pCursor); + snippetText(pCursor, zStart, zEnd, zEllipsis); + sqlite3_result_text(pContext, pCursor->snippet.zSnippet, + pCursor->snippet.nSnippet, SQLITE_STATIC); + } +} + +/* +** Implementation of the offsets() function for FTS3 +*/ +static void snippetOffsetsFunc( + sqlite3_context *pContext, + int argc, + sqlite3_value **argv +){ + fulltext_cursor *pCursor; + if( argc<1 ) return; + if( sqlite3_value_type(argv[0])!=SQLITE_BLOB || + sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){ + sqlite3_result_error(pContext, "illegal first argument to offsets",-1); + }else{ + memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor)); + snippetAllOffsets(pCursor); + snippetOffsetText(&pCursor->snippet); + sqlite3_result_text(pContext, + pCursor->snippet.zOffset, pCursor->snippet.nOffset, + SQLITE_STATIC); + } +} + +/* +** This routine implements the xFindFunction method for the FTS3 +** virtual table. +*/ +static int fulltextFindFunction( + sqlite3_vtab *pVtab, + int nArg, + const char *zName, + void (**pxFunc)(sqlite3_context*,int,sqlite3_value**), + void **ppArg +){ + if( strcmp(zName,"snippet")==0 ){ + *pxFunc = snippetFunc; + return 1; + }else if( strcmp(zName,"offsets")==0 ){ + *pxFunc = snippetOffsetsFunc; + return 1; + } + return 0; +} + +/* +** Rename an fts3 table. +*/ +static int fulltextRename( + sqlite3_vtab *pVtab, + const char *zName +){ + fulltext_vtab *p = (fulltext_vtab *)pVtab; + int rc = SQLITE_NOMEM; + char *zSql = sqlite3_mprintf( + "ALTER TABLE %Q.'%q_content' RENAME TO '%q_content';" + "ALTER TABLE %Q.'%q_segments' RENAME TO '%q_segments';" + "ALTER TABLE %Q.'%q_segdir' RENAME TO '%q_segdir';" + , p->zDb, p->zName, zName + , p->zDb, p->zName, zName + , p->zDb, p->zName, zName + ); + if( zSql ){ + rc = sqlite3_exec(p->db, zSql, 0, 0, 0); + sqlite3_free(zSql); + } + return rc; +} + +static const sqlite3_module fts3Module = { + /* iVersion */ 0, + /* xCreate */ fulltextCreate, + /* xConnect */ fulltextConnect, + /* xBestIndex */ fulltextBestIndex, + /* xDisconnect */ fulltextDisconnect, + /* xDestroy */ fulltextDestroy, + /* xOpen */ fulltextOpen, + /* xClose */ fulltextClose, + /* xFilter */ fulltextFilter, + /* xNext */ fulltextNext, + /* xEof */ fulltextEof, + /* xColumn */ fulltextColumn, + /* xRowid */ fulltextRowid, + /* xUpdate */ fulltextUpdate, + /* xBegin */ fulltextBegin, + /* xSync */ fulltextSync, + /* xCommit */ fulltextCommit, + /* xRollback */ fulltextRollback, + /* xFindFunction */ fulltextFindFunction, + /* xRename */ fulltextRename, +}; + +static void hashDestroy(void *p){ + fts3Hash *pHash = (fts3Hash *)p; + sqlite3Fts3HashClear(pHash); + sqlite3_free(pHash); +} + +/* +** The fts3 built-in tokenizers - "simple" and "porter" - are implemented +** in files fts3_tokenizer1.c and fts3_porter.c respectively. The following +** two forward declarations are for functions declared in these files +** used to retrieve the respective implementations. +** +** Calling sqlite3Fts3SimpleTokenizerModule() sets the value pointed +** to by the argument to point a the "simple" tokenizer implementation. +** Function ...PorterTokenizerModule() sets *pModule to point to the +** porter tokenizer/stemmer implementation. +*/ +void sqlite3Fts3SimpleTokenizerModule(sqlite3_tokenizer_module const**ppModule); +void sqlite3Fts3PorterTokenizerModule(sqlite3_tokenizer_module const**ppModule); +void sqlite3Fts3IcuTokenizerModule(sqlite3_tokenizer_module const**ppModule); + +int sqlite3Fts3InitHashTable(sqlite3 *, fts3Hash *, const char *); + +/* +** Initialise the fts3 extension. If this extension is built as part +** of the sqlite library, then this function is called directly by +** SQLite. If fts3 is built as a dynamically loadable extension, this +** function is called by the sqlite3_extension_init() entry point. +*/ +int sqlite3Fts3Init(sqlite3 *db){ + int rc = SQLITE_OK; + fts3Hash *pHash = 0; + const sqlite3_tokenizer_module *pSimple = 0; + const sqlite3_tokenizer_module *pPorter = 0; + const sqlite3_tokenizer_module *pIcu = 0; + + sqlite3Fts3SimpleTokenizerModule(&pSimple); + sqlite3Fts3PorterTokenizerModule(&pPorter); +#ifdef SQLITE_ENABLE_ICU + sqlite3Fts3IcuTokenizerModule(&pIcu); +#endif + + /* Allocate and initialise the hash-table used to store tokenizers. */ + pHash = sqlite3_malloc(sizeof(fts3Hash)); + if( !pHash ){ + rc = SQLITE_NOMEM; + }else{ + sqlite3Fts3HashInit(pHash, FTS3_HASH_STRING, 1); + } + + /* Load the built-in tokenizers into the hash table */ + if( rc==SQLITE_OK ){ + if( sqlite3Fts3HashInsert(pHash, "simple", 7, (void *)pSimple) + || sqlite3Fts3HashInsert(pHash, "porter", 7, (void *)pPorter) + || (pIcu && sqlite3Fts3HashInsert(pHash, "icu", 4, (void *)pIcu)) + ){ + rc = SQLITE_NOMEM; + } + } + + /* Create the virtual table wrapper around the hash-table and overload + ** the two scalar functions. If this is successful, register the + ** module with sqlite. + */ + if( SQLITE_OK==rc + && SQLITE_OK==(rc = sqlite3Fts3InitHashTable(db, pHash, "fts3_tokenizer")) + && SQLITE_OK==(rc = sqlite3_overload_function(db, "snippet", -1)) + && SQLITE_OK==(rc = sqlite3_overload_function(db, "offsets", -1)) + ){ + return sqlite3_create_module_v2( + db, "fts3", &fts3Module, (void *)pHash, hashDestroy + ); + } + + /* An error has occured. Delete the hash table and return the error code. */ + assert( rc!=SQLITE_OK ); + if( pHash ){ + sqlite3Fts3HashClear(pHash); + sqlite3_free(pHash); + } + return rc; +} + +#if !SQLITE_CORE +int sqlite3_extension_init( + sqlite3 *db, + char **pzErrMsg, + const sqlite3_api_routines *pApi +){ + SQLITE_EXTENSION_INIT2(pApi) + return sqlite3Fts3Init(db); +} +#endif + +#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */ + +/************** End of fts3.c ************************************************/ +/************** Begin file fts3_hash.c ***************************************/ +/* +** 2001 September 22 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This is the implementation of generic hash-tables used in SQLite. +** We've modified it slightly to serve as a standalone hash table +** implementation for the full-text indexing module. +*/ + +/* +** The code in this file is only compiled if: +** +** * The FTS3 module is being built as an extension +** (in which case SQLITE_CORE is not defined), or +** +** * The FTS3 module is being built into the core of +** SQLite (in which case SQLITE_ENABLE_FTS3 is defined). +*/ +#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) + + +/************** Include sqlite3.h in the middle of fts3_hash.c ***************/ +/************** Begin file sqlite3.h *****************************************/ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This header file defines the interface that the SQLite library +** presents to client programs. If a C-function, structure, datatype, +** or constant definition does not appear in this file, then it is +** not a published API of SQLite, is subject to change without +** notice, and should not be referenced by programs that use SQLite. +** +** Some of the definitions that are in this file are marked as +** "experimental". Experimental interfaces are normally new +** features recently added to SQLite. We do not anticipate changes +** to experimental interfaces but reserve to make minor changes if +** experience from use "in the wild" suggest such changes are prudent. +** +** The official C-language API documentation for SQLite is derived +** from comments in this file. This file is the authoritative source +** on how SQLite interfaces are suppose to operate. +** +** The name of this file under configuration management is "sqlite.h.in". +** The makefile makes some minor changes to this file (such as inserting +** the version number) and changes its name to "sqlite3.h" as +** part of the build process. +** +** @(#) $Id: sqlite3.c,v 1.13 2008/01/29 23:34:19 myk%mozilla.org Exp $ +*/ +#ifndef _SQLITE3_H_ +#define _SQLITE3_H_ + +/* +** Make sure we can call this stuff from C++. +*/ +#if 0 +extern "C" { +#endif + + +/* +** Add the ability to override 'extern' +*/ +#ifndef SQLITE_EXTERN +# define SQLITE_EXTERN extern +#endif + +/* +** Make sure these symbols where not defined by some previous header +** file. +*/ +#ifdef SQLITE_VERSION +# undef SQLITE_VERSION +#endif +#ifdef SQLITE_VERSION_NUMBER +# undef SQLITE_VERSION_NUMBER +#endif + +/* +** CAPI3REF: Compile-Time Library Version Numbers {F10010} +** +** {F10011} The #define in the sqlite3.h header file named +** SQLITE_VERSION resolves to a string literal that identifies +** the version of the SQLite library in the format "X.Y.Z", where +** X is the major version number, Y is the minor version number and Z +** is the release number. The X.Y.Z might be followed by "alpha" or "beta". +** {END} For example "3.1.1beta". +** +** The X value is always 3 in SQLite. The X value only changes when +** backwards compatibility is broken and we intend to never break +** backwards compatibility. The Y value only changes when +** there are major feature enhancements that are forwards compatible +** but not backwards compatible. The Z value is incremented with +** each release but resets back to 0 when Y is incremented. +** +** {F10014} The SQLITE_VERSION_NUMBER #define resolves to an integer +** with the value (X*1000000 + Y*1000 + Z) where X, Y, and Z are as +** with SQLITE_VERSION. {END} For example, for version "3.1.1beta", +** SQLITE_VERSION_NUMBER is set to 3001001. To detect if they are using +** version 3.1.1 or greater at compile time, programs may use the test +** (SQLITE_VERSION_NUMBER>=3001001). +** +** See also: [sqlite3_libversion()] and [sqlite3_libversion_number()]. +*/ +#define SQLITE_VERSION "3.5.4" +#define SQLITE_VERSION_NUMBER 3005004 + +/* +** CAPI3REF: Run-Time Library Version Numbers {F10020} +** +** {F10021} The sqlite3_libversion_number() interface returns an integer +** equal to [SQLITE_VERSION_NUMBER]. {END} The value returned +** by this routine should only be different from the header values +** if the application is compiled using an sqlite3.h header from a +** different version of SQLite than library. Cautious programmers might +** include a check in their application to verify that +** sqlite3_libversion_number() always returns the value +** [SQLITE_VERSION_NUMBER]. +** +** {F10022} The sqlite3_version[] string constant contains the text of the +** [SQLITE_VERSION] string. {F10023} The sqlite3_libversion() function returns +** a pointer to the sqlite3_version[] string constant. {END} The +** sqlite3_libversion() function +** is provided for DLL users who can only access functions and not +** constants within the DLL. +*/ +SQLITE_EXTERN const char sqlite3_version[]; +const char *sqlite3_libversion(void); +int sqlite3_libversion_number(void); + +/* +** CAPI3REF: Test To See If The Library Is Threadsafe {F10100} +** +** {F10101} The sqlite3_threadsafe() routine returns nonzero +** if SQLite was compiled with its mutexes enabled or zero if +** SQLite was compiled with mutexes disabled. {END} If this +** routine returns false, then it is not safe for simultaneously +** running threads to both invoke SQLite interfaces. +** +** Really all this routine does is return true if SQLite was +** compiled with the -DSQLITE_THREADSAFE=1 option and false if +** compiled with -DSQLITE_THREADSAFE=0. If SQLite uses an +** application-defined mutex subsystem, malloc subsystem, collating +** sequence, VFS, SQL function, progress callback, commit hook, +** extension, or other accessories and these add-ons are not +** threadsafe, then clearly the combination will not be threadsafe +** either. Hence, this routine never reports that the library +** is guaranteed to be threadsafe, only when it is guaranteed not +** to be. +*/ +int sqlite3_threadsafe(void); + +/* +** CAPI3REF: Database Connection Handle {F12000} +** +** Each open SQLite database is represented by pointer to an instance of the +** opaque structure named "sqlite3". It is useful to think of an sqlite3 +** pointer as an object. The [sqlite3_open()], [sqlite3_open16()], and +** [sqlite3_open_v2()] interfaces are its constructors +** and [sqlite3_close()] is its destructor. There are many other interfaces +** (such as [sqlite3_prepare_v2()], [sqlite3_create_function()], and +** [sqlite3_busy_timeout()] to name but three) that are methods on this +** object. +*/ +typedef struct sqlite3 sqlite3; + + +/* +** CAPI3REF: 64-Bit Integer Types {F10200} +** +** Because there is no cross-platform way to specify such types +** SQLite includes typedefs for 64-bit signed and unsigned integers. +** {F10201} The sqlite_int64 and sqlite3_int64 types specify a +** 64-bit signed integer. {F10202} The sqlite_uint64 and +** sqlite3_uint64 types specify a 64-bit unsigned integer. {END} +** +** The sqlite3_int64 and sqlite3_uint64 are the preferred type +** definitions. The sqlite_int64 and sqlite_uint64 types are +** supported for backwards compatibility only. +*/ +#ifdef SQLITE_INT64_TYPE + typedef SQLITE_INT64_TYPE sqlite_int64; + typedef unsigned SQLITE_INT64_TYPE sqlite_uint64; +#elif defined(_MSC_VER) || defined(__BORLANDC__) + typedef __int64 sqlite_int64; + typedef unsigned __int64 sqlite_uint64; +#else + typedef long long int sqlite_int64; + typedef unsigned long long int sqlite_uint64; +#endif +typedef sqlite_int64 sqlite3_int64; +typedef sqlite_uint64 sqlite3_uint64; + +/* +** If compiling for a processor that lacks floating point support, +** substitute integer for floating-point +*/ +#ifdef SQLITE_OMIT_FLOATING_POINT +# define double sqlite3_int64 +#endif + +/* +** CAPI3REF: Closing A Database Connection {F12010} +** +** {F12011} The sqlite3_close() interfaces destroys an [sqlite3] object +** allocated by a prior call to [sqlite3_open()], [sqlite3_open16()], or +** [sqlite3_open_v2()]. {F12012} Sqlite3_close() releases all +** memory used by the connection and closes all open files. {END}. +** +** {F12013} If the database connection contains +** [sqlite3_stmt | prepared statements] that have not been finalized +** by [sqlite3_finalize()], then sqlite3_close() returns SQLITE_BUSY +** and leaves the connection open. {F12014} Giving sqlite3_close() +** a NULL pointer is a harmless no-op. {END} +** +** {U12015} Passing this routine a database connection that has already been +** closed results in undefined behavior. {U12016} If other interfaces that +** reference the same database connection are pending (either in the +** same thread or in different threads) when this routine is called, +** then the behavior is undefined and is almost certainly undesirable. +*/ +int sqlite3_close(sqlite3 *); + +/* +** The type for a callback function. +** This is legacy and deprecated. It is included for historical +** compatibility and is not documented. +*/ +typedef int (*sqlite3_callback)(void*,int,char**, char**); + +/* +** CAPI3REF: One-Step Query Execution Interface {F12100} +** +** {F12101} The sqlite3_exec() interface evaluates zero or more +** UTF-8 encoded, semicolon-separated SQL statements in the zero-terminated +** string of its second argument. {F12102} The SQL +** statements are evaluated in the context of the database connection +** specified by in the first argument. +** {F12103} SQL statements are prepared one by one using +** [sqlite3_prepare()] or the equivalent, evaluated +** using one or more calls to [sqlite3_step()], then destroyed +** using [sqlite3_finalize()]. {F12104} The return value of +** sqlite3_exec() is SQLITE_OK if all SQL statement run +** successfully. +** +** {F12105} If one or more of the SQL statements handed to +** sqlite3_exec() are queries, then +** the callback function specified by the 3rd parameter is +** invoked once for each row of the query result. {F12106} +** If the callback returns a non-zero value then the query +** is aborted, all subsequent SQL statements +** are skipped and the sqlite3_exec() function returns the [SQLITE_ABORT]. +** +** {F12107} The 4th parameter to sqlite3_exec() is an arbitrary pointer +** that is passed through to the callback function as its first parameter. +** +** {F12108} The 2nd parameter to the callback function is the number of +** columns in the query result. {F12109} The 3rd parameter to the callback +** is an array of pointers to strings holding the values for each column +** as extracted using [sqlite3_column_text()]. NULL values in the result +** set result in a NULL pointer. All other value are in their UTF-8 +** string representation. {F12117} +** The 4th parameter to the callback is an array of strings +** obtained using [sqlite3_column_name()] and holding +** the names of each column, also in UTF-8. +** +** {F12110} The callback function may be NULL, even for queries. A NULL +** callback is not an error. It just means that no callback +** will be invoked. +** +** {F12112} If an error occurs while parsing or evaluating the SQL +** then an appropriate error message is written into memory obtained +** from [sqlite3_malloc()] and *errmsg is made to point to that message +** assuming errmsg is not NULL. +** {U12113} The calling function is responsible for freeing the memory +** using [sqlite3_free()]. +** {F12116} If [sqlite3_malloc()] fails while attempting to generate +** the error message, *errmsg is set to NULL. +** {F12114} If errmsg is NULL then no attempt is made to generate an +** error message. Is the return code SQLITE_NOMEM or the original +** error code? What happens if there are multiple errors? +** Do we get code for the first error, or is the choice of reported +** error arbitrary? +** +** {F12115} The return value is is SQLITE_OK if there are no errors and +** some other [SQLITE_OK | return code] if there is an error. +** The particular return value depends on the type of error. {END} +*/ +int sqlite3_exec( + sqlite3*, /* An open database */ + const char *sql, /* SQL to be evaluted */ + int (*callback)(void*,int,char**,char**), /* Callback function */ + void *, /* 1st argument to callback */ + char **errmsg /* Error msg written here */ +); + +/* +** CAPI3REF: Result Codes {F10210} +** KEYWORDS: SQLITE_OK +** +** Many SQLite functions return an integer result code from the set shown +** above in order to indicates success or failure. +** +** {F10211} The result codes shown here are the only ones returned +** by SQLite in its default configuration. {F10212} However, the +** [sqlite3_extended_result_codes()] API can be used to set a database +** connectoin to return more detailed result codes. {END} +** +** See also: [SQLITE_IOERR_READ | extended result codes] +** +*/ +#define SQLITE_OK 0 /* Successful result */ +/* beginning-of-error-codes */ +#define SQLITE_ERROR 1 /* SQL error or missing database */ +#define SQLITE_INTERNAL 2 /* Internal logic error in SQLite */ +#define SQLITE_PERM 3 /* Access permission denied */ +#define SQLITE_ABORT 4 /* Callback routine requested an abort */ +#define SQLITE_BUSY 5 /* The database file is locked */ +#define SQLITE_LOCKED 6 /* A table in the database is locked */ +#define SQLITE_NOMEM 7 /* A malloc() failed */ +#define SQLITE_READONLY 8 /* Attempt to write a readonly database */ +#define SQLITE_INTERRUPT 9 /* Operation terminated by sqlite3_interrupt()*/ +#define SQLITE_IOERR 10 /* Some kind of disk I/O error occurred */ +#define SQLITE_CORRUPT 11 /* The database disk image is malformed */ +#define SQLITE_NOTFOUND 12 /* NOT USED. Table or record not found */ +#define SQLITE_FULL 13 /* Insertion failed because database is full */ +#define SQLITE_CANTOPEN 14 /* Unable to open the database file */ +#define SQLITE_PROTOCOL 15 /* NOT USED. Database lock protocol error */ +#define SQLITE_EMPTY 16 /* Database is empty */ +#define SQLITE_SCHEMA 17 /* The database schema changed */ +#define SQLITE_TOOBIG 18 /* String or BLOB exceeds size limit */ +#define SQLITE_CONSTRAINT 19 /* Abort due to constraint violation */ +#define SQLITE_MISMATCH 20 /* Data type mismatch */ +#define SQLITE_MISUSE 21 /* Library used incorrectly */ +#define SQLITE_NOLFS 22 /* Uses OS features not supported on host */ +#define SQLITE_AUTH 23 /* Authorization denied */ +#define SQLITE_FORMAT 24 /* Auxiliary database format error */ +#define SQLITE_RANGE 25 /* 2nd parameter to sqlite3_bind out of range */ +#define SQLITE_NOTADB 26 /* File opened that is not a database file */ +#define SQLITE_ROW 100 /* sqlite3_step() has another row ready */ +#define SQLITE_DONE 101 /* sqlite3_step() has finished executing */ +/* end-of-error-codes */ + +/* +** CAPI3REF: Extended Result Codes {F10220} +** +** In its default configuration, SQLite API routines return one of 26 integer +** [SQLITE_OK | result codes]. However, experience has shown that +** many of these result codes are too course-grained. They do not provide as +** much information about problems as programmers might like. In an effort to +** address this, newer versions of SQLite (version 3.3.8 and later) include +** support for additional result codes that provide more detailed information +** about errors. {F10221} The extended result codes are enabled or disabled +** for each database connection using the [sqlite3_extended_result_codes()] +** API. {END} +** +** Some of the available extended result codes are listed above. +** We expect the number of extended result codes will be expand +** over time. {U10422} Software that uses extended result codes should expect +** to see new result codes in future releases of SQLite. {END} +** +** {F10223} The symbolic name for an extended result code always contains +** a related primary result code as a prefix. {F10224} Primary result +** codes contain a single "_" character. {F10225} Extended result codes +** contain two or more "_" characters. {F10226} The numeric value of an +** extended result code can be converted to its +** corresponding primary result code by masking off the lower 8 bytes. {END} +** +** The SQLITE_OK result code will never be extended. It will always +** be exactly zero. +*/ +#define SQLITE_IOERR_READ (SQLITE_IOERR | (1<<8)) +#define SQLITE_IOERR_SHORT_READ (SQLITE_IOERR | (2<<8)) +#define SQLITE_IOERR_WRITE (SQLITE_IOERR | (3<<8)) +#define SQLITE_IOERR_FSYNC (SQLITE_IOERR | (4<<8)) +#define SQLITE_IOERR_DIR_FSYNC (SQLITE_IOERR | (5<<8)) +#define SQLITE_IOERR_TRUNCATE (SQLITE_IOERR | (6<<8)) +#define SQLITE_IOERR_FSTAT (SQLITE_IOERR | (7<<8)) +#define SQLITE_IOERR_UNLOCK (SQLITE_IOERR | (8<<8)) +#define SQLITE_IOERR_RDLOCK (SQLITE_IOERR | (9<<8)) +#define SQLITE_IOERR_DELETE (SQLITE_IOERR | (10<<8)) +#define SQLITE_IOERR_BLOCKED (SQLITE_IOERR | (11<<8)) +#define SQLITE_IOERR_NOMEM (SQLITE_IOERR | (12<<8)) + +/* +** CAPI3REF: Flags For File Open Operations {F10230} +** +** {F10231} Some combination of the these bit values are used as the +** third argument to the [sqlite3_open_v2()] interface and +** as fourth argument to the xOpen method of the +** [sqlite3_vfs] object. +*/ +#define SQLITE_OPEN_READONLY 0x00000001 +#define SQLITE_OPEN_READWRITE 0x00000002 +#define SQLITE_OPEN_CREATE 0x00000004 +#define SQLITE_OPEN_DELETEONCLOSE 0x00000008 +#define SQLITE_OPEN_EXCLUSIVE 0x00000010 +#define SQLITE_OPEN_MAIN_DB 0x00000100 +#define SQLITE_OPEN_TEMP_DB 0x00000200 +#define SQLITE_OPEN_TRANSIENT_DB 0x00000400 +#define SQLITE_OPEN_MAIN_JOURNAL 0x00000800 +#define SQLITE_OPEN_TEMP_JOURNAL 0x00001000 +#define SQLITE_OPEN_SUBJOURNAL 0x00002000 +#define SQLITE_OPEN_MASTER_JOURNAL 0x00004000 + +/* +** CAPI3REF: Device Characteristics {F10240} +** +** {F10241} The xDeviceCapabilities method of the [sqlite3_io_methods] +** object returns an integer which is a vector of the these +** bit values expressing I/O characteristics of the mass storage +** device that holds the file that the [sqlite3_io_methods] +** refers to. {END} +** +** {F10242} The SQLITE_IOCAP_ATOMIC property means that all writes of +** any size are atomic. {F10243} The SQLITE_IOCAP_ATOMICnnn values +** mean that writes of blocks that are nnn bytes in size and +** are aligned to an address which is an integer multiple of +** nnn are atomic. {F10244} The SQLITE_IOCAP_SAFE_APPEND value means +** that when data is appended to a file, the data is appended +** first then the size of the file is extended, never the other +** way around. {F10245} The SQLITE_IOCAP_SEQUENTIAL property means that +** information is written to disk in the same order as calls +** to xWrite(). +*/ +#define SQLITE_IOCAP_ATOMIC 0x00000001 +#define SQLITE_IOCAP_ATOMIC512 0x00000002 +#define SQLITE_IOCAP_ATOMIC1K 0x00000004 +#define SQLITE_IOCAP_ATOMIC2K 0x00000008 +#define SQLITE_IOCAP_ATOMIC4K 0x00000010 +#define SQLITE_IOCAP_ATOMIC8K 0x00000020 +#define SQLITE_IOCAP_ATOMIC16K 0x00000040 +#define SQLITE_IOCAP_ATOMIC32K 0x00000080 +#define SQLITE_IOCAP_ATOMIC64K 0x00000100 +#define SQLITE_IOCAP_SAFE_APPEND 0x00000200 +#define SQLITE_IOCAP_SEQUENTIAL 0x00000400 + +/* +** CAPI3REF: File Locking Levels {F10250} +** +** {F10251} SQLite uses one of the following integer values as the second +** argument to calls it makes to the xLock() and xUnlock() methods +** of an [sqlite3_io_methods] object. {END} +*/ +#define SQLITE_LOCK_NONE 0 +#define SQLITE_LOCK_SHARED 1 +#define SQLITE_LOCK_RESERVED 2 +#define SQLITE_LOCK_PENDING 3 +#define SQLITE_LOCK_EXCLUSIVE 4 + +/* +** CAPI3REF: Synchronization Type Flags {F10260} +** +** {F10261} When SQLite invokes the xSync() method of an +** [sqlite3_io_methods] object it uses a combination of the +** these integer values as the second argument. +** +** {F10262} When the SQLITE_SYNC_DATAONLY flag is used, it means that the +** sync operation only needs to flush data to mass storage. Inode +** information need not be flushed. {F10263} The SQLITE_SYNC_NORMAL means +** to use normal fsync() semantics. {F10264} The SQLITE_SYNC_FULL flag means +** to use Mac OS-X style fullsync instead of fsync(). +*/ +#define SQLITE_SYNC_NORMAL 0x00002 +#define SQLITE_SYNC_FULL 0x00003 +#define SQLITE_SYNC_DATAONLY 0x00010 + + +/* +** CAPI3REF: OS Interface Open File Handle {F11110} +** +** An [sqlite3_file] object represents an open file in the OS +** interface layer. Individual OS interface implementations will +** want to subclass this object by appending additional fields +** for their own use. The pMethods entry is a pointer to an +** [sqlite3_io_methods] object that defines methods for performing +** I/O operations on the open file. +*/ +typedef struct sqlite3_file sqlite3_file; +struct sqlite3_file { + const struct sqlite3_io_methods *pMethods; /* Methods for an open file */ +}; + +/* +** CAPI3REF: OS Interface File Virtual Methods Object {F11120} +** +** Every file opened by the [sqlite3_vfs] xOpen method contains a pointer to +** an instance of the this object. This object defines the +** methods used to perform various operations against the open file. +** +** The flags argument to xSync may be one of [SQLITE_SYNC_NORMAL] or +** [SQLITE_SYNC_FULL]. The first choice is the normal fsync(). +* The second choice is an +** OS-X style fullsync. The SQLITE_SYNC_DATA flag may be ORed in to +** indicate that only the data of the file and not its inode needs to be +** synced. +** +** The integer values to xLock() and xUnlock() are one of +**
    +**
  • [SQLITE_LOCK_NONE], +**
  • [SQLITE_LOCK_SHARED], +**
  • [SQLITE_LOCK_RESERVED], +**
  • [SQLITE_LOCK_PENDING], or +**
  • [SQLITE_LOCK_EXCLUSIVE]. +**
+** xLock() increases the lock. xUnlock() decreases the lock. +** The xCheckReservedLock() method looks +** to see if any database connection, either in this +** process or in some other process, is holding an RESERVED, +** PENDING, or EXCLUSIVE lock on the file. It returns true +** if such a lock exists and false if not. +** +** The xFileControl() method is a generic interface that allows custom +** VFS implementations to directly control an open file using the +** [sqlite3_file_control()] interface. The second "op" argument +** is an integer opcode. The third +** argument is a generic pointer which is intended to be a pointer +** to a structure that may contain arguments or space in which to +** write return values. Potential uses for xFileControl() might be +** functions to enable blocking locks with timeouts, to change the +** locking strategy (for example to use dot-file locks), to inquire +** about the status of a lock, or to break stale locks. The SQLite +** core reserves opcodes less than 100 for its own use. +** A [SQLITE_FCNTL_LOCKSTATE | list of opcodes] less than 100 is available. +** Applications that define a custom xFileControl method should use opcodes +** greater than 100 to avoid conflicts. +** +** The xSectorSize() method returns the sector size of the +** device that underlies the file. The sector size is the +** minimum write that can be performed without disturbing +** other bytes in the file. The xDeviceCharacteristics() +** method returns a bit vector describing behaviors of the +** underlying device: +** +**
    +**
  • [SQLITE_IOCAP_ATOMIC] +**
  • [SQLITE_IOCAP_ATOMIC512] +**
  • [SQLITE_IOCAP_ATOMIC1K] +**
  • [SQLITE_IOCAP_ATOMIC2K] +**
  • [SQLITE_IOCAP_ATOMIC4K] +**
  • [SQLITE_IOCAP_ATOMIC8K] +**
  • [SQLITE_IOCAP_ATOMIC16K] +**
  • [SQLITE_IOCAP_ATOMIC32K] +**
  • [SQLITE_IOCAP_ATOMIC64K] +**
  • [SQLITE_IOCAP_SAFE_APPEND] +**
  • [SQLITE_IOCAP_SEQUENTIAL] +**
+** +** The SQLITE_IOCAP_ATOMIC property means that all writes of +** any size are atomic. The SQLITE_IOCAP_ATOMICnnn values +** mean that writes of blocks that are nnn bytes in size and +** are aligned to an address which is an integer multiple of +** nnn are atomic. The SQLITE_IOCAP_SAFE_APPEND value means +** that when data is appended to a file, the data is appended +** first then the size of the file is extended, never the other +** way around. The SQLITE_IOCAP_SEQUENTIAL property means that +** information is written to disk in the same order as calls +** to xWrite(). +*/ +typedef struct sqlite3_io_methods sqlite3_io_methods; +struct sqlite3_io_methods { + int iVersion; + int (*xClose)(sqlite3_file*); + int (*xRead)(sqlite3_file*, void*, int iAmt, sqlite3_int64 iOfst); + int (*xWrite)(sqlite3_file*, const void*, int iAmt, sqlite3_int64 iOfst); + int (*xTruncate)(sqlite3_file*, sqlite3_int64 size); + int (*xSync)(sqlite3_file*, int flags); + int (*xFileSize)(sqlite3_file*, sqlite3_int64 *pSize); + int (*xLock)(sqlite3_file*, int); + int (*xUnlock)(sqlite3_file*, int); + int (*xCheckReservedLock)(sqlite3_file*); + int (*xFileControl)(sqlite3_file*, int op, void *pArg); + int (*xSectorSize)(sqlite3_file*); + int (*xDeviceCharacteristics)(sqlite3_file*); + /* Additional methods may be added in future releases */ +}; + +/* +** CAPI3REF: Standard File Control Opcodes {F11310} +** +** These integer constants are opcodes for the xFileControl method +** of the [sqlite3_io_methods] object and to the [sqlite3_file_control()] +** interface. +** +** {F11311} The [SQLITE_FCNTL_LOCKSTATE] opcode is used for debugging. This +** opcode cases the xFileControl method to write the current state of +** the lock (one of [SQLITE_LOCK_NONE], [SQLITE_LOCK_SHARED], +** [SQLITE_LOCK_RESERVED], [SQLITE_LOCK_PENDING], or [SQLITE_LOCK_EXCLUSIVE]) +** into an integer that the pArg argument points to. {F11312} This capability +** is used during testing and only needs to be supported when SQLITE_TEST +** is defined. +*/ +#define SQLITE_FCNTL_LOCKSTATE 1 + +/* +** CAPI3REF: Mutex Handle {F17110} +** +** The mutex module within SQLite defines [sqlite3_mutex] to be an +** abstract type for a mutex object. {F17111} The SQLite core never looks +** at the internal representation of an [sqlite3_mutex]. {END} It only +** deals with pointers to the [sqlite3_mutex] object. +** +** Mutexes are created using [sqlite3_mutex_alloc()]. +*/ +typedef struct sqlite3_mutex sqlite3_mutex; + +/* +** CAPI3REF: OS Interface Object {F11140} +** +** An instance of this object defines the interface between the +** SQLite core and the underlying operating system. The "vfs" +** in the name of the object stands for "virtual file system". +** +** The iVersion field is initially 1 but may be larger for future +** versions of SQLite. Additional fields may be appended to this +** object when the iVersion value is increased. +** +** The szOsFile field is the size of the subclassed [sqlite3_file] +** structure used by this VFS. mxPathname is the maximum length of +** a pathname in this VFS. +** +** Registered vfs modules are kept on a linked list formed by +** the pNext pointer. The [sqlite3_vfs_register()] +** and [sqlite3_vfs_unregister()] interfaces manage this list +** in a thread-safe way. The [sqlite3_vfs_find()] interface +** searches the list. +** +** The pNext field is the only fields in the sqlite3_vfs +** structure that SQLite will ever modify. SQLite will only access +** or modify this field while holding a particular static mutex. +** The application should never modify anything within the sqlite3_vfs +** object once the object has been registered. +** +** The zName field holds the name of the VFS module. The name must +** be unique across all VFS modules. +** +** {F11141} SQLite will guarantee that the zFilename string passed to +** xOpen() is a full pathname as generated by xFullPathname() and +** that the string will be valid and unchanged until xClose() is +** called. {END} So the [sqlite3_file] can store a pointer to the +** filename if it needs to remember the filename for some reason. +** +** {F11142} The flags argument to xOpen() includes all bits set in +** the flags argument to [sqlite3_open_v2()]. Or if [sqlite3_open()] +** or [sqlite3_open16()] is used, then flags includes at least +** [SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE]. {END} +** If xOpen() opens a file read-only then it sets *pOutFlags to +** include [SQLITE_OPEN_READONLY]. Other bits in *pOutFlags may be +** set. +** +** {F11143} SQLite will also add one of the following flags to the xOpen() +** call, depending on the object being opened: +** +**
    +**
  • [SQLITE_OPEN_MAIN_DB] +**
  • [SQLITE_OPEN_MAIN_JOURNAL] +**
  • [SQLITE_OPEN_TEMP_DB] +**
  • [SQLITE_OPEN_TEMP_JOURNAL] +**
  • [SQLITE_OPEN_TRANSIENT_DB] +**
  • [SQLITE_OPEN_SUBJOURNAL] +**
  • [SQLITE_OPEN_MASTER_JOURNAL] +**
{END} +** +** The file I/O implementation can use the object type flags to +** changes the way it deals with files. For example, an application +** that does not care about crash recovery or rollback, might make +** the open of a journal file a no-op. Writes to this journal are +** also a no-op. Any attempt to read the journal return SQLITE_IOERR. +** Or the implementation might recognize the a database file will +** be doing page-aligned sector reads and writes in a random order +** and set up its I/O subsystem accordingly. +** +** {F11144} SQLite might also add one of the following flags to the xOpen +** method: +** +**
    +**
  • [SQLITE_OPEN_DELETEONCLOSE] +**
  • [SQLITE_OPEN_EXCLUSIVE] +**
+** +** {F11145} The [SQLITE_OPEN_DELETEONCLOSE] flag means the file should be +** deleted when it is closed. {F11146} The [SQLITE_OPEN_DELETEONCLOSE] +** will be set for TEMP databases, journals and for subjournals. +** {F11147} The [SQLITE_OPEN_EXCLUSIVE] flag means the file should be opened +** for exclusive access. This flag is set for all files except +** for the main database file. {END} +** +** {F11148} At least szOsFile bytes of memory is allocated by SQLite +** to hold the [sqlite3_file] structure passed as the third +** argument to xOpen. {END} The xOpen method does not have to +** allocate the structure; it should just fill it in. +** +** {F11149} The flags argument to xAccess() may be [SQLITE_ACCESS_EXISTS] +** to test for the existance of a file, +** or [SQLITE_ACCESS_READWRITE] to test to see +** if a file is readable and writable, or [SQLITE_ACCESS_READ] +** to test to see if a file is at least readable. {END} The file can be a +** directory. +** +** {F11150} SQLite will always allocate at least mxPathname+1 byte for +** the output buffers for xGetTempname and xFullPathname. {F11151} The exact +** size of the output buffer is also passed as a parameter to both +** methods. {END} If the output buffer is not large enough, SQLITE_CANTOPEN +** should be returned. As this is handled as a fatal error by SQLite, +** vfs implementations should endeavor to prevent this by setting +** mxPathname to a sufficiently large value. +** +** The xRandomness(), xSleep(), and xCurrentTime() interfaces +** are not strictly a part of the filesystem, but they are +** included in the VFS structure for completeness. +** The xRandomness() function attempts to return nBytes bytes +** of good-quality randomness into zOut. The return value is +** the actual number of bytes of randomness obtained. The +** xSleep() method cause the calling thread to sleep for at +** least the number of microseconds given. The xCurrentTime() +** method returns a Julian Day Number for the current date and +** time. +*/ +typedef struct sqlite3_vfs sqlite3_vfs; +struct sqlite3_vfs { + int iVersion; /* Structure version number */ + int szOsFile; /* Size of subclassed sqlite3_file */ + int mxPathname; /* Maximum file pathname length */ + sqlite3_vfs *pNext; /* Next registered VFS */ + const char *zName; /* Name of this virtual file system */ + void *pAppData; /* Pointer to application-specific data */ + int (*xOpen)(sqlite3_vfs*, const char *zName, sqlite3_file*, + int flags, int *pOutFlags); + int (*xDelete)(sqlite3_vfs*, const char *zName, int syncDir); + int (*xAccess)(sqlite3_vfs*, const char *zName, int flags); + int (*xGetTempname)(sqlite3_vfs*, int nOut, char *zOut); + int (*xFullPathname)(sqlite3_vfs*, const char *zName, int nOut, char *zOut); + void *(*xDlOpen)(sqlite3_vfs*, const char *zFilename); + void (*xDlError)(sqlite3_vfs*, int nByte, char *zErrMsg); + void *(*xDlSym)(sqlite3_vfs*,void*, const char *zSymbol); + void (*xDlClose)(sqlite3_vfs*, void*); + int (*xRandomness)(sqlite3_vfs*, int nByte, char *zOut); + int (*xSleep)(sqlite3_vfs*, int microseconds); + int (*xCurrentTime)(sqlite3_vfs*, double*); + /* New fields may be appended in figure versions. The iVersion + ** value will increment whenever this happens. */ +}; + +/* +** CAPI3REF: Flags for the xAccess VFS method {F11190} +** +** {F11191} These integer constants can be used as the third parameter to +** the xAccess method of an [sqlite3_vfs] object. {END} They determine +** the kind of what kind of permissions the xAccess method is +** looking for. {F11192} With SQLITE_ACCESS_EXISTS, the xAccess method +** simply checks to see if the file exists. {F11193} With +** SQLITE_ACCESS_READWRITE, the xAccess method checks to see +** if the file is both readable and writable. {F11194} With +** SQLITE_ACCESS_READ the xAccess method +** checks to see if the file is readable. +*/ +#define SQLITE_ACCESS_EXISTS 0 +#define SQLITE_ACCESS_READWRITE 1 +#define SQLITE_ACCESS_READ 2 + +/* +** CAPI3REF: Enable Or Disable Extended Result Codes {F12200} +** +** {F12201} The sqlite3_extended_result_codes() routine enables or disables the +** [SQLITE_IOERR_READ | extended result codes] feature on a database +** connection if its 2nd parameter is +** non-zero or zero, respectively. {F12202} +** By default, SQLite API routines return one of only 26 integer +** [SQLITE_OK | result codes]. {F12203} When extended result codes +** are enabled by this routine, the repetoire of result codes can be +** much larger and can (hopefully) provide more detailed information +** about the cause of an error. +** +** {F12204} The second argument is a boolean value that turns extended result +** codes on and off. {F12205} Extended result codes are off by default for +** backwards compatibility with older versions of SQLite. +*/ +int sqlite3_extended_result_codes(sqlite3*, int onoff); + +/* +** CAPI3REF: Last Insert Rowid {F12220} +** +** {F12221} Each entry in an SQLite table has a unique 64-bit signed +** integer key called the "rowid". {F12222} The rowid is always available +** as an undeclared column named ROWID, OID, or _ROWID_ as long as those +** names are not also used by explicitly declared columns. {F12223} If +** the table has a column of type INTEGER PRIMARY KEY then that column +** is another an alias for the rowid. +** +** {F12224} This routine returns the rowid of the most recent +** successful INSERT into the database from the database connection +** shown in the first argument. {F12225} If no successful inserts +** have ever occurred on this database connection, zero is returned. +** +** {F12226} If an INSERT occurs within a trigger, then the rowid of the +** inserted row is returned by this routine as long as the trigger +** is running. {F12227} But once the trigger terminates, the value returned +** by this routine reverts to the last value inserted before the +** trigger fired. +** +** {F12228} An INSERT that fails due to a constraint violation is not a +** successful insert and does not change the value returned by this +** routine. {F12229} Thus INSERT OR FAIL, INSERT OR IGNORE, INSERT OR ROLLBACK, +** and INSERT OR ABORT make no changes to the return value of this +** routine when their insertion fails. {F12231} When INSERT OR REPLACE +** encounters a constraint violation, it does not fail. The +** INSERT continues to completion after deleting rows that caused +** the constraint problem so INSERT OR REPLACE will always change +** the return value of this interface. +** +** {UF12232} If another thread does a new insert on the same database connection +** while this routine is running and thus changes the last insert rowid, +** then the return value of this routine is undefined. +*/ +sqlite3_int64 sqlite3_last_insert_rowid(sqlite3*); + +/* +** CAPI3REF: Count The Number Of Rows Modified {F12240} +** +** {F12241} This function returns the number of database rows that were changed +** or inserted or deleted by the most recently completed SQL statement +** on the connection specified by the first parameter. {F12242} Only +** changes that are directly specified by the INSERT, UPDATE, or +** DELETE statement are counted. Auxiliary changes caused by +** triggers are not counted. {F12243} Use the [sqlite3_total_changes()] function +** to find the total number of changes including changes caused by triggers. +** +** {F12244} Within the body of a trigger, the sqlite3_changes() interface +** can be called to find the number of +** changes in the most recently completed INSERT, UPDATE, or DELETE +** statement within the body of the same trigger. +** +** {F12245} All changes are counted, even if they are later undone by a +** ROLLBACK or ABORT. {F12246} Except, changes associated with creating and +** dropping tables are not counted. +** +** {F12247} If a callback invokes [sqlite3_exec()] or [sqlite3_step()] +** recursively, then the changes in the inner, recursive call are +** counted together with the changes in the outer call. +** +** {F12248} SQLite implements the command "DELETE FROM table" without +** a WHERE clause by dropping and recreating the table. (This is much +** faster than going through and deleting individual elements from the +** table.) Because of this optimization, the change count for +** "DELETE FROM table" will be zero regardless of the number of elements +** that were originally in the table. {F12251} To get an accurate count +** of the number of rows deleted, use +** "DELETE FROM table WHERE 1" instead. +** +** {UF12252} If another thread makes changes on the same database connection +** while this routine is running then the return value of this routine +** is undefined. +*/ +int sqlite3_changes(sqlite3*); + +/* +** CAPI3REF: Total Number Of Rows Modified {F12260} +*** +** {F12261} This function returns the number of database rows that have been +** modified by INSERT, UPDATE or DELETE statements since the database handle +** was opened. {F12262} The count includes UPDATE, INSERT and DELETE +** statements executed as part of trigger programs. {F12263} All changes +** are counted as soon as the statement that makes them is completed +** (when the statement handle is passed to [sqlite3_reset()] or +** [sqlite3_finalize()]). {END} +** +** See also the [sqlite3_change()] interface. +** +** {F12265} SQLite implements the command "DELETE FROM table" without +** a WHERE clause by dropping and recreating the table. (This is much +** faster than going +** through and deleting individual elements form the table.) Because of +** this optimization, the change count for "DELETE FROM table" will be +** zero regardless of the number of elements that were originally in the +** table. To get an accurate count of the number of rows deleted, use +** "DELETE FROM table WHERE 1" instead. +** +** {U12264} If another thread makes changes on the same database connection +** while this routine is running then the return value of this routine +** is undefined. {END} +*/ +int sqlite3_total_changes(sqlite3*); + +/* +** CAPI3REF: Interrupt A Long-Running Query {F12270} +** +** {F12271} This function causes any pending database operation to abort and +** return at its earliest opportunity. {END} This routine is typically +** called in response to a user action such as pressing "Cancel" +** or Ctrl-C where the user wants a long query operation to halt +** immediately. +** +** {F12272} It is safe to call this routine from a thread different from the +** thread that is currently running the database operation. {U12273} But it +** is not safe to call this routine with a database connection that +** is closed or might close before sqlite3_interrupt() returns. +** +** If an SQL is very nearly finished at the time when sqlite3_interrupt() +** is called, then it might not have an opportunity to be interrupted. +** It might continue to completion. +** {F12274} The SQL operation that is interrupted will return +** [SQLITE_INTERRUPT]. {F12275} If the interrupted SQL operation is an +** INSERT, UPDATE, or DELETE that is inside an explicit transaction, +** then the entire transaction will be rolled back automatically. +** {F12276} A call to sqlite3_interrupt() has no effect on SQL statements +** that are started after sqlite3_interrupt() returns. +*/ +void sqlite3_interrupt(sqlite3*); + +/* +** CAPI3REF: Determine If An SQL Statement Is Complete {F10510} +** +** These routines are useful for command-line input to determine if the +** currently entered text seems to form complete a SQL statement or +** if additional input is needed before sending the text into +** SQLite for parsing. These routines return true if the input string +** appears to be a complete SQL statement. A statement is judged to be +** complete if it ends with a semicolon and is not a fragment of a +** CREATE TRIGGER statement. These routines do not parse the SQL and +** so will not detect syntactically incorrect SQL. +** +** {F10511} These functions return true if the given input string +** ends with a semicolon optionally followed by whitespace or +** comments. {F10512} For sqlite3_complete(), +** the parameter must be a zero-terminated UTF-8 string. {F10513} For +** sqlite3_complete16(), a zero-terminated machine byte order UTF-16 string +** is required. {F10514} These routines return false if the terminal +** semicolon is within a comment, a string literal or a quoted identifier +** (in other words if the final semicolon is not really a separate token +** but part of a larger token) or if the final semicolon is +** in between the BEGIN and END keywords of a CREATE TRIGGER statement. +** {END} +*/ +int sqlite3_complete(const char *sql); +int sqlite3_complete16(const void *sql); + +/* +** CAPI3REF: Register A Callback To Handle SQLITE_BUSY Errors {F12310} +** +** {F12311} This routine identifies a callback function that might be +** invoked whenever an attempt is made to open a database table +** that another thread or process has locked. +** {F12312} If the busy callback is NULL, then [SQLITE_BUSY] +** or [SQLITE_IOERR_BLOCKED] +** is returned immediately upon encountering the lock. +** {F12313} If the busy callback is not NULL, then the +** callback will be invoked with two arguments. {F12314} The +** first argument to the handler is a copy of the void* pointer which +** is the third argument to this routine. {F12315} The second argument to +** the handler is the number of times that the busy handler has +** been invoked for this locking event. {F12316} If the +** busy callback returns 0, then no additional attempts are made to +** access the database and [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED] is returned. +** {F12317} If the callback returns non-zero, then another attempt +** is made to open the database for reading and the cycle repeats. +** +** The presence of a busy handler does not guarantee that +** it will be invoked when there is lock contention. {F12319} +** If SQLite determines that invoking the busy handler could result in +** a deadlock, it will go ahead and return [SQLITE_BUSY] or +** [SQLITE_IOERR_BLOCKED] instead of invoking the +** busy handler. {END} +** Consider a scenario where one process is holding a read lock that +** it is trying to promote to a reserved lock and +** a second process is holding a reserved lock that it is trying +** to promote to an exclusive lock. The first process cannot proceed +** because it is blocked by the second and the second process cannot +** proceed because it is blocked by the first. If both processes +** invoke the busy handlers, neither will make any progress. Therefore, +** SQLite returns [SQLITE_BUSY] for the first process, hoping that this +** will induce the first process to release its read lock and allow +** the second process to proceed. +** +** {F12321} The default busy callback is NULL. {END} +** +** {F12322} The [SQLITE_BUSY] error is converted to [SQLITE_IOERR_BLOCKED] +** when SQLite is in the middle of a large transaction where all the +** changes will not fit into the in-memory cache. {F12323} SQLite will +** already hold a RESERVED lock on the database file, but it needs +** to promote this lock to EXCLUSIVE so that it can spill cache +** pages into the database file without harm to concurrent +** readers. {F12324} If it is unable to promote the lock, then the in-memory +** cache will be left in an inconsistent state and so the error +** code is promoted from the relatively benign [SQLITE_BUSY] to +** the more severe [SQLITE_IOERR_BLOCKED]. {F12325} This error code promotion +** forces an automatic rollback of the changes. {END} See the +** +** CorruptionFollowingBusyError wiki page for a discussion of why +** this is important. +** +** {F12326} Sqlite is re-entrant, so the busy handler may start a new +** query. {END} (It is not clear why anyone would every want to do this, +** but it is allowed, in theory.) {U12327} But the busy handler may not +** close the database. Closing the database from a busy handler will delete +** data structures out from under the executing query and will +** probably result in a segmentation fault or other runtime error. {END} +** +** {F12328} There can only be a single busy handler defined for each database +** connection. Setting a new busy handler clears any previous one. +** {F12329} Note that calling [sqlite3_busy_timeout()] will also set or clear +** the busy handler. +** +** {F12331} When operating in [sqlite3_enable_shared_cache | shared cache mode], +** only a single busy handler can be defined for each database file. +** So if two database connections share a single cache, then changing +** the busy handler on one connection will also change the busy +** handler in the other connection. {F12332} The busy handler is invoked +** in the thread that was running when the lock contention occurs. +*/ +int sqlite3_busy_handler(sqlite3*, int(*)(void*,int), void*); + +/* +** CAPI3REF: Set A Busy Timeout {F12340} +** +** {F12341} This routine sets a [sqlite3_busy_handler | busy handler] +** that sleeps for a while when a +** table is locked. {F12342} The handler will sleep multiple times until +** at least "ms" milliseconds of sleeping have been done. {F12343} After +** "ms" milliseconds of sleeping, the handler returns 0 which +** causes [sqlite3_step()] to return [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED]. +** +** {F12344} Calling this routine with an argument less than or equal to zero +** turns off all busy handlers. +** +** {F12345} There can only be a single busy handler for a particular database +** connection. If another busy handler was defined +** (using [sqlite3_busy_handler()]) prior to calling +** this routine, that other busy handler is cleared. +*/ +int sqlite3_busy_timeout(sqlite3*, int ms); + +/* +** CAPI3REF: Convenience Routines For Running Queries {F12370} +** +** This next routine is a convenience wrapper around [sqlite3_exec()]. +** {F12371} Instead of invoking a user-supplied callback for each row of the +** result, this routine remembers each row of the result in memory +** obtained from [sqlite3_malloc()], then returns all of the result after the +** query has finished. {F12372} +** +** As an example, suppose the query result where this table: +** +**
+**        Name        | Age
+**        -----------------------
+**        Alice       | 43
+**        Bob         | 28
+**        Cindy       | 21
+** 
+** +** If the 3rd argument were &azResult then after the function returns +** azResult will contain the following data: +** +**
+**        azResult[0] = "Name";
+**        azResult[1] = "Age";
+**        azResult[2] = "Alice";
+**        azResult[3] = "43";
+**        azResult[4] = "Bob";
+**        azResult[5] = "28";
+**        azResult[6] = "Cindy";
+**        azResult[7] = "21";
+** 
+** +** Notice that there is an extra row of data containing the column +** headers. But the *nrow return value is still 3. *ncolumn is +** set to 2. In general, the number of values inserted into azResult +** will be ((*nrow) + 1)*(*ncolumn). +** +** {U12374} After the calling function has finished using the result, it should +** pass the result data pointer to sqlite3_free_table() in order to +** release the memory that was malloc-ed. Because of the way the +** [sqlite3_malloc()] happens, the calling function must not try to call +** [sqlite3_free()] directly. Only [sqlite3_free_table()] is able to release +** the memory properly and safely. {END} +** +** {F12373} The return value of this routine is the same as +** from [sqlite3_exec()]. +*/ +int sqlite3_get_table( + sqlite3*, /* An open database */ + const char *sql, /* SQL to be executed */ + char ***resultp, /* Result written to a char *[] that this points to */ + int *nrow, /* Number of result rows written here */ + int *ncolumn, /* Number of result columns written here */ + char **errmsg /* Error msg written here */ +); +void sqlite3_free_table(char **result); + +/* +** CAPI3REF: Formatted String Printing Functions {F17400} +** +** These routines are workalikes of the "printf()" family of functions +** from the standard C library. +** +** {F17401} The sqlite3_mprintf() and sqlite3_vmprintf() routines write their +** results into memory obtained from [sqlite3_malloc()]. +** {U17402} The strings returned by these two routines should be +** released by [sqlite3_free()]. {F17403} Both routines return a +** NULL pointer if [sqlite3_malloc()] is unable to allocate enough +** memory to hold the resulting string. +** +** {F17404} In sqlite3_snprintf() routine is similar to "snprintf()" from +** the standard C library. The result is written into the +** buffer supplied as the second parameter whose size is given by +** the first parameter. {END} Note that the order of the +** first two parameters is reversed from snprintf(). This is an +** historical accident that cannot be fixed without breaking +** backwards compatibility. {F17405} Note also that sqlite3_snprintf() +** returns a pointer to its buffer instead of the number of +** characters actually written into the buffer. {END} We admit that +** the number of characters written would be a more useful return +** value but we cannot change the implementation of sqlite3_snprintf() +** now without breaking compatibility. +** +** {F17406} As long as the buffer size is greater than zero, sqlite3_snprintf() +** guarantees that the buffer is always zero-terminated. {F17407} The first +** parameter "n" is the total size of the buffer, including space for +** the zero terminator. {END} So the longest string that can be completely +** written will be n-1 characters. +** +** These routines all implement some additional formatting +** options that are useful for constructing SQL statements. +** All of the usual printf formatting options apply. In addition, there +** is are "%q", "%Q", and "%z" options. +** +** {F17410} The %q option works like %s in that it substitutes a null-terminated +** string from the argument list. But %q also doubles every '\'' character. +** %q is designed for use inside a string literal. {END} By doubling each '\'' +** character it escapes that character and allows it to be inserted into +** the string. +** +** For example, so some string variable contains text as follows: +** +**
+**  char *zText = "It's a happy day!";
+** 
+** +** One can use this text in an SQL statement as follows: +** +**
+**  char *zSQL = sqlite3_mprintf("INSERT INTO table VALUES('%q')", zText);
+**  sqlite3_exec(db, zSQL, 0, 0, 0);
+**  sqlite3_free(zSQL);
+** 
+** +** Because the %q format string is used, the '\'' character in zText +** is escaped and the SQL generated is as follows: +** +**
+**  INSERT INTO table1 VALUES('It''s a happy day!')
+** 
+** +** This is correct. Had we used %s instead of %q, the generated SQL +** would have looked like this: +** +**
+**  INSERT INTO table1 VALUES('It's a happy day!');
+** 
+** +** This second example is an SQL syntax error. As a general rule you +** should always use %q instead of %s when inserting text into a string +** literal. +** +** {F17411} The %Q option works like %q except it also adds single quotes around +** the outside of the total string. Or if the parameter in the argument +** list is a NULL pointer, %Q substitutes the text "NULL" (without single +** quotes) in place of the %Q option. {END} So, for example, one could say: +** +**
+**  char *zSQL = sqlite3_mprintf("INSERT INTO table VALUES(%Q)", zText);
+**  sqlite3_exec(db, zSQL, 0, 0, 0);
+**  sqlite3_free(zSQL);
+** 
+** +** The code above will render a correct SQL statement in the zSQL +** variable even if the zText variable is a NULL pointer. +** +** {F17412} The "%z" formatting option works exactly like "%s" with the +** addition that after the string has been read and copied into +** the result, [sqlite3_free()] is called on the input string. {END} +*/ +char *sqlite3_mprintf(const char*,...); +char *sqlite3_vmprintf(const char*, va_list); +char *sqlite3_snprintf(int,char*,const char*, ...); + +/* +** CAPI3REF: Memory Allocation Subsystem {F17300} +** +** {F17301} The SQLite core uses these three routines for all of its own +** internal memory allocation needs. {END} "Core" in the previous sentence +** does not include operating-system specific VFS implementation. The +** windows VFS uses native malloc and free for some operations. +** +** {F17302} The sqlite3_malloc() routine returns a pointer to a block +** of memory at least N bytes in length, where N is the parameter. +** {F17303} If sqlite3_malloc() is unable to obtain sufficient free +** memory, it returns a NULL pointer. {F17304} If the parameter N to +** sqlite3_malloc() is zero or negative then sqlite3_malloc() returns +** a NULL pointer. +** +** {F17305} Calling sqlite3_free() with a pointer previously returned +** by sqlite3_malloc() or sqlite3_realloc() releases that memory so +** that it might be reused. {F17306} The sqlite3_free() routine is +** a no-op if is called with a NULL pointer. Passing a NULL pointer +** to sqlite3_free() is harmless. {U17307} After being freed, memory +** should neither be read nor written. Even reading previously freed +** memory might result in a segmentation fault or other severe error. +** {U17309} Memory corruption, a segmentation fault, or other severe error +** might result if sqlite3_free() is called with a non-NULL pointer that +** was not obtained from sqlite3_malloc() or sqlite3_free(). +** +** {F17310} The sqlite3_realloc() interface attempts to resize a +** prior memory allocation to be at least N bytes, where N is the +** second parameter. The memory allocation to be resized is the first +** parameter. {F17311} If the first parameter to sqlite3_realloc() +** is a NULL pointer then its behavior is identical to calling +** sqlite3_malloc(N) where N is the second parameter to sqlite3_realloc(). +** {F17312} If the second parameter to sqlite3_realloc() is zero or +** negative then the behavior is exactly the same as calling +** sqlite3_free(P) where P is the first parameter to sqlite3_realloc(). +** {F17313} Sqlite3_realloc() returns a pointer to a memory allocation +** of at least N bytes in size or NULL if sufficient memory is unavailable. +** {F17314} If M is the size of the prior allocation, then min(N,M) bytes +** of the prior allocation are copied into the beginning of buffer returned +** by sqlite3_realloc() and the prior allocation is freed. +** {F17315} If sqlite3_realloc() returns NULL, then the prior allocation +** is not freed. +** +** {F17316} The memory returned by sqlite3_malloc() and sqlite3_realloc() +** is always aligned to at least an 8 byte boundary. {END} +** +** {F17381} The default implementation +** of the memory allocation subsystem uses the malloc(), realloc() +** and free() provided by the standard C library. {F17382} However, if +** SQLite is compiled with the following C preprocessor macro +** +**
SQLITE_MEMORY_SIZE=NNN
+** +** where NNN is an integer, then SQLite create a static +** array of at least NNN bytes in size and use that array +** for all of its dynamic memory allocation needs. {END} Additional +** memory allocator options may be added in future releases. +** +** In SQLite version 3.5.0 and 3.5.1, it was possible to define +** the SQLITE_OMIT_MEMORY_ALLOCATION which would cause the built-in +** implementation of these routines to be omitted. That capability +** is no longer provided. Only built-in memory allocators can be +** used. +** +** The windows OS interface layer calls +** the system malloc() and free() directly when converting +** filenames between the UTF-8 encoding used by SQLite +** and whatever filename encoding is used by the particular windows +** installation. Memory allocation errors are detected, but +** they are reported back as [SQLITE_CANTOPEN] or +** [SQLITE_IOERR] rather than [SQLITE_NOMEM]. +*/ +void *sqlite3_malloc(int); +void *sqlite3_realloc(void*, int); +void sqlite3_free(void*); + +/* +** CAPI3REF: Memory Allocator Statistics {F17370} +** +** In addition to the basic three allocation routines +** [sqlite3_malloc()], [sqlite3_free()], and [sqlite3_realloc()], +** the memory allocation subsystem included with the SQLite +** sources provides the interfaces shown here. +** +** {F17371} The sqlite3_memory_used() routine returns the +** number of bytes of memory currently outstanding (malloced but not freed). +** {F17372} The value returned by sqlite3_memory_used() includes +** any overhead added by SQLite, but not overhead added by the +** library malloc() that backs the sqlite3_malloc() implementation. +** {F17373} The sqlite3_memory_highwater() routines returns the +** maximum number of bytes that have been outstanding at any time +** since the highwater mark was last reset. +** {F17374} The byte count returned by sqlite3_memory_highwater() +** uses the same byte counting rules as sqlite3_memory_used(). {END} +** In other words, overhead added internally by SQLite is counted, +** but overhead from the underlying system malloc is not. +** {F17375} If the parameter to sqlite3_memory_highwater() is true, +** then the highwater mark is reset to the current value of +** sqlite3_memory_used() and the prior highwater mark (before the +** reset) is returned. {F17376} If the parameter to +** sqlite3_memory_highwater() is zero, then the highwater mark is +** unchanged. +*/ +sqlite3_int64 sqlite3_memory_used(void); +sqlite3_int64 sqlite3_memory_highwater(int resetFlag); + +/* +** CAPI3REF: Compile-Time Authorization Callbacks {F12500} +** +** {F12501} This routine registers a authorizer callback with a particular +** database connection, supplied in the first argument. {F12502} +** The authorizer callback is invoked as SQL statements are being compiled +** by [sqlite3_prepare()] or its variants [sqlite3_prepare_v2()], +** [sqlite3_prepare16()] and [sqlite3_prepare16_v2()]. {F12503} At various +** points during the compilation process, as logic is being created +** to perform various actions, the authorizer callback is invoked to +** see if those actions are allowed. The authorizer callback should +** return SQLITE_OK to allow the action, [SQLITE_IGNORE] to disallow the +** specific action but allow the SQL statement to continue to be +** compiled, or [SQLITE_DENY] to cause the entire SQL statement to be +** rejected with an error. {F12504} If the authorizer callback returns +** any value other than [SQLITE_IGNORE], [SQLITE_OK], or [SQLITE_DENY] +** then [sqlite3_prepare_v2()] or equivalent call that triggered +** the authorizer shall +** fail with an SQLITE_ERROR error code and an appropriate error message. {END} +** +** When the callback returns [SQLITE_OK], that means the operation +** requested is ok. {F12505} When the callback returns [SQLITE_DENY], the +** [sqlite3_prepare_v2()] or equivalent call that triggered the +** authorizer shall fail +** with an SQLITE_ERROR error code and an error message explaining that +** access is denied. {F12506} If the authorizer code (the 2nd parameter +** to the authorizer callback is anything other than [SQLITE_READ], then +** a return of [SQLITE_IGNORE] has the same effect as [SQLITE_DENY]. +** If the authorizer code is [SQLITE_READ] and the callback returns +** [SQLITE_IGNORE] then the prepared statement is constructed to +** insert a NULL value in place of the table column that would have +** been read if [SQLITE_OK] had been returned. {END} +** +** {F12510} The first parameter to the authorizer callback is a copy of +** the third parameter to the sqlite3_set_authorizer() interface. +** {F12511} The second parameter to the callback is an integer +** [SQLITE_COPY | action code] that specifies the particular action +** to be authorized. {END} The available action codes are +** [SQLITE_COPY | documented separately]. {F12512} The third through sixth +** parameters to the callback are zero-terminated strings that contain +** additional details about the action to be authorized. {END} +** +** An authorizer is used when preparing SQL statements from an untrusted +** source, to ensure that the SQL statements do not try to access data +** that they are not allowed to see, or that they do not try to +** execute malicious statements that damage the database. For +** example, an application may allow a user to enter arbitrary +** SQL queries for evaluation by a database. But the application does +** not want the user to be able to make arbitrary changes to the +** database. An authorizer could then be put in place while the +** user-entered SQL is being prepared that disallows everything +** except SELECT statements. +** +** {F12520} Only a single authorizer can be in place on a database connection +** at a time. Each call to sqlite3_set_authorizer overrides the +** previous call. {F12521} A NULL authorizer means that no authorization +** callback is invoked. {F12522} The default authorizer is NULL. {END} +** +** Note that the authorizer callback is invoked only during +** [sqlite3_prepare()] or its variants. {F12523} Authorization is not +** performed during statement evaluation in [sqlite3_step()]. {END} +*/ +int sqlite3_set_authorizer( + sqlite3*, + int (*xAuth)(void*,int,const char*,const char*,const char*,const char*), + void *pUserData +); + +/* +** CAPI3REF: Authorizer Return Codes {F12590} +** +** The [sqlite3_set_authorizer | authorizer callback function] must +** return either [SQLITE_OK] or one of these two constants in order +** to signal SQLite whether or not the action is permitted. See the +** [sqlite3_set_authorizer | authorizer documentation] for additional +** information. +*/ +#define SQLITE_DENY 1 /* Abort the SQL statement with an error */ +#define SQLITE_IGNORE 2 /* Don't allow access, but don't generate an error */ + +/* +** CAPI3REF: Authorizer Action Codes {F12550} +** +** The [sqlite3_set_authorizer()] interface registers a callback function +** that is invoked to authorizer certain SQL statement actions. {F12551} The +** second parameter to the callback is an integer code that specifies +** what action is being authorized. These are the integer action codes that +** the authorizer callback may be passed. {END} +** +** These action code values signify what kind of operation is to be +** authorized. {F12552} The 3rd and 4th parameters to the authorization +** callback function will be parameters or NULL depending on which of these +** codes is used as the second parameter. {F12553} The 5th parameter to the +** authorizer callback is the name of the database ("main", "temp", +** etc.) if applicable. {F12554} The 6th parameter to the authorizer callback +** is the name of the inner-most trigger or view that is responsible for +** the access attempt or NULL if this access attempt is directly from +** top-level SQL code. +*/ +/******************************************* 3rd ************ 4th ***********/ +#define SQLITE_CREATE_INDEX 1 /* Index Name Table Name */ +#define SQLITE_CREATE_TABLE 2 /* Table Name NULL */ +#define SQLITE_CREATE_TEMP_INDEX 3 /* Index Name Table Name */ +#define SQLITE_CREATE_TEMP_TABLE 4 /* Table Name NULL */ +#define SQLITE_CREATE_TEMP_TRIGGER 5 /* Trigger Name Table Name */ +#define SQLITE_CREATE_TEMP_VIEW 6 /* View Name NULL */ +#define SQLITE_CREATE_TRIGGER 7 /* Trigger Name Table Name */ +#define SQLITE_CREATE_VIEW 8 /* View Name NULL */ +#define SQLITE_DELETE 9 /* Table Name NULL */ +#define SQLITE_DROP_INDEX 10 /* Index Name Table Name */ +#define SQLITE_DROP_TABLE 11 /* Table Name NULL */ +#define SQLITE_DROP_TEMP_INDEX 12 /* Index Name Table Name */ +#define SQLITE_DROP_TEMP_TABLE 13 /* Table Name NULL */ +#define SQLITE_DROP_TEMP_TRIGGER 14 /* Trigger Name Table Name */ +#define SQLITE_DROP_TEMP_VIEW 15 /* View Name NULL */ +#define SQLITE_DROP_TRIGGER 16 /* Trigger Name Table Name */ +#define SQLITE_DROP_VIEW 17 /* View Name NULL */ +#define SQLITE_INSERT 18 /* Table Name NULL */ +#define SQLITE_PRAGMA 19 /* Pragma Name 1st arg or NULL */ +#define SQLITE_READ 20 /* Table Name Column Name */ +#define SQLITE_SELECT 21 /* NULL NULL */ +#define SQLITE_TRANSACTION 22 /* NULL NULL */ +#define SQLITE_UPDATE 23 /* Table Name Column Name */ +#define SQLITE_ATTACH 24 /* Filename NULL */ +#define SQLITE_DETACH 25 /* Database Name NULL */ +#define SQLITE_ALTER_TABLE 26 /* Database Name Table Name */ +#define SQLITE_REINDEX 27 /* Index Name NULL */ +#define SQLITE_ANALYZE 28 /* Table Name NULL */ +#define SQLITE_CREATE_VTABLE 29 /* Table Name Module Name */ +#define SQLITE_DROP_VTABLE 30 /* Table Name Module Name */ +#define SQLITE_FUNCTION 31 /* Function Name NULL */ +#define SQLITE_COPY 0 /* No longer used */ + +/* +** CAPI3REF: Tracing And Profiling Functions {F12280} +** +** These routines register callback functions that can be used for +** tracing and profiling the execution of SQL statements. +** +** {F12281} The callback function registered by sqlite3_trace() is invoked +** at the first [sqlite3_step()] for the evaluation of an SQL statement. +** {F12282} Only a single trace callback can be registered at a time. +** Each call to sqlite3_trace() overrides the previous. {F12283} A +** NULL callback for sqlite3_trace() disables tracing. {F12284} The +** first argument to the trace callback is a copy of the pointer which +** was the 3rd argument to sqlite3_trace. {F12285} The second argument +** to the trace callback is a zero-terminated UTF8 string containing +** the original text of the SQL statement as it was passed into +** [sqlite3_prepare_v2()] or the equivalent. {END} Note that the +** host parameter are not expanded in the SQL statement text. +** +** {F12287} The callback function registered by sqlite3_profile() is invoked +** as each SQL statement finishes. {F12288} The first parameter to the +** profile callback is a copy of the 3rd parameter to sqlite3_profile(). +** {F12289} The second parameter to the profile callback is a +** zero-terminated UTF-8 string that contains the complete text of +** the SQL statement as it was processed by [sqlite3_prepare_v2()] or +** the equivalent. {F12290} The third parameter to the profile +** callback is an estimate of the number of nanoseconds of +** wall-clock time required to run the SQL statement from start +** to finish. {END} +** +** The sqlite3_profile() API is currently considered experimental and +** is subject to change. +*/ +void *sqlite3_trace(sqlite3*, void(*xTrace)(void*,const char*), void*); +void *sqlite3_profile(sqlite3*, + void(*xProfile)(void*,const char*,sqlite3_uint64), void*); + +/* +** CAPI3REF: Query Progress Callbacks {F12910} +** +** {F12911} This routine configures a callback function - the +** progress callback - that is invoked periodically during long +** running calls to [sqlite3_exec()], [sqlite3_step()] and +** [sqlite3_get_table()]. {END} An example use for this +** interface is to keep a GUI updated during a large query. +** +** {F12912} The progress callback is invoked once for every N virtual +** machine opcodes, where N is the second argument to this function. +** {F12913} The progress callback itself is identified by the third +** argument to this function. {F12914} The fourth argument to this +** function is a void pointer passed to the progress callback +** function each time it is invoked. {END} +** +** {F12915} If a call to [sqlite3_exec()], [sqlite3_step()], or +** [sqlite3_get_table()] results in fewer than N opcodes being executed, +** then the progress callback is never invoked. {END} +** +** {F12916} Only a single progress callback function may be registered for each +** open database connection. Every call to sqlite3_progress_handler() +** overwrites the results of the previous call. {F12917} +** To remove the progress callback altogether, pass NULL as the third +** argument to this function. {END} +** +** {F12918} If the progress callback returns a result other than 0, then +** the current query is immediately terminated and any database changes +** rolled back. {F12919} +** The containing [sqlite3_exec()], [sqlite3_step()], or +** [sqlite3_get_table()] call returns SQLITE_INTERRUPT. {END} This feature +** can be used, for example, to implement the "Cancel" button on a +** progress dialog box in a GUI. +*/ +void sqlite3_progress_handler(sqlite3*, int, int(*)(void*), void*); + +/* +** CAPI3REF: Opening A New Database Connection {F12700} +** +** {F12701} These routines open an SQLite database file whose name +** is given by the filename argument. +** {F12702} The filename argument is interpreted as UTF-8 +** for [sqlite3_open()] and [sqlite3_open_v2()] and as UTF-16 +** in the native byte order for [sqlite3_open16()]. +** {F12703} An [sqlite3*] handle is returned in *ppDb, even +** if an error occurs. {F12723} (Exception: if SQLite is unable +** to allocate memory to hold the [sqlite3] object, a NULL will +** be written into *ppDb instead of a pointer to the [sqlite3] object.) +** {F12704} If the database is opened (and/or created) +** successfully, then [SQLITE_OK] is returned. {F12705} Otherwise an +** error code is returned. {F12706} The +** [sqlite3_errmsg()] or [sqlite3_errmsg16()] routines can be used to obtain +** an English language description of the error. +** +** {F12707} The default encoding for the database will be UTF-8 if +** [sqlite3_open()] or [sqlite3_open_v2()] is called and +** UTF-16 in the native byte order if [sqlite3_open16()] is used. +** +** {F12708} Whether or not an error occurs when it is opened, resources +** associated with the [sqlite3*] handle should be released by passing it +** to [sqlite3_close()] when it is no longer required. +** +** {F12709} The [sqlite3_open_v2()] interface works like [sqlite3_open()] +** except that it acccepts two additional parameters for additional control +** over the new database connection. {F12710} The flags parameter can be +** one of: +** +**
    +**
  1. [SQLITE_OPEN_READONLY] +**
  2. [SQLITE_OPEN_READWRITE] +**
  3. [SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE] +**
+** +** {F12711} The first value opens the database read-only. +** {F12712} If the database does not previously exist, an error is returned. +** {F12713} The second option opens +** the database for reading and writing if possible, or reading only if +** if the file is write protected. {F12714} In either case the database +** must already exist or an error is returned. {F12715} The third option +** opens the database for reading and writing and creates it if it does +** not already exist. {F12716} +** The third options is behavior that is always used for [sqlite3_open()] +** and [sqlite3_open16()]. +** +** {F12717} If the filename is ":memory:", then an private +** in-memory database is created for the connection. {F12718} This in-memory +** database will vanish when the database connection is closed. {END} Future +** version of SQLite might make use of additional special filenames +** that begin with the ":" character. It is recommended that +** when a database filename really does begin with +** ":" that you prefix the filename with a pathname like "./" to +** avoid ambiguity. +** +** {F12719} If the filename is an empty string, then a private temporary +** on-disk database will be created. {F12720} This private database will be +** automatically deleted as soon as the database connection is closed. +** +** {F12721} The fourth parameter to sqlite3_open_v2() is the name of the +** [sqlite3_vfs] object that defines the operating system +** interface that the new database connection should use. {F12722} If the +** fourth parameter is a NULL pointer then the default [sqlite3_vfs] +** object is used. {END} +** +** Note to windows users: The encoding used for the filename argument +** of [sqlite3_open()] and [sqlite3_open_v2()] must be UTF-8, not whatever +** codepage is currently defined. Filenames containing international +** characters must be converted to UTF-8 prior to passing them into +** [sqlite3_open()] or [sqlite3_open_v2()]. +*/ +int sqlite3_open( + const char *filename, /* Database filename (UTF-8) */ + sqlite3 **ppDb /* OUT: SQLite db handle */ +); +int sqlite3_open16( + const void *filename, /* Database filename (UTF-16) */ + sqlite3 **ppDb /* OUT: SQLite db handle */ +); +int sqlite3_open_v2( + const char *filename, /* Database filename (UTF-8) */ + sqlite3 **ppDb, /* OUT: SQLite db handle */ + int flags, /* Flags */ + const char *zVfs /* Name of VFS module to use */ +); + +/* +** CAPI3REF: Error Codes And Messages {F12800} +** +** {F12801} The sqlite3_errcode() interface returns the numeric +** [SQLITE_OK | result code] or [SQLITE_IOERR_READ | extended result code] +** for the most recent failed sqlite3_* API call associated +** with [sqlite3] handle 'db'. {U12802} If a prior API call failed but the +** most recent API call succeeded, the return value from sqlite3_errcode() +** is undefined. {END} +** +** {F12803} The sqlite3_errmsg() and sqlite3_errmsg16() return English-language +** text that describes the error, as either UTF8 or UTF16 respectively. +** {F12804} Memory to hold the error message string is managed internally. +** {U12805} The +** string may be overwritten or deallocated by subsequent calls to SQLite +** interface functions. {END} +** +** {F12806} Calls to many sqlite3_* functions set the error code and +** string returned by [sqlite3_errcode()], [sqlite3_errmsg()], and +** [sqlite3_errmsg16()] overwriting the previous values. {F12807} +** Except, calls to [sqlite3_errcode()], +** [sqlite3_errmsg()], and [sqlite3_errmsg16()] themselves do not affect the +** results of future invocations. {F12808} Calls to API routines that +** do not return an error code (example: [sqlite3_data_count()]) do not +** change the error code returned by this routine. {F12809} Interfaces that +** are not associated with a specific database connection (examples: +** [sqlite3_mprintf()] or [sqlite3_enable_shared_cache()] do not change +** the return code. {END} +** +** {F12810} Assuming no other intervening sqlite3_* API calls are made, +** the error code returned by this function is associated with the same +** error as the strings returned by [sqlite3_errmsg()] and [sqlite3_errmsg16()]. +*/ +int sqlite3_errcode(sqlite3 *db); +const char *sqlite3_errmsg(sqlite3*); +const void *sqlite3_errmsg16(sqlite3*); + +/* +** CAPI3REF: SQL Statement Object {F13000} +** +** An instance of this object represent single SQL statements. This +** object is variously known as a "prepared statement" or a +** "compiled SQL statement" or simply as a "statement". +** +** The life of a statement object goes something like this: +** +**
    +**
  1. Create the object using [sqlite3_prepare_v2()] or a related +** function. +**
  2. Bind values to host parameters using +** [sqlite3_bind_blob | sqlite3_bind_* interfaces]. +**
  3. Run the SQL by calling [sqlite3_step()] one or more times. +**
  4. Reset the statement using [sqlite3_reset()] then go back +** to step 2. Do this zero or more times. +**
  5. Destroy the object using [sqlite3_finalize()]. +**
+** +** Refer to documentation on individual methods above for additional +** information. +*/ +typedef struct sqlite3_stmt sqlite3_stmt; + +/* +** CAPI3REF: Compiling An SQL Statement {F13010} +** +** To execute an SQL query, it must first be compiled into a byte-code +** program using one of these routines. +** +** {F13011} The first argument "db" is an [sqlite3 | SQLite database handle] +** obtained from a prior call to [sqlite3_open()], [sqlite3_open_v2()] +** or [sqlite3_open16()]. {F13012} +** The second argument "zSql" is the statement to be compiled, encoded +** as either UTF-8 or UTF-16. The sqlite3_prepare() and sqlite3_prepare_v2() +** interfaces uses UTF-8 and sqlite3_prepare16() and sqlite3_prepare16_v2() +** use UTF-16. {END} +** +** {F13013} If the nByte argument is less +** than zero, then zSql is read up to the first zero terminator. +** {F13014} If nByte is non-negative, then it is the maximum number of +** bytes read from zSql. When nByte is non-negative, the +** zSql string ends at either the first '\000' or '\u0000' character or +** until the nByte-th byte, whichever comes first. {END} +** +** {F13015} *pzTail is made to point to the first byte past the end of the +** first SQL statement in zSql. These routines only compiles the first +** statement in zSql, so *pzTail is left pointing to what remains +** uncompiled. {END} +** +** {F13016} *ppStmt is left pointing to a compiled +** [sqlite3_stmt | SQL statement structure] that can be +** executed using [sqlite3_step()]. Or if there is an error, *ppStmt may be +** set to NULL. {F13017} If the input text contains no SQL (if the input +** is and empty string or a comment) then *ppStmt is set to NULL. +** {U13018} The calling procedure is responsible for deleting the +** compiled SQL statement +** using [sqlite3_finalize()] after it has finished with it. +** +** {F13019} On success, [SQLITE_OK] is returned. Otherwise an +** [SQLITE_ERROR | error code] is returned. {END} +** +** The sqlite3_prepare_v2() and sqlite3_prepare16_v2() interfaces are +** recommended for all new programs. The two older interfaces are retained +** for backwards compatibility, but their use is discouraged. +** {F13020} In the "v2" interfaces, the prepared statement +** that is returned (the [sqlite3_stmt] object) contains a copy of the +** original SQL text. {END} This causes the [sqlite3_step()] interface to +** behave a differently in two ways: +** +**
    +**
  1. {F13022} +** If the database schema changes, instead of returning [SQLITE_SCHEMA] as it +** always used to do, [sqlite3_step()] will automatically recompile the SQL +** statement and try to run it again. {F12023} If the schema has changed in +** a way that makes the statement no longer valid, [sqlite3_step()] will still +** return [SQLITE_SCHEMA]. {END} But unlike the legacy behavior, +** [SQLITE_SCHEMA] is now a fatal error. {F12024} Calling +** [sqlite3_prepare_v2()] again will not make the +** error go away. {F12025} Note: use [sqlite3_errmsg()] to find the text +** of the parsing error that results in an [SQLITE_SCHEMA] return. {END} +**
  2. +** +**
  3. +** {F13030} When an error occurs, +** [sqlite3_step()] will return one of the detailed +** [SQLITE_ERROR | result codes] or +** [SQLITE_IOERR_READ | extended result codes]. {F13031} +** The legacy behavior was that [sqlite3_step()] would only return a generic +** [SQLITE_ERROR] result code and you would have to make a second call to +** [sqlite3_reset()] in order to find the underlying cause of the problem. +** {F13032} +** With the "v2" prepare interfaces, the underlying reason for the error is +** returned immediately. {END} +**
  4. +**
+*/ +int sqlite3_prepare( + sqlite3 *db, /* Database handle */ + const char *zSql, /* SQL statement, UTF-8 encoded */ + int nByte, /* Maximum length of zSql in bytes. */ + sqlite3_stmt **ppStmt, /* OUT: Statement handle */ + const char **pzTail /* OUT: Pointer to unused portion of zSql */ +); +int sqlite3_prepare_v2( + sqlite3 *db, /* Database handle */ + const char *zSql, /* SQL statement, UTF-8 encoded */ + int nByte, /* Maximum length of zSql in bytes. */ + sqlite3_stmt **ppStmt, /* OUT: Statement handle */ + const char **pzTail /* OUT: Pointer to unused portion of zSql */ +); +int sqlite3_prepare16( + sqlite3 *db, /* Database handle */ + const void *zSql, /* SQL statement, UTF-16 encoded */ + int nByte, /* Maximum length of zSql in bytes. */ + sqlite3_stmt **ppStmt, /* OUT: Statement handle */ + const void **pzTail /* OUT: Pointer to unused portion of zSql */ +); +int sqlite3_prepare16_v2( + sqlite3 *db, /* Database handle */ + const void *zSql, /* SQL statement, UTF-16 encoded */ + int nByte, /* Maximum length of zSql in bytes. */ + sqlite3_stmt **ppStmt, /* OUT: Statement handle */ + const void **pzTail /* OUT: Pointer to unused portion of zSql */ +); + +/* +** CAPIREF: Retrieving Statement SQL {F13100} +** +** {F13101} If the compiled SQL statement passed as an argument was +** compiled using either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()], +** then this function returns a pointer to a zero-terminated string +** containing a copy of the original SQL statement. {F13102} The +** pointer is valid until the statement +** is deleted using sqlite3_finalize(). +** {F13103} The string returned by sqlite3_sql() is always UTF8 even +** if a UTF16 string was originally entered using [sqlite3_prepare16_v2()] +** or the equivalent. +** +** {F13104} If the statement was compiled using either of the legacy +** interfaces [sqlite3_prepare()] or [sqlite3_prepare16()], this +** function returns NULL. +*/ +const char *sqlite3_sql(sqlite3_stmt *pStmt); + +/* +** CAPI3REF: Dynamically Typed Value Object {F15000} +** +** {F15001} SQLite uses the sqlite3_value object to represent all values +** that are or can be stored in a database table. {END} +** SQLite uses dynamic typing for the values it stores. +** {F15002} Values stored in sqlite3_value objects can be +** be integers, floating point values, strings, BLOBs, or NULL. +*/ +typedef struct Mem sqlite3_value; + +/* +** CAPI3REF: SQL Function Context Object {F16001} +** +** The context in which an SQL function executes is stored in an +** sqlite3_context object. {F16002} A pointer to an sqlite3_context +** object is always first parameter to application-defined SQL functions. +*/ +typedef struct sqlite3_context sqlite3_context; + +/* +** CAPI3REF: Binding Values To Prepared Statements {F13500} +** +** {F13501} In the SQL strings input to [sqlite3_prepare_v2()] and its +** variants, literals may be replace by a parameter in one +** of these forms: +** +**
    +**
  • ? +**
  • ?NNN +**
  • :AAA +**
  • @AAA +**
  • $VVV +**
+** +** In the parameter forms shown above NNN is an integer literal, +** AAA is an alphanumeric identifier and VVV is a variable name according +** to the syntax rules of the TCL programming language. {END} +** The values of these parameters (also called "host parameter names") +** can be set using the sqlite3_bind_*() routines defined here. +** +** {F13502} The first argument to the sqlite3_bind_*() routines always +** is a pointer to the [sqlite3_stmt] object returned from +** [sqlite3_prepare_v2()] or its variants. {F13503} The second +** argument is the index of the parameter to be set. {F13504} The +** first parameter has an index of 1. {F13505} When the same named +** parameter is used more than once, second and subsequent +** occurrences have the same index as the first occurrence. +** {F13506} The index for named parameters can be looked up using the +** [sqlite3_bind_parameter_name()] API if desired. {F13507} The index +** for "?NNN" parameters is the value of NNN. +** {F13508} The NNN value must be between 1 and the compile-time +** parameter SQLITE_MAX_VARIABLE_NUMBER (default value: 999). {END} +** See limits.html for additional information. +** +** {F13509} The third argument is the value to bind to the parameter. {END} +** +** {F13510} In those +** routines that have a fourth argument, its value is the number of bytes +** in the parameter. To be clear: the value is the number of bytes in the +** string, not the number of characters. {F13511} The number +** of bytes does not include the zero-terminator at the end of strings. +** {F13512} +** If the fourth parameter is negative, the length of the string is +** number of bytes up to the first zero terminator. {END} +** +** {F13513} +** The fifth argument to sqlite3_bind_blob(), sqlite3_bind_text(), and +** sqlite3_bind_text16() is a destructor used to dispose of the BLOB or +** text after SQLite has finished with it. {F13514} If the fifth argument is +** the special value [SQLITE_STATIC], then the library assumes that the +** information is in static, unmanaged space and does not need to be freed. +** {F13515} If the fifth argument has the value [SQLITE_TRANSIENT], then +** SQLite makes its own private copy of the data immediately, before +** the sqlite3_bind_*() routine returns. {END} +** +** {F13520} The sqlite3_bind_zeroblob() routine binds a BLOB of length N that +** is filled with zeros. {F13521} A zeroblob uses a fixed amount of memory +** (just an integer to hold it size) while it is being processed. {END} +** Zeroblobs are intended to serve as place-holders for BLOBs whose +** content is later written using +** [sqlite3_blob_open | increment BLOB I/O] routines. {F13522} A negative +** value for the zeroblob results in a zero-length BLOB. {END} +** +** {F13530} The sqlite3_bind_*() routines must be called after +** [sqlite3_prepare_v2()] (and its variants) or [sqlite3_reset()] and +** before [sqlite3_step()]. {F13531} +** Bindings are not cleared by the [sqlite3_reset()] routine. +** {F13532} Unbound parameters are interpreted as NULL. {END} +** +** {F13540} These routines return [SQLITE_OK] on success or an error code if +** anything goes wrong. {F13541} [SQLITE_RANGE] is returned if the parameter +** index is out of range. {F13542} [SQLITE_NOMEM] is returned if malloc fails. +** {F13543} [SQLITE_MISUSE] is returned if these routines are called on a +** virtual machine that is the wrong state or which has already been finalized. +*/ +int sqlite3_bind_blob(sqlite3_stmt*, int, const void*, int n, void(*)(void*)); +int sqlite3_bind_double(sqlite3_stmt*, int, double); +int sqlite3_bind_int(sqlite3_stmt*, int, int); +int sqlite3_bind_int64(sqlite3_stmt*, int, sqlite3_int64); +int sqlite3_bind_null(sqlite3_stmt*, int); +int sqlite3_bind_text(sqlite3_stmt*, int, const char*, int n, void(*)(void*)); +int sqlite3_bind_text16(sqlite3_stmt*, int, const void*, int, void(*)(void*)); +int sqlite3_bind_value(sqlite3_stmt*, int, const sqlite3_value*); +int sqlite3_bind_zeroblob(sqlite3_stmt*, int, int n); + +/* +** CAPI3REF: Number Of Host Parameters {F13600} +** +** {F13601} Return the largest host parameter index in the precompiled +** statement given as the argument. {F13602} When the host parameters +** are of the forms like ":AAA", "$VVV", "@AAA", or "?", +** then they are assigned sequential increasing numbers beginning +** with one, so the value returned is the number of parameters. +** {F13603} However +** if the same host parameter name is used multiple times, each occurrance +** is given the same number, so the value returned in that case is the number +** of unique host parameter names. {F13604} If host parameters of the +** form "?NNN" are used (where NNN is an integer) then there might be +** gaps in the numbering and the value returned by this interface is +** the index of the host parameter with the largest index value. {END} +** +** {U13605} The prepared statement must not be [sqlite3_finalize | finalized] +** prior to this routine returning. Otherwise the results are undefined +** and probably undesirable. +*/ +int sqlite3_bind_parameter_count(sqlite3_stmt*); + +/* +** CAPI3REF: Name Of A Host Parameter {F13620} +** +** {F13621} This routine returns a pointer to the name of the n-th +** parameter in a [sqlite3_stmt | prepared statement]. {F13622} +** Host parameters of the form ":AAA" or "@AAA" or "$VVV" have a name +** which is the string ":AAA" or "@AAA" or "$VVV". +** In other words, the initial ":" or "$" or "@" +** is included as part of the name. {F13626} +** Parameters of the form "?" or "?NNN" have no name. +** +** {F13623} The first host parameter has an index of 1, not 0. +** +** {F13624} If the value n is out of range or if the n-th parameter is +** nameless, then NULL is returned. {F13625} The returned string is +** always in the UTF-8 encoding even if the named parameter was +** originally specified as UTF-16 in [sqlite3_prepare16()] or +** [sqlite3_prepare16_v2()]. +*/ +const char *sqlite3_bind_parameter_name(sqlite3_stmt*, int); + +/* +** CAPI3REF: Index Of A Parameter With A Given Name {F13640} +** +** {F13641} This routine returns the index of a host parameter with the +** given name. {F13642} The name must match exactly. {F13643} +** If no parameter with the given name is found, return 0. +** {F13644} Parameter names must be UTF8. +*/ +int sqlite3_bind_parameter_index(sqlite3_stmt*, const char *zName); + +/* +** CAPI3REF: Reset All Bindings On A Prepared Statement {F13660} +** +** {F13661} Contrary to the intuition of many, [sqlite3_reset()] does not +** reset the [sqlite3_bind_blob | bindings] on a +** [sqlite3_stmt | prepared statement]. {F13662} Use this routine to +** reset all host parameters to NULL. +*/ +int sqlite3_clear_bindings(sqlite3_stmt*); + +/* +** CAPI3REF: Number Of Columns In A Result Set {F13710} +** +** {F13711} Return the number of columns in the result set returned by the +** [sqlite3_stmt | compiled SQL statement]. {F13712} This routine returns 0 +** if pStmt is an SQL statement that does not return data (for +** example an UPDATE). +*/ +int sqlite3_column_count(sqlite3_stmt *pStmt); + +/* +** CAPI3REF: Column Names In A Result Set {F13720} +** +** {F13721} These routines return the name assigned to a particular column +** in the result set of a SELECT statement. {F13722} The sqlite3_column_name() +** interface returns a pointer to a zero-terminated UTF8 string +** and sqlite3_column_name16() returns a pointer to a zero-terminated +** UTF16 string. {F13723} The first parameter is the +** [sqlite3_stmt | prepared statement] that implements the SELECT statement. +** The second parameter is the column number. The left-most column is +** number 0. +** +** {F13724} The returned string pointer is valid until either the +** [sqlite3_stmt | prepared statement] is destroyed by [sqlite3_finalize()] +** or until the next call sqlite3_column_name() or sqlite3_column_name16() +** on the same column. +** +** {F13725} If sqlite3_malloc() fails during the processing of either routine +** (for example during a conversion from UTF-8 to UTF-16) then a +** NULL pointer is returned. +*/ +const char *sqlite3_column_name(sqlite3_stmt*, int N); +const void *sqlite3_column_name16(sqlite3_stmt*, int N); + +/* +** CAPI3REF: Source Of Data In A Query Result {F13740} +** +** {F13741} These routines provide a means to determine what column of what +** table in which database a result of a SELECT statement comes from. +** {F13742} The name of the database or table or column can be returned as +** either a UTF8 or UTF16 string. {F13743} The _database_ routines return +** the database name, the _table_ routines return the table name, and +** the origin_ routines return the column name. {F13744} +** The returned string is valid until +** the [sqlite3_stmt | prepared statement] is destroyed using +** [sqlite3_finalize()] or until the same information is requested +** again in a different encoding. +** +** {F13745} The names returned are the original un-aliased names of the +** database, table, and column. +** +** {F13746} The first argument to the following calls is a +** [sqlite3_stmt | compiled SQL statement]. +** {F13747} These functions return information about the Nth column returned by +** the statement, where N is the second function argument. +** +** {F13748} If the Nth column returned by the statement is an expression +** or subquery and is not a column value, then all of these functions +** return NULL. {F13749} Otherwise, they return the +** name of the attached database, table and column that query result +** column was extracted from. +** +** {F13750} As with all other SQLite APIs, those postfixed with "16" return +** UTF-16 encoded strings, the other functions return UTF-8. {END} +** +** These APIs are only available if the library was compiled with the +** SQLITE_ENABLE_COLUMN_METADATA preprocessor symbol defined. +** +** {U13751} +** If two or more threads call one or more of these routines against the same +** prepared statement and column at the same time then the results are +** undefined. +*/ +const char *sqlite3_column_database_name(sqlite3_stmt*,int); +const void *sqlite3_column_database_name16(sqlite3_stmt*,int); +const char *sqlite3_column_table_name(sqlite3_stmt*,int); +const void *sqlite3_column_table_name16(sqlite3_stmt*,int); +const char *sqlite3_column_origin_name(sqlite3_stmt*,int); +const void *sqlite3_column_origin_name16(sqlite3_stmt*,int); + +/* +** CAPI3REF: Declared Datatype Of A Query Result {F13760} +** +** The first parameter is a [sqlite3_stmt | compiled SQL statement]. +** {F13761} If this statement is a SELECT statement and the Nth column of the +** returned result set of that SELECT is a table column (not an +** expression or subquery) then the declared type of the table +** column is returned. {F13762} If the Nth column of the result set is an +** expression or subquery, then a NULL pointer is returned. +** {F13763} The returned string is always UTF-8 encoded. {END} +** For example, in the database schema: +** +** CREATE TABLE t1(c1 VARIANT); +** +** And the following statement compiled: +** +** SELECT c1 + 1, c1 FROM t1; +** +** Then this routine would return the string "VARIANT" for the second +** result column (i==1), and a NULL pointer for the first result column +** (i==0). +** +** SQLite uses dynamic run-time typing. So just because a column +** is declared to contain a particular type does not mean that the +** data stored in that column is of the declared type. SQLite is +** strongly typed, but the typing is dynamic not static. Type +** is associated with individual values, not with the containers +** used to hold those values. +*/ +const char *sqlite3_column_decltype(sqlite3_stmt *, int i); +const void *sqlite3_column_decltype16(sqlite3_stmt*,int); + +/* +** CAPI3REF: Evaluate An SQL Statement {F13200} +** +** After an [sqlite3_stmt | SQL statement] has been prepared with a call +** to either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()] or to one of +** the legacy interfaces [sqlite3_prepare()] or [sqlite3_prepare16()], +** then this function must be called one or more times to evaluate the +** statement. +** +** The details of the behavior of this sqlite3_step() interface depend +** on whether the statement was prepared using the newer "v2" interface +** [sqlite3_prepare_v2()] and [sqlite3_prepare16_v2()] or the older legacy +** interface [sqlite3_prepare()] and [sqlite3_prepare16()]. The use of the +** new "v2" interface is recommended for new applications but the legacy +** interface will continue to be supported. +** +** In the lagacy interface, the return value will be either [SQLITE_BUSY], +** [SQLITE_DONE], [SQLITE_ROW], [SQLITE_ERROR], or [SQLITE_MISUSE]. +** With the "v2" interface, any of the other [SQLITE_OK | result code] +** or [SQLITE_IOERR_READ | extended result code] might be returned as +** well. +** +** [SQLITE_BUSY] means that the database engine was unable to acquire the +** database locks it needs to do its job. If the statement is a COMMIT +** or occurs outside of an explicit transaction, then you can retry the +** statement. If the statement is not a COMMIT and occurs within a +** explicit transaction then you should rollback the transaction before +** continuing. +** +** [SQLITE_DONE] means that the statement has finished executing +** successfully. sqlite3_step() should not be called again on this virtual +** machine without first calling [sqlite3_reset()] to reset the virtual +** machine back to its initial state. +** +** If the SQL statement being executed returns any data, then +** [SQLITE_ROW] is returned each time a new row of data is ready +** for processing by the caller. The values may be accessed using +** the [sqlite3_column_int | column access functions]. +** sqlite3_step() is called again to retrieve the next row of data. +** +** [SQLITE_ERROR] means that a run-time error (such as a constraint +** violation) has occurred. sqlite3_step() should not be called again on +** the VM. More information may be found by calling [sqlite3_errmsg()]. +** With the legacy interface, a more specific error code (example: +** [SQLITE_INTERRUPT], [SQLITE_SCHEMA], [SQLITE_CORRUPT], and so forth) +** can be obtained by calling [sqlite3_reset()] on the +** [sqlite3_stmt | prepared statement]. In the "v2" interface, +** the more specific error code is returned directly by sqlite3_step(). +** +** [SQLITE_MISUSE] means that the this routine was called inappropriately. +** Perhaps it was called on a [sqlite3_stmt | prepared statement] that has +** already been [sqlite3_finalize | finalized] or on one that had +** previously returned [SQLITE_ERROR] or [SQLITE_DONE]. Or it could +** be the case that the same database connection is being used by two or +** more threads at the same moment in time. +** +** Goofy Interface Alert: +** In the legacy interface, +** the sqlite3_step() API always returns a generic error code, +** [SQLITE_ERROR], following any error other than [SQLITE_BUSY] +** and [SQLITE_MISUSE]. You must call [sqlite3_reset()] or +** [sqlite3_finalize()] in order to find one of the specific +** [SQLITE_ERROR | result codes] that better describes the error. +** We admit that this is a goofy design. The problem has been fixed +** with the "v2" interface. If you prepare all of your SQL statements +** using either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()] instead +** of the legacy [sqlite3_prepare()] and [sqlite3_prepare16()], then the +** more specific [SQLITE_ERROR | result codes] are returned directly +** by sqlite3_step(). The use of the "v2" interface is recommended. +*/ +int sqlite3_step(sqlite3_stmt*); + +/* +** CAPI3REF: Number of columns in a result set {F13770} +** +** Return the number of values in the current row of the result set. +** +** {F13771} After a call to [sqlite3_step()] that returns [SQLITE_ROW], +** this routine +** will return the same value as the [sqlite3_column_count()] function. +** {F13772} +** After [sqlite3_step()] has returned an [SQLITE_DONE], [SQLITE_BUSY], or +** a [SQLITE_ERROR | error code], or before [sqlite3_step()] has been +** called on the [sqlite3_stmt | prepared statement] for the first time, +** this routine returns zero. +*/ +int sqlite3_data_count(sqlite3_stmt *pStmt); + +/* +** CAPI3REF: Fundamental Datatypes {F10265} +** +** {F10266}Every value in SQLite has one of five fundamental datatypes: +** +**
    +**
  • 64-bit signed integer +**
  • 64-bit IEEE floating point number +**
  • string +**
  • BLOB +**
  • NULL +**
{END} +** +** These constants are codes for each of those types. +** +** Note that the SQLITE_TEXT constant was also used in SQLite version 2 +** for a completely different meaning. Software that links against both +** SQLite version 2 and SQLite version 3 should use SQLITE3_TEXT not +** SQLITE_TEXT. +*/ +#define SQLITE_INTEGER 1 +#define SQLITE_FLOAT 2 +#define SQLITE_BLOB 4 +#define SQLITE_NULL 5 +#ifdef SQLITE_TEXT +# undef SQLITE_TEXT +#else +# define SQLITE_TEXT 3 +#endif +#define SQLITE3_TEXT 3 + +/* +** CAPI3REF: Results Values From A Query {F13800} +** +** These routines return information about +** a single column of the current result row of a query. In every +** case the first argument is a pointer to the +** [sqlite3_stmt | SQL statement] that is being +** evaluated (the [sqlite3_stmt*] that was returned from +** [sqlite3_prepare_v2()] or one of its variants) and +** the second argument is the index of the column for which information +** should be returned. The left-most column of the result set +** has an index of 0. +** +** If the SQL statement is not currently point to a valid row, or if the +** the column index is out of range, the result is undefined. +** These routines may only be called when the most recent call to +** [sqlite3_step()] has returned [SQLITE_ROW] and neither +** [sqlite3_reset()] nor [sqlite3_finalize()] has been call subsequently. +** If any of these routines are called after [sqlite3_reset()] or +** [sqlite3_finalize()] or after [sqlite3_step()] has returned +** something other than [SQLITE_ROW], the results are undefined. +** If [sqlite3_step()] or [sqlite3_reset()] or [sqlite3_finalize()] +** are called from a different thread while any of these routines +** are pending, then the results are undefined. +** +** The sqlite3_column_type() routine returns +** [SQLITE_INTEGER | datatype code] for the initial data type +** of the result column. The returned value is one of [SQLITE_INTEGER], +** [SQLITE_FLOAT], [SQLITE_TEXT], [SQLITE_BLOB], or [SQLITE_NULL]. The value +** returned by sqlite3_column_type() is only meaningful if no type +** conversions have occurred as described below. After a type conversion, +** the value returned by sqlite3_column_type() is undefined. Future +** versions of SQLite may change the behavior of sqlite3_column_type() +** following a type conversion. +** +** If the result is a BLOB or UTF-8 string then the sqlite3_column_bytes() +** routine returns the number of bytes in that BLOB or string. +** If the result is a UTF-16 string, then sqlite3_column_bytes() converts +** the string to UTF-8 and then returns the number of bytes. +** If the result is a numeric value then sqlite3_column_bytes() uses +** [sqlite3_snprintf()] to convert that value to a UTF-8 string and returns +** the number of bytes in that string. +** The value returned does not include the zero terminator at the end +** of the string. For clarity: the value returned is the number of +** bytes in the string, not the number of characters. +** +** Strings returned by sqlite3_column_text() and sqlite3_column_text16(), +** even zero-length strings, are always zero terminated. The return +** value from sqlite3_column_blob() for a zero-length blob is an arbitrary +** pointer, possibly even a NULL pointer. +** +** The sqlite3_column_bytes16() routine is similar to sqlite3_column_bytes() +** but leaves the result in UTF-16 instead of UTF-8. +** The zero terminator is not included in this count. +** +** These routines attempt to convert the value where appropriate. For +** example, if the internal representation is FLOAT and a text result +** is requested, [sqlite3_snprintf()] is used internally to do the conversion +** automatically. The following table details the conversions that +** are applied: +** +**
+** +**
Internal
Type
Requested
Type
Conversion +** +**
NULL INTEGER Result is 0 +**
NULL FLOAT Result is 0.0 +**
NULL TEXT Result is NULL pointer +**
NULL BLOB Result is NULL pointer +**
INTEGER FLOAT Convert from integer to float +**
INTEGER TEXT ASCII rendering of the integer +**
INTEGER BLOB Same as for INTEGER->TEXT +**
FLOAT INTEGER Convert from float to integer +**
FLOAT TEXT ASCII rendering of the float +**
FLOAT BLOB Same as FLOAT->TEXT +**
TEXT INTEGER Use atoi() +**
TEXT FLOAT Use atof() +**
TEXT BLOB No change +**
BLOB INTEGER Convert to TEXT then use atoi() +**
BLOB FLOAT Convert to TEXT then use atof() +**
BLOB TEXT Add a zero terminator if needed +**
+**
+** +** The table above makes reference to standard C library functions atoi() +** and atof(). SQLite does not really use these functions. It has its +** on equavalent internal routines. The atoi() and atof() names are +** used in the table for brevity and because they are familiar to most +** C programmers. +** +** Note that when type conversions occur, pointers returned by prior +** calls to sqlite3_column_blob(), sqlite3_column_text(), and/or +** sqlite3_column_text16() may be invalidated. +** Type conversions and pointer invalidations might occur +** in the following cases: +** +**
    +**
  • The initial content is a BLOB and sqlite3_column_text() +** or sqlite3_column_text16() is called. A zero-terminator might +** need to be added to the string.

  • +** +**
  • The initial content is UTF-8 text and sqlite3_column_bytes16() or +** sqlite3_column_text16() is called. The content must be converted +** to UTF-16.

  • +** +**
  • The initial content is UTF-16 text and sqlite3_column_bytes() or +** sqlite3_column_text() is called. The content must be converted +** to UTF-8.

  • +**
+** +** Conversions between UTF-16be and UTF-16le are always done in place and do +** not invalidate a prior pointer, though of course the content of the buffer +** that the prior pointer points to will have been modified. Other kinds +** of conversion are done in place when it is possible, but sometime it is +** not possible and in those cases prior pointers are invalidated. +** +** The safest and easiest to remember policy is to invoke these routines +** in one of the following ways: +** +**
    +**
  • sqlite3_column_text() followed by sqlite3_column_bytes()
  • +**
  • sqlite3_column_blob() followed by sqlite3_column_bytes()
  • +**
  • sqlite3_column_text16() followed by sqlite3_column_bytes16()
  • +**
+** +** In other words, you should call sqlite3_column_text(), sqlite3_column_blob(), +** or sqlite3_column_text16() first to force the result into the desired +** format, then invoke sqlite3_column_bytes() or sqlite3_column_bytes16() to +** find the size of the result. Do not mix call to sqlite3_column_text() or +** sqlite3_column_blob() with calls to sqlite3_column_bytes16(). And do not +** mix calls to sqlite3_column_text16() with calls to sqlite3_column_bytes(). +** +** The pointers returned are valid until a type conversion occurs as +** described above, or until [sqlite3_step()] or [sqlite3_reset()] or +** [sqlite3_finalize()] is called. The memory space used to hold strings +** and blobs is freed automatically. Do not pass the pointers returned +** [sqlite3_column_blob()], [sqlite3_column_text()], etc. into +** [sqlite3_free()]. +** +** If a memory allocation error occurs during the evaluation of any +** of these routines, a default value is returned. The default value +** is either the integer 0, the floating point number 0.0, or a NULL +** pointer. Subsequent calls to [sqlite3_errcode()] will return +** [SQLITE_NOMEM]. +*/ +const void *sqlite3_column_blob(sqlite3_stmt*, int iCol); +int sqlite3_column_bytes(sqlite3_stmt*, int iCol); +int sqlite3_column_bytes16(sqlite3_stmt*, int iCol); +double sqlite3_column_double(sqlite3_stmt*, int iCol); +int sqlite3_column_int(sqlite3_stmt*, int iCol); +sqlite3_int64 sqlite3_column_int64(sqlite3_stmt*, int iCol); +const unsigned char *sqlite3_column_text(sqlite3_stmt*, int iCol); +const void *sqlite3_column_text16(sqlite3_stmt*, int iCol); +int sqlite3_column_type(sqlite3_stmt*, int iCol); +sqlite3_value *sqlite3_column_value(sqlite3_stmt*, int iCol); + +/* +** CAPI3REF: Destroy A Prepared Statement Object {F13300} +** +** The sqlite3_finalize() function is called to delete a +** [sqlite3_stmt | compiled SQL statement]. If the statement was +** executed successfully, or not executed at all, then SQLITE_OK is returned. +** If execution of the statement failed then an +** [SQLITE_ERROR | error code] or [SQLITE_IOERR_READ | extended error code] +** is returned. +** +** This routine can be called at any point during the execution of the +** [sqlite3_stmt | virtual machine]. If the virtual machine has not +** completed execution when this routine is called, that is like +** encountering an error or an interrupt. (See [sqlite3_interrupt()].) +** Incomplete updates may be rolled back and transactions cancelled, +** depending on the circumstances, and the +** [SQLITE_ERROR | result code] returned will be [SQLITE_ABORT]. +*/ +int sqlite3_finalize(sqlite3_stmt *pStmt); + +/* +** CAPI3REF: Reset A Prepared Statement Object {F13330} +** +** The sqlite3_reset() function is called to reset a +** [sqlite3_stmt | compiled SQL statement] object. +** back to its initial state, ready to be re-executed. +** Any SQL statement variables that had values bound to them using +** the [sqlite3_bind_blob | sqlite3_bind_*() API] retain their values. +** Use [sqlite3_clear_bindings()] to reset the bindings. +*/ +int sqlite3_reset(sqlite3_stmt *pStmt); + +/* +** CAPI3REF: Create Or Redefine SQL Functions {F16100} +** +** The following two functions are used to add SQL functions or aggregates +** or to redefine the behavior of existing SQL functions or aggregates. The +** difference only between the two is that the second parameter, the +** name of the (scalar) function or aggregate, is encoded in UTF-8 for +** sqlite3_create_function() and UTF-16 for sqlite3_create_function16(). +** +** The first argument is the [sqlite3 | database handle] that holds the +** SQL function or aggregate is to be added or redefined. If a single +** program uses more than one database handle internally, then SQL +** functions or aggregates must be added individually to each database +** handle with which they will be used. +** +** The second parameter is the name of the SQL function to be created +** or redefined. +** The length of the name is limited to 255 bytes, exclusive of the +** zero-terminator. Note that the name length limit is in bytes, not +** characters. Any attempt to create a function with a longer name +** will result in an SQLITE_ERROR error. +** +** The third parameter is the number of arguments that the SQL function or +** aggregate takes. If this parameter is negative, then the SQL function or +** aggregate may take any number of arguments. +** +** The fourth parameter, eTextRep, specifies what +** [SQLITE_UTF8 | text encoding] this SQL function prefers for +** its parameters. Any SQL function implementation should be able to work +** work with UTF-8, UTF-16le, or UTF-16be. But some implementations may be +** more efficient with one encoding than another. It is allowed to +** invoke sqlite3_create_function() or sqlite3_create_function16() multiple +** times with the same function but with different values of eTextRep. +** When multiple implementations of the same function are available, SQLite +** will pick the one that involves the least amount of data conversion. +** If there is only a single implementation which does not care what +** text encoding is used, then the fourth argument should be +** [SQLITE_ANY]. +** +** The fifth parameter is an arbitrary pointer. The implementation +** of the function can gain access to this pointer using +** [sqlite3_user_data()]. +** +** The seventh, eighth and ninth parameters, xFunc, xStep and xFinal, are +** pointers to C-language functions that implement the SQL +** function or aggregate. A scalar SQL function requires an implementation of +** the xFunc callback only, NULL pointers should be passed as the xStep +** and xFinal parameters. An aggregate SQL function requires an implementation +** of xStep and xFinal and NULL should be passed for xFunc. To delete an +** existing SQL function or aggregate, pass NULL for all three function +** callback. +** +** It is permitted to register multiple implementations of the same +** functions with the same name but with either differing numbers of +** arguments or differing perferred text encodings. SQLite will use +** the implementation most closely matches the way in which the +** SQL function is used. +*/ +int sqlite3_create_function( + sqlite3 *, + const char *zFunctionName, + int nArg, + int eTextRep, + void*, + void (*xFunc)(sqlite3_context*,int,sqlite3_value**), + void (*xStep)(sqlite3_context*,int,sqlite3_value**), + void (*xFinal)(sqlite3_context*) +); +int sqlite3_create_function16( + sqlite3*, + const void *zFunctionName, + int nArg, + int eTextRep, + void*, + void (*xFunc)(sqlite3_context*,int,sqlite3_value**), + void (*xStep)(sqlite3_context*,int,sqlite3_value**), + void (*xFinal)(sqlite3_context*) +); + +/* +** CAPI3REF: Text Encodings {F10267} +** +** These constant define integer codes that represent the various +** text encodings supported by SQLite. +*/ +#define SQLITE_UTF8 1 +#define SQLITE_UTF16LE 2 +#define SQLITE_UTF16BE 3 +#define SQLITE_UTF16 4 /* Use native byte order */ +#define SQLITE_ANY 5 /* sqlite3_create_function only */ +#define SQLITE_UTF16_ALIGNED 8 /* sqlite3_create_collation only */ + +/* +** CAPI3REF: Obsolete Functions +** +** These functions are all now obsolete. In order to maintain +** backwards compatibility with older code, we continue to support +** these functions. However, new development projects should avoid +** the use of these functions. To help encourage people to avoid +** using these functions, we are not going to tell you want they do. +*/ +int sqlite3_aggregate_count(sqlite3_context*); +int sqlite3_expired(sqlite3_stmt*); +int sqlite3_transfer_bindings(sqlite3_stmt*, sqlite3_stmt*); +int sqlite3_global_recover(void); +void sqlite3_thread_cleanup(void); +int sqlite3_memory_alarm(void(*)(void*,sqlite3_int64,int),void*,sqlite3_int64); + +/* +** CAPI3REF: Obtaining SQL Function Parameter Values {F15100} +** +** The C-language implementation of SQL functions and aggregates uses +** this set of interface routines to access the parameter values on +** the function or aggregate. +** +** The xFunc (for scalar functions) or xStep (for aggregates) parameters +** to [sqlite3_create_function()] and [sqlite3_create_function16()] +** define callbacks that implement the SQL functions and aggregates. +** The 4th parameter to these callbacks is an array of pointers to +** [sqlite3_value] objects. There is one [sqlite3_value] object for +** each parameter to the SQL function. These routines are used to +** extract values from the [sqlite3_value] objects. +** +** These routines work just like the corresponding +** [sqlite3_column_blob | sqlite3_column_* routines] except that +** these routines take a single [sqlite3_value*] pointer instead +** of an [sqlite3_stmt*] pointer and an integer column number. +** +** The sqlite3_value_text16() interface extracts a UTF16 string +** in the native byte-order of the host machine. The +** sqlite3_value_text16be() and sqlite3_value_text16le() interfaces +** extract UTF16 strings as big-endian and little-endian respectively. +** +** The sqlite3_value_numeric_type() interface attempts to apply +** numeric affinity to the value. This means that an attempt is +** made to convert the value to an integer or floating point. If +** such a conversion is possible without loss of information (in other +** words if the value is a string that looks like a number) +** then the conversion is done. Otherwise no conversion occurs. The +** [SQLITE_INTEGER | datatype] after conversion is returned. +** +** Please pay particular attention to the fact that the pointer that +** is returned from [sqlite3_value_blob()], [sqlite3_value_text()], or +** [sqlite3_value_text16()] can be invalidated by a subsequent call to +** [sqlite3_value_bytes()], [sqlite3_value_bytes16()], [sqlite3_value_text()], +** or [sqlite3_value_text16()]. +** +** These routines must be called from the same thread as +** the SQL function that supplied the sqlite3_value* parameters. +** Or, if the sqlite3_value* argument comes from the [sqlite3_column_value()] +** interface, then these routines should be called from the same thread +** that ran [sqlite3_column_value()]. +** +*/ +const void *sqlite3_value_blob(sqlite3_value*); +int sqlite3_value_bytes(sqlite3_value*); +int sqlite3_value_bytes16(sqlite3_value*); +double sqlite3_value_double(sqlite3_value*); +int sqlite3_value_int(sqlite3_value*); +sqlite3_int64 sqlite3_value_int64(sqlite3_value*); +const unsigned char *sqlite3_value_text(sqlite3_value*); +const void *sqlite3_value_text16(sqlite3_value*); +const void *sqlite3_value_text16le(sqlite3_value*); +const void *sqlite3_value_text16be(sqlite3_value*); +int sqlite3_value_type(sqlite3_value*); +int sqlite3_value_numeric_type(sqlite3_value*); + +/* +** CAPI3REF: Obtain Aggregate Function Context {F16210} +** +** The implementation of aggregate SQL functions use this routine to allocate +** a structure for storing their state. +** {F16211} The first time the sqlite3_aggregate_context() routine is +** is called for a particular aggregate, SQLite allocates nBytes of memory +** zeros that memory, and returns a pointer to it. +** {F16212} On second and subsequent calls to sqlite3_aggregate_context() +** for the same aggregate function index, the same buffer is returned. {END} +** The implementation +** of the aggregate can use the returned buffer to accumulate data. +** +** {F16213} SQLite automatically frees the allocated buffer when the aggregate +** query concludes. {END} +** +** The first parameter should be a copy of the +** [sqlite3_context | SQL function context] that is the first +** parameter to the callback routine that implements the aggregate +** function. +** +** This routine must be called from the same thread in which +** the aggregate SQL function is running. +*/ +void *sqlite3_aggregate_context(sqlite3_context*, int nBytes); + +/* +** CAPI3REF: User Data For Functions {F16240} +** +** {F16241} The sqlite3_user_data() interface returns a copy of +** the pointer that was the pUserData parameter (the 5th parameter) +** of the the [sqlite3_create_function()] +** and [sqlite3_create_function16()] routines that originally +** registered the application defined function. {END} +** +** {U16243} This routine must be called from the same thread in which +** the application-defined function is running. +*/ +void *sqlite3_user_data(sqlite3_context*); + +/* +** CAPI3REF: Function Auxiliary Data {F16270} +** +** The following two functions may be used by scalar SQL functions to +** associate meta-data with argument values. If the same value is passed to +** multiple invocations of the same SQL function during query execution, under +** some circumstances the associated meta-data may be preserved. This may +** be used, for example, to add a regular-expression matching scalar +** function. The compiled version of the regular expression is stored as +** meta-data associated with the SQL value passed as the regular expression +** pattern. The compiled regular expression can be reused on multiple +** invocations of the same function so that the original pattern string +** does not need to be recompiled on each invocation. +** +** {F16271} +** The sqlite3_get_auxdata() interface returns a pointer to the meta-data +** associated by the sqlite3_set_auxdata() function with the Nth argument +** value to the application-defined function. +** {F16272} If no meta-data has been ever been set for the Nth +** argument of the function, or if the cooresponding function parameter +** has changed since the meta-data was set, then sqlite3_get_auxdata() +** returns a NULL pointer. +** +** {F16275} The sqlite3_set_auxdata() interface saves the meta-data +** pointed to by its 3rd parameter as the meta-data for the N-th +** argument of the application-defined function. {END} Subsequent +** calls to sqlite3_get_auxdata() might return this data, if it has +** not been destroyed. +** {F16277} If it is not NULL, SQLite will invoke the destructor +** function given by the 4th parameter to sqlite3_set_auxdata() on +** the meta-data when the corresponding function parameter changes +** or when the SQL statement completes, whichever comes first. {END} +** +** In practice, meta-data is preserved between function calls for +** expressions that are constant at compile time. This includes literal +** values and SQL variables. +** +** These routines must be called from the same thread in which +** the SQL function is running. +*/ +void *sqlite3_get_auxdata(sqlite3_context*, int N); +void sqlite3_set_auxdata(sqlite3_context*, int N, void*, void (*)(void*)); + + +/* +** CAPI3REF: Constants Defining Special Destructor Behavior {F10280} +** +** These are special value for the destructor that is passed in as the +** final argument to routines like [sqlite3_result_blob()]. If the destructor +** argument is SQLITE_STATIC, it means that the content pointer is constant +** and will never change. It does not need to be destroyed. The +** SQLITE_TRANSIENT value means that the content will likely change in +** the near future and that SQLite should make its own private copy of +** the content before returning. +** +** The typedef is necessary to work around problems in certain +** C++ compilers. See ticket #2191. +*/ +typedef void (*sqlite3_destructor_type)(void*); +#define SQLITE_STATIC ((sqlite3_destructor_type)0) +#define SQLITE_TRANSIENT ((sqlite3_destructor_type)-1) + +/* +** CAPI3REF: Setting The Result Of An SQL Function {F16400} +** +** These routines are used by the xFunc or xFinal callbacks that +** implement SQL functions and aggregates. See +** [sqlite3_create_function()] and [sqlite3_create_function16()] +** for additional information. +** +** These functions work very much like the +** [sqlite3_bind_blob | sqlite3_bind_*] family of functions used +** to bind values to host parameters in prepared statements. +** Refer to the +** [sqlite3_bind_blob | sqlite3_bind_* documentation] for +** additional information. +** +** {F16402} The sqlite3_result_blob() interface sets the result from +** an application defined function to be the BLOB whose content is pointed +** to by the second parameter and which is N bytes long where N is the +** third parameter. +** {F16403} The sqlite3_result_zeroblob() inerfaces set the result of +** the application defined function to be a BLOB containing all zero +** bytes and N bytes in size, where N is the value of the 2nd parameter. +** +** {F16407} The sqlite3_result_double() interface sets the result from +** an application defined function to be a floating point value specified +** by its 2nd argument. +** +** {F16409} The sqlite3_result_error() and sqlite3_result_error16() functions +** cause the implemented SQL function to throw an exception. +** {F16411} SQLite uses the string pointed to by the +** 2nd parameter of sqlite3_result_error() or sqlite3_result_error16() +** as the text of an error message. {F16412} SQLite interprets the error +** message string from sqlite3_result_error() as UTF8. {F16413} SQLite +** interprets the string from sqlite3_result_error16() as UTF16 in native +** byte order. {F16414} If the third parameter to sqlite3_result_error() +** or sqlite3_result_error16() is negative then SQLite takes as the error +** message all text up through the first zero character. +** {F16415} If the third parameter to sqlite3_result_error() or +** sqlite3_result_error16() is non-negative then SQLite takes that many +** bytes (not characters) from the 2nd parameter as the error message. +** {F16417} The sqlite3_result_error() and sqlite3_result_error16() +** routines make a copy private copy of the error message text before +** they return. {END} Hence, the calling function can deallocate or +** modify the text after they return without harm. +** +** {F16421} The sqlite3_result_toobig() interface causes SQLite +** to throw an error indicating that a string or BLOB is to long +** to represent. {F16422} The sqlite3_result_nomem() interface +** causes SQLite to throw an exception indicating that the a +** memory allocation failed. +** +** {F16431} The sqlite3_result_int() interface sets the return value +** of the application-defined function to be the 32-bit signed integer +** value given in the 2nd argument. +** {F16432} The sqlite3_result_int64() interface sets the return value +** of the application-defined function to be the 64-bit signed integer +** value given in the 2nd argument. +** +** {F16437} The sqlite3_result_null() interface sets the return value +** of the application-defined function to be NULL. +** +** {F16441} The sqlite3_result_text(), sqlite3_result_text16(), +** sqlite3_result_text16le(), and sqlite3_result_text16be() interfaces +** set the return value of the application-defined function to be +** a text string which is represented as UTF-8, UTF-16 native byte order, +** UTF-16 little endian, or UTF-16 big endian, respectively. +** {F16442} SQLite takes the text result from the application from +** the 2nd parameter of the sqlite3_result_text* interfaces. +** {F16444} If the 3rd parameter to the sqlite3_result_text* interfaces +** is negative, then SQLite takes result text from the 2nd parameter +** through the first zero character. +** {F16447} If the 3rd parameter to the sqlite3_result_text* interfaces +** is non-negative, then as many bytes (not characters) of the text +** pointed to by the 2nd parameter are taken as the application-defined +** function result. +** {F16451} If the 4th parameter to the sqlite3_result_text* interfaces +** or sqlite3_result_blob is a non-NULL pointer, then SQLite calls that +** function as the destructor on the text or blob result when it has +** finished using that result. +** {F16453} If the 4th parameter to the sqlite3_result_text* interfaces +** or sqlite3_result_blob is the special constant SQLITE_STATIC, then +** SQLite assumes that the text or blob result is constant space and +** does not copy the space or call a destructor when it has +** finished using that result. +** {F16454} If the 4th parameter to the sqlite3_result_text* interfaces +** or sqlite3_result_blob is the special constant SQLITE_TRANSIENT +** then SQLite makes a copy of the result into space obtained from +** from [sqlite3_malloc()] before it returns. +** +** {F16461} The sqlite3_result_value() interface sets the result of +** the application-defined function to be a copy the [sqlite3_value] +** object specified by the 2nd parameter. {F16463} The +** sqlite3_result_value() interface makes a copy of the [sqlite3_value] +** so that [sqlite3_value] specified in the parameter may change or +** be deallocated after sqlite3_result_value() returns without harm. +** +** {U16491} These routines are called from within the different thread +** than the one containing the application-defined function that recieved +** the [sqlite3_context] pointer, the results are undefined. +*/ +void sqlite3_result_blob(sqlite3_context*, const void*, int, void(*)(void*)); +void sqlite3_result_double(sqlite3_context*, double); +void sqlite3_result_error(sqlite3_context*, const char*, int); +void sqlite3_result_error16(sqlite3_context*, const void*, int); +void sqlite3_result_error_toobig(sqlite3_context*); +void sqlite3_result_error_nomem(sqlite3_context*); +void sqlite3_result_int(sqlite3_context*, int); +void sqlite3_result_int64(sqlite3_context*, sqlite3_int64); +void sqlite3_result_null(sqlite3_context*); +void sqlite3_result_text(sqlite3_context*, const char*, int, void(*)(void*)); +void sqlite3_result_text16(sqlite3_context*, const void*, int, void(*)(void*)); +void sqlite3_result_text16le(sqlite3_context*, const void*, int,void(*)(void*)); +void sqlite3_result_text16be(sqlite3_context*, const void*, int,void(*)(void*)); +void sqlite3_result_value(sqlite3_context*, sqlite3_value*); +void sqlite3_result_zeroblob(sqlite3_context*, int n); + +/* +** CAPI3REF: Define New Collating Sequences {F16600} +** +** {F16601} +** These functions are used to add new collation sequences to the +** [sqlite3*] handle specified as the first argument. +** +** {F16602} +** The name of the new collation sequence is specified as a UTF-8 string +** for sqlite3_create_collation() and sqlite3_create_collation_v2() +** and a UTF-16 string for sqlite3_create_collation16(). {F16603} In all cases +** the name is passed as the second function argument. +** +** {F16604} +** The third argument may be one of the constants [SQLITE_UTF8], +** [SQLITE_UTF16LE] or [SQLITE_UTF16BE], indicating that the user-supplied +** routine expects to be passed pointers to strings encoded using UTF-8, +** UTF-16 little-endian or UTF-16 big-endian respectively. {F16605} The +** third argument might also be [SQLITE_UTF16_ALIGNED] to indicate that +** the routine expects pointers to 16-bit word aligned strings +** of UTF16 in the native byte order of the host computer. +** +** {F16607} +** A pointer to the user supplied routine must be passed as the fifth +** argument. {F16609} If it is NULL, this is the same as deleting the collation +** sequence (so that SQLite cannot call it anymore). +** {F16611} Each time the application +** supplied function is invoked, it is passed a copy of the void* passed as +** the fourth argument to sqlite3_create_collation() or +** sqlite3_create_collation16() as its first parameter. +** +** {F16612} +** The remaining arguments to the application-supplied routine are two strings, +** each represented by a [length, data] pair and encoded in the encoding +** that was passed as the third argument when the collation sequence was +** registered. {END} The application defined collation routine should +** return negative, zero or positive if +** the first string is less than, equal to, or greater than the second +** string. i.e. (STRING1 - STRING2). +** +** {F16615} +** The sqlite3_create_collation_v2() works like sqlite3_create_collation() +** excapt that it takes an extra argument which is a destructor for +** the collation. {F16617} The destructor is called when the collation is +** destroyed and is passed a copy of the fourth parameter void* pointer +** of the sqlite3_create_collation_v2(). +** {F16618} Collations are destroyed when +** they are overridden by later calls to the collation creation functions +** or when the [sqlite3*] database handle is closed using [sqlite3_close()]. +*/ +int sqlite3_create_collation( + sqlite3*, + const char *zName, + int eTextRep, + void*, + int(*xCompare)(void*,int,const void*,int,const void*) +); +int sqlite3_create_collation_v2( + sqlite3*, + const char *zName, + int eTextRep, + void*, + int(*xCompare)(void*,int,const void*,int,const void*), + void(*xDestroy)(void*) +); +int sqlite3_create_collation16( + sqlite3*, + const char *zName, + int eTextRep, + void*, + int(*xCompare)(void*,int,const void*,int,const void*) +); + +/* +** CAPI3REF: Collation Needed Callbacks {F16700} +** +** {F16701} +** To avoid having to register all collation sequences before a database +** can be used, a single callback function may be registered with the +** database handle to be called whenever an undefined collation sequence is +** required. +** +** {F16702} +** If the function is registered using the sqlite3_collation_needed() API, +** then it is passed the names of undefined collation sequences as strings +** encoded in UTF-8. {F16703} If sqlite3_collation_needed16() is used, the names +** are passed as UTF-16 in machine native byte order. {F16704} A call to either +** function replaces any existing callback. +** +** {F16705} When the callback is invoked, the first argument passed is a copy +** of the second argument to sqlite3_collation_needed() or +** sqlite3_collation_needed16(). {F16706} The second argument is the database +** handle. {F16707} The third argument is one of [SQLITE_UTF8], +** [SQLITE_UTF16BE], or [SQLITE_UTF16LE], indicating the most +** desirable form of the collation sequence function required. +** {F16708} The fourth parameter is the name of the +** required collation sequence. {END} +** +** The callback function should register the desired collation using +** [sqlite3_create_collation()], [sqlite3_create_collation16()], or +** [sqlite3_create_collation_v2()]. +*/ +int sqlite3_collation_needed( + sqlite3*, + void*, + void(*)(void*,sqlite3*,int eTextRep,const char*) +); +int sqlite3_collation_needed16( + sqlite3*, + void*, + void(*)(void*,sqlite3*,int eTextRep,const void*) +); + +/* +** Specify the key for an encrypted database. This routine should be +** called right after sqlite3_open(). +** +** The code to implement this API is not available in the public release +** of SQLite. +*/ +int sqlite3_key( + sqlite3 *db, /* Database to be rekeyed */ + const void *pKey, int nKey /* The key */ +); + +/* +** Change the key on an open database. If the current database is not +** encrypted, this routine will encrypt it. If pNew==0 or nNew==0, the +** database is decrypted. +** +** The code to implement this API is not available in the public release +** of SQLite. +*/ +int sqlite3_rekey( + sqlite3 *db, /* Database to be rekeyed */ + const void *pKey, int nKey /* The new key */ +); + +/* +** CAPI3REF: Suspend Execution For A Short Time {F10530} +** +** {F10531} The sqlite3_sleep() function +** causes the current thread to suspend execution +** for at least a number of milliseconds specified in its parameter. +** +** {F10532} If the operating system does not support sleep requests with +** millisecond time resolution, then the time will be rounded up to +** the nearest second. {F10533} The number of milliseconds of sleep actually +** requested from the operating system is returned. +** +** {F10534} SQLite implements this interface by calling the xSleep() +** method of the default [sqlite3_vfs] object. {END} +*/ +int sqlite3_sleep(int); + +/* +** CAPI3REF: Name Of The Folder Holding Temporary Files {F10310} +** +** If this global variable is made to point to a string which is +** the name of a folder (a.ka. directory), then all temporary files +** created by SQLite will be placed in that directory. If this variable +** is NULL pointer, then SQLite does a search for an appropriate temporary +** file directory. +** +** It is not safe to modify this variable once a database connection +** has been opened. It is intended that this variable be set once +** as part of process initialization and before any SQLite interface +** routines have been call and remain unchanged thereafter. +*/ +SQLITE_EXTERN char *sqlite3_temp_directory; + +/* +** CAPI3REF: Test To See If The Database Is In Auto-Commit Mode {F12930} +** +** {F12931} The sqlite3_get_autocommit() interfaces returns non-zero or +** zero if the given database connection is or is not in autocommit mode, +** respectively. {F12932} Autocommit mode is on +** by default. {F12933} Autocommit mode is disabled by a BEGIN statement. +** {F12934} Autocommit mode is reenabled by a COMMIT or ROLLBACK. {END} +** +** If certain kinds of errors occur on a statement within a multi-statement +** transactions (errors including [SQLITE_FULL], [SQLITE_IOERR], +** [SQLITE_NOMEM], [SQLITE_BUSY], and [SQLITE_INTERRUPT]) then the +** transaction might be rolled back automatically. {F12935} The only way to +** find out if SQLite automatically rolled back the transaction after +** an error is to use this function. {END} +** +** {U12936} If another thread changes the autocommit status of the database +** connection while this routine is running, then the return value +** is undefined. {END} +*/ +int sqlite3_get_autocommit(sqlite3*); + +/* +** CAPI3REF: Find The Database Handle Of A Prepared Statement {F13120} +** +** {F13121} The sqlite3_db_handle interface +** returns the [sqlite3*] database handle to which a +** [sqlite3_stmt | prepared statement] belongs. +** {F13122} the database handle returned by sqlite3_db_handle +** is the same database handle that was +** the first argument to the [sqlite3_prepare_v2()] or its variants +** that was used to create the statement in the first place. +*/ +sqlite3 *sqlite3_db_handle(sqlite3_stmt*); + + +/* +** CAPI3REF: Commit And Rollback Notification Callbacks {F12950} +** +** {F12951} The sqlite3_commit_hook() interface registers a callback +** function to be invoked whenever a transaction is committed. +** {F12952} Any callback set by a previous call to sqlite3_commit_hook() +** for the same database connection is overridden. +** {F12953} The sqlite3_rollback_hook() interface registers a callback +** function to be invoked whenever a transaction is committed. +** {F12954} Any callback set by a previous call to sqlite3_commit_hook() +** for the same database connection is overridden. +** {F12956} The pArg argument is passed through +** to the callback. {F12957} If the callback on a commit hook function +** returns non-zero, then the commit is converted into a rollback. +** +** {F12958} If another function was previously registered, its +** pArg value is returned. Otherwise NULL is returned. +** +** {F12959} Registering a NULL function disables the callback. +** +** {F12961} For the purposes of this API, a transaction is said to have been +** rolled back if an explicit "ROLLBACK" statement is executed, or +** an error or constraint causes an implicit rollback to occur. +** {F12962} The rollback callback is not invoked if a transaction is +** automatically rolled back because the database connection is closed. +** {F12964} The rollback callback is not invoked if a transaction is +** rolled back because a commit callback returned non-zero. +** Check on this {END} +** +** These are experimental interfaces and are subject to change. +*/ +void *sqlite3_commit_hook(sqlite3*, int(*)(void*), void*); +void *sqlite3_rollback_hook(sqlite3*, void(*)(void *), void*); + +/* +** CAPI3REF: Data Change Notification Callbacks {F12970} +** +** {F12971} The sqlite3_update_hook() interface +** registers a callback function with the database connection identified by the +** first argument to be invoked whenever a row is updated, inserted or deleted. +** {F12972} Any callback set by a previous call to this function for the same +** database connection is overridden. +** +** {F12974} The second argument is a pointer to the function to invoke when a +** row is updated, inserted or deleted. +** {F12976} The first argument to the callback is +** a copy of the third argument to sqlite3_update_hook(). +** {F12977} The second callback +** argument is one of [SQLITE_INSERT], [SQLITE_DELETE] or [SQLITE_UPDATE], +** depending on the operation that caused the callback to be invoked. +** {F12978} The third and +** fourth arguments to the callback contain pointers to the database and +** table name containing the affected row. +** {F12979} The final callback parameter is +** the rowid of the row. +** {F12981} In the case of an update, this is the rowid after +** the update takes place. +** +** {F12983} The update hook is not invoked when internal system tables are +** modified (i.e. sqlite_master and sqlite_sequence). +** +** {F12984} If another function was previously registered, its pArg value +** is returned. {F12985} Otherwise NULL is returned. +*/ +void *sqlite3_update_hook( + sqlite3*, + void(*)(void *,int ,char const *,char const *,sqlite3_int64), + void* +); + +/* +** CAPI3REF: Enable Or Disable Shared Pager Cache {F10330} +** +** {F10331} +** This routine enables or disables the sharing of the database cache +** and schema data structures between connections to the same database. +** {F10332} +** Sharing is enabled if the argument is true and disabled if the argument +** is false. +** +** {F10333} Cache sharing is enabled and disabled +** for an entire process. {END} This is a change as of SQLite version 3.5.0. +** In prior versions of SQLite, sharing was +** enabled or disabled for each thread separately. +** +** {F10334} +** The cache sharing mode set by this interface effects all subsequent +** calls to [sqlite3_open()], [sqlite3_open_v2()], and [sqlite3_open16()]. +** {F10335} Existing database connections continue use the sharing mode +** that was in effect at the time they were opened. {END} +** +** Virtual tables cannot be used with a shared cache. {F10336} When shared +** cache is enabled, the [sqlite3_create_module()] API used to register +** virtual tables will always return an error. {END} +** +** {F10337} This routine returns [SQLITE_OK] if shared cache was +** enabled or disabled successfully. {F10338} An [SQLITE_ERROR | error code] +** is returned otherwise. {END} +** +** {F10339} Shared cache is disabled by default. {END} But this might change in +** future releases of SQLite. Applications that care about shared +** cache setting should set it explicitly. +*/ +int sqlite3_enable_shared_cache(int); + +/* +** CAPI3REF: Attempt To Free Heap Memory {F17340} +** +** {F17341} The sqlite3_release_memory() interface attempts to +** free N bytes of heap memory by deallocating non-essential memory +** allocations held by the database labrary. {END} Memory used +** to cache database pages to improve performance is an example of +** non-essential memory. {F16342} sqlite3_release_memory() returns +** the number of bytes actually freed, which might be more or less +** than the amount requested. +*/ +int sqlite3_release_memory(int); + +/* +** CAPI3REF: Impose A Limit On Heap Size {F17350} +** +** {F16351} The sqlite3_soft_heap_limit() interface +** places a "soft" limit on the amount of heap memory that may be allocated +** by SQLite. {F16352} If an internal allocation is requested +** that would exceed the soft heap limit, [sqlite3_release_memory()] is +** invoked one or more times to free up some space before the allocation +** is made. {END} +** +** {F16353} The limit is called "soft", because if +** [sqlite3_release_memory()] cannot +** free sufficient memory to prevent the limit from being exceeded, +** the memory is allocated anyway and the current operation proceeds. +** +** {F16354} +** A negative or zero value for N means that there is no soft heap limit and +** [sqlite3_release_memory()] will only be called when memory is exhausted. +** {F16355} The default value for the soft heap limit is zero. +** +** SQLite makes a best effort to honor the soft heap limit. +** {F16356} But if the soft heap limit cannot honored, execution will +** continue without error or notification. {END} This is why the limit is +** called a "soft" limit. It is advisory only. +** +** Prior to SQLite version 3.5.0, this routine only constrained the memory +** allocated by a single thread - the same thread in which this routine +** runs. Beginning with SQLite version 3.5.0, the soft heap limit is +** applied to all threads. {F16357} The value specified for the soft heap limit +** is an upper bound on the total memory allocation for all threads. {END} In +** version 3.5.0 there is no mechanism for limiting the heap usage for +** individual threads. +*/ +void sqlite3_soft_heap_limit(int); + +/* +** CAPI3REF: Extract Metadata About A Column Of A Table {F12850} +** +** This routine +** returns meta-data about a specific column of a specific database +** table accessible using the connection handle passed as the first function +** argument. +** +** The column is identified by the second, third and fourth parameters to +** this function. The second parameter is either the name of the database +** (i.e. "main", "temp" or an attached database) containing the specified +** table or NULL. If it is NULL, then all attached databases are searched +** for the table using the same algorithm as the database engine uses to +** resolve unqualified table references. +** +** The third and fourth parameters to this function are the table and column +** name of the desired column, respectively. Neither of these parameters +** may be NULL. +** +** Meta information is returned by writing to the memory locations passed as +** the 5th and subsequent parameters to this function. Any of these +** arguments may be NULL, in which case the corresponding element of meta +** information is ommitted. +** +**
+** Parameter     Output Type      Description
+** -----------------------------------
+**
+**   5th         const char*      Data type
+**   6th         const char*      Name of the default collation sequence 
+**   7th         int              True if the column has a NOT NULL constraint
+**   8th         int              True if the column is part of the PRIMARY KEY
+**   9th         int              True if the column is AUTOINCREMENT
+** 
+** +** +** The memory pointed to by the character pointers returned for the +** declaration type and collation sequence is valid only until the next +** call to any sqlite API function. +** +** If the specified table is actually a view, then an error is returned. +** +** If the specified column is "rowid", "oid" or "_rowid_" and an +** INTEGER PRIMARY KEY column has been explicitly declared, then the output +** parameters are set for the explicitly declared column. If there is no +** explicitly declared IPK column, then the output parameters are set as +** follows: +** +**
+**     data type: "INTEGER"
+**     collation sequence: "BINARY"
+**     not null: 0
+**     primary key: 1
+**     auto increment: 0
+** 
+** +** This function may load one or more schemas from database files. If an +** error occurs during this process, or if the requested table or column +** cannot be found, an SQLITE error code is returned and an error message +** left in the database handle (to be retrieved using sqlite3_errmsg()). +** +** This API is only available if the library was compiled with the +** SQLITE_ENABLE_COLUMN_METADATA preprocessor symbol defined. +*/ +int sqlite3_table_column_metadata( + sqlite3 *db, /* Connection handle */ + const char *zDbName, /* Database name or NULL */ + const char *zTableName, /* Table name */ + const char *zColumnName, /* Column name */ + char const **pzDataType, /* OUTPUT: Declared data type */ + char const **pzCollSeq, /* OUTPUT: Collation sequence name */ + int *pNotNull, /* OUTPUT: True if NOT NULL constraint exists */ + int *pPrimaryKey, /* OUTPUT: True if column part of PK */ + int *pAutoinc /* OUTPUT: True if column is auto-increment */ +); + +/* +** CAPI3REF: Load An Extension {F12600} +** +** {F12601} The sqlite3_load_extension() interface +** attempts to load an SQLite extension library contained in the file +** zFile. {F12602} The entry point is zProc. {F12603} zProc may be 0 +** in which case the name of the entry point defaults +** to "sqlite3_extension_init". +** +** {F12604} The sqlite3_load_extension() interface shall +** return [SQLITE_OK] on success and [SQLITE_ERROR] if something goes wrong. +** +** {F12605} +** If an error occurs and pzErrMsg is not 0, then the +** sqlite3_load_extension() interface shall attempt to fill *pzErrMsg with +** error message text stored in memory obtained from [sqlite3_malloc()]. +** {END} The calling function should free this memory +** by calling [sqlite3_free()]. +** +** {F12606} +** Extension loading must be enabled using [sqlite3_enable_load_extension()] +** prior to calling this API or an error will be returned. +*/ +int sqlite3_load_extension( + sqlite3 *db, /* Load the extension into this database connection */ + const char *zFile, /* Name of the shared library containing extension */ + const char *zProc, /* Entry point. Derived from zFile if 0 */ + char **pzErrMsg /* Put error message here if not 0 */ +); + +/* +** CAPI3REF: Enable Or Disable Extension Loading {F12620} +** +** So as not to open security holes in older applications that are +** unprepared to deal with extension loading, and as a means of disabling +** extension loading while evaluating user-entered SQL, the following +** API is provided to turn the [sqlite3_load_extension()] mechanism on and +** off. {F12622} It is off by default. {END} See ticket #1863. +** +** {F12621} Call the sqlite3_enable_load_extension() routine +** with onoff==1 to turn extension loading on +** and call it with onoff==0 to turn it back off again. {END} +*/ +int sqlite3_enable_load_extension(sqlite3 *db, int onoff); + +/* +** CAPI3REF: Make Arrangements To Automatically Load An Extension {F12640} +** +** {F12641} This function +** registers an extension entry point that is automatically invoked +** whenever a new database connection is opened using +** [sqlite3_open()], [sqlite3_open16()], or [sqlite3_open_v2()]. {END} +** +** This API can be invoked at program startup in order to register +** one or more statically linked extensions that will be available +** to all new database connections. +** +** {F12642} Duplicate extensions are detected so calling this routine multiple +** times with the same extension is harmless. +** +** {F12643} This routine stores a pointer to the extension in an array +** that is obtained from sqlite_malloc(). {END} If you run a memory leak +** checker on your program and it reports a leak because of this +** array, then invoke [sqlite3_reset_auto_extension()] prior +** to shutdown to free the memory. +** +** {F12644} Automatic extensions apply across all threads. {END} +** +** This interface is experimental and is subject to change or +** removal in future releases of SQLite. +*/ +int sqlite3_auto_extension(void *xEntryPoint); + + +/* +** CAPI3REF: Reset Automatic Extension Loading {F12660} +** +** {F12661} This function disables all previously registered +** automatic extensions. {END} This +** routine undoes the effect of all prior [sqlite3_automatic_extension()] +** calls. +** +** {F12662} This call disabled automatic extensions in all threads. {END} +** +** This interface is experimental and is subject to change or +** removal in future releases of SQLite. +*/ +void sqlite3_reset_auto_extension(void); + + +/* +****** EXPERIMENTAL - subject to change without notice ************** +** +** The interface to the virtual-table mechanism is currently considered +** to be experimental. The interface might change in incompatible ways. +** If this is a problem for you, do not use the interface at this time. +** +** When the virtual-table mechanism stablizes, we will declare the +** interface fixed, support it indefinitely, and remove this comment. +*/ + +/* +** Structures used by the virtual table interface +*/ +typedef struct sqlite3_vtab sqlite3_vtab; +typedef struct sqlite3_index_info sqlite3_index_info; +typedef struct sqlite3_vtab_cursor sqlite3_vtab_cursor; +typedef struct sqlite3_module sqlite3_module; + +/* +** A module is a class of virtual tables. Each module is defined +** by an instance of the following structure. This structure consists +** mostly of methods for the module. +*/ +struct sqlite3_module { + int iVersion; + int (*xCreate)(sqlite3*, void *pAux, + int argc, const char *const*argv, + sqlite3_vtab **ppVTab, char**); + int (*xConnect)(sqlite3*, void *pAux, + int argc, const char *const*argv, + sqlite3_vtab **ppVTab, char**); + int (*xBestIndex)(sqlite3_vtab *pVTab, sqlite3_index_info*); + int (*xDisconnect)(sqlite3_vtab *pVTab); + int (*xDestroy)(sqlite3_vtab *pVTab); + int (*xOpen)(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor); + int (*xClose)(sqlite3_vtab_cursor*); + int (*xFilter)(sqlite3_vtab_cursor*, int idxNum, const char *idxStr, + int argc, sqlite3_value **argv); + int (*xNext)(sqlite3_vtab_cursor*); + int (*xEof)(sqlite3_vtab_cursor*); + int (*xColumn)(sqlite3_vtab_cursor*, sqlite3_context*, int); + int (*xRowid)(sqlite3_vtab_cursor*, sqlite3_int64 *pRowid); + int (*xUpdate)(sqlite3_vtab *, int, sqlite3_value **, sqlite3_int64 *); + int (*xBegin)(sqlite3_vtab *pVTab); + int (*xSync)(sqlite3_vtab *pVTab); + int (*xCommit)(sqlite3_vtab *pVTab); + int (*xRollback)(sqlite3_vtab *pVTab); + int (*xFindFunction)(sqlite3_vtab *pVtab, int nArg, const char *zName, + void (**pxFunc)(sqlite3_context*,int,sqlite3_value**), + void **ppArg); + + int (*xRename)(sqlite3_vtab *pVtab, const char *zNew); +}; + +/* +** The sqlite3_index_info structure and its substructures is used to +** pass information into and receive the reply from the xBestIndex +** method of an sqlite3_module. The fields under **Inputs** are the +** inputs to xBestIndex and are read-only. xBestIndex inserts its +** results into the **Outputs** fields. +** +** The aConstraint[] array records WHERE clause constraints of the +** form: +** +** column OP expr +** +** Where OP is =, <, <=, >, or >=. +** The particular operator is stored +** in aConstraint[].op. The index of the column is stored in +** aConstraint[].iColumn. aConstraint[].usable is TRUE if the +** expr on the right-hand side can be evaluated (and thus the constraint +** is usable) and false if it cannot. +** +** The optimizer automatically inverts terms of the form "expr OP column" +** and makes other simplifications to the WHERE clause in an attempt to +** get as many WHERE clause terms into the form shown above as possible. +** The aConstraint[] array only reports WHERE clause terms in the correct +** form that refer to the particular virtual table being queried. +** +** Information about the ORDER BY clause is stored in aOrderBy[]. +** Each term of aOrderBy records a column of the ORDER BY clause. +** +** The xBestIndex method must fill aConstraintUsage[] with information +** about what parameters to pass to xFilter. If argvIndex>0 then +** the right-hand side of the corresponding aConstraint[] is evaluated +** and becomes the argvIndex-th entry in argv. If aConstraintUsage[].omit +** is true, then the constraint is assumed to be fully handled by the +** virtual table and is not checked again by SQLite. +** +** The idxNum and idxPtr values are recorded and passed into xFilter. +** sqlite3_free() is used to free idxPtr if needToFreeIdxPtr is true. +** +** The orderByConsumed means that output from xFilter will occur in +** the correct order to satisfy the ORDER BY clause so that no separate +** sorting step is required. +** +** The estimatedCost value is an estimate of the cost of doing the +** particular lookup. A full scan of a table with N entries should have +** a cost of N. A binary search of a table of N entries should have a +** cost of approximately log(N). +*/ +struct sqlite3_index_info { + /* Inputs */ + int nConstraint; /* Number of entries in aConstraint */ + struct sqlite3_index_constraint { + int iColumn; /* Column on left-hand side of constraint */ + unsigned char op; /* Constraint operator */ + unsigned char usable; /* True if this constraint is usable */ + int iTermOffset; /* Used internally - xBestIndex should ignore */ + } *aConstraint; /* Table of WHERE clause constraints */ + int nOrderBy; /* Number of terms in the ORDER BY clause */ + struct sqlite3_index_orderby { + int iColumn; /* Column number */ + unsigned char desc; /* True for DESC. False for ASC. */ + } *aOrderBy; /* The ORDER BY clause */ + + /* Outputs */ + struct sqlite3_index_constraint_usage { + int argvIndex; /* if >0, constraint is part of argv to xFilter */ + unsigned char omit; /* Do not code a test for this constraint */ + } *aConstraintUsage; + int idxNum; /* Number used to identify the index */ + char *idxStr; /* String, possibly obtained from sqlite3_malloc */ + int needToFreeIdxStr; /* Free idxStr using sqlite3_free() if true */ + int orderByConsumed; /* True if output is already ordered */ + double estimatedCost; /* Estimated cost of using this index */ +}; +#define SQLITE_INDEX_CONSTRAINT_EQ 2 +#define SQLITE_INDEX_CONSTRAINT_GT 4 +#define SQLITE_INDEX_CONSTRAINT_LE 8 +#define SQLITE_INDEX_CONSTRAINT_LT 16 +#define SQLITE_INDEX_CONSTRAINT_GE 32 +#define SQLITE_INDEX_CONSTRAINT_MATCH 64 + +/* +** This routine is used to register a new module name with an SQLite +** connection. Module names must be registered before creating new +** virtual tables on the module, or before using preexisting virtual +** tables of the module. +*/ +int sqlite3_create_module( + sqlite3 *db, /* SQLite connection to register module with */ + const char *zName, /* Name of the module */ + const sqlite3_module *, /* Methods for the module */ + void * /* Client data for xCreate/xConnect */ +); + +/* +** This routine is identical to the sqlite3_create_module() method above, +** except that it allows a destructor function to be specified. It is +** even more experimental than the rest of the virtual tables API. +*/ +int sqlite3_create_module_v2( + sqlite3 *db, /* SQLite connection to register module with */ + const char *zName, /* Name of the module */ + const sqlite3_module *, /* Methods for the module */ + void *, /* Client data for xCreate/xConnect */ + void(*xDestroy)(void*) /* Module destructor function */ +); + +/* +** Every module implementation uses a subclass of the following structure +** to describe a particular instance of the module. Each subclass will +** be tailored to the specific needs of the module implementation. The +** purpose of this superclass is to define certain fields that are common +** to all module implementations. +** +** Virtual tables methods can set an error message by assigning a +** string obtained from sqlite3_mprintf() to zErrMsg. The method should +** take care that any prior string is freed by a call to sqlite3_free() +** prior to assigning a new string to zErrMsg. After the error message +** is delivered up to the client application, the string will be automatically +** freed by sqlite3_free() and the zErrMsg field will be zeroed. Note +** that sqlite3_mprintf() and sqlite3_free() are used on the zErrMsg field +** since virtual tables are commonly implemented in loadable extensions which +** do not have access to sqlite3MPrintf() or sqlite3Free(). +*/ +struct sqlite3_vtab { + const sqlite3_module *pModule; /* The module for this virtual table */ + int nRef; /* Used internally */ + char *zErrMsg; /* Error message from sqlite3_mprintf() */ + /* Virtual table implementations will typically add additional fields */ +}; + +/* Every module implementation uses a subclass of the following structure +** to describe cursors that point into the virtual table and are used +** to loop through the virtual table. Cursors are created using the +** xOpen method of the module. Each module implementation will define +** the content of a cursor structure to suit its own needs. +** +** This superclass exists in order to define fields of the cursor that +** are common to all implementations. +*/ +struct sqlite3_vtab_cursor { + sqlite3_vtab *pVtab; /* Virtual table of this cursor */ + /* Virtual table implementations will typically add additional fields */ +}; + +/* +** The xCreate and xConnect methods of a module use the following API +** to declare the format (the names and datatypes of the columns) of +** the virtual tables they implement. +*/ +int sqlite3_declare_vtab(sqlite3*, const char *zCreateTable); + +/* +** Virtual tables can provide alternative implementations of functions +** using the xFindFunction method. But global versions of those functions +** must exist in order to be overloaded. +** +** This API makes sure a global version of a function with a particular +** name and number of parameters exists. If no such function exists +** before this API is called, a new function is created. The implementation +** of the new function always causes an exception to be thrown. So +** the new function is not good for anything by itself. Its only +** purpose is to be a place-holder function that can be overloaded +** by virtual tables. +** +** This API should be considered part of the virtual table interface, +** which is experimental and subject to change. +*/ +int sqlite3_overload_function(sqlite3*, const char *zFuncName, int nArg); + +/* +** The interface to the virtual-table mechanism defined above (back up +** to a comment remarkably similar to this one) is currently considered +** to be experimental. The interface might change in incompatible ways. +** If this is a problem for you, do not use the interface at this time. +** +** When the virtual-table mechanism stabilizes, we will declare the +** interface fixed, support it indefinitely, and remove this comment. +** +****** EXPERIMENTAL - subject to change without notice ************** +*/ + +/* +** CAPI3REF: A Handle To An Open BLOB {F17800} +** +** An instance of the following opaque structure is used to +** represent an blob-handle. A blob-handle is created by +** [sqlite3_blob_open()] and destroyed by [sqlite3_blob_close()]. +** The [sqlite3_blob_read()] and [sqlite3_blob_write()] interfaces +** can be used to read or write small subsections of the blob. +** The [sqlite3_blob_bytes()] interface returns the size of the +** blob in bytes. +*/ +typedef struct sqlite3_blob sqlite3_blob; + +/* +** CAPI3REF: Open A BLOB For Incremental I/O {F17810} +** +** {F17811} This interfaces opens a handle to the blob located +** in row iRow,, column zColumn, table zTable in database zDb; +** in other words, the same blob that would be selected by: +** +**
+**     SELECT zColumn FROM zDb.zTable WHERE rowid = iRow;
+** 
{END} +** +** {F17812} If the flags parameter is non-zero, the blob is opened for +** read and write access. If it is zero, the blob is opened for read +** access. {END} +** +** {F17813} On success, [SQLITE_OK] is returned and the new +** [sqlite3_blob | blob handle] is written to *ppBlob. +** {F17814} Otherwise an error code is returned and +** any value written to *ppBlob should not be used by the caller. +** {F17815} This function sets the database-handle error code and message +** accessible via [sqlite3_errcode()] and [sqlite3_errmsg()]. +** We should go through and mark all interfaces that behave this +** way with a similar statement +*/ +int sqlite3_blob_open( + sqlite3*, + const char *zDb, + const char *zTable, + const char *zColumn, + sqlite3_int64 iRow, + int flags, + sqlite3_blob **ppBlob +); + +/* +** CAPI3REF: Close A BLOB Handle {F17830} +** +** Close an open [sqlite3_blob | blob handle]. +** +** {F17831} Closing a BLOB shall cause the current transaction to commit +** if there are no other BLOBs, no pending prepared statements, and the +** database connection is in autocommit mode. +** {F17832} If any writes were made to the BLOB, they might be held in cache +** until the close operation if they will fit. {END} +** Closing the BLOB often forces the changes +** out to disk and so if any I/O errors occur, they will likely occur +** at the time when the BLOB is closed. {F17833} Any errors that occur during +** closing are reported as a non-zero return value. +** +** {F17839} The BLOB is closed unconditionally. Even if this routine returns +** an error code, the BLOB is still closed. +*/ +int sqlite3_blob_close(sqlite3_blob *); + +/* +** CAPI3REF: Return The Size Of An Open BLOB {F17805} +** +** {F16806} Return the size in bytes of the blob accessible via the open +** [sqlite3_blob | blob-handle] passed as an argument. +*/ +int sqlite3_blob_bytes(sqlite3_blob *); + +/* +** CAPI3REF: Read Data From A BLOB Incrementally {F17850} +** +** This function is used to read data from an open +** [sqlite3_blob | blob-handle] into a caller supplied buffer. +** {F17851} n bytes of data are copied into buffer +** z from the open blob, starting at offset iOffset. +** +** {F17852} If offset iOffset is less than n bytes from the end of the blob, +** [SQLITE_ERROR] is returned and no data is read. {F17853} If n is +** less than zero [SQLITE_ERROR] is returned and no data is read. +** +** {F17854} On success, SQLITE_OK is returned. Otherwise, an +** [SQLITE_ERROR | SQLite error code] or an +** [SQLITE_IOERR_READ | extended error code] is returned. +*/ +int sqlite3_blob_read(sqlite3_blob *, void *z, int n, int iOffset); + +/* +** CAPI3REF: Write Data Into A BLOB Incrementally {F17870} +** +** This function is used to write data into an open +** [sqlite3_blob | blob-handle] from a user supplied buffer. +** {F17871} n bytes of data are copied from the buffer +** pointed to by z into the open blob, starting at offset iOffset. +** +** {F17872} If the [sqlite3_blob | blob-handle] passed as the first argument +** was not opened for writing (the flags parameter to [sqlite3_blob_open()] +*** was zero), this function returns [SQLITE_READONLY]. +** +** {F17873} This function may only modify the contents of the blob; it is +** not possible to increase the size of a blob using this API. +** {F17874} If offset iOffset is less than n bytes from the end of the blob, +** [SQLITE_ERROR] is returned and no data is written. {F17875} If n is +** less than zero [SQLITE_ERROR] is returned and no data is written. +** +** {F17876} On success, SQLITE_OK is returned. Otherwise, an +** [SQLITE_ERROR | SQLite error code] or an +** [SQLITE_IOERR_READ | extended error code] is returned. +*/ +int sqlite3_blob_write(sqlite3_blob *, const void *z, int n, int iOffset); + +/* +** CAPI3REF: Virtual File System Objects {F11200} +** +** A virtual filesystem (VFS) is an [sqlite3_vfs] object +** that SQLite uses to interact +** with the underlying operating system. Most builds come with a +** single default VFS that is appropriate for the host computer. +** New VFSes can be registered and existing VFSes can be unregistered. +** The following interfaces are provided. +** +** {F11201} The sqlite3_vfs_find() interface returns a pointer to +** a VFS given its name. {F11202} Names are case sensitive. +** {F11203} Names are zero-terminated UTF-8 strings. +** {F11204} If there is no match, a NULL +** pointer is returned. {F11205} If zVfsName is NULL then the default +** VFS is returned. {END} +** +** {F11210} New VFSes are registered with sqlite3_vfs_register(). +** {F11211} Each new VFS becomes the default VFS if the makeDflt flag is set. +** {F11212} The same VFS can be registered multiple times without injury. +** {F11213} To make an existing VFS into the default VFS, register it again +** with the makeDflt flag set. {U11214} If two different VFSes with the +** same name are registered, the behavior is undefined. {U11215} If a +** VFS is registered with a name that is NULL or an empty string, +** then the behavior is undefined. +** +** {F11220} Unregister a VFS with the sqlite3_vfs_unregister() interface. +** {F11221} If the default VFS is unregistered, another VFS is chosen as +** the default. The choice for the new VFS is arbitrary. +*/ +sqlite3_vfs *sqlite3_vfs_find(const char *zVfsName); +int sqlite3_vfs_register(sqlite3_vfs*, int makeDflt); +int sqlite3_vfs_unregister(sqlite3_vfs*); + +/* +** CAPI3REF: Mutexes {F17000} +** +** The SQLite core uses these routines for thread +** synchronization. Though they are intended for internal +** use by SQLite, code that links against SQLite is +** permitted to use any of these routines. +** +** The SQLite source code contains multiple implementations +** of these mutex routines. An appropriate implementation +** is selected automatically at compile-time. The following +** implementations are available in the SQLite core: +** +**
    +**
  • SQLITE_MUTEX_OS2 +**
  • SQLITE_MUTEX_PTHREAD +**
  • SQLITE_MUTEX_W32 +**
  • SQLITE_MUTEX_NOOP +**
+** +** The SQLITE_MUTEX_NOOP implementation is a set of routines +** that does no real locking and is appropriate for use in +** a single-threaded application. The SQLITE_MUTEX_OS2, +** SQLITE_MUTEX_PTHREAD, and SQLITE_MUTEX_W32 implementations +** are appropriate for use on os/2, unix, and windows. +** +** If SQLite is compiled with the SQLITE_MUTEX_APPDEF preprocessor +** macro defined (with "-DSQLITE_MUTEX_APPDEF=1"), then no mutex +** implementation is included with the library. The +** mutex interface routines defined here become external +** references in the SQLite library for which implementations +** must be provided by the application. This facility allows an +** application that links against SQLite to provide its own mutex +** implementation without having to modify the SQLite core. +** +** {F17011} The sqlite3_mutex_alloc() routine allocates a new +** mutex and returns a pointer to it. {F17012} If it returns NULL +** that means that a mutex could not be allocated. {F17013} SQLite +** will unwind its stack and return an error. {F17014} The argument +** to sqlite3_mutex_alloc() is one of these integer constants: +** +**
    +**
  • SQLITE_MUTEX_FAST +**
  • SQLITE_MUTEX_RECURSIVE +**
  • SQLITE_MUTEX_STATIC_MASTER +**
  • SQLITE_MUTEX_STATIC_MEM +**
  • SQLITE_MUTEX_STATIC_MEM2 +**
  • SQLITE_MUTEX_STATIC_PRNG +**
  • SQLITE_MUTEX_STATIC_LRU +**
{END} +** +** {F17015} The first two constants cause sqlite3_mutex_alloc() to create +** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE +** is used but not necessarily so when SQLITE_MUTEX_FAST is used. {END} +** The mutex implementation does not need to make a distinction +** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does +** not want to. {F17016} But SQLite will only request a recursive mutex in +** cases where it really needs one. {END} If a faster non-recursive mutex +** implementation is available on the host platform, the mutex subsystem +** might return such a mutex in response to SQLITE_MUTEX_FAST. +** +** {F17017} The other allowed parameters to sqlite3_mutex_alloc() each return +** a pointer to a static preexisting mutex. {END} Four static mutexes are +** used by the current version of SQLite. Future versions of SQLite +** may add additional static mutexes. Static mutexes are for internal +** use by SQLite only. Applications that use SQLite mutexes should +** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or +** SQLITE_MUTEX_RECURSIVE. +** +** {F17018} Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST +** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc() +** returns a different mutex on every call. {F17034} But for the static +** mutex types, the same mutex is returned on every call that has +** the same type number. {END} +** +** {F17019} The sqlite3_mutex_free() routine deallocates a previously +** allocated dynamic mutex. {F17020} SQLite is careful to deallocate every +** dynamic mutex that it allocates. {U17021} The dynamic mutexes must not be in +** use when they are deallocated. {U17022} Attempting to deallocate a static +** mutex results in undefined behavior. {F17023} SQLite never deallocates +** a static mutex. {END} +** +** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt +** to enter a mutex. {F17024} If another thread is already within the mutex, +** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return +** SQLITE_BUSY. {F17025} The sqlite3_mutex_try() interface returns SQLITE_OK +** upon successful entry. {F17026} Mutexes created using +** SQLITE_MUTEX_RECURSIVE can be entered multiple times by the same thread. +** {F17027} In such cases the, +** mutex must be exited an equal number of times before another thread +** can enter. {U17028} If the same thread tries to enter any other +** kind of mutex more than once, the behavior is undefined. +** {F17029} SQLite will never exhibit +** such behavior in its own use of mutexes. {END} +** +** Some systems (ex: windows95) do not the operation implemented by +** sqlite3_mutex_try(). On those systems, sqlite3_mutex_try() will +** always return SQLITE_BUSY. {F17030} The SQLite core only ever uses +** sqlite3_mutex_try() as an optimization so this is acceptable behavior. {END} +** +** {F17031} The sqlite3_mutex_leave() routine exits a mutex that was +** previously entered by the same thread. {U17032} The behavior +** is undefined if the mutex is not currently entered by the +** calling thread or is not currently allocated. {F17033} SQLite will +** never do either. {END} +** +** See also: [sqlite3_mutex_held()] and [sqlite3_mutex_notheld()]. +*/ +sqlite3_mutex *sqlite3_mutex_alloc(int); +void sqlite3_mutex_free(sqlite3_mutex*); +void sqlite3_mutex_enter(sqlite3_mutex*); +int sqlite3_mutex_try(sqlite3_mutex*); +void sqlite3_mutex_leave(sqlite3_mutex*); + +/* +** CAPI3REF: Mutex Verifcation Routines {F17080} +** +** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routines +** are intended for use inside assert() statements. {F17081} The SQLite core +** never uses these routines except inside an assert() and applications +** are advised to follow the lead of the core. {F17082} The core only +** provides implementations for these routines when it is compiled +** with the SQLITE_DEBUG flag. {U17087} External mutex implementations +** are only required to provide these routines if SQLITE_DEBUG is +** defined and if NDEBUG is not defined. +** +** {F17083} These routines should return true if the mutex in their argument +** is held or not held, respectively, by the calling thread. {END} +** +** {X17084} The implementation is not required to provided versions of these +** routines that actually work. +** If the implementation does not provide working +** versions of these routines, it should at least provide stubs +** that always return true so that one does not get spurious +** assertion failures. {END} +** +** {F17085} If the argument to sqlite3_mutex_held() is a NULL pointer then +** the routine should return 1. {END} This seems counter-intuitive since +** clearly the mutex cannot be held if it does not exist. But the +** the reason the mutex does not exist is because the build is not +** using mutexes. And we do not want the assert() containing the +** call to sqlite3_mutex_held() to fail, so a non-zero return is +** the appropriate thing to do. {F17086} The sqlite3_mutex_notheld() +** interface should also return 1 when given a NULL pointer. +*/ +int sqlite3_mutex_held(sqlite3_mutex*); +int sqlite3_mutex_notheld(sqlite3_mutex*); + +/* +** CAPI3REF: Mutex Types {F17001} +** +** {F17002} The [sqlite3_mutex_alloc()] interface takes a single argument +** which is one of these integer constants. {END} +*/ +#define SQLITE_MUTEX_FAST 0 +#define SQLITE_MUTEX_RECURSIVE 1 +#define SQLITE_MUTEX_STATIC_MASTER 2 +#define SQLITE_MUTEX_STATIC_MEM 3 /* sqlite3_malloc() */ +#define SQLITE_MUTEX_STATIC_MEM2 4 /* sqlite3_release_memory() */ +#define SQLITE_MUTEX_STATIC_PRNG 5 /* sqlite3_random() */ +#define SQLITE_MUTEX_STATIC_LRU 6 /* lru page list */ + +/* +** CAPI3REF: Low-Level Control Of Database Files {F11300} +** +** {F11301} The [sqlite3_file_control()] interface makes a direct call to the +** xFileControl method for the [sqlite3_io_methods] object associated +** with a particular database identified by the second argument. {F11302} The +** name of the database is the name assigned to the database by the +** ATTACH SQL command that opened the +** database. {F11303} To control the main database file, use the name "main" +** or a NULL pointer. {F11304} The third and fourth parameters to this routine +** are passed directly through to the second and third parameters of +** the xFileControl method. {F11305} The return value of the xFileControl +** method becomes the return value of this routine. +** +** {F11306} If the second parameter (zDbName) does not match the name of any +** open database file, then SQLITE_ERROR is returned. {F11307} This error +** code is not remembered and will not be recalled by [sqlite3_errcode()] +** or [sqlite3_errmsg()]. {U11308} The underlying xFileControl method might +** also return SQLITE_ERROR. {U11309} There is no way to distinguish between +** an incorrect zDbName and an SQLITE_ERROR return from the underlying +** xFileControl method. {END} +** +** See also: [SQLITE_FCNTL_LOCKSTATE] +*/ +int sqlite3_file_control(sqlite3*, const char *zDbName, int op, void*); + +/* +** Undo the hack that converts floating point types to integer for +** builds on processors without floating point support. +*/ +#ifdef SQLITE_OMIT_FLOATING_POINT +# undef double +#endif + +#if 0 +} /* End of the 'extern "C"' block */ +#endif +#endif + +/************** End of sqlite3.h *********************************************/ +/************** Continuing where we left off in fts3_hash.c ******************/ +/************** Include fts3_hash.h in the middle of fts3_hash.c *************/ +/************** Begin file fts3_hash.h ***************************************/ +/* +** 2001 September 22 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This is the header file for the generic hash-table implemenation +** used in SQLite. We've modified it slightly to serve as a standalone +** hash table implementation for the full-text indexing module. +** +*/ +#ifndef _FTS3_HASH_H_ +#define _FTS3_HASH_H_ + +/* Forward declarations of structures. */ +typedef struct fts3Hash fts3Hash; +typedef struct fts3HashElem fts3HashElem; + +/* A complete hash table is an instance of the following structure. +** The internals of this structure are intended to be opaque -- client +** code should not attempt to access or modify the fields of this structure +** directly. Change this structure only by using the routines below. +** However, many of the "procedures" and "functions" for modifying and +** accessing this structure are really macros, so we can't really make +** this structure opaque. +*/ +struct fts3Hash { + char keyClass; /* HASH_INT, _POINTER, _STRING, _BINARY */ + char copyKey; /* True if copy of key made on insert */ + int count; /* Number of entries in this table */ + fts3HashElem *first; /* The first element of the array */ + int htsize; /* Number of buckets in the hash table */ + struct _fts3ht { /* the hash table */ + int count; /* Number of entries with this hash */ + fts3HashElem *chain; /* Pointer to first entry with this hash */ + } *ht; +}; + +/* Each element in the hash table is an instance of the following +** structure. All elements are stored on a single doubly-linked list. +** +** Again, this structure is intended to be opaque, but it can't really +** be opaque because it is used by macros. +*/ +struct fts3HashElem { + fts3HashElem *next, *prev; /* Next and previous elements in the table */ + void *data; /* Data associated with this element */ + void *pKey; int nKey; /* Key associated with this element */ +}; + +/* +** There are 2 different modes of operation for a hash table: +** +** FTS3_HASH_STRING pKey points to a string that is nKey bytes long +** (including the null-terminator, if any). Case +** is respected in comparisons. +** +** FTS3_HASH_BINARY pKey points to binary data nKey bytes long. +** memcmp() is used to compare keys. +** +** A copy of the key is made if the copyKey parameter to fts3HashInit is 1. +*/ +#define FTS3_HASH_STRING 1 +#define FTS3_HASH_BINARY 2 + +/* +** Access routines. To delete, insert a NULL pointer. +*/ +void sqlite3Fts3HashInit(fts3Hash*, int keytype, int copyKey); +void *sqlite3Fts3HashInsert(fts3Hash*, const void *pKey, int nKey, void *pData); +void *sqlite3Fts3HashFind(const fts3Hash*, const void *pKey, int nKey); +void sqlite3Fts3HashClear(fts3Hash*); + +/* +** Shorthand for the functions above +*/ +#define fts3HashInit sqlite3Fts3HashInit +#define fts3HashInsert sqlite3Fts3HashInsert +#define fts3HashFind sqlite3Fts3HashFind +#define fts3HashClear sqlite3Fts3HashClear + +/* +** Macros for looping over all elements of a hash table. The idiom is +** like this: +** +** fts3Hash h; +** fts3HashElem *p; +** ... +** for(p=fts3HashFirst(&h); p; p=fts3HashNext(p)){ +** SomeStructure *pData = fts3HashData(p); +** // do something with pData +** } +*/ +#define fts3HashFirst(H) ((H)->first) +#define fts3HashNext(E) ((E)->next) +#define fts3HashData(E) ((E)->data) +#define fts3HashKey(E) ((E)->pKey) +#define fts3HashKeysize(E) ((E)->nKey) + +/* +** Number of entries in a hash table +*/ +#define fts3HashCount(H) ((H)->count) + +#endif /* _FTS3_HASH_H_ */ + +/************** End of fts3_hash.h *******************************************/ +/************** Continuing where we left off in fts3_hash.c ******************/ + +/* +** Malloc and Free functions +*/ +static void *fts3HashMalloc(int n){ + void *p = sqlite3_malloc(n); + if( p ){ + memset(p, 0, n); + } + return p; +} +static void fts3HashFree(void *p){ + sqlite3_free(p); +} + +/* Turn bulk memory into a hash table object by initializing the +** fields of the Hash structure. +** +** "pNew" is a pointer to the hash table that is to be initialized. +** keyClass is one of the constants +** FTS3_HASH_BINARY or FTS3_HASH_STRING. The value of keyClass +** determines what kind of key the hash table will use. "copyKey" is +** true if the hash table should make its own private copy of keys and +** false if it should just use the supplied pointer. +*/ +void sqlite3Fts3HashInit(fts3Hash *pNew, int keyClass, int copyKey){ + assert( pNew!=0 ); + assert( keyClass>=FTS3_HASH_STRING && keyClass<=FTS3_HASH_BINARY ); + pNew->keyClass = keyClass; + pNew->copyKey = copyKey; + pNew->first = 0; + pNew->count = 0; + pNew->htsize = 0; + pNew->ht = 0; +} + +/* Remove all entries from a hash table. Reclaim all memory. +** Call this routine to delete a hash table or to reset a hash table +** to the empty state. +*/ +void sqlite3Fts3HashClear(fts3Hash *pH){ + fts3HashElem *elem; /* For looping over all elements of the table */ + + assert( pH!=0 ); + elem = pH->first; + pH->first = 0; + fts3HashFree(pH->ht); + pH->ht = 0; + pH->htsize = 0; + while( elem ){ + fts3HashElem *next_elem = elem->next; + if( pH->copyKey && elem->pKey ){ + fts3HashFree(elem->pKey); + } + fts3HashFree(elem); + elem = next_elem; + } + pH->count = 0; +} + +/* +** Hash and comparison functions when the mode is FTS3_HASH_STRING +*/ +static int fts3StrHash(const void *pKey, int nKey){ + const char *z = (const char *)pKey; + int h = 0; + if( nKey<=0 ) nKey = (int) strlen(z); + while( nKey > 0 ){ + h = (h<<3) ^ h ^ *z++; + nKey--; + } + return h & 0x7fffffff; +} +static int fts3StrCompare(const void *pKey1, int n1, const void *pKey2, int n2){ + if( n1!=n2 ) return 1; + return strncmp((const char*)pKey1,(const char*)pKey2,n1); +} + +/* +** Hash and comparison functions when the mode is FTS3_HASH_BINARY +*/ +static int fts3BinHash(const void *pKey, int nKey){ + int h = 0; + const char *z = (const char *)pKey; + while( nKey-- > 0 ){ + h = (h<<3) ^ h ^ *(z++); + } + return h & 0x7fffffff; +} +static int fts3BinCompare(const void *pKey1, int n1, const void *pKey2, int n2){ + if( n1!=n2 ) return 1; + return memcmp(pKey1,pKey2,n1); +} + +/* +** Return a pointer to the appropriate hash function given the key class. +** +** The C syntax in this function definition may be unfamilar to some +** programmers, so we provide the following additional explanation: +** +** The name of the function is "ftsHashFunction". The function takes a +** single parameter "keyClass". The return value of ftsHashFunction() +** is a pointer to another function. Specifically, the return value +** of ftsHashFunction() is a pointer to a function that takes two parameters +** with types "const void*" and "int" and returns an "int". +*/ +static int (*ftsHashFunction(int keyClass))(const void*,int){ + if( keyClass==FTS3_HASH_STRING ){ + return &fts3StrHash; + }else{ + assert( keyClass==FTS3_HASH_BINARY ); + return &fts3BinHash; + } +} + +/* +** Return a pointer to the appropriate hash function given the key class. +** +** For help in interpreted the obscure C code in the function definition, +** see the header comment on the previous function. +*/ +static int (*ftsCompareFunction(int keyClass))(const void*,int,const void*,int){ + if( keyClass==FTS3_HASH_STRING ){ + return &fts3StrCompare; + }else{ + assert( keyClass==FTS3_HASH_BINARY ); + return &fts3BinCompare; + } +} + +/* Link an element into the hash table +*/ +static void fts3HashInsertElement( + fts3Hash *pH, /* The complete hash table */ + struct _fts3ht *pEntry, /* The entry into which pNew is inserted */ + fts3HashElem *pNew /* The element to be inserted */ +){ + fts3HashElem *pHead; /* First element already in pEntry */ + pHead = pEntry->chain; + if( pHead ){ + pNew->next = pHead; + pNew->prev = pHead->prev; + if( pHead->prev ){ pHead->prev->next = pNew; } + else { pH->first = pNew; } + pHead->prev = pNew; + }else{ + pNew->next = pH->first; + if( pH->first ){ pH->first->prev = pNew; } + pNew->prev = 0; + pH->first = pNew; + } + pEntry->count++; + pEntry->chain = pNew; +} + + +/* Resize the hash table so that it cantains "new_size" buckets. +** "new_size" must be a power of 2. The hash table might fail +** to resize if sqliteMalloc() fails. +*/ +static void fts3Rehash(fts3Hash *pH, int new_size){ + struct _fts3ht *new_ht; /* The new hash table */ + fts3HashElem *elem, *next_elem; /* For looping over existing elements */ + int (*xHash)(const void*,int); /* The hash function */ + + assert( (new_size & (new_size-1))==0 ); + new_ht = (struct _fts3ht *)fts3HashMalloc( new_size*sizeof(struct _fts3ht) ); + if( new_ht==0 ) return; + fts3HashFree(pH->ht); + pH->ht = new_ht; + pH->htsize = new_size; + xHash = ftsHashFunction(pH->keyClass); + for(elem=pH->first, pH->first=0; elem; elem = next_elem){ + int h = (*xHash)(elem->pKey, elem->nKey) & (new_size-1); + next_elem = elem->next; + fts3HashInsertElement(pH, &new_ht[h], elem); + } +} + +/* This function (for internal use only) locates an element in an +** hash table that matches the given key. The hash for this key has +** already been computed and is passed as the 4th parameter. +*/ +static fts3HashElem *fts3FindElementByHash( + const fts3Hash *pH, /* The pH to be searched */ + const void *pKey, /* The key we are searching for */ + int nKey, + int h /* The hash for this key. */ +){ + fts3HashElem *elem; /* Used to loop thru the element list */ + int count; /* Number of elements left to test */ + int (*xCompare)(const void*,int,const void*,int); /* comparison function */ + + if( pH->ht ){ + struct _fts3ht *pEntry = &pH->ht[h]; + elem = pEntry->chain; + count = pEntry->count; + xCompare = ftsCompareFunction(pH->keyClass); + while( count-- && elem ){ + if( (*xCompare)(elem->pKey,elem->nKey,pKey,nKey)==0 ){ + return elem; + } + elem = elem->next; + } + } + return 0; +} + +/* Remove a single entry from the hash table given a pointer to that +** element and a hash on the element's key. +*/ +static void fts3RemoveElementByHash( + fts3Hash *pH, /* The pH containing "elem" */ + fts3HashElem* elem, /* The element to be removed from the pH */ + int h /* Hash value for the element */ +){ + struct _fts3ht *pEntry; + if( elem->prev ){ + elem->prev->next = elem->next; + }else{ + pH->first = elem->next; + } + if( elem->next ){ + elem->next->prev = elem->prev; + } + pEntry = &pH->ht[h]; + if( pEntry->chain==elem ){ + pEntry->chain = elem->next; + } + pEntry->count--; + if( pEntry->count<=0 ){ + pEntry->chain = 0; + } + if( pH->copyKey && elem->pKey ){ + fts3HashFree(elem->pKey); + } + fts3HashFree( elem ); + pH->count--; + if( pH->count<=0 ){ + assert( pH->first==0 ); + assert( pH->count==0 ); + fts3HashClear(pH); + } +} + +/* Attempt to locate an element of the hash table pH with a key +** that matches pKey,nKey. Return the data for this element if it is +** found, or NULL if there is no match. +*/ +void *sqlite3Fts3HashFind(const fts3Hash *pH, const void *pKey, int nKey){ + int h; /* A hash on key */ + fts3HashElem *elem; /* The element that matches key */ + int (*xHash)(const void*,int); /* The hash function */ + + if( pH==0 || pH->ht==0 ) return 0; + xHash = ftsHashFunction(pH->keyClass); + assert( xHash!=0 ); + h = (*xHash)(pKey,nKey); + assert( (pH->htsize & (pH->htsize-1))==0 ); + elem = fts3FindElementByHash(pH,pKey,nKey, h & (pH->htsize-1)); + return elem ? elem->data : 0; +} + +/* Insert an element into the hash table pH. The key is pKey,nKey +** and the data is "data". +** +** If no element exists with a matching key, then a new +** element is created. A copy of the key is made if the copyKey +** flag is set. NULL is returned. +** +** If another element already exists with the same key, then the +** new data replaces the old data and the old data is returned. +** The key is not copied in this instance. If a malloc fails, then +** the new data is returned and the hash table is unchanged. +** +** If the "data" parameter to this function is NULL, then the +** element corresponding to "key" is removed from the hash table. +*/ +void *sqlite3Fts3HashInsert( + fts3Hash *pH, /* The hash table to insert into */ + const void *pKey, /* The key */ + int nKey, /* Number of bytes in the key */ + void *data /* The data */ +){ + int hraw; /* Raw hash value of the key */ + int h; /* the hash of the key modulo hash table size */ + fts3HashElem *elem; /* Used to loop thru the element list */ + fts3HashElem *new_elem; /* New element added to the pH */ + int (*xHash)(const void*,int); /* The hash function */ + + assert( pH!=0 ); + xHash = ftsHashFunction(pH->keyClass); + assert( xHash!=0 ); + hraw = (*xHash)(pKey, nKey); + assert( (pH->htsize & (pH->htsize-1))==0 ); + h = hraw & (pH->htsize-1); + elem = fts3FindElementByHash(pH,pKey,nKey,h); + if( elem ){ + void *old_data = elem->data; + if( data==0 ){ + fts3RemoveElementByHash(pH,elem,h); + }else{ + elem->data = data; + } + return old_data; + } + if( data==0 ) return 0; + new_elem = (fts3HashElem*)fts3HashMalloc( sizeof(fts3HashElem) ); + if( new_elem==0 ) return data; + if( pH->copyKey && pKey!=0 ){ + new_elem->pKey = fts3HashMalloc( nKey ); + if( new_elem->pKey==0 ){ + fts3HashFree(new_elem); + return data; + } + memcpy((void*)new_elem->pKey, pKey, nKey); + }else{ + new_elem->pKey = (void*)pKey; + } + new_elem->nKey = nKey; + pH->count++; + if( pH->htsize==0 ){ + fts3Rehash(pH,8); + if( pH->htsize==0 ){ + pH->count = 0; + fts3HashFree(new_elem); + return data; + } + } + if( pH->count > pH->htsize ){ + fts3Rehash(pH,pH->htsize*2); + } + assert( pH->htsize>0 ); + assert( (pH->htsize & (pH->htsize-1))==0 ); + h = hraw & (pH->htsize-1); + fts3HashInsertElement(pH, &pH->ht[h], new_elem); + new_elem->data = data; + return 0; +} + +#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */ + +/************** End of fts3_hash.c *******************************************/ +/************** Begin file fts3_porter.c *************************************/ +/* +** 2006 September 30 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** Implementation of the full-text-search tokenizer that implements +** a Porter stemmer. +*/ + +/* +** The code in this file is only compiled if: +** +** * The FTS3 module is being built as an extension +** (in which case SQLITE_CORE is not defined), or +** +** * The FTS3 module is being built into the core of +** SQLite (in which case SQLITE_ENABLE_FTS3 is defined). +*/ +#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) + + + +/************** Include fts3_tokenizer.h in the middle of fts3_porter.c ******/ +/************** Begin file fts3_tokenizer.h **********************************/ +/* +** 2006 July 10 +** +** The author disclaims copyright to this source code. +** +************************************************************************* +** Defines the interface to tokenizers used by fulltext-search. There +** are three basic components: +** +** sqlite3_tokenizer_module is a singleton defining the tokenizer +** interface functions. This is essentially the class structure for +** tokenizers. +** +** sqlite3_tokenizer is used to define a particular tokenizer, perhaps +** including customization information defined at creation time. +** +** sqlite3_tokenizer_cursor is generated by a tokenizer to generate +** tokens from a particular input. +*/ +#ifndef _FTS3_TOKENIZER_H_ +#define _FTS3_TOKENIZER_H_ + +/* TODO(shess) Only used for SQLITE_OK and SQLITE_DONE at this time. +** If tokenizers are to be allowed to call sqlite3_*() functions, then +** we will need a way to register the API consistently. +*/ +/************** Include sqlite3.h in the middle of fts3_tokenizer.h **********/ +/************** Begin file sqlite3.h *****************************************/ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This header file defines the interface that the SQLite library +** presents to client programs. If a C-function, structure, datatype, +** or constant definition does not appear in this file, then it is +** not a published API of SQLite, is subject to change without +** notice, and should not be referenced by programs that use SQLite. +** +** Some of the definitions that are in this file are marked as +** "experimental". Experimental interfaces are normally new +** features recently added to SQLite. We do not anticipate changes +** to experimental interfaces but reserve to make minor changes if +** experience from use "in the wild" suggest such changes are prudent. +** +** The official C-language API documentation for SQLite is derived +** from comments in this file. This file is the authoritative source +** on how SQLite interfaces are suppose to operate. +** +** The name of this file under configuration management is "sqlite.h.in". +** The makefile makes some minor changes to this file (such as inserting +** the version number) and changes its name to "sqlite3.h" as +** part of the build process. +** +** @(#) $Id: sqlite3.c,v 1.13 2008/01/29 23:34:19 myk%mozilla.org Exp $ +*/ +#ifndef _SQLITE3_H_ +#define _SQLITE3_H_ + +/* +** Make sure we can call this stuff from C++. +*/ +#if 0 +extern "C" { +#endif + + +/* +** Add the ability to override 'extern' +*/ +#ifndef SQLITE_EXTERN +# define SQLITE_EXTERN extern +#endif + +/* +** Make sure these symbols where not defined by some previous header +** file. +*/ +#ifdef SQLITE_VERSION +# undef SQLITE_VERSION +#endif +#ifdef SQLITE_VERSION_NUMBER +# undef SQLITE_VERSION_NUMBER +#endif + +/* +** CAPI3REF: Compile-Time Library Version Numbers {F10010} +** +** {F10011} The #define in the sqlite3.h header file named +** SQLITE_VERSION resolves to a string literal that identifies +** the version of the SQLite library in the format "X.Y.Z", where +** X is the major version number, Y is the minor version number and Z +** is the release number. The X.Y.Z might be followed by "alpha" or "beta". +** {END} For example "3.1.1beta". +** +** The X value is always 3 in SQLite. The X value only changes when +** backwards compatibility is broken and we intend to never break +** backwards compatibility. The Y value only changes when +** there are major feature enhancements that are forwards compatible +** but not backwards compatible. The Z value is incremented with +** each release but resets back to 0 when Y is incremented. +** +** {F10014} The SQLITE_VERSION_NUMBER #define resolves to an integer +** with the value (X*1000000 + Y*1000 + Z) where X, Y, and Z are as +** with SQLITE_VERSION. {END} For example, for version "3.1.1beta", +** SQLITE_VERSION_NUMBER is set to 3001001. To detect if they are using +** version 3.1.1 or greater at compile time, programs may use the test +** (SQLITE_VERSION_NUMBER>=3001001). +** +** See also: [sqlite3_libversion()] and [sqlite3_libversion_number()]. +*/ +#define SQLITE_VERSION "3.5.4" +#define SQLITE_VERSION_NUMBER 3005004 + +/* +** CAPI3REF: Run-Time Library Version Numbers {F10020} +** +** {F10021} The sqlite3_libversion_number() interface returns an integer +** equal to [SQLITE_VERSION_NUMBER]. {END} The value returned +** by this routine should only be different from the header values +** if the application is compiled using an sqlite3.h header from a +** different version of SQLite than library. Cautious programmers might +** include a check in their application to verify that +** sqlite3_libversion_number() always returns the value +** [SQLITE_VERSION_NUMBER]. +** +** {F10022} The sqlite3_version[] string constant contains the text of the +** [SQLITE_VERSION] string. {F10023} The sqlite3_libversion() function returns +** a pointer to the sqlite3_version[] string constant. {END} The +** sqlite3_libversion() function +** is provided for DLL users who can only access functions and not +** constants within the DLL. +*/ +SQLITE_EXTERN const char sqlite3_version[]; +const char *sqlite3_libversion(void); +int sqlite3_libversion_number(void); + +/* +** CAPI3REF: Test To See If The Library Is Threadsafe {F10100} +** +** {F10101} The sqlite3_threadsafe() routine returns nonzero +** if SQLite was compiled with its mutexes enabled or zero if +** SQLite was compiled with mutexes disabled. {END} If this +** routine returns false, then it is not safe for simultaneously +** running threads to both invoke SQLite interfaces. +** +** Really all this routine does is return true if SQLite was +** compiled with the -DSQLITE_THREADSAFE=1 option and false if +** compiled with -DSQLITE_THREADSAFE=0. If SQLite uses an +** application-defined mutex subsystem, malloc subsystem, collating +** sequence, VFS, SQL function, progress callback, commit hook, +** extension, or other accessories and these add-ons are not +** threadsafe, then clearly the combination will not be threadsafe +** either. Hence, this routine never reports that the library +** is guaranteed to be threadsafe, only when it is guaranteed not +** to be. +*/ +int sqlite3_threadsafe(void); + +/* +** CAPI3REF: Database Connection Handle {F12000} +** +** Each open SQLite database is represented by pointer to an instance of the +** opaque structure named "sqlite3". It is useful to think of an sqlite3 +** pointer as an object. The [sqlite3_open()], [sqlite3_open16()], and +** [sqlite3_open_v2()] interfaces are its constructors +** and [sqlite3_close()] is its destructor. There are many other interfaces +** (such as [sqlite3_prepare_v2()], [sqlite3_create_function()], and +** [sqlite3_busy_timeout()] to name but three) that are methods on this +** object. +*/ +typedef struct sqlite3 sqlite3; + + +/* +** CAPI3REF: 64-Bit Integer Types {F10200} +** +** Because there is no cross-platform way to specify such types +** SQLite includes typedefs for 64-bit signed and unsigned integers. +** {F10201} The sqlite_int64 and sqlite3_int64 types specify a +** 64-bit signed integer. {F10202} The sqlite_uint64 and +** sqlite3_uint64 types specify a 64-bit unsigned integer. {END} +** +** The sqlite3_int64 and sqlite3_uint64 are the preferred type +** definitions. The sqlite_int64 and sqlite_uint64 types are +** supported for backwards compatibility only. +*/ +#ifdef SQLITE_INT64_TYPE + typedef SQLITE_INT64_TYPE sqlite_int64; + typedef unsigned SQLITE_INT64_TYPE sqlite_uint64; +#elif defined(_MSC_VER) || defined(__BORLANDC__) + typedef __int64 sqlite_int64; + typedef unsigned __int64 sqlite_uint64; +#else + typedef long long int sqlite_int64; + typedef unsigned long long int sqlite_uint64; +#endif +typedef sqlite_int64 sqlite3_int64; +typedef sqlite_uint64 sqlite3_uint64; + +/* +** If compiling for a processor that lacks floating point support, +** substitute integer for floating-point +*/ +#ifdef SQLITE_OMIT_FLOATING_POINT +# define double sqlite3_int64 +#endif + +/* +** CAPI3REF: Closing A Database Connection {F12010} +** +** {F12011} The sqlite3_close() interfaces destroys an [sqlite3] object +** allocated by a prior call to [sqlite3_open()], [sqlite3_open16()], or +** [sqlite3_open_v2()]. {F12012} Sqlite3_close() releases all +** memory used by the connection and closes all open files. {END}. +** +** {F12013} If the database connection contains +** [sqlite3_stmt | prepared statements] that have not been finalized +** by [sqlite3_finalize()], then sqlite3_close() returns SQLITE_BUSY +** and leaves the connection open. {F12014} Giving sqlite3_close() +** a NULL pointer is a harmless no-op. {END} +** +** {U12015} Passing this routine a database connection that has already been +** closed results in undefined behavior. {U12016} If other interfaces that +** reference the same database connection are pending (either in the +** same thread or in different threads) when this routine is called, +** then the behavior is undefined and is almost certainly undesirable. +*/ +int sqlite3_close(sqlite3 *); + +/* +** The type for a callback function. +** This is legacy and deprecated. It is included for historical +** compatibility and is not documented. +*/ +typedef int (*sqlite3_callback)(void*,int,char**, char**); + +/* +** CAPI3REF: One-Step Query Execution Interface {F12100} +** +** {F12101} The sqlite3_exec() interface evaluates zero or more +** UTF-8 encoded, semicolon-separated SQL statements in the zero-terminated +** string of its second argument. {F12102} The SQL +** statements are evaluated in the context of the database connection +** specified by in the first argument. +** {F12103} SQL statements are prepared one by one using +** [sqlite3_prepare()] or the equivalent, evaluated +** using one or more calls to [sqlite3_step()], then destroyed +** using [sqlite3_finalize()]. {F12104} The return value of +** sqlite3_exec() is SQLITE_OK if all SQL statement run +** successfully. +** +** {F12105} If one or more of the SQL statements handed to +** sqlite3_exec() are queries, then +** the callback function specified by the 3rd parameter is +** invoked once for each row of the query result. {F12106} +** If the callback returns a non-zero value then the query +** is aborted, all subsequent SQL statements +** are skipped and the sqlite3_exec() function returns the [SQLITE_ABORT]. +** +** {F12107} The 4th parameter to sqlite3_exec() is an arbitrary pointer +** that is passed through to the callback function as its first parameter. +** +** {F12108} The 2nd parameter to the callback function is the number of +** columns in the query result. {F12109} The 3rd parameter to the callback +** is an array of pointers to strings holding the values for each column +** as extracted using [sqlite3_column_text()]. NULL values in the result +** set result in a NULL pointer. All other value are in their UTF-8 +** string representation. {F12117} +** The 4th parameter to the callback is an array of strings +** obtained using [sqlite3_column_name()] and holding +** the names of each column, also in UTF-8. +** +** {F12110} The callback function may be NULL, even for queries. A NULL +** callback is not an error. It just means that no callback +** will be invoked. +** +** {F12112} If an error occurs while parsing or evaluating the SQL +** then an appropriate error message is written into memory obtained +** from [sqlite3_malloc()] and *errmsg is made to point to that message +** assuming errmsg is not NULL. +** {U12113} The calling function is responsible for freeing the memory +** using [sqlite3_free()]. +** {F12116} If [sqlite3_malloc()] fails while attempting to generate +** the error message, *errmsg is set to NULL. +** {F12114} If errmsg is NULL then no attempt is made to generate an +** error message. Is the return code SQLITE_NOMEM or the original +** error code? What happens if there are multiple errors? +** Do we get code for the first error, or is the choice of reported +** error arbitrary? +** +** {F12115} The return value is is SQLITE_OK if there are no errors and +** some other [SQLITE_OK | return code] if there is an error. +** The particular return value depends on the type of error. {END} +*/ +int sqlite3_exec( + sqlite3*, /* An open database */ + const char *sql, /* SQL to be evaluted */ + int (*callback)(void*,int,char**,char**), /* Callback function */ + void *, /* 1st argument to callback */ + char **errmsg /* Error msg written here */ +); + +/* +** CAPI3REF: Result Codes {F10210} +** KEYWORDS: SQLITE_OK +** +** Many SQLite functions return an integer result code from the set shown +** above in order to indicates success or failure. +** +** {F10211} The result codes shown here are the only ones returned +** by SQLite in its default configuration. {F10212} However, the +** [sqlite3_extended_result_codes()] API can be used to set a database +** connectoin to return more detailed result codes. {END} +** +** See also: [SQLITE_IOERR_READ | extended result codes] +** +*/ +#define SQLITE_OK 0 /* Successful result */ +/* beginning-of-error-codes */ +#define SQLITE_ERROR 1 /* SQL error or missing database */ +#define SQLITE_INTERNAL 2 /* Internal logic error in SQLite */ +#define SQLITE_PERM 3 /* Access permission denied */ +#define SQLITE_ABORT 4 /* Callback routine requested an abort */ +#define SQLITE_BUSY 5 /* The database file is locked */ +#define SQLITE_LOCKED 6 /* A table in the database is locked */ +#define SQLITE_NOMEM 7 /* A malloc() failed */ +#define SQLITE_READONLY 8 /* Attempt to write a readonly database */ +#define SQLITE_INTERRUPT 9 /* Operation terminated by sqlite3_interrupt()*/ +#define SQLITE_IOERR 10 /* Some kind of disk I/O error occurred */ +#define SQLITE_CORRUPT 11 /* The database disk image is malformed */ +#define SQLITE_NOTFOUND 12 /* NOT USED. Table or record not found */ +#define SQLITE_FULL 13 /* Insertion failed because database is full */ +#define SQLITE_CANTOPEN 14 /* Unable to open the database file */ +#define SQLITE_PROTOCOL 15 /* NOT USED. Database lock protocol error */ +#define SQLITE_EMPTY 16 /* Database is empty */ +#define SQLITE_SCHEMA 17 /* The database schema changed */ +#define SQLITE_TOOBIG 18 /* String or BLOB exceeds size limit */ +#define SQLITE_CONSTRAINT 19 /* Abort due to constraint violation */ +#define SQLITE_MISMATCH 20 /* Data type mismatch */ +#define SQLITE_MISUSE 21 /* Library used incorrectly */ +#define SQLITE_NOLFS 22 /* Uses OS features not supported on host */ +#define SQLITE_AUTH 23 /* Authorization denied */ +#define SQLITE_FORMAT 24 /* Auxiliary database format error */ +#define SQLITE_RANGE 25 /* 2nd parameter to sqlite3_bind out of range */ +#define SQLITE_NOTADB 26 /* File opened that is not a database file */ +#define SQLITE_ROW 100 /* sqlite3_step() has another row ready */ +#define SQLITE_DONE 101 /* sqlite3_step() has finished executing */ +/* end-of-error-codes */ + +/* +** CAPI3REF: Extended Result Codes {F10220} +** +** In its default configuration, SQLite API routines return one of 26 integer +** [SQLITE_OK | result codes]. However, experience has shown that +** many of these result codes are too course-grained. They do not provide as +** much information about problems as programmers might like. In an effort to +** address this, newer versions of SQLite (version 3.3.8 and later) include +** support for additional result codes that provide more detailed information +** about errors. {F10221} The extended result codes are enabled or disabled +** for each database connection using the [sqlite3_extended_result_codes()] +** API. {END} +** +** Some of the available extended result codes are listed above. +** We expect the number of extended result codes will be expand +** over time. {U10422} Software that uses extended result codes should expect +** to see new result codes in future releases of SQLite. {END} +** +** {F10223} The symbolic name for an extended result code always contains +** a related primary result code as a prefix. {F10224} Primary result +** codes contain a single "_" character. {F10225} Extended result codes +** contain two or more "_" characters. {F10226} The numeric value of an +** extended result code can be converted to its +** corresponding primary result code by masking off the lower 8 bytes. {END} +** +** The SQLITE_OK result code will never be extended. It will always +** be exactly zero. +*/ +#define SQLITE_IOERR_READ (SQLITE_IOERR | (1<<8)) +#define SQLITE_IOERR_SHORT_READ (SQLITE_IOERR | (2<<8)) +#define SQLITE_IOERR_WRITE (SQLITE_IOERR | (3<<8)) +#define SQLITE_IOERR_FSYNC (SQLITE_IOERR | (4<<8)) +#define SQLITE_IOERR_DIR_FSYNC (SQLITE_IOERR | (5<<8)) +#define SQLITE_IOERR_TRUNCATE (SQLITE_IOERR | (6<<8)) +#define SQLITE_IOERR_FSTAT (SQLITE_IOERR | (7<<8)) +#define SQLITE_IOERR_UNLOCK (SQLITE_IOERR | (8<<8)) +#define SQLITE_IOERR_RDLOCK (SQLITE_IOERR | (9<<8)) +#define SQLITE_IOERR_DELETE (SQLITE_IOERR | (10<<8)) +#define SQLITE_IOERR_BLOCKED (SQLITE_IOERR | (11<<8)) +#define SQLITE_IOERR_NOMEM (SQLITE_IOERR | (12<<8)) + +/* +** CAPI3REF: Flags For File Open Operations {F10230} +** +** {F10231} Some combination of the these bit values are used as the +** third argument to the [sqlite3_open_v2()] interface and +** as fourth argument to the xOpen method of the +** [sqlite3_vfs] object. +*/ +#define SQLITE_OPEN_READONLY 0x00000001 +#define SQLITE_OPEN_READWRITE 0x00000002 +#define SQLITE_OPEN_CREATE 0x00000004 +#define SQLITE_OPEN_DELETEONCLOSE 0x00000008 +#define SQLITE_OPEN_EXCLUSIVE 0x00000010 +#define SQLITE_OPEN_MAIN_DB 0x00000100 +#define SQLITE_OPEN_TEMP_DB 0x00000200 +#define SQLITE_OPEN_TRANSIENT_DB 0x00000400 +#define SQLITE_OPEN_MAIN_JOURNAL 0x00000800 +#define SQLITE_OPEN_TEMP_JOURNAL 0x00001000 +#define SQLITE_OPEN_SUBJOURNAL 0x00002000 +#define SQLITE_OPEN_MASTER_JOURNAL 0x00004000 + +/* +** CAPI3REF: Device Characteristics {F10240} +** +** {F10241} The xDeviceCapabilities method of the [sqlite3_io_methods] +** object returns an integer which is a vector of the these +** bit values expressing I/O characteristics of the mass storage +** device that holds the file that the [sqlite3_io_methods] +** refers to. {END} +** +** {F10242} The SQLITE_IOCAP_ATOMIC property means that all writes of +** any size are atomic. {F10243} The SQLITE_IOCAP_ATOMICnnn values +** mean that writes of blocks that are nnn bytes in size and +** are aligned to an address which is an integer multiple of +** nnn are atomic. {F10244} The SQLITE_IOCAP_SAFE_APPEND value means +** that when data is appended to a file, the data is appended +** first then the size of the file is extended, never the other +** way around. {F10245} The SQLITE_IOCAP_SEQUENTIAL property means that +** information is written to disk in the same order as calls +** to xWrite(). +*/ +#define SQLITE_IOCAP_ATOMIC 0x00000001 +#define SQLITE_IOCAP_ATOMIC512 0x00000002 +#define SQLITE_IOCAP_ATOMIC1K 0x00000004 +#define SQLITE_IOCAP_ATOMIC2K 0x00000008 +#define SQLITE_IOCAP_ATOMIC4K 0x00000010 +#define SQLITE_IOCAP_ATOMIC8K 0x00000020 +#define SQLITE_IOCAP_ATOMIC16K 0x00000040 +#define SQLITE_IOCAP_ATOMIC32K 0x00000080 +#define SQLITE_IOCAP_ATOMIC64K 0x00000100 +#define SQLITE_IOCAP_SAFE_APPEND 0x00000200 +#define SQLITE_IOCAP_SEQUENTIAL 0x00000400 + +/* +** CAPI3REF: File Locking Levels {F10250} +** +** {F10251} SQLite uses one of the following integer values as the second +** argument to calls it makes to the xLock() and xUnlock() methods +** of an [sqlite3_io_methods] object. {END} +*/ +#define SQLITE_LOCK_NONE 0 +#define SQLITE_LOCK_SHARED 1 +#define SQLITE_LOCK_RESERVED 2 +#define SQLITE_LOCK_PENDING 3 +#define SQLITE_LOCK_EXCLUSIVE 4 + +/* +** CAPI3REF: Synchronization Type Flags {F10260} +** +** {F10261} When SQLite invokes the xSync() method of an +** [sqlite3_io_methods] object it uses a combination of the +** these integer values as the second argument. +** +** {F10262} When the SQLITE_SYNC_DATAONLY flag is used, it means that the +** sync operation only needs to flush data to mass storage. Inode +** information need not be flushed. {F10263} The SQLITE_SYNC_NORMAL means +** to use normal fsync() semantics. {F10264} The SQLITE_SYNC_FULL flag means +** to use Mac OS-X style fullsync instead of fsync(). +*/ +#define SQLITE_SYNC_NORMAL 0x00002 +#define SQLITE_SYNC_FULL 0x00003 +#define SQLITE_SYNC_DATAONLY 0x00010 + + +/* +** CAPI3REF: OS Interface Open File Handle {F11110} +** +** An [sqlite3_file] object represents an open file in the OS +** interface layer. Individual OS interface implementations will +** want to subclass this object by appending additional fields +** for their own use. The pMethods entry is a pointer to an +** [sqlite3_io_methods] object that defines methods for performing +** I/O operations on the open file. +*/ +typedef struct sqlite3_file sqlite3_file; +struct sqlite3_file { + const struct sqlite3_io_methods *pMethods; /* Methods for an open file */ +}; + +/* +** CAPI3REF: OS Interface File Virtual Methods Object {F11120} +** +** Every file opened by the [sqlite3_vfs] xOpen method contains a pointer to +** an instance of the this object. This object defines the +** methods used to perform various operations against the open file. +** +** The flags argument to xSync may be one of [SQLITE_SYNC_NORMAL] or +** [SQLITE_SYNC_FULL]. The first choice is the normal fsync(). +* The second choice is an +** OS-X style fullsync. The SQLITE_SYNC_DATA flag may be ORed in to +** indicate that only the data of the file and not its inode needs to be +** synced. +** +** The integer values to xLock() and xUnlock() are one of +**
    +**
  • [SQLITE_LOCK_NONE], +**
  • [SQLITE_LOCK_SHARED], +**
  • [SQLITE_LOCK_RESERVED], +**
  • [SQLITE_LOCK_PENDING], or +**
  • [SQLITE_LOCK_EXCLUSIVE]. +**
+** xLock() increases the lock. xUnlock() decreases the lock. +** The xCheckReservedLock() method looks +** to see if any database connection, either in this +** process or in some other process, is holding an RESERVED, +** PENDING, or EXCLUSIVE lock on the file. It returns true +** if such a lock exists and false if not. +** +** The xFileControl() method is a generic interface that allows custom +** VFS implementations to directly control an open file using the +** [sqlite3_file_control()] interface. The second "op" argument +** is an integer opcode. The third +** argument is a generic pointer which is intended to be a pointer +** to a structure that may contain arguments or space in which to +** write return values. Potential uses for xFileControl() might be +** functions to enable blocking locks with timeouts, to change the +** locking strategy (for example to use dot-file locks), to inquire +** about the status of a lock, or to break stale locks. The SQLite +** core reserves opcodes less than 100 for its own use. +** A [SQLITE_FCNTL_LOCKSTATE | list of opcodes] less than 100 is available. +** Applications that define a custom xFileControl method should use opcodes +** greater than 100 to avoid conflicts. +** +** The xSectorSize() method returns the sector size of the +** device that underlies the file. The sector size is the +** minimum write that can be performed without disturbing +** other bytes in the file. The xDeviceCharacteristics() +** method returns a bit vector describing behaviors of the +** underlying device: +** +**
    +**
  • [SQLITE_IOCAP_ATOMIC] +**
  • [SQLITE_IOCAP_ATOMIC512] +**
  • [SQLITE_IOCAP_ATOMIC1K] +**
  • [SQLITE_IOCAP_ATOMIC2K] +**
  • [SQLITE_IOCAP_ATOMIC4K] +**
  • [SQLITE_IOCAP_ATOMIC8K] +**
  • [SQLITE_IOCAP_ATOMIC16K] +**
  • [SQLITE_IOCAP_ATOMIC32K] +**
  • [SQLITE_IOCAP_ATOMIC64K] +**
  • [SQLITE_IOCAP_SAFE_APPEND] +**
  • [SQLITE_IOCAP_SEQUENTIAL] +**
+** +** The SQLITE_IOCAP_ATOMIC property means that all writes of +** any size are atomic. The SQLITE_IOCAP_ATOMICnnn values +** mean that writes of blocks that are nnn bytes in size and +** are aligned to an address which is an integer multiple of +** nnn are atomic. The SQLITE_IOCAP_SAFE_APPEND value means +** that when data is appended to a file, the data is appended +** first then the size of the file is extended, never the other +** way around. The SQLITE_IOCAP_SEQUENTIAL property means that +** information is written to disk in the same order as calls +** to xWrite(). +*/ +typedef struct sqlite3_io_methods sqlite3_io_methods; +struct sqlite3_io_methods { + int iVersion; + int (*xClose)(sqlite3_file*); + int (*xRead)(sqlite3_file*, void*, int iAmt, sqlite3_int64 iOfst); + int (*xWrite)(sqlite3_file*, const void*, int iAmt, sqlite3_int64 iOfst); + int (*xTruncate)(sqlite3_file*, sqlite3_int64 size); + int (*xSync)(sqlite3_file*, int flags); + int (*xFileSize)(sqlite3_file*, sqlite3_int64 *pSize); + int (*xLock)(sqlite3_file*, int); + int (*xUnlock)(sqlite3_file*, int); + int (*xCheckReservedLock)(sqlite3_file*); + int (*xFileControl)(sqlite3_file*, int op, void *pArg); + int (*xSectorSize)(sqlite3_file*); + int (*xDeviceCharacteristics)(sqlite3_file*); + /* Additional methods may be added in future releases */ +}; + +/* +** CAPI3REF: Standard File Control Opcodes {F11310} +** +** These integer constants are opcodes for the xFileControl method +** of the [sqlite3_io_methods] object and to the [sqlite3_file_control()] +** interface. +** +** {F11311} The [SQLITE_FCNTL_LOCKSTATE] opcode is used for debugging. This +** opcode cases the xFileControl method to write the current state of +** the lock (one of [SQLITE_LOCK_NONE], [SQLITE_LOCK_SHARED], +** [SQLITE_LOCK_RESERVED], [SQLITE_LOCK_PENDING], or [SQLITE_LOCK_EXCLUSIVE]) +** into an integer that the pArg argument points to. {F11312} This capability +** is used during testing and only needs to be supported when SQLITE_TEST +** is defined. +*/ +#define SQLITE_FCNTL_LOCKSTATE 1 + +/* +** CAPI3REF: Mutex Handle {F17110} +** +** The mutex module within SQLite defines [sqlite3_mutex] to be an +** abstract type for a mutex object. {F17111} The SQLite core never looks +** at the internal representation of an [sqlite3_mutex]. {END} It only +** deals with pointers to the [sqlite3_mutex] object. +** +** Mutexes are created using [sqlite3_mutex_alloc()]. +*/ +typedef struct sqlite3_mutex sqlite3_mutex; + +/* +** CAPI3REF: OS Interface Object {F11140} +** +** An instance of this object defines the interface between the +** SQLite core and the underlying operating system. The "vfs" +** in the name of the object stands for "virtual file system". +** +** The iVersion field is initially 1 but may be larger for future +** versions of SQLite. Additional fields may be appended to this +** object when the iVersion value is increased. +** +** The szOsFile field is the size of the subclassed [sqlite3_file] +** structure used by this VFS. mxPathname is the maximum length of +** a pathname in this VFS. +** +** Registered vfs modules are kept on a linked list formed by +** the pNext pointer. The [sqlite3_vfs_register()] +** and [sqlite3_vfs_unregister()] interfaces manage this list +** in a thread-safe way. The [sqlite3_vfs_find()] interface +** searches the list. +** +** The pNext field is the only fields in the sqlite3_vfs +** structure that SQLite will ever modify. SQLite will only access +** or modify this field while holding a particular static mutex. +** The application should never modify anything within the sqlite3_vfs +** object once the object has been registered. +** +** The zName field holds the name of the VFS module. The name must +** be unique across all VFS modules. +** +** {F11141} SQLite will guarantee that the zFilename string passed to +** xOpen() is a full pathname as generated by xFullPathname() and +** that the string will be valid and unchanged until xClose() is +** called. {END} So the [sqlite3_file] can store a pointer to the +** filename if it needs to remember the filename for some reason. +** +** {F11142} The flags argument to xOpen() includes all bits set in +** the flags argument to [sqlite3_open_v2()]. Or if [sqlite3_open()] +** or [sqlite3_open16()] is used, then flags includes at least +** [SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE]. {END} +** If xOpen() opens a file read-only then it sets *pOutFlags to +** include [SQLITE_OPEN_READONLY]. Other bits in *pOutFlags may be +** set. +** +** {F11143} SQLite will also add one of the following flags to the xOpen() +** call, depending on the object being opened: +** +**
    +**
  • [SQLITE_OPEN_MAIN_DB] +**
  • [SQLITE_OPEN_MAIN_JOURNAL] +**
  • [SQLITE_OPEN_TEMP_DB] +**
  • [SQLITE_OPEN_TEMP_JOURNAL] +**
  • [SQLITE_OPEN_TRANSIENT_DB] +**
  • [SQLITE_OPEN_SUBJOURNAL] +**
  • [SQLITE_OPEN_MASTER_JOURNAL] +**
{END} +** +** The file I/O implementation can use the object type flags to +** changes the way it deals with files. For example, an application +** that does not care about crash recovery or rollback, might make +** the open of a journal file a no-op. Writes to this journal are +** also a no-op. Any attempt to read the journal return SQLITE_IOERR. +** Or the implementation might recognize the a database file will +** be doing page-aligned sector reads and writes in a random order +** and set up its I/O subsystem accordingly. +** +** {F11144} SQLite might also add one of the following flags to the xOpen +** method: +** +**
    +**
  • [SQLITE_OPEN_DELETEONCLOSE] +**
  • [SQLITE_OPEN_EXCLUSIVE] +**
+** +** {F11145} The [SQLITE_OPEN_DELETEONCLOSE] flag means the file should be +** deleted when it is closed. {F11146} The [SQLITE_OPEN_DELETEONCLOSE] +** will be set for TEMP databases, journals and for subjournals. +** {F11147} The [SQLITE_OPEN_EXCLUSIVE] flag means the file should be opened +** for exclusive access. This flag is set for all files except +** for the main database file. {END} +** +** {F11148} At least szOsFile bytes of memory is allocated by SQLite +** to hold the [sqlite3_file] structure passed as the third +** argument to xOpen. {END} The xOpen method does not have to +** allocate the structure; it should just fill it in. +** +** {F11149} The flags argument to xAccess() may be [SQLITE_ACCESS_EXISTS] +** to test for the existance of a file, +** or [SQLITE_ACCESS_READWRITE] to test to see +** if a file is readable and writable, or [SQLITE_ACCESS_READ] +** to test to see if a file is at least readable. {END} The file can be a +** directory. +** +** {F11150} SQLite will always allocate at least mxPathname+1 byte for +** the output buffers for xGetTempname and xFullPathname. {F11151} The exact +** size of the output buffer is also passed as a parameter to both +** methods. {END} If the output buffer is not large enough, SQLITE_CANTOPEN +** should be returned. As this is handled as a fatal error by SQLite, +** vfs implementations should endeavor to prevent this by setting +** mxPathname to a sufficiently large value. +** +** The xRandomness(), xSleep(), and xCurrentTime() interfaces +** are not strictly a part of the filesystem, but they are +** included in the VFS structure for completeness. +** The xRandomness() function attempts to return nBytes bytes +** of good-quality randomness into zOut. The return value is +** the actual number of bytes of randomness obtained. The +** xSleep() method cause the calling thread to sleep for at +** least the number of microseconds given. The xCurrentTime() +** method returns a Julian Day Number for the current date and +** time. +*/ +typedef struct sqlite3_vfs sqlite3_vfs; +struct sqlite3_vfs { + int iVersion; /* Structure version number */ + int szOsFile; /* Size of subclassed sqlite3_file */ + int mxPathname; /* Maximum file pathname length */ + sqlite3_vfs *pNext; /* Next registered VFS */ + const char *zName; /* Name of this virtual file system */ + void *pAppData; /* Pointer to application-specific data */ + int (*xOpen)(sqlite3_vfs*, const char *zName, sqlite3_file*, + int flags, int *pOutFlags); + int (*xDelete)(sqlite3_vfs*, const char *zName, int syncDir); + int (*xAccess)(sqlite3_vfs*, const char *zName, int flags); + int (*xGetTempname)(sqlite3_vfs*, int nOut, char *zOut); + int (*xFullPathname)(sqlite3_vfs*, const char *zName, int nOut, char *zOut); + void *(*xDlOpen)(sqlite3_vfs*, const char *zFilename); + void (*xDlError)(sqlite3_vfs*, int nByte, char *zErrMsg); + void *(*xDlSym)(sqlite3_vfs*,void*, const char *zSymbol); + void (*xDlClose)(sqlite3_vfs*, void*); + int (*xRandomness)(sqlite3_vfs*, int nByte, char *zOut); + int (*xSleep)(sqlite3_vfs*, int microseconds); + int (*xCurrentTime)(sqlite3_vfs*, double*); + /* New fields may be appended in figure versions. The iVersion + ** value will increment whenever this happens. */ +}; + +/* +** CAPI3REF: Flags for the xAccess VFS method {F11190} +** +** {F11191} These integer constants can be used as the third parameter to +** the xAccess method of an [sqlite3_vfs] object. {END} They determine +** the kind of what kind of permissions the xAccess method is +** looking for. {F11192} With SQLITE_ACCESS_EXISTS, the xAccess method +** simply checks to see if the file exists. {F11193} With +** SQLITE_ACCESS_READWRITE, the xAccess method checks to see +** if the file is both readable and writable. {F11194} With +** SQLITE_ACCESS_READ the xAccess method +** checks to see if the file is readable. +*/ +#define SQLITE_ACCESS_EXISTS 0 +#define SQLITE_ACCESS_READWRITE 1 +#define SQLITE_ACCESS_READ 2 + +/* +** CAPI3REF: Enable Or Disable Extended Result Codes {F12200} +** +** {F12201} The sqlite3_extended_result_codes() routine enables or disables the +** [SQLITE_IOERR_READ | extended result codes] feature on a database +** connection if its 2nd parameter is +** non-zero or zero, respectively. {F12202} +** By default, SQLite API routines return one of only 26 integer +** [SQLITE_OK | result codes]. {F12203} When extended result codes +** are enabled by this routine, the repetoire of result codes can be +** much larger and can (hopefully) provide more detailed information +** about the cause of an error. +** +** {F12204} The second argument is a boolean value that turns extended result +** codes on and off. {F12205} Extended result codes are off by default for +** backwards compatibility with older versions of SQLite. +*/ +int sqlite3_extended_result_codes(sqlite3*, int onoff); + +/* +** CAPI3REF: Last Insert Rowid {F12220} +** +** {F12221} Each entry in an SQLite table has a unique 64-bit signed +** integer key called the "rowid". {F12222} The rowid is always available +** as an undeclared column named ROWID, OID, or _ROWID_ as long as those +** names are not also used by explicitly declared columns. {F12223} If +** the table has a column of type INTEGER PRIMARY KEY then that column +** is another an alias for the rowid. +** +** {F12224} This routine returns the rowid of the most recent +** successful INSERT into the database from the database connection +** shown in the first argument. {F12225} If no successful inserts +** have ever occurred on this database connection, zero is returned. +** +** {F12226} If an INSERT occurs within a trigger, then the rowid of the +** inserted row is returned by this routine as long as the trigger +** is running. {F12227} But once the trigger terminates, the value returned +** by this routine reverts to the last value inserted before the +** trigger fired. +** +** {F12228} An INSERT that fails due to a constraint violation is not a +** successful insert and does not change the value returned by this +** routine. {F12229} Thus INSERT OR FAIL, INSERT OR IGNORE, INSERT OR ROLLBACK, +** and INSERT OR ABORT make no changes to the return value of this +** routine when their insertion fails. {F12231} When INSERT OR REPLACE +** encounters a constraint violation, it does not fail. The +** INSERT continues to completion after deleting rows that caused +** the constraint problem so INSERT OR REPLACE will always change +** the return value of this interface. +** +** {UF12232} If another thread does a new insert on the same database connection +** while this routine is running and thus changes the last insert rowid, +** then the return value of this routine is undefined. +*/ +sqlite3_int64 sqlite3_last_insert_rowid(sqlite3*); + +/* +** CAPI3REF: Count The Number Of Rows Modified {F12240} +** +** {F12241} This function returns the number of database rows that were changed +** or inserted or deleted by the most recently completed SQL statement +** on the connection specified by the first parameter. {F12242} Only +** changes that are directly specified by the INSERT, UPDATE, or +** DELETE statement are counted. Auxiliary changes caused by +** triggers are not counted. {F12243} Use the [sqlite3_total_changes()] function +** to find the total number of changes including changes caused by triggers. +** +** {F12244} Within the body of a trigger, the sqlite3_changes() interface +** can be called to find the number of +** changes in the most recently completed INSERT, UPDATE, or DELETE +** statement within the body of the same trigger. +** +** {F12245} All changes are counted, even if they are later undone by a +** ROLLBACK or ABORT. {F12246} Except, changes associated with creating and +** dropping tables are not counted. +** +** {F12247} If a callback invokes [sqlite3_exec()] or [sqlite3_step()] +** recursively, then the changes in the inner, recursive call are +** counted together with the changes in the outer call. +** +** {F12248} SQLite implements the command "DELETE FROM table" without +** a WHERE clause by dropping and recreating the table. (This is much +** faster than going through and deleting individual elements from the +** table.) Because of this optimization, the change count for +** "DELETE FROM table" will be zero regardless of the number of elements +** that were originally in the table. {F12251} To get an accurate count +** of the number of rows deleted, use +** "DELETE FROM table WHERE 1" instead. +** +** {UF12252} If another thread makes changes on the same database connection +** while this routine is running then the return value of this routine +** is undefined. +*/ +int sqlite3_changes(sqlite3*); + +/* +** CAPI3REF: Total Number Of Rows Modified {F12260} +*** +** {F12261} This function returns the number of database rows that have been +** modified by INSERT, UPDATE or DELETE statements since the database handle +** was opened. {F12262} The count includes UPDATE, INSERT and DELETE +** statements executed as part of trigger programs. {F12263} All changes +** are counted as soon as the statement that makes them is completed +** (when the statement handle is passed to [sqlite3_reset()] or +** [sqlite3_finalize()]). {END} +** +** See also the [sqlite3_change()] interface. +** +** {F12265} SQLite implements the command "DELETE FROM table" without +** a WHERE clause by dropping and recreating the table. (This is much +** faster than going +** through and deleting individual elements form the table.) Because of +** this optimization, the change count for "DELETE FROM table" will be +** zero regardless of the number of elements that were originally in the +** table. To get an accurate count of the number of rows deleted, use +** "DELETE FROM table WHERE 1" instead. +** +** {U12264} If another thread makes changes on the same database connection +** while this routine is running then the return value of this routine +** is undefined. {END} +*/ +int sqlite3_total_changes(sqlite3*); + +/* +** CAPI3REF: Interrupt A Long-Running Query {F12270} +** +** {F12271} This function causes any pending database operation to abort and +** return at its earliest opportunity. {END} This routine is typically +** called in response to a user action such as pressing "Cancel" +** or Ctrl-C where the user wants a long query operation to halt +** immediately. +** +** {F12272} It is safe to call this routine from a thread different from the +** thread that is currently running the database operation. {U12273} But it +** is not safe to call this routine with a database connection that +** is closed or might close before sqlite3_interrupt() returns. +** +** If an SQL is very nearly finished at the time when sqlite3_interrupt() +** is called, then it might not have an opportunity to be interrupted. +** It might continue to completion. +** {F12274} The SQL operation that is interrupted will return +** [SQLITE_INTERRUPT]. {F12275} If the interrupted SQL operation is an +** INSERT, UPDATE, or DELETE that is inside an explicit transaction, +** then the entire transaction will be rolled back automatically. +** {F12276} A call to sqlite3_interrupt() has no effect on SQL statements +** that are started after sqlite3_interrupt() returns. +*/ +void sqlite3_interrupt(sqlite3*); + +/* +** CAPI3REF: Determine If An SQL Statement Is Complete {F10510} +** +** These routines are useful for command-line input to determine if the +** currently entered text seems to form complete a SQL statement or +** if additional input is needed before sending the text into +** SQLite for parsing. These routines return true if the input string +** appears to be a complete SQL statement. A statement is judged to be +** complete if it ends with a semicolon and is not a fragment of a +** CREATE TRIGGER statement. These routines do not parse the SQL and +** so will not detect syntactically incorrect SQL. +** +** {F10511} These functions return true if the given input string +** ends with a semicolon optionally followed by whitespace or +** comments. {F10512} For sqlite3_complete(), +** the parameter must be a zero-terminated UTF-8 string. {F10513} For +** sqlite3_complete16(), a zero-terminated machine byte order UTF-16 string +** is required. {F10514} These routines return false if the terminal +** semicolon is within a comment, a string literal or a quoted identifier +** (in other words if the final semicolon is not really a separate token +** but part of a larger token) or if the final semicolon is +** in between the BEGIN and END keywords of a CREATE TRIGGER statement. +** {END} +*/ +int sqlite3_complete(const char *sql); +int sqlite3_complete16(const void *sql); + +/* +** CAPI3REF: Register A Callback To Handle SQLITE_BUSY Errors {F12310} +** +** {F12311} This routine identifies a callback function that might be +** invoked whenever an attempt is made to open a database table +** that another thread or process has locked. +** {F12312} If the busy callback is NULL, then [SQLITE_BUSY] +** or [SQLITE_IOERR_BLOCKED] +** is returned immediately upon encountering the lock. +** {F12313} If the busy callback is not NULL, then the +** callback will be invoked with two arguments. {F12314} The +** first argument to the handler is a copy of the void* pointer which +** is the third argument to this routine. {F12315} The second argument to +** the handler is the number of times that the busy handler has +** been invoked for this locking event. {F12316} If the +** busy callback returns 0, then no additional attempts are made to +** access the database and [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED] is returned. +** {F12317} If the callback returns non-zero, then another attempt +** is made to open the database for reading and the cycle repeats. +** +** The presence of a busy handler does not guarantee that +** it will be invoked when there is lock contention. {F12319} +** If SQLite determines that invoking the busy handler could result in +** a deadlock, it will go ahead and return [SQLITE_BUSY] or +** [SQLITE_IOERR_BLOCKED] instead of invoking the +** busy handler. {END} +** Consider a scenario where one process is holding a read lock that +** it is trying to promote to a reserved lock and +** a second process is holding a reserved lock that it is trying +** to promote to an exclusive lock. The first process cannot proceed +** because it is blocked by the second and the second process cannot +** proceed because it is blocked by the first. If both processes +** invoke the busy handlers, neither will make any progress. Therefore, +** SQLite returns [SQLITE_BUSY] for the first process, hoping that this +** will induce the first process to release its read lock and allow +** the second process to proceed. +** +** {F12321} The default busy callback is NULL. {END} +** +** {F12322} The [SQLITE_BUSY] error is converted to [SQLITE_IOERR_BLOCKED] +** when SQLite is in the middle of a large transaction where all the +** changes will not fit into the in-memory cache. {F12323} SQLite will +** already hold a RESERVED lock on the database file, but it needs +** to promote this lock to EXCLUSIVE so that it can spill cache +** pages into the database file without harm to concurrent +** readers. {F12324} If it is unable to promote the lock, then the in-memory +** cache will be left in an inconsistent state and so the error +** code is promoted from the relatively benign [SQLITE_BUSY] to +** the more severe [SQLITE_IOERR_BLOCKED]. {F12325} This error code promotion +** forces an automatic rollback of the changes. {END} See the +** +** CorruptionFollowingBusyError wiki page for a discussion of why +** this is important. +** +** {F12326} Sqlite is re-entrant, so the busy handler may start a new +** query. {END} (It is not clear why anyone would every want to do this, +** but it is allowed, in theory.) {U12327} But the busy handler may not +** close the database. Closing the database from a busy handler will delete +** data structures out from under the executing query and will +** probably result in a segmentation fault or other runtime error. {END} +** +** {F12328} There can only be a single busy handler defined for each database +** connection. Setting a new busy handler clears any previous one. +** {F12329} Note that calling [sqlite3_busy_timeout()] will also set or clear +** the busy handler. +** +** {F12331} When operating in [sqlite3_enable_shared_cache | shared cache mode], +** only a single busy handler can be defined for each database file. +** So if two database connections share a single cache, then changing +** the busy handler on one connection will also change the busy +** handler in the other connection. {F12332} The busy handler is invoked +** in the thread that was running when the lock contention occurs. +*/ +int sqlite3_busy_handler(sqlite3*, int(*)(void*,int), void*); + +/* +** CAPI3REF: Set A Busy Timeout {F12340} +** +** {F12341} This routine sets a [sqlite3_busy_handler | busy handler] +** that sleeps for a while when a +** table is locked. {F12342} The handler will sleep multiple times until +** at least "ms" milliseconds of sleeping have been done. {F12343} After +** "ms" milliseconds of sleeping, the handler returns 0 which +** causes [sqlite3_step()] to return [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED]. +** +** {F12344} Calling this routine with an argument less than or equal to zero +** turns off all busy handlers. +** +** {F12345} There can only be a single busy handler for a particular database +** connection. If another busy handler was defined +** (using [sqlite3_busy_handler()]) prior to calling +** this routine, that other busy handler is cleared. +*/ +int sqlite3_busy_timeout(sqlite3*, int ms); + +/* +** CAPI3REF: Convenience Routines For Running Queries {F12370} +** +** This next routine is a convenience wrapper around [sqlite3_exec()]. +** {F12371} Instead of invoking a user-supplied callback for each row of the +** result, this routine remembers each row of the result in memory +** obtained from [sqlite3_malloc()], then returns all of the result after the +** query has finished. {F12372} +** +** As an example, suppose the query result where this table: +** +**
+**        Name        | Age
+**        -----------------------
+**        Alice       | 43
+**        Bob         | 28
+**        Cindy       | 21
+** 
+** +** If the 3rd argument were &azResult then after the function returns +** azResult will contain the following data: +** +**
+**        azResult[0] = "Name";
+**        azResult[1] = "Age";
+**        azResult[2] = "Alice";
+**        azResult[3] = "43";
+**        azResult[4] = "Bob";
+**        azResult[5] = "28";
+**        azResult[6] = "Cindy";
+**        azResult[7] = "21";
+** 
+** +** Notice that there is an extra row of data containing the column +** headers. But the *nrow return value is still 3. *ncolumn is +** set to 2. In general, the number of values inserted into azResult +** will be ((*nrow) + 1)*(*ncolumn). +** +** {U12374} After the calling function has finished using the result, it should +** pass the result data pointer to sqlite3_free_table() in order to +** release the memory that was malloc-ed. Because of the way the +** [sqlite3_malloc()] happens, the calling function must not try to call +** [sqlite3_free()] directly. Only [sqlite3_free_table()] is able to release +** the memory properly and safely. {END} +** +** {F12373} The return value of this routine is the same as +** from [sqlite3_exec()]. +*/ +int sqlite3_get_table( + sqlite3*, /* An open database */ + const char *sql, /* SQL to be executed */ + char ***resultp, /* Result written to a char *[] that this points to */ + int *nrow, /* Number of result rows written here */ + int *ncolumn, /* Number of result columns written here */ + char **errmsg /* Error msg written here */ +); +void sqlite3_free_table(char **result); + +/* +** CAPI3REF: Formatted String Printing Functions {F17400} +** +** These routines are workalikes of the "printf()" family of functions +** from the standard C library. +** +** {F17401} The sqlite3_mprintf() and sqlite3_vmprintf() routines write their +** results into memory obtained from [sqlite3_malloc()]. +** {U17402} The strings returned by these two routines should be +** released by [sqlite3_free()]. {F17403} Both routines return a +** NULL pointer if [sqlite3_malloc()] is unable to allocate enough +** memory to hold the resulting string. +** +** {F17404} In sqlite3_snprintf() routine is similar to "snprintf()" from +** the standard C library. The result is written into the +** buffer supplied as the second parameter whose size is given by +** the first parameter. {END} Note that the order of the +** first two parameters is reversed from snprintf(). This is an +** historical accident that cannot be fixed without breaking +** backwards compatibility. {F17405} Note also that sqlite3_snprintf() +** returns a pointer to its buffer instead of the number of +** characters actually written into the buffer. {END} We admit that +** the number of characters written would be a more useful return +** value but we cannot change the implementation of sqlite3_snprintf() +** now without breaking compatibility. +** +** {F17406} As long as the buffer size is greater than zero, sqlite3_snprintf() +** guarantees that the buffer is always zero-terminated. {F17407} The first +** parameter "n" is the total size of the buffer, including space for +** the zero terminator. {END} So the longest string that can be completely +** written will be n-1 characters. +** +** These routines all implement some additional formatting +** options that are useful for constructing SQL statements. +** All of the usual printf formatting options apply. In addition, there +** is are "%q", "%Q", and "%z" options. +** +** {F17410} The %q option works like %s in that it substitutes a null-terminated +** string from the argument list. But %q also doubles every '\'' character. +** %q is designed for use inside a string literal. {END} By doubling each '\'' +** character it escapes that character and allows it to be inserted into +** the string. +** +** For example, so some string variable contains text as follows: +** +**
+**  char *zText = "It's a happy day!";
+** 
+** +** One can use this text in an SQL statement as follows: +** +**
+**  char *zSQL = sqlite3_mprintf("INSERT INTO table VALUES('%q')", zText);
+**  sqlite3_exec(db, zSQL, 0, 0, 0);
+**  sqlite3_free(zSQL);
+** 
+** +** Because the %q format string is used, the '\'' character in zText +** is escaped and the SQL generated is as follows: +** +**
+**  INSERT INTO table1 VALUES('It''s a happy day!')
+** 
+** +** This is correct. Had we used %s instead of %q, the generated SQL +** would have looked like this: +** +**
+**  INSERT INTO table1 VALUES('It's a happy day!');
+** 
+** +** This second example is an SQL syntax error. As a general rule you +** should always use %q instead of %s when inserting text into a string +** literal. +** +** {F17411} The %Q option works like %q except it also adds single quotes around +** the outside of the total string. Or if the parameter in the argument +** list is a NULL pointer, %Q substitutes the text "NULL" (without single +** quotes) in place of the %Q option. {END} So, for example, one could say: +** +**
+**  char *zSQL = sqlite3_mprintf("INSERT INTO table VALUES(%Q)", zText);
+**  sqlite3_exec(db, zSQL, 0, 0, 0);
+**  sqlite3_free(zSQL);
+** 
+** +** The code above will render a correct SQL statement in the zSQL +** variable even if the zText variable is a NULL pointer. +** +** {F17412} The "%z" formatting option works exactly like "%s" with the +** addition that after the string has been read and copied into +** the result, [sqlite3_free()] is called on the input string. {END} +*/ +char *sqlite3_mprintf(const char*,...); +char *sqlite3_vmprintf(const char*, va_list); +char *sqlite3_snprintf(int,char*,const char*, ...); + +/* +** CAPI3REF: Memory Allocation Subsystem {F17300} +** +** {F17301} The SQLite core uses these three routines for all of its own +** internal memory allocation needs. {END} "Core" in the previous sentence +** does not include operating-system specific VFS implementation. The +** windows VFS uses native malloc and free for some operations. +** +** {F17302} The sqlite3_malloc() routine returns a pointer to a block +** of memory at least N bytes in length, where N is the parameter. +** {F17303} If sqlite3_malloc() is unable to obtain sufficient free +** memory, it returns a NULL pointer. {F17304} If the parameter N to +** sqlite3_malloc() is zero or negative then sqlite3_malloc() returns +** a NULL pointer. +** +** {F17305} Calling sqlite3_free() with a pointer previously returned +** by sqlite3_malloc() or sqlite3_realloc() releases that memory so +** that it might be reused. {F17306} The sqlite3_free() routine is +** a no-op if is called with a NULL pointer. Passing a NULL pointer +** to sqlite3_free() is harmless. {U17307} After being freed, memory +** should neither be read nor written. Even reading previously freed +** memory might result in a segmentation fault or other severe error. +** {U17309} Memory corruption, a segmentation fault, or other severe error +** might result if sqlite3_free() is called with a non-NULL pointer that +** was not obtained from sqlite3_malloc() or sqlite3_free(). +** +** {F17310} The sqlite3_realloc() interface attempts to resize a +** prior memory allocation to be at least N bytes, where N is the +** second parameter. The memory allocation to be resized is the first +** parameter. {F17311} If the first parameter to sqlite3_realloc() +** is a NULL pointer then its behavior is identical to calling +** sqlite3_malloc(N) where N is the second parameter to sqlite3_realloc(). +** {F17312} If the second parameter to sqlite3_realloc() is zero or +** negative then the behavior is exactly the same as calling +** sqlite3_free(P) where P is the first parameter to sqlite3_realloc(). +** {F17313} Sqlite3_realloc() returns a pointer to a memory allocation +** of at least N bytes in size or NULL if sufficient memory is unavailable. +** {F17314} If M is the size of the prior allocation, then min(N,M) bytes +** of the prior allocation are copied into the beginning of buffer returned +** by sqlite3_realloc() and the prior allocation is freed. +** {F17315} If sqlite3_realloc() returns NULL, then the prior allocation +** is not freed. +** +** {F17316} The memory returned by sqlite3_malloc() and sqlite3_realloc() +** is always aligned to at least an 8 byte boundary. {END} +** +** {F17381} The default implementation +** of the memory allocation subsystem uses the malloc(), realloc() +** and free() provided by the standard C library. {F17382} However, if +** SQLite is compiled with the following C preprocessor macro +** +**
SQLITE_MEMORY_SIZE=NNN
+** +** where NNN is an integer, then SQLite create a static +** array of at least NNN bytes in size and use that array +** for all of its dynamic memory allocation needs. {END} Additional +** memory allocator options may be added in future releases. +** +** In SQLite version 3.5.0 and 3.5.1, it was possible to define +** the SQLITE_OMIT_MEMORY_ALLOCATION which would cause the built-in +** implementation of these routines to be omitted. That capability +** is no longer provided. Only built-in memory allocators can be +** used. +** +** The windows OS interface layer calls +** the system malloc() and free() directly when converting +** filenames between the UTF-8 encoding used by SQLite +** and whatever filename encoding is used by the particular windows +** installation. Memory allocation errors are detected, but +** they are reported back as [SQLITE_CANTOPEN] or +** [SQLITE_IOERR] rather than [SQLITE_NOMEM]. +*/ +void *sqlite3_malloc(int); +void *sqlite3_realloc(void*, int); +void sqlite3_free(void*); + +/* +** CAPI3REF: Memory Allocator Statistics {F17370} +** +** In addition to the basic three allocation routines +** [sqlite3_malloc()], [sqlite3_free()], and [sqlite3_realloc()], +** the memory allocation subsystem included with the SQLite +** sources provides the interfaces shown here. +** +** {F17371} The sqlite3_memory_used() routine returns the +** number of bytes of memory currently outstanding (malloced but not freed). +** {F17372} The value returned by sqlite3_memory_used() includes +** any overhead added by SQLite, but not overhead added by the +** library malloc() that backs the sqlite3_malloc() implementation. +** {F17373} The sqlite3_memory_highwater() routines returns the +** maximum number of bytes that have been outstanding at any time +** since the highwater mark was last reset. +** {F17374} The byte count returned by sqlite3_memory_highwater() +** uses the same byte counting rules as sqlite3_memory_used(). {END} +** In other words, overhead added internally by SQLite is counted, +** but overhead from the underlying system malloc is not. +** {F17375} If the parameter to sqlite3_memory_highwater() is true, +** then the highwater mark is reset to the current value of +** sqlite3_memory_used() and the prior highwater mark (before the +** reset) is returned. {F17376} If the parameter to +** sqlite3_memory_highwater() is zero, then the highwater mark is +** unchanged. +*/ +sqlite3_int64 sqlite3_memory_used(void); +sqlite3_int64 sqlite3_memory_highwater(int resetFlag); + +/* +** CAPI3REF: Compile-Time Authorization Callbacks {F12500} +** +** {F12501} This routine registers a authorizer callback with a particular +** database connection, supplied in the first argument. {F12502} +** The authorizer callback is invoked as SQL statements are being compiled +** by [sqlite3_prepare()] or its variants [sqlite3_prepare_v2()], +** [sqlite3_prepare16()] and [sqlite3_prepare16_v2()]. {F12503} At various +** points during the compilation process, as logic is being created +** to perform various actions, the authorizer callback is invoked to +** see if those actions are allowed. The authorizer callback should +** return SQLITE_OK to allow the action, [SQLITE_IGNORE] to disallow the +** specific action but allow the SQL statement to continue to be +** compiled, or [SQLITE_DENY] to cause the entire SQL statement to be +** rejected with an error. {F12504} If the authorizer callback returns +** any value other than [SQLITE_IGNORE], [SQLITE_OK], or [SQLITE_DENY] +** then [sqlite3_prepare_v2()] or equivalent call that triggered +** the authorizer shall +** fail with an SQLITE_ERROR error code and an appropriate error message. {END} +** +** When the callback returns [SQLITE_OK], that means the operation +** requested is ok. {F12505} When the callback returns [SQLITE_DENY], the +** [sqlite3_prepare_v2()] or equivalent call that triggered the +** authorizer shall fail +** with an SQLITE_ERROR error code and an error message explaining that +** access is denied. {F12506} If the authorizer code (the 2nd parameter +** to the authorizer callback is anything other than [SQLITE_READ], then +** a return of [SQLITE_IGNORE] has the same effect as [SQLITE_DENY]. +** If the authorizer code is [SQLITE_READ] and the callback returns +** [SQLITE_IGNORE] then the prepared statement is constructed to +** insert a NULL value in place of the table column that would have +** been read if [SQLITE_OK] had been returned. {END} +** +** {F12510} The first parameter to the authorizer callback is a copy of +** the third parameter to the sqlite3_set_authorizer() interface. +** {F12511} The second parameter to the callback is an integer +** [SQLITE_COPY | action code] that specifies the particular action +** to be authorized. {END} The available action codes are +** [SQLITE_COPY | documented separately]. {F12512} The third through sixth +** parameters to the callback are zero-terminated strings that contain +** additional details about the action to be authorized. {END} +** +** An authorizer is used when preparing SQL statements from an untrusted +** source, to ensure that the SQL statements do not try to access data +** that they are not allowed to see, or that they do not try to +** execute malicious statements that damage the database. For +** example, an application may allow a user to enter arbitrary +** SQL queries for evaluation by a database. But the application does +** not want the user to be able to make arbitrary changes to the +** database. An authorizer could then be put in place while the +** user-entered SQL is being prepared that disallows everything +** except SELECT statements. +** +** {F12520} Only a single authorizer can be in place on a database connection +** at a time. Each call to sqlite3_set_authorizer overrides the +** previous call. {F12521} A NULL authorizer means that no authorization +** callback is invoked. {F12522} The default authorizer is NULL. {END} +** +** Note that the authorizer callback is invoked only during +** [sqlite3_prepare()] or its variants. {F12523} Authorization is not +** performed during statement evaluation in [sqlite3_step()]. {END} +*/ +int sqlite3_set_authorizer( + sqlite3*, + int (*xAuth)(void*,int,const char*,const char*,const char*,const char*), + void *pUserData +); + +/* +** CAPI3REF: Authorizer Return Codes {F12590} +** +** The [sqlite3_set_authorizer | authorizer callback function] must +** return either [SQLITE_OK] or one of these two constants in order +** to signal SQLite whether or not the action is permitted. See the +** [sqlite3_set_authorizer | authorizer documentation] for additional +** information. +*/ +#define SQLITE_DENY 1 /* Abort the SQL statement with an error */ +#define SQLITE_IGNORE 2 /* Don't allow access, but don't generate an error */ + +/* +** CAPI3REF: Authorizer Action Codes {F12550} +** +** The [sqlite3_set_authorizer()] interface registers a callback function +** that is invoked to authorizer certain SQL statement actions. {F12551} The +** second parameter to the callback is an integer code that specifies +** what action is being authorized. These are the integer action codes that +** the authorizer callback may be passed. {END} +** +** These action code values signify what kind of operation is to be +** authorized. {F12552} The 3rd and 4th parameters to the authorization +** callback function will be parameters or NULL depending on which of these +** codes is used as the second parameter. {F12553} The 5th parameter to the +** authorizer callback is the name of the database ("main", "temp", +** etc.) if applicable. {F12554} The 6th parameter to the authorizer callback +** is the name of the inner-most trigger or view that is responsible for +** the access attempt or NULL if this access attempt is directly from +** top-level SQL code. +*/ +/******************************************* 3rd ************ 4th ***********/ +#define SQLITE_CREATE_INDEX 1 /* Index Name Table Name */ +#define SQLITE_CREATE_TABLE 2 /* Table Name NULL */ +#define SQLITE_CREATE_TEMP_INDEX 3 /* Index Name Table Name */ +#define SQLITE_CREATE_TEMP_TABLE 4 /* Table Name NULL */ +#define SQLITE_CREATE_TEMP_TRIGGER 5 /* Trigger Name Table Name */ +#define SQLITE_CREATE_TEMP_VIEW 6 /* View Name NULL */ +#define SQLITE_CREATE_TRIGGER 7 /* Trigger Name Table Name */ +#define SQLITE_CREATE_VIEW 8 /* View Name NULL */ +#define SQLITE_DELETE 9 /* Table Name NULL */ +#define SQLITE_DROP_INDEX 10 /* Index Name Table Name */ +#define SQLITE_DROP_TABLE 11 /* Table Name NULL */ +#define SQLITE_DROP_TEMP_INDEX 12 /* Index Name Table Name */ +#define SQLITE_DROP_TEMP_TABLE 13 /* Table Name NULL */ +#define SQLITE_DROP_TEMP_TRIGGER 14 /* Trigger Name Table Name */ +#define SQLITE_DROP_TEMP_VIEW 15 /* View Name NULL */ +#define SQLITE_DROP_TRIGGER 16 /* Trigger Name Table Name */ +#define SQLITE_DROP_VIEW 17 /* View Name NULL */ +#define SQLITE_INSERT 18 /* Table Name NULL */ +#define SQLITE_PRAGMA 19 /* Pragma Name 1st arg or NULL */ +#define SQLITE_READ 20 /* Table Name Column Name */ +#define SQLITE_SELECT 21 /* NULL NULL */ +#define SQLITE_TRANSACTION 22 /* NULL NULL */ +#define SQLITE_UPDATE 23 /* Table Name Column Name */ +#define SQLITE_ATTACH 24 /* Filename NULL */ +#define SQLITE_DETACH 25 /* Database Name NULL */ +#define SQLITE_ALTER_TABLE 26 /* Database Name Table Name */ +#define SQLITE_REINDEX 27 /* Index Name NULL */ +#define SQLITE_ANALYZE 28 /* Table Name NULL */ +#define SQLITE_CREATE_VTABLE 29 /* Table Name Module Name */ +#define SQLITE_DROP_VTABLE 30 /* Table Name Module Name */ +#define SQLITE_FUNCTION 31 /* Function Name NULL */ +#define SQLITE_COPY 0 /* No longer used */ + +/* +** CAPI3REF: Tracing And Profiling Functions {F12280} +** +** These routines register callback functions that can be used for +** tracing and profiling the execution of SQL statements. +** +** {F12281} The callback function registered by sqlite3_trace() is invoked +** at the first [sqlite3_step()] for the evaluation of an SQL statement. +** {F12282} Only a single trace callback can be registered at a time. +** Each call to sqlite3_trace() overrides the previous. {F12283} A +** NULL callback for sqlite3_trace() disables tracing. {F12284} The +** first argument to the trace callback is a copy of the pointer which +** was the 3rd argument to sqlite3_trace. {F12285} The second argument +** to the trace callback is a zero-terminated UTF8 string containing +** the original text of the SQL statement as it was passed into +** [sqlite3_prepare_v2()] or the equivalent. {END} Note that the +** host parameter are not expanded in the SQL statement text. +** +** {F12287} The callback function registered by sqlite3_profile() is invoked +** as each SQL statement finishes. {F12288} The first parameter to the +** profile callback is a copy of the 3rd parameter to sqlite3_profile(). +** {F12289} The second parameter to the profile callback is a +** zero-terminated UTF-8 string that contains the complete text of +** the SQL statement as it was processed by [sqlite3_prepare_v2()] or +** the equivalent. {F12290} The third parameter to the profile +** callback is an estimate of the number of nanoseconds of +** wall-clock time required to run the SQL statement from start +** to finish. {END} +** +** The sqlite3_profile() API is currently considered experimental and +** is subject to change. +*/ +void *sqlite3_trace(sqlite3*, void(*xTrace)(void*,const char*), void*); +void *sqlite3_profile(sqlite3*, + void(*xProfile)(void*,const char*,sqlite3_uint64), void*); + +/* +** CAPI3REF: Query Progress Callbacks {F12910} +** +** {F12911} This routine configures a callback function - the +** progress callback - that is invoked periodically during long +** running calls to [sqlite3_exec()], [sqlite3_step()] and +** [sqlite3_get_table()]. {END} An example use for this +** interface is to keep a GUI updated during a large query. +** +** {F12912} The progress callback is invoked once for every N virtual +** machine opcodes, where N is the second argument to this function. +** {F12913} The progress callback itself is identified by the third +** argument to this function. {F12914} The fourth argument to this +** function is a void pointer passed to the progress callback +** function each time it is invoked. {END} +** +** {F12915} If a call to [sqlite3_exec()], [sqlite3_step()], or +** [sqlite3_get_table()] results in fewer than N opcodes being executed, +** then the progress callback is never invoked. {END} +** +** {F12916} Only a single progress callback function may be registered for each +** open database connection. Every call to sqlite3_progress_handler() +** overwrites the results of the previous call. {F12917} +** To remove the progress callback altogether, pass NULL as the third +** argument to this function. {END} +** +** {F12918} If the progress callback returns a result other than 0, then +** the current query is immediately terminated and any database changes +** rolled back. {F12919} +** The containing [sqlite3_exec()], [sqlite3_step()], or +** [sqlite3_get_table()] call returns SQLITE_INTERRUPT. {END} This feature +** can be used, for example, to implement the "Cancel" button on a +** progress dialog box in a GUI. +*/ +void sqlite3_progress_handler(sqlite3*, int, int(*)(void*), void*); + +/* +** CAPI3REF: Opening A New Database Connection {F12700} +** +** {F12701} These routines open an SQLite database file whose name +** is given by the filename argument. +** {F12702} The filename argument is interpreted as UTF-8 +** for [sqlite3_open()] and [sqlite3_open_v2()] and as UTF-16 +** in the native byte order for [sqlite3_open16()]. +** {F12703} An [sqlite3*] handle is returned in *ppDb, even +** if an error occurs. {F12723} (Exception: if SQLite is unable +** to allocate memory to hold the [sqlite3] object, a NULL will +** be written into *ppDb instead of a pointer to the [sqlite3] object.) +** {F12704} If the database is opened (and/or created) +** successfully, then [SQLITE_OK] is returned. {F12705} Otherwise an +** error code is returned. {F12706} The +** [sqlite3_errmsg()] or [sqlite3_errmsg16()] routines can be used to obtain +** an English language description of the error. +** +** {F12707} The default encoding for the database will be UTF-8 if +** [sqlite3_open()] or [sqlite3_open_v2()] is called and +** UTF-16 in the native byte order if [sqlite3_open16()] is used. +** +** {F12708} Whether or not an error occurs when it is opened, resources +** associated with the [sqlite3*] handle should be released by passing it +** to [sqlite3_close()] when it is no longer required. +** +** {F12709} The [sqlite3_open_v2()] interface works like [sqlite3_open()] +** except that it acccepts two additional parameters for additional control +** over the new database connection. {F12710} The flags parameter can be +** one of: +** +**
    +**
  1. [SQLITE_OPEN_READONLY] +**
  2. [SQLITE_OPEN_READWRITE] +**
  3. [SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE] +**
+** +** {F12711} The first value opens the database read-only. +** {F12712} If the database does not previously exist, an error is returned. +** {F12713} The second option opens +** the database for reading and writing if possible, or reading only if +** if the file is write protected. {F12714} In either case the database +** must already exist or an error is returned. {F12715} The third option +** opens the database for reading and writing and creates it if it does +** not already exist. {F12716} +** The third options is behavior that is always used for [sqlite3_open()] +** and [sqlite3_open16()]. +** +** {F12717} If the filename is ":memory:", then an private +** in-memory database is created for the connection. {F12718} This in-memory +** database will vanish when the database connection is closed. {END} Future +** version of SQLite might make use of additional special filenames +** that begin with the ":" character. It is recommended that +** when a database filename really does begin with +** ":" that you prefix the filename with a pathname like "./" to +** avoid ambiguity. +** +** {F12719} If the filename is an empty string, then a private temporary +** on-disk database will be created. {F12720} This private database will be +** automatically deleted as soon as the database connection is closed. +** +** {F12721} The fourth parameter to sqlite3_open_v2() is the name of the +** [sqlite3_vfs] object that defines the operating system +** interface that the new database connection should use. {F12722} If the +** fourth parameter is a NULL pointer then the default [sqlite3_vfs] +** object is used. {END} +** +** Note to windows users: The encoding used for the filename argument +** of [sqlite3_open()] and [sqlite3_open_v2()] must be UTF-8, not whatever +** codepage is currently defined. Filenames containing international +** characters must be converted to UTF-8 prior to passing them into +** [sqlite3_open()] or [sqlite3_open_v2()]. +*/ +int sqlite3_open( + const char *filename, /* Database filename (UTF-8) */ + sqlite3 **ppDb /* OUT: SQLite db handle */ +); +int sqlite3_open16( + const void *filename, /* Database filename (UTF-16) */ + sqlite3 **ppDb /* OUT: SQLite db handle */ +); +int sqlite3_open_v2( + const char *filename, /* Database filename (UTF-8) */ + sqlite3 **ppDb, /* OUT: SQLite db handle */ + int flags, /* Flags */ + const char *zVfs /* Name of VFS module to use */ +); + +/* +** CAPI3REF: Error Codes And Messages {F12800} +** +** {F12801} The sqlite3_errcode() interface returns the numeric +** [SQLITE_OK | result code] or [SQLITE_IOERR_READ | extended result code] +** for the most recent failed sqlite3_* API call associated +** with [sqlite3] handle 'db'. {U12802} If a prior API call failed but the +** most recent API call succeeded, the return value from sqlite3_errcode() +** is undefined. {END} +** +** {F12803} The sqlite3_errmsg() and sqlite3_errmsg16() return English-language +** text that describes the error, as either UTF8 or UTF16 respectively. +** {F12804} Memory to hold the error message string is managed internally. +** {U12805} The +** string may be overwritten or deallocated by subsequent calls to SQLite +** interface functions. {END} +** +** {F12806} Calls to many sqlite3_* functions set the error code and +** string returned by [sqlite3_errcode()], [sqlite3_errmsg()], and +** [sqlite3_errmsg16()] overwriting the previous values. {F12807} +** Except, calls to [sqlite3_errcode()], +** [sqlite3_errmsg()], and [sqlite3_errmsg16()] themselves do not affect the +** results of future invocations. {F12808} Calls to API routines that +** do not return an error code (example: [sqlite3_data_count()]) do not +** change the error code returned by this routine. {F12809} Interfaces that +** are not associated with a specific database connection (examples: +** [sqlite3_mprintf()] or [sqlite3_enable_shared_cache()] do not change +** the return code. {END} +** +** {F12810} Assuming no other intervening sqlite3_* API calls are made, +** the error code returned by this function is associated with the same +** error as the strings returned by [sqlite3_errmsg()] and [sqlite3_errmsg16()]. +*/ +int sqlite3_errcode(sqlite3 *db); +const char *sqlite3_errmsg(sqlite3*); +const void *sqlite3_errmsg16(sqlite3*); + +/* +** CAPI3REF: SQL Statement Object {F13000} +** +** An instance of this object represent single SQL statements. This +** object is variously known as a "prepared statement" or a +** "compiled SQL statement" or simply as a "statement". +** +** The life of a statement object goes something like this: +** +**
    +**
  1. Create the object using [sqlite3_prepare_v2()] or a related +** function. +**
  2. Bind values to host parameters using +** [sqlite3_bind_blob | sqlite3_bind_* interfaces]. +**
  3. Run the SQL by calling [sqlite3_step()] one or more times. +**
  4. Reset the statement using [sqlite3_reset()] then go back +** to step 2. Do this zero or more times. +**
  5. Destroy the object using [sqlite3_finalize()]. +**
+** +** Refer to documentation on individual methods above for additional +** information. +*/ +typedef struct sqlite3_stmt sqlite3_stmt; + +/* +** CAPI3REF: Compiling An SQL Statement {F13010} +** +** To execute an SQL query, it must first be compiled into a byte-code +** program using one of these routines. +** +** {F13011} The first argument "db" is an [sqlite3 | SQLite database handle] +** obtained from a prior call to [sqlite3_open()], [sqlite3_open_v2()] +** or [sqlite3_open16()]. {F13012} +** The second argument "zSql" is the statement to be compiled, encoded +** as either UTF-8 or UTF-16. The sqlite3_prepare() and sqlite3_prepare_v2() +** interfaces uses UTF-8 and sqlite3_prepare16() and sqlite3_prepare16_v2() +** use UTF-16. {END} +** +** {F13013} If the nByte argument is less +** than zero, then zSql is read up to the first zero terminator. +** {F13014} If nByte is non-negative, then it is the maximum number of +** bytes read from zSql. When nByte is non-negative, the +** zSql string ends at either the first '\000' or '\u0000' character or +** until the nByte-th byte, whichever comes first. {END} +** +** {F13015} *pzTail is made to point to the first byte past the end of the +** first SQL statement in zSql. These routines only compiles the first +** statement in zSql, so *pzTail is left pointing to what remains +** uncompiled. {END} +** +** {F13016} *ppStmt is left pointing to a compiled +** [sqlite3_stmt | SQL statement structure] that can be +** executed using [sqlite3_step()]. Or if there is an error, *ppStmt may be +** set to NULL. {F13017} If the input text contains no SQL (if the input +** is and empty string or a comment) then *ppStmt is set to NULL. +** {U13018} The calling procedure is responsible for deleting the +** compiled SQL statement +** using [sqlite3_finalize()] after it has finished with it. +** +** {F13019} On success, [SQLITE_OK] is returned. Otherwise an +** [SQLITE_ERROR | error code] is returned. {END} +** +** The sqlite3_prepare_v2() and sqlite3_prepare16_v2() interfaces are +** recommended for all new programs. The two older interfaces are retained +** for backwards compatibility, but their use is discouraged. +** {F13020} In the "v2" interfaces, the prepared statement +** that is returned (the [sqlite3_stmt] object) contains a copy of the +** original SQL text. {END} This causes the [sqlite3_step()] interface to +** behave a differently in two ways: +** +**
    +**
  1. {F13022} +** If the database schema changes, instead of returning [SQLITE_SCHEMA] as it +** always used to do, [sqlite3_step()] will automatically recompile the SQL +** statement and try to run it again. {F12023} If the schema has changed in +** a way that makes the statement no longer valid, [sqlite3_step()] will still +** return [SQLITE_SCHEMA]. {END} But unlike the legacy behavior, +** [SQLITE_SCHEMA] is now a fatal error. {F12024} Calling +** [sqlite3_prepare_v2()] again will not make the +** error go away. {F12025} Note: use [sqlite3_errmsg()] to find the text +** of the parsing error that results in an [SQLITE_SCHEMA] return. {END} +**
  2. +** +**
  3. +** {F13030} When an error occurs, +** [sqlite3_step()] will return one of the detailed +** [SQLITE_ERROR | result codes] or +** [SQLITE_IOERR_READ | extended result codes]. {F13031} +** The legacy behavior was that [sqlite3_step()] would only return a generic +** [SQLITE_ERROR] result code and you would have to make a second call to +** [sqlite3_reset()] in order to find the underlying cause of the problem. +** {F13032} +** With the "v2" prepare interfaces, the underlying reason for the error is +** returned immediately. {END} +**
  4. +**
+*/ +int sqlite3_prepare( + sqlite3 *db, /* Database handle */ + const char *zSql, /* SQL statement, UTF-8 encoded */ + int nByte, /* Maximum length of zSql in bytes. */ + sqlite3_stmt **ppStmt, /* OUT: Statement handle */ + const char **pzTail /* OUT: Pointer to unused portion of zSql */ +); +int sqlite3_prepare_v2( + sqlite3 *db, /* Database handle */ + const char *zSql, /* SQL statement, UTF-8 encoded */ + int nByte, /* Maximum length of zSql in bytes. */ + sqlite3_stmt **ppStmt, /* OUT: Statement handle */ + const char **pzTail /* OUT: Pointer to unused portion of zSql */ +); +int sqlite3_prepare16( + sqlite3 *db, /* Database handle */ + const void *zSql, /* SQL statement, UTF-16 encoded */ + int nByte, /* Maximum length of zSql in bytes. */ + sqlite3_stmt **ppStmt, /* OUT: Statement handle */ + const void **pzTail /* OUT: Pointer to unused portion of zSql */ +); +int sqlite3_prepare16_v2( + sqlite3 *db, /* Database handle */ + const void *zSql, /* SQL statement, UTF-16 encoded */ + int nByte, /* Maximum length of zSql in bytes. */ + sqlite3_stmt **ppStmt, /* OUT: Statement handle */ + const void **pzTail /* OUT: Pointer to unused portion of zSql */ +); + +/* +** CAPIREF: Retrieving Statement SQL {F13100} +** +** {F13101} If the compiled SQL statement passed as an argument was +** compiled using either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()], +** then this function returns a pointer to a zero-terminated string +** containing a copy of the original SQL statement. {F13102} The +** pointer is valid until the statement +** is deleted using sqlite3_finalize(). +** {F13103} The string returned by sqlite3_sql() is always UTF8 even +** if a UTF16 string was originally entered using [sqlite3_prepare16_v2()] +** or the equivalent. +** +** {F13104} If the statement was compiled using either of the legacy +** interfaces [sqlite3_prepare()] or [sqlite3_prepare16()], this +** function returns NULL. +*/ +const char *sqlite3_sql(sqlite3_stmt *pStmt); + +/* +** CAPI3REF: Dynamically Typed Value Object {F15000} +** +** {F15001} SQLite uses the sqlite3_value object to represent all values +** that are or can be stored in a database table. {END} +** SQLite uses dynamic typing for the values it stores. +** {F15002} Values stored in sqlite3_value objects can be +** be integers, floating point values, strings, BLOBs, or NULL. +*/ +typedef struct Mem sqlite3_value; + +/* +** CAPI3REF: SQL Function Context Object {F16001} +** +** The context in which an SQL function executes is stored in an +** sqlite3_context object. {F16002} A pointer to an sqlite3_context +** object is always first parameter to application-defined SQL functions. +*/ +typedef struct sqlite3_context sqlite3_context; + +/* +** CAPI3REF: Binding Values To Prepared Statements {F13500} +** +** {F13501} In the SQL strings input to [sqlite3_prepare_v2()] and its +** variants, literals may be replace by a parameter in one +** of these forms: +** +**
    +**
  • ? +**
  • ?NNN +**
  • :AAA +**
  • @AAA +**
  • $VVV +**
+** +** In the parameter forms shown above NNN is an integer literal, +** AAA is an alphanumeric identifier and VVV is a variable name according +** to the syntax rules of the TCL programming language. {END} +** The values of these parameters (also called "host parameter names") +** can be set using the sqlite3_bind_*() routines defined here. +** +** {F13502} The first argument to the sqlite3_bind_*() routines always +** is a pointer to the [sqlite3_stmt] object returned from +** [sqlite3_prepare_v2()] or its variants. {F13503} The second +** argument is the index of the parameter to be set. {F13504} The +** first parameter has an index of 1. {F13505} When the same named +** parameter is used more than once, second and subsequent +** occurrences have the same index as the first occurrence. +** {F13506} The index for named parameters can be looked up using the +** [sqlite3_bind_parameter_name()] API if desired. {F13507} The index +** for "?NNN" parameters is the value of NNN. +** {F13508} The NNN value must be between 1 and the compile-time +** parameter SQLITE_MAX_VARIABLE_NUMBER (default value: 999). {END} +** See limits.html for additional information. +** +** {F13509} The third argument is the value to bind to the parameter. {END} +** +** {F13510} In those +** routines that have a fourth argument, its value is the number of bytes +** in the parameter. To be clear: the value is the number of bytes in the +** string, not the number of characters. {F13511} The number +** of bytes does not include the zero-terminator at the end of strings. +** {F13512} +** If the fourth parameter is negative, the length of the string is +** number of bytes up to the first zero terminator. {END} +** +** {F13513} +** The fifth argument to sqlite3_bind_blob(), sqlite3_bind_text(), and +** sqlite3_bind_text16() is a destructor used to dispose of the BLOB or +** text after SQLite has finished with it. {F13514} If the fifth argument is +** the special value [SQLITE_STATIC], then the library assumes that the +** information is in static, unmanaged space and does not need to be freed. +** {F13515} If the fifth argument has the value [SQLITE_TRANSIENT], then +** SQLite makes its own private copy of the data immediately, before +** the sqlite3_bind_*() routine returns. {END} +** +** {F13520} The sqlite3_bind_zeroblob() routine binds a BLOB of length N that +** is filled with zeros. {F13521} A zeroblob uses a fixed amount of memory +** (just an integer to hold it size) while it is being processed. {END} +** Zeroblobs are intended to serve as place-holders for BLOBs whose +** content is later written using +** [sqlite3_blob_open | increment BLOB I/O] routines. {F13522} A negative +** value for the zeroblob results in a zero-length BLOB. {END} +** +** {F13530} The sqlite3_bind_*() routines must be called after +** [sqlite3_prepare_v2()] (and its variants) or [sqlite3_reset()] and +** before [sqlite3_step()]. {F13531} +** Bindings are not cleared by the [sqlite3_reset()] routine. +** {F13532} Unbound parameters are interpreted as NULL. {END} +** +** {F13540} These routines return [SQLITE_OK] on success or an error code if +** anything goes wrong. {F13541} [SQLITE_RANGE] is returned if the parameter +** index is out of range. {F13542} [SQLITE_NOMEM] is returned if malloc fails. +** {F13543} [SQLITE_MISUSE] is returned if these routines are called on a +** virtual machine that is the wrong state or which has already been finalized. +*/ +int sqlite3_bind_blob(sqlite3_stmt*, int, const void*, int n, void(*)(void*)); +int sqlite3_bind_double(sqlite3_stmt*, int, double); +int sqlite3_bind_int(sqlite3_stmt*, int, int); +int sqlite3_bind_int64(sqlite3_stmt*, int, sqlite3_int64); +int sqlite3_bind_null(sqlite3_stmt*, int); +int sqlite3_bind_text(sqlite3_stmt*, int, const char*, int n, void(*)(void*)); +int sqlite3_bind_text16(sqlite3_stmt*, int, const void*, int, void(*)(void*)); +int sqlite3_bind_value(sqlite3_stmt*, int, const sqlite3_value*); +int sqlite3_bind_zeroblob(sqlite3_stmt*, int, int n); + +/* +** CAPI3REF: Number Of Host Parameters {F13600} +** +** {F13601} Return the largest host parameter index in the precompiled +** statement given as the argument. {F13602} When the host parameters +** are of the forms like ":AAA", "$VVV", "@AAA", or "?", +** then they are assigned sequential increasing numbers beginning +** with one, so the value returned is the number of parameters. +** {F13603} However +** if the same host parameter name is used multiple times, each occurrance +** is given the same number, so the value returned in that case is the number +** of unique host parameter names. {F13604} If host parameters of the +** form "?NNN" are used (where NNN is an integer) then there might be +** gaps in the numbering and the value returned by this interface is +** the index of the host parameter with the largest index value. {END} +** +** {U13605} The prepared statement must not be [sqlite3_finalize | finalized] +** prior to this routine returning. Otherwise the results are undefined +** and probably undesirable. +*/ +int sqlite3_bind_parameter_count(sqlite3_stmt*); + +/* +** CAPI3REF: Name Of A Host Parameter {F13620} +** +** {F13621} This routine returns a pointer to the name of the n-th +** parameter in a [sqlite3_stmt | prepared statement]. {F13622} +** Host parameters of the form ":AAA" or "@AAA" or "$VVV" have a name +** which is the string ":AAA" or "@AAA" or "$VVV". +** In other words, the initial ":" or "$" or "@" +** is included as part of the name. {F13626} +** Parameters of the form "?" or "?NNN" have no name. +** +** {F13623} The first host parameter has an index of 1, not 0. +** +** {F13624} If the value n is out of range or if the n-th parameter is +** nameless, then NULL is returned. {F13625} The returned string is +** always in the UTF-8 encoding even if the named parameter was +** originally specified as UTF-16 in [sqlite3_prepare16()] or +** [sqlite3_prepare16_v2()]. +*/ +const char *sqlite3_bind_parameter_name(sqlite3_stmt*, int); + +/* +** CAPI3REF: Index Of A Parameter With A Given Name {F13640} +** +** {F13641} This routine returns the index of a host parameter with the +** given name. {F13642} The name must match exactly. {F13643} +** If no parameter with the given name is found, return 0. +** {F13644} Parameter names must be UTF8. +*/ +int sqlite3_bind_parameter_index(sqlite3_stmt*, const char *zName); + +/* +** CAPI3REF: Reset All Bindings On A Prepared Statement {F13660} +** +** {F13661} Contrary to the intuition of many, [sqlite3_reset()] does not +** reset the [sqlite3_bind_blob | bindings] on a +** [sqlite3_stmt | prepared statement]. {F13662} Use this routine to +** reset all host parameters to NULL. +*/ +int sqlite3_clear_bindings(sqlite3_stmt*); + +/* +** CAPI3REF: Number Of Columns In A Result Set {F13710} +** +** {F13711} Return the number of columns in the result set returned by the +** [sqlite3_stmt | compiled SQL statement]. {F13712} This routine returns 0 +** if pStmt is an SQL statement that does not return data (for +** example an UPDATE). +*/ +int sqlite3_column_count(sqlite3_stmt *pStmt); + +/* +** CAPI3REF: Column Names In A Result Set {F13720} +** +** {F13721} These routines return the name assigned to a particular column +** in the result set of a SELECT statement. {F13722} The sqlite3_column_name() +** interface returns a pointer to a zero-terminated UTF8 string +** and sqlite3_column_name16() returns a pointer to a zero-terminated +** UTF16 string. {F13723} The first parameter is the +** [sqlite3_stmt | prepared statement] that implements the SELECT statement. +** The second parameter is the column number. The left-most column is +** number 0. +** +** {F13724} The returned string pointer is valid until either the +** [sqlite3_stmt | prepared statement] is destroyed by [sqlite3_finalize()] +** or until the next call sqlite3_column_name() or sqlite3_column_name16() +** on the same column. +** +** {F13725} If sqlite3_malloc() fails during the processing of either routine +** (for example during a conversion from UTF-8 to UTF-16) then a +** NULL pointer is returned. +*/ +const char *sqlite3_column_name(sqlite3_stmt*, int N); +const void *sqlite3_column_name16(sqlite3_stmt*, int N); + +/* +** CAPI3REF: Source Of Data In A Query Result {F13740} +** +** {F13741} These routines provide a means to determine what column of what +** table in which database a result of a SELECT statement comes from. +** {F13742} The name of the database or table or column can be returned as +** either a UTF8 or UTF16 string. {F13743} The _database_ routines return +** the database name, the _table_ routines return the table name, and +** the origin_ routines return the column name. {F13744} +** The returned string is valid until +** the [sqlite3_stmt | prepared statement] is destroyed using +** [sqlite3_finalize()] or until the same information is requested +** again in a different encoding. +** +** {F13745} The names returned are the original un-aliased names of the +** database, table, and column. +** +** {F13746} The first argument to the following calls is a +** [sqlite3_stmt | compiled SQL statement]. +** {F13747} These functions return information about the Nth column returned by +** the statement, where N is the second function argument. +** +** {F13748} If the Nth column returned by the statement is an expression +** or subquery and is not a column value, then all of these functions +** return NULL. {F13749} Otherwise, they return the +** name of the attached database, table and column that query result +** column was extracted from. +** +** {F13750} As with all other SQLite APIs, those postfixed with "16" return +** UTF-16 encoded strings, the other functions return UTF-8. {END} +** +** These APIs are only available if the library was compiled with the +** SQLITE_ENABLE_COLUMN_METADATA preprocessor symbol defined. +** +** {U13751} +** If two or more threads call one or more of these routines against the same +** prepared statement and column at the same time then the results are +** undefined. +*/ +const char *sqlite3_column_database_name(sqlite3_stmt*,int); +const void *sqlite3_column_database_name16(sqlite3_stmt*,int); +const char *sqlite3_column_table_name(sqlite3_stmt*,int); +const void *sqlite3_column_table_name16(sqlite3_stmt*,int); +const char *sqlite3_column_origin_name(sqlite3_stmt*,int); +const void *sqlite3_column_origin_name16(sqlite3_stmt*,int); + +/* +** CAPI3REF: Declared Datatype Of A Query Result {F13760} +** +** The first parameter is a [sqlite3_stmt | compiled SQL statement]. +** {F13761} If this statement is a SELECT statement and the Nth column of the +** returned result set of that SELECT is a table column (not an +** expression or subquery) then the declared type of the table +** column is returned. {F13762} If the Nth column of the result set is an +** expression or subquery, then a NULL pointer is returned. +** {F13763} The returned string is always UTF-8 encoded. {END} +** For example, in the database schema: +** +** CREATE TABLE t1(c1 VARIANT); +** +** And the following statement compiled: +** +** SELECT c1 + 1, c1 FROM t1; +** +** Then this routine would return the string "VARIANT" for the second +** result column (i==1), and a NULL pointer for the first result column +** (i==0). +** +** SQLite uses dynamic run-time typing. So just because a column +** is declared to contain a particular type does not mean that the +** data stored in that column is of the declared type. SQLite is +** strongly typed, but the typing is dynamic not static. Type +** is associated with individual values, not with the containers +** used to hold those values. +*/ +const char *sqlite3_column_decltype(sqlite3_stmt *, int i); +const void *sqlite3_column_decltype16(sqlite3_stmt*,int); + +/* +** CAPI3REF: Evaluate An SQL Statement {F13200} +** +** After an [sqlite3_stmt | SQL statement] has been prepared with a call +** to either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()] or to one of +** the legacy interfaces [sqlite3_prepare()] or [sqlite3_prepare16()], +** then this function must be called one or more times to evaluate the +** statement. +** +** The details of the behavior of this sqlite3_step() interface depend +** on whether the statement was prepared using the newer "v2" interface +** [sqlite3_prepare_v2()] and [sqlite3_prepare16_v2()] or the older legacy +** interface [sqlite3_prepare()] and [sqlite3_prepare16()]. The use of the +** new "v2" interface is recommended for new applications but the legacy +** interface will continue to be supported. +** +** In the lagacy interface, the return value will be either [SQLITE_BUSY], +** [SQLITE_DONE], [SQLITE_ROW], [SQLITE_ERROR], or [SQLITE_MISUSE]. +** With the "v2" interface, any of the other [SQLITE_OK | result code] +** or [SQLITE_IOERR_READ | extended result code] might be returned as +** well. +** +** [SQLITE_BUSY] means that the database engine was unable to acquire the +** database locks it needs to do its job. If the statement is a COMMIT +** or occurs outside of an explicit transaction, then you can retry the +** statement. If the statement is not a COMMIT and occurs within a +** explicit transaction then you should rollback the transaction before +** continuing. +** +** [SQLITE_DONE] means that the statement has finished executing +** successfully. sqlite3_step() should not be called again on this virtual +** machine without first calling [sqlite3_reset()] to reset the virtual +** machine back to its initial state. +** +** If the SQL statement being executed returns any data, then +** [SQLITE_ROW] is returned each time a new row of data is ready +** for processing by the caller. The values may be accessed using +** the [sqlite3_column_int | column access functions]. +** sqlite3_step() is called again to retrieve the next row of data. +** +** [SQLITE_ERROR] means that a run-time error (such as a constraint +** violation) has occurred. sqlite3_step() should not be called again on +** the VM. More information may be found by calling [sqlite3_errmsg()]. +** With the legacy interface, a more specific error code (example: +** [SQLITE_INTERRUPT], [SQLITE_SCHEMA], [SQLITE_CORRUPT], and so forth) +** can be obtained by calling [sqlite3_reset()] on the +** [sqlite3_stmt | prepared statement]. In the "v2" interface, +** the more specific error code is returned directly by sqlite3_step(). +** +** [SQLITE_MISUSE] means that the this routine was called inappropriately. +** Perhaps it was called on a [sqlite3_stmt | prepared statement] that has +** already been [sqlite3_finalize | finalized] or on one that had +** previously returned [SQLITE_ERROR] or [SQLITE_DONE]. Or it could +** be the case that the same database connection is being used by two or +** more threads at the same moment in time. +** +** Goofy Interface Alert: +** In the legacy interface, +** the sqlite3_step() API always returns a generic error code, +** [SQLITE_ERROR], following any error other than [SQLITE_BUSY] +** and [SQLITE_MISUSE]. You must call [sqlite3_reset()] or +** [sqlite3_finalize()] in order to find one of the specific +** [SQLITE_ERROR | result codes] that better describes the error. +** We admit that this is a goofy design. The problem has been fixed +** with the "v2" interface. If you prepare all of your SQL statements +** using either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()] instead +** of the legacy [sqlite3_prepare()] and [sqlite3_prepare16()], then the +** more specific [SQLITE_ERROR | result codes] are returned directly +** by sqlite3_step(). The use of the "v2" interface is recommended. +*/ +int sqlite3_step(sqlite3_stmt*); + +/* +** CAPI3REF: Number of columns in a result set {F13770} +** +** Return the number of values in the current row of the result set. +** +** {F13771} After a call to [sqlite3_step()] that returns [SQLITE_ROW], +** this routine +** will return the same value as the [sqlite3_column_count()] function. +** {F13772} +** After [sqlite3_step()] has returned an [SQLITE_DONE], [SQLITE_BUSY], or +** a [SQLITE_ERROR | error code], or before [sqlite3_step()] has been +** called on the [sqlite3_stmt | prepared statement] for the first time, +** this routine returns zero. +*/ +int sqlite3_data_count(sqlite3_stmt *pStmt); + +/* +** CAPI3REF: Fundamental Datatypes {F10265} +** +** {F10266}Every value in SQLite has one of five fundamental datatypes: +** +**
    +**
  • 64-bit signed integer +**
  • 64-bit IEEE floating point number +**
  • string +**
  • BLOB +**
  • NULL +**
{END} +** +** These constants are codes for each of those types. +** +** Note that the SQLITE_TEXT constant was also used in SQLite version 2 +** for a completely different meaning. Software that links against both +** SQLite version 2 and SQLite version 3 should use SQLITE3_TEXT not +** SQLITE_TEXT. +*/ +#define SQLITE_INTEGER 1 +#define SQLITE_FLOAT 2 +#define SQLITE_BLOB 4 +#define SQLITE_NULL 5 +#ifdef SQLITE_TEXT +# undef SQLITE_TEXT +#else +# define SQLITE_TEXT 3 +#endif +#define SQLITE3_TEXT 3 + +/* +** CAPI3REF: Results Values From A Query {F13800} +** +** These routines return information about +** a single column of the current result row of a query. In every +** case the first argument is a pointer to the +** [sqlite3_stmt | SQL statement] that is being +** evaluated (the [sqlite3_stmt*] that was returned from +** [sqlite3_prepare_v2()] or one of its variants) and +** the second argument is the index of the column for which information +** should be returned. The left-most column of the result set +** has an index of 0. +** +** If the SQL statement is not currently point to a valid row, or if the +** the column index is out of range, the result is undefined. +** These routines may only be called when the most recent call to +** [sqlite3_step()] has returned [SQLITE_ROW] and neither +** [sqlite3_reset()] nor [sqlite3_finalize()] has been call subsequently. +** If any of these routines are called after [sqlite3_reset()] or +** [sqlite3_finalize()] or after [sqlite3_step()] has returned +** something other than [SQLITE_ROW], the results are undefined. +** If [sqlite3_step()] or [sqlite3_reset()] or [sqlite3_finalize()] +** are called from a different thread while any of these routines +** are pending, then the results are undefined. +** +** The sqlite3_column_type() routine returns +** [SQLITE_INTEGER | datatype code] for the initial data type +** of the result column. The returned value is one of [SQLITE_INTEGER], +** [SQLITE_FLOAT], [SQLITE_TEXT], [SQLITE_BLOB], or [SQLITE_NULL]. The value +** returned by sqlite3_column_type() is only meaningful if no type +** conversions have occurred as described below. After a type conversion, +** the value returned by sqlite3_column_type() is undefined. Future +** versions of SQLite may change the behavior of sqlite3_column_type() +** following a type conversion. +** +** If the result is a BLOB or UTF-8 string then the sqlite3_column_bytes() +** routine returns the number of bytes in that BLOB or string. +** If the result is a UTF-16 string, then sqlite3_column_bytes() converts +** the string to UTF-8 and then returns the number of bytes. +** If the result is a numeric value then sqlite3_column_bytes() uses +** [sqlite3_snprintf()] to convert that value to a UTF-8 string and returns +** the number of bytes in that string. +** The value returned does not include the zero terminator at the end +** of the string. For clarity: the value returned is the number of +** bytes in the string, not the number of characters. +** +** Strings returned by sqlite3_column_text() and sqlite3_column_text16(), +** even zero-length strings, are always zero terminated. The return +** value from sqlite3_column_blob() for a zero-length blob is an arbitrary +** pointer, possibly even a NULL pointer. +** +** The sqlite3_column_bytes16() routine is similar to sqlite3_column_bytes() +** but leaves the result in UTF-16 instead of UTF-8. +** The zero terminator is not included in this count. +** +** These routines attempt to convert the value where appropriate. For +** example, if the internal representation is FLOAT and a text result +** is requested, [sqlite3_snprintf()] is used internally to do the conversion +** automatically. The following table details the conversions that +** are applied: +** +**
+** +**
Internal
Type
Requested
Type
Conversion +** +**
NULL INTEGER Result is 0 +**
NULL FLOAT Result is 0.0 +**
NULL TEXT Result is NULL pointer +**
NULL BLOB Result is NULL pointer +**
INTEGER FLOAT Convert from integer to float +**
INTEGER TEXT ASCII rendering of the integer +**
INTEGER BLOB Same as for INTEGER->TEXT +**
FLOAT INTEGER Convert from float to integer +**
FLOAT TEXT ASCII rendering of the float +**
FLOAT BLOB Same as FLOAT->TEXT +**
TEXT INTEGER Use atoi() +**
TEXT FLOAT Use atof() +**
TEXT BLOB No change +**
BLOB INTEGER Convert to TEXT then use atoi() +**
BLOB FLOAT Convert to TEXT then use atof() +**
BLOB TEXT Add a zero terminator if needed +**
+**
+** +** The table above makes reference to standard C library functions atoi() +** and atof(). SQLite does not really use these functions. It has its +** on equavalent internal routines. The atoi() and atof() names are +** used in the table for brevity and because they are familiar to most +** C programmers. +** +** Note that when type conversions occur, pointers returned by prior +** calls to sqlite3_column_blob(), sqlite3_column_text(), and/or +** sqlite3_column_text16() may be invalidated. +** Type conversions and pointer invalidations might occur +** in the following cases: +** +**
    +**
  • The initial content is a BLOB and sqlite3_column_text() +** or sqlite3_column_text16() is called. A zero-terminator might +** need to be added to the string.

  • +** +**
  • The initial content is UTF-8 text and sqlite3_column_bytes16() or +** sqlite3_column_text16() is called. The content must be converted +** to UTF-16.

  • +** +**
  • The initial content is UTF-16 text and sqlite3_column_bytes() or +** sqlite3_column_text() is called. The content must be converted +** to UTF-8.

  • +**
+** +** Conversions between UTF-16be and UTF-16le are always done in place and do +** not invalidate a prior pointer, though of course the content of the buffer +** that the prior pointer points to will have been modified. Other kinds +** of conversion are done in place when it is possible, but sometime it is +** not possible and in those cases prior pointers are invalidated. +** +** The safest and easiest to remember policy is to invoke these routines +** in one of the following ways: +** +**
    +**
  • sqlite3_column_text() followed by sqlite3_column_bytes()
  • +**
  • sqlite3_column_blob() followed by sqlite3_column_bytes()
  • +**
  • sqlite3_column_text16() followed by sqlite3_column_bytes16()
  • +**
+** +** In other words, you should call sqlite3_column_text(), sqlite3_column_blob(), +** or sqlite3_column_text16() first to force the result into the desired +** format, then invoke sqlite3_column_bytes() or sqlite3_column_bytes16() to +** find the size of the result. Do not mix call to sqlite3_column_text() or +** sqlite3_column_blob() with calls to sqlite3_column_bytes16(). And do not +** mix calls to sqlite3_column_text16() with calls to sqlite3_column_bytes(). +** +** The pointers returned are valid until a type conversion occurs as +** described above, or until [sqlite3_step()] or [sqlite3_reset()] or +** [sqlite3_finalize()] is called. The memory space used to hold strings +** and blobs is freed automatically. Do not pass the pointers returned +** [sqlite3_column_blob()], [sqlite3_column_text()], etc. into +** [sqlite3_free()]. +** +** If a memory allocation error occurs during the evaluation of any +** of these routines, a default value is returned. The default value +** is either the integer 0, the floating point number 0.0, or a NULL +** pointer. Subsequent calls to [sqlite3_errcode()] will return +** [SQLITE_NOMEM]. +*/ +const void *sqlite3_column_blob(sqlite3_stmt*, int iCol); +int sqlite3_column_bytes(sqlite3_stmt*, int iCol); +int sqlite3_column_bytes16(sqlite3_stmt*, int iCol); +double sqlite3_column_double(sqlite3_stmt*, int iCol); +int sqlite3_column_int(sqlite3_stmt*, int iCol); +sqlite3_int64 sqlite3_column_int64(sqlite3_stmt*, int iCol); +const unsigned char *sqlite3_column_text(sqlite3_stmt*, int iCol); +const void *sqlite3_column_text16(sqlite3_stmt*, int iCol); +int sqlite3_column_type(sqlite3_stmt*, int iCol); +sqlite3_value *sqlite3_column_value(sqlite3_stmt*, int iCol); + +/* +** CAPI3REF: Destroy A Prepared Statement Object {F13300} +** +** The sqlite3_finalize() function is called to delete a +** [sqlite3_stmt | compiled SQL statement]. If the statement was +** executed successfully, or not executed at all, then SQLITE_OK is returned. +** If execution of the statement failed then an +** [SQLITE_ERROR | error code] or [SQLITE_IOERR_READ | extended error code] +** is returned. +** +** This routine can be called at any point during the execution of the +** [sqlite3_stmt | virtual machine]. If the virtual machine has not +** completed execution when this routine is called, that is like +** encountering an error or an interrupt. (See [sqlite3_interrupt()].) +** Incomplete updates may be rolled back and transactions cancelled, +** depending on the circumstances, and the +** [SQLITE_ERROR | result code] returned will be [SQLITE_ABORT]. +*/ +int sqlite3_finalize(sqlite3_stmt *pStmt); + +/* +** CAPI3REF: Reset A Prepared Statement Object {F13330} +** +** The sqlite3_reset() function is called to reset a +** [sqlite3_stmt | compiled SQL statement] object. +** back to its initial state, ready to be re-executed. +** Any SQL statement variables that had values bound to them using +** the [sqlite3_bind_blob | sqlite3_bind_*() API] retain their values. +** Use [sqlite3_clear_bindings()] to reset the bindings. +*/ +int sqlite3_reset(sqlite3_stmt *pStmt); + +/* +** CAPI3REF: Create Or Redefine SQL Functions {F16100} +** +** The following two functions are used to add SQL functions or aggregates +** or to redefine the behavior of existing SQL functions or aggregates. The +** difference only between the two is that the second parameter, the +** name of the (scalar) function or aggregate, is encoded in UTF-8 for +** sqlite3_create_function() and UTF-16 for sqlite3_create_function16(). +** +** The first argument is the [sqlite3 | database handle] that holds the +** SQL function or aggregate is to be added or redefined. If a single +** program uses more than one database handle internally, then SQL +** functions or aggregates must be added individually to each database +** handle with which they will be used. +** +** The second parameter is the name of the SQL function to be created +** or redefined. +** The length of the name is limited to 255 bytes, exclusive of the +** zero-terminator. Note that the name length limit is in bytes, not +** characters. Any attempt to create a function with a longer name +** will result in an SQLITE_ERROR error. +** +** The third parameter is the number of arguments that the SQL function or +** aggregate takes. If this parameter is negative, then the SQL function or +** aggregate may take any number of arguments. +** +** The fourth parameter, eTextRep, specifies what +** [SQLITE_UTF8 | text encoding] this SQL function prefers for +** its parameters. Any SQL function implementation should be able to work +** work with UTF-8, UTF-16le, or UTF-16be. But some implementations may be +** more efficient with one encoding than another. It is allowed to +** invoke sqlite3_create_function() or sqlite3_create_function16() multiple +** times with the same function but with different values of eTextRep. +** When multiple implementations of the same function are available, SQLite +** will pick the one that involves the least amount of data conversion. +** If there is only a single implementation which does not care what +** text encoding is used, then the fourth argument should be +** [SQLITE_ANY]. +** +** The fifth parameter is an arbitrary pointer. The implementation +** of the function can gain access to this pointer using +** [sqlite3_user_data()]. +** +** The seventh, eighth and ninth parameters, xFunc, xStep and xFinal, are +** pointers to C-language functions that implement the SQL +** function or aggregate. A scalar SQL function requires an implementation of +** the xFunc callback only, NULL pointers should be passed as the xStep +** and xFinal parameters. An aggregate SQL function requires an implementation +** of xStep and xFinal and NULL should be passed for xFunc. To delete an +** existing SQL function or aggregate, pass NULL for all three function +** callback. +** +** It is permitted to register multiple implementations of the same +** functions with the same name but with either differing numbers of +** arguments or differing perferred text encodings. SQLite will use +** the implementation most closely matches the way in which the +** SQL function is used. +*/ +int sqlite3_create_function( + sqlite3 *, + const char *zFunctionName, + int nArg, + int eTextRep, + void*, + void (*xFunc)(sqlite3_context*,int,sqlite3_value**), + void (*xStep)(sqlite3_context*,int,sqlite3_value**), + void (*xFinal)(sqlite3_context*) +); +int sqlite3_create_function16( + sqlite3*, + const void *zFunctionName, + int nArg, + int eTextRep, + void*, + void (*xFunc)(sqlite3_context*,int,sqlite3_value**), + void (*xStep)(sqlite3_context*,int,sqlite3_value**), + void (*xFinal)(sqlite3_context*) +); + +/* +** CAPI3REF: Text Encodings {F10267} +** +** These constant define integer codes that represent the various +** text encodings supported by SQLite. +*/ +#define SQLITE_UTF8 1 +#define SQLITE_UTF16LE 2 +#define SQLITE_UTF16BE 3 +#define SQLITE_UTF16 4 /* Use native byte order */ +#define SQLITE_ANY 5 /* sqlite3_create_function only */ +#define SQLITE_UTF16_ALIGNED 8 /* sqlite3_create_collation only */ + +/* +** CAPI3REF: Obsolete Functions +** +** These functions are all now obsolete. In order to maintain +** backwards compatibility with older code, we continue to support +** these functions. However, new development projects should avoid +** the use of these functions. To help encourage people to avoid +** using these functions, we are not going to tell you want they do. +*/ +int sqlite3_aggregate_count(sqlite3_context*); +int sqlite3_expired(sqlite3_stmt*); +int sqlite3_transfer_bindings(sqlite3_stmt*, sqlite3_stmt*); +int sqlite3_global_recover(void); +void sqlite3_thread_cleanup(void); +int sqlite3_memory_alarm(void(*)(void*,sqlite3_int64,int),void*,sqlite3_int64); + +/* +** CAPI3REF: Obtaining SQL Function Parameter Values {F15100} +** +** The C-language implementation of SQL functions and aggregates uses +** this set of interface routines to access the parameter values on +** the function or aggregate. +** +** The xFunc (for scalar functions) or xStep (for aggregates) parameters +** to [sqlite3_create_function()] and [sqlite3_create_function16()] +** define callbacks that implement the SQL functions and aggregates. +** The 4th parameter to these callbacks is an array of pointers to +** [sqlite3_value] objects. There is one [sqlite3_value] object for +** each parameter to the SQL function. These routines are used to +** extract values from the [sqlite3_value] objects. +** +** These routines work just like the corresponding +** [sqlite3_column_blob | sqlite3_column_* routines] except that +** these routines take a single [sqlite3_value*] pointer instead +** of an [sqlite3_stmt*] pointer and an integer column number. +** +** The sqlite3_value_text16() interface extracts a UTF16 string +** in the native byte-order of the host machine. The +** sqlite3_value_text16be() and sqlite3_value_text16le() interfaces +** extract UTF16 strings as big-endian and little-endian respectively. +** +** The sqlite3_value_numeric_type() interface attempts to apply +** numeric affinity to the value. This means that an attempt is +** made to convert the value to an integer or floating point. If +** such a conversion is possible without loss of information (in other +** words if the value is a string that looks like a number) +** then the conversion is done. Otherwise no conversion occurs. The +** [SQLITE_INTEGER | datatype] after conversion is returned. +** +** Please pay particular attention to the fact that the pointer that +** is returned from [sqlite3_value_blob()], [sqlite3_value_text()], or +** [sqlite3_value_text16()] can be invalidated by a subsequent call to +** [sqlite3_value_bytes()], [sqlite3_value_bytes16()], [sqlite3_value_text()], +** or [sqlite3_value_text16()]. +** +** These routines must be called from the same thread as +** the SQL function that supplied the sqlite3_value* parameters. +** Or, if the sqlite3_value* argument comes from the [sqlite3_column_value()] +** interface, then these routines should be called from the same thread +** that ran [sqlite3_column_value()]. +** +*/ +const void *sqlite3_value_blob(sqlite3_value*); +int sqlite3_value_bytes(sqlite3_value*); +int sqlite3_value_bytes16(sqlite3_value*); +double sqlite3_value_double(sqlite3_value*); +int sqlite3_value_int(sqlite3_value*); +sqlite3_int64 sqlite3_value_int64(sqlite3_value*); +const unsigned char *sqlite3_value_text(sqlite3_value*); +const void *sqlite3_value_text16(sqlite3_value*); +const void *sqlite3_value_text16le(sqlite3_value*); +const void *sqlite3_value_text16be(sqlite3_value*); +int sqlite3_value_type(sqlite3_value*); +int sqlite3_value_numeric_type(sqlite3_value*); + +/* +** CAPI3REF: Obtain Aggregate Function Context {F16210} +** +** The implementation of aggregate SQL functions use this routine to allocate +** a structure for storing their state. +** {F16211} The first time the sqlite3_aggregate_context() routine is +** is called for a particular aggregate, SQLite allocates nBytes of memory +** zeros that memory, and returns a pointer to it. +** {F16212} On second and subsequent calls to sqlite3_aggregate_context() +** for the same aggregate function index, the same buffer is returned. {END} +** The implementation +** of the aggregate can use the returned buffer to accumulate data. +** +** {F16213} SQLite automatically frees the allocated buffer when the aggregate +** query concludes. {END} +** +** The first parameter should be a copy of the +** [sqlite3_context | SQL function context] that is the first +** parameter to the callback routine that implements the aggregate +** function. +** +** This routine must be called from the same thread in which +** the aggregate SQL function is running. +*/ +void *sqlite3_aggregate_context(sqlite3_context*, int nBytes); + +/* +** CAPI3REF: User Data For Functions {F16240} +** +** {F16241} The sqlite3_user_data() interface returns a copy of +** the pointer that was the pUserData parameter (the 5th parameter) +** of the the [sqlite3_create_function()] +** and [sqlite3_create_function16()] routines that originally +** registered the application defined function. {END} +** +** {U16243} This routine must be called from the same thread in which +** the application-defined function is running. +*/ +void *sqlite3_user_data(sqlite3_context*); + +/* +** CAPI3REF: Function Auxiliary Data {F16270} +** +** The following two functions may be used by scalar SQL functions to +** associate meta-data with argument values. If the same value is passed to +** multiple invocations of the same SQL function during query execution, under +** some circumstances the associated meta-data may be preserved. This may +** be used, for example, to add a regular-expression matching scalar +** function. The compiled version of the regular expression is stored as +** meta-data associated with the SQL value passed as the regular expression +** pattern. The compiled regular expression can be reused on multiple +** invocations of the same function so that the original pattern string +** does not need to be recompiled on each invocation. +** +** {F16271} +** The sqlite3_get_auxdata() interface returns a pointer to the meta-data +** associated by the sqlite3_set_auxdata() function with the Nth argument +** value to the application-defined function. +** {F16272} If no meta-data has been ever been set for the Nth +** argument of the function, or if the cooresponding function parameter +** has changed since the meta-data was set, then sqlite3_get_auxdata() +** returns a NULL pointer. +** +** {F16275} The sqlite3_set_auxdata() interface saves the meta-data +** pointed to by its 3rd parameter as the meta-data for the N-th +** argument of the application-defined function. {END} Subsequent +** calls to sqlite3_get_auxdata() might return this data, if it has +** not been destroyed. +** {F16277} If it is not NULL, SQLite will invoke the destructor +** function given by the 4th parameter to sqlite3_set_auxdata() on +** the meta-data when the corresponding function parameter changes +** or when the SQL statement completes, whichever comes first. {END} +** +** In practice, meta-data is preserved between function calls for +** expressions that are constant at compile time. This includes literal +** values and SQL variables. +** +** These routines must be called from the same thread in which +** the SQL function is running. +*/ +void *sqlite3_get_auxdata(sqlite3_context*, int N); +void sqlite3_set_auxdata(sqlite3_context*, int N, void*, void (*)(void*)); + + +/* +** CAPI3REF: Constants Defining Special Destructor Behavior {F10280} +** +** These are special value for the destructor that is passed in as the +** final argument to routines like [sqlite3_result_blob()]. If the destructor +** argument is SQLITE_STATIC, it means that the content pointer is constant +** and will never change. It does not need to be destroyed. The +** SQLITE_TRANSIENT value means that the content will likely change in +** the near future and that SQLite should make its own private copy of +** the content before returning. +** +** The typedef is necessary to work around problems in certain +** C++ compilers. See ticket #2191. +*/ +typedef void (*sqlite3_destructor_type)(void*); +#define SQLITE_STATIC ((sqlite3_destructor_type)0) +#define SQLITE_TRANSIENT ((sqlite3_destructor_type)-1) + +/* +** CAPI3REF: Setting The Result Of An SQL Function {F16400} +** +** These routines are used by the xFunc or xFinal callbacks that +** implement SQL functions and aggregates. See +** [sqlite3_create_function()] and [sqlite3_create_function16()] +** for additional information. +** +** These functions work very much like the +** [sqlite3_bind_blob | sqlite3_bind_*] family of functions used +** to bind values to host parameters in prepared statements. +** Refer to the +** [sqlite3_bind_blob | sqlite3_bind_* documentation] for +** additional information. +** +** {F16402} The sqlite3_result_blob() interface sets the result from +** an application defined function to be the BLOB whose content is pointed +** to by the second parameter and which is N bytes long where N is the +** third parameter. +** {F16403} The sqlite3_result_zeroblob() inerfaces set the result of +** the application defined function to be a BLOB containing all zero +** bytes and N bytes in size, where N is the value of the 2nd parameter. +** +** {F16407} The sqlite3_result_double() interface sets the result from +** an application defined function to be a floating point value specified +** by its 2nd argument. +** +** {F16409} The sqlite3_result_error() and sqlite3_result_error16() functions +** cause the implemented SQL function to throw an exception. +** {F16411} SQLite uses the string pointed to by the +** 2nd parameter of sqlite3_result_error() or sqlite3_result_error16() +** as the text of an error message. {F16412} SQLite interprets the error +** message string from sqlite3_result_error() as UTF8. {F16413} SQLite +** interprets the string from sqlite3_result_error16() as UTF16 in native +** byte order. {F16414} If the third parameter to sqlite3_result_error() +** or sqlite3_result_error16() is negative then SQLite takes as the error +** message all text up through the first zero character. +** {F16415} If the third parameter to sqlite3_result_error() or +** sqlite3_result_error16() is non-negative then SQLite takes that many +** bytes (not characters) from the 2nd parameter as the error message. +** {F16417} The sqlite3_result_error() and sqlite3_result_error16() +** routines make a copy private copy of the error message text before +** they return. {END} Hence, the calling function can deallocate or +** modify the text after they return without harm. +** +** {F16421} The sqlite3_result_toobig() interface causes SQLite +** to throw an error indicating that a string or BLOB is to long +** to represent. {F16422} The sqlite3_result_nomem() interface +** causes SQLite to throw an exception indicating that the a +** memory allocation failed. +** +** {F16431} The sqlite3_result_int() interface sets the return value +** of the application-defined function to be the 32-bit signed integer +** value given in the 2nd argument. +** {F16432} The sqlite3_result_int64() interface sets the return value +** of the application-defined function to be the 64-bit signed integer +** value given in the 2nd argument. +** +** {F16437} The sqlite3_result_null() interface sets the return value +** of the application-defined function to be NULL. +** +** {F16441} The sqlite3_result_text(), sqlite3_result_text16(), +** sqlite3_result_text16le(), and sqlite3_result_text16be() interfaces +** set the return value of the application-defined function to be +** a text string which is represented as UTF-8, UTF-16 native byte order, +** UTF-16 little endian, or UTF-16 big endian, respectively. +** {F16442} SQLite takes the text result from the application from +** the 2nd parameter of the sqlite3_result_text* interfaces. +** {F16444} If the 3rd parameter to the sqlite3_result_text* interfaces +** is negative, then SQLite takes result text from the 2nd parameter +** through the first zero character. +** {F16447} If the 3rd parameter to the sqlite3_result_text* interfaces +** is non-negative, then as many bytes (not characters) of the text +** pointed to by the 2nd parameter are taken as the application-defined +** function result. +** {F16451} If the 4th parameter to the sqlite3_result_text* interfaces +** or sqlite3_result_blob is a non-NULL pointer, then SQLite calls that +** function as the destructor on the text or blob result when it has +** finished using that result. +** {F16453} If the 4th parameter to the sqlite3_result_text* interfaces +** or sqlite3_result_blob is the special constant SQLITE_STATIC, then +** SQLite assumes that the text or blob result is constant space and +** does not copy the space or call a destructor when it has +** finished using that result. +** {F16454} If the 4th parameter to the sqlite3_result_text* interfaces +** or sqlite3_result_blob is the special constant SQLITE_TRANSIENT +** then SQLite makes a copy of the result into space obtained from +** from [sqlite3_malloc()] before it returns. +** +** {F16461} The sqlite3_result_value() interface sets the result of +** the application-defined function to be a copy the [sqlite3_value] +** object specified by the 2nd parameter. {F16463} The +** sqlite3_result_value() interface makes a copy of the [sqlite3_value] +** so that [sqlite3_value] specified in the parameter may change or +** be deallocated after sqlite3_result_value() returns without harm. +** +** {U16491} These routines are called from within the different thread +** than the one containing the application-defined function that recieved +** the [sqlite3_context] pointer, the results are undefined. +*/ +void sqlite3_result_blob(sqlite3_context*, const void*, int, void(*)(void*)); +void sqlite3_result_double(sqlite3_context*, double); +void sqlite3_result_error(sqlite3_context*, const char*, int); +void sqlite3_result_error16(sqlite3_context*, const void*, int); +void sqlite3_result_error_toobig(sqlite3_context*); +void sqlite3_result_error_nomem(sqlite3_context*); +void sqlite3_result_int(sqlite3_context*, int); +void sqlite3_result_int64(sqlite3_context*, sqlite3_int64); +void sqlite3_result_null(sqlite3_context*); +void sqlite3_result_text(sqlite3_context*, const char*, int, void(*)(void*)); +void sqlite3_result_text16(sqlite3_context*, const void*, int, void(*)(void*)); +void sqlite3_result_text16le(sqlite3_context*, const void*, int,void(*)(void*)); +void sqlite3_result_text16be(sqlite3_context*, const void*, int,void(*)(void*)); +void sqlite3_result_value(sqlite3_context*, sqlite3_value*); +void sqlite3_result_zeroblob(sqlite3_context*, int n); + +/* +** CAPI3REF: Define New Collating Sequences {F16600} +** +** {F16601} +** These functions are used to add new collation sequences to the +** [sqlite3*] handle specified as the first argument. +** +** {F16602} +** The name of the new collation sequence is specified as a UTF-8 string +** for sqlite3_create_collation() and sqlite3_create_collation_v2() +** and a UTF-16 string for sqlite3_create_collation16(). {F16603} In all cases +** the name is passed as the second function argument. +** +** {F16604} +** The third argument may be one of the constants [SQLITE_UTF8], +** [SQLITE_UTF16LE] or [SQLITE_UTF16BE], indicating that the user-supplied +** routine expects to be passed pointers to strings encoded using UTF-8, +** UTF-16 little-endian or UTF-16 big-endian respectively. {F16605} The +** third argument might also be [SQLITE_UTF16_ALIGNED] to indicate that +** the routine expects pointers to 16-bit word aligned strings +** of UTF16 in the native byte order of the host computer. +** +** {F16607} +** A pointer to the user supplied routine must be passed as the fifth +** argument. {F16609} If it is NULL, this is the same as deleting the collation +** sequence (so that SQLite cannot call it anymore). +** {F16611} Each time the application +** supplied function is invoked, it is passed a copy of the void* passed as +** the fourth argument to sqlite3_create_collation() or +** sqlite3_create_collation16() as its first parameter. +** +** {F16612} +** The remaining arguments to the application-supplied routine are two strings, +** each represented by a [length, data] pair and encoded in the encoding +** that was passed as the third argument when the collation sequence was +** registered. {END} The application defined collation routine should +** return negative, zero or positive if +** the first string is less than, equal to, or greater than the second +** string. i.e. (STRING1 - STRING2). +** +** {F16615} +** The sqlite3_create_collation_v2() works like sqlite3_create_collation() +** excapt that it takes an extra argument which is a destructor for +** the collation. {F16617} The destructor is called when the collation is +** destroyed and is passed a copy of the fourth parameter void* pointer +** of the sqlite3_create_collation_v2(). +** {F16618} Collations are destroyed when +** they are overridden by later calls to the collation creation functions +** or when the [sqlite3*] database handle is closed using [sqlite3_close()]. +*/ +int sqlite3_create_collation( + sqlite3*, + const char *zName, + int eTextRep, + void*, + int(*xCompare)(void*,int,const void*,int,const void*) +); +int sqlite3_create_collation_v2( + sqlite3*, + const char *zName, + int eTextRep, + void*, + int(*xCompare)(void*,int,const void*,int,const void*), + void(*xDestroy)(void*) +); +int sqlite3_create_collation16( + sqlite3*, + const char *zName, + int eTextRep, + void*, + int(*xCompare)(void*,int,const void*,int,const void*) +); + +/* +** CAPI3REF: Collation Needed Callbacks {F16700} +** +** {F16701} +** To avoid having to register all collation sequences before a database +** can be used, a single callback function may be registered with the +** database handle to be called whenever an undefined collation sequence is +** required. +** +** {F16702} +** If the function is registered using the sqlite3_collation_needed() API, +** then it is passed the names of undefined collation sequences as strings +** encoded in UTF-8. {F16703} If sqlite3_collation_needed16() is used, the names +** are passed as UTF-16 in machine native byte order. {F16704} A call to either +** function replaces any existing callback. +** +** {F16705} When the callback is invoked, the first argument passed is a copy +** of the second argument to sqlite3_collation_needed() or +** sqlite3_collation_needed16(). {F16706} The second argument is the database +** handle. {F16707} The third argument is one of [SQLITE_UTF8], +** [SQLITE_UTF16BE], or [SQLITE_UTF16LE], indicating the most +** desirable form of the collation sequence function required. +** {F16708} The fourth parameter is the name of the +** required collation sequence. {END} +** +** The callback function should register the desired collation using +** [sqlite3_create_collation()], [sqlite3_create_collation16()], or +** [sqlite3_create_collation_v2()]. +*/ +int sqlite3_collation_needed( + sqlite3*, + void*, + void(*)(void*,sqlite3*,int eTextRep,const char*) +); +int sqlite3_collation_needed16( + sqlite3*, + void*, + void(*)(void*,sqlite3*,int eTextRep,const void*) +); + +/* +** Specify the key for an encrypted database. This routine should be +** called right after sqlite3_open(). +** +** The code to implement this API is not available in the public release +** of SQLite. +*/ +int sqlite3_key( + sqlite3 *db, /* Database to be rekeyed */ + const void *pKey, int nKey /* The key */ +); + +/* +** Change the key on an open database. If the current database is not +** encrypted, this routine will encrypt it. If pNew==0 or nNew==0, the +** database is decrypted. +** +** The code to implement this API is not available in the public release +** of SQLite. +*/ +int sqlite3_rekey( + sqlite3 *db, /* Database to be rekeyed */ + const void *pKey, int nKey /* The new key */ +); + +/* +** CAPI3REF: Suspend Execution For A Short Time {F10530} +** +** {F10531} The sqlite3_sleep() function +** causes the current thread to suspend execution +** for at least a number of milliseconds specified in its parameter. +** +** {F10532} If the operating system does not support sleep requests with +** millisecond time resolution, then the time will be rounded up to +** the nearest second. {F10533} The number of milliseconds of sleep actually +** requested from the operating system is returned. +** +** {F10534} SQLite implements this interface by calling the xSleep() +** method of the default [sqlite3_vfs] object. {END} +*/ +int sqlite3_sleep(int); + +/* +** CAPI3REF: Name Of The Folder Holding Temporary Files {F10310} +** +** If this global variable is made to point to a string which is +** the name of a folder (a.ka. directory), then all temporary files +** created by SQLite will be placed in that directory. If this variable +** is NULL pointer, then SQLite does a search for an appropriate temporary +** file directory. +** +** It is not safe to modify this variable once a database connection +** has been opened. It is intended that this variable be set once +** as part of process initialization and before any SQLite interface +** routines have been call and remain unchanged thereafter. +*/ +SQLITE_EXTERN char *sqlite3_temp_directory; + +/* +** CAPI3REF: Test To See If The Database Is In Auto-Commit Mode {F12930} +** +** {F12931} The sqlite3_get_autocommit() interfaces returns non-zero or +** zero if the given database connection is or is not in autocommit mode, +** respectively. {F12932} Autocommit mode is on +** by default. {F12933} Autocommit mode is disabled by a BEGIN statement. +** {F12934} Autocommit mode is reenabled by a COMMIT or ROLLBACK. {END} +** +** If certain kinds of errors occur on a statement within a multi-statement +** transactions (errors including [SQLITE_FULL], [SQLITE_IOERR], +** [SQLITE_NOMEM], [SQLITE_BUSY], and [SQLITE_INTERRUPT]) then the +** transaction might be rolled back automatically. {F12935} The only way to +** find out if SQLite automatically rolled back the transaction after +** an error is to use this function. {END} +** +** {U12936} If another thread changes the autocommit status of the database +** connection while this routine is running, then the return value +** is undefined. {END} +*/ +int sqlite3_get_autocommit(sqlite3*); + +/* +** CAPI3REF: Find The Database Handle Of A Prepared Statement {F13120} +** +** {F13121} The sqlite3_db_handle interface +** returns the [sqlite3*] database handle to which a +** [sqlite3_stmt | prepared statement] belongs. +** {F13122} the database handle returned by sqlite3_db_handle +** is the same database handle that was +** the first argument to the [sqlite3_prepare_v2()] or its variants +** that was used to create the statement in the first place. +*/ +sqlite3 *sqlite3_db_handle(sqlite3_stmt*); + + +/* +** CAPI3REF: Commit And Rollback Notification Callbacks {F12950} +** +** {F12951} The sqlite3_commit_hook() interface registers a callback +** function to be invoked whenever a transaction is committed. +** {F12952} Any callback set by a previous call to sqlite3_commit_hook() +** for the same database connection is overridden. +** {F12953} The sqlite3_rollback_hook() interface registers a callback +** function to be invoked whenever a transaction is committed. +** {F12954} Any callback set by a previous call to sqlite3_commit_hook() +** for the same database connection is overridden. +** {F12956} The pArg argument is passed through +** to the callback. {F12957} If the callback on a commit hook function +** returns non-zero, then the commit is converted into a rollback. +** +** {F12958} If another function was previously registered, its +** pArg value is returned. Otherwise NULL is returned. +** +** {F12959} Registering a NULL function disables the callback. +** +** {F12961} For the purposes of this API, a transaction is said to have been +** rolled back if an explicit "ROLLBACK" statement is executed, or +** an error or constraint causes an implicit rollback to occur. +** {F12962} The rollback callback is not invoked if a transaction is +** automatically rolled back because the database connection is closed. +** {F12964} The rollback callback is not invoked if a transaction is +** rolled back because a commit callback returned non-zero. +** Check on this {END} +** +** These are experimental interfaces and are subject to change. +*/ +void *sqlite3_commit_hook(sqlite3*, int(*)(void*), void*); +void *sqlite3_rollback_hook(sqlite3*, void(*)(void *), void*); + +/* +** CAPI3REF: Data Change Notification Callbacks {F12970} +** +** {F12971} The sqlite3_update_hook() interface +** registers a callback function with the database connection identified by the +** first argument to be invoked whenever a row is updated, inserted or deleted. +** {F12972} Any callback set by a previous call to this function for the same +** database connection is overridden. +** +** {F12974} The second argument is a pointer to the function to invoke when a +** row is updated, inserted or deleted. +** {F12976} The first argument to the callback is +** a copy of the third argument to sqlite3_update_hook(). +** {F12977} The second callback +** argument is one of [SQLITE_INSERT], [SQLITE_DELETE] or [SQLITE_UPDATE], +** depending on the operation that caused the callback to be invoked. +** {F12978} The third and +** fourth arguments to the callback contain pointers to the database and +** table name containing the affected row. +** {F12979} The final callback parameter is +** the rowid of the row. +** {F12981} In the case of an update, this is the rowid after +** the update takes place. +** +** {F12983} The update hook is not invoked when internal system tables are +** modified (i.e. sqlite_master and sqlite_sequence). +** +** {F12984} If another function was previously registered, its pArg value +** is returned. {F12985} Otherwise NULL is returned. +*/ +void *sqlite3_update_hook( + sqlite3*, + void(*)(void *,int ,char const *,char const *,sqlite3_int64), + void* +); + +/* +** CAPI3REF: Enable Or Disable Shared Pager Cache {F10330} +** +** {F10331} +** This routine enables or disables the sharing of the database cache +** and schema data structures between connections to the same database. +** {F10332} +** Sharing is enabled if the argument is true and disabled if the argument +** is false. +** +** {F10333} Cache sharing is enabled and disabled +** for an entire process. {END} This is a change as of SQLite version 3.5.0. +** In prior versions of SQLite, sharing was +** enabled or disabled for each thread separately. +** +** {F10334} +** The cache sharing mode set by this interface effects all subsequent +** calls to [sqlite3_open()], [sqlite3_open_v2()], and [sqlite3_open16()]. +** {F10335} Existing database connections continue use the sharing mode +** that was in effect at the time they were opened. {END} +** +** Virtual tables cannot be used with a shared cache. {F10336} When shared +** cache is enabled, the [sqlite3_create_module()] API used to register +** virtual tables will always return an error. {END} +** +** {F10337} This routine returns [SQLITE_OK] if shared cache was +** enabled or disabled successfully. {F10338} An [SQLITE_ERROR | error code] +** is returned otherwise. {END} +** +** {F10339} Shared cache is disabled by default. {END} But this might change in +** future releases of SQLite. Applications that care about shared +** cache setting should set it explicitly. +*/ +int sqlite3_enable_shared_cache(int); + +/* +** CAPI3REF: Attempt To Free Heap Memory {F17340} +** +** {F17341} The sqlite3_release_memory() interface attempts to +** free N bytes of heap memory by deallocating non-essential memory +** allocations held by the database labrary. {END} Memory used +** to cache database pages to improve performance is an example of +** non-essential memory. {F16342} sqlite3_release_memory() returns +** the number of bytes actually freed, which might be more or less +** than the amount requested. +*/ +int sqlite3_release_memory(int); + +/* +** CAPI3REF: Impose A Limit On Heap Size {F17350} +** +** {F16351} The sqlite3_soft_heap_limit() interface +** places a "soft" limit on the amount of heap memory that may be allocated +** by SQLite. {F16352} If an internal allocation is requested +** that would exceed the soft heap limit, [sqlite3_release_memory()] is +** invoked one or more times to free up some space before the allocation +** is made. {END} +** +** {F16353} The limit is called "soft", because if +** [sqlite3_release_memory()] cannot +** free sufficient memory to prevent the limit from being exceeded, +** the memory is allocated anyway and the current operation proceeds. +** +** {F16354} +** A negative or zero value for N means that there is no soft heap limit and +** [sqlite3_release_memory()] will only be called when memory is exhausted. +** {F16355} The default value for the soft heap limit is zero. +** +** SQLite makes a best effort to honor the soft heap limit. +** {F16356} But if the soft heap limit cannot honored, execution will +** continue without error or notification. {END} This is why the limit is +** called a "soft" limit. It is advisory only. +** +** Prior to SQLite version 3.5.0, this routine only constrained the memory +** allocated by a single thread - the same thread in which this routine +** runs. Beginning with SQLite version 3.5.0, the soft heap limit is +** applied to all threads. {F16357} The value specified for the soft heap limit +** is an upper bound on the total memory allocation for all threads. {END} In +** version 3.5.0 there is no mechanism for limiting the heap usage for +** individual threads. +*/ +void sqlite3_soft_heap_limit(int); + +/* +** CAPI3REF: Extract Metadata About A Column Of A Table {F12850} +** +** This routine +** returns meta-data about a specific column of a specific database +** table accessible using the connection handle passed as the first function +** argument. +** +** The column is identified by the second, third and fourth parameters to +** this function. The second parameter is either the name of the database +** (i.e. "main", "temp" or an attached database) containing the specified +** table or NULL. If it is NULL, then all attached databases are searched +** for the table using the same algorithm as the database engine uses to +** resolve unqualified table references. +** +** The third and fourth parameters to this function are the table and column +** name of the desired column, respectively. Neither of these parameters +** may be NULL. +** +** Meta information is returned by writing to the memory locations passed as +** the 5th and subsequent parameters to this function. Any of these +** arguments may be NULL, in which case the corresponding element of meta +** information is ommitted. +** +**
+** Parameter     Output Type      Description
+** -----------------------------------
+**
+**   5th         const char*      Data type
+**   6th         const char*      Name of the default collation sequence 
+**   7th         int              True if the column has a NOT NULL constraint
+**   8th         int              True if the column is part of the PRIMARY KEY
+**   9th         int              True if the column is AUTOINCREMENT
+** 
+** +** +** The memory pointed to by the character pointers returned for the +** declaration type and collation sequence is valid only until the next +** call to any sqlite API function. +** +** If the specified table is actually a view, then an error is returned. +** +** If the specified column is "rowid", "oid" or "_rowid_" and an +** INTEGER PRIMARY KEY column has been explicitly declared, then the output +** parameters are set for the explicitly declared column. If there is no +** explicitly declared IPK column, then the output parameters are set as +** follows: +** +**
+**     data type: "INTEGER"
+**     collation sequence: "BINARY"
+**     not null: 0
+**     primary key: 1
+**     auto increment: 0
+** 
+** +** This function may load one or more schemas from database files. If an +** error occurs during this process, or if the requested table or column +** cannot be found, an SQLITE error code is returned and an error message +** left in the database handle (to be retrieved using sqlite3_errmsg()). +** +** This API is only available if the library was compiled with the +** SQLITE_ENABLE_COLUMN_METADATA preprocessor symbol defined. +*/ +int sqlite3_table_column_metadata( + sqlite3 *db, /* Connection handle */ + const char *zDbName, /* Database name or NULL */ + const char *zTableName, /* Table name */ + const char *zColumnName, /* Column name */ + char const **pzDataType, /* OUTPUT: Declared data type */ + char const **pzCollSeq, /* OUTPUT: Collation sequence name */ + int *pNotNull, /* OUTPUT: True if NOT NULL constraint exists */ + int *pPrimaryKey, /* OUTPUT: True if column part of PK */ + int *pAutoinc /* OUTPUT: True if column is auto-increment */ +); + +/* +** CAPI3REF: Load An Extension {F12600} +** +** {F12601} The sqlite3_load_extension() interface +** attempts to load an SQLite extension library contained in the file +** zFile. {F12602} The entry point is zProc. {F12603} zProc may be 0 +** in which case the name of the entry point defaults +** to "sqlite3_extension_init". +** +** {F12604} The sqlite3_load_extension() interface shall +** return [SQLITE_OK] on success and [SQLITE_ERROR] if something goes wrong. +** +** {F12605} +** If an error occurs and pzErrMsg is not 0, then the +** sqlite3_load_extension() interface shall attempt to fill *pzErrMsg with +** error message text stored in memory obtained from [sqlite3_malloc()]. +** {END} The calling function should free this memory +** by calling [sqlite3_free()]. +** +** {F12606} +** Extension loading must be enabled using [sqlite3_enable_load_extension()] +** prior to calling this API or an error will be returned. +*/ +int sqlite3_load_extension( + sqlite3 *db, /* Load the extension into this database connection */ + const char *zFile, /* Name of the shared library containing extension */ + const char *zProc, /* Entry point. Derived from zFile if 0 */ + char **pzErrMsg /* Put error message here if not 0 */ +); + +/* +** CAPI3REF: Enable Or Disable Extension Loading {F12620} +** +** So as not to open security holes in older applications that are +** unprepared to deal with extension loading, and as a means of disabling +** extension loading while evaluating user-entered SQL, the following +** API is provided to turn the [sqlite3_load_extension()] mechanism on and +** off. {F12622} It is off by default. {END} See ticket #1863. +** +** {F12621} Call the sqlite3_enable_load_extension() routine +** with onoff==1 to turn extension loading on +** and call it with onoff==0 to turn it back off again. {END} +*/ +int sqlite3_enable_load_extension(sqlite3 *db, int onoff); + +/* +** CAPI3REF: Make Arrangements To Automatically Load An Extension {F12640} +** +** {F12641} This function +** registers an extension entry point that is automatically invoked +** whenever a new database connection is opened using +** [sqlite3_open()], [sqlite3_open16()], or [sqlite3_open_v2()]. {END} +** +** This API can be invoked at program startup in order to register +** one or more statically linked extensions that will be available +** to all new database connections. +** +** {F12642} Duplicate extensions are detected so calling this routine multiple +** times with the same extension is harmless. +** +** {F12643} This routine stores a pointer to the extension in an array +** that is obtained from sqlite_malloc(). {END} If you run a memory leak +** checker on your program and it reports a leak because of this +** array, then invoke [sqlite3_reset_auto_extension()] prior +** to shutdown to free the memory. +** +** {F12644} Automatic extensions apply across all threads. {END} +** +** This interface is experimental and is subject to change or +** removal in future releases of SQLite. +*/ +int sqlite3_auto_extension(void *xEntryPoint); + + +/* +** CAPI3REF: Reset Automatic Extension Loading {F12660} +** +** {F12661} This function disables all previously registered +** automatic extensions. {END} This +** routine undoes the effect of all prior [sqlite3_automatic_extension()] +** calls. +** +** {F12662} This call disabled automatic extensions in all threads. {END} +** +** This interface is experimental and is subject to change or +** removal in future releases of SQLite. +*/ +void sqlite3_reset_auto_extension(void); + + +/* +****** EXPERIMENTAL - subject to change without notice ************** +** +** The interface to the virtual-table mechanism is currently considered +** to be experimental. The interface might change in incompatible ways. +** If this is a problem for you, do not use the interface at this time. +** +** When the virtual-table mechanism stablizes, we will declare the +** interface fixed, support it indefinitely, and remove this comment. +*/ + +/* +** Structures used by the virtual table interface +*/ +typedef struct sqlite3_vtab sqlite3_vtab; +typedef struct sqlite3_index_info sqlite3_index_info; +typedef struct sqlite3_vtab_cursor sqlite3_vtab_cursor; +typedef struct sqlite3_module sqlite3_module; + +/* +** A module is a class of virtual tables. Each module is defined +** by an instance of the following structure. This structure consists +** mostly of methods for the module. +*/ +struct sqlite3_module { + int iVersion; + int (*xCreate)(sqlite3*, void *pAux, + int argc, const char *const*argv, + sqlite3_vtab **ppVTab, char**); + int (*xConnect)(sqlite3*, void *pAux, + int argc, const char *const*argv, + sqlite3_vtab **ppVTab, char**); + int (*xBestIndex)(sqlite3_vtab *pVTab, sqlite3_index_info*); + int (*xDisconnect)(sqlite3_vtab *pVTab); + int (*xDestroy)(sqlite3_vtab *pVTab); + int (*xOpen)(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor); + int (*xClose)(sqlite3_vtab_cursor*); + int (*xFilter)(sqlite3_vtab_cursor*, int idxNum, const char *idxStr, + int argc, sqlite3_value **argv); + int (*xNext)(sqlite3_vtab_cursor*); + int (*xEof)(sqlite3_vtab_cursor*); + int (*xColumn)(sqlite3_vtab_cursor*, sqlite3_context*, int); + int (*xRowid)(sqlite3_vtab_cursor*, sqlite3_int64 *pRowid); + int (*xUpdate)(sqlite3_vtab *, int, sqlite3_value **, sqlite3_int64 *); + int (*xBegin)(sqlite3_vtab *pVTab); + int (*xSync)(sqlite3_vtab *pVTab); + int (*xCommit)(sqlite3_vtab *pVTab); + int (*xRollback)(sqlite3_vtab *pVTab); + int (*xFindFunction)(sqlite3_vtab *pVtab, int nArg, const char *zName, + void (**pxFunc)(sqlite3_context*,int,sqlite3_value**), + void **ppArg); + + int (*xRename)(sqlite3_vtab *pVtab, const char *zNew); +}; + +/* +** The sqlite3_index_info structure and its substructures is used to +** pass information into and receive the reply from the xBestIndex +** method of an sqlite3_module. The fields under **Inputs** are the +** inputs to xBestIndex and are read-only. xBestIndex inserts its +** results into the **Outputs** fields. +** +** The aConstraint[] array records WHERE clause constraints of the +** form: +** +** column OP expr +** +** Where OP is =, <, <=, >, or >=. +** The particular operator is stored +** in aConstraint[].op. The index of the column is stored in +** aConstraint[].iColumn. aConstraint[].usable is TRUE if the +** expr on the right-hand side can be evaluated (and thus the constraint +** is usable) and false if it cannot. +** +** The optimizer automatically inverts terms of the form "expr OP column" +** and makes other simplifications to the WHERE clause in an attempt to +** get as many WHERE clause terms into the form shown above as possible. +** The aConstraint[] array only reports WHERE clause terms in the correct +** form that refer to the particular virtual table being queried. +** +** Information about the ORDER BY clause is stored in aOrderBy[]. +** Each term of aOrderBy records a column of the ORDER BY clause. +** +** The xBestIndex method must fill aConstraintUsage[] with information +** about what parameters to pass to xFilter. If argvIndex>0 then +** the right-hand side of the corresponding aConstraint[] is evaluated +** and becomes the argvIndex-th entry in argv. If aConstraintUsage[].omit +** is true, then the constraint is assumed to be fully handled by the +** virtual table and is not checked again by SQLite. +** +** The idxNum and idxPtr values are recorded and passed into xFilter. +** sqlite3_free() is used to free idxPtr if needToFreeIdxPtr is true. +** +** The orderByConsumed means that output from xFilter will occur in +** the correct order to satisfy the ORDER BY clause so that no separate +** sorting step is required. +** +** The estimatedCost value is an estimate of the cost of doing the +** particular lookup. A full scan of a table with N entries should have +** a cost of N. A binary search of a table of N entries should have a +** cost of approximately log(N). +*/ +struct sqlite3_index_info { + /* Inputs */ + int nConstraint; /* Number of entries in aConstraint */ + struct sqlite3_index_constraint { + int iColumn; /* Column on left-hand side of constraint */ + unsigned char op; /* Constraint operator */ + unsigned char usable; /* True if this constraint is usable */ + int iTermOffset; /* Used internally - xBestIndex should ignore */ + } *aConstraint; /* Table of WHERE clause constraints */ + int nOrderBy; /* Number of terms in the ORDER BY clause */ + struct sqlite3_index_orderby { + int iColumn; /* Column number */ + unsigned char desc; /* True for DESC. False for ASC. */ + } *aOrderBy; /* The ORDER BY clause */ + + /* Outputs */ + struct sqlite3_index_constraint_usage { + int argvIndex; /* if >0, constraint is part of argv to xFilter */ + unsigned char omit; /* Do not code a test for this constraint */ + } *aConstraintUsage; + int idxNum; /* Number used to identify the index */ + char *idxStr; /* String, possibly obtained from sqlite3_malloc */ + int needToFreeIdxStr; /* Free idxStr using sqlite3_free() if true */ + int orderByConsumed; /* True if output is already ordered */ + double estimatedCost; /* Estimated cost of using this index */ +}; +#define SQLITE_INDEX_CONSTRAINT_EQ 2 +#define SQLITE_INDEX_CONSTRAINT_GT 4 +#define SQLITE_INDEX_CONSTRAINT_LE 8 +#define SQLITE_INDEX_CONSTRAINT_LT 16 +#define SQLITE_INDEX_CONSTRAINT_GE 32 +#define SQLITE_INDEX_CONSTRAINT_MATCH 64 + +/* +** This routine is used to register a new module name with an SQLite +** connection. Module names must be registered before creating new +** virtual tables on the module, or before using preexisting virtual +** tables of the module. +*/ +int sqlite3_create_module( + sqlite3 *db, /* SQLite connection to register module with */ + const char *zName, /* Name of the module */ + const sqlite3_module *, /* Methods for the module */ + void * /* Client data for xCreate/xConnect */ +); + +/* +** This routine is identical to the sqlite3_create_module() method above, +** except that it allows a destructor function to be specified. It is +** even more experimental than the rest of the virtual tables API. +*/ +int sqlite3_create_module_v2( + sqlite3 *db, /* SQLite connection to register module with */ + const char *zName, /* Name of the module */ + const sqlite3_module *, /* Methods for the module */ + void *, /* Client data for xCreate/xConnect */ + void(*xDestroy)(void*) /* Module destructor function */ +); + +/* +** Every module implementation uses a subclass of the following structure +** to describe a particular instance of the module. Each subclass will +** be tailored to the specific needs of the module implementation. The +** purpose of this superclass is to define certain fields that are common +** to all module implementations. +** +** Virtual tables methods can set an error message by assigning a +** string obtained from sqlite3_mprintf() to zErrMsg. The method should +** take care that any prior string is freed by a call to sqlite3_free() +** prior to assigning a new string to zErrMsg. After the error message +** is delivered up to the client application, the string will be automatically +** freed by sqlite3_free() and the zErrMsg field will be zeroed. Note +** that sqlite3_mprintf() and sqlite3_free() are used on the zErrMsg field +** since virtual tables are commonly implemented in loadable extensions which +** do not have access to sqlite3MPrintf() or sqlite3Free(). +*/ +struct sqlite3_vtab { + const sqlite3_module *pModule; /* The module for this virtual table */ + int nRef; /* Used internally */ + char *zErrMsg; /* Error message from sqlite3_mprintf() */ + /* Virtual table implementations will typically add additional fields */ +}; + +/* Every module implementation uses a subclass of the following structure +** to describe cursors that point into the virtual table and are used +** to loop through the virtual table. Cursors are created using the +** xOpen method of the module. Each module implementation will define +** the content of a cursor structure to suit its own needs. +** +** This superclass exists in order to define fields of the cursor that +** are common to all implementations. +*/ +struct sqlite3_vtab_cursor { + sqlite3_vtab *pVtab; /* Virtual table of this cursor */ + /* Virtual table implementations will typically add additional fields */ +}; + +/* +** The xCreate and xConnect methods of a module use the following API +** to declare the format (the names and datatypes of the columns) of +** the virtual tables they implement. +*/ +int sqlite3_declare_vtab(sqlite3*, const char *zCreateTable); + +/* +** Virtual tables can provide alternative implementations of functions +** using the xFindFunction method. But global versions of those functions +** must exist in order to be overloaded. +** +** This API makes sure a global version of a function with a particular +** name and number of parameters exists. If no such function exists +** before this API is called, a new function is created. The implementation +** of the new function always causes an exception to be thrown. So +** the new function is not good for anything by itself. Its only +** purpose is to be a place-holder function that can be overloaded +** by virtual tables. +** +** This API should be considered part of the virtual table interface, +** which is experimental and subject to change. +*/ +int sqlite3_overload_function(sqlite3*, const char *zFuncName, int nArg); + +/* +** The interface to the virtual-table mechanism defined above (back up +** to a comment remarkably similar to this one) is currently considered +** to be experimental. The interface might change in incompatible ways. +** If this is a problem for you, do not use the interface at this time. +** +** When the virtual-table mechanism stabilizes, we will declare the +** interface fixed, support it indefinitely, and remove this comment. +** +****** EXPERIMENTAL - subject to change without notice ************** +*/ + +/* +** CAPI3REF: A Handle To An Open BLOB {F17800} +** +** An instance of the following opaque structure is used to +** represent an blob-handle. A blob-handle is created by +** [sqlite3_blob_open()] and destroyed by [sqlite3_blob_close()]. +** The [sqlite3_blob_read()] and [sqlite3_blob_write()] interfaces +** can be used to read or write small subsections of the blob. +** The [sqlite3_blob_bytes()] interface returns the size of the +** blob in bytes. +*/ +typedef struct sqlite3_blob sqlite3_blob; + +/* +** CAPI3REF: Open A BLOB For Incremental I/O {F17810} +** +** {F17811} This interfaces opens a handle to the blob located +** in row iRow,, column zColumn, table zTable in database zDb; +** in other words, the same blob that would be selected by: +** +**
+**     SELECT zColumn FROM zDb.zTable WHERE rowid = iRow;
+** 
{END} +** +** {F17812} If the flags parameter is non-zero, the blob is opened for +** read and write access. If it is zero, the blob is opened for read +** access. {END} +** +** {F17813} On success, [SQLITE_OK] is returned and the new +** [sqlite3_blob | blob handle] is written to *ppBlob. +** {F17814} Otherwise an error code is returned and +** any value written to *ppBlob should not be used by the caller. +** {F17815} This function sets the database-handle error code and message +** accessible via [sqlite3_errcode()] and [sqlite3_errmsg()]. +** We should go through and mark all interfaces that behave this +** way with a similar statement +*/ +int sqlite3_blob_open( + sqlite3*, + const char *zDb, + const char *zTable, + const char *zColumn, + sqlite3_int64 iRow, + int flags, + sqlite3_blob **ppBlob +); + +/* +** CAPI3REF: Close A BLOB Handle {F17830} +** +** Close an open [sqlite3_blob | blob handle]. +** +** {F17831} Closing a BLOB shall cause the current transaction to commit +** if there are no other BLOBs, no pending prepared statements, and the +** database connection is in autocommit mode. +** {F17832} If any writes were made to the BLOB, they might be held in cache +** until the close operation if they will fit. {END} +** Closing the BLOB often forces the changes +** out to disk and so if any I/O errors occur, they will likely occur +** at the time when the BLOB is closed. {F17833} Any errors that occur during +** closing are reported as a non-zero return value. +** +** {F17839} The BLOB is closed unconditionally. Even if this routine returns +** an error code, the BLOB is still closed. +*/ +int sqlite3_blob_close(sqlite3_blob *); + +/* +** CAPI3REF: Return The Size Of An Open BLOB {F17805} +** +** {F16806} Return the size in bytes of the blob accessible via the open +** [sqlite3_blob | blob-handle] passed as an argument. +*/ +int sqlite3_blob_bytes(sqlite3_blob *); + +/* +** CAPI3REF: Read Data From A BLOB Incrementally {F17850} +** +** This function is used to read data from an open +** [sqlite3_blob | blob-handle] into a caller supplied buffer. +** {F17851} n bytes of data are copied into buffer +** z from the open blob, starting at offset iOffset. +** +** {F17852} If offset iOffset is less than n bytes from the end of the blob, +** [SQLITE_ERROR] is returned and no data is read. {F17853} If n is +** less than zero [SQLITE_ERROR] is returned and no data is read. +** +** {F17854} On success, SQLITE_OK is returned. Otherwise, an +** [SQLITE_ERROR | SQLite error code] or an +** [SQLITE_IOERR_READ | extended error code] is returned. +*/ +int sqlite3_blob_read(sqlite3_blob *, void *z, int n, int iOffset); + +/* +** CAPI3REF: Write Data Into A BLOB Incrementally {F17870} +** +** This function is used to write data into an open +** [sqlite3_blob | blob-handle] from a user supplied buffer. +** {F17871} n bytes of data are copied from the buffer +** pointed to by z into the open blob, starting at offset iOffset. +** +** {F17872} If the [sqlite3_blob | blob-handle] passed as the first argument +** was not opened for writing (the flags parameter to [sqlite3_blob_open()] +*** was zero), this function returns [SQLITE_READONLY]. +** +** {F17873} This function may only modify the contents of the blob; it is +** not possible to increase the size of a blob using this API. +** {F17874} If offset iOffset is less than n bytes from the end of the blob, +** [SQLITE_ERROR] is returned and no data is written. {F17875} If n is +** less than zero [SQLITE_ERROR] is returned and no data is written. +** +** {F17876} On success, SQLITE_OK is returned. Otherwise, an +** [SQLITE_ERROR | SQLite error code] or an +** [SQLITE_IOERR_READ | extended error code] is returned. +*/ +int sqlite3_blob_write(sqlite3_blob *, const void *z, int n, int iOffset); + +/* +** CAPI3REF: Virtual File System Objects {F11200} +** +** A virtual filesystem (VFS) is an [sqlite3_vfs] object +** that SQLite uses to interact +** with the underlying operating system. Most builds come with a +** single default VFS that is appropriate for the host computer. +** New VFSes can be registered and existing VFSes can be unregistered. +** The following interfaces are provided. +** +** {F11201} The sqlite3_vfs_find() interface returns a pointer to +** a VFS given its name. {F11202} Names are case sensitive. +** {F11203} Names are zero-terminated UTF-8 strings. +** {F11204} If there is no match, a NULL +** pointer is returned. {F11205} If zVfsName is NULL then the default +** VFS is returned. {END} +** +** {F11210} New VFSes are registered with sqlite3_vfs_register(). +** {F11211} Each new VFS becomes the default VFS if the makeDflt flag is set. +** {F11212} The same VFS can be registered multiple times without injury. +** {F11213} To make an existing VFS into the default VFS, register it again +** with the makeDflt flag set. {U11214} If two different VFSes with the +** same name are registered, the behavior is undefined. {U11215} If a +** VFS is registered with a name that is NULL or an empty string, +** then the behavior is undefined. +** +** {F11220} Unregister a VFS with the sqlite3_vfs_unregister() interface. +** {F11221} If the default VFS is unregistered, another VFS is chosen as +** the default. The choice for the new VFS is arbitrary. +*/ +sqlite3_vfs *sqlite3_vfs_find(const char *zVfsName); +int sqlite3_vfs_register(sqlite3_vfs*, int makeDflt); +int sqlite3_vfs_unregister(sqlite3_vfs*); + +/* +** CAPI3REF: Mutexes {F17000} +** +** The SQLite core uses these routines for thread +** synchronization. Though they are intended for internal +** use by SQLite, code that links against SQLite is +** permitted to use any of these routines. +** +** The SQLite source code contains multiple implementations +** of these mutex routines. An appropriate implementation +** is selected automatically at compile-time. The following +** implementations are available in the SQLite core: +** +**
    +**
  • SQLITE_MUTEX_OS2 +**
  • SQLITE_MUTEX_PTHREAD +**
  • SQLITE_MUTEX_W32 +**
  • SQLITE_MUTEX_NOOP +**
+** +** The SQLITE_MUTEX_NOOP implementation is a set of routines +** that does no real locking and is appropriate for use in +** a single-threaded application. The SQLITE_MUTEX_OS2, +** SQLITE_MUTEX_PTHREAD, and SQLITE_MUTEX_W32 implementations +** are appropriate for use on os/2, unix, and windows. +** +** If SQLite is compiled with the SQLITE_MUTEX_APPDEF preprocessor +** macro defined (with "-DSQLITE_MUTEX_APPDEF=1"), then no mutex +** implementation is included with the library. The +** mutex interface routines defined here become external +** references in the SQLite library for which implementations +** must be provided by the application. This facility allows an +** application that links against SQLite to provide its own mutex +** implementation without having to modify the SQLite core. +** +** {F17011} The sqlite3_mutex_alloc() routine allocates a new +** mutex and returns a pointer to it. {F17012} If it returns NULL +** that means that a mutex could not be allocated. {F17013} SQLite +** will unwind its stack and return an error. {F17014} The argument +** to sqlite3_mutex_alloc() is one of these integer constants: +** +**
    +**
  • SQLITE_MUTEX_FAST +**
  • SQLITE_MUTEX_RECURSIVE +**
  • SQLITE_MUTEX_STATIC_MASTER +**
  • SQLITE_MUTEX_STATIC_MEM +**
  • SQLITE_MUTEX_STATIC_MEM2 +**
  • SQLITE_MUTEX_STATIC_PRNG +**
  • SQLITE_MUTEX_STATIC_LRU +**
{END} +** +** {F17015} The first two constants cause sqlite3_mutex_alloc() to create +** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE +** is used but not necessarily so when SQLITE_MUTEX_FAST is used. {END} +** The mutex implementation does not need to make a distinction +** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does +** not want to. {F17016} But SQLite will only request a recursive mutex in +** cases where it really needs one. {END} If a faster non-recursive mutex +** implementation is available on the host platform, the mutex subsystem +** might return such a mutex in response to SQLITE_MUTEX_FAST. +** +** {F17017} The other allowed parameters to sqlite3_mutex_alloc() each return +** a pointer to a static preexisting mutex. {END} Four static mutexes are +** used by the current version of SQLite. Future versions of SQLite +** may add additional static mutexes. Static mutexes are for internal +** use by SQLite only. Applications that use SQLite mutexes should +** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or +** SQLITE_MUTEX_RECURSIVE. +** +** {F17018} Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST +** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc() +** returns a different mutex on every call. {F17034} But for the static +** mutex types, the same mutex is returned on every call that has +** the same type number. {END} +** +** {F17019} The sqlite3_mutex_free() routine deallocates a previously +** allocated dynamic mutex. {F17020} SQLite is careful to deallocate every +** dynamic mutex that it allocates. {U17021} The dynamic mutexes must not be in +** use when they are deallocated. {U17022} Attempting to deallocate a static +** mutex results in undefined behavior. {F17023} SQLite never deallocates +** a static mutex. {END} +** +** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt +** to enter a mutex. {F17024} If another thread is already within the mutex, +** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return +** SQLITE_BUSY. {F17025} The sqlite3_mutex_try() interface returns SQLITE_OK +** upon successful entry. {F17026} Mutexes created using +** SQLITE_MUTEX_RECURSIVE can be entered multiple times by the same thread. +** {F17027} In such cases the, +** mutex must be exited an equal number of times before another thread +** can enter. {U17028} If the same thread tries to enter any other +** kind of mutex more than once, the behavior is undefined. +** {F17029} SQLite will never exhibit +** such behavior in its own use of mutexes. {END} +** +** Some systems (ex: windows95) do not the operation implemented by +** sqlite3_mutex_try(). On those systems, sqlite3_mutex_try() will +** always return SQLITE_BUSY. {F17030} The SQLite core only ever uses +** sqlite3_mutex_try() as an optimization so this is acceptable behavior. {END} +** +** {F17031} The sqlite3_mutex_leave() routine exits a mutex that was +** previously entered by the same thread. {U17032} The behavior +** is undefined if the mutex is not currently entered by the +** calling thread or is not currently allocated. {F17033} SQLite will +** never do either. {END} +** +** See also: [sqlite3_mutex_held()] and [sqlite3_mutex_notheld()]. +*/ +sqlite3_mutex *sqlite3_mutex_alloc(int); +void sqlite3_mutex_free(sqlite3_mutex*); +void sqlite3_mutex_enter(sqlite3_mutex*); +int sqlite3_mutex_try(sqlite3_mutex*); +void sqlite3_mutex_leave(sqlite3_mutex*); + +/* +** CAPI3REF: Mutex Verifcation Routines {F17080} +** +** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routines +** are intended for use inside assert() statements. {F17081} The SQLite core +** never uses these routines except inside an assert() and applications +** are advised to follow the lead of the core. {F17082} The core only +** provides implementations for these routines when it is compiled +** with the SQLITE_DEBUG flag. {U17087} External mutex implementations +** are only required to provide these routines if SQLITE_DEBUG is +** defined and if NDEBUG is not defined. +** +** {F17083} These routines should return true if the mutex in their argument +** is held or not held, respectively, by the calling thread. {END} +** +** {X17084} The implementation is not required to provided versions of these +** routines that actually work. +** If the implementation does not provide working +** versions of these routines, it should at least provide stubs +** that always return true so that one does not get spurious +** assertion failures. {END} +** +** {F17085} If the argument to sqlite3_mutex_held() is a NULL pointer then +** the routine should return 1. {END} This seems counter-intuitive since +** clearly the mutex cannot be held if it does not exist. But the +** the reason the mutex does not exist is because the build is not +** using mutexes. And we do not want the assert() containing the +** call to sqlite3_mutex_held() to fail, so a non-zero return is +** the appropriate thing to do. {F17086} The sqlite3_mutex_notheld() +** interface should also return 1 when given a NULL pointer. +*/ +int sqlite3_mutex_held(sqlite3_mutex*); +int sqlite3_mutex_notheld(sqlite3_mutex*); + +/* +** CAPI3REF: Mutex Types {F17001} +** +** {F17002} The [sqlite3_mutex_alloc()] interface takes a single argument +** which is one of these integer constants. {END} +*/ +#define SQLITE_MUTEX_FAST 0 +#define SQLITE_MUTEX_RECURSIVE 1 +#define SQLITE_MUTEX_STATIC_MASTER 2 +#define SQLITE_MUTEX_STATIC_MEM 3 /* sqlite3_malloc() */ +#define SQLITE_MUTEX_STATIC_MEM2 4 /* sqlite3_release_memory() */ +#define SQLITE_MUTEX_STATIC_PRNG 5 /* sqlite3_random() */ +#define SQLITE_MUTEX_STATIC_LRU 6 /* lru page list */ + +/* +** CAPI3REF: Low-Level Control Of Database Files {F11300} +** +** {F11301} The [sqlite3_file_control()] interface makes a direct call to the +** xFileControl method for the [sqlite3_io_methods] object associated +** with a particular database identified by the second argument. {F11302} The +** name of the database is the name assigned to the database by the +** ATTACH SQL command that opened the +** database. {F11303} To control the main database file, use the name "main" +** or a NULL pointer. {F11304} The third and fourth parameters to this routine +** are passed directly through to the second and third parameters of +** the xFileControl method. {F11305} The return value of the xFileControl +** method becomes the return value of this routine. +** +** {F11306} If the second parameter (zDbName) does not match the name of any +** open database file, then SQLITE_ERROR is returned. {F11307} This error +** code is not remembered and will not be recalled by [sqlite3_errcode()] +** or [sqlite3_errmsg()]. {U11308} The underlying xFileControl method might +** also return SQLITE_ERROR. {U11309} There is no way to distinguish between +** an incorrect zDbName and an SQLITE_ERROR return from the underlying +** xFileControl method. {END} +** +** See also: [SQLITE_FCNTL_LOCKSTATE] +*/ +int sqlite3_file_control(sqlite3*, const char *zDbName, int op, void*); + +/* +** Undo the hack that converts floating point types to integer for +** builds on processors without floating point support. +*/ +#ifdef SQLITE_OMIT_FLOATING_POINT +# undef double +#endif + +#if 0 +} /* End of the 'extern "C"' block */ +#endif +#endif + +/************** End of sqlite3.h *********************************************/ +/************** Continuing where we left off in fts3_tokenizer.h *************/ + +/* +** Structures used by the tokenizer interface. When a new tokenizer +** implementation is registered, the caller provides a pointer to +** an sqlite3_tokenizer_module containing pointers to the callback +** functions that make up an implementation. +** +** When an fts3 table is created, it passes any arguments passed to +** the tokenizer clause of the CREATE VIRTUAL TABLE statement to the +** sqlite3_tokenizer_module.xCreate() function of the requested tokenizer +** implementation. The xCreate() function in turn returns an +** sqlite3_tokenizer structure representing the specific tokenizer to +** be used for the fts3 table (customized by the tokenizer clause arguments). +** +** To tokenize an input buffer, the sqlite3_tokenizer_module.xOpen() +** method is called. It returns an sqlite3_tokenizer_cursor object +** that may be used to tokenize a specific input buffer based on +** the tokenization rules supplied by a specific sqlite3_tokenizer +** object. +*/ +typedef struct sqlite3_tokenizer_module sqlite3_tokenizer_module; +typedef struct sqlite3_tokenizer sqlite3_tokenizer; +typedef struct sqlite3_tokenizer_cursor sqlite3_tokenizer_cursor; + +struct sqlite3_tokenizer_module { + + /* + ** Structure version. Should always be set to 0. + */ + int iVersion; + + /* + ** Create a new tokenizer. The values in the argv[] array are the + ** arguments passed to the "tokenizer" clause of the CREATE VIRTUAL + ** TABLE statement that created the fts3 table. For example, if + ** the following SQL is executed: + ** + ** CREATE .. USING fts3( ... , tokenizer arg1 arg2) + ** + ** then argc is set to 2, and the argv[] array contains pointers + ** to the strings "arg1" and "arg2". + ** + ** This method should return either SQLITE_OK (0), or an SQLite error + ** code. If SQLITE_OK is returned, then *ppTokenizer should be set + ** to point at the newly created tokenizer structure. The generic + ** sqlite3_tokenizer.pModule variable should not be initialised by + ** this callback. The caller will do so. + */ + int (*xCreate)( + int argc, /* Size of argv array */ + const char *const*argv, /* Tokenizer argument strings */ + sqlite3_tokenizer **ppTokenizer /* OUT: Created tokenizer */ + ); + + /* + ** Destroy an existing tokenizer. The fts3 module calls this method + ** exactly once for each successful call to xCreate(). + */ + int (*xDestroy)(sqlite3_tokenizer *pTokenizer); + + /* + ** Create a tokenizer cursor to tokenize an input buffer. The caller + ** is responsible for ensuring that the input buffer remains valid + ** until the cursor is closed (using the xClose() method). + */ + int (*xOpen)( + sqlite3_tokenizer *pTokenizer, /* Tokenizer object */ + const char *pInput, int nBytes, /* Input buffer */ + sqlite3_tokenizer_cursor **ppCursor /* OUT: Created tokenizer cursor */ + ); + + /* + ** Destroy an existing tokenizer cursor. The fts3 module calls this + ** method exactly once for each successful call to xOpen(). + */ + int (*xClose)(sqlite3_tokenizer_cursor *pCursor); + + /* + ** Retrieve the next token from the tokenizer cursor pCursor. This + ** method should either return SQLITE_OK and set the values of the + ** "OUT" variables identified below, or SQLITE_DONE to indicate that + ** the end of the buffer has been reached, or an SQLite error code. + ** + ** *ppToken should be set to point at a buffer containing the + ** normalized version of the token (i.e. after any case-folding and/or + ** stemming has been performed). *pnBytes should be set to the length + ** of this buffer in bytes. The input text that generated the token is + ** identified by the byte offsets returned in *piStartOffset and + ** *piEndOffset. + ** + ** The buffer *ppToken is set to point at is managed by the tokenizer + ** implementation. It is only required to be valid until the next call + ** to xNext() or xClose(). + */ + /* TODO(shess) current implementation requires pInput to be + ** nul-terminated. This should either be fixed, or pInput/nBytes + ** should be converted to zInput. + */ + int (*xNext)( + sqlite3_tokenizer_cursor *pCursor, /* Tokenizer cursor */ + const char **ppToken, int *pnBytes, /* OUT: Normalized text for token */ + int *piStartOffset, /* OUT: Byte offset of token in input buffer */ + int *piEndOffset, /* OUT: Byte offset of end of token in input buffer */ + int *piPosition /* OUT: Number of tokens returned before this one */ + ); +}; + +struct sqlite3_tokenizer { + const sqlite3_tokenizer_module *pModule; /* The module for this tokenizer */ + /* Tokenizer implementations will typically add additional fields */ +}; + +struct sqlite3_tokenizer_cursor { + sqlite3_tokenizer *pTokenizer; /* Tokenizer for this cursor. */ + /* Tokenizer implementations will typically add additional fields */ +}; + +#endif /* _FTS3_TOKENIZER_H_ */ + +/************** End of fts3_tokenizer.h **************************************/ +/************** Continuing where we left off in fts3_porter.c ****************/ + +/* +** Class derived from sqlite3_tokenizer +*/ +typedef struct porter_tokenizer { + sqlite3_tokenizer base; /* Base class */ +} porter_tokenizer; + +/* +** Class derived from sqlit3_tokenizer_cursor +*/ +typedef struct porter_tokenizer_cursor { + sqlite3_tokenizer_cursor base; + const char *zInput; /* input we are tokenizing */ + int nInput; /* size of the input */ + int iOffset; /* current position in zInput */ + int iToken; /* index of next token to be returned */ + char *zToken; /* storage for current token */ + int nAllocated; /* space allocated to zToken buffer */ +} porter_tokenizer_cursor; + + +/* Forward declaration */ +static const sqlite3_tokenizer_module porterTokenizerModule; + + +/* +** Create a new tokenizer instance. +*/ +static int porterCreate( + int argc, const char * const *argv, + sqlite3_tokenizer **ppTokenizer +){ + porter_tokenizer *t; + t = (porter_tokenizer *) sqlite3_malloc(sizeof(*t)); + if( t==NULL ) return SQLITE_NOMEM; + memset(t, 0, sizeof(*t)); + *ppTokenizer = &t->base; + return SQLITE_OK; +} + +/* +** Destroy a tokenizer +*/ +static int porterDestroy(sqlite3_tokenizer *pTokenizer){ + sqlite3_free(pTokenizer); + return SQLITE_OK; +} + +/* +** Prepare to begin tokenizing a particular string. The input +** string to be tokenized is zInput[0..nInput-1]. A cursor +** used to incrementally tokenize this string is returned in +** *ppCursor. +*/ +static int porterOpen( + sqlite3_tokenizer *pTokenizer, /* The tokenizer */ + const char *zInput, int nInput, /* String to be tokenized */ + sqlite3_tokenizer_cursor **ppCursor /* OUT: Tokenization cursor */ +){ + porter_tokenizer_cursor *c; + + c = (porter_tokenizer_cursor *) sqlite3_malloc(sizeof(*c)); + if( c==NULL ) return SQLITE_NOMEM; + + c->zInput = zInput; + if( zInput==0 ){ + c->nInput = 0; + }else if( nInput<0 ){ + c->nInput = (int)strlen(zInput); + }else{ + c->nInput = nInput; + } + c->iOffset = 0; /* start tokenizing at the beginning */ + c->iToken = 0; + c->zToken = NULL; /* no space allocated, yet. */ + c->nAllocated = 0; + + *ppCursor = &c->base; + return SQLITE_OK; +} + +/* +** Close a tokenization cursor previously opened by a call to +** porterOpen() above. +*/ +static int porterClose(sqlite3_tokenizer_cursor *pCursor){ + porter_tokenizer_cursor *c = (porter_tokenizer_cursor *) pCursor; + sqlite3_free(c->zToken); + sqlite3_free(c); + return SQLITE_OK; +} +/* +** Vowel or consonant +*/ +static const char cType[] = { + 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, + 1, 1, 1, 2, 1 +}; + +/* +** isConsonant() and isVowel() determine if their first character in +** the string they point to is a consonant or a vowel, according +** to Porter ruls. +** +** A consonate is any letter other than 'a', 'e', 'i', 'o', or 'u'. +** 'Y' is a consonant unless it follows another consonant, +** in which case it is a vowel. +** +** In these routine, the letters are in reverse order. So the 'y' rule +** is that 'y' is a consonant unless it is followed by another +** consonent. +*/ +static int isVowel(const char*); +static int isConsonant(const char *z){ + int j; + char x = *z; + if( x==0 ) return 0; + assert( x>='a' && x<='z' ); + j = cType[x-'a']; + if( j<2 ) return j; + return z[1]==0 || isVowel(z + 1); +} +static int isVowel(const char *z){ + int j; + char x = *z; + if( x==0 ) return 0; + assert( x>='a' && x<='z' ); + j = cType[x-'a']; + if( j<2 ) return 1-j; + return isConsonant(z + 1); +} + +/* +** Let any sequence of one or more vowels be represented by V and let +** C be sequence of one or more consonants. Then every word can be +** represented as: +** +** [C] (VC){m} [V] +** +** In prose: A word is an optional consonant followed by zero or +** vowel-consonant pairs followed by an optional vowel. "m" is the +** number of vowel consonant pairs. This routine computes the value +** of m for the first i bytes of a word. +** +** Return true if the m-value for z is 1 or more. In other words, +** return true if z contains at least one vowel that is followed +** by a consonant. +** +** In this routine z[] is in reverse order. So we are really looking +** for an instance of of a consonant followed by a vowel. +*/ +static int m_gt_0(const char *z){ + while( isVowel(z) ){ z++; } + if( *z==0 ) return 0; + while( isConsonant(z) ){ z++; } + return *z!=0; +} + +/* Like mgt0 above except we are looking for a value of m which is +** exactly 1 +*/ +static int m_eq_1(const char *z){ + while( isVowel(z) ){ z++; } + if( *z==0 ) return 0; + while( isConsonant(z) ){ z++; } + if( *z==0 ) return 0; + while( isVowel(z) ){ z++; } + if( *z==0 ) return 1; + while( isConsonant(z) ){ z++; } + return *z==0; +} + +/* Like mgt0 above except we are looking for a value of m>1 instead +** or m>0 +*/ +static int m_gt_1(const char *z){ + while( isVowel(z) ){ z++; } + if( *z==0 ) return 0; + while( isConsonant(z) ){ z++; } + if( *z==0 ) return 0; + while( isVowel(z) ){ z++; } + if( *z==0 ) return 0; + while( isConsonant(z) ){ z++; } + return *z!=0; +} + +/* +** Return TRUE if there is a vowel anywhere within z[0..n-1] +*/ +static int hasVowel(const char *z){ + while( isConsonant(z) ){ z++; } + return *z!=0; +} + +/* +** Return TRUE if the word ends in a double consonant. +** +** The text is reversed here. So we are really looking at +** the first two characters of z[]. +*/ +static int doubleConsonant(const char *z){ + return isConsonant(z) && z[0]==z[1] && isConsonant(z+1); +} + +/* +** Return TRUE if the word ends with three letters which +** are consonant-vowel-consonent and where the final consonant +** is not 'w', 'x', or 'y'. +** +** The word is reversed here. So we are really checking the +** first three letters and the first one cannot be in [wxy]. +*/ +static int star_oh(const char *z){ + return + z[0]!=0 && isConsonant(z) && + z[0]!='w' && z[0]!='x' && z[0]!='y' && + z[1]!=0 && isVowel(z+1) && + z[2]!=0 && isConsonant(z+2); +} + +/* +** If the word ends with zFrom and xCond() is true for the stem +** of the word that preceeds the zFrom ending, then change the +** ending to zTo. +** +** The input word *pz and zFrom are both in reverse order. zTo +** is in normal order. +** +** Return TRUE if zFrom matches. Return FALSE if zFrom does not +** match. Not that TRUE is returned even if xCond() fails and +** no substitution occurs. +*/ +static int stem( + char **pz, /* The word being stemmed (Reversed) */ + const char *zFrom, /* If the ending matches this... (Reversed) */ + const char *zTo, /* ... change the ending to this (not reversed) */ + int (*xCond)(const char*) /* Condition that must be true */ +){ + char *z = *pz; + while( *zFrom && *zFrom==*z ){ z++; zFrom++; } + if( *zFrom!=0 ) return 0; + if( xCond && !xCond(z) ) return 1; + while( *zTo ){ + *(--z) = *(zTo++); + } + *pz = z; + return 1; +} + +/* +** This is the fallback stemmer used when the porter stemmer is +** inappropriate. The input word is copied into the output with +** US-ASCII case folding. If the input word is too long (more +** than 20 bytes if it contains no digits or more than 6 bytes if +** it contains digits) then word is truncated to 20 or 6 bytes +** by taking 10 or 3 bytes from the beginning and end. +*/ +static void copy_stemmer(const char *zIn, int nIn, char *zOut, int *pnOut){ + int i, mx, j; + int hasDigit = 0; + for(i=0; i='A' && c<='Z' ){ + zOut[i] = c - 'A' + 'a'; + }else{ + if( c>='0' && c<='9' ) hasDigit = 1; + zOut[i] = c; + } + } + mx = hasDigit ? 3 : 10; + if( nIn>mx*2 ){ + for(j=mx, i=nIn-mx; i=sizeof(zReverse)-7 ){ + /* The word is too big or too small for the porter stemmer. + ** Fallback to the copy stemmer */ + copy_stemmer(zIn, nIn, zOut, pnOut); + return; + } + for(i=0, j=sizeof(zReverse)-6; i='A' && c<='Z' ){ + zReverse[j] = c + 'a' - 'A'; + }else if( c>='a' && c<='z' ){ + zReverse[j] = c; + }else{ + /* The use of a character not in [a-zA-Z] means that we fallback + ** to the copy stemmer */ + copy_stemmer(zIn, nIn, zOut, pnOut); + return; + } + } + memset(&zReverse[sizeof(zReverse)-5], 0, 5); + z = &zReverse[j+1]; + + + /* Step 1a */ + if( z[0]=='s' ){ + if( + !stem(&z, "sess", "ss", 0) && + !stem(&z, "sei", "i", 0) && + !stem(&z, "ss", "ss", 0) + ){ + z++; + } + } + + /* Step 1b */ + z2 = z; + if( stem(&z, "dee", "ee", m_gt_0) ){ + /* Do nothing. The work was all in the test */ + }else if( + (stem(&z, "gni", "", hasVowel) || stem(&z, "de", "", hasVowel)) + && z!=z2 + ){ + if( stem(&z, "ta", "ate", 0) || + stem(&z, "lb", "ble", 0) || + stem(&z, "zi", "ize", 0) ){ + /* Do nothing. The work was all in the test */ + }else if( doubleConsonant(z) && (*z!='l' && *z!='s' && *z!='z') ){ + z++; + }else if( m_eq_1(z) && star_oh(z) ){ + *(--z) = 'e'; + } + } + + /* Step 1c */ + if( z[0]=='y' && hasVowel(z+1) ){ + z[0] = 'i'; + } + + /* Step 2 */ + switch( z[1] ){ + case 'a': + stem(&z, "lanoita", "ate", m_gt_0) || + stem(&z, "lanoit", "tion", m_gt_0); + break; + case 'c': + stem(&z, "icne", "ence", m_gt_0) || + stem(&z, "icna", "ance", m_gt_0); + break; + case 'e': + stem(&z, "rezi", "ize", m_gt_0); + break; + case 'g': + stem(&z, "igol", "log", m_gt_0); + break; + case 'l': + stem(&z, "ilb", "ble", m_gt_0) || + stem(&z, "illa", "al", m_gt_0) || + stem(&z, "iltne", "ent", m_gt_0) || + stem(&z, "ile", "e", m_gt_0) || + stem(&z, "ilsuo", "ous", m_gt_0); + break; + case 'o': + stem(&z, "noitazi", "ize", m_gt_0) || + stem(&z, "noita", "ate", m_gt_0) || + stem(&z, "rota", "ate", m_gt_0); + break; + case 's': + stem(&z, "msila", "al", m_gt_0) || + stem(&z, "ssenevi", "ive", m_gt_0) || + stem(&z, "ssenluf", "ful", m_gt_0) || + stem(&z, "ssensuo", "ous", m_gt_0); + break; + case 't': + stem(&z, "itila", "al", m_gt_0) || + stem(&z, "itivi", "ive", m_gt_0) || + stem(&z, "itilib", "ble", m_gt_0); + break; + } + + /* Step 3 */ + switch( z[0] ){ + case 'e': + stem(&z, "etaci", "ic", m_gt_0) || + stem(&z, "evita", "", m_gt_0) || + stem(&z, "ezila", "al", m_gt_0); + break; + case 'i': + stem(&z, "itici", "ic", m_gt_0); + break; + case 'l': + stem(&z, "laci", "ic", m_gt_0) || + stem(&z, "luf", "", m_gt_0); + break; + case 's': + stem(&z, "ssen", "", m_gt_0); + break; + } + + /* Step 4 */ + switch( z[1] ){ + case 'a': + if( z[0]=='l' && m_gt_1(z+2) ){ + z += 2; + } + break; + case 'c': + if( z[0]=='e' && z[2]=='n' && (z[3]=='a' || z[3]=='e') && m_gt_1(z+4) ){ + z += 4; + } + break; + case 'e': + if( z[0]=='r' && m_gt_1(z+2) ){ + z += 2; + } + break; + case 'i': + if( z[0]=='c' && m_gt_1(z+2) ){ + z += 2; + } + break; + case 'l': + if( z[0]=='e' && z[2]=='b' && (z[3]=='a' || z[3]=='i') && m_gt_1(z+4) ){ + z += 4; + } + break; + case 'n': + if( z[0]=='t' ){ + if( z[2]=='a' ){ + if( m_gt_1(z+3) ){ + z += 3; + } + }else if( z[2]=='e' ){ + stem(&z, "tneme", "", m_gt_1) || + stem(&z, "tnem", "", m_gt_1) || + stem(&z, "tne", "", m_gt_1); + } + } + break; + case 'o': + if( z[0]=='u' ){ + if( m_gt_1(z+2) ){ + z += 2; + } + }else if( z[3]=='s' || z[3]=='t' ){ + stem(&z, "noi", "", m_gt_1); + } + break; + case 's': + if( z[0]=='m' && z[2]=='i' && m_gt_1(z+3) ){ + z += 3; + } + break; + case 't': + stem(&z, "eta", "", m_gt_1) || + stem(&z, "iti", "", m_gt_1); + break; + case 'u': + if( z[0]=='s' && z[2]=='o' && m_gt_1(z+3) ){ + z += 3; + } + break; + case 'v': + case 'z': + if( z[0]=='e' && z[2]=='i' && m_gt_1(z+3) ){ + z += 3; + } + break; + } + + /* Step 5a */ + if( z[0]=='e' ){ + if( m_gt_1(z+1) ){ + z++; + }else if( m_eq_1(z+1) && !star_oh(z+1) ){ + z++; + } + } + + /* Step 5b */ + if( m_gt_1(z) && z[0]=='l' && z[1]=='l' ){ + z++; + } + + /* z[] is now the stemmed word in reverse order. Flip it back + ** around into forward order and return. + */ + *pnOut = i = strlen(z); + zOut[i] = 0; + while( *z ){ + zOut[--i] = *(z++); + } +} + +/* +** Characters that can be part of a token. We assume any character +** whose value is greater than 0x80 (any UTF character) can be +** part of a token. In other words, delimiters all must have +** values of 0x7f or lower. +*/ +static const char porterIdChar[] = { +/* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */ + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 3x */ + 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 4x */ + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, /* 5x */ + 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6x */ + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* 7x */ +}; +#define isDelim(C) (((ch=C)&0x80)==0 && (ch<0x30 || !porterIdChar[ch-0x30])) + +/* +** Extract the next token from a tokenization cursor. The cursor must +** have been opened by a prior call to porterOpen(). +*/ +static int porterNext( + sqlite3_tokenizer_cursor *pCursor, /* Cursor returned by porterOpen */ + const char **pzToken, /* OUT: *pzToken is the token text */ + int *pnBytes, /* OUT: Number of bytes in token */ + int *piStartOffset, /* OUT: Starting offset of token */ + int *piEndOffset, /* OUT: Ending offset of token */ + int *piPosition /* OUT: Position integer of token */ +){ + porter_tokenizer_cursor *c = (porter_tokenizer_cursor *) pCursor; + const char *z = c->zInput; + + while( c->iOffsetnInput ){ + int iStartOffset, ch; + + /* Scan past delimiter characters */ + while( c->iOffsetnInput && isDelim(z[c->iOffset]) ){ + c->iOffset++; + } + + /* Count non-delimiter characters. */ + iStartOffset = c->iOffset; + while( c->iOffsetnInput && !isDelim(z[c->iOffset]) ){ + c->iOffset++; + } + + if( c->iOffset>iStartOffset ){ + int n = c->iOffset-iStartOffset; + if( n>c->nAllocated ){ + c->nAllocated = n+20; + c->zToken = sqlite3_realloc(c->zToken, c->nAllocated); + if( c->zToken==NULL ) return SQLITE_NOMEM; + } + porter_stemmer(&z[iStartOffset], n, c->zToken, pnBytes); + *pzToken = c->zToken; + *piStartOffset = iStartOffset; + *piEndOffset = c->iOffset; + *piPosition = c->iToken++; + return SQLITE_OK; + } + } + return SQLITE_DONE; +} + +/* +** The set of routines that implement the porter-stemmer tokenizer +*/ +static const sqlite3_tokenizer_module porterTokenizerModule = { + 0, + porterCreate, + porterDestroy, + porterOpen, + porterClose, + porterNext, +}; + +/* +** Allocate a new porter tokenizer. Return a pointer to the new +** tokenizer in *ppModule +*/ +void sqlite3Fts3PorterTokenizerModule( + sqlite3_tokenizer_module const**ppModule +){ + *ppModule = &porterTokenizerModule; +} + +#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */ + +/************** End of fts3_porter.c *****************************************/ +/************** Begin file fts3_tokenizer.c **********************************/ +/* +** 2007 June 22 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +****************************************************************************** +** +** This is part of an SQLite module implementing full-text search. +** This particular file implements the generic tokenizer interface. +*/ + +/* +** The code in this file is only compiled if: +** +** * The FTS3 module is being built as an extension +** (in which case SQLITE_CORE is not defined), or +** +** * The FTS3 module is being built into the core of +** SQLite (in which case SQLITE_ENABLE_FTS3 is defined). +*/ +#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) + +/************** Include sqlite3ext.h in the middle of fts3_tokenizer.c *******/ +/************** Begin file sqlite3ext.h **************************************/ +/* +** 2006 June 7 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This header file defines the SQLite interface for use by +** shared libraries that want to be imported as extensions into +** an SQLite instance. Shared libraries that intend to be loaded +** as extensions by SQLite should #include this file instead of +** sqlite3.h. +** +** @(#) $Id: sqlite3.c,v 1.13 2008/01/29 23:34:19 myk%mozilla.org Exp $ +*/ +#ifndef _SQLITE3EXT_H_ +#define _SQLITE3EXT_H_ +/************** Include sqlite3.h in the middle of sqlite3ext.h **************/ +/************** Begin file sqlite3.h *****************************************/ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This header file defines the interface that the SQLite library +** presents to client programs. If a C-function, structure, datatype, +** or constant definition does not appear in this file, then it is +** not a published API of SQLite, is subject to change without +** notice, and should not be referenced by programs that use SQLite. +** +** Some of the definitions that are in this file are marked as +** "experimental". Experimental interfaces are normally new +** features recently added to SQLite. We do not anticipate changes +** to experimental interfaces but reserve to make minor changes if +** experience from use "in the wild" suggest such changes are prudent. +** +** The official C-language API documentation for SQLite is derived +** from comments in this file. This file is the authoritative source +** on how SQLite interfaces are suppose to operate. +** +** The name of this file under configuration management is "sqlite.h.in". +** The makefile makes some minor changes to this file (such as inserting +** the version number) and changes its name to "sqlite3.h" as +** part of the build process. +** +** @(#) $Id: sqlite3.c,v 1.13 2008/01/29 23:34:19 myk%mozilla.org Exp $ +*/ +#ifndef _SQLITE3_H_ +#define _SQLITE3_H_ + +/* +** Make sure we can call this stuff from C++. +*/ +#if 0 +extern "C" { +#endif + + +/* +** Add the ability to override 'extern' +*/ +#ifndef SQLITE_EXTERN +# define SQLITE_EXTERN extern +#endif + +/* +** Make sure these symbols where not defined by some previous header +** file. +*/ +#ifdef SQLITE_VERSION +# undef SQLITE_VERSION +#endif +#ifdef SQLITE_VERSION_NUMBER +# undef SQLITE_VERSION_NUMBER +#endif + +/* +** CAPI3REF: Compile-Time Library Version Numbers {F10010} +** +** {F10011} The #define in the sqlite3.h header file named +** SQLITE_VERSION resolves to a string literal that identifies +** the version of the SQLite library in the format "X.Y.Z", where +** X is the major version number, Y is the minor version number and Z +** is the release number. The X.Y.Z might be followed by "alpha" or "beta". +** {END} For example "3.1.1beta". +** +** The X value is always 3 in SQLite. The X value only changes when +** backwards compatibility is broken and we intend to never break +** backwards compatibility. The Y value only changes when +** there are major feature enhancements that are forwards compatible +** but not backwards compatible. The Z value is incremented with +** each release but resets back to 0 when Y is incremented. +** +** {F10014} The SQLITE_VERSION_NUMBER #define resolves to an integer +** with the value (X*1000000 + Y*1000 + Z) where X, Y, and Z are as +** with SQLITE_VERSION. {END} For example, for version "3.1.1beta", +** SQLITE_VERSION_NUMBER is set to 3001001. To detect if they are using +** version 3.1.1 or greater at compile time, programs may use the test +** (SQLITE_VERSION_NUMBER>=3001001). +** +** See also: [sqlite3_libversion()] and [sqlite3_libversion_number()]. +*/ +#define SQLITE_VERSION "3.5.4" +#define SQLITE_VERSION_NUMBER 3005004 + +/* +** CAPI3REF: Run-Time Library Version Numbers {F10020} +** +** {F10021} The sqlite3_libversion_number() interface returns an integer +** equal to [SQLITE_VERSION_NUMBER]. {END} The value returned +** by this routine should only be different from the header values +** if the application is compiled using an sqlite3.h header from a +** different version of SQLite than library. Cautious programmers might +** include a check in their application to verify that +** sqlite3_libversion_number() always returns the value +** [SQLITE_VERSION_NUMBER]. +** +** {F10022} The sqlite3_version[] string constant contains the text of the +** [SQLITE_VERSION] string. {F10023} The sqlite3_libversion() function returns +** a pointer to the sqlite3_version[] string constant. {END} The +** sqlite3_libversion() function +** is provided for DLL users who can only access functions and not +** constants within the DLL. +*/ +SQLITE_EXTERN const char sqlite3_version[]; +const char *sqlite3_libversion(void); +int sqlite3_libversion_number(void); + +/* +** CAPI3REF: Test To See If The Library Is Threadsafe {F10100} +** +** {F10101} The sqlite3_threadsafe() routine returns nonzero +** if SQLite was compiled with its mutexes enabled or zero if +** SQLite was compiled with mutexes disabled. {END} If this +** routine returns false, then it is not safe for simultaneously +** running threads to both invoke SQLite interfaces. +** +** Really all this routine does is return true if SQLite was +** compiled with the -DSQLITE_THREADSAFE=1 option and false if +** compiled with -DSQLITE_THREADSAFE=0. If SQLite uses an +** application-defined mutex subsystem, malloc subsystem, collating +** sequence, VFS, SQL function, progress callback, commit hook, +** extension, or other accessories and these add-ons are not +** threadsafe, then clearly the combination will not be threadsafe +** either. Hence, this routine never reports that the library +** is guaranteed to be threadsafe, only when it is guaranteed not +** to be. +*/ +int sqlite3_threadsafe(void); + +/* +** CAPI3REF: Database Connection Handle {F12000} +** +** Each open SQLite database is represented by pointer to an instance of the +** opaque structure named "sqlite3". It is useful to think of an sqlite3 +** pointer as an object. The [sqlite3_open()], [sqlite3_open16()], and +** [sqlite3_open_v2()] interfaces are its constructors +** and [sqlite3_close()] is its destructor. There are many other interfaces +** (such as [sqlite3_prepare_v2()], [sqlite3_create_function()], and +** [sqlite3_busy_timeout()] to name but three) that are methods on this +** object. +*/ +typedef struct sqlite3 sqlite3; + + +/* +** CAPI3REF: 64-Bit Integer Types {F10200} +** +** Because there is no cross-platform way to specify such types +** SQLite includes typedefs for 64-bit signed and unsigned integers. +** {F10201} The sqlite_int64 and sqlite3_int64 types specify a +** 64-bit signed integer. {F10202} The sqlite_uint64 and +** sqlite3_uint64 types specify a 64-bit unsigned integer. {END} +** +** The sqlite3_int64 and sqlite3_uint64 are the preferred type +** definitions. The sqlite_int64 and sqlite_uint64 types are +** supported for backwards compatibility only. +*/ +#ifdef SQLITE_INT64_TYPE + typedef SQLITE_INT64_TYPE sqlite_int64; + typedef unsigned SQLITE_INT64_TYPE sqlite_uint64; +#elif defined(_MSC_VER) || defined(__BORLANDC__) + typedef __int64 sqlite_int64; + typedef unsigned __int64 sqlite_uint64; +#else + typedef long long int sqlite_int64; + typedef unsigned long long int sqlite_uint64; +#endif +typedef sqlite_int64 sqlite3_int64; +typedef sqlite_uint64 sqlite3_uint64; + +/* +** If compiling for a processor that lacks floating point support, +** substitute integer for floating-point +*/ +#ifdef SQLITE_OMIT_FLOATING_POINT +# define double sqlite3_int64 +#endif + +/* +** CAPI3REF: Closing A Database Connection {F12010} +** +** {F12011} The sqlite3_close() interfaces destroys an [sqlite3] object +** allocated by a prior call to [sqlite3_open()], [sqlite3_open16()], or +** [sqlite3_open_v2()]. {F12012} Sqlite3_close() releases all +** memory used by the connection and closes all open files. {END}. +** +** {F12013} If the database connection contains +** [sqlite3_stmt | prepared statements] that have not been finalized +** by [sqlite3_finalize()], then sqlite3_close() returns SQLITE_BUSY +** and leaves the connection open. {F12014} Giving sqlite3_close() +** a NULL pointer is a harmless no-op. {END} +** +** {U12015} Passing this routine a database connection that has already been +** closed results in undefined behavior. {U12016} If other interfaces that +** reference the same database connection are pending (either in the +** same thread or in different threads) when this routine is called, +** then the behavior is undefined and is almost certainly undesirable. +*/ +int sqlite3_close(sqlite3 *); + +/* +** The type for a callback function. +** This is legacy and deprecated. It is included for historical +** compatibility and is not documented. +*/ +typedef int (*sqlite3_callback)(void*,int,char**, char**); + +/* +** CAPI3REF: One-Step Query Execution Interface {F12100} +** +** {F12101} The sqlite3_exec() interface evaluates zero or more +** UTF-8 encoded, semicolon-separated SQL statements in the zero-terminated +** string of its second argument. {F12102} The SQL +** statements are evaluated in the context of the database connection +** specified by in the first argument. +** {F12103} SQL statements are prepared one by one using +** [sqlite3_prepare()] or the equivalent, evaluated +** using one or more calls to [sqlite3_step()], then destroyed +** using [sqlite3_finalize()]. {F12104} The return value of +** sqlite3_exec() is SQLITE_OK if all SQL statement run +** successfully. +** +** {F12105} If one or more of the SQL statements handed to +** sqlite3_exec() are queries, then +** the callback function specified by the 3rd parameter is +** invoked once for each row of the query result. {F12106} +** If the callback returns a non-zero value then the query +** is aborted, all subsequent SQL statements +** are skipped and the sqlite3_exec() function returns the [SQLITE_ABORT]. +** +** {F12107} The 4th parameter to sqlite3_exec() is an arbitrary pointer +** that is passed through to the callback function as its first parameter. +** +** {F12108} The 2nd parameter to the callback function is the number of +** columns in the query result. {F12109} The 3rd parameter to the callback +** is an array of pointers to strings holding the values for each column +** as extracted using [sqlite3_column_text()]. NULL values in the result +** set result in a NULL pointer. All other value are in their UTF-8 +** string representation. {F12117} +** The 4th parameter to the callback is an array of strings +** obtained using [sqlite3_column_name()] and holding +** the names of each column, also in UTF-8. +** +** {F12110} The callback function may be NULL, even for queries. A NULL +** callback is not an error. It just means that no callback +** will be invoked. +** +** {F12112} If an error occurs while parsing or evaluating the SQL +** then an appropriate error message is written into memory obtained +** from [sqlite3_malloc()] and *errmsg is made to point to that message +** assuming errmsg is not NULL. +** {U12113} The calling function is responsible for freeing the memory +** using [sqlite3_free()]. +** {F12116} If [sqlite3_malloc()] fails while attempting to generate +** the error message, *errmsg is set to NULL. +** {F12114} If errmsg is NULL then no attempt is made to generate an +** error message. Is the return code SQLITE_NOMEM or the original +** error code? What happens if there are multiple errors? +** Do we get code for the first error, or is the choice of reported +** error arbitrary? +** +** {F12115} The return value is is SQLITE_OK if there are no errors and +** some other [SQLITE_OK | return code] if there is an error. +** The particular return value depends on the type of error. {END} +*/ +int sqlite3_exec( + sqlite3*, /* An open database */ + const char *sql, /* SQL to be evaluted */ + int (*callback)(void*,int,char**,char**), /* Callback function */ + void *, /* 1st argument to callback */ + char **errmsg /* Error msg written here */ +); + +/* +** CAPI3REF: Result Codes {F10210} +** KEYWORDS: SQLITE_OK +** +** Many SQLite functions return an integer result code from the set shown +** above in order to indicates success or failure. +** +** {F10211} The result codes shown here are the only ones returned +** by SQLite in its default configuration. {F10212} However, the +** [sqlite3_extended_result_codes()] API can be used to set a database +** connectoin to return more detailed result codes. {END} +** +** See also: [SQLITE_IOERR_READ | extended result codes] +** +*/ +#define SQLITE_OK 0 /* Successful result */ +/* beginning-of-error-codes */ +#define SQLITE_ERROR 1 /* SQL error or missing database */ +#define SQLITE_INTERNAL 2 /* Internal logic error in SQLite */ +#define SQLITE_PERM 3 /* Access permission denied */ +#define SQLITE_ABORT 4 /* Callback routine requested an abort */ +#define SQLITE_BUSY 5 /* The database file is locked */ +#define SQLITE_LOCKED 6 /* A table in the database is locked */ +#define SQLITE_NOMEM 7 /* A malloc() failed */ +#define SQLITE_READONLY 8 /* Attempt to write a readonly database */ +#define SQLITE_INTERRUPT 9 /* Operation terminated by sqlite3_interrupt()*/ +#define SQLITE_IOERR 10 /* Some kind of disk I/O error occurred */ +#define SQLITE_CORRUPT 11 /* The database disk image is malformed */ +#define SQLITE_NOTFOUND 12 /* NOT USED. Table or record not found */ +#define SQLITE_FULL 13 /* Insertion failed because database is full */ +#define SQLITE_CANTOPEN 14 /* Unable to open the database file */ +#define SQLITE_PROTOCOL 15 /* NOT USED. Database lock protocol error */ +#define SQLITE_EMPTY 16 /* Database is empty */ +#define SQLITE_SCHEMA 17 /* The database schema changed */ +#define SQLITE_TOOBIG 18 /* String or BLOB exceeds size limit */ +#define SQLITE_CONSTRAINT 19 /* Abort due to constraint violation */ +#define SQLITE_MISMATCH 20 /* Data type mismatch */ +#define SQLITE_MISUSE 21 /* Library used incorrectly */ +#define SQLITE_NOLFS 22 /* Uses OS features not supported on host */ +#define SQLITE_AUTH 23 /* Authorization denied */ +#define SQLITE_FORMAT 24 /* Auxiliary database format error */ +#define SQLITE_RANGE 25 /* 2nd parameter to sqlite3_bind out of range */ +#define SQLITE_NOTADB 26 /* File opened that is not a database file */ +#define SQLITE_ROW 100 /* sqlite3_step() has another row ready */ +#define SQLITE_DONE 101 /* sqlite3_step() has finished executing */ +/* end-of-error-codes */ + +/* +** CAPI3REF: Extended Result Codes {F10220} +** +** In its default configuration, SQLite API routines return one of 26 integer +** [SQLITE_OK | result codes]. However, experience has shown that +** many of these result codes are too course-grained. They do not provide as +** much information about problems as programmers might like. In an effort to +** address this, newer versions of SQLite (version 3.3.8 and later) include +** support for additional result codes that provide more detailed information +** about errors. {F10221} The extended result codes are enabled or disabled +** for each database connection using the [sqlite3_extended_result_codes()] +** API. {END} +** +** Some of the available extended result codes are listed above. +** We expect the number of extended result codes will be expand +** over time. {U10422} Software that uses extended result codes should expect +** to see new result codes in future releases of SQLite. {END} +** +** {F10223} The symbolic name for an extended result code always contains +** a related primary result code as a prefix. {F10224} Primary result +** codes contain a single "_" character. {F10225} Extended result codes +** contain two or more "_" characters. {F10226} The numeric value of an +** extended result code can be converted to its +** corresponding primary result code by masking off the lower 8 bytes. {END} +** +** The SQLITE_OK result code will never be extended. It will always +** be exactly zero. +*/ +#define SQLITE_IOERR_READ (SQLITE_IOERR | (1<<8)) +#define SQLITE_IOERR_SHORT_READ (SQLITE_IOERR | (2<<8)) +#define SQLITE_IOERR_WRITE (SQLITE_IOERR | (3<<8)) +#define SQLITE_IOERR_FSYNC (SQLITE_IOERR | (4<<8)) +#define SQLITE_IOERR_DIR_FSYNC (SQLITE_IOERR | (5<<8)) +#define SQLITE_IOERR_TRUNCATE (SQLITE_IOERR | (6<<8)) +#define SQLITE_IOERR_FSTAT (SQLITE_IOERR | (7<<8)) +#define SQLITE_IOERR_UNLOCK (SQLITE_IOERR | (8<<8)) +#define SQLITE_IOERR_RDLOCK (SQLITE_IOERR | (9<<8)) +#define SQLITE_IOERR_DELETE (SQLITE_IOERR | (10<<8)) +#define SQLITE_IOERR_BLOCKED (SQLITE_IOERR | (11<<8)) +#define SQLITE_IOERR_NOMEM (SQLITE_IOERR | (12<<8)) + +/* +** CAPI3REF: Flags For File Open Operations {F10230} +** +** {F10231} Some combination of the these bit values are used as the +** third argument to the [sqlite3_open_v2()] interface and +** as fourth argument to the xOpen method of the +** [sqlite3_vfs] object. +*/ +#define SQLITE_OPEN_READONLY 0x00000001 +#define SQLITE_OPEN_READWRITE 0x00000002 +#define SQLITE_OPEN_CREATE 0x00000004 +#define SQLITE_OPEN_DELETEONCLOSE 0x00000008 +#define SQLITE_OPEN_EXCLUSIVE 0x00000010 +#define SQLITE_OPEN_MAIN_DB 0x00000100 +#define SQLITE_OPEN_TEMP_DB 0x00000200 +#define SQLITE_OPEN_TRANSIENT_DB 0x00000400 +#define SQLITE_OPEN_MAIN_JOURNAL 0x00000800 +#define SQLITE_OPEN_TEMP_JOURNAL 0x00001000 +#define SQLITE_OPEN_SUBJOURNAL 0x00002000 +#define SQLITE_OPEN_MASTER_JOURNAL 0x00004000 + +/* +** CAPI3REF: Device Characteristics {F10240} +** +** {F10241} The xDeviceCapabilities method of the [sqlite3_io_methods] +** object returns an integer which is a vector of the these +** bit values expressing I/O characteristics of the mass storage +** device that holds the file that the [sqlite3_io_methods] +** refers to. {END} +** +** {F10242} The SQLITE_IOCAP_ATOMIC property means that all writes of +** any size are atomic. {F10243} The SQLITE_IOCAP_ATOMICnnn values +** mean that writes of blocks that are nnn bytes in size and +** are aligned to an address which is an integer multiple of +** nnn are atomic. {F10244} The SQLITE_IOCAP_SAFE_APPEND value means +** that when data is appended to a file, the data is appended +** first then the size of the file is extended, never the other +** way around. {F10245} The SQLITE_IOCAP_SEQUENTIAL property means that +** information is written to disk in the same order as calls +** to xWrite(). +*/ +#define SQLITE_IOCAP_ATOMIC 0x00000001 +#define SQLITE_IOCAP_ATOMIC512 0x00000002 +#define SQLITE_IOCAP_ATOMIC1K 0x00000004 +#define SQLITE_IOCAP_ATOMIC2K 0x00000008 +#define SQLITE_IOCAP_ATOMIC4K 0x00000010 +#define SQLITE_IOCAP_ATOMIC8K 0x00000020 +#define SQLITE_IOCAP_ATOMIC16K 0x00000040 +#define SQLITE_IOCAP_ATOMIC32K 0x00000080 +#define SQLITE_IOCAP_ATOMIC64K 0x00000100 +#define SQLITE_IOCAP_SAFE_APPEND 0x00000200 +#define SQLITE_IOCAP_SEQUENTIAL 0x00000400 + +/* +** CAPI3REF: File Locking Levels {F10250} +** +** {F10251} SQLite uses one of the following integer values as the second +** argument to calls it makes to the xLock() and xUnlock() methods +** of an [sqlite3_io_methods] object. {END} +*/ +#define SQLITE_LOCK_NONE 0 +#define SQLITE_LOCK_SHARED 1 +#define SQLITE_LOCK_RESERVED 2 +#define SQLITE_LOCK_PENDING 3 +#define SQLITE_LOCK_EXCLUSIVE 4 + +/* +** CAPI3REF: Synchronization Type Flags {F10260} +** +** {F10261} When SQLite invokes the xSync() method of an +** [sqlite3_io_methods] object it uses a combination of the +** these integer values as the second argument. +** +** {F10262} When the SQLITE_SYNC_DATAONLY flag is used, it means that the +** sync operation only needs to flush data to mass storage. Inode +** information need not be flushed. {F10263} The SQLITE_SYNC_NORMAL means +** to use normal fsync() semantics. {F10264} The SQLITE_SYNC_FULL flag means +** to use Mac OS-X style fullsync instead of fsync(). +*/ +#define SQLITE_SYNC_NORMAL 0x00002 +#define SQLITE_SYNC_FULL 0x00003 +#define SQLITE_SYNC_DATAONLY 0x00010 + + +/* +** CAPI3REF: OS Interface Open File Handle {F11110} +** +** An [sqlite3_file] object represents an open file in the OS +** interface layer. Individual OS interface implementations will +** want to subclass this object by appending additional fields +** for their own use. The pMethods entry is a pointer to an +** [sqlite3_io_methods] object that defines methods for performing +** I/O operations on the open file. +*/ +typedef struct sqlite3_file sqlite3_file; +struct sqlite3_file { + const struct sqlite3_io_methods *pMethods; /* Methods for an open file */ +}; + +/* +** CAPI3REF: OS Interface File Virtual Methods Object {F11120} +** +** Every file opened by the [sqlite3_vfs] xOpen method contains a pointer to +** an instance of the this object. This object defines the +** methods used to perform various operations against the open file. +** +** The flags argument to xSync may be one of [SQLITE_SYNC_NORMAL] or +** [SQLITE_SYNC_FULL]. The first choice is the normal fsync(). +* The second choice is an +** OS-X style fullsync. The SQLITE_SYNC_DATA flag may be ORed in to +** indicate that only the data of the file and not its inode needs to be +** synced. +** +** The integer values to xLock() and xUnlock() are one of +**
    +**
  • [SQLITE_LOCK_NONE], +**
  • [SQLITE_LOCK_SHARED], +**
  • [SQLITE_LOCK_RESERVED], +**
  • [SQLITE_LOCK_PENDING], or +**
  • [SQLITE_LOCK_EXCLUSIVE]. +**
+** xLock() increases the lock. xUnlock() decreases the lock. +** The xCheckReservedLock() method looks +** to see if any database connection, either in this +** process or in some other process, is holding an RESERVED, +** PENDING, or EXCLUSIVE lock on the file. It returns true +** if such a lock exists and false if not. +** +** The xFileControl() method is a generic interface that allows custom +** VFS implementations to directly control an open file using the +** [sqlite3_file_control()] interface. The second "op" argument +** is an integer opcode. The third +** argument is a generic pointer which is intended to be a pointer +** to a structure that may contain arguments or space in which to +** write return values. Potential uses for xFileControl() might be +** functions to enable blocking locks with timeouts, to change the +** locking strategy (for example to use dot-file locks), to inquire +** about the status of a lock, or to break stale locks. The SQLite +** core reserves opcodes less than 100 for its own use. +** A [SQLITE_FCNTL_LOCKSTATE | list of opcodes] less than 100 is available. +** Applications that define a custom xFileControl method should use opcodes +** greater than 100 to avoid conflicts. +** +** The xSectorSize() method returns the sector size of the +** device that underlies the file. The sector size is the +** minimum write that can be performed without disturbing +** other bytes in the file. The xDeviceCharacteristics() +** method returns a bit vector describing behaviors of the +** underlying device: +** +**
    +**
  • [SQLITE_IOCAP_ATOMIC] +**
  • [SQLITE_IOCAP_ATOMIC512] +**
  • [SQLITE_IOCAP_ATOMIC1K] +**
  • [SQLITE_IOCAP_ATOMIC2K] +**
  • [SQLITE_IOCAP_ATOMIC4K] +**
  • [SQLITE_IOCAP_ATOMIC8K] +**
  • [SQLITE_IOCAP_ATOMIC16K] +**
  • [SQLITE_IOCAP_ATOMIC32K] +**
  • [SQLITE_IOCAP_ATOMIC64K] +**
  • [SQLITE_IOCAP_SAFE_APPEND] +**
  • [SQLITE_IOCAP_SEQUENTIAL] +**
+** +** The SQLITE_IOCAP_ATOMIC property means that all writes of +** any size are atomic. The SQLITE_IOCAP_ATOMICnnn values +** mean that writes of blocks that are nnn bytes in size and +** are aligned to an address which is an integer multiple of +** nnn are atomic. The SQLITE_IOCAP_SAFE_APPEND value means +** that when data is appended to a file, the data is appended +** first then the size of the file is extended, never the other +** way around. The SQLITE_IOCAP_SEQUENTIAL property means that +** information is written to disk in the same order as calls +** to xWrite(). +*/ +typedef struct sqlite3_io_methods sqlite3_io_methods; +struct sqlite3_io_methods { + int iVersion; + int (*xClose)(sqlite3_file*); + int (*xRead)(sqlite3_file*, void*, int iAmt, sqlite3_int64 iOfst); + int (*xWrite)(sqlite3_file*, const void*, int iAmt, sqlite3_int64 iOfst); + int (*xTruncate)(sqlite3_file*, sqlite3_int64 size); + int (*xSync)(sqlite3_file*, int flags); + int (*xFileSize)(sqlite3_file*, sqlite3_int64 *pSize); + int (*xLock)(sqlite3_file*, int); + int (*xUnlock)(sqlite3_file*, int); + int (*xCheckReservedLock)(sqlite3_file*); + int (*xFileControl)(sqlite3_file*, int op, void *pArg); + int (*xSectorSize)(sqlite3_file*); + int (*xDeviceCharacteristics)(sqlite3_file*); + /* Additional methods may be added in future releases */ +}; + +/* +** CAPI3REF: Standard File Control Opcodes {F11310} +** +** These integer constants are opcodes for the xFileControl method +** of the [sqlite3_io_methods] object and to the [sqlite3_file_control()] +** interface. +** +** {F11311} The [SQLITE_FCNTL_LOCKSTATE] opcode is used for debugging. This +** opcode cases the xFileControl method to write the current state of +** the lock (one of [SQLITE_LOCK_NONE], [SQLITE_LOCK_SHARED], +** [SQLITE_LOCK_RESERVED], [SQLITE_LOCK_PENDING], or [SQLITE_LOCK_EXCLUSIVE]) +** into an integer that the pArg argument points to. {F11312} This capability +** is used during testing and only needs to be supported when SQLITE_TEST +** is defined. +*/ +#define SQLITE_FCNTL_LOCKSTATE 1 + +/* +** CAPI3REF: Mutex Handle {F17110} +** +** The mutex module within SQLite defines [sqlite3_mutex] to be an +** abstract type for a mutex object. {F17111} The SQLite core never looks +** at the internal representation of an [sqlite3_mutex]. {END} It only +** deals with pointers to the [sqlite3_mutex] object. +** +** Mutexes are created using [sqlite3_mutex_alloc()]. +*/ +typedef struct sqlite3_mutex sqlite3_mutex; + +/* +** CAPI3REF: OS Interface Object {F11140} +** +** An instance of this object defines the interface between the +** SQLite core and the underlying operating system. The "vfs" +** in the name of the object stands for "virtual file system". +** +** The iVersion field is initially 1 but may be larger for future +** versions of SQLite. Additional fields may be appended to this +** object when the iVersion value is increased. +** +** The szOsFile field is the size of the subclassed [sqlite3_file] +** structure used by this VFS. mxPathname is the maximum length of +** a pathname in this VFS. +** +** Registered vfs modules are kept on a linked list formed by +** the pNext pointer. The [sqlite3_vfs_register()] +** and [sqlite3_vfs_unregister()] interfaces manage this list +** in a thread-safe way. The [sqlite3_vfs_find()] interface +** searches the list. +** +** The pNext field is the only fields in the sqlite3_vfs +** structure that SQLite will ever modify. SQLite will only access +** or modify this field while holding a particular static mutex. +** The application should never modify anything within the sqlite3_vfs +** object once the object has been registered. +** +** The zName field holds the name of the VFS module. The name must +** be unique across all VFS modules. +** +** {F11141} SQLite will guarantee that the zFilename string passed to +** xOpen() is a full pathname as generated by xFullPathname() and +** that the string will be valid and unchanged until xClose() is +** called. {END} So the [sqlite3_file] can store a pointer to the +** filename if it needs to remember the filename for some reason. +** +** {F11142} The flags argument to xOpen() includes all bits set in +** the flags argument to [sqlite3_open_v2()]. Or if [sqlite3_open()] +** or [sqlite3_open16()] is used, then flags includes at least +** [SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE]. {END} +** If xOpen() opens a file read-only then it sets *pOutFlags to +** include [SQLITE_OPEN_READONLY]. Other bits in *pOutFlags may be +** set. +** +** {F11143} SQLite will also add one of the following flags to the xOpen() +** call, depending on the object being opened: +** +**
    +**
  • [SQLITE_OPEN_MAIN_DB] +**
  • [SQLITE_OPEN_MAIN_JOURNAL] +**
  • [SQLITE_OPEN_TEMP_DB] +**
  • [SQLITE_OPEN_TEMP_JOURNAL] +**
  • [SQLITE_OPEN_TRANSIENT_DB] +**
  • [SQLITE_OPEN_SUBJOURNAL] +**
  • [SQLITE_OPEN_MASTER_JOURNAL] +**
{END} +** +** The file I/O implementation can use the object type flags to +** changes the way it deals with files. For example, an application +** that does not care about crash recovery or rollback, might make +** the open of a journal file a no-op. Writes to this journal are +** also a no-op. Any attempt to read the journal return SQLITE_IOERR. +** Or the implementation might recognize the a database file will +** be doing page-aligned sector reads and writes in a random order +** and set up its I/O subsystem accordingly. +** +** {F11144} SQLite might also add one of the following flags to the xOpen +** method: +** +**
    +**
  • [SQLITE_OPEN_DELETEONCLOSE] +**
  • [SQLITE_OPEN_EXCLUSIVE] +**
+** +** {F11145} The [SQLITE_OPEN_DELETEONCLOSE] flag means the file should be +** deleted when it is closed. {F11146} The [SQLITE_OPEN_DELETEONCLOSE] +** will be set for TEMP databases, journals and for subjournals. +** {F11147} The [SQLITE_OPEN_EXCLUSIVE] flag means the file should be opened +** for exclusive access. This flag is set for all files except +** for the main database file. {END} +** +** {F11148} At least szOsFile bytes of memory is allocated by SQLite +** to hold the [sqlite3_file] structure passed as the third +** argument to xOpen. {END} The xOpen method does not have to +** allocate the structure; it should just fill it in. +** +** {F11149} The flags argument to xAccess() may be [SQLITE_ACCESS_EXISTS] +** to test for the existance of a file, +** or [SQLITE_ACCESS_READWRITE] to test to see +** if a file is readable and writable, or [SQLITE_ACCESS_READ] +** to test to see if a file is at least readable. {END} The file can be a +** directory. +** +** {F11150} SQLite will always allocate at least mxPathname+1 byte for +** the output buffers for xGetTempname and xFullPathname. {F11151} The exact +** size of the output buffer is also passed as a parameter to both +** methods. {END} If the output buffer is not large enough, SQLITE_CANTOPEN +** should be returned. As this is handled as a fatal error by SQLite, +** vfs implementations should endeavor to prevent this by setting +** mxPathname to a sufficiently large value. +** +** The xRandomness(), xSleep(), and xCurrentTime() interfaces +** are not strictly a part of the filesystem, but they are +** included in the VFS structure for completeness. +** The xRandomness() function attempts to return nBytes bytes +** of good-quality randomness into zOut. The return value is +** the actual number of bytes of randomness obtained. The +** xSleep() method cause the calling thread to sleep for at +** least the number of microseconds given. The xCurrentTime() +** method returns a Julian Day Number for the current date and +** time. +*/ +typedef struct sqlite3_vfs sqlite3_vfs; +struct sqlite3_vfs { + int iVersion; /* Structure version number */ + int szOsFile; /* Size of subclassed sqlite3_file */ + int mxPathname; /* Maximum file pathname length */ + sqlite3_vfs *pNext; /* Next registered VFS */ + const char *zName; /* Name of this virtual file system */ + void *pAppData; /* Pointer to application-specific data */ + int (*xOpen)(sqlite3_vfs*, const char *zName, sqlite3_file*, + int flags, int *pOutFlags); + int (*xDelete)(sqlite3_vfs*, const char *zName, int syncDir); + int (*xAccess)(sqlite3_vfs*, const char *zName, int flags); + int (*xGetTempname)(sqlite3_vfs*, int nOut, char *zOut); + int (*xFullPathname)(sqlite3_vfs*, const char *zName, int nOut, char *zOut); + void *(*xDlOpen)(sqlite3_vfs*, const char *zFilename); + void (*xDlError)(sqlite3_vfs*, int nByte, char *zErrMsg); + void *(*xDlSym)(sqlite3_vfs*,void*, const char *zSymbol); + void (*xDlClose)(sqlite3_vfs*, void*); + int (*xRandomness)(sqlite3_vfs*, int nByte, char *zOut); + int (*xSleep)(sqlite3_vfs*, int microseconds); + int (*xCurrentTime)(sqlite3_vfs*, double*); + /* New fields may be appended in figure versions. The iVersion + ** value will increment whenever this happens. */ +}; + +/* +** CAPI3REF: Flags for the xAccess VFS method {F11190} +** +** {F11191} These integer constants can be used as the third parameter to +** the xAccess method of an [sqlite3_vfs] object. {END} They determine +** the kind of what kind of permissions the xAccess method is +** looking for. {F11192} With SQLITE_ACCESS_EXISTS, the xAccess method +** simply checks to see if the file exists. {F11193} With +** SQLITE_ACCESS_READWRITE, the xAccess method checks to see +** if the file is both readable and writable. {F11194} With +** SQLITE_ACCESS_READ the xAccess method +** checks to see if the file is readable. +*/ +#define SQLITE_ACCESS_EXISTS 0 +#define SQLITE_ACCESS_READWRITE 1 +#define SQLITE_ACCESS_READ 2 + +/* +** CAPI3REF: Enable Or Disable Extended Result Codes {F12200} +** +** {F12201} The sqlite3_extended_result_codes() routine enables or disables the +** [SQLITE_IOERR_READ | extended result codes] feature on a database +** connection if its 2nd parameter is +** non-zero or zero, respectively. {F12202} +** By default, SQLite API routines return one of only 26 integer +** [SQLITE_OK | result codes]. {F12203} When extended result codes +** are enabled by this routine, the repetoire of result codes can be +** much larger and can (hopefully) provide more detailed information +** about the cause of an error. +** +** {F12204} The second argument is a boolean value that turns extended result +** codes on and off. {F12205} Extended result codes are off by default for +** backwards compatibility with older versions of SQLite. +*/ +int sqlite3_extended_result_codes(sqlite3*, int onoff); + +/* +** CAPI3REF: Last Insert Rowid {F12220} +** +** {F12221} Each entry in an SQLite table has a unique 64-bit signed +** integer key called the "rowid". {F12222} The rowid is always available +** as an undeclared column named ROWID, OID, or _ROWID_ as long as those +** names are not also used by explicitly declared columns. {F12223} If +** the table has a column of type INTEGER PRIMARY KEY then that column +** is another an alias for the rowid. +** +** {F12224} This routine returns the rowid of the most recent +** successful INSERT into the database from the database connection +** shown in the first argument. {F12225} If no successful inserts +** have ever occurred on this database connection, zero is returned. +** +** {F12226} If an INSERT occurs within a trigger, then the rowid of the +** inserted row is returned by this routine as long as the trigger +** is running. {F12227} But once the trigger terminates, the value returned +** by this routine reverts to the last value inserted before the +** trigger fired. +** +** {F12228} An INSERT that fails due to a constraint violation is not a +** successful insert and does not change the value returned by this +** routine. {F12229} Thus INSERT OR FAIL, INSERT OR IGNORE, INSERT OR ROLLBACK, +** and INSERT OR ABORT make no changes to the return value of this +** routine when their insertion fails. {F12231} When INSERT OR REPLACE +** encounters a constraint violation, it does not fail. The +** INSERT continues to completion after deleting rows that caused +** the constraint problem so INSERT OR REPLACE will always change +** the return value of this interface. +** +** {UF12232} If another thread does a new insert on the same database connection +** while this routine is running and thus changes the last insert rowid, +** then the return value of this routine is undefined. +*/ +sqlite3_int64 sqlite3_last_insert_rowid(sqlite3*); + +/* +** CAPI3REF: Count The Number Of Rows Modified {F12240} +** +** {F12241} This function returns the number of database rows that were changed +** or inserted or deleted by the most recently completed SQL statement +** on the connection specified by the first parameter. {F12242} Only +** changes that are directly specified by the INSERT, UPDATE, or +** DELETE statement are counted. Auxiliary changes caused by +** triggers are not counted. {F12243} Use the [sqlite3_total_changes()] function +** to find the total number of changes including changes caused by triggers. +** +** {F12244} Within the body of a trigger, the sqlite3_changes() interface +** can be called to find the number of +** changes in the most recently completed INSERT, UPDATE, or DELETE +** statement within the body of the same trigger. +** +** {F12245} All changes are counted, even if they are later undone by a +** ROLLBACK or ABORT. {F12246} Except, changes associated with creating and +** dropping tables are not counted. +** +** {F12247} If a callback invokes [sqlite3_exec()] or [sqlite3_step()] +** recursively, then the changes in the inner, recursive call are +** counted together with the changes in the outer call. +** +** {F12248} SQLite implements the command "DELETE FROM table" without +** a WHERE clause by dropping and recreating the table. (This is much +** faster than going through and deleting individual elements from the +** table.) Because of this optimization, the change count for +** "DELETE FROM table" will be zero regardless of the number of elements +** that were originally in the table. {F12251} To get an accurate count +** of the number of rows deleted, use +** "DELETE FROM table WHERE 1" instead. +** +** {UF12252} If another thread makes changes on the same database connection +** while this routine is running then the return value of this routine +** is undefined. +*/ +int sqlite3_changes(sqlite3*); + +/* +** CAPI3REF: Total Number Of Rows Modified {F12260} +*** +** {F12261} This function returns the number of database rows that have been +** modified by INSERT, UPDATE or DELETE statements since the database handle +** was opened. {F12262} The count includes UPDATE, INSERT and DELETE +** statements executed as part of trigger programs. {F12263} All changes +** are counted as soon as the statement that makes them is completed +** (when the statement handle is passed to [sqlite3_reset()] or +** [sqlite3_finalize()]). {END} +** +** See also the [sqlite3_change()] interface. +** +** {F12265} SQLite implements the command "DELETE FROM table" without +** a WHERE clause by dropping and recreating the table. (This is much +** faster than going +** through and deleting individual elements form the table.) Because of +** this optimization, the change count for "DELETE FROM table" will be +** zero regardless of the number of elements that were originally in the +** table. To get an accurate count of the number of rows deleted, use +** "DELETE FROM table WHERE 1" instead. +** +** {U12264} If another thread makes changes on the same database connection +** while this routine is running then the return value of this routine +** is undefined. {END} +*/ +int sqlite3_total_changes(sqlite3*); + +/* +** CAPI3REF: Interrupt A Long-Running Query {F12270} +** +** {F12271} This function causes any pending database operation to abort and +** return at its earliest opportunity. {END} This routine is typically +** called in response to a user action such as pressing "Cancel" +** or Ctrl-C where the user wants a long query operation to halt +** immediately. +** +** {F12272} It is safe to call this routine from a thread different from the +** thread that is currently running the database operation. {U12273} But it +** is not safe to call this routine with a database connection that +** is closed or might close before sqlite3_interrupt() returns. +** +** If an SQL is very nearly finished at the time when sqlite3_interrupt() +** is called, then it might not have an opportunity to be interrupted. +** It might continue to completion. +** {F12274} The SQL operation that is interrupted will return +** [SQLITE_INTERRUPT]. {F12275} If the interrupted SQL operation is an +** INSERT, UPDATE, or DELETE that is inside an explicit transaction, +** then the entire transaction will be rolled back automatically. +** {F12276} A call to sqlite3_interrupt() has no effect on SQL statements +** that are started after sqlite3_interrupt() returns. +*/ +void sqlite3_interrupt(sqlite3*); + +/* +** CAPI3REF: Determine If An SQL Statement Is Complete {F10510} +** +** These routines are useful for command-line input to determine if the +** currently entered text seems to form complete a SQL statement or +** if additional input is needed before sending the text into +** SQLite for parsing. These routines return true if the input string +** appears to be a complete SQL statement. A statement is judged to be +** complete if it ends with a semicolon and is not a fragment of a +** CREATE TRIGGER statement. These routines do not parse the SQL and +** so will not detect syntactically incorrect SQL. +** +** {F10511} These functions return true if the given input string +** ends with a semicolon optionally followed by whitespace or +** comments. {F10512} For sqlite3_complete(), +** the parameter must be a zero-terminated UTF-8 string. {F10513} For +** sqlite3_complete16(), a zero-terminated machine byte order UTF-16 string +** is required. {F10514} These routines return false if the terminal +** semicolon is within a comment, a string literal or a quoted identifier +** (in other words if the final semicolon is not really a separate token +** but part of a larger token) or if the final semicolon is +** in between the BEGIN and END keywords of a CREATE TRIGGER statement. +** {END} +*/ +int sqlite3_complete(const char *sql); +int sqlite3_complete16(const void *sql); + +/* +** CAPI3REF: Register A Callback To Handle SQLITE_BUSY Errors {F12310} +** +** {F12311} This routine identifies a callback function that might be +** invoked whenever an attempt is made to open a database table +** that another thread or process has locked. +** {F12312} If the busy callback is NULL, then [SQLITE_BUSY] +** or [SQLITE_IOERR_BLOCKED] +** is returned immediately upon encountering the lock. +** {F12313} If the busy callback is not NULL, then the +** callback will be invoked with two arguments. {F12314} The +** first argument to the handler is a copy of the void* pointer which +** is the third argument to this routine. {F12315} The second argument to +** the handler is the number of times that the busy handler has +** been invoked for this locking event. {F12316} If the +** busy callback returns 0, then no additional attempts are made to +** access the database and [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED] is returned. +** {F12317} If the callback returns non-zero, then another attempt +** is made to open the database for reading and the cycle repeats. +** +** The presence of a busy handler does not guarantee that +** it will be invoked when there is lock contention. {F12319} +** If SQLite determines that invoking the busy handler could result in +** a deadlock, it will go ahead and return [SQLITE_BUSY] or +** [SQLITE_IOERR_BLOCKED] instead of invoking the +** busy handler. {END} +** Consider a scenario where one process is holding a read lock that +** it is trying to promote to a reserved lock and +** a second process is holding a reserved lock that it is trying +** to promote to an exclusive lock. The first process cannot proceed +** because it is blocked by the second and the second process cannot +** proceed because it is blocked by the first. If both processes +** invoke the busy handlers, neither will make any progress. Therefore, +** SQLite returns [SQLITE_BUSY] for the first process, hoping that this +** will induce the first process to release its read lock and allow +** the second process to proceed. +** +** {F12321} The default busy callback is NULL. {END} +** +** {F12322} The [SQLITE_BUSY] error is converted to [SQLITE_IOERR_BLOCKED] +** when SQLite is in the middle of a large transaction where all the +** changes will not fit into the in-memory cache. {F12323} SQLite will +** already hold a RESERVED lock on the database file, but it needs +** to promote this lock to EXCLUSIVE so that it can spill cache +** pages into the database file without harm to concurrent +** readers. {F12324} If it is unable to promote the lock, then the in-memory +** cache will be left in an inconsistent state and so the error +** code is promoted from the relatively benign [SQLITE_BUSY] to +** the more severe [SQLITE_IOERR_BLOCKED]. {F12325} This error code promotion +** forces an automatic rollback of the changes. {END} See the +** +** CorruptionFollowingBusyError wiki page for a discussion of why +** this is important. +** +** {F12326} Sqlite is re-entrant, so the busy handler may start a new +** query. {END} (It is not clear why anyone would every want to do this, +** but it is allowed, in theory.) {U12327} But the busy handler may not +** close the database. Closing the database from a busy handler will delete +** data structures out from under the executing query and will +** probably result in a segmentation fault or other runtime error. {END} +** +** {F12328} There can only be a single busy handler defined for each database +** connection. Setting a new busy handler clears any previous one. +** {F12329} Note that calling [sqlite3_busy_timeout()] will also set or clear +** the busy handler. +** +** {F12331} When operating in [sqlite3_enable_shared_cache | shared cache mode], +** only a single busy handler can be defined for each database file. +** So if two database connections share a single cache, then changing +** the busy handler on one connection will also change the busy +** handler in the other connection. {F12332} The busy handler is invoked +** in the thread that was running when the lock contention occurs. +*/ +int sqlite3_busy_handler(sqlite3*, int(*)(void*,int), void*); + +/* +** CAPI3REF: Set A Busy Timeout {F12340} +** +** {F12341} This routine sets a [sqlite3_busy_handler | busy handler] +** that sleeps for a while when a +** table is locked. {F12342} The handler will sleep multiple times until +** at least "ms" milliseconds of sleeping have been done. {F12343} After +** "ms" milliseconds of sleeping, the handler returns 0 which +** causes [sqlite3_step()] to return [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED]. +** +** {F12344} Calling this routine with an argument less than or equal to zero +** turns off all busy handlers. +** +** {F12345} There can only be a single busy handler for a particular database +** connection. If another busy handler was defined +** (using [sqlite3_busy_handler()]) prior to calling +** this routine, that other busy handler is cleared. +*/ +int sqlite3_busy_timeout(sqlite3*, int ms); + +/* +** CAPI3REF: Convenience Routines For Running Queries {F12370} +** +** This next routine is a convenience wrapper around [sqlite3_exec()]. +** {F12371} Instead of invoking a user-supplied callback for each row of the +** result, this routine remembers each row of the result in memory +** obtained from [sqlite3_malloc()], then returns all of the result after the +** query has finished. {F12372} +** +** As an example, suppose the query result where this table: +** +**
+**        Name        | Age
+**        -----------------------
+**        Alice       | 43
+**        Bob         | 28
+**        Cindy       | 21
+** 
+** +** If the 3rd argument were &azResult then after the function returns +** azResult will contain the following data: +** +**
+**        azResult[0] = "Name";
+**        azResult[1] = "Age";
+**        azResult[2] = "Alice";
+**        azResult[3] = "43";
+**        azResult[4] = "Bob";
+**        azResult[5] = "28";
+**        azResult[6] = "Cindy";
+**        azResult[7] = "21";
+** 
+** +** Notice that there is an extra row of data containing the column +** headers. But the *nrow return value is still 3. *ncolumn is +** set to 2. In general, the number of values inserted into azResult +** will be ((*nrow) + 1)*(*ncolumn). +** +** {U12374} After the calling function has finished using the result, it should +** pass the result data pointer to sqlite3_free_table() in order to +** release the memory that was malloc-ed. Because of the way the +** [sqlite3_malloc()] happens, the calling function must not try to call +** [sqlite3_free()] directly. Only [sqlite3_free_table()] is able to release +** the memory properly and safely. {END} +** +** {F12373} The return value of this routine is the same as +** from [sqlite3_exec()]. +*/ +int sqlite3_get_table( + sqlite3*, /* An open database */ + const char *sql, /* SQL to be executed */ + char ***resultp, /* Result written to a char *[] that this points to */ + int *nrow, /* Number of result rows written here */ + int *ncolumn, /* Number of result columns written here */ + char **errmsg /* Error msg written here */ +); +void sqlite3_free_table(char **result); + +/* +** CAPI3REF: Formatted String Printing Functions {F17400} +** +** These routines are workalikes of the "printf()" family of functions +** from the standard C library. +** +** {F17401} The sqlite3_mprintf() and sqlite3_vmprintf() routines write their +** results into memory obtained from [sqlite3_malloc()]. +** {U17402} The strings returned by these two routines should be +** released by [sqlite3_free()]. {F17403} Both routines return a +** NULL pointer if [sqlite3_malloc()] is unable to allocate enough +** memory to hold the resulting string. +** +** {F17404} In sqlite3_snprintf() routine is similar to "snprintf()" from +** the standard C library. The result is written into the +** buffer supplied as the second parameter whose size is given by +** the first parameter. {END} Note that the order of the +** first two parameters is reversed from snprintf(). This is an +** historical accident that cannot be fixed without breaking +** backwards compatibility. {F17405} Note also that sqlite3_snprintf() +** returns a pointer to its buffer instead of the number of +** characters actually written into the buffer. {END} We admit that +** the number of characters written would be a more useful return +** value but we cannot change the implementation of sqlite3_snprintf() +** now without breaking compatibility. +** +** {F17406} As long as the buffer size is greater than zero, sqlite3_snprintf() +** guarantees that the buffer is always zero-terminated. {F17407} The first +** parameter "n" is the total size of the buffer, including space for +** the zero terminator. {END} So the longest string that can be completely +** written will be n-1 characters. +** +** These routines all implement some additional formatting +** options that are useful for constructing SQL statements. +** All of the usual printf formatting options apply. In addition, there +** is are "%q", "%Q", and "%z" options. +** +** {F17410} The %q option works like %s in that it substitutes a null-terminated +** string from the argument list. But %q also doubles every '\'' character. +** %q is designed for use inside a string literal. {END} By doubling each '\'' +** character it escapes that character and allows it to be inserted into +** the string. +** +** For example, so some string variable contains text as follows: +** +**
+**  char *zText = "It's a happy day!";
+** 
+** +** One can use this text in an SQL statement as follows: +** +**
+**  char *zSQL = sqlite3_mprintf("INSERT INTO table VALUES('%q')", zText);
+**  sqlite3_exec(db, zSQL, 0, 0, 0);
+**  sqlite3_free(zSQL);
+** 
+** +** Because the %q format string is used, the '\'' character in zText +** is escaped and the SQL generated is as follows: +** +**
+**  INSERT INTO table1 VALUES('It''s a happy day!')
+** 
+** +** This is correct. Had we used %s instead of %q, the generated SQL +** would have looked like this: +** +**
+**  INSERT INTO table1 VALUES('It's a happy day!');
+** 
+** +** This second example is an SQL syntax error. As a general rule you +** should always use %q instead of %s when inserting text into a string +** literal. +** +** {F17411} The %Q option works like %q except it also adds single quotes around +** the outside of the total string. Or if the parameter in the argument +** list is a NULL pointer, %Q substitutes the text "NULL" (without single +** quotes) in place of the %Q option. {END} So, for example, one could say: +** +**
+**  char *zSQL = sqlite3_mprintf("INSERT INTO table VALUES(%Q)", zText);
+**  sqlite3_exec(db, zSQL, 0, 0, 0);
+**  sqlite3_free(zSQL);
+** 
+** +** The code above will render a correct SQL statement in the zSQL +** variable even if the zText variable is a NULL pointer. +** +** {F17412} The "%z" formatting option works exactly like "%s" with the +** addition that after the string has been read and copied into +** the result, [sqlite3_free()] is called on the input string. {END} +*/ +char *sqlite3_mprintf(const char*,...); +char *sqlite3_vmprintf(const char*, va_list); +char *sqlite3_snprintf(int,char*,const char*, ...); + +/* +** CAPI3REF: Memory Allocation Subsystem {F17300} +** +** {F17301} The SQLite core uses these three routines for all of its own +** internal memory allocation needs. {END} "Core" in the previous sentence +** does not include operating-system specific VFS implementation. The +** windows VFS uses native malloc and free for some operations. +** +** {F17302} The sqlite3_malloc() routine returns a pointer to a block +** of memory at least N bytes in length, where N is the parameter. +** {F17303} If sqlite3_malloc() is unable to obtain sufficient free +** memory, it returns a NULL pointer. {F17304} If the parameter N to +** sqlite3_malloc() is zero or negative then sqlite3_malloc() returns +** a NULL pointer. +** +** {F17305} Calling sqlite3_free() with a pointer previously returned +** by sqlite3_malloc() or sqlite3_realloc() releases that memory so +** that it might be reused. {F17306} The sqlite3_free() routine is +** a no-op if is called with a NULL pointer. Passing a NULL pointer +** to sqlite3_free() is harmless. {U17307} After being freed, memory +** should neither be read nor written. Even reading previously freed +** memory might result in a segmentation fault or other severe error. +** {U17309} Memory corruption, a segmentation fault, or other severe error +** might result if sqlite3_free() is called with a non-NULL pointer that +** was not obtained from sqlite3_malloc() or sqlite3_free(). +** +** {F17310} The sqlite3_realloc() interface attempts to resize a +** prior memory allocation to be at least N bytes, where N is the +** second parameter. The memory allocation to be resized is the first +** parameter. {F17311} If the first parameter to sqlite3_realloc() +** is a NULL pointer then its behavior is identical to calling +** sqlite3_malloc(N) where N is the second parameter to sqlite3_realloc(). +** {F17312} If the second parameter to sqlite3_realloc() is zero or +** negative then the behavior is exactly the same as calling +** sqlite3_free(P) where P is the first parameter to sqlite3_realloc(). +** {F17313} Sqlite3_realloc() returns a pointer to a memory allocation +** of at least N bytes in size or NULL if sufficient memory is unavailable. +** {F17314} If M is the size of the prior allocation, then min(N,M) bytes +** of the prior allocation are copied into the beginning of buffer returned +** by sqlite3_realloc() and the prior allocation is freed. +** {F17315} If sqlite3_realloc() returns NULL, then the prior allocation +** is not freed. +** +** {F17316} The memory returned by sqlite3_malloc() and sqlite3_realloc() +** is always aligned to at least an 8 byte boundary. {END} +** +** {F17381} The default implementation +** of the memory allocation subsystem uses the malloc(), realloc() +** and free() provided by the standard C library. {F17382} However, if +** SQLite is compiled with the following C preprocessor macro +** +**
SQLITE_MEMORY_SIZE=NNN
+** +** where NNN is an integer, then SQLite create a static +** array of at least NNN bytes in size and use that array +** for all of its dynamic memory allocation needs. {END} Additional +** memory allocator options may be added in future releases. +** +** In SQLite version 3.5.0 and 3.5.1, it was possible to define +** the SQLITE_OMIT_MEMORY_ALLOCATION which would cause the built-in +** implementation of these routines to be omitted. That capability +** is no longer provided. Only built-in memory allocators can be +** used. +** +** The windows OS interface layer calls +** the system malloc() and free() directly when converting +** filenames between the UTF-8 encoding used by SQLite +** and whatever filename encoding is used by the particular windows +** installation. Memory allocation errors are detected, but +** they are reported back as [SQLITE_CANTOPEN] or +** [SQLITE_IOERR] rather than [SQLITE_NOMEM]. +*/ +void *sqlite3_malloc(int); +void *sqlite3_realloc(void*, int); +void sqlite3_free(void*); + +/* +** CAPI3REF: Memory Allocator Statistics {F17370} +** +** In addition to the basic three allocation routines +** [sqlite3_malloc()], [sqlite3_free()], and [sqlite3_realloc()], +** the memory allocation subsystem included with the SQLite +** sources provides the interfaces shown here. +** +** {F17371} The sqlite3_memory_used() routine returns the +** number of bytes of memory currently outstanding (malloced but not freed). +** {F17372} The value returned by sqlite3_memory_used() includes +** any overhead added by SQLite, but not overhead added by the +** library malloc() that backs the sqlite3_malloc() implementation. +** {F17373} The sqlite3_memory_highwater() routines returns the +** maximum number of bytes that have been outstanding at any time +** since the highwater mark was last reset. +** {F17374} The byte count returned by sqlite3_memory_highwater() +** uses the same byte counting rules as sqlite3_memory_used(). {END} +** In other words, overhead added internally by SQLite is counted, +** but overhead from the underlying system malloc is not. +** {F17375} If the parameter to sqlite3_memory_highwater() is true, +** then the highwater mark is reset to the current value of +** sqlite3_memory_used() and the prior highwater mark (before the +** reset) is returned. {F17376} If the parameter to +** sqlite3_memory_highwater() is zero, then the highwater mark is +** unchanged. +*/ +sqlite3_int64 sqlite3_memory_used(void); +sqlite3_int64 sqlite3_memory_highwater(int resetFlag); + +/* +** CAPI3REF: Compile-Time Authorization Callbacks {F12500} +** +** {F12501} This routine registers a authorizer callback with a particular +** database connection, supplied in the first argument. {F12502} +** The authorizer callback is invoked as SQL statements are being compiled +** by [sqlite3_prepare()] or its variants [sqlite3_prepare_v2()], +** [sqlite3_prepare16()] and [sqlite3_prepare16_v2()]. {F12503} At various +** points during the compilation process, as logic is being created +** to perform various actions, the authorizer callback is invoked to +** see if those actions are allowed. The authorizer callback should +** return SQLITE_OK to allow the action, [SQLITE_IGNORE] to disallow the +** specific action but allow the SQL statement to continue to be +** compiled, or [SQLITE_DENY] to cause the entire SQL statement to be +** rejected with an error. {F12504} If the authorizer callback returns +** any value other than [SQLITE_IGNORE], [SQLITE_OK], or [SQLITE_DENY] +** then [sqlite3_prepare_v2()] or equivalent call that triggered +** the authorizer shall +** fail with an SQLITE_ERROR error code and an appropriate error message. {END} +** +** When the callback returns [SQLITE_OK], that means the operation +** requested is ok. {F12505} When the callback returns [SQLITE_DENY], the +** [sqlite3_prepare_v2()] or equivalent call that triggered the +** authorizer shall fail +** with an SQLITE_ERROR error code and an error message explaining that +** access is denied. {F12506} If the authorizer code (the 2nd parameter +** to the authorizer callback is anything other than [SQLITE_READ], then +** a return of [SQLITE_IGNORE] has the same effect as [SQLITE_DENY]. +** If the authorizer code is [SQLITE_READ] and the callback returns +** [SQLITE_IGNORE] then the prepared statement is constructed to +** insert a NULL value in place of the table column that would have +** been read if [SQLITE_OK] had been returned. {END} +** +** {F12510} The first parameter to the authorizer callback is a copy of +** the third parameter to the sqlite3_set_authorizer() interface. +** {F12511} The second parameter to the callback is an integer +** [SQLITE_COPY | action code] that specifies the particular action +** to be authorized. {END} The available action codes are +** [SQLITE_COPY | documented separately]. {F12512} The third through sixth +** parameters to the callback are zero-terminated strings that contain +** additional details about the action to be authorized. {END} +** +** An authorizer is used when preparing SQL statements from an untrusted +** source, to ensure that the SQL statements do not try to access data +** that they are not allowed to see, or that they do not try to +** execute malicious statements that damage the database. For +** example, an application may allow a user to enter arbitrary +** SQL queries for evaluation by a database. But the application does +** not want the user to be able to make arbitrary changes to the +** database. An authorizer could then be put in place while the +** user-entered SQL is being prepared that disallows everything +** except SELECT statements. +** +** {F12520} Only a single authorizer can be in place on a database connection +** at a time. Each call to sqlite3_set_authorizer overrides the +** previous call. {F12521} A NULL authorizer means that no authorization +** callback is invoked. {F12522} The default authorizer is NULL. {END} +** +** Note that the authorizer callback is invoked only during +** [sqlite3_prepare()] or its variants. {F12523} Authorization is not +** performed during statement evaluation in [sqlite3_step()]. {END} +*/ +int sqlite3_set_authorizer( + sqlite3*, + int (*xAuth)(void*,int,const char*,const char*,const char*,const char*), + void *pUserData +); + +/* +** CAPI3REF: Authorizer Return Codes {F12590} +** +** The [sqlite3_set_authorizer | authorizer callback function] must +** return either [SQLITE_OK] or one of these two constants in order +** to signal SQLite whether or not the action is permitted. See the +** [sqlite3_set_authorizer | authorizer documentation] for additional +** information. +*/ +#define SQLITE_DENY 1 /* Abort the SQL statement with an error */ +#define SQLITE_IGNORE 2 /* Don't allow access, but don't generate an error */ + +/* +** CAPI3REF: Authorizer Action Codes {F12550} +** +** The [sqlite3_set_authorizer()] interface registers a callback function +** that is invoked to authorizer certain SQL statement actions. {F12551} The +** second parameter to the callback is an integer code that specifies +** what action is being authorized. These are the integer action codes that +** the authorizer callback may be passed. {END} +** +** These action code values signify what kind of operation is to be +** authorized. {F12552} The 3rd and 4th parameters to the authorization +** callback function will be parameters or NULL depending on which of these +** codes is used as the second parameter. {F12553} The 5th parameter to the +** authorizer callback is the name of the database ("main", "temp", +** etc.) if applicable. {F12554} The 6th parameter to the authorizer callback +** is the name of the inner-most trigger or view that is responsible for +** the access attempt or NULL if this access attempt is directly from +** top-level SQL code. +*/ +/******************************************* 3rd ************ 4th ***********/ +#define SQLITE_CREATE_INDEX 1 /* Index Name Table Name */ +#define SQLITE_CREATE_TABLE 2 /* Table Name NULL */ +#define SQLITE_CREATE_TEMP_INDEX 3 /* Index Name Table Name */ +#define SQLITE_CREATE_TEMP_TABLE 4 /* Table Name NULL */ +#define SQLITE_CREATE_TEMP_TRIGGER 5 /* Trigger Name Table Name */ +#define SQLITE_CREATE_TEMP_VIEW 6 /* View Name NULL */ +#define SQLITE_CREATE_TRIGGER 7 /* Trigger Name Table Name */ +#define SQLITE_CREATE_VIEW 8 /* View Name NULL */ +#define SQLITE_DELETE 9 /* Table Name NULL */ +#define SQLITE_DROP_INDEX 10 /* Index Name Table Name */ +#define SQLITE_DROP_TABLE 11 /* Table Name NULL */ +#define SQLITE_DROP_TEMP_INDEX 12 /* Index Name Table Name */ +#define SQLITE_DROP_TEMP_TABLE 13 /* Table Name NULL */ +#define SQLITE_DROP_TEMP_TRIGGER 14 /* Trigger Name Table Name */ +#define SQLITE_DROP_TEMP_VIEW 15 /* View Name NULL */ +#define SQLITE_DROP_TRIGGER 16 /* Trigger Name Table Name */ +#define SQLITE_DROP_VIEW 17 /* View Name NULL */ +#define SQLITE_INSERT 18 /* Table Name NULL */ +#define SQLITE_PRAGMA 19 /* Pragma Name 1st arg or NULL */ +#define SQLITE_READ 20 /* Table Name Column Name */ +#define SQLITE_SELECT 21 /* NULL NULL */ +#define SQLITE_TRANSACTION 22 /* NULL NULL */ +#define SQLITE_UPDATE 23 /* Table Name Column Name */ +#define SQLITE_ATTACH 24 /* Filename NULL */ +#define SQLITE_DETACH 25 /* Database Name NULL */ +#define SQLITE_ALTER_TABLE 26 /* Database Name Table Name */ +#define SQLITE_REINDEX 27 /* Index Name NULL */ +#define SQLITE_ANALYZE 28 /* Table Name NULL */ +#define SQLITE_CREATE_VTABLE 29 /* Table Name Module Name */ +#define SQLITE_DROP_VTABLE 30 /* Table Name Module Name */ +#define SQLITE_FUNCTION 31 /* Function Name NULL */ +#define SQLITE_COPY 0 /* No longer used */ + +/* +** CAPI3REF: Tracing And Profiling Functions {F12280} +** +** These routines register callback functions that can be used for +** tracing and profiling the execution of SQL statements. +** +** {F12281} The callback function registered by sqlite3_trace() is invoked +** at the first [sqlite3_step()] for the evaluation of an SQL statement. +** {F12282} Only a single trace callback can be registered at a time. +** Each call to sqlite3_trace() overrides the previous. {F12283} A +** NULL callback for sqlite3_trace() disables tracing. {F12284} The +** first argument to the trace callback is a copy of the pointer which +** was the 3rd argument to sqlite3_trace. {F12285} The second argument +** to the trace callback is a zero-terminated UTF8 string containing +** the original text of the SQL statement as it was passed into +** [sqlite3_prepare_v2()] or the equivalent. {END} Note that the +** host parameter are not expanded in the SQL statement text. +** +** {F12287} The callback function registered by sqlite3_profile() is invoked +** as each SQL statement finishes. {F12288} The first parameter to the +** profile callback is a copy of the 3rd parameter to sqlite3_profile(). +** {F12289} The second parameter to the profile callback is a +** zero-terminated UTF-8 string that contains the complete text of +** the SQL statement as it was processed by [sqlite3_prepare_v2()] or +** the equivalent. {F12290} The third parameter to the profile +** callback is an estimate of the number of nanoseconds of +** wall-clock time required to run the SQL statement from start +** to finish. {END} +** +** The sqlite3_profile() API is currently considered experimental and +** is subject to change. +*/ +void *sqlite3_trace(sqlite3*, void(*xTrace)(void*,const char*), void*); +void *sqlite3_profile(sqlite3*, + void(*xProfile)(void*,const char*,sqlite3_uint64), void*); + +/* +** CAPI3REF: Query Progress Callbacks {F12910} +** +** {F12911} This routine configures a callback function - the +** progress callback - that is invoked periodically during long +** running calls to [sqlite3_exec()], [sqlite3_step()] and +** [sqlite3_get_table()]. {END} An example use for this +** interface is to keep a GUI updated during a large query. +** +** {F12912} The progress callback is invoked once for every N virtual +** machine opcodes, where N is the second argument to this function. +** {F12913} The progress callback itself is identified by the third +** argument to this function. {F12914} The fourth argument to this +** function is a void pointer passed to the progress callback +** function each time it is invoked. {END} +** +** {F12915} If a call to [sqlite3_exec()], [sqlite3_step()], or +** [sqlite3_get_table()] results in fewer than N opcodes being executed, +** then the progress callback is never invoked. {END} +** +** {F12916} Only a single progress callback function may be registered for each +** open database connection. Every call to sqlite3_progress_handler() +** overwrites the results of the previous call. {F12917} +** To remove the progress callback altogether, pass NULL as the third +** argument to this function. {END} +** +** {F12918} If the progress callback returns a result other than 0, then +** the current query is immediately terminated and any database changes +** rolled back. {F12919} +** The containing [sqlite3_exec()], [sqlite3_step()], or +** [sqlite3_get_table()] call returns SQLITE_INTERRUPT. {END} This feature +** can be used, for example, to implement the "Cancel" button on a +** progress dialog box in a GUI. +*/ +void sqlite3_progress_handler(sqlite3*, int, int(*)(void*), void*); + +/* +** CAPI3REF: Opening A New Database Connection {F12700} +** +** {F12701} These routines open an SQLite database file whose name +** is given by the filename argument. +** {F12702} The filename argument is interpreted as UTF-8 +** for [sqlite3_open()] and [sqlite3_open_v2()] and as UTF-16 +** in the native byte order for [sqlite3_open16()]. +** {F12703} An [sqlite3*] handle is returned in *ppDb, even +** if an error occurs. {F12723} (Exception: if SQLite is unable +** to allocate memory to hold the [sqlite3] object, a NULL will +** be written into *ppDb instead of a pointer to the [sqlite3] object.) +** {F12704} If the database is opened (and/or created) +** successfully, then [SQLITE_OK] is returned. {F12705} Otherwise an +** error code is returned. {F12706} The +** [sqlite3_errmsg()] or [sqlite3_errmsg16()] routines can be used to obtain +** an English language description of the error. +** +** {F12707} The default encoding for the database will be UTF-8 if +** [sqlite3_open()] or [sqlite3_open_v2()] is called and +** UTF-16 in the native byte order if [sqlite3_open16()] is used. +** +** {F12708} Whether or not an error occurs when it is opened, resources +** associated with the [sqlite3*] handle should be released by passing it +** to [sqlite3_close()] when it is no longer required. +** +** {F12709} The [sqlite3_open_v2()] interface works like [sqlite3_open()] +** except that it acccepts two additional parameters for additional control +** over the new database connection. {F12710} The flags parameter can be +** one of: +** +**
    +**
  1. [SQLITE_OPEN_READONLY] +**
  2. [SQLITE_OPEN_READWRITE] +**
  3. [SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE] +**
+** +** {F12711} The first value opens the database read-only. +** {F12712} If the database does not previously exist, an error is returned. +** {F12713} The second option opens +** the database for reading and writing if possible, or reading only if +** if the file is write protected. {F12714} In either case the database +** must already exist or an error is returned. {F12715} The third option +** opens the database for reading and writing and creates it if it does +** not already exist. {F12716} +** The third options is behavior that is always used for [sqlite3_open()] +** and [sqlite3_open16()]. +** +** {F12717} If the filename is ":memory:", then an private +** in-memory database is created for the connection. {F12718} This in-memory +** database will vanish when the database connection is closed. {END} Future +** version of SQLite might make use of additional special filenames +** that begin with the ":" character. It is recommended that +** when a database filename really does begin with +** ":" that you prefix the filename with a pathname like "./" to +** avoid ambiguity. +** +** {F12719} If the filename is an empty string, then a private temporary +** on-disk database will be created. {F12720} This private database will be +** automatically deleted as soon as the database connection is closed. +** +** {F12721} The fourth parameter to sqlite3_open_v2() is the name of the +** [sqlite3_vfs] object that defines the operating system +** interface that the new database connection should use. {F12722} If the +** fourth parameter is a NULL pointer then the default [sqlite3_vfs] +** object is used. {END} +** +** Note to windows users: The encoding used for the filename argument +** of [sqlite3_open()] and [sqlite3_open_v2()] must be UTF-8, not whatever +** codepage is currently defined. Filenames containing international +** characters must be converted to UTF-8 prior to passing them into +** [sqlite3_open()] or [sqlite3_open_v2()]. +*/ +int sqlite3_open( + const char *filename, /* Database filename (UTF-8) */ + sqlite3 **ppDb /* OUT: SQLite db handle */ +); +int sqlite3_open16( + const void *filename, /* Database filename (UTF-16) */ + sqlite3 **ppDb /* OUT: SQLite db handle */ +); +int sqlite3_open_v2( + const char *filename, /* Database filename (UTF-8) */ + sqlite3 **ppDb, /* OUT: SQLite db handle */ + int flags, /* Flags */ + const char *zVfs /* Name of VFS module to use */ +); + +/* +** CAPI3REF: Error Codes And Messages {F12800} +** +** {F12801} The sqlite3_errcode() interface returns the numeric +** [SQLITE_OK | result code] or [SQLITE_IOERR_READ | extended result code] +** for the most recent failed sqlite3_* API call associated +** with [sqlite3] handle 'db'. {U12802} If a prior API call failed but the +** most recent API call succeeded, the return value from sqlite3_errcode() +** is undefined. {END} +** +** {F12803} The sqlite3_errmsg() and sqlite3_errmsg16() return English-language +** text that describes the error, as either UTF8 or UTF16 respectively. +** {F12804} Memory to hold the error message string is managed internally. +** {U12805} The +** string may be overwritten or deallocated by subsequent calls to SQLite +** interface functions. {END} +** +** {F12806} Calls to many sqlite3_* functions set the error code and +** string returned by [sqlite3_errcode()], [sqlite3_errmsg()], and +** [sqlite3_errmsg16()] overwriting the previous values. {F12807} +** Except, calls to [sqlite3_errcode()], +** [sqlite3_errmsg()], and [sqlite3_errmsg16()] themselves do not affect the +** results of future invocations. {F12808} Calls to API routines that +** do not return an error code (example: [sqlite3_data_count()]) do not +** change the error code returned by this routine. {F12809} Interfaces that +** are not associated with a specific database connection (examples: +** [sqlite3_mprintf()] or [sqlite3_enable_shared_cache()] do not change +** the return code. {END} +** +** {F12810} Assuming no other intervening sqlite3_* API calls are made, +** the error code returned by this function is associated with the same +** error as the strings returned by [sqlite3_errmsg()] and [sqlite3_errmsg16()]. +*/ +int sqlite3_errcode(sqlite3 *db); +const char *sqlite3_errmsg(sqlite3*); +const void *sqlite3_errmsg16(sqlite3*); + +/* +** CAPI3REF: SQL Statement Object {F13000} +** +** An instance of this object represent single SQL statements. This +** object is variously known as a "prepared statement" or a +** "compiled SQL statement" or simply as a "statement". +** +** The life of a statement object goes something like this: +** +**
    +**
  1. Create the object using [sqlite3_prepare_v2()] or a related +** function. +**
  2. Bind values to host parameters using +** [sqlite3_bind_blob | sqlite3_bind_* interfaces]. +**
  3. Run the SQL by calling [sqlite3_step()] one or more times. +**
  4. Reset the statement using [sqlite3_reset()] then go back +** to step 2. Do this zero or more times. +**
  5. Destroy the object using [sqlite3_finalize()]. +**
+** +** Refer to documentation on individual methods above for additional +** information. +*/ +typedef struct sqlite3_stmt sqlite3_stmt; + +/* +** CAPI3REF: Compiling An SQL Statement {F13010} +** +** To execute an SQL query, it must first be compiled into a byte-code +** program using one of these routines. +** +** {F13011} The first argument "db" is an [sqlite3 | SQLite database handle] +** obtained from a prior call to [sqlite3_open()], [sqlite3_open_v2()] +** or [sqlite3_open16()]. {F13012} +** The second argument "zSql" is the statement to be compiled, encoded +** as either UTF-8 or UTF-16. The sqlite3_prepare() and sqlite3_prepare_v2() +** interfaces uses UTF-8 and sqlite3_prepare16() and sqlite3_prepare16_v2() +** use UTF-16. {END} +** +** {F13013} If the nByte argument is less +** than zero, then zSql is read up to the first zero terminator. +** {F13014} If nByte is non-negative, then it is the maximum number of +** bytes read from zSql. When nByte is non-negative, the +** zSql string ends at either the first '\000' or '\u0000' character or +** until the nByte-th byte, whichever comes first. {END} +** +** {F13015} *pzTail is made to point to the first byte past the end of the +** first SQL statement in zSql. These routines only compiles the first +** statement in zSql, so *pzTail is left pointing to what remains +** uncompiled. {END} +** +** {F13016} *ppStmt is left pointing to a compiled +** [sqlite3_stmt | SQL statement structure] that can be +** executed using [sqlite3_step()]. Or if there is an error, *ppStmt may be +** set to NULL. {F13017} If the input text contains no SQL (if the input +** is and empty string or a comment) then *ppStmt is set to NULL. +** {U13018} The calling procedure is responsible for deleting the +** compiled SQL statement +** using [sqlite3_finalize()] after it has finished with it. +** +** {F13019} On success, [SQLITE_OK] is returned. Otherwise an +** [SQLITE_ERROR | error code] is returned. {END} +** +** The sqlite3_prepare_v2() and sqlite3_prepare16_v2() interfaces are +** recommended for all new programs. The two older interfaces are retained +** for backwards compatibility, but their use is discouraged. +** {F13020} In the "v2" interfaces, the prepared statement +** that is returned (the [sqlite3_stmt] object) contains a copy of the +** original SQL text. {END} This causes the [sqlite3_step()] interface to +** behave a differently in two ways: +** +**
    +**
  1. {F13022} +** If the database schema changes, instead of returning [SQLITE_SCHEMA] as it +** always used to do, [sqlite3_step()] will automatically recompile the SQL +** statement and try to run it again. {F12023} If the schema has changed in +** a way that makes the statement no longer valid, [sqlite3_step()] will still +** return [SQLITE_SCHEMA]. {END} But unlike the legacy behavior, +** [SQLITE_SCHEMA] is now a fatal error. {F12024} Calling +** [sqlite3_prepare_v2()] again will not make the +** error go away. {F12025} Note: use [sqlite3_errmsg()] to find the text +** of the parsing error that results in an [SQLITE_SCHEMA] return. {END} +**
  2. +** +**
  3. +** {F13030} When an error occurs, +** [sqlite3_step()] will return one of the detailed +** [SQLITE_ERROR | result codes] or +** [SQLITE_IOERR_READ | extended result codes]. {F13031} +** The legacy behavior was that [sqlite3_step()] would only return a generic +** [SQLITE_ERROR] result code and you would have to make a second call to +** [sqlite3_reset()] in order to find the underlying cause of the problem. +** {F13032} +** With the "v2" prepare interfaces, the underlying reason for the error is +** returned immediately. {END} +**
  4. +**
+*/ +int sqlite3_prepare( + sqlite3 *db, /* Database handle */ + const char *zSql, /* SQL statement, UTF-8 encoded */ + int nByte, /* Maximum length of zSql in bytes. */ + sqlite3_stmt **ppStmt, /* OUT: Statement handle */ + const char **pzTail /* OUT: Pointer to unused portion of zSql */ +); +int sqlite3_prepare_v2( + sqlite3 *db, /* Database handle */ + const char *zSql, /* SQL statement, UTF-8 encoded */ + int nByte, /* Maximum length of zSql in bytes. */ + sqlite3_stmt **ppStmt, /* OUT: Statement handle */ + const char **pzTail /* OUT: Pointer to unused portion of zSql */ +); +int sqlite3_prepare16( + sqlite3 *db, /* Database handle */ + const void *zSql, /* SQL statement, UTF-16 encoded */ + int nByte, /* Maximum length of zSql in bytes. */ + sqlite3_stmt **ppStmt, /* OUT: Statement handle */ + const void **pzTail /* OUT: Pointer to unused portion of zSql */ +); +int sqlite3_prepare16_v2( + sqlite3 *db, /* Database handle */ + const void *zSql, /* SQL statement, UTF-16 encoded */ + int nByte, /* Maximum length of zSql in bytes. */ + sqlite3_stmt **ppStmt, /* OUT: Statement handle */ + const void **pzTail /* OUT: Pointer to unused portion of zSql */ +); + +/* +** CAPIREF: Retrieving Statement SQL {F13100} +** +** {F13101} If the compiled SQL statement passed as an argument was +** compiled using either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()], +** then this function returns a pointer to a zero-terminated string +** containing a copy of the original SQL statement. {F13102} The +** pointer is valid until the statement +** is deleted using sqlite3_finalize(). +** {F13103} The string returned by sqlite3_sql() is always UTF8 even +** if a UTF16 string was originally entered using [sqlite3_prepare16_v2()] +** or the equivalent. +** +** {F13104} If the statement was compiled using either of the legacy +** interfaces [sqlite3_prepare()] or [sqlite3_prepare16()], this +** function returns NULL. +*/ +const char *sqlite3_sql(sqlite3_stmt *pStmt); + +/* +** CAPI3REF: Dynamically Typed Value Object {F15000} +** +** {F15001} SQLite uses the sqlite3_value object to represent all values +** that are or can be stored in a database table. {END} +** SQLite uses dynamic typing for the values it stores. +** {F15002} Values stored in sqlite3_value objects can be +** be integers, floating point values, strings, BLOBs, or NULL. +*/ +typedef struct Mem sqlite3_value; + +/* +** CAPI3REF: SQL Function Context Object {F16001} +** +** The context in which an SQL function executes is stored in an +** sqlite3_context object. {F16002} A pointer to an sqlite3_context +** object is always first parameter to application-defined SQL functions. +*/ +typedef struct sqlite3_context sqlite3_context; + +/* +** CAPI3REF: Binding Values To Prepared Statements {F13500} +** +** {F13501} In the SQL strings input to [sqlite3_prepare_v2()] and its +** variants, literals may be replace by a parameter in one +** of these forms: +** +**
    +**
  • ? +**
  • ?NNN +**
  • :AAA +**
  • @AAA +**
  • $VVV +**
+** +** In the parameter forms shown above NNN is an integer literal, +** AAA is an alphanumeric identifier and VVV is a variable name according +** to the syntax rules of the TCL programming language. {END} +** The values of these parameters (also called "host parameter names") +** can be set using the sqlite3_bind_*() routines defined here. +** +** {F13502} The first argument to the sqlite3_bind_*() routines always +** is a pointer to the [sqlite3_stmt] object returned from +** [sqlite3_prepare_v2()] or its variants. {F13503} The second +** argument is the index of the parameter to be set. {F13504} The +** first parameter has an index of 1. {F13505} When the same named +** parameter is used more than once, second and subsequent +** occurrences have the same index as the first occurrence. +** {F13506} The index for named parameters can be looked up using the +** [sqlite3_bind_parameter_name()] API if desired. {F13507} The index +** for "?NNN" parameters is the value of NNN. +** {F13508} The NNN value must be between 1 and the compile-time +** parameter SQLITE_MAX_VARIABLE_NUMBER (default value: 999). {END} +** See limits.html for additional information. +** +** {F13509} The third argument is the value to bind to the parameter. {END} +** +** {F13510} In those +** routines that have a fourth argument, its value is the number of bytes +** in the parameter. To be clear: the value is the number of bytes in the +** string, not the number of characters. {F13511} The number +** of bytes does not include the zero-terminator at the end of strings. +** {F13512} +** If the fourth parameter is negative, the length of the string is +** number of bytes up to the first zero terminator. {END} +** +** {F13513} +** The fifth argument to sqlite3_bind_blob(), sqlite3_bind_text(), and +** sqlite3_bind_text16() is a destructor used to dispose of the BLOB or +** text after SQLite has finished with it. {F13514} If the fifth argument is +** the special value [SQLITE_STATIC], then the library assumes that the +** information is in static, unmanaged space and does not need to be freed. +** {F13515} If the fifth argument has the value [SQLITE_TRANSIENT], then +** SQLite makes its own private copy of the data immediately, before +** the sqlite3_bind_*() routine returns. {END} +** +** {F13520} The sqlite3_bind_zeroblob() routine binds a BLOB of length N that +** is filled with zeros. {F13521} A zeroblob uses a fixed amount of memory +** (just an integer to hold it size) while it is being processed. {END} +** Zeroblobs are intended to serve as place-holders for BLOBs whose +** content is later written using +** [sqlite3_blob_open | increment BLOB I/O] routines. {F13522} A negative +** value for the zeroblob results in a zero-length BLOB. {END} +** +** {F13530} The sqlite3_bind_*() routines must be called after +** [sqlite3_prepare_v2()] (and its variants) or [sqlite3_reset()] and +** before [sqlite3_step()]. {F13531} +** Bindings are not cleared by the [sqlite3_reset()] routine. +** {F13532} Unbound parameters are interpreted as NULL. {END} +** +** {F13540} These routines return [SQLITE_OK] on success or an error code if +** anything goes wrong. {F13541} [SQLITE_RANGE] is returned if the parameter +** index is out of range. {F13542} [SQLITE_NOMEM] is returned if malloc fails. +** {F13543} [SQLITE_MISUSE] is returned if these routines are called on a +** virtual machine that is the wrong state or which has already been finalized. +*/ +int sqlite3_bind_blob(sqlite3_stmt*, int, const void*, int n, void(*)(void*)); +int sqlite3_bind_double(sqlite3_stmt*, int, double); +int sqlite3_bind_int(sqlite3_stmt*, int, int); +int sqlite3_bind_int64(sqlite3_stmt*, int, sqlite3_int64); +int sqlite3_bind_null(sqlite3_stmt*, int); +int sqlite3_bind_text(sqlite3_stmt*, int, const char*, int n, void(*)(void*)); +int sqlite3_bind_text16(sqlite3_stmt*, int, const void*, int, void(*)(void*)); +int sqlite3_bind_value(sqlite3_stmt*, int, const sqlite3_value*); +int sqlite3_bind_zeroblob(sqlite3_stmt*, int, int n); + +/* +** CAPI3REF: Number Of Host Parameters {F13600} +** +** {F13601} Return the largest host parameter index in the precompiled +** statement given as the argument. {F13602} When the host parameters +** are of the forms like ":AAA", "$VVV", "@AAA", or "?", +** then they are assigned sequential increasing numbers beginning +** with one, so the value returned is the number of parameters. +** {F13603} However +** if the same host parameter name is used multiple times, each occurrance +** is given the same number, so the value returned in that case is the number +** of unique host parameter names. {F13604} If host parameters of the +** form "?NNN" are used (where NNN is an integer) then there might be +** gaps in the numbering and the value returned by this interface is +** the index of the host parameter with the largest index value. {END} +** +** {U13605} The prepared statement must not be [sqlite3_finalize | finalized] +** prior to this routine returning. Otherwise the results are undefined +** and probably undesirable. +*/ +int sqlite3_bind_parameter_count(sqlite3_stmt*); + +/* +** CAPI3REF: Name Of A Host Parameter {F13620} +** +** {F13621} This routine returns a pointer to the name of the n-th +** parameter in a [sqlite3_stmt | prepared statement]. {F13622} +** Host parameters of the form ":AAA" or "@AAA" or "$VVV" have a name +** which is the string ":AAA" or "@AAA" or "$VVV". +** In other words, the initial ":" or "$" or "@" +** is included as part of the name. {F13626} +** Parameters of the form "?" or "?NNN" have no name. +** +** {F13623} The first host parameter has an index of 1, not 0. +** +** {F13624} If the value n is out of range or if the n-th parameter is +** nameless, then NULL is returned. {F13625} The returned string is +** always in the UTF-8 encoding even if the named parameter was +** originally specified as UTF-16 in [sqlite3_prepare16()] or +** [sqlite3_prepare16_v2()]. +*/ +const char *sqlite3_bind_parameter_name(sqlite3_stmt*, int); + +/* +** CAPI3REF: Index Of A Parameter With A Given Name {F13640} +** +** {F13641} This routine returns the index of a host parameter with the +** given name. {F13642} The name must match exactly. {F13643} +** If no parameter with the given name is found, return 0. +** {F13644} Parameter names must be UTF8. +*/ +int sqlite3_bind_parameter_index(sqlite3_stmt*, const char *zName); + +/* +** CAPI3REF: Reset All Bindings On A Prepared Statement {F13660} +** +** {F13661} Contrary to the intuition of many, [sqlite3_reset()] does not +** reset the [sqlite3_bind_blob | bindings] on a +** [sqlite3_stmt | prepared statement]. {F13662} Use this routine to +** reset all host parameters to NULL. +*/ +int sqlite3_clear_bindings(sqlite3_stmt*); + +/* +** CAPI3REF: Number Of Columns In A Result Set {F13710} +** +** {F13711} Return the number of columns in the result set returned by the +** [sqlite3_stmt | compiled SQL statement]. {F13712} This routine returns 0 +** if pStmt is an SQL statement that does not return data (for +** example an UPDATE). +*/ +int sqlite3_column_count(sqlite3_stmt *pStmt); + +/* +** CAPI3REF: Column Names In A Result Set {F13720} +** +** {F13721} These routines return the name assigned to a particular column +** in the result set of a SELECT statement. {F13722} The sqlite3_column_name() +** interface returns a pointer to a zero-terminated UTF8 string +** and sqlite3_column_name16() returns a pointer to a zero-terminated +** UTF16 string. {F13723} The first parameter is the +** [sqlite3_stmt | prepared statement] that implements the SELECT statement. +** The second parameter is the column number. The left-most column is +** number 0. +** +** {F13724} The returned string pointer is valid until either the +** [sqlite3_stmt | prepared statement] is destroyed by [sqlite3_finalize()] +** or until the next call sqlite3_column_name() or sqlite3_column_name16() +** on the same column. +** +** {F13725} If sqlite3_malloc() fails during the processing of either routine +** (for example during a conversion from UTF-8 to UTF-16) then a +** NULL pointer is returned. +*/ +const char *sqlite3_column_name(sqlite3_stmt*, int N); +const void *sqlite3_column_name16(sqlite3_stmt*, int N); + +/* +** CAPI3REF: Source Of Data In A Query Result {F13740} +** +** {F13741} These routines provide a means to determine what column of what +** table in which database a result of a SELECT statement comes from. +** {F13742} The name of the database or table or column can be returned as +** either a UTF8 or UTF16 string. {F13743} The _database_ routines return +** the database name, the _table_ routines return the table name, and +** the origin_ routines return the column name. {F13744} +** The returned string is valid until +** the [sqlite3_stmt | prepared statement] is destroyed using +** [sqlite3_finalize()] or until the same information is requested +** again in a different encoding. +** +** {F13745} The names returned are the original un-aliased names of the +** database, table, and column. +** +** {F13746} The first argument to the following calls is a +** [sqlite3_stmt | compiled SQL statement]. +** {F13747} These functions return information about the Nth column returned by +** the statement, where N is the second function argument. +** +** {F13748} If the Nth column returned by the statement is an expression +** or subquery and is not a column value, then all of these functions +** return NULL. {F13749} Otherwise, they return the +** name of the attached database, table and column that query result +** column was extracted from. +** +** {F13750} As with all other SQLite APIs, those postfixed with "16" return +** UTF-16 encoded strings, the other functions return UTF-8. {END} +** +** These APIs are only available if the library was compiled with the +** SQLITE_ENABLE_COLUMN_METADATA preprocessor symbol defined. +** +** {U13751} +** If two or more threads call one or more of these routines against the same +** prepared statement and column at the same time then the results are +** undefined. +*/ +const char *sqlite3_column_database_name(sqlite3_stmt*,int); +const void *sqlite3_column_database_name16(sqlite3_stmt*,int); +const char *sqlite3_column_table_name(sqlite3_stmt*,int); +const void *sqlite3_column_table_name16(sqlite3_stmt*,int); +const char *sqlite3_column_origin_name(sqlite3_stmt*,int); +const void *sqlite3_column_origin_name16(sqlite3_stmt*,int); + +/* +** CAPI3REF: Declared Datatype Of A Query Result {F13760} +** +** The first parameter is a [sqlite3_stmt | compiled SQL statement]. +** {F13761} If this statement is a SELECT statement and the Nth column of the +** returned result set of that SELECT is a table column (not an +** expression or subquery) then the declared type of the table +** column is returned. {F13762} If the Nth column of the result set is an +** expression or subquery, then a NULL pointer is returned. +** {F13763} The returned string is always UTF-8 encoded. {END} +** For example, in the database schema: +** +** CREATE TABLE t1(c1 VARIANT); +** +** And the following statement compiled: +** +** SELECT c1 + 1, c1 FROM t1; +** +** Then this routine would return the string "VARIANT" for the second +** result column (i==1), and a NULL pointer for the first result column +** (i==0). +** +** SQLite uses dynamic run-time typing. So just because a column +** is declared to contain a particular type does not mean that the +** data stored in that column is of the declared type. SQLite is +** strongly typed, but the typing is dynamic not static. Type +** is associated with individual values, not with the containers +** used to hold those values. +*/ +const char *sqlite3_column_decltype(sqlite3_stmt *, int i); +const void *sqlite3_column_decltype16(sqlite3_stmt*,int); + +/* +** CAPI3REF: Evaluate An SQL Statement {F13200} +** +** After an [sqlite3_stmt | SQL statement] has been prepared with a call +** to either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()] or to one of +** the legacy interfaces [sqlite3_prepare()] or [sqlite3_prepare16()], +** then this function must be called one or more times to evaluate the +** statement. +** +** The details of the behavior of this sqlite3_step() interface depend +** on whether the statement was prepared using the newer "v2" interface +** [sqlite3_prepare_v2()] and [sqlite3_prepare16_v2()] or the older legacy +** interface [sqlite3_prepare()] and [sqlite3_prepare16()]. The use of the +** new "v2" interface is recommended for new applications but the legacy +** interface will continue to be supported. +** +** In the lagacy interface, the return value will be either [SQLITE_BUSY], +** [SQLITE_DONE], [SQLITE_ROW], [SQLITE_ERROR], or [SQLITE_MISUSE]. +** With the "v2" interface, any of the other [SQLITE_OK | result code] +** or [SQLITE_IOERR_READ | extended result code] might be returned as +** well. +** +** [SQLITE_BUSY] means that the database engine was unable to acquire the +** database locks it needs to do its job. If the statement is a COMMIT +** or occurs outside of an explicit transaction, then you can retry the +** statement. If the statement is not a COMMIT and occurs within a +** explicit transaction then you should rollback the transaction before +** continuing. +** +** [SQLITE_DONE] means that the statement has finished executing +** successfully. sqlite3_step() should not be called again on this virtual +** machine without first calling [sqlite3_reset()] to reset the virtual +** machine back to its initial state. +** +** If the SQL statement being executed returns any data, then +** [SQLITE_ROW] is returned each time a new row of data is ready +** for processing by the caller. The values may be accessed using +** the [sqlite3_column_int | column access functions]. +** sqlite3_step() is called again to retrieve the next row of data. +** +** [SQLITE_ERROR] means that a run-time error (such as a constraint +** violation) has occurred. sqlite3_step() should not be called again on +** the VM. More information may be found by calling [sqlite3_errmsg()]. +** With the legacy interface, a more specific error code (example: +** [SQLITE_INTERRUPT], [SQLITE_SCHEMA], [SQLITE_CORRUPT], and so forth) +** can be obtained by calling [sqlite3_reset()] on the +** [sqlite3_stmt | prepared statement]. In the "v2" interface, +** the more specific error code is returned directly by sqlite3_step(). +** +** [SQLITE_MISUSE] means that the this routine was called inappropriately. +** Perhaps it was called on a [sqlite3_stmt | prepared statement] that has +** already been [sqlite3_finalize | finalized] or on one that had +** previously returned [SQLITE_ERROR] or [SQLITE_DONE]. Or it could +** be the case that the same database connection is being used by two or +** more threads at the same moment in time. +** +** Goofy Interface Alert: +** In the legacy interface, +** the sqlite3_step() API always returns a generic error code, +** [SQLITE_ERROR], following any error other than [SQLITE_BUSY] +** and [SQLITE_MISUSE]. You must call [sqlite3_reset()] or +** [sqlite3_finalize()] in order to find one of the specific +** [SQLITE_ERROR | result codes] that better describes the error. +** We admit that this is a goofy design. The problem has been fixed +** with the "v2" interface. If you prepare all of your SQL statements +** using either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()] instead +** of the legacy [sqlite3_prepare()] and [sqlite3_prepare16()], then the +** more specific [SQLITE_ERROR | result codes] are returned directly +** by sqlite3_step(). The use of the "v2" interface is recommended. +*/ +int sqlite3_step(sqlite3_stmt*); + +/* +** CAPI3REF: Number of columns in a result set {F13770} +** +** Return the number of values in the current row of the result set. +** +** {F13771} After a call to [sqlite3_step()] that returns [SQLITE_ROW], +** this routine +** will return the same value as the [sqlite3_column_count()] function. +** {F13772} +** After [sqlite3_step()] has returned an [SQLITE_DONE], [SQLITE_BUSY], or +** a [SQLITE_ERROR | error code], or before [sqlite3_step()] has been +** called on the [sqlite3_stmt | prepared statement] for the first time, +** this routine returns zero. +*/ +int sqlite3_data_count(sqlite3_stmt *pStmt); + +/* +** CAPI3REF: Fundamental Datatypes {F10265} +** +** {F10266}Every value in SQLite has one of five fundamental datatypes: +** +**
    +**
  • 64-bit signed integer +**
  • 64-bit IEEE floating point number +**
  • string +**
  • BLOB +**
  • NULL +**
{END} +** +** These constants are codes for each of those types. +** +** Note that the SQLITE_TEXT constant was also used in SQLite version 2 +** for a completely different meaning. Software that links against both +** SQLite version 2 and SQLite version 3 should use SQLITE3_TEXT not +** SQLITE_TEXT. +*/ +#define SQLITE_INTEGER 1 +#define SQLITE_FLOAT 2 +#define SQLITE_BLOB 4 +#define SQLITE_NULL 5 +#ifdef SQLITE_TEXT +# undef SQLITE_TEXT +#else +# define SQLITE_TEXT 3 +#endif +#define SQLITE3_TEXT 3 + +/* +** CAPI3REF: Results Values From A Query {F13800} +** +** These routines return information about +** a single column of the current result row of a query. In every +** case the first argument is a pointer to the +** [sqlite3_stmt | SQL statement] that is being +** evaluated (the [sqlite3_stmt*] that was returned from +** [sqlite3_prepare_v2()] or one of its variants) and +** the second argument is the index of the column for which information +** should be returned. The left-most column of the result set +** has an index of 0. +** +** If the SQL statement is not currently point to a valid row, or if the +** the column index is out of range, the result is undefined. +** These routines may only be called when the most recent call to +** [sqlite3_step()] has returned [SQLITE_ROW] and neither +** [sqlite3_reset()] nor [sqlite3_finalize()] has been call subsequently. +** If any of these routines are called after [sqlite3_reset()] or +** [sqlite3_finalize()] or after [sqlite3_step()] has returned +** something other than [SQLITE_ROW], the results are undefined. +** If [sqlite3_step()] or [sqlite3_reset()] or [sqlite3_finalize()] +** are called from a different thread while any of these routines +** are pending, then the results are undefined. +** +** The sqlite3_column_type() routine returns +** [SQLITE_INTEGER | datatype code] for the initial data type +** of the result column. The returned value is one of [SQLITE_INTEGER], +** [SQLITE_FLOAT], [SQLITE_TEXT], [SQLITE_BLOB], or [SQLITE_NULL]. The value +** returned by sqlite3_column_type() is only meaningful if no type +** conversions have occurred as described below. After a type conversion, +** the value returned by sqlite3_column_type() is undefined. Future +** versions of SQLite may change the behavior of sqlite3_column_type() +** following a type conversion. +** +** If the result is a BLOB or UTF-8 string then the sqlite3_column_bytes() +** routine returns the number of bytes in that BLOB or string. +** If the result is a UTF-16 string, then sqlite3_column_bytes() converts +** the string to UTF-8 and then returns the number of bytes. +** If the result is a numeric value then sqlite3_column_bytes() uses +** [sqlite3_snprintf()] to convert that value to a UTF-8 string and returns +** the number of bytes in that string. +** The value returned does not include the zero terminator at the end +** of the string. For clarity: the value returned is the number of +** bytes in the string, not the number of characters. +** +** Strings returned by sqlite3_column_text() and sqlite3_column_text16(), +** even zero-length strings, are always zero terminated. The return +** value from sqlite3_column_blob() for a zero-length blob is an arbitrary +** pointer, possibly even a NULL pointer. +** +** The sqlite3_column_bytes16() routine is similar to sqlite3_column_bytes() +** but leaves the result in UTF-16 instead of UTF-8. +** The zero terminator is not included in this count. +** +** These routines attempt to convert the value where appropriate. For +** example, if the internal representation is FLOAT and a text result +** is requested, [sqlite3_snprintf()] is used internally to do the conversion +** automatically. The following table details the conversions that +** are applied: +** +**
+** +**
Internal
Type
Requested
Type
Conversion +** +**
NULL INTEGER Result is 0 +**
NULL FLOAT Result is 0.0 +**
NULL TEXT Result is NULL pointer +**
NULL BLOB Result is NULL pointer +**
INTEGER FLOAT Convert from integer to float +**
INTEGER TEXT ASCII rendering of the integer +**
INTEGER BLOB Same as for INTEGER->TEXT +**
FLOAT INTEGER Convert from float to integer +**
FLOAT TEXT ASCII rendering of the float +**
FLOAT BLOB Same as FLOAT->TEXT +**
TEXT INTEGER Use atoi() +**
TEXT FLOAT Use atof() +**
TEXT BLOB No change +**
BLOB INTEGER Convert to TEXT then use atoi() +**
BLOB FLOAT Convert to TEXT then use atof() +**
BLOB TEXT Add a zero terminator if needed +**
+**
+** +** The table above makes reference to standard C library functions atoi() +** and atof(). SQLite does not really use these functions. It has its +** on equavalent internal routines. The atoi() and atof() names are +** used in the table for brevity and because they are familiar to most +** C programmers. +** +** Note that when type conversions occur, pointers returned by prior +** calls to sqlite3_column_blob(), sqlite3_column_text(), and/or +** sqlite3_column_text16() may be invalidated. +** Type conversions and pointer invalidations might occur +** in the following cases: +** +**
    +**
  • The initial content is a BLOB and sqlite3_column_text() +** or sqlite3_column_text16() is called. A zero-terminator might +** need to be added to the string.

  • +** +**
  • The initial content is UTF-8 text and sqlite3_column_bytes16() or +** sqlite3_column_text16() is called. The content must be converted +** to UTF-16.

  • +** +**
  • The initial content is UTF-16 text and sqlite3_column_bytes() or +** sqlite3_column_text() is called. The content must be converted +** to UTF-8.

  • +**
+** +** Conversions between UTF-16be and UTF-16le are always done in place and do +** not invalidate a prior pointer, though of course the content of the buffer +** that the prior pointer points to will have been modified. Other kinds +** of conversion are done in place when it is possible, but sometime it is +** not possible and in those cases prior pointers are invalidated. +** +** The safest and easiest to remember policy is to invoke these routines +** in one of the following ways: +** +**
    +**
  • sqlite3_column_text() followed by sqlite3_column_bytes()
  • +**
  • sqlite3_column_blob() followed by sqlite3_column_bytes()
  • +**
  • sqlite3_column_text16() followed by sqlite3_column_bytes16()
  • +**
+** +** In other words, you should call sqlite3_column_text(), sqlite3_column_blob(), +** or sqlite3_column_text16() first to force the result into the desired +** format, then invoke sqlite3_column_bytes() or sqlite3_column_bytes16() to +** find the size of the result. Do not mix call to sqlite3_column_text() or +** sqlite3_column_blob() with calls to sqlite3_column_bytes16(). And do not +** mix calls to sqlite3_column_text16() with calls to sqlite3_column_bytes(). +** +** The pointers returned are valid until a type conversion occurs as +** described above, or until [sqlite3_step()] or [sqlite3_reset()] or +** [sqlite3_finalize()] is called. The memory space used to hold strings +** and blobs is freed automatically. Do not pass the pointers returned +** [sqlite3_column_blob()], [sqlite3_column_text()], etc. into +** [sqlite3_free()]. +** +** If a memory allocation error occurs during the evaluation of any +** of these routines, a default value is returned. The default value +** is either the integer 0, the floating point number 0.0, or a NULL +** pointer. Subsequent calls to [sqlite3_errcode()] will return +** [SQLITE_NOMEM]. +*/ +const void *sqlite3_column_blob(sqlite3_stmt*, int iCol); +int sqlite3_column_bytes(sqlite3_stmt*, int iCol); +int sqlite3_column_bytes16(sqlite3_stmt*, int iCol); +double sqlite3_column_double(sqlite3_stmt*, int iCol); +int sqlite3_column_int(sqlite3_stmt*, int iCol); +sqlite3_int64 sqlite3_column_int64(sqlite3_stmt*, int iCol); +const unsigned char *sqlite3_column_text(sqlite3_stmt*, int iCol); +const void *sqlite3_column_text16(sqlite3_stmt*, int iCol); +int sqlite3_column_type(sqlite3_stmt*, int iCol); +sqlite3_value *sqlite3_column_value(sqlite3_stmt*, int iCol); + +/* +** CAPI3REF: Destroy A Prepared Statement Object {F13300} +** +** The sqlite3_finalize() function is called to delete a +** [sqlite3_stmt | compiled SQL statement]. If the statement was +** executed successfully, or not executed at all, then SQLITE_OK is returned. +** If execution of the statement failed then an +** [SQLITE_ERROR | error code] or [SQLITE_IOERR_READ | extended error code] +** is returned. +** +** This routine can be called at any point during the execution of the +** [sqlite3_stmt | virtual machine]. If the virtual machine has not +** completed execution when this routine is called, that is like +** encountering an error or an interrupt. (See [sqlite3_interrupt()].) +** Incomplete updates may be rolled back and transactions cancelled, +** depending on the circumstances, and the +** [SQLITE_ERROR | result code] returned will be [SQLITE_ABORT]. +*/ +int sqlite3_finalize(sqlite3_stmt *pStmt); + +/* +** CAPI3REF: Reset A Prepared Statement Object {F13330} +** +** The sqlite3_reset() function is called to reset a +** [sqlite3_stmt | compiled SQL statement] object. +** back to its initial state, ready to be re-executed. +** Any SQL statement variables that had values bound to them using +** the [sqlite3_bind_blob | sqlite3_bind_*() API] retain their values. +** Use [sqlite3_clear_bindings()] to reset the bindings. +*/ +int sqlite3_reset(sqlite3_stmt *pStmt); + +/* +** CAPI3REF: Create Or Redefine SQL Functions {F16100} +** +** The following two functions are used to add SQL functions or aggregates +** or to redefine the behavior of existing SQL functions or aggregates. The +** difference only between the two is that the second parameter, the +** name of the (scalar) function or aggregate, is encoded in UTF-8 for +** sqlite3_create_function() and UTF-16 for sqlite3_create_function16(). +** +** The first argument is the [sqlite3 | database handle] that holds the +** SQL function or aggregate is to be added or redefined. If a single +** program uses more than one database handle internally, then SQL +** functions or aggregates must be added individually to each database +** handle with which they will be used. +** +** The second parameter is the name of the SQL function to be created +** or redefined. +** The length of the name is limited to 255 bytes, exclusive of the +** zero-terminator. Note that the name length limit is in bytes, not +** characters. Any attempt to create a function with a longer name +** will result in an SQLITE_ERROR error. +** +** The third parameter is the number of arguments that the SQL function or +** aggregate takes. If this parameter is negative, then the SQL function or +** aggregate may take any number of arguments. +** +** The fourth parameter, eTextRep, specifies what +** [SQLITE_UTF8 | text encoding] this SQL function prefers for +** its parameters. Any SQL function implementation should be able to work +** work with UTF-8, UTF-16le, or UTF-16be. But some implementations may be +** more efficient with one encoding than another. It is allowed to +** invoke sqlite3_create_function() or sqlite3_create_function16() multiple +** times with the same function but with different values of eTextRep. +** When multiple implementations of the same function are available, SQLite +** will pick the one that involves the least amount of data conversion. +** If there is only a single implementation which does not care what +** text encoding is used, then the fourth argument should be +** [SQLITE_ANY]. +** +** The fifth parameter is an arbitrary pointer. The implementation +** of the function can gain access to this pointer using +** [sqlite3_user_data()]. +** +** The seventh, eighth and ninth parameters, xFunc, xStep and xFinal, are +** pointers to C-language functions that implement the SQL +** function or aggregate. A scalar SQL function requires an implementation of +** the xFunc callback only, NULL pointers should be passed as the xStep +** and xFinal parameters. An aggregate SQL function requires an implementation +** of xStep and xFinal and NULL should be passed for xFunc. To delete an +** existing SQL function or aggregate, pass NULL for all three function +** callback. +** +** It is permitted to register multiple implementations of the same +** functions with the same name but with either differing numbers of +** arguments or differing perferred text encodings. SQLite will use +** the implementation most closely matches the way in which the +** SQL function is used. +*/ +int sqlite3_create_function( + sqlite3 *, + const char *zFunctionName, + int nArg, + int eTextRep, + void*, + void (*xFunc)(sqlite3_context*,int,sqlite3_value**), + void (*xStep)(sqlite3_context*,int,sqlite3_value**), + void (*xFinal)(sqlite3_context*) +); +int sqlite3_create_function16( + sqlite3*, + const void *zFunctionName, + int nArg, + int eTextRep, + void*, + void (*xFunc)(sqlite3_context*,int,sqlite3_value**), + void (*xStep)(sqlite3_context*,int,sqlite3_value**), + void (*xFinal)(sqlite3_context*) +); + +/* +** CAPI3REF: Text Encodings {F10267} +** +** These constant define integer codes that represent the various +** text encodings supported by SQLite. +*/ +#define SQLITE_UTF8 1 +#define SQLITE_UTF16LE 2 +#define SQLITE_UTF16BE 3 +#define SQLITE_UTF16 4 /* Use native byte order */ +#define SQLITE_ANY 5 /* sqlite3_create_function only */ +#define SQLITE_UTF16_ALIGNED 8 /* sqlite3_create_collation only */ + +/* +** CAPI3REF: Obsolete Functions +** +** These functions are all now obsolete. In order to maintain +** backwards compatibility with older code, we continue to support +** these functions. However, new development projects should avoid +** the use of these functions. To help encourage people to avoid +** using these functions, we are not going to tell you want they do. +*/ +int sqlite3_aggregate_count(sqlite3_context*); +int sqlite3_expired(sqlite3_stmt*); +int sqlite3_transfer_bindings(sqlite3_stmt*, sqlite3_stmt*); +int sqlite3_global_recover(void); +void sqlite3_thread_cleanup(void); +int sqlite3_memory_alarm(void(*)(void*,sqlite3_int64,int),void*,sqlite3_int64); + +/* +** CAPI3REF: Obtaining SQL Function Parameter Values {F15100} +** +** The C-language implementation of SQL functions and aggregates uses +** this set of interface routines to access the parameter values on +** the function or aggregate. +** +** The xFunc (for scalar functions) or xStep (for aggregates) parameters +** to [sqlite3_create_function()] and [sqlite3_create_function16()] +** define callbacks that implement the SQL functions and aggregates. +** The 4th parameter to these callbacks is an array of pointers to +** [sqlite3_value] objects. There is one [sqlite3_value] object for +** each parameter to the SQL function. These routines are used to +** extract values from the [sqlite3_value] objects. +** +** These routines work just like the corresponding +** [sqlite3_column_blob | sqlite3_column_* routines] except that +** these routines take a single [sqlite3_value*] pointer instead +** of an [sqlite3_stmt*] pointer and an integer column number. +** +** The sqlite3_value_text16() interface extracts a UTF16 string +** in the native byte-order of the host machine. The +** sqlite3_value_text16be() and sqlite3_value_text16le() interfaces +** extract UTF16 strings as big-endian and little-endian respectively. +** +** The sqlite3_value_numeric_type() interface attempts to apply +** numeric affinity to the value. This means that an attempt is +** made to convert the value to an integer or floating point. If +** such a conversion is possible without loss of information (in other +** words if the value is a string that looks like a number) +** then the conversion is done. Otherwise no conversion occurs. The +** [SQLITE_INTEGER | datatype] after conversion is returned. +** +** Please pay particular attention to the fact that the pointer that +** is returned from [sqlite3_value_blob()], [sqlite3_value_text()], or +** [sqlite3_value_text16()] can be invalidated by a subsequent call to +** [sqlite3_value_bytes()], [sqlite3_value_bytes16()], [sqlite3_value_text()], +** or [sqlite3_value_text16()]. +** +** These routines must be called from the same thread as +** the SQL function that supplied the sqlite3_value* parameters. +** Or, if the sqlite3_value* argument comes from the [sqlite3_column_value()] +** interface, then these routines should be called from the same thread +** that ran [sqlite3_column_value()]. +** +*/ +const void *sqlite3_value_blob(sqlite3_value*); +int sqlite3_value_bytes(sqlite3_value*); +int sqlite3_value_bytes16(sqlite3_value*); +double sqlite3_value_double(sqlite3_value*); +int sqlite3_value_int(sqlite3_value*); +sqlite3_int64 sqlite3_value_int64(sqlite3_value*); +const unsigned char *sqlite3_value_text(sqlite3_value*); +const void *sqlite3_value_text16(sqlite3_value*); +const void *sqlite3_value_text16le(sqlite3_value*); +const void *sqlite3_value_text16be(sqlite3_value*); +int sqlite3_value_type(sqlite3_value*); +int sqlite3_value_numeric_type(sqlite3_value*); + +/* +** CAPI3REF: Obtain Aggregate Function Context {F16210} +** +** The implementation of aggregate SQL functions use this routine to allocate +** a structure for storing their state. +** {F16211} The first time the sqlite3_aggregate_context() routine is +** is called for a particular aggregate, SQLite allocates nBytes of memory +** zeros that memory, and returns a pointer to it. +** {F16212} On second and subsequent calls to sqlite3_aggregate_context() +** for the same aggregate function index, the same buffer is returned. {END} +** The implementation +** of the aggregate can use the returned buffer to accumulate data. +** +** {F16213} SQLite automatically frees the allocated buffer when the aggregate +** query concludes. {END} +** +** The first parameter should be a copy of the +** [sqlite3_context | SQL function context] that is the first +** parameter to the callback routine that implements the aggregate +** function. +** +** This routine must be called from the same thread in which +** the aggregate SQL function is running. +*/ +void *sqlite3_aggregate_context(sqlite3_context*, int nBytes); + +/* +** CAPI3REF: User Data For Functions {F16240} +** +** {F16241} The sqlite3_user_data() interface returns a copy of +** the pointer that was the pUserData parameter (the 5th parameter) +** of the the [sqlite3_create_function()] +** and [sqlite3_create_function16()] routines that originally +** registered the application defined function. {END} +** +** {U16243} This routine must be called from the same thread in which +** the application-defined function is running. +*/ +void *sqlite3_user_data(sqlite3_context*); + +/* +** CAPI3REF: Function Auxiliary Data {F16270} +** +** The following two functions may be used by scalar SQL functions to +** associate meta-data with argument values. If the same value is passed to +** multiple invocations of the same SQL function during query execution, under +** some circumstances the associated meta-data may be preserved. This may +** be used, for example, to add a regular-expression matching scalar +** function. The compiled version of the regular expression is stored as +** meta-data associated with the SQL value passed as the regular expression +** pattern. The compiled regular expression can be reused on multiple +** invocations of the same function so that the original pattern string +** does not need to be recompiled on each invocation. +** +** {F16271} +** The sqlite3_get_auxdata() interface returns a pointer to the meta-data +** associated by the sqlite3_set_auxdata() function with the Nth argument +** value to the application-defined function. +** {F16272} If no meta-data has been ever been set for the Nth +** argument of the function, or if the cooresponding function parameter +** has changed since the meta-data was set, then sqlite3_get_auxdata() +** returns a NULL pointer. +** +** {F16275} The sqlite3_set_auxdata() interface saves the meta-data +** pointed to by its 3rd parameter as the meta-data for the N-th +** argument of the application-defined function. {END} Subsequent +** calls to sqlite3_get_auxdata() might return this data, if it has +** not been destroyed. +** {F16277} If it is not NULL, SQLite will invoke the destructor +** function given by the 4th parameter to sqlite3_set_auxdata() on +** the meta-data when the corresponding function parameter changes +** or when the SQL statement completes, whichever comes first. {END} +** +** In practice, meta-data is preserved between function calls for +** expressions that are constant at compile time. This includes literal +** values and SQL variables. +** +** These routines must be called from the same thread in which +** the SQL function is running. +*/ +void *sqlite3_get_auxdata(sqlite3_context*, int N); +void sqlite3_set_auxdata(sqlite3_context*, int N, void*, void (*)(void*)); + + +/* +** CAPI3REF: Constants Defining Special Destructor Behavior {F10280} +** +** These are special value for the destructor that is passed in as the +** final argument to routines like [sqlite3_result_blob()]. If the destructor +** argument is SQLITE_STATIC, it means that the content pointer is constant +** and will never change. It does not need to be destroyed. The +** SQLITE_TRANSIENT value means that the content will likely change in +** the near future and that SQLite should make its own private copy of +** the content before returning. +** +** The typedef is necessary to work around problems in certain +** C++ compilers. See ticket #2191. +*/ +typedef void (*sqlite3_destructor_type)(void*); +#define SQLITE_STATIC ((sqlite3_destructor_type)0) +#define SQLITE_TRANSIENT ((sqlite3_destructor_type)-1) + +/* +** CAPI3REF: Setting The Result Of An SQL Function {F16400} +** +** These routines are used by the xFunc or xFinal callbacks that +** implement SQL functions and aggregates. See +** [sqlite3_create_function()] and [sqlite3_create_function16()] +** for additional information. +** +** These functions work very much like the +** [sqlite3_bind_blob | sqlite3_bind_*] family of functions used +** to bind values to host parameters in prepared statements. +** Refer to the +** [sqlite3_bind_blob | sqlite3_bind_* documentation] for +** additional information. +** +** {F16402} The sqlite3_result_blob() interface sets the result from +** an application defined function to be the BLOB whose content is pointed +** to by the second parameter and which is N bytes long where N is the +** third parameter. +** {F16403} The sqlite3_result_zeroblob() inerfaces set the result of +** the application defined function to be a BLOB containing all zero +** bytes and N bytes in size, where N is the value of the 2nd parameter. +** +** {F16407} The sqlite3_result_double() interface sets the result from +** an application defined function to be a floating point value specified +** by its 2nd argument. +** +** {F16409} The sqlite3_result_error() and sqlite3_result_error16() functions +** cause the implemented SQL function to throw an exception. +** {F16411} SQLite uses the string pointed to by the +** 2nd parameter of sqlite3_result_error() or sqlite3_result_error16() +** as the text of an error message. {F16412} SQLite interprets the error +** message string from sqlite3_result_error() as UTF8. {F16413} SQLite +** interprets the string from sqlite3_result_error16() as UTF16 in native +** byte order. {F16414} If the third parameter to sqlite3_result_error() +** or sqlite3_result_error16() is negative then SQLite takes as the error +** message all text up through the first zero character. +** {F16415} If the third parameter to sqlite3_result_error() or +** sqlite3_result_error16() is non-negative then SQLite takes that many +** bytes (not characters) from the 2nd parameter as the error message. +** {F16417} The sqlite3_result_error() and sqlite3_result_error16() +** routines make a copy private copy of the error message text before +** they return. {END} Hence, the calling function can deallocate or +** modify the text after they return without harm. +** +** {F16421} The sqlite3_result_toobig() interface causes SQLite +** to throw an error indicating that a string or BLOB is to long +** to represent. {F16422} The sqlite3_result_nomem() interface +** causes SQLite to throw an exception indicating that the a +** memory allocation failed. +** +** {F16431} The sqlite3_result_int() interface sets the return value +** of the application-defined function to be the 32-bit signed integer +** value given in the 2nd argument. +** {F16432} The sqlite3_result_int64() interface sets the return value +** of the application-defined function to be the 64-bit signed integer +** value given in the 2nd argument. +** +** {F16437} The sqlite3_result_null() interface sets the return value +** of the application-defined function to be NULL. +** +** {F16441} The sqlite3_result_text(), sqlite3_result_text16(), +** sqlite3_result_text16le(), and sqlite3_result_text16be() interfaces +** set the return value of the application-defined function to be +** a text string which is represented as UTF-8, UTF-16 native byte order, +** UTF-16 little endian, or UTF-16 big endian, respectively. +** {F16442} SQLite takes the text result from the application from +** the 2nd parameter of the sqlite3_result_text* interfaces. +** {F16444} If the 3rd parameter to the sqlite3_result_text* interfaces +** is negative, then SQLite takes result text from the 2nd parameter +** through the first zero character. +** {F16447} If the 3rd parameter to the sqlite3_result_text* interfaces +** is non-negative, then as many bytes (not characters) of the text +** pointed to by the 2nd parameter are taken as the application-defined +** function result. +** {F16451} If the 4th parameter to the sqlite3_result_text* interfaces +** or sqlite3_result_blob is a non-NULL pointer, then SQLite calls that +** function as the destructor on the text or blob result when it has +** finished using that result. +** {F16453} If the 4th parameter to the sqlite3_result_text* interfaces +** or sqlite3_result_blob is the special constant SQLITE_STATIC, then +** SQLite assumes that the text or blob result is constant space and +** does not copy the space or call a destructor when it has +** finished using that result. +** {F16454} If the 4th parameter to the sqlite3_result_text* interfaces +** or sqlite3_result_blob is the special constant SQLITE_TRANSIENT +** then SQLite makes a copy of the result into space obtained from +** from [sqlite3_malloc()] before it returns. +** +** {F16461} The sqlite3_result_value() interface sets the result of +** the application-defined function to be a copy the [sqlite3_value] +** object specified by the 2nd parameter. {F16463} The +** sqlite3_result_value() interface makes a copy of the [sqlite3_value] +** so that [sqlite3_value] specified in the parameter may change or +** be deallocated after sqlite3_result_value() returns without harm. +** +** {U16491} These routines are called from within the different thread +** than the one containing the application-defined function that recieved +** the [sqlite3_context] pointer, the results are undefined. +*/ +void sqlite3_result_blob(sqlite3_context*, const void*, int, void(*)(void*)); +void sqlite3_result_double(sqlite3_context*, double); +void sqlite3_result_error(sqlite3_context*, const char*, int); +void sqlite3_result_error16(sqlite3_context*, const void*, int); +void sqlite3_result_error_toobig(sqlite3_context*); +void sqlite3_result_error_nomem(sqlite3_context*); +void sqlite3_result_int(sqlite3_context*, int); +void sqlite3_result_int64(sqlite3_context*, sqlite3_int64); +void sqlite3_result_null(sqlite3_context*); +void sqlite3_result_text(sqlite3_context*, const char*, int, void(*)(void*)); +void sqlite3_result_text16(sqlite3_context*, const void*, int, void(*)(void*)); +void sqlite3_result_text16le(sqlite3_context*, const void*, int,void(*)(void*)); +void sqlite3_result_text16be(sqlite3_context*, const void*, int,void(*)(void*)); +void sqlite3_result_value(sqlite3_context*, sqlite3_value*); +void sqlite3_result_zeroblob(sqlite3_context*, int n); + +/* +** CAPI3REF: Define New Collating Sequences {F16600} +** +** {F16601} +** These functions are used to add new collation sequences to the +** [sqlite3*] handle specified as the first argument. +** +** {F16602} +** The name of the new collation sequence is specified as a UTF-8 string +** for sqlite3_create_collation() and sqlite3_create_collation_v2() +** and a UTF-16 string for sqlite3_create_collation16(). {F16603} In all cases +** the name is passed as the second function argument. +** +** {F16604} +** The third argument may be one of the constants [SQLITE_UTF8], +** [SQLITE_UTF16LE] or [SQLITE_UTF16BE], indicating that the user-supplied +** routine expects to be passed pointers to strings encoded using UTF-8, +** UTF-16 little-endian or UTF-16 big-endian respectively. {F16605} The +** third argument might also be [SQLITE_UTF16_ALIGNED] to indicate that +** the routine expects pointers to 16-bit word aligned strings +** of UTF16 in the native byte order of the host computer. +** +** {F16607} +** A pointer to the user supplied routine must be passed as the fifth +** argument. {F16609} If it is NULL, this is the same as deleting the collation +** sequence (so that SQLite cannot call it anymore). +** {F16611} Each time the application +** supplied function is invoked, it is passed a copy of the void* passed as +** the fourth argument to sqlite3_create_collation() or +** sqlite3_create_collation16() as its first parameter. +** +** {F16612} +** The remaining arguments to the application-supplied routine are two strings, +** each represented by a [length, data] pair and encoded in the encoding +** that was passed as the third argument when the collation sequence was +** registered. {END} The application defined collation routine should +** return negative, zero or positive if +** the first string is less than, equal to, or greater than the second +** string. i.e. (STRING1 - STRING2). +** +** {F16615} +** The sqlite3_create_collation_v2() works like sqlite3_create_collation() +** excapt that it takes an extra argument which is a destructor for +** the collation. {F16617} The destructor is called when the collation is +** destroyed and is passed a copy of the fourth parameter void* pointer +** of the sqlite3_create_collation_v2(). +** {F16618} Collations are destroyed when +** they are overridden by later calls to the collation creation functions +** or when the [sqlite3*] database handle is closed using [sqlite3_close()]. +*/ +int sqlite3_create_collation( + sqlite3*, + const char *zName, + int eTextRep, + void*, + int(*xCompare)(void*,int,const void*,int,const void*) +); +int sqlite3_create_collation_v2( + sqlite3*, + const char *zName, + int eTextRep, + void*, + int(*xCompare)(void*,int,const void*,int,const void*), + void(*xDestroy)(void*) +); +int sqlite3_create_collation16( + sqlite3*, + const char *zName, + int eTextRep, + void*, + int(*xCompare)(void*,int,const void*,int,const void*) +); + +/* +** CAPI3REF: Collation Needed Callbacks {F16700} +** +** {F16701} +** To avoid having to register all collation sequences before a database +** can be used, a single callback function may be registered with the +** database handle to be called whenever an undefined collation sequence is +** required. +** +** {F16702} +** If the function is registered using the sqlite3_collation_needed() API, +** then it is passed the names of undefined collation sequences as strings +** encoded in UTF-8. {F16703} If sqlite3_collation_needed16() is used, the names +** are passed as UTF-16 in machine native byte order. {F16704} A call to either +** function replaces any existing callback. +** +** {F16705} When the callback is invoked, the first argument passed is a copy +** of the second argument to sqlite3_collation_needed() or +** sqlite3_collation_needed16(). {F16706} The second argument is the database +** handle. {F16707} The third argument is one of [SQLITE_UTF8], +** [SQLITE_UTF16BE], or [SQLITE_UTF16LE], indicating the most +** desirable form of the collation sequence function required. +** {F16708} The fourth parameter is the name of the +** required collation sequence. {END} +** +** The callback function should register the desired collation using +** [sqlite3_create_collation()], [sqlite3_create_collation16()], or +** [sqlite3_create_collation_v2()]. +*/ +int sqlite3_collation_needed( + sqlite3*, + void*, + void(*)(void*,sqlite3*,int eTextRep,const char*) +); +int sqlite3_collation_needed16( + sqlite3*, + void*, + void(*)(void*,sqlite3*,int eTextRep,const void*) +); + +/* +** Specify the key for an encrypted database. This routine should be +** called right after sqlite3_open(). +** +** The code to implement this API is not available in the public release +** of SQLite. +*/ +int sqlite3_key( + sqlite3 *db, /* Database to be rekeyed */ + const void *pKey, int nKey /* The key */ +); + +/* +** Change the key on an open database. If the current database is not +** encrypted, this routine will encrypt it. If pNew==0 or nNew==0, the +** database is decrypted. +** +** The code to implement this API is not available in the public release +** of SQLite. +*/ +int sqlite3_rekey( + sqlite3 *db, /* Database to be rekeyed */ + const void *pKey, int nKey /* The new key */ +); + +/* +** CAPI3REF: Suspend Execution For A Short Time {F10530} +** +** {F10531} The sqlite3_sleep() function +** causes the current thread to suspend execution +** for at least a number of milliseconds specified in its parameter. +** +** {F10532} If the operating system does not support sleep requests with +** millisecond time resolution, then the time will be rounded up to +** the nearest second. {F10533} The number of milliseconds of sleep actually +** requested from the operating system is returned. +** +** {F10534} SQLite implements this interface by calling the xSleep() +** method of the default [sqlite3_vfs] object. {END} +*/ +int sqlite3_sleep(int); + +/* +** CAPI3REF: Name Of The Folder Holding Temporary Files {F10310} +** +** If this global variable is made to point to a string which is +** the name of a folder (a.ka. directory), then all temporary files +** created by SQLite will be placed in that directory. If this variable +** is NULL pointer, then SQLite does a search for an appropriate temporary +** file directory. +** +** It is not safe to modify this variable once a database connection +** has been opened. It is intended that this variable be set once +** as part of process initialization and before any SQLite interface +** routines have been call and remain unchanged thereafter. +*/ +SQLITE_EXTERN char *sqlite3_temp_directory; + +/* +** CAPI3REF: Test To See If The Database Is In Auto-Commit Mode {F12930} +** +** {F12931} The sqlite3_get_autocommit() interfaces returns non-zero or +** zero if the given database connection is or is not in autocommit mode, +** respectively. {F12932} Autocommit mode is on +** by default. {F12933} Autocommit mode is disabled by a BEGIN statement. +** {F12934} Autocommit mode is reenabled by a COMMIT or ROLLBACK. {END} +** +** If certain kinds of errors occur on a statement within a multi-statement +** transactions (errors including [SQLITE_FULL], [SQLITE_IOERR], +** [SQLITE_NOMEM], [SQLITE_BUSY], and [SQLITE_INTERRUPT]) then the +** transaction might be rolled back automatically. {F12935} The only way to +** find out if SQLite automatically rolled back the transaction after +** an error is to use this function. {END} +** +** {U12936} If another thread changes the autocommit status of the database +** connection while this routine is running, then the return value +** is undefined. {END} +*/ +int sqlite3_get_autocommit(sqlite3*); + +/* +** CAPI3REF: Find The Database Handle Of A Prepared Statement {F13120} +** +** {F13121} The sqlite3_db_handle interface +** returns the [sqlite3*] database handle to which a +** [sqlite3_stmt | prepared statement] belongs. +** {F13122} the database handle returned by sqlite3_db_handle +** is the same database handle that was +** the first argument to the [sqlite3_prepare_v2()] or its variants +** that was used to create the statement in the first place. +*/ +sqlite3 *sqlite3_db_handle(sqlite3_stmt*); + + +/* +** CAPI3REF: Commit And Rollback Notification Callbacks {F12950} +** +** {F12951} The sqlite3_commit_hook() interface registers a callback +** function to be invoked whenever a transaction is committed. +** {F12952} Any callback set by a previous call to sqlite3_commit_hook() +** for the same database connection is overridden. +** {F12953} The sqlite3_rollback_hook() interface registers a callback +** function to be invoked whenever a transaction is committed. +** {F12954} Any callback set by a previous call to sqlite3_commit_hook() +** for the same database connection is overridden. +** {F12956} The pArg argument is passed through +** to the callback. {F12957} If the callback on a commit hook function +** returns non-zero, then the commit is converted into a rollback. +** +** {F12958} If another function was previously registered, its +** pArg value is returned. Otherwise NULL is returned. +** +** {F12959} Registering a NULL function disables the callback. +** +** {F12961} For the purposes of this API, a transaction is said to have been +** rolled back if an explicit "ROLLBACK" statement is executed, or +** an error or constraint causes an implicit rollback to occur. +** {F12962} The rollback callback is not invoked if a transaction is +** automatically rolled back because the database connection is closed. +** {F12964} The rollback callback is not invoked if a transaction is +** rolled back because a commit callback returned non-zero. +** Check on this {END} +** +** These are experimental interfaces and are subject to change. +*/ +void *sqlite3_commit_hook(sqlite3*, int(*)(void*), void*); +void *sqlite3_rollback_hook(sqlite3*, void(*)(void *), void*); + +/* +** CAPI3REF: Data Change Notification Callbacks {F12970} +** +** {F12971} The sqlite3_update_hook() interface +** registers a callback function with the database connection identified by the +** first argument to be invoked whenever a row is updated, inserted or deleted. +** {F12972} Any callback set by a previous call to this function for the same +** database connection is overridden. +** +** {F12974} The second argument is a pointer to the function to invoke when a +** row is updated, inserted or deleted. +** {F12976} The first argument to the callback is +** a copy of the third argument to sqlite3_update_hook(). +** {F12977} The second callback +** argument is one of [SQLITE_INSERT], [SQLITE_DELETE] or [SQLITE_UPDATE], +** depending on the operation that caused the callback to be invoked. +** {F12978} The third and +** fourth arguments to the callback contain pointers to the database and +** table name containing the affected row. +** {F12979} The final callback parameter is +** the rowid of the row. +** {F12981} In the case of an update, this is the rowid after +** the update takes place. +** +** {F12983} The update hook is not invoked when internal system tables are +** modified (i.e. sqlite_master and sqlite_sequence). +** +** {F12984} If another function was previously registered, its pArg value +** is returned. {F12985} Otherwise NULL is returned. +*/ +void *sqlite3_update_hook( + sqlite3*, + void(*)(void *,int ,char const *,char const *,sqlite3_int64), + void* +); + +/* +** CAPI3REF: Enable Or Disable Shared Pager Cache {F10330} +** +** {F10331} +** This routine enables or disables the sharing of the database cache +** and schema data structures between connections to the same database. +** {F10332} +** Sharing is enabled if the argument is true and disabled if the argument +** is false. +** +** {F10333} Cache sharing is enabled and disabled +** for an entire process. {END} This is a change as of SQLite version 3.5.0. +** In prior versions of SQLite, sharing was +** enabled or disabled for each thread separately. +** +** {F10334} +** The cache sharing mode set by this interface effects all subsequent +** calls to [sqlite3_open()], [sqlite3_open_v2()], and [sqlite3_open16()]. +** {F10335} Existing database connections continue use the sharing mode +** that was in effect at the time they were opened. {END} +** +** Virtual tables cannot be used with a shared cache. {F10336} When shared +** cache is enabled, the [sqlite3_create_module()] API used to register +** virtual tables will always return an error. {END} +** +** {F10337} This routine returns [SQLITE_OK] if shared cache was +** enabled or disabled successfully. {F10338} An [SQLITE_ERROR | error code] +** is returned otherwise. {END} +** +** {F10339} Shared cache is disabled by default. {END} But this might change in +** future releases of SQLite. Applications that care about shared +** cache setting should set it explicitly. +*/ +int sqlite3_enable_shared_cache(int); + +/* +** CAPI3REF: Attempt To Free Heap Memory {F17340} +** +** {F17341} The sqlite3_release_memory() interface attempts to +** free N bytes of heap memory by deallocating non-essential memory +** allocations held by the database labrary. {END} Memory used +** to cache database pages to improve performance is an example of +** non-essential memory. {F16342} sqlite3_release_memory() returns +** the number of bytes actually freed, which might be more or less +** than the amount requested. +*/ +int sqlite3_release_memory(int); + +/* +** CAPI3REF: Impose A Limit On Heap Size {F17350} +** +** {F16351} The sqlite3_soft_heap_limit() interface +** places a "soft" limit on the amount of heap memory that may be allocated +** by SQLite. {F16352} If an internal allocation is requested +** that would exceed the soft heap limit, [sqlite3_release_memory()] is +** invoked one or more times to free up some space before the allocation +** is made. {END} +** +** {F16353} The limit is called "soft", because if +** [sqlite3_release_memory()] cannot +** free sufficient memory to prevent the limit from being exceeded, +** the memory is allocated anyway and the current operation proceeds. +** +** {F16354} +** A negative or zero value for N means that there is no soft heap limit and +** [sqlite3_release_memory()] will only be called when memory is exhausted. +** {F16355} The default value for the soft heap limit is zero. +** +** SQLite makes a best effort to honor the soft heap limit. +** {F16356} But if the soft heap limit cannot honored, execution will +** continue without error or notification. {END} This is why the limit is +** called a "soft" limit. It is advisory only. +** +** Prior to SQLite version 3.5.0, this routine only constrained the memory +** allocated by a single thread - the same thread in which this routine +** runs. Beginning with SQLite version 3.5.0, the soft heap limit is +** applied to all threads. {F16357} The value specified for the soft heap limit +** is an upper bound on the total memory allocation for all threads. {END} In +** version 3.5.0 there is no mechanism for limiting the heap usage for +** individual threads. +*/ +void sqlite3_soft_heap_limit(int); + +/* +** CAPI3REF: Extract Metadata About A Column Of A Table {F12850} +** +** This routine +** returns meta-data about a specific column of a specific database +** table accessible using the connection handle passed as the first function +** argument. +** +** The column is identified by the second, third and fourth parameters to +** this function. The second parameter is either the name of the database +** (i.e. "main", "temp" or an attached database) containing the specified +** table or NULL. If it is NULL, then all attached databases are searched +** for the table using the same algorithm as the database engine uses to +** resolve unqualified table references. +** +** The third and fourth parameters to this function are the table and column +** name of the desired column, respectively. Neither of these parameters +** may be NULL. +** +** Meta information is returned by writing to the memory locations passed as +** the 5th and subsequent parameters to this function. Any of these +** arguments may be NULL, in which case the corresponding element of meta +** information is ommitted. +** +**
+** Parameter     Output Type      Description
+** -----------------------------------
+**
+**   5th         const char*      Data type
+**   6th         const char*      Name of the default collation sequence 
+**   7th         int              True if the column has a NOT NULL constraint
+**   8th         int              True if the column is part of the PRIMARY KEY
+**   9th         int              True if the column is AUTOINCREMENT
+** 
+** +** +** The memory pointed to by the character pointers returned for the +** declaration type and collation sequence is valid only until the next +** call to any sqlite API function. +** +** If the specified table is actually a view, then an error is returned. +** +** If the specified column is "rowid", "oid" or "_rowid_" and an +** INTEGER PRIMARY KEY column has been explicitly declared, then the output +** parameters are set for the explicitly declared column. If there is no +** explicitly declared IPK column, then the output parameters are set as +** follows: +** +**
+**     data type: "INTEGER"
+**     collation sequence: "BINARY"
+**     not null: 0
+**     primary key: 1
+**     auto increment: 0
+** 
+** +** This function may load one or more schemas from database files. If an +** error occurs during this process, or if the requested table or column +** cannot be found, an SQLITE error code is returned and an error message +** left in the database handle (to be retrieved using sqlite3_errmsg()). +** +** This API is only available if the library was compiled with the +** SQLITE_ENABLE_COLUMN_METADATA preprocessor symbol defined. +*/ +int sqlite3_table_column_metadata( + sqlite3 *db, /* Connection handle */ + const char *zDbName, /* Database name or NULL */ + const char *zTableName, /* Table name */ + const char *zColumnName, /* Column name */ + char const **pzDataType, /* OUTPUT: Declared data type */ + char const **pzCollSeq, /* OUTPUT: Collation sequence name */ + int *pNotNull, /* OUTPUT: True if NOT NULL constraint exists */ + int *pPrimaryKey, /* OUTPUT: True if column part of PK */ + int *pAutoinc /* OUTPUT: True if column is auto-increment */ +); + +/* +** CAPI3REF: Load An Extension {F12600} +** +** {F12601} The sqlite3_load_extension() interface +** attempts to load an SQLite extension library contained in the file +** zFile. {F12602} The entry point is zProc. {F12603} zProc may be 0 +** in which case the name of the entry point defaults +** to "sqlite3_extension_init". +** +** {F12604} The sqlite3_load_extension() interface shall +** return [SQLITE_OK] on success and [SQLITE_ERROR] if something goes wrong. +** +** {F12605} +** If an error occurs and pzErrMsg is not 0, then the +** sqlite3_load_extension() interface shall attempt to fill *pzErrMsg with +** error message text stored in memory obtained from [sqlite3_malloc()]. +** {END} The calling function should free this memory +** by calling [sqlite3_free()]. +** +** {F12606} +** Extension loading must be enabled using [sqlite3_enable_load_extension()] +** prior to calling this API or an error will be returned. +*/ +int sqlite3_load_extension( + sqlite3 *db, /* Load the extension into this database connection */ + const char *zFile, /* Name of the shared library containing extension */ + const char *zProc, /* Entry point. Derived from zFile if 0 */ + char **pzErrMsg /* Put error message here if not 0 */ +); + +/* +** CAPI3REF: Enable Or Disable Extension Loading {F12620} +** +** So as not to open security holes in older applications that are +** unprepared to deal with extension loading, and as a means of disabling +** extension loading while evaluating user-entered SQL, the following +** API is provided to turn the [sqlite3_load_extension()] mechanism on and +** off. {F12622} It is off by default. {END} See ticket #1863. +** +** {F12621} Call the sqlite3_enable_load_extension() routine +** with onoff==1 to turn extension loading on +** and call it with onoff==0 to turn it back off again. {END} +*/ +int sqlite3_enable_load_extension(sqlite3 *db, int onoff); + +/* +** CAPI3REF: Make Arrangements To Automatically Load An Extension {F12640} +** +** {F12641} This function +** registers an extension entry point that is automatically invoked +** whenever a new database connection is opened using +** [sqlite3_open()], [sqlite3_open16()], or [sqlite3_open_v2()]. {END} +** +** This API can be invoked at program startup in order to register +** one or more statically linked extensions that will be available +** to all new database connections. +** +** {F12642} Duplicate extensions are detected so calling this routine multiple +** times with the same extension is harmless. +** +** {F12643} This routine stores a pointer to the extension in an array +** that is obtained from sqlite_malloc(). {END} If you run a memory leak +** checker on your program and it reports a leak because of this +** array, then invoke [sqlite3_reset_auto_extension()] prior +** to shutdown to free the memory. +** +** {F12644} Automatic extensions apply across all threads. {END} +** +** This interface is experimental and is subject to change or +** removal in future releases of SQLite. +*/ +int sqlite3_auto_extension(void *xEntryPoint); + + +/* +** CAPI3REF: Reset Automatic Extension Loading {F12660} +** +** {F12661} This function disables all previously registered +** automatic extensions. {END} This +** routine undoes the effect of all prior [sqlite3_automatic_extension()] +** calls. +** +** {F12662} This call disabled automatic extensions in all threads. {END} +** +** This interface is experimental and is subject to change or +** removal in future releases of SQLite. +*/ +void sqlite3_reset_auto_extension(void); + + +/* +****** EXPERIMENTAL - subject to change without notice ************** +** +** The interface to the virtual-table mechanism is currently considered +** to be experimental. The interface might change in incompatible ways. +** If this is a problem for you, do not use the interface at this time. +** +** When the virtual-table mechanism stablizes, we will declare the +** interface fixed, support it indefinitely, and remove this comment. +*/ + +/* +** Structures used by the virtual table interface +*/ +typedef struct sqlite3_vtab sqlite3_vtab; +typedef struct sqlite3_index_info sqlite3_index_info; +typedef struct sqlite3_vtab_cursor sqlite3_vtab_cursor; +typedef struct sqlite3_module sqlite3_module; + +/* +** A module is a class of virtual tables. Each module is defined +** by an instance of the following structure. This structure consists +** mostly of methods for the module. +*/ +struct sqlite3_module { + int iVersion; + int (*xCreate)(sqlite3*, void *pAux, + int argc, const char *const*argv, + sqlite3_vtab **ppVTab, char**); + int (*xConnect)(sqlite3*, void *pAux, + int argc, const char *const*argv, + sqlite3_vtab **ppVTab, char**); + int (*xBestIndex)(sqlite3_vtab *pVTab, sqlite3_index_info*); + int (*xDisconnect)(sqlite3_vtab *pVTab); + int (*xDestroy)(sqlite3_vtab *pVTab); + int (*xOpen)(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor); + int (*xClose)(sqlite3_vtab_cursor*); + int (*xFilter)(sqlite3_vtab_cursor*, int idxNum, const char *idxStr, + int argc, sqlite3_value **argv); + int (*xNext)(sqlite3_vtab_cursor*); + int (*xEof)(sqlite3_vtab_cursor*); + int (*xColumn)(sqlite3_vtab_cursor*, sqlite3_context*, int); + int (*xRowid)(sqlite3_vtab_cursor*, sqlite3_int64 *pRowid); + int (*xUpdate)(sqlite3_vtab *, int, sqlite3_value **, sqlite3_int64 *); + int (*xBegin)(sqlite3_vtab *pVTab); + int (*xSync)(sqlite3_vtab *pVTab); + int (*xCommit)(sqlite3_vtab *pVTab); + int (*xRollback)(sqlite3_vtab *pVTab); + int (*xFindFunction)(sqlite3_vtab *pVtab, int nArg, const char *zName, + void (**pxFunc)(sqlite3_context*,int,sqlite3_value**), + void **ppArg); + + int (*xRename)(sqlite3_vtab *pVtab, const char *zNew); +}; + +/* +** The sqlite3_index_info structure and its substructures is used to +** pass information into and receive the reply from the xBestIndex +** method of an sqlite3_module. The fields under **Inputs** are the +** inputs to xBestIndex and are read-only. xBestIndex inserts its +** results into the **Outputs** fields. +** +** The aConstraint[] array records WHERE clause constraints of the +** form: +** +** column OP expr +** +** Where OP is =, <, <=, >, or >=. +** The particular operator is stored +** in aConstraint[].op. The index of the column is stored in +** aConstraint[].iColumn. aConstraint[].usable is TRUE if the +** expr on the right-hand side can be evaluated (and thus the constraint +** is usable) and false if it cannot. +** +** The optimizer automatically inverts terms of the form "expr OP column" +** and makes other simplifications to the WHERE clause in an attempt to +** get as many WHERE clause terms into the form shown above as possible. +** The aConstraint[] array only reports WHERE clause terms in the correct +** form that refer to the particular virtual table being queried. +** +** Information about the ORDER BY clause is stored in aOrderBy[]. +** Each term of aOrderBy records a column of the ORDER BY clause. +** +** The xBestIndex method must fill aConstraintUsage[] with information +** about what parameters to pass to xFilter. If argvIndex>0 then +** the right-hand side of the corresponding aConstraint[] is evaluated +** and becomes the argvIndex-th entry in argv. If aConstraintUsage[].omit +** is true, then the constraint is assumed to be fully handled by the +** virtual table and is not checked again by SQLite. +** +** The idxNum and idxPtr values are recorded and passed into xFilter. +** sqlite3_free() is used to free idxPtr if needToFreeIdxPtr is true. +** +** The orderByConsumed means that output from xFilter will occur in +** the correct order to satisfy the ORDER BY clause so that no separate +** sorting step is required. +** +** The estimatedCost value is an estimate of the cost of doing the +** particular lookup. A full scan of a table with N entries should have +** a cost of N. A binary search of a table of N entries should have a +** cost of approximately log(N). +*/ +struct sqlite3_index_info { + /* Inputs */ + int nConstraint; /* Number of entries in aConstraint */ + struct sqlite3_index_constraint { + int iColumn; /* Column on left-hand side of constraint */ + unsigned char op; /* Constraint operator */ + unsigned char usable; /* True if this constraint is usable */ + int iTermOffset; /* Used internally - xBestIndex should ignore */ + } *aConstraint; /* Table of WHERE clause constraints */ + int nOrderBy; /* Number of terms in the ORDER BY clause */ + struct sqlite3_index_orderby { + int iColumn; /* Column number */ + unsigned char desc; /* True for DESC. False for ASC. */ + } *aOrderBy; /* The ORDER BY clause */ + + /* Outputs */ + struct sqlite3_index_constraint_usage { + int argvIndex; /* if >0, constraint is part of argv to xFilter */ + unsigned char omit; /* Do not code a test for this constraint */ + } *aConstraintUsage; + int idxNum; /* Number used to identify the index */ + char *idxStr; /* String, possibly obtained from sqlite3_malloc */ + int needToFreeIdxStr; /* Free idxStr using sqlite3_free() if true */ + int orderByConsumed; /* True if output is already ordered */ + double estimatedCost; /* Estimated cost of using this index */ +}; +#define SQLITE_INDEX_CONSTRAINT_EQ 2 +#define SQLITE_INDEX_CONSTRAINT_GT 4 +#define SQLITE_INDEX_CONSTRAINT_LE 8 +#define SQLITE_INDEX_CONSTRAINT_LT 16 +#define SQLITE_INDEX_CONSTRAINT_GE 32 +#define SQLITE_INDEX_CONSTRAINT_MATCH 64 + +/* +** This routine is used to register a new module name with an SQLite +** connection. Module names must be registered before creating new +** virtual tables on the module, or before using preexisting virtual +** tables of the module. +*/ +int sqlite3_create_module( + sqlite3 *db, /* SQLite connection to register module with */ + const char *zName, /* Name of the module */ + const sqlite3_module *, /* Methods for the module */ + void * /* Client data for xCreate/xConnect */ +); + +/* +** This routine is identical to the sqlite3_create_module() method above, +** except that it allows a destructor function to be specified. It is +** even more experimental than the rest of the virtual tables API. +*/ +int sqlite3_create_module_v2( + sqlite3 *db, /* SQLite connection to register module with */ + const char *zName, /* Name of the module */ + const sqlite3_module *, /* Methods for the module */ + void *, /* Client data for xCreate/xConnect */ + void(*xDestroy)(void*) /* Module destructor function */ +); + +/* +** Every module implementation uses a subclass of the following structure +** to describe a particular instance of the module. Each subclass will +** be tailored to the specific needs of the module implementation. The +** purpose of this superclass is to define certain fields that are common +** to all module implementations. +** +** Virtual tables methods can set an error message by assigning a +** string obtained from sqlite3_mprintf() to zErrMsg. The method should +** take care that any prior string is freed by a call to sqlite3_free() +** prior to assigning a new string to zErrMsg. After the error message +** is delivered up to the client application, the string will be automatically +** freed by sqlite3_free() and the zErrMsg field will be zeroed. Note +** that sqlite3_mprintf() and sqlite3_free() are used on the zErrMsg field +** since virtual tables are commonly implemented in loadable extensions which +** do not have access to sqlite3MPrintf() or sqlite3Free(). +*/ +struct sqlite3_vtab { + const sqlite3_module *pModule; /* The module for this virtual table */ + int nRef; /* Used internally */ + char *zErrMsg; /* Error message from sqlite3_mprintf() */ + /* Virtual table implementations will typically add additional fields */ +}; + +/* Every module implementation uses a subclass of the following structure +** to describe cursors that point into the virtual table and are used +** to loop through the virtual table. Cursors are created using the +** xOpen method of the module. Each module implementation will define +** the content of a cursor structure to suit its own needs. +** +** This superclass exists in order to define fields of the cursor that +** are common to all implementations. +*/ +struct sqlite3_vtab_cursor { + sqlite3_vtab *pVtab; /* Virtual table of this cursor */ + /* Virtual table implementations will typically add additional fields */ +}; + +/* +** The xCreate and xConnect methods of a module use the following API +** to declare the format (the names and datatypes of the columns) of +** the virtual tables they implement. +*/ +int sqlite3_declare_vtab(sqlite3*, const char *zCreateTable); + +/* +** Virtual tables can provide alternative implementations of functions +** using the xFindFunction method. But global versions of those functions +** must exist in order to be overloaded. +** +** This API makes sure a global version of a function with a particular +** name and number of parameters exists. If no such function exists +** before this API is called, a new function is created. The implementation +** of the new function always causes an exception to be thrown. So +** the new function is not good for anything by itself. Its only +** purpose is to be a place-holder function that can be overloaded +** by virtual tables. +** +** This API should be considered part of the virtual table interface, +** which is experimental and subject to change. +*/ +int sqlite3_overload_function(sqlite3*, const char *zFuncName, int nArg); + +/* +** The interface to the virtual-table mechanism defined above (back up +** to a comment remarkably similar to this one) is currently considered +** to be experimental. The interface might change in incompatible ways. +** If this is a problem for you, do not use the interface at this time. +** +** When the virtual-table mechanism stabilizes, we will declare the +** interface fixed, support it indefinitely, and remove this comment. +** +****** EXPERIMENTAL - subject to change without notice ************** +*/ + +/* +** CAPI3REF: A Handle To An Open BLOB {F17800} +** +** An instance of the following opaque structure is used to +** represent an blob-handle. A blob-handle is created by +** [sqlite3_blob_open()] and destroyed by [sqlite3_blob_close()]. +** The [sqlite3_blob_read()] and [sqlite3_blob_write()] interfaces +** can be used to read or write small subsections of the blob. +** The [sqlite3_blob_bytes()] interface returns the size of the +** blob in bytes. +*/ +typedef struct sqlite3_blob sqlite3_blob; + +/* +** CAPI3REF: Open A BLOB For Incremental I/O {F17810} +** +** {F17811} This interfaces opens a handle to the blob located +** in row iRow,, column zColumn, table zTable in database zDb; +** in other words, the same blob that would be selected by: +** +**
+**     SELECT zColumn FROM zDb.zTable WHERE rowid = iRow;
+** 
{END} +** +** {F17812} If the flags parameter is non-zero, the blob is opened for +** read and write access. If it is zero, the blob is opened for read +** access. {END} +** +** {F17813} On success, [SQLITE_OK] is returned and the new +** [sqlite3_blob | blob handle] is written to *ppBlob. +** {F17814} Otherwise an error code is returned and +** any value written to *ppBlob should not be used by the caller. +** {F17815} This function sets the database-handle error code and message +** accessible via [sqlite3_errcode()] and [sqlite3_errmsg()]. +** We should go through and mark all interfaces that behave this +** way with a similar statement +*/ +int sqlite3_blob_open( + sqlite3*, + const char *zDb, + const char *zTable, + const char *zColumn, + sqlite3_int64 iRow, + int flags, + sqlite3_blob **ppBlob +); + +/* +** CAPI3REF: Close A BLOB Handle {F17830} +** +** Close an open [sqlite3_blob | blob handle]. +** +** {F17831} Closing a BLOB shall cause the current transaction to commit +** if there are no other BLOBs, no pending prepared statements, and the +** database connection is in autocommit mode. +** {F17832} If any writes were made to the BLOB, they might be held in cache +** until the close operation if they will fit. {END} +** Closing the BLOB often forces the changes +** out to disk and so if any I/O errors occur, they will likely occur +** at the time when the BLOB is closed. {F17833} Any errors that occur during +** closing are reported as a non-zero return value. +** +** {F17839} The BLOB is closed unconditionally. Even if this routine returns +** an error code, the BLOB is still closed. +*/ +int sqlite3_blob_close(sqlite3_blob *); + +/* +** CAPI3REF: Return The Size Of An Open BLOB {F17805} +** +** {F16806} Return the size in bytes of the blob accessible via the open +** [sqlite3_blob | blob-handle] passed as an argument. +*/ +int sqlite3_blob_bytes(sqlite3_blob *); + +/* +** CAPI3REF: Read Data From A BLOB Incrementally {F17850} +** +** This function is used to read data from an open +** [sqlite3_blob | blob-handle] into a caller supplied buffer. +** {F17851} n bytes of data are copied into buffer +** z from the open blob, starting at offset iOffset. +** +** {F17852} If offset iOffset is less than n bytes from the end of the blob, +** [SQLITE_ERROR] is returned and no data is read. {F17853} If n is +** less than zero [SQLITE_ERROR] is returned and no data is read. +** +** {F17854} On success, SQLITE_OK is returned. Otherwise, an +** [SQLITE_ERROR | SQLite error code] or an +** [SQLITE_IOERR_READ | extended error code] is returned. +*/ +int sqlite3_blob_read(sqlite3_blob *, void *z, int n, int iOffset); + +/* +** CAPI3REF: Write Data Into A BLOB Incrementally {F17870} +** +** This function is used to write data into an open +** [sqlite3_blob | blob-handle] from a user supplied buffer. +** {F17871} n bytes of data are copied from the buffer +** pointed to by z into the open blob, starting at offset iOffset. +** +** {F17872} If the [sqlite3_blob | blob-handle] passed as the first argument +** was not opened for writing (the flags parameter to [sqlite3_blob_open()] +*** was zero), this function returns [SQLITE_READONLY]. +** +** {F17873} This function may only modify the contents of the blob; it is +** not possible to increase the size of a blob using this API. +** {F17874} If offset iOffset is less than n bytes from the end of the blob, +** [SQLITE_ERROR] is returned and no data is written. {F17875} If n is +** less than zero [SQLITE_ERROR] is returned and no data is written. +** +** {F17876} On success, SQLITE_OK is returned. Otherwise, an +** [SQLITE_ERROR | SQLite error code] or an +** [SQLITE_IOERR_READ | extended error code] is returned. +*/ +int sqlite3_blob_write(sqlite3_blob *, const void *z, int n, int iOffset); + +/* +** CAPI3REF: Virtual File System Objects {F11200} +** +** A virtual filesystem (VFS) is an [sqlite3_vfs] object +** that SQLite uses to interact +** with the underlying operating system. Most builds come with a +** single default VFS that is appropriate for the host computer. +** New VFSes can be registered and existing VFSes can be unregistered. +** The following interfaces are provided. +** +** {F11201} The sqlite3_vfs_find() interface returns a pointer to +** a VFS given its name. {F11202} Names are case sensitive. +** {F11203} Names are zero-terminated UTF-8 strings. +** {F11204} If there is no match, a NULL +** pointer is returned. {F11205} If zVfsName is NULL then the default +** VFS is returned. {END} +** +** {F11210} New VFSes are registered with sqlite3_vfs_register(). +** {F11211} Each new VFS becomes the default VFS if the makeDflt flag is set. +** {F11212} The same VFS can be registered multiple times without injury. +** {F11213} To make an existing VFS into the default VFS, register it again +** with the makeDflt flag set. {U11214} If two different VFSes with the +** same name are registered, the behavior is undefined. {U11215} If a +** VFS is registered with a name that is NULL or an empty string, +** then the behavior is undefined. +** +** {F11220} Unregister a VFS with the sqlite3_vfs_unregister() interface. +** {F11221} If the default VFS is unregistered, another VFS is chosen as +** the default. The choice for the new VFS is arbitrary. +*/ +sqlite3_vfs *sqlite3_vfs_find(const char *zVfsName); +int sqlite3_vfs_register(sqlite3_vfs*, int makeDflt); +int sqlite3_vfs_unregister(sqlite3_vfs*); + +/* +** CAPI3REF: Mutexes {F17000} +** +** The SQLite core uses these routines for thread +** synchronization. Though they are intended for internal +** use by SQLite, code that links against SQLite is +** permitted to use any of these routines. +** +** The SQLite source code contains multiple implementations +** of these mutex routines. An appropriate implementation +** is selected automatically at compile-time. The following +** implementations are available in the SQLite core: +** +**
    +**
  • SQLITE_MUTEX_OS2 +**
  • SQLITE_MUTEX_PTHREAD +**
  • SQLITE_MUTEX_W32 +**
  • SQLITE_MUTEX_NOOP +**
+** +** The SQLITE_MUTEX_NOOP implementation is a set of routines +** that does no real locking and is appropriate for use in +** a single-threaded application. The SQLITE_MUTEX_OS2, +** SQLITE_MUTEX_PTHREAD, and SQLITE_MUTEX_W32 implementations +** are appropriate for use on os/2, unix, and windows. +** +** If SQLite is compiled with the SQLITE_MUTEX_APPDEF preprocessor +** macro defined (with "-DSQLITE_MUTEX_APPDEF=1"), then no mutex +** implementation is included with the library. The +** mutex interface routines defined here become external +** references in the SQLite library for which implementations +** must be provided by the application. This facility allows an +** application that links against SQLite to provide its own mutex +** implementation without having to modify the SQLite core. +** +** {F17011} The sqlite3_mutex_alloc() routine allocates a new +** mutex and returns a pointer to it. {F17012} If it returns NULL +** that means that a mutex could not be allocated. {F17013} SQLite +** will unwind its stack and return an error. {F17014} The argument +** to sqlite3_mutex_alloc() is one of these integer constants: +** +**
    +**
  • SQLITE_MUTEX_FAST +**
  • SQLITE_MUTEX_RECURSIVE +**
  • SQLITE_MUTEX_STATIC_MASTER +**
  • SQLITE_MUTEX_STATIC_MEM +**
  • SQLITE_MUTEX_STATIC_MEM2 +**
  • SQLITE_MUTEX_STATIC_PRNG +**
  • SQLITE_MUTEX_STATIC_LRU +**
{END} +** +** {F17015} The first two constants cause sqlite3_mutex_alloc() to create +** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE +** is used but not necessarily so when SQLITE_MUTEX_FAST is used. {END} +** The mutex implementation does not need to make a distinction +** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does +** not want to. {F17016} But SQLite will only request a recursive mutex in +** cases where it really needs one. {END} If a faster non-recursive mutex +** implementation is available on the host platform, the mutex subsystem +** might return such a mutex in response to SQLITE_MUTEX_FAST. +** +** {F17017} The other allowed parameters to sqlite3_mutex_alloc() each return +** a pointer to a static preexisting mutex. {END} Four static mutexes are +** used by the current version of SQLite. Future versions of SQLite +** may add additional static mutexes. Static mutexes are for internal +** use by SQLite only. Applications that use SQLite mutexes should +** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or +** SQLITE_MUTEX_RECURSIVE. +** +** {F17018} Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST +** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc() +** returns a different mutex on every call. {F17034} But for the static +** mutex types, the same mutex is returned on every call that has +** the same type number. {END} +** +** {F17019} The sqlite3_mutex_free() routine deallocates a previously +** allocated dynamic mutex. {F17020} SQLite is careful to deallocate every +** dynamic mutex that it allocates. {U17021} The dynamic mutexes must not be in +** use when they are deallocated. {U17022} Attempting to deallocate a static +** mutex results in undefined behavior. {F17023} SQLite never deallocates +** a static mutex. {END} +** +** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt +** to enter a mutex. {F17024} If another thread is already within the mutex, +** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return +** SQLITE_BUSY. {F17025} The sqlite3_mutex_try() interface returns SQLITE_OK +** upon successful entry. {F17026} Mutexes created using +** SQLITE_MUTEX_RECURSIVE can be entered multiple times by the same thread. +** {F17027} In such cases the, +** mutex must be exited an equal number of times before another thread +** can enter. {U17028} If the same thread tries to enter any other +** kind of mutex more than once, the behavior is undefined. +** {F17029} SQLite will never exhibit +** such behavior in its own use of mutexes. {END} +** +** Some systems (ex: windows95) do not the operation implemented by +** sqlite3_mutex_try(). On those systems, sqlite3_mutex_try() will +** always return SQLITE_BUSY. {F17030} The SQLite core only ever uses +** sqlite3_mutex_try() as an optimization so this is acceptable behavior. {END} +** +** {F17031} The sqlite3_mutex_leave() routine exits a mutex that was +** previously entered by the same thread. {U17032} The behavior +** is undefined if the mutex is not currently entered by the +** calling thread or is not currently allocated. {F17033} SQLite will +** never do either. {END} +** +** See also: [sqlite3_mutex_held()] and [sqlite3_mutex_notheld()]. +*/ +sqlite3_mutex *sqlite3_mutex_alloc(int); +void sqlite3_mutex_free(sqlite3_mutex*); +void sqlite3_mutex_enter(sqlite3_mutex*); +int sqlite3_mutex_try(sqlite3_mutex*); +void sqlite3_mutex_leave(sqlite3_mutex*); + +/* +** CAPI3REF: Mutex Verifcation Routines {F17080} +** +** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routines +** are intended for use inside assert() statements. {F17081} The SQLite core +** never uses these routines except inside an assert() and applications +** are advised to follow the lead of the core. {F17082} The core only +** provides implementations for these routines when it is compiled +** with the SQLITE_DEBUG flag. {U17087} External mutex implementations +** are only required to provide these routines if SQLITE_DEBUG is +** defined and if NDEBUG is not defined. +** +** {F17083} These routines should return true if the mutex in their argument +** is held or not held, respectively, by the calling thread. {END} +** +** {X17084} The implementation is not required to provided versions of these +** routines that actually work. +** If the implementation does not provide working +** versions of these routines, it should at least provide stubs +** that always return true so that one does not get spurious +** assertion failures. {END} +** +** {F17085} If the argument to sqlite3_mutex_held() is a NULL pointer then +** the routine should return 1. {END} This seems counter-intuitive since +** clearly the mutex cannot be held if it does not exist. But the +** the reason the mutex does not exist is because the build is not +** using mutexes. And we do not want the assert() containing the +** call to sqlite3_mutex_held() to fail, so a non-zero return is +** the appropriate thing to do. {F17086} The sqlite3_mutex_notheld() +** interface should also return 1 when given a NULL pointer. +*/ +int sqlite3_mutex_held(sqlite3_mutex*); +int sqlite3_mutex_notheld(sqlite3_mutex*); + +/* +** CAPI3REF: Mutex Types {F17001} +** +** {F17002} The [sqlite3_mutex_alloc()] interface takes a single argument +** which is one of these integer constants. {END} +*/ +#define SQLITE_MUTEX_FAST 0 +#define SQLITE_MUTEX_RECURSIVE 1 +#define SQLITE_MUTEX_STATIC_MASTER 2 +#define SQLITE_MUTEX_STATIC_MEM 3 /* sqlite3_malloc() */ +#define SQLITE_MUTEX_STATIC_MEM2 4 /* sqlite3_release_memory() */ +#define SQLITE_MUTEX_STATIC_PRNG 5 /* sqlite3_random() */ +#define SQLITE_MUTEX_STATIC_LRU 6 /* lru page list */ + +/* +** CAPI3REF: Low-Level Control Of Database Files {F11300} +** +** {F11301} The [sqlite3_file_control()] interface makes a direct call to the +** xFileControl method for the [sqlite3_io_methods] object associated +** with a particular database identified by the second argument. {F11302} The +** name of the database is the name assigned to the database by the +** ATTACH SQL command that opened the +** database. {F11303} To control the main database file, use the name "main" +** or a NULL pointer. {F11304} The third and fourth parameters to this routine +** are passed directly through to the second and third parameters of +** the xFileControl method. {F11305} The return value of the xFileControl +** method becomes the return value of this routine. +** +** {F11306} If the second parameter (zDbName) does not match the name of any +** open database file, then SQLITE_ERROR is returned. {F11307} This error +** code is not remembered and will not be recalled by [sqlite3_errcode()] +** or [sqlite3_errmsg()]. {U11308} The underlying xFileControl method might +** also return SQLITE_ERROR. {U11309} There is no way to distinguish between +** an incorrect zDbName and an SQLITE_ERROR return from the underlying +** xFileControl method. {END} +** +** See also: [SQLITE_FCNTL_LOCKSTATE] +*/ +int sqlite3_file_control(sqlite3*, const char *zDbName, int op, void*); + +/* +** Undo the hack that converts floating point types to integer for +** builds on processors without floating point support. +*/ +#ifdef SQLITE_OMIT_FLOATING_POINT +# undef double +#endif + +#if 0 +} /* End of the 'extern "C"' block */ +#endif +#endif + +/************** End of sqlite3.h *********************************************/ +/************** Continuing where we left off in sqlite3ext.h *****************/ + +typedef struct sqlite3_api_routines sqlite3_api_routines; + +/* +** The following structure hold pointers to all of the SQLite API +** routines. +** +** WARNING: In order to maintain backwards compatibility, add new +** interfaces to the end of this structure only. If you insert new +** interfaces in the middle of this structure, then older different +** versions of SQLite will not be able to load each others shared +** libraries! +*/ +struct sqlite3_api_routines { + void * (*aggregate_context)(sqlite3_context*,int nBytes); + int (*aggregate_count)(sqlite3_context*); + int (*bind_blob)(sqlite3_stmt*,int,const void*,int n,void(*)(void*)); + int (*bind_double)(sqlite3_stmt*,int,double); + int (*bind_int)(sqlite3_stmt*,int,int); + int (*bind_int64)(sqlite3_stmt*,int,sqlite_int64); + int (*bind_null)(sqlite3_stmt*,int); + int (*bind_parameter_count)(sqlite3_stmt*); + int (*bind_parameter_index)(sqlite3_stmt*,const char*zName); + const char * (*bind_parameter_name)(sqlite3_stmt*,int); + int (*bind_text)(sqlite3_stmt*,int,const char*,int n,void(*)(void*)); + int (*bind_text16)(sqlite3_stmt*,int,const void*,int,void(*)(void*)); + int (*bind_value)(sqlite3_stmt*,int,const sqlite3_value*); + int (*busy_handler)(sqlite3*,int(*)(void*,int),void*); + int (*busy_timeout)(sqlite3*,int ms); + int (*changes)(sqlite3*); + int (*close)(sqlite3*); + int (*collation_needed)(sqlite3*,void*,void(*)(void*,sqlite3*,int eTextRep,const char*)); + int (*collation_needed16)(sqlite3*,void*,void(*)(void*,sqlite3*,int eTextRep,const void*)); + const void * (*column_blob)(sqlite3_stmt*,int iCol); + int (*column_bytes)(sqlite3_stmt*,int iCol); + int (*column_bytes16)(sqlite3_stmt*,int iCol); + int (*column_count)(sqlite3_stmt*pStmt); + const char * (*column_database_name)(sqlite3_stmt*,int); + const void * (*column_database_name16)(sqlite3_stmt*,int); + const char * (*column_decltype)(sqlite3_stmt*,int i); + const void * (*column_decltype16)(sqlite3_stmt*,int); + double (*column_double)(sqlite3_stmt*,int iCol); + int (*column_int)(sqlite3_stmt*,int iCol); + sqlite_int64 (*column_int64)(sqlite3_stmt*,int iCol); + const char * (*column_name)(sqlite3_stmt*,int); + const void * (*column_name16)(sqlite3_stmt*,int); + const char * (*column_origin_name)(sqlite3_stmt*,int); + const void * (*column_origin_name16)(sqlite3_stmt*,int); + const char * (*column_table_name)(sqlite3_stmt*,int); + const void * (*column_table_name16)(sqlite3_stmt*,int); + const unsigned char * (*column_text)(sqlite3_stmt*,int iCol); + const void * (*column_text16)(sqlite3_stmt*,int iCol); + int (*column_type)(sqlite3_stmt*,int iCol); + sqlite3_value* (*column_value)(sqlite3_stmt*,int iCol); + void * (*commit_hook)(sqlite3*,int(*)(void*),void*); + int (*complete)(const char*sql); + int (*complete16)(const void*sql); + int (*create_collation)(sqlite3*,const char*,int,void*,int(*)(void*,int,const void*,int,const void*)); + int (*create_collation16)(sqlite3*,const char*,int,void*,int(*)(void*,int,const void*,int,const void*)); + int (*create_function)(sqlite3*,const char*,int,int,void*,void (*xFunc)(sqlite3_context*,int,sqlite3_value**),void (*xStep)(sqlite3_context*,int,sqlite3_value**),void (*xFinal)(sqlite3_context*)); + int (*create_function16)(sqlite3*,const void*,int,int,void*,void (*xFunc)(sqlite3_context*,int,sqlite3_value**),void (*xStep)(sqlite3_context*,int,sqlite3_value**),void (*xFinal)(sqlite3_context*)); + int (*create_module)(sqlite3*,const char*,const sqlite3_module*,void*); + int (*data_count)(sqlite3_stmt*pStmt); + sqlite3 * (*db_handle)(sqlite3_stmt*); + int (*declare_vtab)(sqlite3*,const char*); + int (*enable_shared_cache)(int); + int (*errcode)(sqlite3*db); + const char * (*errmsg)(sqlite3*); + const void * (*errmsg16)(sqlite3*); + int (*exec)(sqlite3*,const char*,sqlite3_callback,void*,char**); + int (*expired)(sqlite3_stmt*); + int (*finalize)(sqlite3_stmt*pStmt); + void (*free)(void*); + void (*free_table)(char**result); + int (*get_autocommit)(sqlite3*); + void * (*get_auxdata)(sqlite3_context*,int); + int (*get_table)(sqlite3*,const char*,char***,int*,int*,char**); + int (*global_recover)(void); + void (*interruptx)(sqlite3*); + sqlite_int64 (*last_insert_rowid)(sqlite3*); + const char * (*libversion)(void); + int (*libversion_number)(void); + void *(*malloc)(int); + char * (*mprintf)(const char*,...); + int (*open)(const char*,sqlite3**); + int (*open16)(const void*,sqlite3**); + int (*prepare)(sqlite3*,const char*,int,sqlite3_stmt**,const char**); + int (*prepare16)(sqlite3*,const void*,int,sqlite3_stmt**,const void**); + void * (*profile)(sqlite3*,void(*)(void*,const char*,sqlite_uint64),void*); + void (*progress_handler)(sqlite3*,int,int(*)(void*),void*); + void *(*realloc)(void*,int); + int (*reset)(sqlite3_stmt*pStmt); + void (*result_blob)(sqlite3_context*,const void*,int,void(*)(void*)); + void (*result_double)(sqlite3_context*,double); + void (*result_error)(sqlite3_context*,const char*,int); + void (*result_error16)(sqlite3_context*,const void*,int); + void (*result_int)(sqlite3_context*,int); + void (*result_int64)(sqlite3_context*,sqlite_int64); + void (*result_null)(sqlite3_context*); + void (*result_text)(sqlite3_context*,const char*,int,void(*)(void*)); + void (*result_text16)(sqlite3_context*,const void*,int,void(*)(void*)); + void (*result_text16be)(sqlite3_context*,const void*,int,void(*)(void*)); + void (*result_text16le)(sqlite3_context*,const void*,int,void(*)(void*)); + void (*result_value)(sqlite3_context*,sqlite3_value*); + void * (*rollback_hook)(sqlite3*,void(*)(void*),void*); + int (*set_authorizer)(sqlite3*,int(*)(void*,int,const char*,const char*,const char*,const char*),void*); + void (*set_auxdata)(sqlite3_context*,int,void*,void (*)(void*)); + char * (*snprintf)(int,char*,const char*,...); + int (*step)(sqlite3_stmt*); + int (*table_column_metadata)(sqlite3*,const char*,const char*,const char*,char const**,char const**,int*,int*,int*); + void (*thread_cleanup)(void); + int (*total_changes)(sqlite3*); + void * (*trace)(sqlite3*,void(*xTrace)(void*,const char*),void*); + int (*transfer_bindings)(sqlite3_stmt*,sqlite3_stmt*); + void * (*update_hook)(sqlite3*,void(*)(void*,int ,char const*,char const*,sqlite_int64),void*); + void * (*user_data)(sqlite3_context*); + const void * (*value_blob)(sqlite3_value*); + int (*value_bytes)(sqlite3_value*); + int (*value_bytes16)(sqlite3_value*); + double (*value_double)(sqlite3_value*); + int (*value_int)(sqlite3_value*); + sqlite_int64 (*value_int64)(sqlite3_value*); + int (*value_numeric_type)(sqlite3_value*); + const unsigned char * (*value_text)(sqlite3_value*); + const void * (*value_text16)(sqlite3_value*); + const void * (*value_text16be)(sqlite3_value*); + const void * (*value_text16le)(sqlite3_value*); + int (*value_type)(sqlite3_value*); + char *(*vmprintf)(const char*,va_list); + /* Added ??? */ + int (*overload_function)(sqlite3*, const char *zFuncName, int nArg); + /* Added by 3.3.13 */ + int (*prepare_v2)(sqlite3*,const char*,int,sqlite3_stmt**,const char**); + int (*prepare16_v2)(sqlite3*,const void*,int,sqlite3_stmt**,const void**); + int (*clear_bindings)(sqlite3_stmt*); + /* Added by 3.4.1 */ + int (*create_module_v2)(sqlite3*,const char*,const sqlite3_module*,void*,void (*xDestroy)(void *)); + /* Added by 3.5.0 */ + int (*bind_zeroblob)(sqlite3_stmt*,int,int); + int (*blob_bytes)(sqlite3_blob*); + int (*blob_close)(sqlite3_blob*); + int (*blob_open)(sqlite3*,const char*,const char*,const char*,sqlite3_int64,int,sqlite3_blob**); + int (*blob_read)(sqlite3_blob*,void*,int,int); + int (*blob_write)(sqlite3_blob*,const void*,int,int); + int (*create_collation_v2)(sqlite3*,const char*,int,void*,int(*)(void*,int,const void*,int,const void*),void(*)(void*)); + int (*file_control)(sqlite3*,const char*,int,void*); + sqlite3_int64 (*memory_highwater)(int); + sqlite3_int64 (*memory_used)(void); + sqlite3_mutex *(*mutex_alloc)(int); + void (*mutex_enter)(sqlite3_mutex*); + void (*mutex_free)(sqlite3_mutex*); + void (*mutex_leave)(sqlite3_mutex*); + int (*mutex_try)(sqlite3_mutex*); + int (*open_v2)(const char*,sqlite3**,int,const char*); + int (*release_memory)(int); + void (*result_error_nomem)(sqlite3_context*); + void (*result_error_toobig)(sqlite3_context*); + int (*sleep)(int); + void (*soft_heap_limit)(int); + sqlite3_vfs *(*vfs_find)(const char*); + int (*vfs_register)(sqlite3_vfs*,int); + int (*vfs_unregister)(sqlite3_vfs*); +}; + +/* +** The following macros redefine the API routines so that they are +** redirected throught the global sqlite3_api structure. +** +** This header file is also used by the loadext.c source file +** (part of the main SQLite library - not an extension) so that +** it can get access to the sqlite3_api_routines structure +** definition. But the main library does not want to redefine +** the API. So the redefinition macros are only valid if the +** SQLITE_CORE macros is undefined. +*/ +#ifndef SQLITE_CORE +#define sqlite3_aggregate_context sqlite3_api->aggregate_context +#define sqlite3_aggregate_count sqlite3_api->aggregate_count +#define sqlite3_bind_blob sqlite3_api->bind_blob +#define sqlite3_bind_double sqlite3_api->bind_double +#define sqlite3_bind_int sqlite3_api->bind_int +#define sqlite3_bind_int64 sqlite3_api->bind_int64 +#define sqlite3_bind_null sqlite3_api->bind_null +#define sqlite3_bind_parameter_count sqlite3_api->bind_parameter_count +#define sqlite3_bind_parameter_index sqlite3_api->bind_parameter_index +#define sqlite3_bind_parameter_name sqlite3_api->bind_parameter_name +#define sqlite3_bind_text sqlite3_api->bind_text +#define sqlite3_bind_text16 sqlite3_api->bind_text16 +#define sqlite3_bind_value sqlite3_api->bind_value +#define sqlite3_busy_handler sqlite3_api->busy_handler +#define sqlite3_busy_timeout sqlite3_api->busy_timeout +#define sqlite3_changes sqlite3_api->changes +#define sqlite3_close sqlite3_api->close +#define sqlite3_collation_needed sqlite3_api->collation_needed +#define sqlite3_collation_needed16 sqlite3_api->collation_needed16 +#define sqlite3_column_blob sqlite3_api->column_blob +#define sqlite3_column_bytes sqlite3_api->column_bytes +#define sqlite3_column_bytes16 sqlite3_api->column_bytes16 +#define sqlite3_column_count sqlite3_api->column_count +#define sqlite3_column_database_name sqlite3_api->column_database_name +#define sqlite3_column_database_name16 sqlite3_api->column_database_name16 +#define sqlite3_column_decltype sqlite3_api->column_decltype +#define sqlite3_column_decltype16 sqlite3_api->column_decltype16 +#define sqlite3_column_double sqlite3_api->column_double +#define sqlite3_column_int sqlite3_api->column_int +#define sqlite3_column_int64 sqlite3_api->column_int64 +#define sqlite3_column_name sqlite3_api->column_name +#define sqlite3_column_name16 sqlite3_api->column_name16 +#define sqlite3_column_origin_name sqlite3_api->column_origin_name +#define sqlite3_column_origin_name16 sqlite3_api->column_origin_name16 +#define sqlite3_column_table_name sqlite3_api->column_table_name +#define sqlite3_column_table_name16 sqlite3_api->column_table_name16 +#define sqlite3_column_text sqlite3_api->column_text +#define sqlite3_column_text16 sqlite3_api->column_text16 +#define sqlite3_column_type sqlite3_api->column_type +#define sqlite3_column_value sqlite3_api->column_value +#define sqlite3_commit_hook sqlite3_api->commit_hook +#define sqlite3_complete sqlite3_api->complete +#define sqlite3_complete16 sqlite3_api->complete16 +#define sqlite3_create_collation sqlite3_api->create_collation +#define sqlite3_create_collation16 sqlite3_api->create_collation16 +#define sqlite3_create_function sqlite3_api->create_function +#define sqlite3_create_function16 sqlite3_api->create_function16 +#define sqlite3_create_module sqlite3_api->create_module +#define sqlite3_create_module_v2 sqlite3_api->create_module_v2 +#define sqlite3_data_count sqlite3_api->data_count +#define sqlite3_db_handle sqlite3_api->db_handle +#define sqlite3_declare_vtab sqlite3_api->declare_vtab +#define sqlite3_enable_shared_cache sqlite3_api->enable_shared_cache +#define sqlite3_errcode sqlite3_api->errcode +#define sqlite3_errmsg sqlite3_api->errmsg +#define sqlite3_errmsg16 sqlite3_api->errmsg16 +#define sqlite3_exec sqlite3_api->exec +#define sqlite3_expired sqlite3_api->expired +#define sqlite3_finalize sqlite3_api->finalize +#define sqlite3_free sqlite3_api->free +#define sqlite3_free_table sqlite3_api->free_table +#define sqlite3_get_autocommit sqlite3_api->get_autocommit +#define sqlite3_get_auxdata sqlite3_api->get_auxdata +#define sqlite3_get_table sqlite3_api->get_table +#define sqlite3_global_recover sqlite3_api->global_recover +#define sqlite3_interrupt sqlite3_api->interruptx +#define sqlite3_last_insert_rowid sqlite3_api->last_insert_rowid +#define sqlite3_libversion sqlite3_api->libversion +#define sqlite3_libversion_number sqlite3_api->libversion_number +#define sqlite3_malloc sqlite3_api->malloc +#define sqlite3_mprintf sqlite3_api->mprintf +#define sqlite3_open sqlite3_api->open +#define sqlite3_open16 sqlite3_api->open16 +#define sqlite3_prepare sqlite3_api->prepare +#define sqlite3_prepare16 sqlite3_api->prepare16 +#define sqlite3_prepare_v2 sqlite3_api->prepare_v2 +#define sqlite3_prepare16_v2 sqlite3_api->prepare16_v2 +#define sqlite3_profile sqlite3_api->profile +#define sqlite3_progress_handler sqlite3_api->progress_handler +#define sqlite3_realloc sqlite3_api->realloc +#define sqlite3_reset sqlite3_api->reset +#define sqlite3_result_blob sqlite3_api->result_blob +#define sqlite3_result_double sqlite3_api->result_double +#define sqlite3_result_error sqlite3_api->result_error +#define sqlite3_result_error16 sqlite3_api->result_error16 +#define sqlite3_result_int sqlite3_api->result_int +#define sqlite3_result_int64 sqlite3_api->result_int64 +#define sqlite3_result_null sqlite3_api->result_null +#define sqlite3_result_text sqlite3_api->result_text +#define sqlite3_result_text16 sqlite3_api->result_text16 +#define sqlite3_result_text16be sqlite3_api->result_text16be +#define sqlite3_result_text16le sqlite3_api->result_text16le +#define sqlite3_result_value sqlite3_api->result_value +#define sqlite3_rollback_hook sqlite3_api->rollback_hook +#define sqlite3_set_authorizer sqlite3_api->set_authorizer +#define sqlite3_set_auxdata sqlite3_api->set_auxdata +#define sqlite3_snprintf sqlite3_api->snprintf +#define sqlite3_step sqlite3_api->step +#define sqlite3_table_column_metadata sqlite3_api->table_column_metadata +#define sqlite3_thread_cleanup sqlite3_api->thread_cleanup +#define sqlite3_total_changes sqlite3_api->total_changes +#define sqlite3_trace sqlite3_api->trace +#define sqlite3_transfer_bindings sqlite3_api->transfer_bindings +#define sqlite3_update_hook sqlite3_api->update_hook +#define sqlite3_user_data sqlite3_api->user_data +#define sqlite3_value_blob sqlite3_api->value_blob +#define sqlite3_value_bytes sqlite3_api->value_bytes +#define sqlite3_value_bytes16 sqlite3_api->value_bytes16 +#define sqlite3_value_double sqlite3_api->value_double +#define sqlite3_value_int sqlite3_api->value_int +#define sqlite3_value_int64 sqlite3_api->value_int64 +#define sqlite3_value_numeric_type sqlite3_api->value_numeric_type +#define sqlite3_value_text sqlite3_api->value_text +#define sqlite3_value_text16 sqlite3_api->value_text16 +#define sqlite3_value_text16be sqlite3_api->value_text16be +#define sqlite3_value_text16le sqlite3_api->value_text16le +#define sqlite3_value_type sqlite3_api->value_type +#define sqlite3_vmprintf sqlite3_api->vmprintf +#define sqlite3_overload_function sqlite3_api->overload_function +#define sqlite3_prepare_v2 sqlite3_api->prepare_v2 +#define sqlite3_prepare16_v2 sqlite3_api->prepare16_v2 +#define sqlite3_clear_bindings sqlite3_api->clear_bindings +#define sqlite3_bind_zeroblob sqlite3_api->bind_zeroblob +#define sqlite3_blob_bytes sqlite3_api->blob_bytes +#define sqlite3_blob_close sqlite3_api->blob_close +#define sqlite3_blob_open sqlite3_api->blob_open +#define sqlite3_blob_read sqlite3_api->blob_read +#define sqlite3_blob_write sqlite3_api->blob_write +#define sqlite3_create_collation_v2 sqlite3_api->create_collation_v2 +#define sqlite3_file_control sqlite3_api->file_control +#define sqlite3_memory_highwater sqlite3_api->memory_highwater +#define sqlite3_memory_used sqlite3_api->memory_used +#define sqlite3_mutex_alloc sqlite3_api->mutex_alloc +#define sqlite3_mutex_enter sqlite3_api->mutex_enter +#define sqlite3_mutex_free sqlite3_api->mutex_free +#define sqlite3_mutex_leave sqlite3_api->mutex_leave +#define sqlite3_mutex_try sqlite3_api->mutex_try +#define sqlite3_open_v2 sqlite3_api->open_v2 +#define sqlite3_release_memory sqlite3_api->release_memory +#define sqlite3_result_error_nomem sqlite3_api->result_error_nomem +#define sqlite3_result_error_toobig sqlite3_api->result_error_toobig +#define sqlite3_sleep sqlite3_api->sleep +#define sqlite3_soft_heap_limit sqlite3_api->soft_heap_limit +#define sqlite3_vfs_find sqlite3_api->vfs_find +#define sqlite3_vfs_register sqlite3_api->vfs_register +#define sqlite3_vfs_unregister sqlite3_api->vfs_unregister +#endif /* SQLITE_CORE */ + +#define SQLITE_EXTENSION_INIT1 const sqlite3_api_routines *sqlite3_api; +#define SQLITE_EXTENSION_INIT2(v) sqlite3_api = v; + +#endif /* _SQLITE3EXT_H_ */ + +/************** End of sqlite3ext.h ******************************************/ +/************** Continuing where we left off in fts3_tokenizer.c *************/ +SQLITE_EXTENSION_INIT1 + +/************** Include fts3_hash.h in the middle of fts3_tokenizer.c ********/ +/************** Begin file fts3_hash.h ***************************************/ +/* +** 2001 September 22 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This is the header file for the generic hash-table implemenation +** used in SQLite. We've modified it slightly to serve as a standalone +** hash table implementation for the full-text indexing module. +** +*/ +#ifndef _FTS3_HASH_H_ +#define _FTS3_HASH_H_ + +/* Forward declarations of structures. */ +typedef struct fts3Hash fts3Hash; +typedef struct fts3HashElem fts3HashElem; + +/* A complete hash table is an instance of the following structure. +** The internals of this structure are intended to be opaque -- client +** code should not attempt to access or modify the fields of this structure +** directly. Change this structure only by using the routines below. +** However, many of the "procedures" and "functions" for modifying and +** accessing this structure are really macros, so we can't really make +** this structure opaque. +*/ +struct fts3Hash { + char keyClass; /* HASH_INT, _POINTER, _STRING, _BINARY */ + char copyKey; /* True if copy of key made on insert */ + int count; /* Number of entries in this table */ + fts3HashElem *first; /* The first element of the array */ + int htsize; /* Number of buckets in the hash table */ + struct _fts3ht { /* the hash table */ + int count; /* Number of entries with this hash */ + fts3HashElem *chain; /* Pointer to first entry with this hash */ + } *ht; +}; + +/* Each element in the hash table is an instance of the following +** structure. All elements are stored on a single doubly-linked list. +** +** Again, this structure is intended to be opaque, but it can't really +** be opaque because it is used by macros. +*/ +struct fts3HashElem { + fts3HashElem *next, *prev; /* Next and previous elements in the table */ + void *data; /* Data associated with this element */ + void *pKey; int nKey; /* Key associated with this element */ +}; + +/* +** There are 2 different modes of operation for a hash table: +** +** FTS3_HASH_STRING pKey points to a string that is nKey bytes long +** (including the null-terminator, if any). Case +** is respected in comparisons. +** +** FTS3_HASH_BINARY pKey points to binary data nKey bytes long. +** memcmp() is used to compare keys. +** +** A copy of the key is made if the copyKey parameter to fts3HashInit is 1. +*/ +#define FTS3_HASH_STRING 1 +#define FTS3_HASH_BINARY 2 + +/* +** Access routines. To delete, insert a NULL pointer. +*/ +void sqlite3Fts3HashInit(fts3Hash*, int keytype, int copyKey); +void *sqlite3Fts3HashInsert(fts3Hash*, const void *pKey, int nKey, void *pData); +void *sqlite3Fts3HashFind(const fts3Hash*, const void *pKey, int nKey); +void sqlite3Fts3HashClear(fts3Hash*); + +/* +** Shorthand for the functions above +*/ +#define fts3HashInit sqlite3Fts3HashInit +#define fts3HashInsert sqlite3Fts3HashInsert +#define fts3HashFind sqlite3Fts3HashFind +#define fts3HashClear sqlite3Fts3HashClear + +/* +** Macros for looping over all elements of a hash table. The idiom is +** like this: +** +** fts3Hash h; +** fts3HashElem *p; +** ... +** for(p=fts3HashFirst(&h); p; p=fts3HashNext(p)){ +** SomeStructure *pData = fts3HashData(p); +** // do something with pData +** } +*/ +#define fts3HashFirst(H) ((H)->first) +#define fts3HashNext(E) ((E)->next) +#define fts3HashData(E) ((E)->data) +#define fts3HashKey(E) ((E)->pKey) +#define fts3HashKeysize(E) ((E)->nKey) + +/* +** Number of entries in a hash table +*/ +#define fts3HashCount(H) ((H)->count) + +#endif /* _FTS3_HASH_H_ */ + +/************** End of fts3_hash.h *******************************************/ +/************** Continuing where we left off in fts3_tokenizer.c *************/ +/************** Include fts3_tokenizer.h in the middle of fts3_tokenizer.c ***/ +/************** Begin file fts3_tokenizer.h **********************************/ +/* +** 2006 July 10 +** +** The author disclaims copyright to this source code. +** +************************************************************************* +** Defines the interface to tokenizers used by fulltext-search. There +** are three basic components: +** +** sqlite3_tokenizer_module is a singleton defining the tokenizer +** interface functions. This is essentially the class structure for +** tokenizers. +** +** sqlite3_tokenizer is used to define a particular tokenizer, perhaps +** including customization information defined at creation time. +** +** sqlite3_tokenizer_cursor is generated by a tokenizer to generate +** tokens from a particular input. +*/ +#ifndef _FTS3_TOKENIZER_H_ +#define _FTS3_TOKENIZER_H_ + +/* TODO(shess) Only used for SQLITE_OK and SQLITE_DONE at this time. +** If tokenizers are to be allowed to call sqlite3_*() functions, then +** we will need a way to register the API consistently. +*/ +/************** Include sqlite3.h in the middle of fts3_tokenizer.h **********/ +/************** Begin file sqlite3.h *****************************************/ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This header file defines the interface that the SQLite library +** presents to client programs. If a C-function, structure, datatype, +** or constant definition does not appear in this file, then it is +** not a published API of SQLite, is subject to change without +** notice, and should not be referenced by programs that use SQLite. +** +** Some of the definitions that are in this file are marked as +** "experimental". Experimental interfaces are normally new +** features recently added to SQLite. We do not anticipate changes +** to experimental interfaces but reserve to make minor changes if +** experience from use "in the wild" suggest such changes are prudent. +** +** The official C-language API documentation for SQLite is derived +** from comments in this file. This file is the authoritative source +** on how SQLite interfaces are suppose to operate. +** +** The name of this file under configuration management is "sqlite.h.in". +** The makefile makes some minor changes to this file (such as inserting +** the version number) and changes its name to "sqlite3.h" as +** part of the build process. +** +** @(#) $Id: sqlite3.c,v 1.13 2008/01/29 23:34:19 myk%mozilla.org Exp $ +*/ +#ifndef _SQLITE3_H_ +#define _SQLITE3_H_ + +/* +** Make sure we can call this stuff from C++. +*/ +#if 0 +extern "C" { +#endif + + +/* +** Add the ability to override 'extern' +*/ +#ifndef SQLITE_EXTERN +# define SQLITE_EXTERN extern +#endif + +/* +** Make sure these symbols where not defined by some previous header +** file. +*/ +#ifdef SQLITE_VERSION +# undef SQLITE_VERSION +#endif +#ifdef SQLITE_VERSION_NUMBER +# undef SQLITE_VERSION_NUMBER +#endif + +/* +** CAPI3REF: Compile-Time Library Version Numbers {F10010} +** +** {F10011} The #define in the sqlite3.h header file named +** SQLITE_VERSION resolves to a string literal that identifies +** the version of the SQLite library in the format "X.Y.Z", where +** X is the major version number, Y is the minor version number and Z +** is the release number. The X.Y.Z might be followed by "alpha" or "beta". +** {END} For example "3.1.1beta". +** +** The X value is always 3 in SQLite. The X value only changes when +** backwards compatibility is broken and we intend to never break +** backwards compatibility. The Y value only changes when +** there are major feature enhancements that are forwards compatible +** but not backwards compatible. The Z value is incremented with +** each release but resets back to 0 when Y is incremented. +** +** {F10014} The SQLITE_VERSION_NUMBER #define resolves to an integer +** with the value (X*1000000 + Y*1000 + Z) where X, Y, and Z are as +** with SQLITE_VERSION. {END} For example, for version "3.1.1beta", +** SQLITE_VERSION_NUMBER is set to 3001001. To detect if they are using +** version 3.1.1 or greater at compile time, programs may use the test +** (SQLITE_VERSION_NUMBER>=3001001). +** +** See also: [sqlite3_libversion()] and [sqlite3_libversion_number()]. +*/ +#define SQLITE_VERSION "3.5.4" +#define SQLITE_VERSION_NUMBER 3005004 + +/* +** CAPI3REF: Run-Time Library Version Numbers {F10020} +** +** {F10021} The sqlite3_libversion_number() interface returns an integer +** equal to [SQLITE_VERSION_NUMBER]. {END} The value returned +** by this routine should only be different from the header values +** if the application is compiled using an sqlite3.h header from a +** different version of SQLite than library. Cautious programmers might +** include a check in their application to verify that +** sqlite3_libversion_number() always returns the value +** [SQLITE_VERSION_NUMBER]. +** +** {F10022} The sqlite3_version[] string constant contains the text of the +** [SQLITE_VERSION] string. {F10023} The sqlite3_libversion() function returns +** a pointer to the sqlite3_version[] string constant. {END} The +** sqlite3_libversion() function +** is provided for DLL users who can only access functions and not +** constants within the DLL. +*/ +SQLITE_EXTERN const char sqlite3_version[]; +const char *sqlite3_libversion(void); +int sqlite3_libversion_number(void); + +/* +** CAPI3REF: Test To See If The Library Is Threadsafe {F10100} +** +** {F10101} The sqlite3_threadsafe() routine returns nonzero +** if SQLite was compiled with its mutexes enabled or zero if +** SQLite was compiled with mutexes disabled. {END} If this +** routine returns false, then it is not safe for simultaneously +** running threads to both invoke SQLite interfaces. +** +** Really all this routine does is return true if SQLite was +** compiled with the -DSQLITE_THREADSAFE=1 option and false if +** compiled with -DSQLITE_THREADSAFE=0. If SQLite uses an +** application-defined mutex subsystem, malloc subsystem, collating +** sequence, VFS, SQL function, progress callback, commit hook, +** extension, or other accessories and these add-ons are not +** threadsafe, then clearly the combination will not be threadsafe +** either. Hence, this routine never reports that the library +** is guaranteed to be threadsafe, only when it is guaranteed not +** to be. +*/ +int sqlite3_threadsafe(void); + +/* +** CAPI3REF: Database Connection Handle {F12000} +** +** Each open SQLite database is represented by pointer to an instance of the +** opaque structure named "sqlite3". It is useful to think of an sqlite3 +** pointer as an object. The [sqlite3_open()], [sqlite3_open16()], and +** [sqlite3_open_v2()] interfaces are its constructors +** and [sqlite3_close()] is its destructor. There are many other interfaces +** (such as [sqlite3_prepare_v2()], [sqlite3_create_function()], and +** [sqlite3_busy_timeout()] to name but three) that are methods on this +** object. +*/ +typedef struct sqlite3 sqlite3; + + +/* +** CAPI3REF: 64-Bit Integer Types {F10200} +** +** Because there is no cross-platform way to specify such types +** SQLite includes typedefs for 64-bit signed and unsigned integers. +** {F10201} The sqlite_int64 and sqlite3_int64 types specify a +** 64-bit signed integer. {F10202} The sqlite_uint64 and +** sqlite3_uint64 types specify a 64-bit unsigned integer. {END} +** +** The sqlite3_int64 and sqlite3_uint64 are the preferred type +** definitions. The sqlite_int64 and sqlite_uint64 types are +** supported for backwards compatibility only. +*/ +#ifdef SQLITE_INT64_TYPE + typedef SQLITE_INT64_TYPE sqlite_int64; + typedef unsigned SQLITE_INT64_TYPE sqlite_uint64; +#elif defined(_MSC_VER) || defined(__BORLANDC__) + typedef __int64 sqlite_int64; + typedef unsigned __int64 sqlite_uint64; +#else + typedef long long int sqlite_int64; + typedef unsigned long long int sqlite_uint64; +#endif +typedef sqlite_int64 sqlite3_int64; +typedef sqlite_uint64 sqlite3_uint64; + +/* +** If compiling for a processor that lacks floating point support, +** substitute integer for floating-point +*/ +#ifdef SQLITE_OMIT_FLOATING_POINT +# define double sqlite3_int64 +#endif + +/* +** CAPI3REF: Closing A Database Connection {F12010} +** +** {F12011} The sqlite3_close() interfaces destroys an [sqlite3] object +** allocated by a prior call to [sqlite3_open()], [sqlite3_open16()], or +** [sqlite3_open_v2()]. {F12012} Sqlite3_close() releases all +** memory used by the connection and closes all open files. {END}. +** +** {F12013} If the database connection contains +** [sqlite3_stmt | prepared statements] that have not been finalized +** by [sqlite3_finalize()], then sqlite3_close() returns SQLITE_BUSY +** and leaves the connection open. {F12014} Giving sqlite3_close() +** a NULL pointer is a harmless no-op. {END} +** +** {U12015} Passing this routine a database connection that has already been +** closed results in undefined behavior. {U12016} If other interfaces that +** reference the same database connection are pending (either in the +** same thread or in different threads) when this routine is called, +** then the behavior is undefined and is almost certainly undesirable. +*/ +int sqlite3_close(sqlite3 *); + +/* +** The type for a callback function. +** This is legacy and deprecated. It is included for historical +** compatibility and is not documented. +*/ +typedef int (*sqlite3_callback)(void*,int,char**, char**); + +/* +** CAPI3REF: One-Step Query Execution Interface {F12100} +** +** {F12101} The sqlite3_exec() interface evaluates zero or more +** UTF-8 encoded, semicolon-separated SQL statements in the zero-terminated +** string of its second argument. {F12102} The SQL +** statements are evaluated in the context of the database connection +** specified by in the first argument. +** {F12103} SQL statements are prepared one by one using +** [sqlite3_prepare()] or the equivalent, evaluated +** using one or more calls to [sqlite3_step()], then destroyed +** using [sqlite3_finalize()]. {F12104} The return value of +** sqlite3_exec() is SQLITE_OK if all SQL statement run +** successfully. +** +** {F12105} If one or more of the SQL statements handed to +** sqlite3_exec() are queries, then +** the callback function specified by the 3rd parameter is +** invoked once for each row of the query result. {F12106} +** If the callback returns a non-zero value then the query +** is aborted, all subsequent SQL statements +** are skipped and the sqlite3_exec() function returns the [SQLITE_ABORT]. +** +** {F12107} The 4th parameter to sqlite3_exec() is an arbitrary pointer +** that is passed through to the callback function as its first parameter. +** +** {F12108} The 2nd parameter to the callback function is the number of +** columns in the query result. {F12109} The 3rd parameter to the callback +** is an array of pointers to strings holding the values for each column +** as extracted using [sqlite3_column_text()]. NULL values in the result +** set result in a NULL pointer. All other value are in their UTF-8 +** string representation. {F12117} +** The 4th parameter to the callback is an array of strings +** obtained using [sqlite3_column_name()] and holding +** the names of each column, also in UTF-8. +** +** {F12110} The callback function may be NULL, even for queries. A NULL +** callback is not an error. It just means that no callback +** will be invoked. +** +** {F12112} If an error occurs while parsing or evaluating the SQL +** then an appropriate error message is written into memory obtained +** from [sqlite3_malloc()] and *errmsg is made to point to that message +** assuming errmsg is not NULL. +** {U12113} The calling function is responsible for freeing the memory +** using [sqlite3_free()]. +** {F12116} If [sqlite3_malloc()] fails while attempting to generate +** the error message, *errmsg is set to NULL. +** {F12114} If errmsg is NULL then no attempt is made to generate an +** error message. Is the return code SQLITE_NOMEM or the original +** error code? What happens if there are multiple errors? +** Do we get code for the first error, or is the choice of reported +** error arbitrary? +** +** {F12115} The return value is is SQLITE_OK if there are no errors and +** some other [SQLITE_OK | return code] if there is an error. +** The particular return value depends on the type of error. {END} +*/ +int sqlite3_exec( + sqlite3*, /* An open database */ + const char *sql, /* SQL to be evaluted */ + int (*callback)(void*,int,char**,char**), /* Callback function */ + void *, /* 1st argument to callback */ + char **errmsg /* Error msg written here */ +); + +/* +** CAPI3REF: Result Codes {F10210} +** KEYWORDS: SQLITE_OK +** +** Many SQLite functions return an integer result code from the set shown +** above in order to indicates success or failure. +** +** {F10211} The result codes shown here are the only ones returned +** by SQLite in its default configuration. {F10212} However, the +** [sqlite3_extended_result_codes()] API can be used to set a database +** connectoin to return more detailed result codes. {END} +** +** See also: [SQLITE_IOERR_READ | extended result codes] +** +*/ +#define SQLITE_OK 0 /* Successful result */ +/* beginning-of-error-codes */ +#define SQLITE_ERROR 1 /* SQL error or missing database */ +#define SQLITE_INTERNAL 2 /* Internal logic error in SQLite */ +#define SQLITE_PERM 3 /* Access permission denied */ +#define SQLITE_ABORT 4 /* Callback routine requested an abort */ +#define SQLITE_BUSY 5 /* The database file is locked */ +#define SQLITE_LOCKED 6 /* A table in the database is locked */ +#define SQLITE_NOMEM 7 /* A malloc() failed */ +#define SQLITE_READONLY 8 /* Attempt to write a readonly database */ +#define SQLITE_INTERRUPT 9 /* Operation terminated by sqlite3_interrupt()*/ +#define SQLITE_IOERR 10 /* Some kind of disk I/O error occurred */ +#define SQLITE_CORRUPT 11 /* The database disk image is malformed */ +#define SQLITE_NOTFOUND 12 /* NOT USED. Table or record not found */ +#define SQLITE_FULL 13 /* Insertion failed because database is full */ +#define SQLITE_CANTOPEN 14 /* Unable to open the database file */ +#define SQLITE_PROTOCOL 15 /* NOT USED. Database lock protocol error */ +#define SQLITE_EMPTY 16 /* Database is empty */ +#define SQLITE_SCHEMA 17 /* The database schema changed */ +#define SQLITE_TOOBIG 18 /* String or BLOB exceeds size limit */ +#define SQLITE_CONSTRAINT 19 /* Abort due to constraint violation */ +#define SQLITE_MISMATCH 20 /* Data type mismatch */ +#define SQLITE_MISUSE 21 /* Library used incorrectly */ +#define SQLITE_NOLFS 22 /* Uses OS features not supported on host */ +#define SQLITE_AUTH 23 /* Authorization denied */ +#define SQLITE_FORMAT 24 /* Auxiliary database format error */ +#define SQLITE_RANGE 25 /* 2nd parameter to sqlite3_bind out of range */ +#define SQLITE_NOTADB 26 /* File opened that is not a database file */ +#define SQLITE_ROW 100 /* sqlite3_step() has another row ready */ +#define SQLITE_DONE 101 /* sqlite3_step() has finished executing */ +/* end-of-error-codes */ + +/* +** CAPI3REF: Extended Result Codes {F10220} +** +** In its default configuration, SQLite API routines return one of 26 integer +** [SQLITE_OK | result codes]. However, experience has shown that +** many of these result codes are too course-grained. They do not provide as +** much information about problems as programmers might like. In an effort to +** address this, newer versions of SQLite (version 3.3.8 and later) include +** support for additional result codes that provide more detailed information +** about errors. {F10221} The extended result codes are enabled or disabled +** for each database connection using the [sqlite3_extended_result_codes()] +** API. {END} +** +** Some of the available extended result codes are listed above. +** We expect the number of extended result codes will be expand +** over time. {U10422} Software that uses extended result codes should expect +** to see new result codes in future releases of SQLite. {END} +** +** {F10223} The symbolic name for an extended result code always contains +** a related primary result code as a prefix. {F10224} Primary result +** codes contain a single "_" character. {F10225} Extended result codes +** contain two or more "_" characters. {F10226} The numeric value of an +** extended result code can be converted to its +** corresponding primary result code by masking off the lower 8 bytes. {END} +** +** The SQLITE_OK result code will never be extended. It will always +** be exactly zero. +*/ +#define SQLITE_IOERR_READ (SQLITE_IOERR | (1<<8)) +#define SQLITE_IOERR_SHORT_READ (SQLITE_IOERR | (2<<8)) +#define SQLITE_IOERR_WRITE (SQLITE_IOERR | (3<<8)) +#define SQLITE_IOERR_FSYNC (SQLITE_IOERR | (4<<8)) +#define SQLITE_IOERR_DIR_FSYNC (SQLITE_IOERR | (5<<8)) +#define SQLITE_IOERR_TRUNCATE (SQLITE_IOERR | (6<<8)) +#define SQLITE_IOERR_FSTAT (SQLITE_IOERR | (7<<8)) +#define SQLITE_IOERR_UNLOCK (SQLITE_IOERR | (8<<8)) +#define SQLITE_IOERR_RDLOCK (SQLITE_IOERR | (9<<8)) +#define SQLITE_IOERR_DELETE (SQLITE_IOERR | (10<<8)) +#define SQLITE_IOERR_BLOCKED (SQLITE_IOERR | (11<<8)) +#define SQLITE_IOERR_NOMEM (SQLITE_IOERR | (12<<8)) + +/* +** CAPI3REF: Flags For File Open Operations {F10230} +** +** {F10231} Some combination of the these bit values are used as the +** third argument to the [sqlite3_open_v2()] interface and +** as fourth argument to the xOpen method of the +** [sqlite3_vfs] object. +*/ +#define SQLITE_OPEN_READONLY 0x00000001 +#define SQLITE_OPEN_READWRITE 0x00000002 +#define SQLITE_OPEN_CREATE 0x00000004 +#define SQLITE_OPEN_DELETEONCLOSE 0x00000008 +#define SQLITE_OPEN_EXCLUSIVE 0x00000010 +#define SQLITE_OPEN_MAIN_DB 0x00000100 +#define SQLITE_OPEN_TEMP_DB 0x00000200 +#define SQLITE_OPEN_TRANSIENT_DB 0x00000400 +#define SQLITE_OPEN_MAIN_JOURNAL 0x00000800 +#define SQLITE_OPEN_TEMP_JOURNAL 0x00001000 +#define SQLITE_OPEN_SUBJOURNAL 0x00002000 +#define SQLITE_OPEN_MASTER_JOURNAL 0x00004000 + +/* +** CAPI3REF: Device Characteristics {F10240} +** +** {F10241} The xDeviceCapabilities method of the [sqlite3_io_methods] +** object returns an integer which is a vector of the these +** bit values expressing I/O characteristics of the mass storage +** device that holds the file that the [sqlite3_io_methods] +** refers to. {END} +** +** {F10242} The SQLITE_IOCAP_ATOMIC property means that all writes of +** any size are atomic. {F10243} The SQLITE_IOCAP_ATOMICnnn values +** mean that writes of blocks that are nnn bytes in size and +** are aligned to an address which is an integer multiple of +** nnn are atomic. {F10244} The SQLITE_IOCAP_SAFE_APPEND value means +** that when data is appended to a file, the data is appended +** first then the size of the file is extended, never the other +** way around. {F10245} The SQLITE_IOCAP_SEQUENTIAL property means that +** information is written to disk in the same order as calls +** to xWrite(). +*/ +#define SQLITE_IOCAP_ATOMIC 0x00000001 +#define SQLITE_IOCAP_ATOMIC512 0x00000002 +#define SQLITE_IOCAP_ATOMIC1K 0x00000004 +#define SQLITE_IOCAP_ATOMIC2K 0x00000008 +#define SQLITE_IOCAP_ATOMIC4K 0x00000010 +#define SQLITE_IOCAP_ATOMIC8K 0x00000020 +#define SQLITE_IOCAP_ATOMIC16K 0x00000040 +#define SQLITE_IOCAP_ATOMIC32K 0x00000080 +#define SQLITE_IOCAP_ATOMIC64K 0x00000100 +#define SQLITE_IOCAP_SAFE_APPEND 0x00000200 +#define SQLITE_IOCAP_SEQUENTIAL 0x00000400 + +/* +** CAPI3REF: File Locking Levels {F10250} +** +** {F10251} SQLite uses one of the following integer values as the second +** argument to calls it makes to the xLock() and xUnlock() methods +** of an [sqlite3_io_methods] object. {END} +*/ +#define SQLITE_LOCK_NONE 0 +#define SQLITE_LOCK_SHARED 1 +#define SQLITE_LOCK_RESERVED 2 +#define SQLITE_LOCK_PENDING 3 +#define SQLITE_LOCK_EXCLUSIVE 4 + +/* +** CAPI3REF: Synchronization Type Flags {F10260} +** +** {F10261} When SQLite invokes the xSync() method of an +** [sqlite3_io_methods] object it uses a combination of the +** these integer values as the second argument. +** +** {F10262} When the SQLITE_SYNC_DATAONLY flag is used, it means that the +** sync operation only needs to flush data to mass storage. Inode +** information need not be flushed. {F10263} The SQLITE_SYNC_NORMAL means +** to use normal fsync() semantics. {F10264} The SQLITE_SYNC_FULL flag means +** to use Mac OS-X style fullsync instead of fsync(). +*/ +#define SQLITE_SYNC_NORMAL 0x00002 +#define SQLITE_SYNC_FULL 0x00003 +#define SQLITE_SYNC_DATAONLY 0x00010 + + +/* +** CAPI3REF: OS Interface Open File Handle {F11110} +** +** An [sqlite3_file] object represents an open file in the OS +** interface layer. Individual OS interface implementations will +** want to subclass this object by appending additional fields +** for their own use. The pMethods entry is a pointer to an +** [sqlite3_io_methods] object that defines methods for performing +** I/O operations on the open file. +*/ +typedef struct sqlite3_file sqlite3_file; +struct sqlite3_file { + const struct sqlite3_io_methods *pMethods; /* Methods for an open file */ +}; + +/* +** CAPI3REF: OS Interface File Virtual Methods Object {F11120} +** +** Every file opened by the [sqlite3_vfs] xOpen method contains a pointer to +** an instance of the this object. This object defines the +** methods used to perform various operations against the open file. +** +** The flags argument to xSync may be one of [SQLITE_SYNC_NORMAL] or +** [SQLITE_SYNC_FULL]. The first choice is the normal fsync(). +* The second choice is an +** OS-X style fullsync. The SQLITE_SYNC_DATA flag may be ORed in to +** indicate that only the data of the file and not its inode needs to be +** synced. +** +** The integer values to xLock() and xUnlock() are one of +**
    +**
  • [SQLITE_LOCK_NONE], +**
  • [SQLITE_LOCK_SHARED], +**
  • [SQLITE_LOCK_RESERVED], +**
  • [SQLITE_LOCK_PENDING], or +**
  • [SQLITE_LOCK_EXCLUSIVE]. +**
+** xLock() increases the lock. xUnlock() decreases the lock. +** The xCheckReservedLock() method looks +** to see if any database connection, either in this +** process or in some other process, is holding an RESERVED, +** PENDING, or EXCLUSIVE lock on the file. It returns true +** if such a lock exists and false if not. +** +** The xFileControl() method is a generic interface that allows custom +** VFS implementations to directly control an open file using the +** [sqlite3_file_control()] interface. The second "op" argument +** is an integer opcode. The third +** argument is a generic pointer which is intended to be a pointer +** to a structure that may contain arguments or space in which to +** write return values. Potential uses for xFileControl() might be +** functions to enable blocking locks with timeouts, to change the +** locking strategy (for example to use dot-file locks), to inquire +** about the status of a lock, or to break stale locks. The SQLite +** core reserves opcodes less than 100 for its own use. +** A [SQLITE_FCNTL_LOCKSTATE | list of opcodes] less than 100 is available. +** Applications that define a custom xFileControl method should use opcodes +** greater than 100 to avoid conflicts. +** +** The xSectorSize() method returns the sector size of the +** device that underlies the file. The sector size is the +** minimum write that can be performed without disturbing +** other bytes in the file. The xDeviceCharacteristics() +** method returns a bit vector describing behaviors of the +** underlying device: +** +**
    +**
  • [SQLITE_IOCAP_ATOMIC] +**
  • [SQLITE_IOCAP_ATOMIC512] +**
  • [SQLITE_IOCAP_ATOMIC1K] +**
  • [SQLITE_IOCAP_ATOMIC2K] +**
  • [SQLITE_IOCAP_ATOMIC4K] +**
  • [SQLITE_IOCAP_ATOMIC8K] +**
  • [SQLITE_IOCAP_ATOMIC16K] +**
  • [SQLITE_IOCAP_ATOMIC32K] +**
  • [SQLITE_IOCAP_ATOMIC64K] +**
  • [SQLITE_IOCAP_SAFE_APPEND] +**
  • [SQLITE_IOCAP_SEQUENTIAL] +**
+** +** The SQLITE_IOCAP_ATOMIC property means that all writes of +** any size are atomic. The SQLITE_IOCAP_ATOMICnnn values +** mean that writes of blocks that are nnn bytes in size and +** are aligned to an address which is an integer multiple of +** nnn are atomic. The SQLITE_IOCAP_SAFE_APPEND value means +** that when data is appended to a file, the data is appended +** first then the size of the file is extended, never the other +** way around. The SQLITE_IOCAP_SEQUENTIAL property means that +** information is written to disk in the same order as calls +** to xWrite(). +*/ +typedef struct sqlite3_io_methods sqlite3_io_methods; +struct sqlite3_io_methods { + int iVersion; + int (*xClose)(sqlite3_file*); + int (*xRead)(sqlite3_file*, void*, int iAmt, sqlite3_int64 iOfst); + int (*xWrite)(sqlite3_file*, const void*, int iAmt, sqlite3_int64 iOfst); + int (*xTruncate)(sqlite3_file*, sqlite3_int64 size); + int (*xSync)(sqlite3_file*, int flags); + int (*xFileSize)(sqlite3_file*, sqlite3_int64 *pSize); + int (*xLock)(sqlite3_file*, int); + int (*xUnlock)(sqlite3_file*, int); + int (*xCheckReservedLock)(sqlite3_file*); + int (*xFileControl)(sqlite3_file*, int op, void *pArg); + int (*xSectorSize)(sqlite3_file*); + int (*xDeviceCharacteristics)(sqlite3_file*); + /* Additional methods may be added in future releases */ +}; + +/* +** CAPI3REF: Standard File Control Opcodes {F11310} +** +** These integer constants are opcodes for the xFileControl method +** of the [sqlite3_io_methods] object and to the [sqlite3_file_control()] +** interface. +** +** {F11311} The [SQLITE_FCNTL_LOCKSTATE] opcode is used for debugging. This +** opcode cases the xFileControl method to write the current state of +** the lock (one of [SQLITE_LOCK_NONE], [SQLITE_LOCK_SHARED], +** [SQLITE_LOCK_RESERVED], [SQLITE_LOCK_PENDING], or [SQLITE_LOCK_EXCLUSIVE]) +** into an integer that the pArg argument points to. {F11312} This capability +** is used during testing and only needs to be supported when SQLITE_TEST +** is defined. +*/ +#define SQLITE_FCNTL_LOCKSTATE 1 + +/* +** CAPI3REF: Mutex Handle {F17110} +** +** The mutex module within SQLite defines [sqlite3_mutex] to be an +** abstract type for a mutex object. {F17111} The SQLite core never looks +** at the internal representation of an [sqlite3_mutex]. {END} It only +** deals with pointers to the [sqlite3_mutex] object. +** +** Mutexes are created using [sqlite3_mutex_alloc()]. +*/ +typedef struct sqlite3_mutex sqlite3_mutex; + +/* +** CAPI3REF: OS Interface Object {F11140} +** +** An instance of this object defines the interface between the +** SQLite core and the underlying operating system. The "vfs" +** in the name of the object stands for "virtual file system". +** +** The iVersion field is initially 1 but may be larger for future +** versions of SQLite. Additional fields may be appended to this +** object when the iVersion value is increased. +** +** The szOsFile field is the size of the subclassed [sqlite3_file] +** structure used by this VFS. mxPathname is the maximum length of +** a pathname in this VFS. +** +** Registered vfs modules are kept on a linked list formed by +** the pNext pointer. The [sqlite3_vfs_register()] +** and [sqlite3_vfs_unregister()] interfaces manage this list +** in a thread-safe way. The [sqlite3_vfs_find()] interface +** searches the list. +** +** The pNext field is the only fields in the sqlite3_vfs +** structure that SQLite will ever modify. SQLite will only access +** or modify this field while holding a particular static mutex. +** The application should never modify anything within the sqlite3_vfs +** object once the object has been registered. +** +** The zName field holds the name of the VFS module. The name must +** be unique across all VFS modules. +** +** {F11141} SQLite will guarantee that the zFilename string passed to +** xOpen() is a full pathname as generated by xFullPathname() and +** that the string will be valid and unchanged until xClose() is +** called. {END} So the [sqlite3_file] can store a pointer to the +** filename if it needs to remember the filename for some reason. +** +** {F11142} The flags argument to xOpen() includes all bits set in +** the flags argument to [sqlite3_open_v2()]. Or if [sqlite3_open()] +** or [sqlite3_open16()] is used, then flags includes at least +** [SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE]. {END} +** If xOpen() opens a file read-only then it sets *pOutFlags to +** include [SQLITE_OPEN_READONLY]. Other bits in *pOutFlags may be +** set. +** +** {F11143} SQLite will also add one of the following flags to the xOpen() +** call, depending on the object being opened: +** +**
    +**
  • [SQLITE_OPEN_MAIN_DB] +**
  • [SQLITE_OPEN_MAIN_JOURNAL] +**
  • [SQLITE_OPEN_TEMP_DB] +**
  • [SQLITE_OPEN_TEMP_JOURNAL] +**
  • [SQLITE_OPEN_TRANSIENT_DB] +**
  • [SQLITE_OPEN_SUBJOURNAL] +**
  • [SQLITE_OPEN_MASTER_JOURNAL] +**
{END} +** +** The file I/O implementation can use the object type flags to +** changes the way it deals with files. For example, an application +** that does not care about crash recovery or rollback, might make +** the open of a journal file a no-op. Writes to this journal are +** also a no-op. Any attempt to read the journal return SQLITE_IOERR. +** Or the implementation might recognize the a database file will +** be doing page-aligned sector reads and writes in a random order +** and set up its I/O subsystem accordingly. +** +** {F11144} SQLite might also add one of the following flags to the xOpen +** method: +** +**
    +**
  • [SQLITE_OPEN_DELETEONCLOSE] +**
  • [SQLITE_OPEN_EXCLUSIVE] +**
+** +** {F11145} The [SQLITE_OPEN_DELETEONCLOSE] flag means the file should be +** deleted when it is closed. {F11146} The [SQLITE_OPEN_DELETEONCLOSE] +** will be set for TEMP databases, journals and for subjournals. +** {F11147} The [SQLITE_OPEN_EXCLUSIVE] flag means the file should be opened +** for exclusive access. This flag is set for all files except +** for the main database file. {END} +** +** {F11148} At least szOsFile bytes of memory is allocated by SQLite +** to hold the [sqlite3_file] structure passed as the third +** argument to xOpen. {END} The xOpen method does not have to +** allocate the structure; it should just fill it in. +** +** {F11149} The flags argument to xAccess() may be [SQLITE_ACCESS_EXISTS] +** to test for the existance of a file, +** or [SQLITE_ACCESS_READWRITE] to test to see +** if a file is readable and writable, or [SQLITE_ACCESS_READ] +** to test to see if a file is at least readable. {END} The file can be a +** directory. +** +** {F11150} SQLite will always allocate at least mxPathname+1 byte for +** the output buffers for xGetTempname and xFullPathname. {F11151} The exact +** size of the output buffer is also passed as a parameter to both +** methods. {END} If the output buffer is not large enough, SQLITE_CANTOPEN +** should be returned. As this is handled as a fatal error by SQLite, +** vfs implementations should endeavor to prevent this by setting +** mxPathname to a sufficiently large value. +** +** The xRandomness(), xSleep(), and xCurrentTime() interfaces +** are not strictly a part of the filesystem, but they are +** included in the VFS structure for completeness. +** The xRandomness() function attempts to return nBytes bytes +** of good-quality randomness into zOut. The return value is +** the actual number of bytes of randomness obtained. The +** xSleep() method cause the calling thread to sleep for at +** least the number of microseconds given. The xCurrentTime() +** method returns a Julian Day Number for the current date and +** time. +*/ +typedef struct sqlite3_vfs sqlite3_vfs; +struct sqlite3_vfs { + int iVersion; /* Structure version number */ + int szOsFile; /* Size of subclassed sqlite3_file */ + int mxPathname; /* Maximum file pathname length */ + sqlite3_vfs *pNext; /* Next registered VFS */ + const char *zName; /* Name of this virtual file system */ + void *pAppData; /* Pointer to application-specific data */ + int (*xOpen)(sqlite3_vfs*, const char *zName, sqlite3_file*, + int flags, int *pOutFlags); + int (*xDelete)(sqlite3_vfs*, const char *zName, int syncDir); + int (*xAccess)(sqlite3_vfs*, const char *zName, int flags); + int (*xGetTempname)(sqlite3_vfs*, int nOut, char *zOut); + int (*xFullPathname)(sqlite3_vfs*, const char *zName, int nOut, char *zOut); + void *(*xDlOpen)(sqlite3_vfs*, const char *zFilename); + void (*xDlError)(sqlite3_vfs*, int nByte, char *zErrMsg); + void *(*xDlSym)(sqlite3_vfs*,void*, const char *zSymbol); + void (*xDlClose)(sqlite3_vfs*, void*); + int (*xRandomness)(sqlite3_vfs*, int nByte, char *zOut); + int (*xSleep)(sqlite3_vfs*, int microseconds); + int (*xCurrentTime)(sqlite3_vfs*, double*); + /* New fields may be appended in figure versions. The iVersion + ** value will increment whenever this happens. */ +}; + +/* +** CAPI3REF: Flags for the xAccess VFS method {F11190} +** +** {F11191} These integer constants can be used as the third parameter to +** the xAccess method of an [sqlite3_vfs] object. {END} They determine +** the kind of what kind of permissions the xAccess method is +** looking for. {F11192} With SQLITE_ACCESS_EXISTS, the xAccess method +** simply checks to see if the file exists. {F11193} With +** SQLITE_ACCESS_READWRITE, the xAccess method checks to see +** if the file is both readable and writable. {F11194} With +** SQLITE_ACCESS_READ the xAccess method +** checks to see if the file is readable. +*/ +#define SQLITE_ACCESS_EXISTS 0 +#define SQLITE_ACCESS_READWRITE 1 +#define SQLITE_ACCESS_READ 2 + +/* +** CAPI3REF: Enable Or Disable Extended Result Codes {F12200} +** +** {F12201} The sqlite3_extended_result_codes() routine enables or disables the +** [SQLITE_IOERR_READ | extended result codes] feature on a database +** connection if its 2nd parameter is +** non-zero or zero, respectively. {F12202} +** By default, SQLite API routines return one of only 26 integer +** [SQLITE_OK | result codes]. {F12203} When extended result codes +** are enabled by this routine, the repetoire of result codes can be +** much larger and can (hopefully) provide more detailed information +** about the cause of an error. +** +** {F12204} The second argument is a boolean value that turns extended result +** codes on and off. {F12205} Extended result codes are off by default for +** backwards compatibility with older versions of SQLite. +*/ +int sqlite3_extended_result_codes(sqlite3*, int onoff); + +/* +** CAPI3REF: Last Insert Rowid {F12220} +** +** {F12221} Each entry in an SQLite table has a unique 64-bit signed +** integer key called the "rowid". {F12222} The rowid is always available +** as an undeclared column named ROWID, OID, or _ROWID_ as long as those +** names are not also used by explicitly declared columns. {F12223} If +** the table has a column of type INTEGER PRIMARY KEY then that column +** is another an alias for the rowid. +** +** {F12224} This routine returns the rowid of the most recent +** successful INSERT into the database from the database connection +** shown in the first argument. {F12225} If no successful inserts +** have ever occurred on this database connection, zero is returned. +** +** {F12226} If an INSERT occurs within a trigger, then the rowid of the +** inserted row is returned by this routine as long as the trigger +** is running. {F12227} But once the trigger terminates, the value returned +** by this routine reverts to the last value inserted before the +** trigger fired. +** +** {F12228} An INSERT that fails due to a constraint violation is not a +** successful insert and does not change the value returned by this +** routine. {F12229} Thus INSERT OR FAIL, INSERT OR IGNORE, INSERT OR ROLLBACK, +** and INSERT OR ABORT make no changes to the return value of this +** routine when their insertion fails. {F12231} When INSERT OR REPLACE +** encounters a constraint violation, it does not fail. The +** INSERT continues to completion after deleting rows that caused +** the constraint problem so INSERT OR REPLACE will always change +** the return value of this interface. +** +** {UF12232} If another thread does a new insert on the same database connection +** while this routine is running and thus changes the last insert rowid, +** then the return value of this routine is undefined. +*/ +sqlite3_int64 sqlite3_last_insert_rowid(sqlite3*); + +/* +** CAPI3REF: Count The Number Of Rows Modified {F12240} +** +** {F12241} This function returns the number of database rows that were changed +** or inserted or deleted by the most recently completed SQL statement +** on the connection specified by the first parameter. {F12242} Only +** changes that are directly specified by the INSERT, UPDATE, or +** DELETE statement are counted. Auxiliary changes caused by +** triggers are not counted. {F12243} Use the [sqlite3_total_changes()] function +** to find the total number of changes including changes caused by triggers. +** +** {F12244} Within the body of a trigger, the sqlite3_changes() interface +** can be called to find the number of +** changes in the most recently completed INSERT, UPDATE, or DELETE +** statement within the body of the same trigger. +** +** {F12245} All changes are counted, even if they are later undone by a +** ROLLBACK or ABORT. {F12246} Except, changes associated with creating and +** dropping tables are not counted. +** +** {F12247} If a callback invokes [sqlite3_exec()] or [sqlite3_step()] +** recursively, then the changes in the inner, recursive call are +** counted together with the changes in the outer call. +** +** {F12248} SQLite implements the command "DELETE FROM table" without +** a WHERE clause by dropping and recreating the table. (This is much +** faster than going through and deleting individual elements from the +** table.) Because of this optimization, the change count for +** "DELETE FROM table" will be zero regardless of the number of elements +** that were originally in the table. {F12251} To get an accurate count +** of the number of rows deleted, use +** "DELETE FROM table WHERE 1" instead. +** +** {UF12252} If another thread makes changes on the same database connection +** while this routine is running then the return value of this routine +** is undefined. +*/ +int sqlite3_changes(sqlite3*); + +/* +** CAPI3REF: Total Number Of Rows Modified {F12260} +*** +** {F12261} This function returns the number of database rows that have been +** modified by INSERT, UPDATE or DELETE statements since the database handle +** was opened. {F12262} The count includes UPDATE, INSERT and DELETE +** statements executed as part of trigger programs. {F12263} All changes +** are counted as soon as the statement that makes them is completed +** (when the statement handle is passed to [sqlite3_reset()] or +** [sqlite3_finalize()]). {END} +** +** See also the [sqlite3_change()] interface. +** +** {F12265} SQLite implements the command "DELETE FROM table" without +** a WHERE clause by dropping and recreating the table. (This is much +** faster than going +** through and deleting individual elements form the table.) Because of +** this optimization, the change count for "DELETE FROM table" will be +** zero regardless of the number of elements that were originally in the +** table. To get an accurate count of the number of rows deleted, use +** "DELETE FROM table WHERE 1" instead. +** +** {U12264} If another thread makes changes on the same database connection +** while this routine is running then the return value of this routine +** is undefined. {END} +*/ +int sqlite3_total_changes(sqlite3*); + +/* +** CAPI3REF: Interrupt A Long-Running Query {F12270} +** +** {F12271} This function causes any pending database operation to abort and +** return at its earliest opportunity. {END} This routine is typically +** called in response to a user action such as pressing "Cancel" +** or Ctrl-C where the user wants a long query operation to halt +** immediately. +** +** {F12272} It is safe to call this routine from a thread different from the +** thread that is currently running the database operation. {U12273} But it +** is not safe to call this routine with a database connection that +** is closed or might close before sqlite3_interrupt() returns. +** +** If an SQL is very nearly finished at the time when sqlite3_interrupt() +** is called, then it might not have an opportunity to be interrupted. +** It might continue to completion. +** {F12274} The SQL operation that is interrupted will return +** [SQLITE_INTERRUPT]. {F12275} If the interrupted SQL operation is an +** INSERT, UPDATE, or DELETE that is inside an explicit transaction, +** then the entire transaction will be rolled back automatically. +** {F12276} A call to sqlite3_interrupt() has no effect on SQL statements +** that are started after sqlite3_interrupt() returns. +*/ +void sqlite3_interrupt(sqlite3*); + +/* +** CAPI3REF: Determine If An SQL Statement Is Complete {F10510} +** +** These routines are useful for command-line input to determine if the +** currently entered text seems to form complete a SQL statement or +** if additional input is needed before sending the text into +** SQLite for parsing. These routines return true if the input string +** appears to be a complete SQL statement. A statement is judged to be +** complete if it ends with a semicolon and is not a fragment of a +** CREATE TRIGGER statement. These routines do not parse the SQL and +** so will not detect syntactically incorrect SQL. +** +** {F10511} These functions return true if the given input string +** ends with a semicolon optionally followed by whitespace or +** comments. {F10512} For sqlite3_complete(), +** the parameter must be a zero-terminated UTF-8 string. {F10513} For +** sqlite3_complete16(), a zero-terminated machine byte order UTF-16 string +** is required. {F10514} These routines return false if the terminal +** semicolon is within a comment, a string literal or a quoted identifier +** (in other words if the final semicolon is not really a separate token +** but part of a larger token) or if the final semicolon is +** in between the BEGIN and END keywords of a CREATE TRIGGER statement. +** {END} +*/ +int sqlite3_complete(const char *sql); +int sqlite3_complete16(const void *sql); + +/* +** CAPI3REF: Register A Callback To Handle SQLITE_BUSY Errors {F12310} +** +** {F12311} This routine identifies a callback function that might be +** invoked whenever an attempt is made to open a database table +** that another thread or process has locked. +** {F12312} If the busy callback is NULL, then [SQLITE_BUSY] +** or [SQLITE_IOERR_BLOCKED] +** is returned immediately upon encountering the lock. +** {F12313} If the busy callback is not NULL, then the +** callback will be invoked with two arguments. {F12314} The +** first argument to the handler is a copy of the void* pointer which +** is the third argument to this routine. {F12315} The second argument to +** the handler is the number of times that the busy handler has +** been invoked for this locking event. {F12316} If the +** busy callback returns 0, then no additional attempts are made to +** access the database and [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED] is returned. +** {F12317} If the callback returns non-zero, then another attempt +** is made to open the database for reading and the cycle repeats. +** +** The presence of a busy handler does not guarantee that +** it will be invoked when there is lock contention. {F12319} +** If SQLite determines that invoking the busy handler could result in +** a deadlock, it will go ahead and return [SQLITE_BUSY] or +** [SQLITE_IOERR_BLOCKED] instead of invoking the +** busy handler. {END} +** Consider a scenario where one process is holding a read lock that +** it is trying to promote to a reserved lock and +** a second process is holding a reserved lock that it is trying +** to promote to an exclusive lock. The first process cannot proceed +** because it is blocked by the second and the second process cannot +** proceed because it is blocked by the first. If both processes +** invoke the busy handlers, neither will make any progress. Therefore, +** SQLite returns [SQLITE_BUSY] for the first process, hoping that this +** will induce the first process to release its read lock and allow +** the second process to proceed. +** +** {F12321} The default busy callback is NULL. {END} +** +** {F12322} The [SQLITE_BUSY] error is converted to [SQLITE_IOERR_BLOCKED] +** when SQLite is in the middle of a large transaction where all the +** changes will not fit into the in-memory cache. {F12323} SQLite will +** already hold a RESERVED lock on the database file, but it needs +** to promote this lock to EXCLUSIVE so that it can spill cache +** pages into the database file without harm to concurrent +** readers. {F12324} If it is unable to promote the lock, then the in-memory +** cache will be left in an inconsistent state and so the error +** code is promoted from the relatively benign [SQLITE_BUSY] to +** the more severe [SQLITE_IOERR_BLOCKED]. {F12325} This error code promotion +** forces an automatic rollback of the changes. {END} See the +** +** CorruptionFollowingBusyError wiki page for a discussion of why +** this is important. +** +** {F12326} Sqlite is re-entrant, so the busy handler may start a new +** query. {END} (It is not clear why anyone would every want to do this, +** but it is allowed, in theory.) {U12327} But the busy handler may not +** close the database. Closing the database from a busy handler will delete +** data structures out from under the executing query and will +** probably result in a segmentation fault or other runtime error. {END} +** +** {F12328} There can only be a single busy handler defined for each database +** connection. Setting a new busy handler clears any previous one. +** {F12329} Note that calling [sqlite3_busy_timeout()] will also set or clear +** the busy handler. +** +** {F12331} When operating in [sqlite3_enable_shared_cache | shared cache mode], +** only a single busy handler can be defined for each database file. +** So if two database connections share a single cache, then changing +** the busy handler on one connection will also change the busy +** handler in the other connection. {F12332} The busy handler is invoked +** in the thread that was running when the lock contention occurs. +*/ +int sqlite3_busy_handler(sqlite3*, int(*)(void*,int), void*); + +/* +** CAPI3REF: Set A Busy Timeout {F12340} +** +** {F12341} This routine sets a [sqlite3_busy_handler | busy handler] +** that sleeps for a while when a +** table is locked. {F12342} The handler will sleep multiple times until +** at least "ms" milliseconds of sleeping have been done. {F12343} After +** "ms" milliseconds of sleeping, the handler returns 0 which +** causes [sqlite3_step()] to return [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED]. +** +** {F12344} Calling this routine with an argument less than or equal to zero +** turns off all busy handlers. +** +** {F12345} There can only be a single busy handler for a particular database +** connection. If another busy handler was defined +** (using [sqlite3_busy_handler()]) prior to calling +** this routine, that other busy handler is cleared. +*/ +int sqlite3_busy_timeout(sqlite3*, int ms); + +/* +** CAPI3REF: Convenience Routines For Running Queries {F12370} +** +** This next routine is a convenience wrapper around [sqlite3_exec()]. +** {F12371} Instead of invoking a user-supplied callback for each row of the +** result, this routine remembers each row of the result in memory +** obtained from [sqlite3_malloc()], then returns all of the result after the +** query has finished. {F12372} +** +** As an example, suppose the query result where this table: +** +**
+**        Name        | Age
+**        -----------------------
+**        Alice       | 43
+**        Bob         | 28
+**        Cindy       | 21
+** 
+** +** If the 3rd argument were &azResult then after the function returns +** azResult will contain the following data: +** +**
+**        azResult[0] = "Name";
+**        azResult[1] = "Age";
+**        azResult[2] = "Alice";
+**        azResult[3] = "43";
+**        azResult[4] = "Bob";
+**        azResult[5] = "28";
+**        azResult[6] = "Cindy";
+**        azResult[7] = "21";
+** 
+** +** Notice that there is an extra row of data containing the column +** headers. But the *nrow return value is still 3. *ncolumn is +** set to 2. In general, the number of values inserted into azResult +** will be ((*nrow) + 1)*(*ncolumn). +** +** {U12374} After the calling function has finished using the result, it should +** pass the result data pointer to sqlite3_free_table() in order to +** release the memory that was malloc-ed. Because of the way the +** [sqlite3_malloc()] happens, the calling function must not try to call +** [sqlite3_free()] directly. Only [sqlite3_free_table()] is able to release +** the memory properly and safely. {END} +** +** {F12373} The return value of this routine is the same as +** from [sqlite3_exec()]. +*/ +int sqlite3_get_table( + sqlite3*, /* An open database */ + const char *sql, /* SQL to be executed */ + char ***resultp, /* Result written to a char *[] that this points to */ + int *nrow, /* Number of result rows written here */ + int *ncolumn, /* Number of result columns written here */ + char **errmsg /* Error msg written here */ +); +void sqlite3_free_table(char **result); + +/* +** CAPI3REF: Formatted String Printing Functions {F17400} +** +** These routines are workalikes of the "printf()" family of functions +** from the standard C library. +** +** {F17401} The sqlite3_mprintf() and sqlite3_vmprintf() routines write their +** results into memory obtained from [sqlite3_malloc()]. +** {U17402} The strings returned by these two routines should be +** released by [sqlite3_free()]. {F17403} Both routines return a +** NULL pointer if [sqlite3_malloc()] is unable to allocate enough +** memory to hold the resulting string. +** +** {F17404} In sqlite3_snprintf() routine is similar to "snprintf()" from +** the standard C library. The result is written into the +** buffer supplied as the second parameter whose size is given by +** the first parameter. {END} Note that the order of the +** first two parameters is reversed from snprintf(). This is an +** historical accident that cannot be fixed without breaking +** backwards compatibility. {F17405} Note also that sqlite3_snprintf() +** returns a pointer to its buffer instead of the number of +** characters actually written into the buffer. {END} We admit that +** the number of characters written would be a more useful return +** value but we cannot change the implementation of sqlite3_snprintf() +** now without breaking compatibility. +** +** {F17406} As long as the buffer size is greater than zero, sqlite3_snprintf() +** guarantees that the buffer is always zero-terminated. {F17407} The first +** parameter "n" is the total size of the buffer, including space for +** the zero terminator. {END} So the longest string that can be completely +** written will be n-1 characters. +** +** These routines all implement some additional formatting +** options that are useful for constructing SQL statements. +** All of the usual printf formatting options apply. In addition, there +** is are "%q", "%Q", and "%z" options. +** +** {F17410} The %q option works like %s in that it substitutes a null-terminated +** string from the argument list. But %q also doubles every '\'' character. +** %q is designed for use inside a string literal. {END} By doubling each '\'' +** character it escapes that character and allows it to be inserted into +** the string. +** +** For example, so some string variable contains text as follows: +** +**
+**  char *zText = "It's a happy day!";
+** 
+** +** One can use this text in an SQL statement as follows: +** +**
+**  char *zSQL = sqlite3_mprintf("INSERT INTO table VALUES('%q')", zText);
+**  sqlite3_exec(db, zSQL, 0, 0, 0);
+**  sqlite3_free(zSQL);
+** 
+** +** Because the %q format string is used, the '\'' character in zText +** is escaped and the SQL generated is as follows: +** +**
+**  INSERT INTO table1 VALUES('It''s a happy day!')
+** 
+** +** This is correct. Had we used %s instead of %q, the generated SQL +** would have looked like this: +** +**
+**  INSERT INTO table1 VALUES('It's a happy day!');
+** 
+** +** This second example is an SQL syntax error. As a general rule you +** should always use %q instead of %s when inserting text into a string +** literal. +** +** {F17411} The %Q option works like %q except it also adds single quotes around +** the outside of the total string. Or if the parameter in the argument +** list is a NULL pointer, %Q substitutes the text "NULL" (without single +** quotes) in place of the %Q option. {END} So, for example, one could say: +** +**
+**  char *zSQL = sqlite3_mprintf("INSERT INTO table VALUES(%Q)", zText);
+**  sqlite3_exec(db, zSQL, 0, 0, 0);
+**  sqlite3_free(zSQL);
+** 
+** +** The code above will render a correct SQL statement in the zSQL +** variable even if the zText variable is a NULL pointer. +** +** {F17412} The "%z" formatting option works exactly like "%s" with the +** addition that after the string has been read and copied into +** the result, [sqlite3_free()] is called on the input string. {END} +*/ +char *sqlite3_mprintf(const char*,...); +char *sqlite3_vmprintf(const char*, va_list); +char *sqlite3_snprintf(int,char*,const char*, ...); + +/* +** CAPI3REF: Memory Allocation Subsystem {F17300} +** +** {F17301} The SQLite core uses these three routines for all of its own +** internal memory allocation needs. {END} "Core" in the previous sentence +** does not include operating-system specific VFS implementation. The +** windows VFS uses native malloc and free for some operations. +** +** {F17302} The sqlite3_malloc() routine returns a pointer to a block +** of memory at least N bytes in length, where N is the parameter. +** {F17303} If sqlite3_malloc() is unable to obtain sufficient free +** memory, it returns a NULL pointer. {F17304} If the parameter N to +** sqlite3_malloc() is zero or negative then sqlite3_malloc() returns +** a NULL pointer. +** +** {F17305} Calling sqlite3_free() with a pointer previously returned +** by sqlite3_malloc() or sqlite3_realloc() releases that memory so +** that it might be reused. {F17306} The sqlite3_free() routine is +** a no-op if is called with a NULL pointer. Passing a NULL pointer +** to sqlite3_free() is harmless. {U17307} After being freed, memory +** should neither be read nor written. Even reading previously freed +** memory might result in a segmentation fault or other severe error. +** {U17309} Memory corruption, a segmentation fault, or other severe error +** might result if sqlite3_free() is called with a non-NULL pointer that +** was not obtained from sqlite3_malloc() or sqlite3_free(). +** +** {F17310} The sqlite3_realloc() interface attempts to resize a +** prior memory allocation to be at least N bytes, where N is the +** second parameter. The memory allocation to be resized is the first +** parameter. {F17311} If the first parameter to sqlite3_realloc() +** is a NULL pointer then its behavior is identical to calling +** sqlite3_malloc(N) where N is the second parameter to sqlite3_realloc(). +** {F17312} If the second parameter to sqlite3_realloc() is zero or +** negative then the behavior is exactly the same as calling +** sqlite3_free(P) where P is the first parameter to sqlite3_realloc(). +** {F17313} Sqlite3_realloc() returns a pointer to a memory allocation +** of at least N bytes in size or NULL if sufficient memory is unavailable. +** {F17314} If M is the size of the prior allocation, then min(N,M) bytes +** of the prior allocation are copied into the beginning of buffer returned +** by sqlite3_realloc() and the prior allocation is freed. +** {F17315} If sqlite3_realloc() returns NULL, then the prior allocation +** is not freed. +** +** {F17316} The memory returned by sqlite3_malloc() and sqlite3_realloc() +** is always aligned to at least an 8 byte boundary. {END} +** +** {F17381} The default implementation +** of the memory allocation subsystem uses the malloc(), realloc() +** and free() provided by the standard C library. {F17382} However, if +** SQLite is compiled with the following C preprocessor macro +** +**
SQLITE_MEMORY_SIZE=NNN
+** +** where NNN is an integer, then SQLite create a static +** array of at least NNN bytes in size and use that array +** for all of its dynamic memory allocation needs. {END} Additional +** memory allocator options may be added in future releases. +** +** In SQLite version 3.5.0 and 3.5.1, it was possible to define +** the SQLITE_OMIT_MEMORY_ALLOCATION which would cause the built-in +** implementation of these routines to be omitted. That capability +** is no longer provided. Only built-in memory allocators can be +** used. +** +** The windows OS interface layer calls +** the system malloc() and free() directly when converting +** filenames between the UTF-8 encoding used by SQLite +** and whatever filename encoding is used by the particular windows +** installation. Memory allocation errors are detected, but +** they are reported back as [SQLITE_CANTOPEN] or +** [SQLITE_IOERR] rather than [SQLITE_NOMEM]. +*/ +void *sqlite3_malloc(int); +void *sqlite3_realloc(void*, int); +void sqlite3_free(void*); + +/* +** CAPI3REF: Memory Allocator Statistics {F17370} +** +** In addition to the basic three allocation routines +** [sqlite3_malloc()], [sqlite3_free()], and [sqlite3_realloc()], +** the memory allocation subsystem included with the SQLite +** sources provides the interfaces shown here. +** +** {F17371} The sqlite3_memory_used() routine returns the +** number of bytes of memory currently outstanding (malloced but not freed). +** {F17372} The value returned by sqlite3_memory_used() includes +** any overhead added by SQLite, but not overhead added by the +** library malloc() that backs the sqlite3_malloc() implementation. +** {F17373} The sqlite3_memory_highwater() routines returns the +** maximum number of bytes that have been outstanding at any time +** since the highwater mark was last reset. +** {F17374} The byte count returned by sqlite3_memory_highwater() +** uses the same byte counting rules as sqlite3_memory_used(). {END} +** In other words, overhead added internally by SQLite is counted, +** but overhead from the underlying system malloc is not. +** {F17375} If the parameter to sqlite3_memory_highwater() is true, +** then the highwater mark is reset to the current value of +** sqlite3_memory_used() and the prior highwater mark (before the +** reset) is returned. {F17376} If the parameter to +** sqlite3_memory_highwater() is zero, then the highwater mark is +** unchanged. +*/ +sqlite3_int64 sqlite3_memory_used(void); +sqlite3_int64 sqlite3_memory_highwater(int resetFlag); + +/* +** CAPI3REF: Compile-Time Authorization Callbacks {F12500} +** +** {F12501} This routine registers a authorizer callback with a particular +** database connection, supplied in the first argument. {F12502} +** The authorizer callback is invoked as SQL statements are being compiled +** by [sqlite3_prepare()] or its variants [sqlite3_prepare_v2()], +** [sqlite3_prepare16()] and [sqlite3_prepare16_v2()]. {F12503} At various +** points during the compilation process, as logic is being created +** to perform various actions, the authorizer callback is invoked to +** see if those actions are allowed. The authorizer callback should +** return SQLITE_OK to allow the action, [SQLITE_IGNORE] to disallow the +** specific action but allow the SQL statement to continue to be +** compiled, or [SQLITE_DENY] to cause the entire SQL statement to be +** rejected with an error. {F12504} If the authorizer callback returns +** any value other than [SQLITE_IGNORE], [SQLITE_OK], or [SQLITE_DENY] +** then [sqlite3_prepare_v2()] or equivalent call that triggered +** the authorizer shall +** fail with an SQLITE_ERROR error code and an appropriate error message. {END} +** +** When the callback returns [SQLITE_OK], that means the operation +** requested is ok. {F12505} When the callback returns [SQLITE_DENY], the +** [sqlite3_prepare_v2()] or equivalent call that triggered the +** authorizer shall fail +** with an SQLITE_ERROR error code and an error message explaining that +** access is denied. {F12506} If the authorizer code (the 2nd parameter +** to the authorizer callback is anything other than [SQLITE_READ], then +** a return of [SQLITE_IGNORE] has the same effect as [SQLITE_DENY]. +** If the authorizer code is [SQLITE_READ] and the callback returns +** [SQLITE_IGNORE] then the prepared statement is constructed to +** insert a NULL value in place of the table column that would have +** been read if [SQLITE_OK] had been returned. {END} +** +** {F12510} The first parameter to the authorizer callback is a copy of +** the third parameter to the sqlite3_set_authorizer() interface. +** {F12511} The second parameter to the callback is an integer +** [SQLITE_COPY | action code] that specifies the particular action +** to be authorized. {END} The available action codes are +** [SQLITE_COPY | documented separately]. {F12512} The third through sixth +** parameters to the callback are zero-terminated strings that contain +** additional details about the action to be authorized. {END} +** +** An authorizer is used when preparing SQL statements from an untrusted +** source, to ensure that the SQL statements do not try to access data +** that they are not allowed to see, or that they do not try to +** execute malicious statements that damage the database. For +** example, an application may allow a user to enter arbitrary +** SQL queries for evaluation by a database. But the application does +** not want the user to be able to make arbitrary changes to the +** database. An authorizer could then be put in place while the +** user-entered SQL is being prepared that disallows everything +** except SELECT statements. +** +** {F12520} Only a single authorizer can be in place on a database connection +** at a time. Each call to sqlite3_set_authorizer overrides the +** previous call. {F12521} A NULL authorizer means that no authorization +** callback is invoked. {F12522} The default authorizer is NULL. {END} +** +** Note that the authorizer callback is invoked only during +** [sqlite3_prepare()] or its variants. {F12523} Authorization is not +** performed during statement evaluation in [sqlite3_step()]. {END} +*/ +int sqlite3_set_authorizer( + sqlite3*, + int (*xAuth)(void*,int,const char*,const char*,const char*,const char*), + void *pUserData +); + +/* +** CAPI3REF: Authorizer Return Codes {F12590} +** +** The [sqlite3_set_authorizer | authorizer callback function] must +** return either [SQLITE_OK] or one of these two constants in order +** to signal SQLite whether or not the action is permitted. See the +** [sqlite3_set_authorizer | authorizer documentation] for additional +** information. +*/ +#define SQLITE_DENY 1 /* Abort the SQL statement with an error */ +#define SQLITE_IGNORE 2 /* Don't allow access, but don't generate an error */ + +/* +** CAPI3REF: Authorizer Action Codes {F12550} +** +** The [sqlite3_set_authorizer()] interface registers a callback function +** that is invoked to authorizer certain SQL statement actions. {F12551} The +** second parameter to the callback is an integer code that specifies +** what action is being authorized. These are the integer action codes that +** the authorizer callback may be passed. {END} +** +** These action code values signify what kind of operation is to be +** authorized. {F12552} The 3rd and 4th parameters to the authorization +** callback function will be parameters or NULL depending on which of these +** codes is used as the second parameter. {F12553} The 5th parameter to the +** authorizer callback is the name of the database ("main", "temp", +** etc.) if applicable. {F12554} The 6th parameter to the authorizer callback +** is the name of the inner-most trigger or view that is responsible for +** the access attempt or NULL if this access attempt is directly from +** top-level SQL code. +*/ +/******************************************* 3rd ************ 4th ***********/ +#define SQLITE_CREATE_INDEX 1 /* Index Name Table Name */ +#define SQLITE_CREATE_TABLE 2 /* Table Name NULL */ +#define SQLITE_CREATE_TEMP_INDEX 3 /* Index Name Table Name */ +#define SQLITE_CREATE_TEMP_TABLE 4 /* Table Name NULL */ +#define SQLITE_CREATE_TEMP_TRIGGER 5 /* Trigger Name Table Name */ +#define SQLITE_CREATE_TEMP_VIEW 6 /* View Name NULL */ +#define SQLITE_CREATE_TRIGGER 7 /* Trigger Name Table Name */ +#define SQLITE_CREATE_VIEW 8 /* View Name NULL */ +#define SQLITE_DELETE 9 /* Table Name NULL */ +#define SQLITE_DROP_INDEX 10 /* Index Name Table Name */ +#define SQLITE_DROP_TABLE 11 /* Table Name NULL */ +#define SQLITE_DROP_TEMP_INDEX 12 /* Index Name Table Name */ +#define SQLITE_DROP_TEMP_TABLE 13 /* Table Name NULL */ +#define SQLITE_DROP_TEMP_TRIGGER 14 /* Trigger Name Table Name */ +#define SQLITE_DROP_TEMP_VIEW 15 /* View Name NULL */ +#define SQLITE_DROP_TRIGGER 16 /* Trigger Name Table Name */ +#define SQLITE_DROP_VIEW 17 /* View Name NULL */ +#define SQLITE_INSERT 18 /* Table Name NULL */ +#define SQLITE_PRAGMA 19 /* Pragma Name 1st arg or NULL */ +#define SQLITE_READ 20 /* Table Name Column Name */ +#define SQLITE_SELECT 21 /* NULL NULL */ +#define SQLITE_TRANSACTION 22 /* NULL NULL */ +#define SQLITE_UPDATE 23 /* Table Name Column Name */ +#define SQLITE_ATTACH 24 /* Filename NULL */ +#define SQLITE_DETACH 25 /* Database Name NULL */ +#define SQLITE_ALTER_TABLE 26 /* Database Name Table Name */ +#define SQLITE_REINDEX 27 /* Index Name NULL */ +#define SQLITE_ANALYZE 28 /* Table Name NULL */ +#define SQLITE_CREATE_VTABLE 29 /* Table Name Module Name */ +#define SQLITE_DROP_VTABLE 30 /* Table Name Module Name */ +#define SQLITE_FUNCTION 31 /* Function Name NULL */ +#define SQLITE_COPY 0 /* No longer used */ + +/* +** CAPI3REF: Tracing And Profiling Functions {F12280} +** +** These routines register callback functions that can be used for +** tracing and profiling the execution of SQL statements. +** +** {F12281} The callback function registered by sqlite3_trace() is invoked +** at the first [sqlite3_step()] for the evaluation of an SQL statement. +** {F12282} Only a single trace callback can be registered at a time. +** Each call to sqlite3_trace() overrides the previous. {F12283} A +** NULL callback for sqlite3_trace() disables tracing. {F12284} The +** first argument to the trace callback is a copy of the pointer which +** was the 3rd argument to sqlite3_trace. {F12285} The second argument +** to the trace callback is a zero-terminated UTF8 string containing +** the original text of the SQL statement as it was passed into +** [sqlite3_prepare_v2()] or the equivalent. {END} Note that the +** host parameter are not expanded in the SQL statement text. +** +** {F12287} The callback function registered by sqlite3_profile() is invoked +** as each SQL statement finishes. {F12288} The first parameter to the +** profile callback is a copy of the 3rd parameter to sqlite3_profile(). +** {F12289} The second parameter to the profile callback is a +** zero-terminated UTF-8 string that contains the complete text of +** the SQL statement as it was processed by [sqlite3_prepare_v2()] or +** the equivalent. {F12290} The third parameter to the profile +** callback is an estimate of the number of nanoseconds of +** wall-clock time required to run the SQL statement from start +** to finish. {END} +** +** The sqlite3_profile() API is currently considered experimental and +** is subject to change. +*/ +void *sqlite3_trace(sqlite3*, void(*xTrace)(void*,const char*), void*); +void *sqlite3_profile(sqlite3*, + void(*xProfile)(void*,const char*,sqlite3_uint64), void*); + +/* +** CAPI3REF: Query Progress Callbacks {F12910} +** +** {F12911} This routine configures a callback function - the +** progress callback - that is invoked periodically during long +** running calls to [sqlite3_exec()], [sqlite3_step()] and +** [sqlite3_get_table()]. {END} An example use for this +** interface is to keep a GUI updated during a large query. +** +** {F12912} The progress callback is invoked once for every N virtual +** machine opcodes, where N is the second argument to this function. +** {F12913} The progress callback itself is identified by the third +** argument to this function. {F12914} The fourth argument to this +** function is a void pointer passed to the progress callback +** function each time it is invoked. {END} +** +** {F12915} If a call to [sqlite3_exec()], [sqlite3_step()], or +** [sqlite3_get_table()] results in fewer than N opcodes being executed, +** then the progress callback is never invoked. {END} +** +** {F12916} Only a single progress callback function may be registered for each +** open database connection. Every call to sqlite3_progress_handler() +** overwrites the results of the previous call. {F12917} +** To remove the progress callback altogether, pass NULL as the third +** argument to this function. {END} +** +** {F12918} If the progress callback returns a result other than 0, then +** the current query is immediately terminated and any database changes +** rolled back. {F12919} +** The containing [sqlite3_exec()], [sqlite3_step()], or +** [sqlite3_get_table()] call returns SQLITE_INTERRUPT. {END} This feature +** can be used, for example, to implement the "Cancel" button on a +** progress dialog box in a GUI. +*/ +void sqlite3_progress_handler(sqlite3*, int, int(*)(void*), void*); + +/* +** CAPI3REF: Opening A New Database Connection {F12700} +** +** {F12701} These routines open an SQLite database file whose name +** is given by the filename argument. +** {F12702} The filename argument is interpreted as UTF-8 +** for [sqlite3_open()] and [sqlite3_open_v2()] and as UTF-16 +** in the native byte order for [sqlite3_open16()]. +** {F12703} An [sqlite3*] handle is returned in *ppDb, even +** if an error occurs. {F12723} (Exception: if SQLite is unable +** to allocate memory to hold the [sqlite3] object, a NULL will +** be written into *ppDb instead of a pointer to the [sqlite3] object.) +** {F12704} If the database is opened (and/or created) +** successfully, then [SQLITE_OK] is returned. {F12705} Otherwise an +** error code is returned. {F12706} The +** [sqlite3_errmsg()] or [sqlite3_errmsg16()] routines can be used to obtain +** an English language description of the error. +** +** {F12707} The default encoding for the database will be UTF-8 if +** [sqlite3_open()] or [sqlite3_open_v2()] is called and +** UTF-16 in the native byte order if [sqlite3_open16()] is used. +** +** {F12708} Whether or not an error occurs when it is opened, resources +** associated with the [sqlite3*] handle should be released by passing it +** to [sqlite3_close()] when it is no longer required. +** +** {F12709} The [sqlite3_open_v2()] interface works like [sqlite3_open()] +** except that it acccepts two additional parameters for additional control +** over the new database connection. {F12710} The flags parameter can be +** one of: +** +**
    +**
  1. [SQLITE_OPEN_READONLY] +**
  2. [SQLITE_OPEN_READWRITE] +**
  3. [SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE] +**
+** +** {F12711} The first value opens the database read-only. +** {F12712} If the database does not previously exist, an error is returned. +** {F12713} The second option opens +** the database for reading and writing if possible, or reading only if +** if the file is write protected. {F12714} In either case the database +** must already exist or an error is returned. {F12715} The third option +** opens the database for reading and writing and creates it if it does +** not already exist. {F12716} +** The third options is behavior that is always used for [sqlite3_open()] +** and [sqlite3_open16()]. +** +** {F12717} If the filename is ":memory:", then an private +** in-memory database is created for the connection. {F12718} This in-memory +** database will vanish when the database connection is closed. {END} Future +** version of SQLite might make use of additional special filenames +** that begin with the ":" character. It is recommended that +** when a database filename really does begin with +** ":" that you prefix the filename with a pathname like "./" to +** avoid ambiguity. +** +** {F12719} If the filename is an empty string, then a private temporary +** on-disk database will be created. {F12720} This private database will be +** automatically deleted as soon as the database connection is closed. +** +** {F12721} The fourth parameter to sqlite3_open_v2() is the name of the +** [sqlite3_vfs] object that defines the operating system +** interface that the new database connection should use. {F12722} If the +** fourth parameter is a NULL pointer then the default [sqlite3_vfs] +** object is used. {END} +** +** Note to windows users: The encoding used for the filename argument +** of [sqlite3_open()] and [sqlite3_open_v2()] must be UTF-8, not whatever +** codepage is currently defined. Filenames containing international +** characters must be converted to UTF-8 prior to passing them into +** [sqlite3_open()] or [sqlite3_open_v2()]. +*/ +int sqlite3_open( + const char *filename, /* Database filename (UTF-8) */ + sqlite3 **ppDb /* OUT: SQLite db handle */ +); +int sqlite3_open16( + const void *filename, /* Database filename (UTF-16) */ + sqlite3 **ppDb /* OUT: SQLite db handle */ +); +int sqlite3_open_v2( + const char *filename, /* Database filename (UTF-8) */ + sqlite3 **ppDb, /* OUT: SQLite db handle */ + int flags, /* Flags */ + const char *zVfs /* Name of VFS module to use */ +); + +/* +** CAPI3REF: Error Codes And Messages {F12800} +** +** {F12801} The sqlite3_errcode() interface returns the numeric +** [SQLITE_OK | result code] or [SQLITE_IOERR_READ | extended result code] +** for the most recent failed sqlite3_* API call associated +** with [sqlite3] handle 'db'. {U12802} If a prior API call failed but the +** most recent API call succeeded, the return value from sqlite3_errcode() +** is undefined. {END} +** +** {F12803} The sqlite3_errmsg() and sqlite3_errmsg16() return English-language +** text that describes the error, as either UTF8 or UTF16 respectively. +** {F12804} Memory to hold the error message string is managed internally. +** {U12805} The +** string may be overwritten or deallocated by subsequent calls to SQLite +** interface functions. {END} +** +** {F12806} Calls to many sqlite3_* functions set the error code and +** string returned by [sqlite3_errcode()], [sqlite3_errmsg()], and +** [sqlite3_errmsg16()] overwriting the previous values. {F12807} +** Except, calls to [sqlite3_errcode()], +** [sqlite3_errmsg()], and [sqlite3_errmsg16()] themselves do not affect the +** results of future invocations. {F12808} Calls to API routines that +** do not return an error code (example: [sqlite3_data_count()]) do not +** change the error code returned by this routine. {F12809} Interfaces that +** are not associated with a specific database connection (examples: +** [sqlite3_mprintf()] or [sqlite3_enable_shared_cache()] do not change +** the return code. {END} +** +** {F12810} Assuming no other intervening sqlite3_* API calls are made, +** the error code returned by this function is associated with the same +** error as the strings returned by [sqlite3_errmsg()] and [sqlite3_errmsg16()]. +*/ +int sqlite3_errcode(sqlite3 *db); +const char *sqlite3_errmsg(sqlite3*); +const void *sqlite3_errmsg16(sqlite3*); + +/* +** CAPI3REF: SQL Statement Object {F13000} +** +** An instance of this object represent single SQL statements. This +** object is variously known as a "prepared statement" or a +** "compiled SQL statement" or simply as a "statement". +** +** The life of a statement object goes something like this: +** +**
    +**
  1. Create the object using [sqlite3_prepare_v2()] or a related +** function. +**
  2. Bind values to host parameters using +** [sqlite3_bind_blob | sqlite3_bind_* interfaces]. +**
  3. Run the SQL by calling [sqlite3_step()] one or more times. +**
  4. Reset the statement using [sqlite3_reset()] then go back +** to step 2. Do this zero or more times. +**
  5. Destroy the object using [sqlite3_finalize()]. +**
+** +** Refer to documentation on individual methods above for additional +** information. +*/ +typedef struct sqlite3_stmt sqlite3_stmt; + +/* +** CAPI3REF: Compiling An SQL Statement {F13010} +** +** To execute an SQL query, it must first be compiled into a byte-code +** program using one of these routines. +** +** {F13011} The first argument "db" is an [sqlite3 | SQLite database handle] +** obtained from a prior call to [sqlite3_open()], [sqlite3_open_v2()] +** or [sqlite3_open16()]. {F13012} +** The second argument "zSql" is the statement to be compiled, encoded +** as either UTF-8 or UTF-16. The sqlite3_prepare() and sqlite3_prepare_v2() +** interfaces uses UTF-8 and sqlite3_prepare16() and sqlite3_prepare16_v2() +** use UTF-16. {END} +** +** {F13013} If the nByte argument is less +** than zero, then zSql is read up to the first zero terminator. +** {F13014} If nByte is non-negative, then it is the maximum number of +** bytes read from zSql. When nByte is non-negative, the +** zSql string ends at either the first '\000' or '\u0000' character or +** until the nByte-th byte, whichever comes first. {END} +** +** {F13015} *pzTail is made to point to the first byte past the end of the +** first SQL statement in zSql. These routines only compiles the first +** statement in zSql, so *pzTail is left pointing to what remains +** uncompiled. {END} +** +** {F13016} *ppStmt is left pointing to a compiled +** [sqlite3_stmt | SQL statement structure] that can be +** executed using [sqlite3_step()]. Or if there is an error, *ppStmt may be +** set to NULL. {F13017} If the input text contains no SQL (if the input +** is and empty string or a comment) then *ppStmt is set to NULL. +** {U13018} The calling procedure is responsible for deleting the +** compiled SQL statement +** using [sqlite3_finalize()] after it has finished with it. +** +** {F13019} On success, [SQLITE_OK] is returned. Otherwise an +** [SQLITE_ERROR | error code] is returned. {END} +** +** The sqlite3_prepare_v2() and sqlite3_prepare16_v2() interfaces are +** recommended for all new programs. The two older interfaces are retained +** for backwards compatibility, but their use is discouraged. +** {F13020} In the "v2" interfaces, the prepared statement +** that is returned (the [sqlite3_stmt] object) contains a copy of the +** original SQL text. {END} This causes the [sqlite3_step()] interface to +** behave a differently in two ways: +** +**
    +**
  1. {F13022} +** If the database schema changes, instead of returning [SQLITE_SCHEMA] as it +** always used to do, [sqlite3_step()] will automatically recompile the SQL +** statement and try to run it again. {F12023} If the schema has changed in +** a way that makes the statement no longer valid, [sqlite3_step()] will still +** return [SQLITE_SCHEMA]. {END} But unlike the legacy behavior, +** [SQLITE_SCHEMA] is now a fatal error. {F12024} Calling +** [sqlite3_prepare_v2()] again will not make the +** error go away. {F12025} Note: use [sqlite3_errmsg()] to find the text +** of the parsing error that results in an [SQLITE_SCHEMA] return. {END} +**
  2. +** +**
  3. +** {F13030} When an error occurs, +** [sqlite3_step()] will return one of the detailed +** [SQLITE_ERROR | result codes] or +** [SQLITE_IOERR_READ | extended result codes]. {F13031} +** The legacy behavior was that [sqlite3_step()] would only return a generic +** [SQLITE_ERROR] result code and you would have to make a second call to +** [sqlite3_reset()] in order to find the underlying cause of the problem. +** {F13032} +** With the "v2" prepare interfaces, the underlying reason for the error is +** returned immediately. {END} +**
  4. +**
+*/ +int sqlite3_prepare( + sqlite3 *db, /* Database handle */ + const char *zSql, /* SQL statement, UTF-8 encoded */ + int nByte, /* Maximum length of zSql in bytes. */ + sqlite3_stmt **ppStmt, /* OUT: Statement handle */ + const char **pzTail /* OUT: Pointer to unused portion of zSql */ +); +int sqlite3_prepare_v2( + sqlite3 *db, /* Database handle */ + const char *zSql, /* SQL statement, UTF-8 encoded */ + int nByte, /* Maximum length of zSql in bytes. */ + sqlite3_stmt **ppStmt, /* OUT: Statement handle */ + const char **pzTail /* OUT: Pointer to unused portion of zSql */ +); +int sqlite3_prepare16( + sqlite3 *db, /* Database handle */ + const void *zSql, /* SQL statement, UTF-16 encoded */ + int nByte, /* Maximum length of zSql in bytes. */ + sqlite3_stmt **ppStmt, /* OUT: Statement handle */ + const void **pzTail /* OUT: Pointer to unused portion of zSql */ +); +int sqlite3_prepare16_v2( + sqlite3 *db, /* Database handle */ + const void *zSql, /* SQL statement, UTF-16 encoded */ + int nByte, /* Maximum length of zSql in bytes. */ + sqlite3_stmt **ppStmt, /* OUT: Statement handle */ + const void **pzTail /* OUT: Pointer to unused portion of zSql */ +); + +/* +** CAPIREF: Retrieving Statement SQL {F13100} +** +** {F13101} If the compiled SQL statement passed as an argument was +** compiled using either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()], +** then this function returns a pointer to a zero-terminated string +** containing a copy of the original SQL statement. {F13102} The +** pointer is valid until the statement +** is deleted using sqlite3_finalize(). +** {F13103} The string returned by sqlite3_sql() is always UTF8 even +** if a UTF16 string was originally entered using [sqlite3_prepare16_v2()] +** or the equivalent. +** +** {F13104} If the statement was compiled using either of the legacy +** interfaces [sqlite3_prepare()] or [sqlite3_prepare16()], this +** function returns NULL. +*/ +const char *sqlite3_sql(sqlite3_stmt *pStmt); + +/* +** CAPI3REF: Dynamically Typed Value Object {F15000} +** +** {F15001} SQLite uses the sqlite3_value object to represent all values +** that are or can be stored in a database table. {END} +** SQLite uses dynamic typing for the values it stores. +** {F15002} Values stored in sqlite3_value objects can be +** be integers, floating point values, strings, BLOBs, or NULL. +*/ +typedef struct Mem sqlite3_value; + +/* +** CAPI3REF: SQL Function Context Object {F16001} +** +** The context in which an SQL function executes is stored in an +** sqlite3_context object. {F16002} A pointer to an sqlite3_context +** object is always first parameter to application-defined SQL functions. +*/ +typedef struct sqlite3_context sqlite3_context; + +/* +** CAPI3REF: Binding Values To Prepared Statements {F13500} +** +** {F13501} In the SQL strings input to [sqlite3_prepare_v2()] and its +** variants, literals may be replace by a parameter in one +** of these forms: +** +**
    +**
  • ? +**
  • ?NNN +**
  • :AAA +**
  • @AAA +**
  • $VVV +**
+** +** In the parameter forms shown above NNN is an integer literal, +** AAA is an alphanumeric identifier and VVV is a variable name according +** to the syntax rules of the TCL programming language. {END} +** The values of these parameters (also called "host parameter names") +** can be set using the sqlite3_bind_*() routines defined here. +** +** {F13502} The first argument to the sqlite3_bind_*() routines always +** is a pointer to the [sqlite3_stmt] object returned from +** [sqlite3_prepare_v2()] or its variants. {F13503} The second +** argument is the index of the parameter to be set. {F13504} The +** first parameter has an index of 1. {F13505} When the same named +** parameter is used more than once, second and subsequent +** occurrences have the same index as the first occurrence. +** {F13506} The index for named parameters can be looked up using the +** [sqlite3_bind_parameter_name()] API if desired. {F13507} The index +** for "?NNN" parameters is the value of NNN. +** {F13508} The NNN value must be between 1 and the compile-time +** parameter SQLITE_MAX_VARIABLE_NUMBER (default value: 999). {END} +** See limits.html for additional information. +** +** {F13509} The third argument is the value to bind to the parameter. {END} +** +** {F13510} In those +** routines that have a fourth argument, its value is the number of bytes +** in the parameter. To be clear: the value is the number of bytes in the +** string, not the number of characters. {F13511} The number +** of bytes does not include the zero-terminator at the end of strings. +** {F13512} +** If the fourth parameter is negative, the length of the string is +** number of bytes up to the first zero terminator. {END} +** +** {F13513} +** The fifth argument to sqlite3_bind_blob(), sqlite3_bind_text(), and +** sqlite3_bind_text16() is a destructor used to dispose of the BLOB or +** text after SQLite has finished with it. {F13514} If the fifth argument is +** the special value [SQLITE_STATIC], then the library assumes that the +** information is in static, unmanaged space and does not need to be freed. +** {F13515} If the fifth argument has the value [SQLITE_TRANSIENT], then +** SQLite makes its own private copy of the data immediately, before +** the sqlite3_bind_*() routine returns. {END} +** +** {F13520} The sqlite3_bind_zeroblob() routine binds a BLOB of length N that +** is filled with zeros. {F13521} A zeroblob uses a fixed amount of memory +** (just an integer to hold it size) while it is being processed. {END} +** Zeroblobs are intended to serve as place-holders for BLOBs whose +** content is later written using +** [sqlite3_blob_open | increment BLOB I/O] routines. {F13522} A negative +** value for the zeroblob results in a zero-length BLOB. {END} +** +** {F13530} The sqlite3_bind_*() routines must be called after +** [sqlite3_prepare_v2()] (and its variants) or [sqlite3_reset()] and +** before [sqlite3_step()]. {F13531} +** Bindings are not cleared by the [sqlite3_reset()] routine. +** {F13532} Unbound parameters are interpreted as NULL. {END} +** +** {F13540} These routines return [SQLITE_OK] on success or an error code if +** anything goes wrong. {F13541} [SQLITE_RANGE] is returned if the parameter +** index is out of range. {F13542} [SQLITE_NOMEM] is returned if malloc fails. +** {F13543} [SQLITE_MISUSE] is returned if these routines are called on a +** virtual machine that is the wrong state or which has already been finalized. +*/ +int sqlite3_bind_blob(sqlite3_stmt*, int, const void*, int n, void(*)(void*)); +int sqlite3_bind_double(sqlite3_stmt*, int, double); +int sqlite3_bind_int(sqlite3_stmt*, int, int); +int sqlite3_bind_int64(sqlite3_stmt*, int, sqlite3_int64); +int sqlite3_bind_null(sqlite3_stmt*, int); +int sqlite3_bind_text(sqlite3_stmt*, int, const char*, int n, void(*)(void*)); +int sqlite3_bind_text16(sqlite3_stmt*, int, const void*, int, void(*)(void*)); +int sqlite3_bind_value(sqlite3_stmt*, int, const sqlite3_value*); +int sqlite3_bind_zeroblob(sqlite3_stmt*, int, int n); + +/* +** CAPI3REF: Number Of Host Parameters {F13600} +** +** {F13601} Return the largest host parameter index in the precompiled +** statement given as the argument. {F13602} When the host parameters +** are of the forms like ":AAA", "$VVV", "@AAA", or "?", +** then they are assigned sequential increasing numbers beginning +** with one, so the value returned is the number of parameters. +** {F13603} However +** if the same host parameter name is used multiple times, each occurrance +** is given the same number, so the value returned in that case is the number +** of unique host parameter names. {F13604} If host parameters of the +** form "?NNN" are used (where NNN is an integer) then there might be +** gaps in the numbering and the value returned by this interface is +** the index of the host parameter with the largest index value. {END} +** +** {U13605} The prepared statement must not be [sqlite3_finalize | finalized] +** prior to this routine returning. Otherwise the results are undefined +** and probably undesirable. +*/ +int sqlite3_bind_parameter_count(sqlite3_stmt*); + +/* +** CAPI3REF: Name Of A Host Parameter {F13620} +** +** {F13621} This routine returns a pointer to the name of the n-th +** parameter in a [sqlite3_stmt | prepared statement]. {F13622} +** Host parameters of the form ":AAA" or "@AAA" or "$VVV" have a name +** which is the string ":AAA" or "@AAA" or "$VVV". +** In other words, the initial ":" or "$" or "@" +** is included as part of the name. {F13626} +** Parameters of the form "?" or "?NNN" have no name. +** +** {F13623} The first host parameter has an index of 1, not 0. +** +** {F13624} If the value n is out of range or if the n-th parameter is +** nameless, then NULL is returned. {F13625} The returned string is +** always in the UTF-8 encoding even if the named parameter was +** originally specified as UTF-16 in [sqlite3_prepare16()] or +** [sqlite3_prepare16_v2()]. +*/ +const char *sqlite3_bind_parameter_name(sqlite3_stmt*, int); + +/* +** CAPI3REF: Index Of A Parameter With A Given Name {F13640} +** +** {F13641} This routine returns the index of a host parameter with the +** given name. {F13642} The name must match exactly. {F13643} +** If no parameter with the given name is found, return 0. +** {F13644} Parameter names must be UTF8. +*/ +int sqlite3_bind_parameter_index(sqlite3_stmt*, const char *zName); + +/* +** CAPI3REF: Reset All Bindings On A Prepared Statement {F13660} +** +** {F13661} Contrary to the intuition of many, [sqlite3_reset()] does not +** reset the [sqlite3_bind_blob | bindings] on a +** [sqlite3_stmt | prepared statement]. {F13662} Use this routine to +** reset all host parameters to NULL. +*/ +int sqlite3_clear_bindings(sqlite3_stmt*); + +/* +** CAPI3REF: Number Of Columns In A Result Set {F13710} +** +** {F13711} Return the number of columns in the result set returned by the +** [sqlite3_stmt | compiled SQL statement]. {F13712} This routine returns 0 +** if pStmt is an SQL statement that does not return data (for +** example an UPDATE). +*/ +int sqlite3_column_count(sqlite3_stmt *pStmt); + +/* +** CAPI3REF: Column Names In A Result Set {F13720} +** +** {F13721} These routines return the name assigned to a particular column +** in the result set of a SELECT statement. {F13722} The sqlite3_column_name() +** interface returns a pointer to a zero-terminated UTF8 string +** and sqlite3_column_name16() returns a pointer to a zero-terminated +** UTF16 string. {F13723} The first parameter is the +** [sqlite3_stmt | prepared statement] that implements the SELECT statement. +** The second parameter is the column number. The left-most column is +** number 0. +** +** {F13724} The returned string pointer is valid until either the +** [sqlite3_stmt | prepared statement] is destroyed by [sqlite3_finalize()] +** or until the next call sqlite3_column_name() or sqlite3_column_name16() +** on the same column. +** +** {F13725} If sqlite3_malloc() fails during the processing of either routine +** (for example during a conversion from UTF-8 to UTF-16) then a +** NULL pointer is returned. +*/ +const char *sqlite3_column_name(sqlite3_stmt*, int N); +const void *sqlite3_column_name16(sqlite3_stmt*, int N); + +/* +** CAPI3REF: Source Of Data In A Query Result {F13740} +** +** {F13741} These routines provide a means to determine what column of what +** table in which database a result of a SELECT statement comes from. +** {F13742} The name of the database or table or column can be returned as +** either a UTF8 or UTF16 string. {F13743} The _database_ routines return +** the database name, the _table_ routines return the table name, and +** the origin_ routines return the column name. {F13744} +** The returned string is valid until +** the [sqlite3_stmt | prepared statement] is destroyed using +** [sqlite3_finalize()] or until the same information is requested +** again in a different encoding. +** +** {F13745} The names returned are the original un-aliased names of the +** database, table, and column. +** +** {F13746} The first argument to the following calls is a +** [sqlite3_stmt | compiled SQL statement]. +** {F13747} These functions return information about the Nth column returned by +** the statement, where N is the second function argument. +** +** {F13748} If the Nth column returned by the statement is an expression +** or subquery and is not a column value, then all of these functions +** return NULL. {F13749} Otherwise, they return the +** name of the attached database, table and column that query result +** column was extracted from. +** +** {F13750} As with all other SQLite APIs, those postfixed with "16" return +** UTF-16 encoded strings, the other functions return UTF-8. {END} +** +** These APIs are only available if the library was compiled with the +** SQLITE_ENABLE_COLUMN_METADATA preprocessor symbol defined. +** +** {U13751} +** If two or more threads call one or more of these routines against the same +** prepared statement and column at the same time then the results are +** undefined. +*/ +const char *sqlite3_column_database_name(sqlite3_stmt*,int); +const void *sqlite3_column_database_name16(sqlite3_stmt*,int); +const char *sqlite3_column_table_name(sqlite3_stmt*,int); +const void *sqlite3_column_table_name16(sqlite3_stmt*,int); +const char *sqlite3_column_origin_name(sqlite3_stmt*,int); +const void *sqlite3_column_origin_name16(sqlite3_stmt*,int); + +/* +** CAPI3REF: Declared Datatype Of A Query Result {F13760} +** +** The first parameter is a [sqlite3_stmt | compiled SQL statement]. +** {F13761} If this statement is a SELECT statement and the Nth column of the +** returned result set of that SELECT is a table column (not an +** expression or subquery) then the declared type of the table +** column is returned. {F13762} If the Nth column of the result set is an +** expression or subquery, then a NULL pointer is returned. +** {F13763} The returned string is always UTF-8 encoded. {END} +** For example, in the database schema: +** +** CREATE TABLE t1(c1 VARIANT); +** +** And the following statement compiled: +** +** SELECT c1 + 1, c1 FROM t1; +** +** Then this routine would return the string "VARIANT" for the second +** result column (i==1), and a NULL pointer for the first result column +** (i==0). +** +** SQLite uses dynamic run-time typing. So just because a column +** is declared to contain a particular type does not mean that the +** data stored in that column is of the declared type. SQLite is +** strongly typed, but the typing is dynamic not static. Type +** is associated with individual values, not with the containers +** used to hold those values. +*/ +const char *sqlite3_column_decltype(sqlite3_stmt *, int i); +const void *sqlite3_column_decltype16(sqlite3_stmt*,int); + +/* +** CAPI3REF: Evaluate An SQL Statement {F13200} +** +** After an [sqlite3_stmt | SQL statement] has been prepared with a call +** to either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()] or to one of +** the legacy interfaces [sqlite3_prepare()] or [sqlite3_prepare16()], +** then this function must be called one or more times to evaluate the +** statement. +** +** The details of the behavior of this sqlite3_step() interface depend +** on whether the statement was prepared using the newer "v2" interface +** [sqlite3_prepare_v2()] and [sqlite3_prepare16_v2()] or the older legacy +** interface [sqlite3_prepare()] and [sqlite3_prepare16()]. The use of the +** new "v2" interface is recommended for new applications but the legacy +** interface will continue to be supported. +** +** In the lagacy interface, the return value will be either [SQLITE_BUSY], +** [SQLITE_DONE], [SQLITE_ROW], [SQLITE_ERROR], or [SQLITE_MISUSE]. +** With the "v2" interface, any of the other [SQLITE_OK | result code] +** or [SQLITE_IOERR_READ | extended result code] might be returned as +** well. +** +** [SQLITE_BUSY] means that the database engine was unable to acquire the +** database locks it needs to do its job. If the statement is a COMMIT +** or occurs outside of an explicit transaction, then you can retry the +** statement. If the statement is not a COMMIT and occurs within a +** explicit transaction then you should rollback the transaction before +** continuing. +** +** [SQLITE_DONE] means that the statement has finished executing +** successfully. sqlite3_step() should not be called again on this virtual +** machine without first calling [sqlite3_reset()] to reset the virtual +** machine back to its initial state. +** +** If the SQL statement being executed returns any data, then +** [SQLITE_ROW] is returned each time a new row of data is ready +** for processing by the caller. The values may be accessed using +** the [sqlite3_column_int | column access functions]. +** sqlite3_step() is called again to retrieve the next row of data. +** +** [SQLITE_ERROR] means that a run-time error (such as a constraint +** violation) has occurred. sqlite3_step() should not be called again on +** the VM. More information may be found by calling [sqlite3_errmsg()]. +** With the legacy interface, a more specific error code (example: +** [SQLITE_INTERRUPT], [SQLITE_SCHEMA], [SQLITE_CORRUPT], and so forth) +** can be obtained by calling [sqlite3_reset()] on the +** [sqlite3_stmt | prepared statement]. In the "v2" interface, +** the more specific error code is returned directly by sqlite3_step(). +** +** [SQLITE_MISUSE] means that the this routine was called inappropriately. +** Perhaps it was called on a [sqlite3_stmt | prepared statement] that has +** already been [sqlite3_finalize | finalized] or on one that had +** previously returned [SQLITE_ERROR] or [SQLITE_DONE]. Or it could +** be the case that the same database connection is being used by two or +** more threads at the same moment in time. +** +** Goofy Interface Alert: +** In the legacy interface, +** the sqlite3_step() API always returns a generic error code, +** [SQLITE_ERROR], following any error other than [SQLITE_BUSY] +** and [SQLITE_MISUSE]. You must call [sqlite3_reset()] or +** [sqlite3_finalize()] in order to find one of the specific +** [SQLITE_ERROR | result codes] that better describes the error. +** We admit that this is a goofy design. The problem has been fixed +** with the "v2" interface. If you prepare all of your SQL statements +** using either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()] instead +** of the legacy [sqlite3_prepare()] and [sqlite3_prepare16()], then the +** more specific [SQLITE_ERROR | result codes] are returned directly +** by sqlite3_step(). The use of the "v2" interface is recommended. +*/ +int sqlite3_step(sqlite3_stmt*); + +/* +** CAPI3REF: Number of columns in a result set {F13770} +** +** Return the number of values in the current row of the result set. +** +** {F13771} After a call to [sqlite3_step()] that returns [SQLITE_ROW], +** this routine +** will return the same value as the [sqlite3_column_count()] function. +** {F13772} +** After [sqlite3_step()] has returned an [SQLITE_DONE], [SQLITE_BUSY], or +** a [SQLITE_ERROR | error code], or before [sqlite3_step()] has been +** called on the [sqlite3_stmt | prepared statement] for the first time, +** this routine returns zero. +*/ +int sqlite3_data_count(sqlite3_stmt *pStmt); + +/* +** CAPI3REF: Fundamental Datatypes {F10265} +** +** {F10266}Every value in SQLite has one of five fundamental datatypes: +** +**
    +**
  • 64-bit signed integer +**
  • 64-bit IEEE floating point number +**
  • string +**
  • BLOB +**
  • NULL +**
{END} +** +** These constants are codes for each of those types. +** +** Note that the SQLITE_TEXT constant was also used in SQLite version 2 +** for a completely different meaning. Software that links against both +** SQLite version 2 and SQLite version 3 should use SQLITE3_TEXT not +** SQLITE_TEXT. +*/ +#define SQLITE_INTEGER 1 +#define SQLITE_FLOAT 2 +#define SQLITE_BLOB 4 +#define SQLITE_NULL 5 +#ifdef SQLITE_TEXT +# undef SQLITE_TEXT +#else +# define SQLITE_TEXT 3 +#endif +#define SQLITE3_TEXT 3 + +/* +** CAPI3REF: Results Values From A Query {F13800} +** +** These routines return information about +** a single column of the current result row of a query. In every +** case the first argument is a pointer to the +** [sqlite3_stmt | SQL statement] that is being +** evaluated (the [sqlite3_stmt*] that was returned from +** [sqlite3_prepare_v2()] or one of its variants) and +** the second argument is the index of the column for which information +** should be returned. The left-most column of the result set +** has an index of 0. +** +** If the SQL statement is not currently point to a valid row, or if the +** the column index is out of range, the result is undefined. +** These routines may only be called when the most recent call to +** [sqlite3_step()] has returned [SQLITE_ROW] and neither +** [sqlite3_reset()] nor [sqlite3_finalize()] has been call subsequently. +** If any of these routines are called after [sqlite3_reset()] or +** [sqlite3_finalize()] or after [sqlite3_step()] has returned +** something other than [SQLITE_ROW], the results are undefined. +** If [sqlite3_step()] or [sqlite3_reset()] or [sqlite3_finalize()] +** are called from a different thread while any of these routines +** are pending, then the results are undefined. +** +** The sqlite3_column_type() routine returns +** [SQLITE_INTEGER | datatype code] for the initial data type +** of the result column. The returned value is one of [SQLITE_INTEGER], +** [SQLITE_FLOAT], [SQLITE_TEXT], [SQLITE_BLOB], or [SQLITE_NULL]. The value +** returned by sqlite3_column_type() is only meaningful if no type +** conversions have occurred as described below. After a type conversion, +** the value returned by sqlite3_column_type() is undefined. Future +** versions of SQLite may change the behavior of sqlite3_column_type() +** following a type conversion. +** +** If the result is a BLOB or UTF-8 string then the sqlite3_column_bytes() +** routine returns the number of bytes in that BLOB or string. +** If the result is a UTF-16 string, then sqlite3_column_bytes() converts +** the string to UTF-8 and then returns the number of bytes. +** If the result is a numeric value then sqlite3_column_bytes() uses +** [sqlite3_snprintf()] to convert that value to a UTF-8 string and returns +** the number of bytes in that string. +** The value returned does not include the zero terminator at the end +** of the string. For clarity: the value returned is the number of +** bytes in the string, not the number of characters. +** +** Strings returned by sqlite3_column_text() and sqlite3_column_text16(), +** even zero-length strings, are always zero terminated. The return +** value from sqlite3_column_blob() for a zero-length blob is an arbitrary +** pointer, possibly even a NULL pointer. +** +** The sqlite3_column_bytes16() routine is similar to sqlite3_column_bytes() +** but leaves the result in UTF-16 instead of UTF-8. +** The zero terminator is not included in this count. +** +** These routines attempt to convert the value where appropriate. For +** example, if the internal representation is FLOAT and a text result +** is requested, [sqlite3_snprintf()] is used internally to do the conversion +** automatically. The following table details the conversions that +** are applied: +** +**
+** +**
Internal
Type
Requested
Type
Conversion +** +**
NULL INTEGER Result is 0 +**
NULL FLOAT Result is 0.0 +**
NULL TEXT Result is NULL pointer +**
NULL BLOB Result is NULL pointer +**
INTEGER FLOAT Convert from integer to float +**
INTEGER TEXT ASCII rendering of the integer +**
INTEGER BLOB Same as for INTEGER->TEXT +**
FLOAT INTEGER Convert from float to integer +**
FLOAT TEXT ASCII rendering of the float +**
FLOAT BLOB Same as FLOAT->TEXT +**
TEXT INTEGER Use atoi() +**
TEXT FLOAT Use atof() +**
TEXT BLOB No change +**
BLOB INTEGER Convert to TEXT then use atoi() +**
BLOB FLOAT Convert to TEXT then use atof() +**
BLOB TEXT Add a zero terminator if needed +**
+**
+** +** The table above makes reference to standard C library functions atoi() +** and atof(). SQLite does not really use these functions. It has its +** on equavalent internal routines. The atoi() and atof() names are +** used in the table for brevity and because they are familiar to most +** C programmers. +** +** Note that when type conversions occur, pointers returned by prior +** calls to sqlite3_column_blob(), sqlite3_column_text(), and/or +** sqlite3_column_text16() may be invalidated. +** Type conversions and pointer invalidations might occur +** in the following cases: +** +**
    +**
  • The initial content is a BLOB and sqlite3_column_text() +** or sqlite3_column_text16() is called. A zero-terminator might +** need to be added to the string.

  • +** +**
  • The initial content is UTF-8 text and sqlite3_column_bytes16() or +** sqlite3_column_text16() is called. The content must be converted +** to UTF-16.

  • +** +**
  • The initial content is UTF-16 text and sqlite3_column_bytes() or +** sqlite3_column_text() is called. The content must be converted +** to UTF-8.

  • +**
+** +** Conversions between UTF-16be and UTF-16le are always done in place and do +** not invalidate a prior pointer, though of course the content of the buffer +** that the prior pointer points to will have been modified. Other kinds +** of conversion are done in place when it is possible, but sometime it is +** not possible and in those cases prior pointers are invalidated. +** +** The safest and easiest to remember policy is to invoke these routines +** in one of the following ways: +** +**
    +**
  • sqlite3_column_text() followed by sqlite3_column_bytes()
  • +**
  • sqlite3_column_blob() followed by sqlite3_column_bytes()
  • +**
  • sqlite3_column_text16() followed by sqlite3_column_bytes16()
  • +**
+** +** In other words, you should call sqlite3_column_text(), sqlite3_column_blob(), +** or sqlite3_column_text16() first to force the result into the desired +** format, then invoke sqlite3_column_bytes() or sqlite3_column_bytes16() to +** find the size of the result. Do not mix call to sqlite3_column_text() or +** sqlite3_column_blob() with calls to sqlite3_column_bytes16(). And do not +** mix calls to sqlite3_column_text16() with calls to sqlite3_column_bytes(). +** +** The pointers returned are valid until a type conversion occurs as +** described above, or until [sqlite3_step()] or [sqlite3_reset()] or +** [sqlite3_finalize()] is called. The memory space used to hold strings +** and blobs is freed automatically. Do not pass the pointers returned +** [sqlite3_column_blob()], [sqlite3_column_text()], etc. into +** [sqlite3_free()]. +** +** If a memory allocation error occurs during the evaluation of any +** of these routines, a default value is returned. The default value +** is either the integer 0, the floating point number 0.0, or a NULL +** pointer. Subsequent calls to [sqlite3_errcode()] will return +** [SQLITE_NOMEM]. +*/ +const void *sqlite3_column_blob(sqlite3_stmt*, int iCol); +int sqlite3_column_bytes(sqlite3_stmt*, int iCol); +int sqlite3_column_bytes16(sqlite3_stmt*, int iCol); +double sqlite3_column_double(sqlite3_stmt*, int iCol); +int sqlite3_column_int(sqlite3_stmt*, int iCol); +sqlite3_int64 sqlite3_column_int64(sqlite3_stmt*, int iCol); +const unsigned char *sqlite3_column_text(sqlite3_stmt*, int iCol); +const void *sqlite3_column_text16(sqlite3_stmt*, int iCol); +int sqlite3_column_type(sqlite3_stmt*, int iCol); +sqlite3_value *sqlite3_column_value(sqlite3_stmt*, int iCol); + +/* +** CAPI3REF: Destroy A Prepared Statement Object {F13300} +** +** The sqlite3_finalize() function is called to delete a +** [sqlite3_stmt | compiled SQL statement]. If the statement was +** executed successfully, or not executed at all, then SQLITE_OK is returned. +** If execution of the statement failed then an +** [SQLITE_ERROR | error code] or [SQLITE_IOERR_READ | extended error code] +** is returned. +** +** This routine can be called at any point during the execution of the +** [sqlite3_stmt | virtual machine]. If the virtual machine has not +** completed execution when this routine is called, that is like +** encountering an error or an interrupt. (See [sqlite3_interrupt()].) +** Incomplete updates may be rolled back and transactions cancelled, +** depending on the circumstances, and the +** [SQLITE_ERROR | result code] returned will be [SQLITE_ABORT]. +*/ +int sqlite3_finalize(sqlite3_stmt *pStmt); + +/* +** CAPI3REF: Reset A Prepared Statement Object {F13330} +** +** The sqlite3_reset() function is called to reset a +** [sqlite3_stmt | compiled SQL statement] object. +** back to its initial state, ready to be re-executed. +** Any SQL statement variables that had values bound to them using +** the [sqlite3_bind_blob | sqlite3_bind_*() API] retain their values. +** Use [sqlite3_clear_bindings()] to reset the bindings. +*/ +int sqlite3_reset(sqlite3_stmt *pStmt); + +/* +** CAPI3REF: Create Or Redefine SQL Functions {F16100} +** +** The following two functions are used to add SQL functions or aggregates +** or to redefine the behavior of existing SQL functions or aggregates. The +** difference only between the two is that the second parameter, the +** name of the (scalar) function or aggregate, is encoded in UTF-8 for +** sqlite3_create_function() and UTF-16 for sqlite3_create_function16(). +** +** The first argument is the [sqlite3 | database handle] that holds the +** SQL function or aggregate is to be added or redefined. If a single +** program uses more than one database handle internally, then SQL +** functions or aggregates must be added individually to each database +** handle with which they will be used. +** +** The second parameter is the name of the SQL function to be created +** or redefined. +** The length of the name is limited to 255 bytes, exclusive of the +** zero-terminator. Note that the name length limit is in bytes, not +** characters. Any attempt to create a function with a longer name +** will result in an SQLITE_ERROR error. +** +** The third parameter is the number of arguments that the SQL function or +** aggregate takes. If this parameter is negative, then the SQL function or +** aggregate may take any number of arguments. +** +** The fourth parameter, eTextRep, specifies what +** [SQLITE_UTF8 | text encoding] this SQL function prefers for +** its parameters. Any SQL function implementation should be able to work +** work with UTF-8, UTF-16le, or UTF-16be. But some implementations may be +** more efficient with one encoding than another. It is allowed to +** invoke sqlite3_create_function() or sqlite3_create_function16() multiple +** times with the same function but with different values of eTextRep. +** When multiple implementations of the same function are available, SQLite +** will pick the one that involves the least amount of data conversion. +** If there is only a single implementation which does not care what +** text encoding is used, then the fourth argument should be +** [SQLITE_ANY]. +** +** The fifth parameter is an arbitrary pointer. The implementation +** of the function can gain access to this pointer using +** [sqlite3_user_data()]. +** +** The seventh, eighth and ninth parameters, xFunc, xStep and xFinal, are +** pointers to C-language functions that implement the SQL +** function or aggregate. A scalar SQL function requires an implementation of +** the xFunc callback only, NULL pointers should be passed as the xStep +** and xFinal parameters. An aggregate SQL function requires an implementation +** of xStep and xFinal and NULL should be passed for xFunc. To delete an +** existing SQL function or aggregate, pass NULL for all three function +** callback. +** +** It is permitted to register multiple implementations of the same +** functions with the same name but with either differing numbers of +** arguments or differing perferred text encodings. SQLite will use +** the implementation most closely matches the way in which the +** SQL function is used. +*/ +int sqlite3_create_function( + sqlite3 *, + const char *zFunctionName, + int nArg, + int eTextRep, + void*, + void (*xFunc)(sqlite3_context*,int,sqlite3_value**), + void (*xStep)(sqlite3_context*,int,sqlite3_value**), + void (*xFinal)(sqlite3_context*) +); +int sqlite3_create_function16( + sqlite3*, + const void *zFunctionName, + int nArg, + int eTextRep, + void*, + void (*xFunc)(sqlite3_context*,int,sqlite3_value**), + void (*xStep)(sqlite3_context*,int,sqlite3_value**), + void (*xFinal)(sqlite3_context*) +); + +/* +** CAPI3REF: Text Encodings {F10267} +** +** These constant define integer codes that represent the various +** text encodings supported by SQLite. +*/ +#define SQLITE_UTF8 1 +#define SQLITE_UTF16LE 2 +#define SQLITE_UTF16BE 3 +#define SQLITE_UTF16 4 /* Use native byte order */ +#define SQLITE_ANY 5 /* sqlite3_create_function only */ +#define SQLITE_UTF16_ALIGNED 8 /* sqlite3_create_collation only */ + +/* +** CAPI3REF: Obsolete Functions +** +** These functions are all now obsolete. In order to maintain +** backwards compatibility with older code, we continue to support +** these functions. However, new development projects should avoid +** the use of these functions. To help encourage people to avoid +** using these functions, we are not going to tell you want they do. +*/ +int sqlite3_aggregate_count(sqlite3_context*); +int sqlite3_expired(sqlite3_stmt*); +int sqlite3_transfer_bindings(sqlite3_stmt*, sqlite3_stmt*); +int sqlite3_global_recover(void); +void sqlite3_thread_cleanup(void); +int sqlite3_memory_alarm(void(*)(void*,sqlite3_int64,int),void*,sqlite3_int64); + +/* +** CAPI3REF: Obtaining SQL Function Parameter Values {F15100} +** +** The C-language implementation of SQL functions and aggregates uses +** this set of interface routines to access the parameter values on +** the function or aggregate. +** +** The xFunc (for scalar functions) or xStep (for aggregates) parameters +** to [sqlite3_create_function()] and [sqlite3_create_function16()] +** define callbacks that implement the SQL functions and aggregates. +** The 4th parameter to these callbacks is an array of pointers to +** [sqlite3_value] objects. There is one [sqlite3_value] object for +** each parameter to the SQL function. These routines are used to +** extract values from the [sqlite3_value] objects. +** +** These routines work just like the corresponding +** [sqlite3_column_blob | sqlite3_column_* routines] except that +** these routines take a single [sqlite3_value*] pointer instead +** of an [sqlite3_stmt*] pointer and an integer column number. +** +** The sqlite3_value_text16() interface extracts a UTF16 string +** in the native byte-order of the host machine. The +** sqlite3_value_text16be() and sqlite3_value_text16le() interfaces +** extract UTF16 strings as big-endian and little-endian respectively. +** +** The sqlite3_value_numeric_type() interface attempts to apply +** numeric affinity to the value. This means that an attempt is +** made to convert the value to an integer or floating point. If +** such a conversion is possible without loss of information (in other +** words if the value is a string that looks like a number) +** then the conversion is done. Otherwise no conversion occurs. The +** [SQLITE_INTEGER | datatype] after conversion is returned. +** +** Please pay particular attention to the fact that the pointer that +** is returned from [sqlite3_value_blob()], [sqlite3_value_text()], or +** [sqlite3_value_text16()] can be invalidated by a subsequent call to +** [sqlite3_value_bytes()], [sqlite3_value_bytes16()], [sqlite3_value_text()], +** or [sqlite3_value_text16()]. +** +** These routines must be called from the same thread as +** the SQL function that supplied the sqlite3_value* parameters. +** Or, if the sqlite3_value* argument comes from the [sqlite3_column_value()] +** interface, then these routines should be called from the same thread +** that ran [sqlite3_column_value()]. +** +*/ +const void *sqlite3_value_blob(sqlite3_value*); +int sqlite3_value_bytes(sqlite3_value*); +int sqlite3_value_bytes16(sqlite3_value*); +double sqlite3_value_double(sqlite3_value*); +int sqlite3_value_int(sqlite3_value*); +sqlite3_int64 sqlite3_value_int64(sqlite3_value*); +const unsigned char *sqlite3_value_text(sqlite3_value*); +const void *sqlite3_value_text16(sqlite3_value*); +const void *sqlite3_value_text16le(sqlite3_value*); +const void *sqlite3_value_text16be(sqlite3_value*); +int sqlite3_value_type(sqlite3_value*); +int sqlite3_value_numeric_type(sqlite3_value*); + +/* +** CAPI3REF: Obtain Aggregate Function Context {F16210} +** +** The implementation of aggregate SQL functions use this routine to allocate +** a structure for storing their state. +** {F16211} The first time the sqlite3_aggregate_context() routine is +** is called for a particular aggregate, SQLite allocates nBytes of memory +** zeros that memory, and returns a pointer to it. +** {F16212} On second and subsequent calls to sqlite3_aggregate_context() +** for the same aggregate function index, the same buffer is returned. {END} +** The implementation +** of the aggregate can use the returned buffer to accumulate data. +** +** {F16213} SQLite automatically frees the allocated buffer when the aggregate +** query concludes. {END} +** +** The first parameter should be a copy of the +** [sqlite3_context | SQL function context] that is the first +** parameter to the callback routine that implements the aggregate +** function. +** +** This routine must be called from the same thread in which +** the aggregate SQL function is running. +*/ +void *sqlite3_aggregate_context(sqlite3_context*, int nBytes); + +/* +** CAPI3REF: User Data For Functions {F16240} +** +** {F16241} The sqlite3_user_data() interface returns a copy of +** the pointer that was the pUserData parameter (the 5th parameter) +** of the the [sqlite3_create_function()] +** and [sqlite3_create_function16()] routines that originally +** registered the application defined function. {END} +** +** {U16243} This routine must be called from the same thread in which +** the application-defined function is running. +*/ +void *sqlite3_user_data(sqlite3_context*); + +/* +** CAPI3REF: Function Auxiliary Data {F16270} +** +** The following two functions may be used by scalar SQL functions to +** associate meta-data with argument values. If the same value is passed to +** multiple invocations of the same SQL function during query execution, under +** some circumstances the associated meta-data may be preserved. This may +** be used, for example, to add a regular-expression matching scalar +** function. The compiled version of the regular expression is stored as +** meta-data associated with the SQL value passed as the regular expression +** pattern. The compiled regular expression can be reused on multiple +** invocations of the same function so that the original pattern string +** does not need to be recompiled on each invocation. +** +** {F16271} +** The sqlite3_get_auxdata() interface returns a pointer to the meta-data +** associated by the sqlite3_set_auxdata() function with the Nth argument +** value to the application-defined function. +** {F16272} If no meta-data has been ever been set for the Nth +** argument of the function, or if the cooresponding function parameter +** has changed since the meta-data was set, then sqlite3_get_auxdata() +** returns a NULL pointer. +** +** {F16275} The sqlite3_set_auxdata() interface saves the meta-data +** pointed to by its 3rd parameter as the meta-data for the N-th +** argument of the application-defined function. {END} Subsequent +** calls to sqlite3_get_auxdata() might return this data, if it has +** not been destroyed. +** {F16277} If it is not NULL, SQLite will invoke the destructor +** function given by the 4th parameter to sqlite3_set_auxdata() on +** the meta-data when the corresponding function parameter changes +** or when the SQL statement completes, whichever comes first. {END} +** +** In practice, meta-data is preserved between function calls for +** expressions that are constant at compile time. This includes literal +** values and SQL variables. +** +** These routines must be called from the same thread in which +** the SQL function is running. +*/ +void *sqlite3_get_auxdata(sqlite3_context*, int N); +void sqlite3_set_auxdata(sqlite3_context*, int N, void*, void (*)(void*)); + + +/* +** CAPI3REF: Constants Defining Special Destructor Behavior {F10280} +** +** These are special value for the destructor that is passed in as the +** final argument to routines like [sqlite3_result_blob()]. If the destructor +** argument is SQLITE_STATIC, it means that the content pointer is constant +** and will never change. It does not need to be destroyed. The +** SQLITE_TRANSIENT value means that the content will likely change in +** the near future and that SQLite should make its own private copy of +** the content before returning. +** +** The typedef is necessary to work around problems in certain +** C++ compilers. See ticket #2191. +*/ +typedef void (*sqlite3_destructor_type)(void*); +#define SQLITE_STATIC ((sqlite3_destructor_type)0) +#define SQLITE_TRANSIENT ((sqlite3_destructor_type)-1) + +/* +** CAPI3REF: Setting The Result Of An SQL Function {F16400} +** +** These routines are used by the xFunc or xFinal callbacks that +** implement SQL functions and aggregates. See +** [sqlite3_create_function()] and [sqlite3_create_function16()] +** for additional information. +** +** These functions work very much like the +** [sqlite3_bind_blob | sqlite3_bind_*] family of functions used +** to bind values to host parameters in prepared statements. +** Refer to the +** [sqlite3_bind_blob | sqlite3_bind_* documentation] for +** additional information. +** +** {F16402} The sqlite3_result_blob() interface sets the result from +** an application defined function to be the BLOB whose content is pointed +** to by the second parameter and which is N bytes long where N is the +** third parameter. +** {F16403} The sqlite3_result_zeroblob() inerfaces set the result of +** the application defined function to be a BLOB containing all zero +** bytes and N bytes in size, where N is the value of the 2nd parameter. +** +** {F16407} The sqlite3_result_double() interface sets the result from +** an application defined function to be a floating point value specified +** by its 2nd argument. +** +** {F16409} The sqlite3_result_error() and sqlite3_result_error16() functions +** cause the implemented SQL function to throw an exception. +** {F16411} SQLite uses the string pointed to by the +** 2nd parameter of sqlite3_result_error() or sqlite3_result_error16() +** as the text of an error message. {F16412} SQLite interprets the error +** message string from sqlite3_result_error() as UTF8. {F16413} SQLite +** interprets the string from sqlite3_result_error16() as UTF16 in native +** byte order. {F16414} If the third parameter to sqlite3_result_error() +** or sqlite3_result_error16() is negative then SQLite takes as the error +** message all text up through the first zero character. +** {F16415} If the third parameter to sqlite3_result_error() or +** sqlite3_result_error16() is non-negative then SQLite takes that many +** bytes (not characters) from the 2nd parameter as the error message. +** {F16417} The sqlite3_result_error() and sqlite3_result_error16() +** routines make a copy private copy of the error message text before +** they return. {END} Hence, the calling function can deallocate or +** modify the text after they return without harm. +** +** {F16421} The sqlite3_result_toobig() interface causes SQLite +** to throw an error indicating that a string or BLOB is to long +** to represent. {F16422} The sqlite3_result_nomem() interface +** causes SQLite to throw an exception indicating that the a +** memory allocation failed. +** +** {F16431} The sqlite3_result_int() interface sets the return value +** of the application-defined function to be the 32-bit signed integer +** value given in the 2nd argument. +** {F16432} The sqlite3_result_int64() interface sets the return value +** of the application-defined function to be the 64-bit signed integer +** value given in the 2nd argument. +** +** {F16437} The sqlite3_result_null() interface sets the return value +** of the application-defined function to be NULL. +** +** {F16441} The sqlite3_result_text(), sqlite3_result_text16(), +** sqlite3_result_text16le(), and sqlite3_result_text16be() interfaces +** set the return value of the application-defined function to be +** a text string which is represented as UTF-8, UTF-16 native byte order, +** UTF-16 little endian, or UTF-16 big endian, respectively. +** {F16442} SQLite takes the text result from the application from +** the 2nd parameter of the sqlite3_result_text* interfaces. +** {F16444} If the 3rd parameter to the sqlite3_result_text* interfaces +** is negative, then SQLite takes result text from the 2nd parameter +** through the first zero character. +** {F16447} If the 3rd parameter to the sqlite3_result_text* interfaces +** is non-negative, then as many bytes (not characters) of the text +** pointed to by the 2nd parameter are taken as the application-defined +** function result. +** {F16451} If the 4th parameter to the sqlite3_result_text* interfaces +** or sqlite3_result_blob is a non-NULL pointer, then SQLite calls that +** function as the destructor on the text or blob result when it has +** finished using that result. +** {F16453} If the 4th parameter to the sqlite3_result_text* interfaces +** or sqlite3_result_blob is the special constant SQLITE_STATIC, then +** SQLite assumes that the text or blob result is constant space and +** does not copy the space or call a destructor when it has +** finished using that result. +** {F16454} If the 4th parameter to the sqlite3_result_text* interfaces +** or sqlite3_result_blob is the special constant SQLITE_TRANSIENT +** then SQLite makes a copy of the result into space obtained from +** from [sqlite3_malloc()] before it returns. +** +** {F16461} The sqlite3_result_value() interface sets the result of +** the application-defined function to be a copy the [sqlite3_value] +** object specified by the 2nd parameter. {F16463} The +** sqlite3_result_value() interface makes a copy of the [sqlite3_value] +** so that [sqlite3_value] specified in the parameter may change or +** be deallocated after sqlite3_result_value() returns without harm. +** +** {U16491} These routines are called from within the different thread +** than the one containing the application-defined function that recieved +** the [sqlite3_context] pointer, the results are undefined. +*/ +void sqlite3_result_blob(sqlite3_context*, const void*, int, void(*)(void*)); +void sqlite3_result_double(sqlite3_context*, double); +void sqlite3_result_error(sqlite3_context*, const char*, int); +void sqlite3_result_error16(sqlite3_context*, const void*, int); +void sqlite3_result_error_toobig(sqlite3_context*); +void sqlite3_result_error_nomem(sqlite3_context*); +void sqlite3_result_int(sqlite3_context*, int); +void sqlite3_result_int64(sqlite3_context*, sqlite3_int64); +void sqlite3_result_null(sqlite3_context*); +void sqlite3_result_text(sqlite3_context*, const char*, int, void(*)(void*)); +void sqlite3_result_text16(sqlite3_context*, const void*, int, void(*)(void*)); +void sqlite3_result_text16le(sqlite3_context*, const void*, int,void(*)(void*)); +void sqlite3_result_text16be(sqlite3_context*, const void*, int,void(*)(void*)); +void sqlite3_result_value(sqlite3_context*, sqlite3_value*); +void sqlite3_result_zeroblob(sqlite3_context*, int n); + +/* +** CAPI3REF: Define New Collating Sequences {F16600} +** +** {F16601} +** These functions are used to add new collation sequences to the +** [sqlite3*] handle specified as the first argument. +** +** {F16602} +** The name of the new collation sequence is specified as a UTF-8 string +** for sqlite3_create_collation() and sqlite3_create_collation_v2() +** and a UTF-16 string for sqlite3_create_collation16(). {F16603} In all cases +** the name is passed as the second function argument. +** +** {F16604} +** The third argument may be one of the constants [SQLITE_UTF8], +** [SQLITE_UTF16LE] or [SQLITE_UTF16BE], indicating that the user-supplied +** routine expects to be passed pointers to strings encoded using UTF-8, +** UTF-16 little-endian or UTF-16 big-endian respectively. {F16605} The +** third argument might also be [SQLITE_UTF16_ALIGNED] to indicate that +** the routine expects pointers to 16-bit word aligned strings +** of UTF16 in the native byte order of the host computer. +** +** {F16607} +** A pointer to the user supplied routine must be passed as the fifth +** argument. {F16609} If it is NULL, this is the same as deleting the collation +** sequence (so that SQLite cannot call it anymore). +** {F16611} Each time the application +** supplied function is invoked, it is passed a copy of the void* passed as +** the fourth argument to sqlite3_create_collation() or +** sqlite3_create_collation16() as its first parameter. +** +** {F16612} +** The remaining arguments to the application-supplied routine are two strings, +** each represented by a [length, data] pair and encoded in the encoding +** that was passed as the third argument when the collation sequence was +** registered. {END} The application defined collation routine should +** return negative, zero or positive if +** the first string is less than, equal to, or greater than the second +** string. i.e. (STRING1 - STRING2). +** +** {F16615} +** The sqlite3_create_collation_v2() works like sqlite3_create_collation() +** excapt that it takes an extra argument which is a destructor for +** the collation. {F16617} The destructor is called when the collation is +** destroyed and is passed a copy of the fourth parameter void* pointer +** of the sqlite3_create_collation_v2(). +** {F16618} Collations are destroyed when +** they are overridden by later calls to the collation creation functions +** or when the [sqlite3*] database handle is closed using [sqlite3_close()]. +*/ +int sqlite3_create_collation( + sqlite3*, + const char *zName, + int eTextRep, + void*, + int(*xCompare)(void*,int,const void*,int,const void*) +); +int sqlite3_create_collation_v2( + sqlite3*, + const char *zName, + int eTextRep, + void*, + int(*xCompare)(void*,int,const void*,int,const void*), + void(*xDestroy)(void*) +); +int sqlite3_create_collation16( + sqlite3*, + const char *zName, + int eTextRep, + void*, + int(*xCompare)(void*,int,const void*,int,const void*) +); + +/* +** CAPI3REF: Collation Needed Callbacks {F16700} +** +** {F16701} +** To avoid having to register all collation sequences before a database +** can be used, a single callback function may be registered with the +** database handle to be called whenever an undefined collation sequence is +** required. +** +** {F16702} +** If the function is registered using the sqlite3_collation_needed() API, +** then it is passed the names of undefined collation sequences as strings +** encoded in UTF-8. {F16703} If sqlite3_collation_needed16() is used, the names +** are passed as UTF-16 in machine native byte order. {F16704} A call to either +** function replaces any existing callback. +** +** {F16705} When the callback is invoked, the first argument passed is a copy +** of the second argument to sqlite3_collation_needed() or +** sqlite3_collation_needed16(). {F16706} The second argument is the database +** handle. {F16707} The third argument is one of [SQLITE_UTF8], +** [SQLITE_UTF16BE], or [SQLITE_UTF16LE], indicating the most +** desirable form of the collation sequence function required. +** {F16708} The fourth parameter is the name of the +** required collation sequence. {END} +** +** The callback function should register the desired collation using +** [sqlite3_create_collation()], [sqlite3_create_collation16()], or +** [sqlite3_create_collation_v2()]. +*/ +int sqlite3_collation_needed( + sqlite3*, + void*, + void(*)(void*,sqlite3*,int eTextRep,const char*) +); +int sqlite3_collation_needed16( + sqlite3*, + void*, + void(*)(void*,sqlite3*,int eTextRep,const void*) +); + +/* +** Specify the key for an encrypted database. This routine should be +** called right after sqlite3_open(). +** +** The code to implement this API is not available in the public release +** of SQLite. +*/ +int sqlite3_key( + sqlite3 *db, /* Database to be rekeyed */ + const void *pKey, int nKey /* The key */ +); + +/* +** Change the key on an open database. If the current database is not +** encrypted, this routine will encrypt it. If pNew==0 or nNew==0, the +** database is decrypted. +** +** The code to implement this API is not available in the public release +** of SQLite. +*/ +int sqlite3_rekey( + sqlite3 *db, /* Database to be rekeyed */ + const void *pKey, int nKey /* The new key */ +); + +/* +** CAPI3REF: Suspend Execution For A Short Time {F10530} +** +** {F10531} The sqlite3_sleep() function +** causes the current thread to suspend execution +** for at least a number of milliseconds specified in its parameter. +** +** {F10532} If the operating system does not support sleep requests with +** millisecond time resolution, then the time will be rounded up to +** the nearest second. {F10533} The number of milliseconds of sleep actually +** requested from the operating system is returned. +** +** {F10534} SQLite implements this interface by calling the xSleep() +** method of the default [sqlite3_vfs] object. {END} +*/ +int sqlite3_sleep(int); + +/* +** CAPI3REF: Name Of The Folder Holding Temporary Files {F10310} +** +** If this global variable is made to point to a string which is +** the name of a folder (a.ka. directory), then all temporary files +** created by SQLite will be placed in that directory. If this variable +** is NULL pointer, then SQLite does a search for an appropriate temporary +** file directory. +** +** It is not safe to modify this variable once a database connection +** has been opened. It is intended that this variable be set once +** as part of process initialization and before any SQLite interface +** routines have been call and remain unchanged thereafter. +*/ +SQLITE_EXTERN char *sqlite3_temp_directory; + +/* +** CAPI3REF: Test To See If The Database Is In Auto-Commit Mode {F12930} +** +** {F12931} The sqlite3_get_autocommit() interfaces returns non-zero or +** zero if the given database connection is or is not in autocommit mode, +** respectively. {F12932} Autocommit mode is on +** by default. {F12933} Autocommit mode is disabled by a BEGIN statement. +** {F12934} Autocommit mode is reenabled by a COMMIT or ROLLBACK. {END} +** +** If certain kinds of errors occur on a statement within a multi-statement +** transactions (errors including [SQLITE_FULL], [SQLITE_IOERR], +** [SQLITE_NOMEM], [SQLITE_BUSY], and [SQLITE_INTERRUPT]) then the +** transaction might be rolled back automatically. {F12935} The only way to +** find out if SQLite automatically rolled back the transaction after +** an error is to use this function. {END} +** +** {U12936} If another thread changes the autocommit status of the database +** connection while this routine is running, then the return value +** is undefined. {END} +*/ +int sqlite3_get_autocommit(sqlite3*); + +/* +** CAPI3REF: Find The Database Handle Of A Prepared Statement {F13120} +** +** {F13121} The sqlite3_db_handle interface +** returns the [sqlite3*] database handle to which a +** [sqlite3_stmt | prepared statement] belongs. +** {F13122} the database handle returned by sqlite3_db_handle +** is the same database handle that was +** the first argument to the [sqlite3_prepare_v2()] or its variants +** that was used to create the statement in the first place. +*/ +sqlite3 *sqlite3_db_handle(sqlite3_stmt*); + + +/* +** CAPI3REF: Commit And Rollback Notification Callbacks {F12950} +** +** {F12951} The sqlite3_commit_hook() interface registers a callback +** function to be invoked whenever a transaction is committed. +** {F12952} Any callback set by a previous call to sqlite3_commit_hook() +** for the same database connection is overridden. +** {F12953} The sqlite3_rollback_hook() interface registers a callback +** function to be invoked whenever a transaction is committed. +** {F12954} Any callback set by a previous call to sqlite3_commit_hook() +** for the same database connection is overridden. +** {F12956} The pArg argument is passed through +** to the callback. {F12957} If the callback on a commit hook function +** returns non-zero, then the commit is converted into a rollback. +** +** {F12958} If another function was previously registered, its +** pArg value is returned. Otherwise NULL is returned. +** +** {F12959} Registering a NULL function disables the callback. +** +** {F12961} For the purposes of this API, a transaction is said to have been +** rolled back if an explicit "ROLLBACK" statement is executed, or +** an error or constraint causes an implicit rollback to occur. +** {F12962} The rollback callback is not invoked if a transaction is +** automatically rolled back because the database connection is closed. +** {F12964} The rollback callback is not invoked if a transaction is +** rolled back because a commit callback returned non-zero. +** Check on this {END} +** +** These are experimental interfaces and are subject to change. +*/ +void *sqlite3_commit_hook(sqlite3*, int(*)(void*), void*); +void *sqlite3_rollback_hook(sqlite3*, void(*)(void *), void*); + +/* +** CAPI3REF: Data Change Notification Callbacks {F12970} +** +** {F12971} The sqlite3_update_hook() interface +** registers a callback function with the database connection identified by the +** first argument to be invoked whenever a row is updated, inserted or deleted. +** {F12972} Any callback set by a previous call to this function for the same +** database connection is overridden. +** +** {F12974} The second argument is a pointer to the function to invoke when a +** row is updated, inserted or deleted. +** {F12976} The first argument to the callback is +** a copy of the third argument to sqlite3_update_hook(). +** {F12977} The second callback +** argument is one of [SQLITE_INSERT], [SQLITE_DELETE] or [SQLITE_UPDATE], +** depending on the operation that caused the callback to be invoked. +** {F12978} The third and +** fourth arguments to the callback contain pointers to the database and +** table name containing the affected row. +** {F12979} The final callback parameter is +** the rowid of the row. +** {F12981} In the case of an update, this is the rowid after +** the update takes place. +** +** {F12983} The update hook is not invoked when internal system tables are +** modified (i.e. sqlite_master and sqlite_sequence). +** +** {F12984} If another function was previously registered, its pArg value +** is returned. {F12985} Otherwise NULL is returned. +*/ +void *sqlite3_update_hook( + sqlite3*, + void(*)(void *,int ,char const *,char const *,sqlite3_int64), + void* +); + +/* +** CAPI3REF: Enable Or Disable Shared Pager Cache {F10330} +** +** {F10331} +** This routine enables or disables the sharing of the database cache +** and schema data structures between connections to the same database. +** {F10332} +** Sharing is enabled if the argument is true and disabled if the argument +** is false. +** +** {F10333} Cache sharing is enabled and disabled +** for an entire process. {END} This is a change as of SQLite version 3.5.0. +** In prior versions of SQLite, sharing was +** enabled or disabled for each thread separately. +** +** {F10334} +** The cache sharing mode set by this interface effects all subsequent +** calls to [sqlite3_open()], [sqlite3_open_v2()], and [sqlite3_open16()]. +** {F10335} Existing database connections continue use the sharing mode +** that was in effect at the time they were opened. {END} +** +** Virtual tables cannot be used with a shared cache. {F10336} When shared +** cache is enabled, the [sqlite3_create_module()] API used to register +** virtual tables will always return an error. {END} +** +** {F10337} This routine returns [SQLITE_OK] if shared cache was +** enabled or disabled successfully. {F10338} An [SQLITE_ERROR | error code] +** is returned otherwise. {END} +** +** {F10339} Shared cache is disabled by default. {END} But this might change in +** future releases of SQLite. Applications that care about shared +** cache setting should set it explicitly. +*/ +int sqlite3_enable_shared_cache(int); + +/* +** CAPI3REF: Attempt To Free Heap Memory {F17340} +** +** {F17341} The sqlite3_release_memory() interface attempts to +** free N bytes of heap memory by deallocating non-essential memory +** allocations held by the database labrary. {END} Memory used +** to cache database pages to improve performance is an example of +** non-essential memory. {F16342} sqlite3_release_memory() returns +** the number of bytes actually freed, which might be more or less +** than the amount requested. +*/ +int sqlite3_release_memory(int); + +/* +** CAPI3REF: Impose A Limit On Heap Size {F17350} +** +** {F16351} The sqlite3_soft_heap_limit() interface +** places a "soft" limit on the amount of heap memory that may be allocated +** by SQLite. {F16352} If an internal allocation is requested +** that would exceed the soft heap limit, [sqlite3_release_memory()] is +** invoked one or more times to free up some space before the allocation +** is made. {END} +** +** {F16353} The limit is called "soft", because if +** [sqlite3_release_memory()] cannot +** free sufficient memory to prevent the limit from being exceeded, +** the memory is allocated anyway and the current operation proceeds. +** +** {F16354} +** A negative or zero value for N means that there is no soft heap limit and +** [sqlite3_release_memory()] will only be called when memory is exhausted. +** {F16355} The default value for the soft heap limit is zero. +** +** SQLite makes a best effort to honor the soft heap limit. +** {F16356} But if the soft heap limit cannot honored, execution will +** continue without error or notification. {END} This is why the limit is +** called a "soft" limit. It is advisory only. +** +** Prior to SQLite version 3.5.0, this routine only constrained the memory +** allocated by a single thread - the same thread in which this routine +** runs. Beginning with SQLite version 3.5.0, the soft heap limit is +** applied to all threads. {F16357} The value specified for the soft heap limit +** is an upper bound on the total memory allocation for all threads. {END} In +** version 3.5.0 there is no mechanism for limiting the heap usage for +** individual threads. +*/ +void sqlite3_soft_heap_limit(int); + +/* +** CAPI3REF: Extract Metadata About A Column Of A Table {F12850} +** +** This routine +** returns meta-data about a specific column of a specific database +** table accessible using the connection handle passed as the first function +** argument. +** +** The column is identified by the second, third and fourth parameters to +** this function. The second parameter is either the name of the database +** (i.e. "main", "temp" or an attached database) containing the specified +** table or NULL. If it is NULL, then all attached databases are searched +** for the table using the same algorithm as the database engine uses to +** resolve unqualified table references. +** +** The third and fourth parameters to this function are the table and column +** name of the desired column, respectively. Neither of these parameters +** may be NULL. +** +** Meta information is returned by writing to the memory locations passed as +** the 5th and subsequent parameters to this function. Any of these +** arguments may be NULL, in which case the corresponding element of meta +** information is ommitted. +** +**
+** Parameter     Output Type      Description
+** -----------------------------------
+**
+**   5th         const char*      Data type
+**   6th         const char*      Name of the default collation sequence 
+**   7th         int              True if the column has a NOT NULL constraint
+**   8th         int              True if the column is part of the PRIMARY KEY
+**   9th         int              True if the column is AUTOINCREMENT
+** 
+** +** +** The memory pointed to by the character pointers returned for the +** declaration type and collation sequence is valid only until the next +** call to any sqlite API function. +** +** If the specified table is actually a view, then an error is returned. +** +** If the specified column is "rowid", "oid" or "_rowid_" and an +** INTEGER PRIMARY KEY column has been explicitly declared, then the output +** parameters are set for the explicitly declared column. If there is no +** explicitly declared IPK column, then the output parameters are set as +** follows: +** +**
+**     data type: "INTEGER"
+**     collation sequence: "BINARY"
+**     not null: 0
+**     primary key: 1
+**     auto increment: 0
+** 
+** +** This function may load one or more schemas from database files. If an +** error occurs during this process, or if the requested table or column +** cannot be found, an SQLITE error code is returned and an error message +** left in the database handle (to be retrieved using sqlite3_errmsg()). +** +** This API is only available if the library was compiled with the +** SQLITE_ENABLE_COLUMN_METADATA preprocessor symbol defined. +*/ +int sqlite3_table_column_metadata( + sqlite3 *db, /* Connection handle */ + const char *zDbName, /* Database name or NULL */ + const char *zTableName, /* Table name */ + const char *zColumnName, /* Column name */ + char const **pzDataType, /* OUTPUT: Declared data type */ + char const **pzCollSeq, /* OUTPUT: Collation sequence name */ + int *pNotNull, /* OUTPUT: True if NOT NULL constraint exists */ + int *pPrimaryKey, /* OUTPUT: True if column part of PK */ + int *pAutoinc /* OUTPUT: True if column is auto-increment */ +); + +/* +** CAPI3REF: Load An Extension {F12600} +** +** {F12601} The sqlite3_load_extension() interface +** attempts to load an SQLite extension library contained in the file +** zFile. {F12602} The entry point is zProc. {F12603} zProc may be 0 +** in which case the name of the entry point defaults +** to "sqlite3_extension_init". +** +** {F12604} The sqlite3_load_extension() interface shall +** return [SQLITE_OK] on success and [SQLITE_ERROR] if something goes wrong. +** +** {F12605} +** If an error occurs and pzErrMsg is not 0, then the +** sqlite3_load_extension() interface shall attempt to fill *pzErrMsg with +** error message text stored in memory obtained from [sqlite3_malloc()]. +** {END} The calling function should free this memory +** by calling [sqlite3_free()]. +** +** {F12606} +** Extension loading must be enabled using [sqlite3_enable_load_extension()] +** prior to calling this API or an error will be returned. +*/ +int sqlite3_load_extension( + sqlite3 *db, /* Load the extension into this database connection */ + const char *zFile, /* Name of the shared library containing extension */ + const char *zProc, /* Entry point. Derived from zFile if 0 */ + char **pzErrMsg /* Put error message here if not 0 */ +); + +/* +** CAPI3REF: Enable Or Disable Extension Loading {F12620} +** +** So as not to open security holes in older applications that are +** unprepared to deal with extension loading, and as a means of disabling +** extension loading while evaluating user-entered SQL, the following +** API is provided to turn the [sqlite3_load_extension()] mechanism on and +** off. {F12622} It is off by default. {END} See ticket #1863. +** +** {F12621} Call the sqlite3_enable_load_extension() routine +** with onoff==1 to turn extension loading on +** and call it with onoff==0 to turn it back off again. {END} +*/ +int sqlite3_enable_load_extension(sqlite3 *db, int onoff); + +/* +** CAPI3REF: Make Arrangements To Automatically Load An Extension {F12640} +** +** {F12641} This function +** registers an extension entry point that is automatically invoked +** whenever a new database connection is opened using +** [sqlite3_open()], [sqlite3_open16()], or [sqlite3_open_v2()]. {END} +** +** This API can be invoked at program startup in order to register +** one or more statically linked extensions that will be available +** to all new database connections. +** +** {F12642} Duplicate extensions are detected so calling this routine multiple +** times with the same extension is harmless. +** +** {F12643} This routine stores a pointer to the extension in an array +** that is obtained from sqlite_malloc(). {END} If you run a memory leak +** checker on your program and it reports a leak because of this +** array, then invoke [sqlite3_reset_auto_extension()] prior +** to shutdown to free the memory. +** +** {F12644} Automatic extensions apply across all threads. {END} +** +** This interface is experimental and is subject to change or +** removal in future releases of SQLite. +*/ +int sqlite3_auto_extension(void *xEntryPoint); + + +/* +** CAPI3REF: Reset Automatic Extension Loading {F12660} +** +** {F12661} This function disables all previously registered +** automatic extensions. {END} This +** routine undoes the effect of all prior [sqlite3_automatic_extension()] +** calls. +** +** {F12662} This call disabled automatic extensions in all threads. {END} +** +** This interface is experimental and is subject to change or +** removal in future releases of SQLite. +*/ +void sqlite3_reset_auto_extension(void); + + +/* +****** EXPERIMENTAL - subject to change without notice ************** +** +** The interface to the virtual-table mechanism is currently considered +** to be experimental. The interface might change in incompatible ways. +** If this is a problem for you, do not use the interface at this time. +** +** When the virtual-table mechanism stablizes, we will declare the +** interface fixed, support it indefinitely, and remove this comment. +*/ + +/* +** Structures used by the virtual table interface +*/ +typedef struct sqlite3_vtab sqlite3_vtab; +typedef struct sqlite3_index_info sqlite3_index_info; +typedef struct sqlite3_vtab_cursor sqlite3_vtab_cursor; +typedef struct sqlite3_module sqlite3_module; + +/* +** A module is a class of virtual tables. Each module is defined +** by an instance of the following structure. This structure consists +** mostly of methods for the module. +*/ +struct sqlite3_module { + int iVersion; + int (*xCreate)(sqlite3*, void *pAux, + int argc, const char *const*argv, + sqlite3_vtab **ppVTab, char**); + int (*xConnect)(sqlite3*, void *pAux, + int argc, const char *const*argv, + sqlite3_vtab **ppVTab, char**); + int (*xBestIndex)(sqlite3_vtab *pVTab, sqlite3_index_info*); + int (*xDisconnect)(sqlite3_vtab *pVTab); + int (*xDestroy)(sqlite3_vtab *pVTab); + int (*xOpen)(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor); + int (*xClose)(sqlite3_vtab_cursor*); + int (*xFilter)(sqlite3_vtab_cursor*, int idxNum, const char *idxStr, + int argc, sqlite3_value **argv); + int (*xNext)(sqlite3_vtab_cursor*); + int (*xEof)(sqlite3_vtab_cursor*); + int (*xColumn)(sqlite3_vtab_cursor*, sqlite3_context*, int); + int (*xRowid)(sqlite3_vtab_cursor*, sqlite3_int64 *pRowid); + int (*xUpdate)(sqlite3_vtab *, int, sqlite3_value **, sqlite3_int64 *); + int (*xBegin)(sqlite3_vtab *pVTab); + int (*xSync)(sqlite3_vtab *pVTab); + int (*xCommit)(sqlite3_vtab *pVTab); + int (*xRollback)(sqlite3_vtab *pVTab); + int (*xFindFunction)(sqlite3_vtab *pVtab, int nArg, const char *zName, + void (**pxFunc)(sqlite3_context*,int,sqlite3_value**), + void **ppArg); + + int (*xRename)(sqlite3_vtab *pVtab, const char *zNew); +}; + +/* +** The sqlite3_index_info structure and its substructures is used to +** pass information into and receive the reply from the xBestIndex +** method of an sqlite3_module. The fields under **Inputs** are the +** inputs to xBestIndex and are read-only. xBestIndex inserts its +** results into the **Outputs** fields. +** +** The aConstraint[] array records WHERE clause constraints of the +** form: +** +** column OP expr +** +** Where OP is =, <, <=, >, or >=. +** The particular operator is stored +** in aConstraint[].op. The index of the column is stored in +** aConstraint[].iColumn. aConstraint[].usable is TRUE if the +** expr on the right-hand side can be evaluated (and thus the constraint +** is usable) and false if it cannot. +** +** The optimizer automatically inverts terms of the form "expr OP column" +** and makes other simplifications to the WHERE clause in an attempt to +** get as many WHERE clause terms into the form shown above as possible. +** The aConstraint[] array only reports WHERE clause terms in the correct +** form that refer to the particular virtual table being queried. +** +** Information about the ORDER BY clause is stored in aOrderBy[]. +** Each term of aOrderBy records a column of the ORDER BY clause. +** +** The xBestIndex method must fill aConstraintUsage[] with information +** about what parameters to pass to xFilter. If argvIndex>0 then +** the right-hand side of the corresponding aConstraint[] is evaluated +** and becomes the argvIndex-th entry in argv. If aConstraintUsage[].omit +** is true, then the constraint is assumed to be fully handled by the +** virtual table and is not checked again by SQLite. +** +** The idxNum and idxPtr values are recorded and passed into xFilter. +** sqlite3_free() is used to free idxPtr if needToFreeIdxPtr is true. +** +** The orderByConsumed means that output from xFilter will occur in +** the correct order to satisfy the ORDER BY clause so that no separate +** sorting step is required. +** +** The estimatedCost value is an estimate of the cost of doing the +** particular lookup. A full scan of a table with N entries should have +** a cost of N. A binary search of a table of N entries should have a +** cost of approximately log(N). +*/ +struct sqlite3_index_info { + /* Inputs */ + int nConstraint; /* Number of entries in aConstraint */ + struct sqlite3_index_constraint { + int iColumn; /* Column on left-hand side of constraint */ + unsigned char op; /* Constraint operator */ + unsigned char usable; /* True if this constraint is usable */ + int iTermOffset; /* Used internally - xBestIndex should ignore */ + } *aConstraint; /* Table of WHERE clause constraints */ + int nOrderBy; /* Number of terms in the ORDER BY clause */ + struct sqlite3_index_orderby { + int iColumn; /* Column number */ + unsigned char desc; /* True for DESC. False for ASC. */ + } *aOrderBy; /* The ORDER BY clause */ + + /* Outputs */ + struct sqlite3_index_constraint_usage { + int argvIndex; /* if >0, constraint is part of argv to xFilter */ + unsigned char omit; /* Do not code a test for this constraint */ + } *aConstraintUsage; + int idxNum; /* Number used to identify the index */ + char *idxStr; /* String, possibly obtained from sqlite3_malloc */ + int needToFreeIdxStr; /* Free idxStr using sqlite3_free() if true */ + int orderByConsumed; /* True if output is already ordered */ + double estimatedCost; /* Estimated cost of using this index */ +}; +#define SQLITE_INDEX_CONSTRAINT_EQ 2 +#define SQLITE_INDEX_CONSTRAINT_GT 4 +#define SQLITE_INDEX_CONSTRAINT_LE 8 +#define SQLITE_INDEX_CONSTRAINT_LT 16 +#define SQLITE_INDEX_CONSTRAINT_GE 32 +#define SQLITE_INDEX_CONSTRAINT_MATCH 64 + +/* +** This routine is used to register a new module name with an SQLite +** connection. Module names must be registered before creating new +** virtual tables on the module, or before using preexisting virtual +** tables of the module. +*/ +int sqlite3_create_module( + sqlite3 *db, /* SQLite connection to register module with */ + const char *zName, /* Name of the module */ + const sqlite3_module *, /* Methods for the module */ + void * /* Client data for xCreate/xConnect */ +); + +/* +** This routine is identical to the sqlite3_create_module() method above, +** except that it allows a destructor function to be specified. It is +** even more experimental than the rest of the virtual tables API. +*/ +int sqlite3_create_module_v2( + sqlite3 *db, /* SQLite connection to register module with */ + const char *zName, /* Name of the module */ + const sqlite3_module *, /* Methods for the module */ + void *, /* Client data for xCreate/xConnect */ + void(*xDestroy)(void*) /* Module destructor function */ +); + +/* +** Every module implementation uses a subclass of the following structure +** to describe a particular instance of the module. Each subclass will +** be tailored to the specific needs of the module implementation. The +** purpose of this superclass is to define certain fields that are common +** to all module implementations. +** +** Virtual tables methods can set an error message by assigning a +** string obtained from sqlite3_mprintf() to zErrMsg. The method should +** take care that any prior string is freed by a call to sqlite3_free() +** prior to assigning a new string to zErrMsg. After the error message +** is delivered up to the client application, the string will be automatically +** freed by sqlite3_free() and the zErrMsg field will be zeroed. Note +** that sqlite3_mprintf() and sqlite3_free() are used on the zErrMsg field +** since virtual tables are commonly implemented in loadable extensions which +** do not have access to sqlite3MPrintf() or sqlite3Free(). +*/ +struct sqlite3_vtab { + const sqlite3_module *pModule; /* The module for this virtual table */ + int nRef; /* Used internally */ + char *zErrMsg; /* Error message from sqlite3_mprintf() */ + /* Virtual table implementations will typically add additional fields */ +}; + +/* Every module implementation uses a subclass of the following structure +** to describe cursors that point into the virtual table and are used +** to loop through the virtual table. Cursors are created using the +** xOpen method of the module. Each module implementation will define +** the content of a cursor structure to suit its own needs. +** +** This superclass exists in order to define fields of the cursor that +** are common to all implementations. +*/ +struct sqlite3_vtab_cursor { + sqlite3_vtab *pVtab; /* Virtual table of this cursor */ + /* Virtual table implementations will typically add additional fields */ +}; + +/* +** The xCreate and xConnect methods of a module use the following API +** to declare the format (the names and datatypes of the columns) of +** the virtual tables they implement. +*/ +int sqlite3_declare_vtab(sqlite3*, const char *zCreateTable); + +/* +** Virtual tables can provide alternative implementations of functions +** using the xFindFunction method. But global versions of those functions +** must exist in order to be overloaded. +** +** This API makes sure a global version of a function with a particular +** name and number of parameters exists. If no such function exists +** before this API is called, a new function is created. The implementation +** of the new function always causes an exception to be thrown. So +** the new function is not good for anything by itself. Its only +** purpose is to be a place-holder function that can be overloaded +** by virtual tables. +** +** This API should be considered part of the virtual table interface, +** which is experimental and subject to change. +*/ +int sqlite3_overload_function(sqlite3*, const char *zFuncName, int nArg); + +/* +** The interface to the virtual-table mechanism defined above (back up +** to a comment remarkably similar to this one) is currently considered +** to be experimental. The interface might change in incompatible ways. +** If this is a problem for you, do not use the interface at this time. +** +** When the virtual-table mechanism stabilizes, we will declare the +** interface fixed, support it indefinitely, and remove this comment. +** +****** EXPERIMENTAL - subject to change without notice ************** +*/ + +/* +** CAPI3REF: A Handle To An Open BLOB {F17800} +** +** An instance of the following opaque structure is used to +** represent an blob-handle. A blob-handle is created by +** [sqlite3_blob_open()] and destroyed by [sqlite3_blob_close()]. +** The [sqlite3_blob_read()] and [sqlite3_blob_write()] interfaces +** can be used to read or write small subsections of the blob. +** The [sqlite3_blob_bytes()] interface returns the size of the +** blob in bytes. +*/ +typedef struct sqlite3_blob sqlite3_blob; + +/* +** CAPI3REF: Open A BLOB For Incremental I/O {F17810} +** +** {F17811} This interfaces opens a handle to the blob located +** in row iRow,, column zColumn, table zTable in database zDb; +** in other words, the same blob that would be selected by: +** +**
+**     SELECT zColumn FROM zDb.zTable WHERE rowid = iRow;
+** 
{END} +** +** {F17812} If the flags parameter is non-zero, the blob is opened for +** read and write access. If it is zero, the blob is opened for read +** access. {END} +** +** {F17813} On success, [SQLITE_OK] is returned and the new +** [sqlite3_blob | blob handle] is written to *ppBlob. +** {F17814} Otherwise an error code is returned and +** any value written to *ppBlob should not be used by the caller. +** {F17815} This function sets the database-handle error code and message +** accessible via [sqlite3_errcode()] and [sqlite3_errmsg()]. +** We should go through and mark all interfaces that behave this +** way with a similar statement +*/ +int sqlite3_blob_open( + sqlite3*, + const char *zDb, + const char *zTable, + const char *zColumn, + sqlite3_int64 iRow, + int flags, + sqlite3_blob **ppBlob +); + +/* +** CAPI3REF: Close A BLOB Handle {F17830} +** +** Close an open [sqlite3_blob | blob handle]. +** +** {F17831} Closing a BLOB shall cause the current transaction to commit +** if there are no other BLOBs, no pending prepared statements, and the +** database connection is in autocommit mode. +** {F17832} If any writes were made to the BLOB, they might be held in cache +** until the close operation if they will fit. {END} +** Closing the BLOB often forces the changes +** out to disk and so if any I/O errors occur, they will likely occur +** at the time when the BLOB is closed. {F17833} Any errors that occur during +** closing are reported as a non-zero return value. +** +** {F17839} The BLOB is closed unconditionally. Even if this routine returns +** an error code, the BLOB is still closed. +*/ +int sqlite3_blob_close(sqlite3_blob *); + +/* +** CAPI3REF: Return The Size Of An Open BLOB {F17805} +** +** {F16806} Return the size in bytes of the blob accessible via the open +** [sqlite3_blob | blob-handle] passed as an argument. +*/ +int sqlite3_blob_bytes(sqlite3_blob *); + +/* +** CAPI3REF: Read Data From A BLOB Incrementally {F17850} +** +** This function is used to read data from an open +** [sqlite3_blob | blob-handle] into a caller supplied buffer. +** {F17851} n bytes of data are copied into buffer +** z from the open blob, starting at offset iOffset. +** +** {F17852} If offset iOffset is less than n bytes from the end of the blob, +** [SQLITE_ERROR] is returned and no data is read. {F17853} If n is +** less than zero [SQLITE_ERROR] is returned and no data is read. +** +** {F17854} On success, SQLITE_OK is returned. Otherwise, an +** [SQLITE_ERROR | SQLite error code] or an +** [SQLITE_IOERR_READ | extended error code] is returned. +*/ +int sqlite3_blob_read(sqlite3_blob *, void *z, int n, int iOffset); + +/* +** CAPI3REF: Write Data Into A BLOB Incrementally {F17870} +** +** This function is used to write data into an open +** [sqlite3_blob | blob-handle] from a user supplied buffer. +** {F17871} n bytes of data are copied from the buffer +** pointed to by z into the open blob, starting at offset iOffset. +** +** {F17872} If the [sqlite3_blob | blob-handle] passed as the first argument +** was not opened for writing (the flags parameter to [sqlite3_blob_open()] +*** was zero), this function returns [SQLITE_READONLY]. +** +** {F17873} This function may only modify the contents of the blob; it is +** not possible to increase the size of a blob using this API. +** {F17874} If offset iOffset is less than n bytes from the end of the blob, +** [SQLITE_ERROR] is returned and no data is written. {F17875} If n is +** less than zero [SQLITE_ERROR] is returned and no data is written. +** +** {F17876} On success, SQLITE_OK is returned. Otherwise, an +** [SQLITE_ERROR | SQLite error code] or an +** [SQLITE_IOERR_READ | extended error code] is returned. +*/ +int sqlite3_blob_write(sqlite3_blob *, const void *z, int n, int iOffset); + +/* +** CAPI3REF: Virtual File System Objects {F11200} +** +** A virtual filesystem (VFS) is an [sqlite3_vfs] object +** that SQLite uses to interact +** with the underlying operating system. Most builds come with a +** single default VFS that is appropriate for the host computer. +** New VFSes can be registered and existing VFSes can be unregistered. +** The following interfaces are provided. +** +** {F11201} The sqlite3_vfs_find() interface returns a pointer to +** a VFS given its name. {F11202} Names are case sensitive. +** {F11203} Names are zero-terminated UTF-8 strings. +** {F11204} If there is no match, a NULL +** pointer is returned. {F11205} If zVfsName is NULL then the default +** VFS is returned. {END} +** +** {F11210} New VFSes are registered with sqlite3_vfs_register(). +** {F11211} Each new VFS becomes the default VFS if the makeDflt flag is set. +** {F11212} The same VFS can be registered multiple times without injury. +** {F11213} To make an existing VFS into the default VFS, register it again +** with the makeDflt flag set. {U11214} If two different VFSes with the +** same name are registered, the behavior is undefined. {U11215} If a +** VFS is registered with a name that is NULL or an empty string, +** then the behavior is undefined. +** +** {F11220} Unregister a VFS with the sqlite3_vfs_unregister() interface. +** {F11221} If the default VFS is unregistered, another VFS is chosen as +** the default. The choice for the new VFS is arbitrary. +*/ +sqlite3_vfs *sqlite3_vfs_find(const char *zVfsName); +int sqlite3_vfs_register(sqlite3_vfs*, int makeDflt); +int sqlite3_vfs_unregister(sqlite3_vfs*); + +/* +** CAPI3REF: Mutexes {F17000} +** +** The SQLite core uses these routines for thread +** synchronization. Though they are intended for internal +** use by SQLite, code that links against SQLite is +** permitted to use any of these routines. +** +** The SQLite source code contains multiple implementations +** of these mutex routines. An appropriate implementation +** is selected automatically at compile-time. The following +** implementations are available in the SQLite core: +** +**
    +**
  • SQLITE_MUTEX_OS2 +**
  • SQLITE_MUTEX_PTHREAD +**
  • SQLITE_MUTEX_W32 +**
  • SQLITE_MUTEX_NOOP +**
+** +** The SQLITE_MUTEX_NOOP implementation is a set of routines +** that does no real locking and is appropriate for use in +** a single-threaded application. The SQLITE_MUTEX_OS2, +** SQLITE_MUTEX_PTHREAD, and SQLITE_MUTEX_W32 implementations +** are appropriate for use on os/2, unix, and windows. +** +** If SQLite is compiled with the SQLITE_MUTEX_APPDEF preprocessor +** macro defined (with "-DSQLITE_MUTEX_APPDEF=1"), then no mutex +** implementation is included with the library. The +** mutex interface routines defined here become external +** references in the SQLite library for which implementations +** must be provided by the application. This facility allows an +** application that links against SQLite to provide its own mutex +** implementation without having to modify the SQLite core. +** +** {F17011} The sqlite3_mutex_alloc() routine allocates a new +** mutex and returns a pointer to it. {F17012} If it returns NULL +** that means that a mutex could not be allocated. {F17013} SQLite +** will unwind its stack and return an error. {F17014} The argument +** to sqlite3_mutex_alloc() is one of these integer constants: +** +**
    +**
  • SQLITE_MUTEX_FAST +**
  • SQLITE_MUTEX_RECURSIVE +**
  • SQLITE_MUTEX_STATIC_MASTER +**
  • SQLITE_MUTEX_STATIC_MEM +**
  • SQLITE_MUTEX_STATIC_MEM2 +**
  • SQLITE_MUTEX_STATIC_PRNG +**
  • SQLITE_MUTEX_STATIC_LRU +**
{END} +** +** {F17015} The first two constants cause sqlite3_mutex_alloc() to create +** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE +** is used but not necessarily so when SQLITE_MUTEX_FAST is used. {END} +** The mutex implementation does not need to make a distinction +** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does +** not want to. {F17016} But SQLite will only request a recursive mutex in +** cases where it really needs one. {END} If a faster non-recursive mutex +** implementation is available on the host platform, the mutex subsystem +** might return such a mutex in response to SQLITE_MUTEX_FAST. +** +** {F17017} The other allowed parameters to sqlite3_mutex_alloc() each return +** a pointer to a static preexisting mutex. {END} Four static mutexes are +** used by the current version of SQLite. Future versions of SQLite +** may add additional static mutexes. Static mutexes are for internal +** use by SQLite only. Applications that use SQLite mutexes should +** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or +** SQLITE_MUTEX_RECURSIVE. +** +** {F17018} Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST +** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc() +** returns a different mutex on every call. {F17034} But for the static +** mutex types, the same mutex is returned on every call that has +** the same type number. {END} +** +** {F17019} The sqlite3_mutex_free() routine deallocates a previously +** allocated dynamic mutex. {F17020} SQLite is careful to deallocate every +** dynamic mutex that it allocates. {U17021} The dynamic mutexes must not be in +** use when they are deallocated. {U17022} Attempting to deallocate a static +** mutex results in undefined behavior. {F17023} SQLite never deallocates +** a static mutex. {END} +** +** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt +** to enter a mutex. {F17024} If another thread is already within the mutex, +** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return +** SQLITE_BUSY. {F17025} The sqlite3_mutex_try() interface returns SQLITE_OK +** upon successful entry. {F17026} Mutexes created using +** SQLITE_MUTEX_RECURSIVE can be entered multiple times by the same thread. +** {F17027} In such cases the, +** mutex must be exited an equal number of times before another thread +** can enter. {U17028} If the same thread tries to enter any other +** kind of mutex more than once, the behavior is undefined. +** {F17029} SQLite will never exhibit +** such behavior in its own use of mutexes. {END} +** +** Some systems (ex: windows95) do not the operation implemented by +** sqlite3_mutex_try(). On those systems, sqlite3_mutex_try() will +** always return SQLITE_BUSY. {F17030} The SQLite core only ever uses +** sqlite3_mutex_try() as an optimization so this is acceptable behavior. {END} +** +** {F17031} The sqlite3_mutex_leave() routine exits a mutex that was +** previously entered by the same thread. {U17032} The behavior +** is undefined if the mutex is not currently entered by the +** calling thread or is not currently allocated. {F17033} SQLite will +** never do either. {END} +** +** See also: [sqlite3_mutex_held()] and [sqlite3_mutex_notheld()]. +*/ +sqlite3_mutex *sqlite3_mutex_alloc(int); +void sqlite3_mutex_free(sqlite3_mutex*); +void sqlite3_mutex_enter(sqlite3_mutex*); +int sqlite3_mutex_try(sqlite3_mutex*); +void sqlite3_mutex_leave(sqlite3_mutex*); + +/* +** CAPI3REF: Mutex Verifcation Routines {F17080} +** +** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routines +** are intended for use inside assert() statements. {F17081} The SQLite core +** never uses these routines except inside an assert() and applications +** are advised to follow the lead of the core. {F17082} The core only +** provides implementations for these routines when it is compiled +** with the SQLITE_DEBUG flag. {U17087} External mutex implementations +** are only required to provide these routines if SQLITE_DEBUG is +** defined and if NDEBUG is not defined. +** +** {F17083} These routines should return true if the mutex in their argument +** is held or not held, respectively, by the calling thread. {END} +** +** {X17084} The implementation is not required to provided versions of these +** routines that actually work. +** If the implementation does not provide working +** versions of these routines, it should at least provide stubs +** that always return true so that one does not get spurious +** assertion failures. {END} +** +** {F17085} If the argument to sqlite3_mutex_held() is a NULL pointer then +** the routine should return 1. {END} This seems counter-intuitive since +** clearly the mutex cannot be held if it does not exist. But the +** the reason the mutex does not exist is because the build is not +** using mutexes. And we do not want the assert() containing the +** call to sqlite3_mutex_held() to fail, so a non-zero return is +** the appropriate thing to do. {F17086} The sqlite3_mutex_notheld() +** interface should also return 1 when given a NULL pointer. +*/ +int sqlite3_mutex_held(sqlite3_mutex*); +int sqlite3_mutex_notheld(sqlite3_mutex*); + +/* +** CAPI3REF: Mutex Types {F17001} +** +** {F17002} The [sqlite3_mutex_alloc()] interface takes a single argument +** which is one of these integer constants. {END} +*/ +#define SQLITE_MUTEX_FAST 0 +#define SQLITE_MUTEX_RECURSIVE 1 +#define SQLITE_MUTEX_STATIC_MASTER 2 +#define SQLITE_MUTEX_STATIC_MEM 3 /* sqlite3_malloc() */ +#define SQLITE_MUTEX_STATIC_MEM2 4 /* sqlite3_release_memory() */ +#define SQLITE_MUTEX_STATIC_PRNG 5 /* sqlite3_random() */ +#define SQLITE_MUTEX_STATIC_LRU 6 /* lru page list */ + +/* +** CAPI3REF: Low-Level Control Of Database Files {F11300} +** +** {F11301} The [sqlite3_file_control()] interface makes a direct call to the +** xFileControl method for the [sqlite3_io_methods] object associated +** with a particular database identified by the second argument. {F11302} The +** name of the database is the name assigned to the database by the +** ATTACH SQL command that opened the +** database. {F11303} To control the main database file, use the name "main" +** or a NULL pointer. {F11304} The third and fourth parameters to this routine +** are passed directly through to the second and third parameters of +** the xFileControl method. {F11305} The return value of the xFileControl +** method becomes the return value of this routine. +** +** {F11306} If the second parameter (zDbName) does not match the name of any +** open database file, then SQLITE_ERROR is returned. {F11307} This error +** code is not remembered and will not be recalled by [sqlite3_errcode()] +** or [sqlite3_errmsg()]. {U11308} The underlying xFileControl method might +** also return SQLITE_ERROR. {U11309} There is no way to distinguish between +** an incorrect zDbName and an SQLITE_ERROR return from the underlying +** xFileControl method. {END} +** +** See also: [SQLITE_FCNTL_LOCKSTATE] +*/ +int sqlite3_file_control(sqlite3*, const char *zDbName, int op, void*); + +/* +** Undo the hack that converts floating point types to integer for +** builds on processors without floating point support. +*/ +#ifdef SQLITE_OMIT_FLOATING_POINT +# undef double +#endif + +#if 0 +} /* End of the 'extern "C"' block */ +#endif +#endif + +/************** End of sqlite3.h *********************************************/ +/************** Continuing where we left off in fts3_tokenizer.h *************/ + +/* +** Structures used by the tokenizer interface. When a new tokenizer +** implementation is registered, the caller provides a pointer to +** an sqlite3_tokenizer_module containing pointers to the callback +** functions that make up an implementation. +** +** When an fts3 table is created, it passes any arguments passed to +** the tokenizer clause of the CREATE VIRTUAL TABLE statement to the +** sqlite3_tokenizer_module.xCreate() function of the requested tokenizer +** implementation. The xCreate() function in turn returns an +** sqlite3_tokenizer structure representing the specific tokenizer to +** be used for the fts3 table (customized by the tokenizer clause arguments). +** +** To tokenize an input buffer, the sqlite3_tokenizer_module.xOpen() +** method is called. It returns an sqlite3_tokenizer_cursor object +** that may be used to tokenize a specific input buffer based on +** the tokenization rules supplied by a specific sqlite3_tokenizer +** object. +*/ +typedef struct sqlite3_tokenizer_module sqlite3_tokenizer_module; +typedef struct sqlite3_tokenizer sqlite3_tokenizer; +typedef struct sqlite3_tokenizer_cursor sqlite3_tokenizer_cursor; + +struct sqlite3_tokenizer_module { + + /* + ** Structure version. Should always be set to 0. + */ + int iVersion; + + /* + ** Create a new tokenizer. The values in the argv[] array are the + ** arguments passed to the "tokenizer" clause of the CREATE VIRTUAL + ** TABLE statement that created the fts3 table. For example, if + ** the following SQL is executed: + ** + ** CREATE .. USING fts3( ... , tokenizer arg1 arg2) + ** + ** then argc is set to 2, and the argv[] array contains pointers + ** to the strings "arg1" and "arg2". + ** + ** This method should return either SQLITE_OK (0), or an SQLite error + ** code. If SQLITE_OK is returned, then *ppTokenizer should be set + ** to point at the newly created tokenizer structure. The generic + ** sqlite3_tokenizer.pModule variable should not be initialised by + ** this callback. The caller will do so. + */ + int (*xCreate)( + int argc, /* Size of argv array */ + const char *const*argv, /* Tokenizer argument strings */ + sqlite3_tokenizer **ppTokenizer /* OUT: Created tokenizer */ + ); + + /* + ** Destroy an existing tokenizer. The fts3 module calls this method + ** exactly once for each successful call to xCreate(). + */ + int (*xDestroy)(sqlite3_tokenizer *pTokenizer); + + /* + ** Create a tokenizer cursor to tokenize an input buffer. The caller + ** is responsible for ensuring that the input buffer remains valid + ** until the cursor is closed (using the xClose() method). + */ + int (*xOpen)( + sqlite3_tokenizer *pTokenizer, /* Tokenizer object */ + const char *pInput, int nBytes, /* Input buffer */ + sqlite3_tokenizer_cursor **ppCursor /* OUT: Created tokenizer cursor */ + ); + + /* + ** Destroy an existing tokenizer cursor. The fts3 module calls this + ** method exactly once for each successful call to xOpen(). + */ + int (*xClose)(sqlite3_tokenizer_cursor *pCursor); + + /* + ** Retrieve the next token from the tokenizer cursor pCursor. This + ** method should either return SQLITE_OK and set the values of the + ** "OUT" variables identified below, or SQLITE_DONE to indicate that + ** the end of the buffer has been reached, or an SQLite error code. + ** + ** *ppToken should be set to point at a buffer containing the + ** normalized version of the token (i.e. after any case-folding and/or + ** stemming has been performed). *pnBytes should be set to the length + ** of this buffer in bytes. The input text that generated the token is + ** identified by the byte offsets returned in *piStartOffset and + ** *piEndOffset. + ** + ** The buffer *ppToken is set to point at is managed by the tokenizer + ** implementation. It is only required to be valid until the next call + ** to xNext() or xClose(). + */ + /* TODO(shess) current implementation requires pInput to be + ** nul-terminated. This should either be fixed, or pInput/nBytes + ** should be converted to zInput. + */ + int (*xNext)( + sqlite3_tokenizer_cursor *pCursor, /* Tokenizer cursor */ + const char **ppToken, int *pnBytes, /* OUT: Normalized text for token */ + int *piStartOffset, /* OUT: Byte offset of token in input buffer */ + int *piEndOffset, /* OUT: Byte offset of end of token in input buffer */ + int *piPosition /* OUT: Number of tokens returned before this one */ + ); +}; + +struct sqlite3_tokenizer { + const sqlite3_tokenizer_module *pModule; /* The module for this tokenizer */ + /* Tokenizer implementations will typically add additional fields */ +}; + +struct sqlite3_tokenizer_cursor { + sqlite3_tokenizer *pTokenizer; /* Tokenizer for this cursor. */ + /* Tokenizer implementations will typically add additional fields */ +}; + +#endif /* _FTS3_TOKENIZER_H_ */ + +/************** End of fts3_tokenizer.h **************************************/ +/************** Continuing where we left off in fts3_tokenizer.c *************/ + +/* +** Implementation of the SQL scalar function for accessing the underlying +** hash table. This function may be called as follows: +** +** SELECT (); +** SELECT (, ); +** +** where is the name passed as the second argument +** to the sqlite3Fts3InitHashTable() function (e.g. 'fts3_tokenizer'). +** +** If the argument is specified, it must be a blob value +** containing a pointer to be stored as the hash data corresponding +** to the string . If is not specified, then +** the string must already exist in the has table. Otherwise, +** an error is returned. +** +** Whether or not the argument is specified, the value returned +** is a blob containing the pointer stored as the hash data corresponding +** to string (after the hash-table is updated, if applicable). +*/ +static void scalarFunc( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + fts3Hash *pHash; + void *pPtr = 0; + const unsigned char *zName; + int nName; + + assert( argc==1 || argc==2 ); + + pHash = (fts3Hash *)sqlite3_user_data(context); + + zName = sqlite3_value_text(argv[0]); + nName = sqlite3_value_bytes(argv[0])+1; + + if( argc==2 ){ + void *pOld; + int n = sqlite3_value_bytes(argv[1]); + if( n!=sizeof(pPtr) ){ + sqlite3_result_error(context, "argument type mismatch", -1); + return; + } + pPtr = *(void **)sqlite3_value_blob(argv[1]); + pOld = sqlite3Fts3HashInsert(pHash, (void *)zName, nName, pPtr); + if( pOld==pPtr ){ + sqlite3_result_error(context, "out of memory", -1); + return; + } + }else{ + pPtr = sqlite3Fts3HashFind(pHash, zName, nName); + if( !pPtr ){ + char *zErr = sqlite3_mprintf("unknown tokenizer: %s", zName); + sqlite3_result_error(context, zErr, -1); + sqlite3_free(zErr); + return; + } + } + + sqlite3_result_blob(context, (void *)&pPtr, sizeof(pPtr), SQLITE_TRANSIENT); +} + +#ifdef SQLITE_TEST + +#include + +/* +** Implementation of a special SQL scalar function for testing tokenizers +** designed to be used in concert with the Tcl testing framework. This +** function must be called with two arguments: +** +** SELECT (, ); +** SELECT (, ); +** +** where is the name passed as the second argument +** to the sqlite3Fts3InitHashTable() function (e.g. 'fts3_tokenizer') +** concatenated with the string '_test' (e.g. 'fts3_tokenizer_test'). +** +** The return value is a string that may be interpreted as a Tcl +** list. For each token in the , three elements are +** added to the returned list. The first is the token position, the +** second is the token text (folded, stemmed, etc.) and the third is the +** substring of associated with the token. For example, +** using the built-in "simple" tokenizer: +** +** SELECT fts_tokenizer_test('simple', 'I don't see how'); +** +** will return the string: +** +** "{0 i I 1 dont don't 2 see see 3 how how}" +** +*/ +static void testFunc( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + fts3Hash *pHash; + sqlite3_tokenizer_module *p; + sqlite3_tokenizer *pTokenizer = 0; + sqlite3_tokenizer_cursor *pCsr = 0; + + const char *zErr = 0; + + const char *zName; + int nName; + const char *zInput; + int nInput; + + const char *zArg = 0; + + const char *zToken; + int nToken; + int iStart; + int iEnd; + int iPos; + + Tcl_Obj *pRet; + + assert( argc==2 || argc==3 ); + + nName = sqlite3_value_bytes(argv[0]); + zName = (const char *)sqlite3_value_text(argv[0]); + nInput = sqlite3_value_bytes(argv[argc-1]); + zInput = (const char *)sqlite3_value_text(argv[argc-1]); + + if( argc==3 ){ + zArg = (const char *)sqlite3_value_text(argv[1]); + } + + pHash = (fts3Hash *)sqlite3_user_data(context); + p = (sqlite3_tokenizer_module *)sqlite3Fts3HashFind(pHash, zName, nName+1); + + if( !p ){ + char *zErr = sqlite3_mprintf("unknown tokenizer: %s", zName); + sqlite3_result_error(context, zErr, -1); + sqlite3_free(zErr); + return; + } + + pRet = Tcl_NewObj(); + Tcl_IncrRefCount(pRet); + + if( SQLITE_OK!=p->xCreate(zArg ? 1 : 0, &zArg, &pTokenizer) ){ + zErr = "error in xCreate()"; + goto finish; + } + pTokenizer->pModule = p; + if( SQLITE_OK!=p->xOpen(pTokenizer, zInput, nInput, &pCsr) ){ + zErr = "error in xOpen()"; + goto finish; + } + pCsr->pTokenizer = pTokenizer; + + while( SQLITE_OK==p->xNext(pCsr, &zToken, &nToken, &iStart, &iEnd, &iPos) ){ + Tcl_ListObjAppendElement(0, pRet, Tcl_NewIntObj(iPos)); + Tcl_ListObjAppendElement(0, pRet, Tcl_NewStringObj(zToken, nToken)); + zToken = &zInput[iStart]; + nToken = iEnd-iStart; + Tcl_ListObjAppendElement(0, pRet, Tcl_NewStringObj(zToken, nToken)); + } + + if( SQLITE_OK!=p->xClose(pCsr) ){ + zErr = "error in xClose()"; + goto finish; + } + if( SQLITE_OK!=p->xDestroy(pTokenizer) ){ + zErr = "error in xDestroy()"; + goto finish; + } + +finish: + if( zErr ){ + sqlite3_result_error(context, zErr, -1); + }else{ + sqlite3_result_text(context, Tcl_GetString(pRet), -1, SQLITE_TRANSIENT); + } + Tcl_DecrRefCount(pRet); +} + +static +int registerTokenizer( + sqlite3 *db, + char *zName, + const sqlite3_tokenizer_module *p +){ + int rc; + sqlite3_stmt *pStmt; + const char zSql[] = "SELECT fts3_tokenizer(?, ?)"; + + rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0); + if( rc!=SQLITE_OK ){ + return rc; + } + + sqlite3_bind_text(pStmt, 1, zName, -1, SQLITE_STATIC); + sqlite3_bind_blob(pStmt, 2, &p, sizeof(p), SQLITE_STATIC); + sqlite3_step(pStmt); + + return sqlite3_finalize(pStmt); +} + +static +int queryTokenizer( + sqlite3 *db, + char *zName, + const sqlite3_tokenizer_module **pp +){ + int rc; + sqlite3_stmt *pStmt; + const char zSql[] = "SELECT fts3_tokenizer(?)"; + + *pp = 0; + rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0); + if( rc!=SQLITE_OK ){ + return rc; + } + + sqlite3_bind_text(pStmt, 1, zName, -1, SQLITE_STATIC); + if( SQLITE_ROW==sqlite3_step(pStmt) ){ + if( sqlite3_column_type(pStmt, 0)==SQLITE_BLOB ){ + memcpy(pp, sqlite3_column_blob(pStmt, 0), sizeof(*pp)); + } + } + + return sqlite3_finalize(pStmt); +} + +void sqlite3Fts3SimpleTokenizerModule(sqlite3_tokenizer_module const**ppModule); + +/* +** Implementation of the scalar function fts3_tokenizer_internal_test(). +** This function is used for testing only, it is not included in the +** build unless SQLITE_TEST is defined. +** +** The purpose of this is to test that the fts3_tokenizer() function +** can be used as designed by the C-code in the queryTokenizer and +** registerTokenizer() functions above. These two functions are repeated +** in the README.tokenizer file as an example, so it is important to +** test them. +** +** To run the tests, evaluate the fts3_tokenizer_internal_test() scalar +** function with no arguments. An assert() will fail if a problem is +** detected. i.e.: +** +** SELECT fts3_tokenizer_internal_test(); +** +*/ +static void intTestFunc( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + int rc; + const sqlite3_tokenizer_module *p1; + const sqlite3_tokenizer_module *p2; + sqlite3 *db = (sqlite3 *)sqlite3_user_data(context); + + /* Test the query function */ + sqlite3Fts3SimpleTokenizerModule(&p1); + rc = queryTokenizer(db, "simple", &p2); + assert( rc==SQLITE_OK ); + assert( p1==p2 ); + rc = queryTokenizer(db, "nosuchtokenizer", &p2); + assert( rc==SQLITE_ERROR ); + assert( p2==0 ); + assert( 0==strcmp(sqlite3_errmsg(db), "unknown tokenizer: nosuchtokenizer") ); + + /* Test the storage function */ + rc = registerTokenizer(db, "nosuchtokenizer", p1); + assert( rc==SQLITE_OK ); + rc = queryTokenizer(db, "nosuchtokenizer", &p2); + assert( rc==SQLITE_OK ); + assert( p2==p1 ); + + sqlite3_result_text(context, "ok", -1, SQLITE_STATIC); +} + +#endif + +/* +** Set up SQL objects in database db used to access the contents of +** the hash table pointed to by argument pHash. The hash table must +** been initialised to use string keys, and to take a private copy +** of the key when a value is inserted. i.e. by a call similar to: +** +** sqlite3Fts3HashInit(pHash, FTS3_HASH_STRING, 1); +** +** This function adds a scalar function (see header comment above +** scalarFunc() in this file for details) and, if ENABLE_TABLE is +** defined at compilation time, a temporary virtual table (see header +** comment above struct HashTableVtab) to the database schema. Both +** provide read/write access to the contents of *pHash. +** +** The third argument to this function, zName, is used as the name +** of both the scalar and, if created, the virtual table. +*/ +int sqlite3Fts3InitHashTable( + sqlite3 *db, + fts3Hash *pHash, + const char *zName +){ + int rc = SQLITE_OK; + void *p = (void *)pHash; + const int any = SQLITE_ANY; + char *zTest = 0; + char *zTest2 = 0; + +#ifdef SQLITE_TEST + void *pdb = (void *)db; + zTest = sqlite3_mprintf("%s_test", zName); + zTest2 = sqlite3_mprintf("%s_internal_test", zName); + if( !zTest || !zTest2 ){ + rc = SQLITE_NOMEM; + } +#endif + + if( rc!=SQLITE_OK + || (rc = sqlite3_create_function(db, zName, 1, any, p, scalarFunc, 0, 0)) + || (rc = sqlite3_create_function(db, zName, 2, any, p, scalarFunc, 0, 0)) +#ifdef SQLITE_TEST + || (rc = sqlite3_create_function(db, zTest, 2, any, p, testFunc, 0, 0)) + || (rc = sqlite3_create_function(db, zTest, 3, any, p, testFunc, 0, 0)) + || (rc = sqlite3_create_function(db, zTest2, 0, any, pdb, intTestFunc, 0, 0)) +#endif + ); + + sqlite3_free(zTest); + sqlite3_free(zTest2); + return rc; +} + +#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */ + +/************** End of fts3_tokenizer.c **************************************/ +/************** Begin file fts3_tokenizer1.c *********************************/ +/* +** 2006 Oct 10 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +****************************************************************************** +** +** Implementation of the "simple" full-text-search tokenizer. +*/ + +/* +** The code in this file is only compiled if: +** +** * The FTS3 module is being built as an extension +** (in which case SQLITE_CORE is not defined), or +** +** * The FTS3 module is being built into the core of +** SQLite (in which case SQLITE_ENABLE_FTS3 is defined). +*/ +#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) + + + +/************** Include fts3_tokenizer.h in the middle of fts3_tokenizer1.c **/ +/************** Begin file fts3_tokenizer.h **********************************/ +/* +** 2006 July 10 +** +** The author disclaims copyright to this source code. +** +************************************************************************* +** Defines the interface to tokenizers used by fulltext-search. There +** are three basic components: +** +** sqlite3_tokenizer_module is a singleton defining the tokenizer +** interface functions. This is essentially the class structure for +** tokenizers. +** +** sqlite3_tokenizer is used to define a particular tokenizer, perhaps +** including customization information defined at creation time. +** +** sqlite3_tokenizer_cursor is generated by a tokenizer to generate +** tokens from a particular input. +*/ +#ifndef _FTS3_TOKENIZER_H_ +#define _FTS3_TOKENIZER_H_ + +/* TODO(shess) Only used for SQLITE_OK and SQLITE_DONE at this time. +** If tokenizers are to be allowed to call sqlite3_*() functions, then +** we will need a way to register the API consistently. +*/ +/************** Include sqlite3.h in the middle of fts3_tokenizer.h **********/ +/************** Begin file sqlite3.h *****************************************/ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This header file defines the interface that the SQLite library +** presents to client programs. If a C-function, structure, datatype, +** or constant definition does not appear in this file, then it is +** not a published API of SQLite, is subject to change without +** notice, and should not be referenced by programs that use SQLite. +** +** Some of the definitions that are in this file are marked as +** "experimental". Experimental interfaces are normally new +** features recently added to SQLite. We do not anticipate changes +** to experimental interfaces but reserve to make minor changes if +** experience from use "in the wild" suggest such changes are prudent. +** +** The official C-language API documentation for SQLite is derived +** from comments in this file. This file is the authoritative source +** on how SQLite interfaces are suppose to operate. +** +** The name of this file under configuration management is "sqlite.h.in". +** The makefile makes some minor changes to this file (such as inserting +** the version number) and changes its name to "sqlite3.h" as +** part of the build process. +** +** @(#) $Id: sqlite3.c,v 1.13 2008/01/29 23:34:19 myk%mozilla.org Exp $ +*/ +#ifndef _SQLITE3_H_ +#define _SQLITE3_H_ + +/* +** Make sure we can call this stuff from C++. +*/ +#if 0 +extern "C" { +#endif + + +/* +** Add the ability to override 'extern' +*/ +#ifndef SQLITE_EXTERN +# define SQLITE_EXTERN extern +#endif + +/* +** Make sure these symbols where not defined by some previous header +** file. +*/ +#ifdef SQLITE_VERSION +# undef SQLITE_VERSION +#endif +#ifdef SQLITE_VERSION_NUMBER +# undef SQLITE_VERSION_NUMBER +#endif + +/* +** CAPI3REF: Compile-Time Library Version Numbers {F10010} +** +** {F10011} The #define in the sqlite3.h header file named +** SQLITE_VERSION resolves to a string literal that identifies +** the version of the SQLite library in the format "X.Y.Z", where +** X is the major version number, Y is the minor version number and Z +** is the release number. The X.Y.Z might be followed by "alpha" or "beta". +** {END} For example "3.1.1beta". +** +** The X value is always 3 in SQLite. The X value only changes when +** backwards compatibility is broken and we intend to never break +** backwards compatibility. The Y value only changes when +** there are major feature enhancements that are forwards compatible +** but not backwards compatible. The Z value is incremented with +** each release but resets back to 0 when Y is incremented. +** +** {F10014} The SQLITE_VERSION_NUMBER #define resolves to an integer +** with the value (X*1000000 + Y*1000 + Z) where X, Y, and Z are as +** with SQLITE_VERSION. {END} For example, for version "3.1.1beta", +** SQLITE_VERSION_NUMBER is set to 3001001. To detect if they are using +** version 3.1.1 or greater at compile time, programs may use the test +** (SQLITE_VERSION_NUMBER>=3001001). +** +** See also: [sqlite3_libversion()] and [sqlite3_libversion_number()]. +*/ +#define SQLITE_VERSION "3.5.4" +#define SQLITE_VERSION_NUMBER 3005004 + +/* +** CAPI3REF: Run-Time Library Version Numbers {F10020} +** +** {F10021} The sqlite3_libversion_number() interface returns an integer +** equal to [SQLITE_VERSION_NUMBER]. {END} The value returned +** by this routine should only be different from the header values +** if the application is compiled using an sqlite3.h header from a +** different version of SQLite than library. Cautious programmers might +** include a check in their application to verify that +** sqlite3_libversion_number() always returns the value +** [SQLITE_VERSION_NUMBER]. +** +** {F10022} The sqlite3_version[] string constant contains the text of the +** [SQLITE_VERSION] string. {F10023} The sqlite3_libversion() function returns +** a pointer to the sqlite3_version[] string constant. {END} The +** sqlite3_libversion() function +** is provided for DLL users who can only access functions and not +** constants within the DLL. +*/ +SQLITE_EXTERN const char sqlite3_version[]; +const char *sqlite3_libversion(void); +int sqlite3_libversion_number(void); + +/* +** CAPI3REF: Test To See If The Library Is Threadsafe {F10100} +** +** {F10101} The sqlite3_threadsafe() routine returns nonzero +** if SQLite was compiled with its mutexes enabled or zero if +** SQLite was compiled with mutexes disabled. {END} If this +** routine returns false, then it is not safe for simultaneously +** running threads to both invoke SQLite interfaces. +** +** Really all this routine does is return true if SQLite was +** compiled with the -DSQLITE_THREADSAFE=1 option and false if +** compiled with -DSQLITE_THREADSAFE=0. If SQLite uses an +** application-defined mutex subsystem, malloc subsystem, collating +** sequence, VFS, SQL function, progress callback, commit hook, +** extension, or other accessories and these add-ons are not +** threadsafe, then clearly the combination will not be threadsafe +** either. Hence, this routine never reports that the library +** is guaranteed to be threadsafe, only when it is guaranteed not +** to be. +*/ +int sqlite3_threadsafe(void); + +/* +** CAPI3REF: Database Connection Handle {F12000} +** +** Each open SQLite database is represented by pointer to an instance of the +** opaque structure named "sqlite3". It is useful to think of an sqlite3 +** pointer as an object. The [sqlite3_open()], [sqlite3_open16()], and +** [sqlite3_open_v2()] interfaces are its constructors +** and [sqlite3_close()] is its destructor. There are many other interfaces +** (such as [sqlite3_prepare_v2()], [sqlite3_create_function()], and +** [sqlite3_busy_timeout()] to name but three) that are methods on this +** object. +*/ +typedef struct sqlite3 sqlite3; + + +/* +** CAPI3REF: 64-Bit Integer Types {F10200} +** +** Because there is no cross-platform way to specify such types +** SQLite includes typedefs for 64-bit signed and unsigned integers. +** {F10201} The sqlite_int64 and sqlite3_int64 types specify a +** 64-bit signed integer. {F10202} The sqlite_uint64 and +** sqlite3_uint64 types specify a 64-bit unsigned integer. {END} +** +** The sqlite3_int64 and sqlite3_uint64 are the preferred type +** definitions. The sqlite_int64 and sqlite_uint64 types are +** supported for backwards compatibility only. +*/ +#ifdef SQLITE_INT64_TYPE + typedef SQLITE_INT64_TYPE sqlite_int64; + typedef unsigned SQLITE_INT64_TYPE sqlite_uint64; +#elif defined(_MSC_VER) || defined(__BORLANDC__) + typedef __int64 sqlite_int64; + typedef unsigned __int64 sqlite_uint64; +#else + typedef long long int sqlite_int64; + typedef unsigned long long int sqlite_uint64; +#endif +typedef sqlite_int64 sqlite3_int64; +typedef sqlite_uint64 sqlite3_uint64; + +/* +** If compiling for a processor that lacks floating point support, +** substitute integer for floating-point +*/ +#ifdef SQLITE_OMIT_FLOATING_POINT +# define double sqlite3_int64 +#endif + +/* +** CAPI3REF: Closing A Database Connection {F12010} +** +** {F12011} The sqlite3_close() interfaces destroys an [sqlite3] object +** allocated by a prior call to [sqlite3_open()], [sqlite3_open16()], or +** [sqlite3_open_v2()]. {F12012} Sqlite3_close() releases all +** memory used by the connection and closes all open files. {END}. +** +** {F12013} If the database connection contains +** [sqlite3_stmt | prepared statements] that have not been finalized +** by [sqlite3_finalize()], then sqlite3_close() returns SQLITE_BUSY +** and leaves the connection open. {F12014} Giving sqlite3_close() +** a NULL pointer is a harmless no-op. {END} +** +** {U12015} Passing this routine a database connection that has already been +** closed results in undefined behavior. {U12016} If other interfaces that +** reference the same database connection are pending (either in the +** same thread or in different threads) when this routine is called, +** then the behavior is undefined and is almost certainly undesirable. +*/ +int sqlite3_close(sqlite3 *); + +/* +** The type for a callback function. +** This is legacy and deprecated. It is included for historical +** compatibility and is not documented. +*/ +typedef int (*sqlite3_callback)(void*,int,char**, char**); + +/* +** CAPI3REF: One-Step Query Execution Interface {F12100} +** +** {F12101} The sqlite3_exec() interface evaluates zero or more +** UTF-8 encoded, semicolon-separated SQL statements in the zero-terminated +** string of its second argument. {F12102} The SQL +** statements are evaluated in the context of the database connection +** specified by in the first argument. +** {F12103} SQL statements are prepared one by one using +** [sqlite3_prepare()] or the equivalent, evaluated +** using one or more calls to [sqlite3_step()], then destroyed +** using [sqlite3_finalize()]. {F12104} The return value of +** sqlite3_exec() is SQLITE_OK if all SQL statement run +** successfully. +** +** {F12105} If one or more of the SQL statements handed to +** sqlite3_exec() are queries, then +** the callback function specified by the 3rd parameter is +** invoked once for each row of the query result. {F12106} +** If the callback returns a non-zero value then the query +** is aborted, all subsequent SQL statements +** are skipped and the sqlite3_exec() function returns the [SQLITE_ABORT]. +** +** {F12107} The 4th parameter to sqlite3_exec() is an arbitrary pointer +** that is passed through to the callback function as its first parameter. +** +** {F12108} The 2nd parameter to the callback function is the number of +** columns in the query result. {F12109} The 3rd parameter to the callback +** is an array of pointers to strings holding the values for each column +** as extracted using [sqlite3_column_text()]. NULL values in the result +** set result in a NULL pointer. All other value are in their UTF-8 +** string representation. {F12117} +** The 4th parameter to the callback is an array of strings +** obtained using [sqlite3_column_name()] and holding +** the names of each column, also in UTF-8. +** +** {F12110} The callback function may be NULL, even for queries. A NULL +** callback is not an error. It just means that no callback +** will be invoked. +** +** {F12112} If an error occurs while parsing or evaluating the SQL +** then an appropriate error message is written into memory obtained +** from [sqlite3_malloc()] and *errmsg is made to point to that message +** assuming errmsg is not NULL. +** {U12113} The calling function is responsible for freeing the memory +** using [sqlite3_free()]. +** {F12116} If [sqlite3_malloc()] fails while attempting to generate +** the error message, *errmsg is set to NULL. +** {F12114} If errmsg is NULL then no attempt is made to generate an +** error message. Is the return code SQLITE_NOMEM or the original +** error code? What happens if there are multiple errors? +** Do we get code for the first error, or is the choice of reported +** error arbitrary? +** +** {F12115} The return value is is SQLITE_OK if there are no errors and +** some other [SQLITE_OK | return code] if there is an error. +** The particular return value depends on the type of error. {END} +*/ +int sqlite3_exec( + sqlite3*, /* An open database */ + const char *sql, /* SQL to be evaluted */ + int (*callback)(void*,int,char**,char**), /* Callback function */ + void *, /* 1st argument to callback */ + char **errmsg /* Error msg written here */ +); + +/* +** CAPI3REF: Result Codes {F10210} +** KEYWORDS: SQLITE_OK +** +** Many SQLite functions return an integer result code from the set shown +** above in order to indicates success or failure. +** +** {F10211} The result codes shown here are the only ones returned +** by SQLite in its default configuration. {F10212} However, the +** [sqlite3_extended_result_codes()] API can be used to set a database +** connectoin to return more detailed result codes. {END} +** +** See also: [SQLITE_IOERR_READ | extended result codes] +** +*/ +#define SQLITE_OK 0 /* Successful result */ +/* beginning-of-error-codes */ +#define SQLITE_ERROR 1 /* SQL error or missing database */ +#define SQLITE_INTERNAL 2 /* Internal logic error in SQLite */ +#define SQLITE_PERM 3 /* Access permission denied */ +#define SQLITE_ABORT 4 /* Callback routine requested an abort */ +#define SQLITE_BUSY 5 /* The database file is locked */ +#define SQLITE_LOCKED 6 /* A table in the database is locked */ +#define SQLITE_NOMEM 7 /* A malloc() failed */ +#define SQLITE_READONLY 8 /* Attempt to write a readonly database */ +#define SQLITE_INTERRUPT 9 /* Operation terminated by sqlite3_interrupt()*/ +#define SQLITE_IOERR 10 /* Some kind of disk I/O error occurred */ +#define SQLITE_CORRUPT 11 /* The database disk image is malformed */ +#define SQLITE_NOTFOUND 12 /* NOT USED. Table or record not found */ +#define SQLITE_FULL 13 /* Insertion failed because database is full */ +#define SQLITE_CANTOPEN 14 /* Unable to open the database file */ +#define SQLITE_PROTOCOL 15 /* NOT USED. Database lock protocol error */ +#define SQLITE_EMPTY 16 /* Database is empty */ +#define SQLITE_SCHEMA 17 /* The database schema changed */ +#define SQLITE_TOOBIG 18 /* String or BLOB exceeds size limit */ +#define SQLITE_CONSTRAINT 19 /* Abort due to constraint violation */ +#define SQLITE_MISMATCH 20 /* Data type mismatch */ +#define SQLITE_MISUSE 21 /* Library used incorrectly */ +#define SQLITE_NOLFS 22 /* Uses OS features not supported on host */ +#define SQLITE_AUTH 23 /* Authorization denied */ +#define SQLITE_FORMAT 24 /* Auxiliary database format error */ +#define SQLITE_RANGE 25 /* 2nd parameter to sqlite3_bind out of range */ +#define SQLITE_NOTADB 26 /* File opened that is not a database file */ +#define SQLITE_ROW 100 /* sqlite3_step() has another row ready */ +#define SQLITE_DONE 101 /* sqlite3_step() has finished executing */ +/* end-of-error-codes */ + +/* +** CAPI3REF: Extended Result Codes {F10220} +** +** In its default configuration, SQLite API routines return one of 26 integer +** [SQLITE_OK | result codes]. However, experience has shown that +** many of these result codes are too course-grained. They do not provide as +** much information about problems as programmers might like. In an effort to +** address this, newer versions of SQLite (version 3.3.8 and later) include +** support for additional result codes that provide more detailed information +** about errors. {F10221} The extended result codes are enabled or disabled +** for each database connection using the [sqlite3_extended_result_codes()] +** API. {END} +** +** Some of the available extended result codes are listed above. +** We expect the number of extended result codes will be expand +** over time. {U10422} Software that uses extended result codes should expect +** to see new result codes in future releases of SQLite. {END} +** +** {F10223} The symbolic name for an extended result code always contains +** a related primary result code as a prefix. {F10224} Primary result +** codes contain a single "_" character. {F10225} Extended result codes +** contain two or more "_" characters. {F10226} The numeric value of an +** extended result code can be converted to its +** corresponding primary result code by masking off the lower 8 bytes. {END} +** +** The SQLITE_OK result code will never be extended. It will always +** be exactly zero. +*/ +#define SQLITE_IOERR_READ (SQLITE_IOERR | (1<<8)) +#define SQLITE_IOERR_SHORT_READ (SQLITE_IOERR | (2<<8)) +#define SQLITE_IOERR_WRITE (SQLITE_IOERR | (3<<8)) +#define SQLITE_IOERR_FSYNC (SQLITE_IOERR | (4<<8)) +#define SQLITE_IOERR_DIR_FSYNC (SQLITE_IOERR | (5<<8)) +#define SQLITE_IOERR_TRUNCATE (SQLITE_IOERR | (6<<8)) +#define SQLITE_IOERR_FSTAT (SQLITE_IOERR | (7<<8)) +#define SQLITE_IOERR_UNLOCK (SQLITE_IOERR | (8<<8)) +#define SQLITE_IOERR_RDLOCK (SQLITE_IOERR | (9<<8)) +#define SQLITE_IOERR_DELETE (SQLITE_IOERR | (10<<8)) +#define SQLITE_IOERR_BLOCKED (SQLITE_IOERR | (11<<8)) +#define SQLITE_IOERR_NOMEM (SQLITE_IOERR | (12<<8)) + +/* +** CAPI3REF: Flags For File Open Operations {F10230} +** +** {F10231} Some combination of the these bit values are used as the +** third argument to the [sqlite3_open_v2()] interface and +** as fourth argument to the xOpen method of the +** [sqlite3_vfs] object. +*/ +#define SQLITE_OPEN_READONLY 0x00000001 +#define SQLITE_OPEN_READWRITE 0x00000002 +#define SQLITE_OPEN_CREATE 0x00000004 +#define SQLITE_OPEN_DELETEONCLOSE 0x00000008 +#define SQLITE_OPEN_EXCLUSIVE 0x00000010 +#define SQLITE_OPEN_MAIN_DB 0x00000100 +#define SQLITE_OPEN_TEMP_DB 0x00000200 +#define SQLITE_OPEN_TRANSIENT_DB 0x00000400 +#define SQLITE_OPEN_MAIN_JOURNAL 0x00000800 +#define SQLITE_OPEN_TEMP_JOURNAL 0x00001000 +#define SQLITE_OPEN_SUBJOURNAL 0x00002000 +#define SQLITE_OPEN_MASTER_JOURNAL 0x00004000 + +/* +** CAPI3REF: Device Characteristics {F10240} +** +** {F10241} The xDeviceCapabilities method of the [sqlite3_io_methods] +** object returns an integer which is a vector of the these +** bit values expressing I/O characteristics of the mass storage +** device that holds the file that the [sqlite3_io_methods] +** refers to. {END} +** +** {F10242} The SQLITE_IOCAP_ATOMIC property means that all writes of +** any size are atomic. {F10243} The SQLITE_IOCAP_ATOMICnnn values +** mean that writes of blocks that are nnn bytes in size and +** are aligned to an address which is an integer multiple of +** nnn are atomic. {F10244} The SQLITE_IOCAP_SAFE_APPEND value means +** that when data is appended to a file, the data is appended +** first then the size of the file is extended, never the other +** way around. {F10245} The SQLITE_IOCAP_SEQUENTIAL property means that +** information is written to disk in the same order as calls +** to xWrite(). +*/ +#define SQLITE_IOCAP_ATOMIC 0x00000001 +#define SQLITE_IOCAP_ATOMIC512 0x00000002 +#define SQLITE_IOCAP_ATOMIC1K 0x00000004 +#define SQLITE_IOCAP_ATOMIC2K 0x00000008 +#define SQLITE_IOCAP_ATOMIC4K 0x00000010 +#define SQLITE_IOCAP_ATOMIC8K 0x00000020 +#define SQLITE_IOCAP_ATOMIC16K 0x00000040 +#define SQLITE_IOCAP_ATOMIC32K 0x00000080 +#define SQLITE_IOCAP_ATOMIC64K 0x00000100 +#define SQLITE_IOCAP_SAFE_APPEND 0x00000200 +#define SQLITE_IOCAP_SEQUENTIAL 0x00000400 + +/* +** CAPI3REF: File Locking Levels {F10250} +** +** {F10251} SQLite uses one of the following integer values as the second +** argument to calls it makes to the xLock() and xUnlock() methods +** of an [sqlite3_io_methods] object. {END} +*/ +#define SQLITE_LOCK_NONE 0 +#define SQLITE_LOCK_SHARED 1 +#define SQLITE_LOCK_RESERVED 2 +#define SQLITE_LOCK_PENDING 3 +#define SQLITE_LOCK_EXCLUSIVE 4 + +/* +** CAPI3REF: Synchronization Type Flags {F10260} +** +** {F10261} When SQLite invokes the xSync() method of an +** [sqlite3_io_methods] object it uses a combination of the +** these integer values as the second argument. +** +** {F10262} When the SQLITE_SYNC_DATAONLY flag is used, it means that the +** sync operation only needs to flush data to mass storage. Inode +** information need not be flushed. {F10263} The SQLITE_SYNC_NORMAL means +** to use normal fsync() semantics. {F10264} The SQLITE_SYNC_FULL flag means +** to use Mac OS-X style fullsync instead of fsync(). +*/ +#define SQLITE_SYNC_NORMAL 0x00002 +#define SQLITE_SYNC_FULL 0x00003 +#define SQLITE_SYNC_DATAONLY 0x00010 + + +/* +** CAPI3REF: OS Interface Open File Handle {F11110} +** +** An [sqlite3_file] object represents an open file in the OS +** interface layer. Individual OS interface implementations will +** want to subclass this object by appending additional fields +** for their own use. The pMethods entry is a pointer to an +** [sqlite3_io_methods] object that defines methods for performing +** I/O operations on the open file. +*/ +typedef struct sqlite3_file sqlite3_file; +struct sqlite3_file { + const struct sqlite3_io_methods *pMethods; /* Methods for an open file */ +}; + +/* +** CAPI3REF: OS Interface File Virtual Methods Object {F11120} +** +** Every file opened by the [sqlite3_vfs] xOpen method contains a pointer to +** an instance of the this object. This object defines the +** methods used to perform various operations against the open file. +** +** The flags argument to xSync may be one of [SQLITE_SYNC_NORMAL] or +** [SQLITE_SYNC_FULL]. The first choice is the normal fsync(). +* The second choice is an +** OS-X style fullsync. The SQLITE_SYNC_DATA flag may be ORed in to +** indicate that only the data of the file and not its inode needs to be +** synced. +** +** The integer values to xLock() and xUnlock() are one of +**
    +**
  • [SQLITE_LOCK_NONE], +**
  • [SQLITE_LOCK_SHARED], +**
  • [SQLITE_LOCK_RESERVED], +**
  • [SQLITE_LOCK_PENDING], or +**
  • [SQLITE_LOCK_EXCLUSIVE]. +**
+** xLock() increases the lock. xUnlock() decreases the lock. +** The xCheckReservedLock() method looks +** to see if any database connection, either in this +** process or in some other process, is holding an RESERVED, +** PENDING, or EXCLUSIVE lock on the file. It returns true +** if such a lock exists and false if not. +** +** The xFileControl() method is a generic interface that allows custom +** VFS implementations to directly control an open file using the +** [sqlite3_file_control()] interface. The second "op" argument +** is an integer opcode. The third +** argument is a generic pointer which is intended to be a pointer +** to a structure that may contain arguments or space in which to +** write return values. Potential uses for xFileControl() might be +** functions to enable blocking locks with timeouts, to change the +** locking strategy (for example to use dot-file locks), to inquire +** about the status of a lock, or to break stale locks. The SQLite +** core reserves opcodes less than 100 for its own use. +** A [SQLITE_FCNTL_LOCKSTATE | list of opcodes] less than 100 is available. +** Applications that define a custom xFileControl method should use opcodes +** greater than 100 to avoid conflicts. +** +** The xSectorSize() method returns the sector size of the +** device that underlies the file. The sector size is the +** minimum write that can be performed without disturbing +** other bytes in the file. The xDeviceCharacteristics() +** method returns a bit vector describing behaviors of the +** underlying device: +** +**
    +**
  • [SQLITE_IOCAP_ATOMIC] +**
  • [SQLITE_IOCAP_ATOMIC512] +**
  • [SQLITE_IOCAP_ATOMIC1K] +**
  • [SQLITE_IOCAP_ATOMIC2K] +**
  • [SQLITE_IOCAP_ATOMIC4K] +**
  • [SQLITE_IOCAP_ATOMIC8K] +**
  • [SQLITE_IOCAP_ATOMIC16K] +**
  • [SQLITE_IOCAP_ATOMIC32K] +**
  • [SQLITE_IOCAP_ATOMIC64K] +**
  • [SQLITE_IOCAP_SAFE_APPEND] +**
  • [SQLITE_IOCAP_SEQUENTIAL] +**
+** +** The SQLITE_IOCAP_ATOMIC property means that all writes of +** any size are atomic. The SQLITE_IOCAP_ATOMICnnn values +** mean that writes of blocks that are nnn bytes in size and +** are aligned to an address which is an integer multiple of +** nnn are atomic. The SQLITE_IOCAP_SAFE_APPEND value means +** that when data is appended to a file, the data is appended +** first then the size of the file is extended, never the other +** way around. The SQLITE_IOCAP_SEQUENTIAL property means that +** information is written to disk in the same order as calls +** to xWrite(). +*/ +typedef struct sqlite3_io_methods sqlite3_io_methods; +struct sqlite3_io_methods { + int iVersion; + int (*xClose)(sqlite3_file*); + int (*xRead)(sqlite3_file*, void*, int iAmt, sqlite3_int64 iOfst); + int (*xWrite)(sqlite3_file*, const void*, int iAmt, sqlite3_int64 iOfst); + int (*xTruncate)(sqlite3_file*, sqlite3_int64 size); + int (*xSync)(sqlite3_file*, int flags); + int (*xFileSize)(sqlite3_file*, sqlite3_int64 *pSize); + int (*xLock)(sqlite3_file*, int); + int (*xUnlock)(sqlite3_file*, int); + int (*xCheckReservedLock)(sqlite3_file*); + int (*xFileControl)(sqlite3_file*, int op, void *pArg); + int (*xSectorSize)(sqlite3_file*); + int (*xDeviceCharacteristics)(sqlite3_file*); + /* Additional methods may be added in future releases */ +}; + +/* +** CAPI3REF: Standard File Control Opcodes {F11310} +** +** These integer constants are opcodes for the xFileControl method +** of the [sqlite3_io_methods] object and to the [sqlite3_file_control()] +** interface. +** +** {F11311} The [SQLITE_FCNTL_LOCKSTATE] opcode is used for debugging. This +** opcode cases the xFileControl method to write the current state of +** the lock (one of [SQLITE_LOCK_NONE], [SQLITE_LOCK_SHARED], +** [SQLITE_LOCK_RESERVED], [SQLITE_LOCK_PENDING], or [SQLITE_LOCK_EXCLUSIVE]) +** into an integer that the pArg argument points to. {F11312} This capability +** is used during testing and only needs to be supported when SQLITE_TEST +** is defined. +*/ +#define SQLITE_FCNTL_LOCKSTATE 1 + +/* +** CAPI3REF: Mutex Handle {F17110} +** +** The mutex module within SQLite defines [sqlite3_mutex] to be an +** abstract type for a mutex object. {F17111} The SQLite core never looks +** at the internal representation of an [sqlite3_mutex]. {END} It only +** deals with pointers to the [sqlite3_mutex] object. +** +** Mutexes are created using [sqlite3_mutex_alloc()]. +*/ +typedef struct sqlite3_mutex sqlite3_mutex; + +/* +** CAPI3REF: OS Interface Object {F11140} +** +** An instance of this object defines the interface between the +** SQLite core and the underlying operating system. The "vfs" +** in the name of the object stands for "virtual file system". +** +** The iVersion field is initially 1 but may be larger for future +** versions of SQLite. Additional fields may be appended to this +** object when the iVersion value is increased. +** +** The szOsFile field is the size of the subclassed [sqlite3_file] +** structure used by this VFS. mxPathname is the maximum length of +** a pathname in this VFS. +** +** Registered vfs modules are kept on a linked list formed by +** the pNext pointer. The [sqlite3_vfs_register()] +** and [sqlite3_vfs_unregister()] interfaces manage this list +** in a thread-safe way. The [sqlite3_vfs_find()] interface +** searches the list. +** +** The pNext field is the only fields in the sqlite3_vfs +** structure that SQLite will ever modify. SQLite will only access +** or modify this field while holding a particular static mutex. +** The application should never modify anything within the sqlite3_vfs +** object once the object has been registered. +** +** The zName field holds the name of the VFS module. The name must +** be unique across all VFS modules. +** +** {F11141} SQLite will guarantee that the zFilename string passed to +** xOpen() is a full pathname as generated by xFullPathname() and +** that the string will be valid and unchanged until xClose() is +** called. {END} So the [sqlite3_file] can store a pointer to the +** filename if it needs to remember the filename for some reason. +** +** {F11142} The flags argument to xOpen() includes all bits set in +** the flags argument to [sqlite3_open_v2()]. Or if [sqlite3_open()] +** or [sqlite3_open16()] is used, then flags includes at least +** [SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE]. {END} +** If xOpen() opens a file read-only then it sets *pOutFlags to +** include [SQLITE_OPEN_READONLY]. Other bits in *pOutFlags may be +** set. +** +** {F11143} SQLite will also add one of the following flags to the xOpen() +** call, depending on the object being opened: +** +**
    +**
  • [SQLITE_OPEN_MAIN_DB] +**
  • [SQLITE_OPEN_MAIN_JOURNAL] +**
  • [SQLITE_OPEN_TEMP_DB] +**
  • [SQLITE_OPEN_TEMP_JOURNAL] +**
  • [SQLITE_OPEN_TRANSIENT_DB] +**
  • [SQLITE_OPEN_SUBJOURNAL] +**
  • [SQLITE_OPEN_MASTER_JOURNAL] +**
{END} +** +** The file I/O implementation can use the object type flags to +** changes the way it deals with files. For example, an application +** that does not care about crash recovery or rollback, might make +** the open of a journal file a no-op. Writes to this journal are +** also a no-op. Any attempt to read the journal return SQLITE_IOERR. +** Or the implementation might recognize the a database file will +** be doing page-aligned sector reads and writes in a random order +** and set up its I/O subsystem accordingly. +** +** {F11144} SQLite might also add one of the following flags to the xOpen +** method: +** +**
    +**
  • [SQLITE_OPEN_DELETEONCLOSE] +**
  • [SQLITE_OPEN_EXCLUSIVE] +**
+** +** {F11145} The [SQLITE_OPEN_DELETEONCLOSE] flag means the file should be +** deleted when it is closed. {F11146} The [SQLITE_OPEN_DELETEONCLOSE] +** will be set for TEMP databases, journals and for subjournals. +** {F11147} The [SQLITE_OPEN_EXCLUSIVE] flag means the file should be opened +** for exclusive access. This flag is set for all files except +** for the main database file. {END} +** +** {F11148} At least szOsFile bytes of memory is allocated by SQLite +** to hold the [sqlite3_file] structure passed as the third +** argument to xOpen. {END} The xOpen method does not have to +** allocate the structure; it should just fill it in. +** +** {F11149} The flags argument to xAccess() may be [SQLITE_ACCESS_EXISTS] +** to test for the existance of a file, +** or [SQLITE_ACCESS_READWRITE] to test to see +** if a file is readable and writable, or [SQLITE_ACCESS_READ] +** to test to see if a file is at least readable. {END} The file can be a +** directory. +** +** {F11150} SQLite will always allocate at least mxPathname+1 byte for +** the output buffers for xGetTempname and xFullPathname. {F11151} The exact +** size of the output buffer is also passed as a parameter to both +** methods. {END} If the output buffer is not large enough, SQLITE_CANTOPEN +** should be returned. As this is handled as a fatal error by SQLite, +** vfs implementations should endeavor to prevent this by setting +** mxPathname to a sufficiently large value. +** +** The xRandomness(), xSleep(), and xCurrentTime() interfaces +** are not strictly a part of the filesystem, but they are +** included in the VFS structure for completeness. +** The xRandomness() function attempts to return nBytes bytes +** of good-quality randomness into zOut. The return value is +** the actual number of bytes of randomness obtained. The +** xSleep() method cause the calling thread to sleep for at +** least the number of microseconds given. The xCurrentTime() +** method returns a Julian Day Number for the current date and +** time. +*/ +typedef struct sqlite3_vfs sqlite3_vfs; +struct sqlite3_vfs { + int iVersion; /* Structure version number */ + int szOsFile; /* Size of subclassed sqlite3_file */ + int mxPathname; /* Maximum file pathname length */ + sqlite3_vfs *pNext; /* Next registered VFS */ + const char *zName; /* Name of this virtual file system */ + void *pAppData; /* Pointer to application-specific data */ + int (*xOpen)(sqlite3_vfs*, const char *zName, sqlite3_file*, + int flags, int *pOutFlags); + int (*xDelete)(sqlite3_vfs*, const char *zName, int syncDir); + int (*xAccess)(sqlite3_vfs*, const char *zName, int flags); + int (*xGetTempname)(sqlite3_vfs*, int nOut, char *zOut); + int (*xFullPathname)(sqlite3_vfs*, const char *zName, int nOut, char *zOut); + void *(*xDlOpen)(sqlite3_vfs*, const char *zFilename); + void (*xDlError)(sqlite3_vfs*, int nByte, char *zErrMsg); + void *(*xDlSym)(sqlite3_vfs*,void*, const char *zSymbol); + void (*xDlClose)(sqlite3_vfs*, void*); + int (*xRandomness)(sqlite3_vfs*, int nByte, char *zOut); + int (*xSleep)(sqlite3_vfs*, int microseconds); + int (*xCurrentTime)(sqlite3_vfs*, double*); + /* New fields may be appended in figure versions. The iVersion + ** value will increment whenever this happens. */ +}; + +/* +** CAPI3REF: Flags for the xAccess VFS method {F11190} +** +** {F11191} These integer constants can be used as the third parameter to +** the xAccess method of an [sqlite3_vfs] object. {END} They determine +** the kind of what kind of permissions the xAccess method is +** looking for. {F11192} With SQLITE_ACCESS_EXISTS, the xAccess method +** simply checks to see if the file exists. {F11193} With +** SQLITE_ACCESS_READWRITE, the xAccess method checks to see +** if the file is both readable and writable. {F11194} With +** SQLITE_ACCESS_READ the xAccess method +** checks to see if the file is readable. +*/ +#define SQLITE_ACCESS_EXISTS 0 +#define SQLITE_ACCESS_READWRITE 1 +#define SQLITE_ACCESS_READ 2 + +/* +** CAPI3REF: Enable Or Disable Extended Result Codes {F12200} +** +** {F12201} The sqlite3_extended_result_codes() routine enables or disables the +** [SQLITE_IOERR_READ | extended result codes] feature on a database +** connection if its 2nd parameter is +** non-zero or zero, respectively. {F12202} +** By default, SQLite API routines return one of only 26 integer +** [SQLITE_OK | result codes]. {F12203} When extended result codes +** are enabled by this routine, the repetoire of result codes can be +** much larger and can (hopefully) provide more detailed information +** about the cause of an error. +** +** {F12204} The second argument is a boolean value that turns extended result +** codes on and off. {F12205} Extended result codes are off by default for +** backwards compatibility with older versions of SQLite. +*/ +int sqlite3_extended_result_codes(sqlite3*, int onoff); + +/* +** CAPI3REF: Last Insert Rowid {F12220} +** +** {F12221} Each entry in an SQLite table has a unique 64-bit signed +** integer key called the "rowid". {F12222} The rowid is always available +** as an undeclared column named ROWID, OID, or _ROWID_ as long as those +** names are not also used by explicitly declared columns. {F12223} If +** the table has a column of type INTEGER PRIMARY KEY then that column +** is another an alias for the rowid. +** +** {F12224} This routine returns the rowid of the most recent +** successful INSERT into the database from the database connection +** shown in the first argument. {F12225} If no successful inserts +** have ever occurred on this database connection, zero is returned. +** +** {F12226} If an INSERT occurs within a trigger, then the rowid of the +** inserted row is returned by this routine as long as the trigger +** is running. {F12227} But once the trigger terminates, the value returned +** by this routine reverts to the last value inserted before the +** trigger fired. +** +** {F12228} An INSERT that fails due to a constraint violation is not a +** successful insert and does not change the value returned by this +** routine. {F12229} Thus INSERT OR FAIL, INSERT OR IGNORE, INSERT OR ROLLBACK, +** and INSERT OR ABORT make no changes to the return value of this +** routine when their insertion fails. {F12231} When INSERT OR REPLACE +** encounters a constraint violation, it does not fail. The +** INSERT continues to completion after deleting rows that caused +** the constraint problem so INSERT OR REPLACE will always change +** the return value of this interface. +** +** {UF12232} If another thread does a new insert on the same database connection +** while this routine is running and thus changes the last insert rowid, +** then the return value of this routine is undefined. +*/ +sqlite3_int64 sqlite3_last_insert_rowid(sqlite3*); + +/* +** CAPI3REF: Count The Number Of Rows Modified {F12240} +** +** {F12241} This function returns the number of database rows that were changed +** or inserted or deleted by the most recently completed SQL statement +** on the connection specified by the first parameter. {F12242} Only +** changes that are directly specified by the INSERT, UPDATE, or +** DELETE statement are counted. Auxiliary changes caused by +** triggers are not counted. {F12243} Use the [sqlite3_total_changes()] function +** to find the total number of changes including changes caused by triggers. +** +** {F12244} Within the body of a trigger, the sqlite3_changes() interface +** can be called to find the number of +** changes in the most recently completed INSERT, UPDATE, or DELETE +** statement within the body of the same trigger. +** +** {F12245} All changes are counted, even if they are later undone by a +** ROLLBACK or ABORT. {F12246} Except, changes associated with creating and +** dropping tables are not counted. +** +** {F12247} If a callback invokes [sqlite3_exec()] or [sqlite3_step()] +** recursively, then the changes in the inner, recursive call are +** counted together with the changes in the outer call. +** +** {F12248} SQLite implements the command "DELETE FROM table" without +** a WHERE clause by dropping and recreating the table. (This is much +** faster than going through and deleting individual elements from the +** table.) Because of this optimization, the change count for +** "DELETE FROM table" will be zero regardless of the number of elements +** that were originally in the table. {F12251} To get an accurate count +** of the number of rows deleted, use +** "DELETE FROM table WHERE 1" instead. +** +** {UF12252} If another thread makes changes on the same database connection +** while this routine is running then the return value of this routine +** is undefined. +*/ +int sqlite3_changes(sqlite3*); + +/* +** CAPI3REF: Total Number Of Rows Modified {F12260} +*** +** {F12261} This function returns the number of database rows that have been +** modified by INSERT, UPDATE or DELETE statements since the database handle +** was opened. {F12262} The count includes UPDATE, INSERT and DELETE +** statements executed as part of trigger programs. {F12263} All changes +** are counted as soon as the statement that makes them is completed +** (when the statement handle is passed to [sqlite3_reset()] or +** [sqlite3_finalize()]). {END} +** +** See also the [sqlite3_change()] interface. +** +** {F12265} SQLite implements the command "DELETE FROM table" without +** a WHERE clause by dropping and recreating the table. (This is much +** faster than going +** through and deleting individual elements form the table.) Because of +** this optimization, the change count for "DELETE FROM table" will be +** zero regardless of the number of elements that were originally in the +** table. To get an accurate count of the number of rows deleted, use +** "DELETE FROM table WHERE 1" instead. +** +** {U12264} If another thread makes changes on the same database connection +** while this routine is running then the return value of this routine +** is undefined. {END} +*/ +int sqlite3_total_changes(sqlite3*); + +/* +** CAPI3REF: Interrupt A Long-Running Query {F12270} +** +** {F12271} This function causes any pending database operation to abort and +** return at its earliest opportunity. {END} This routine is typically +** called in response to a user action such as pressing "Cancel" +** or Ctrl-C where the user wants a long query operation to halt +** immediately. +** +** {F12272} It is safe to call this routine from a thread different from the +** thread that is currently running the database operation. {U12273} But it +** is not safe to call this routine with a database connection that +** is closed or might close before sqlite3_interrupt() returns. +** +** If an SQL is very nearly finished at the time when sqlite3_interrupt() +** is called, then it might not have an opportunity to be interrupted. +** It might continue to completion. +** {F12274} The SQL operation that is interrupted will return +** [SQLITE_INTERRUPT]. {F12275} If the interrupted SQL operation is an +** INSERT, UPDATE, or DELETE that is inside an explicit transaction, +** then the entire transaction will be rolled back automatically. +** {F12276} A call to sqlite3_interrupt() has no effect on SQL statements +** that are started after sqlite3_interrupt() returns. +*/ +void sqlite3_interrupt(sqlite3*); + +/* +** CAPI3REF: Determine If An SQL Statement Is Complete {F10510} +** +** These routines are useful for command-line input to determine if the +** currently entered text seems to form complete a SQL statement or +** if additional input is needed before sending the text into +** SQLite for parsing. These routines return true if the input string +** appears to be a complete SQL statement. A statement is judged to be +** complete if it ends with a semicolon and is not a fragment of a +** CREATE TRIGGER statement. These routines do not parse the SQL and +** so will not detect syntactically incorrect SQL. +** +** {F10511} These functions return true if the given input string +** ends with a semicolon optionally followed by whitespace or +** comments. {F10512} For sqlite3_complete(), +** the parameter must be a zero-terminated UTF-8 string. {F10513} For +** sqlite3_complete16(), a zero-terminated machine byte order UTF-16 string +** is required. {F10514} These routines return false if the terminal +** semicolon is within a comment, a string literal or a quoted identifier +** (in other words if the final semicolon is not really a separate token +** but part of a larger token) or if the final semicolon is +** in between the BEGIN and END keywords of a CREATE TRIGGER statement. +** {END} +*/ +int sqlite3_complete(const char *sql); +int sqlite3_complete16(const void *sql); + +/* +** CAPI3REF: Register A Callback To Handle SQLITE_BUSY Errors {F12310} +** +** {F12311} This routine identifies a callback function that might be +** invoked whenever an attempt is made to open a database table +** that another thread or process has locked. +** {F12312} If the busy callback is NULL, then [SQLITE_BUSY] +** or [SQLITE_IOERR_BLOCKED] +** is returned immediately upon encountering the lock. +** {F12313} If the busy callback is not NULL, then the +** callback will be invoked with two arguments. {F12314} The +** first argument to the handler is a copy of the void* pointer which +** is the third argument to this routine. {F12315} The second argument to +** the handler is the number of times that the busy handler has +** been invoked for this locking event. {F12316} If the +** busy callback returns 0, then no additional attempts are made to +** access the database and [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED] is returned. +** {F12317} If the callback returns non-zero, then another attempt +** is made to open the database for reading and the cycle repeats. +** +** The presence of a busy handler does not guarantee that +** it will be invoked when there is lock contention. {F12319} +** If SQLite determines that invoking the busy handler could result in +** a deadlock, it will go ahead and return [SQLITE_BUSY] or +** [SQLITE_IOERR_BLOCKED] instead of invoking the +** busy handler. {END} +** Consider a scenario where one process is holding a read lock that +** it is trying to promote to a reserved lock and +** a second process is holding a reserved lock that it is trying +** to promote to an exclusive lock. The first process cannot proceed +** because it is blocked by the second and the second process cannot +** proceed because it is blocked by the first. If both processes +** invoke the busy handlers, neither will make any progress. Therefore, +** SQLite returns [SQLITE_BUSY] for the first process, hoping that this +** will induce the first process to release its read lock and allow +** the second process to proceed. +** +** {F12321} The default busy callback is NULL. {END} +** +** {F12322} The [SQLITE_BUSY] error is converted to [SQLITE_IOERR_BLOCKED] +** when SQLite is in the middle of a large transaction where all the +** changes will not fit into the in-memory cache. {F12323} SQLite will +** already hold a RESERVED lock on the database file, but it needs +** to promote this lock to EXCLUSIVE so that it can spill cache +** pages into the database file without harm to concurrent +** readers. {F12324} If it is unable to promote the lock, then the in-memory +** cache will be left in an inconsistent state and so the error +** code is promoted from the relatively benign [SQLITE_BUSY] to +** the more severe [SQLITE_IOERR_BLOCKED]. {F12325} This error code promotion +** forces an automatic rollback of the changes. {END} See the +** +** CorruptionFollowingBusyError wiki page for a discussion of why +** this is important. +** +** {F12326} Sqlite is re-entrant, so the busy handler may start a new +** query. {END} (It is not clear why anyone would every want to do this, +** but it is allowed, in theory.) {U12327} But the busy handler may not +** close the database. Closing the database from a busy handler will delete +** data structures out from under the executing query and will +** probably result in a segmentation fault or other runtime error. {END} +** +** {F12328} There can only be a single busy handler defined for each database +** connection. Setting a new busy handler clears any previous one. +** {F12329} Note that calling [sqlite3_busy_timeout()] will also set or clear +** the busy handler. +** +** {F12331} When operating in [sqlite3_enable_shared_cache | shared cache mode], +** only a single busy handler can be defined for each database file. +** So if two database connections share a single cache, then changing +** the busy handler on one connection will also change the busy +** handler in the other connection. {F12332} The busy handler is invoked +** in the thread that was running when the lock contention occurs. +*/ +int sqlite3_busy_handler(sqlite3*, int(*)(void*,int), void*); + +/* +** CAPI3REF: Set A Busy Timeout {F12340} +** +** {F12341} This routine sets a [sqlite3_busy_handler | busy handler] +** that sleeps for a while when a +** table is locked. {F12342} The handler will sleep multiple times until +** at least "ms" milliseconds of sleeping have been done. {F12343} After +** "ms" milliseconds of sleeping, the handler returns 0 which +** causes [sqlite3_step()] to return [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED]. +** +** {F12344} Calling this routine with an argument less than or equal to zero +** turns off all busy handlers. +** +** {F12345} There can only be a single busy handler for a particular database +** connection. If another busy handler was defined +** (using [sqlite3_busy_handler()]) prior to calling +** this routine, that other busy handler is cleared. +*/ +int sqlite3_busy_timeout(sqlite3*, int ms); + +/* +** CAPI3REF: Convenience Routines For Running Queries {F12370} +** +** This next routine is a convenience wrapper around [sqlite3_exec()]. +** {F12371} Instead of invoking a user-supplied callback for each row of the +** result, this routine remembers each row of the result in memory +** obtained from [sqlite3_malloc()], then returns all of the result after the +** query has finished. {F12372} +** +** As an example, suppose the query result where this table: +** +**
+**        Name        | Age
+**        -----------------------
+**        Alice       | 43
+**        Bob         | 28
+**        Cindy       | 21
+** 
+** +** If the 3rd argument were &azResult then after the function returns +** azResult will contain the following data: +** +**
+**        azResult[0] = "Name";
+**        azResult[1] = "Age";
+**        azResult[2] = "Alice";
+**        azResult[3] = "43";
+**        azResult[4] = "Bob";
+**        azResult[5] = "28";
+**        azResult[6] = "Cindy";
+**        azResult[7] = "21";
+** 
+** +** Notice that there is an extra row of data containing the column +** headers. But the *nrow return value is still 3. *ncolumn is +** set to 2. In general, the number of values inserted into azResult +** will be ((*nrow) + 1)*(*ncolumn). +** +** {U12374} After the calling function has finished using the result, it should +** pass the result data pointer to sqlite3_free_table() in order to +** release the memory that was malloc-ed. Because of the way the +** [sqlite3_malloc()] happens, the calling function must not try to call +** [sqlite3_free()] directly. Only [sqlite3_free_table()] is able to release +** the memory properly and safely. {END} +** +** {F12373} The return value of this routine is the same as +** from [sqlite3_exec()]. +*/ +int sqlite3_get_table( + sqlite3*, /* An open database */ + const char *sql, /* SQL to be executed */ + char ***resultp, /* Result written to a char *[] that this points to */ + int *nrow, /* Number of result rows written here */ + int *ncolumn, /* Number of result columns written here */ + char **errmsg /* Error msg written here */ +); +void sqlite3_free_table(char **result); + +/* +** CAPI3REF: Formatted String Printing Functions {F17400} +** +** These routines are workalikes of the "printf()" family of functions +** from the standard C library. +** +** {F17401} The sqlite3_mprintf() and sqlite3_vmprintf() routines write their +** results into memory obtained from [sqlite3_malloc()]. +** {U17402} The strings returned by these two routines should be +** released by [sqlite3_free()]. {F17403} Both routines return a +** NULL pointer if [sqlite3_malloc()] is unable to allocate enough +** memory to hold the resulting string. +** +** {F17404} In sqlite3_snprintf() routine is similar to "snprintf()" from +** the standard C library. The result is written into the +** buffer supplied as the second parameter whose size is given by +** the first parameter. {END} Note that the order of the +** first two parameters is reversed from snprintf(). This is an +** historical accident that cannot be fixed without breaking +** backwards compatibility. {F17405} Note also that sqlite3_snprintf() +** returns a pointer to its buffer instead of the number of +** characters actually written into the buffer. {END} We admit that +** the number of characters written would be a more useful return +** value but we cannot change the implementation of sqlite3_snprintf() +** now without breaking compatibility. +** +** {F17406} As long as the buffer size is greater than zero, sqlite3_snprintf() +** guarantees that the buffer is always zero-terminated. {F17407} The first +** parameter "n" is the total size of the buffer, including space for +** the zero terminator. {END} So the longest string that can be completely +** written will be n-1 characters. +** +** These routines all implement some additional formatting +** options that are useful for constructing SQL statements. +** All of the usual printf formatting options apply. In addition, there +** is are "%q", "%Q", and "%z" options. +** +** {F17410} The %q option works like %s in that it substitutes a null-terminated +** string from the argument list. But %q also doubles every '\'' character. +** %q is designed for use inside a string literal. {END} By doubling each '\'' +** character it escapes that character and allows it to be inserted into +** the string. +** +** For example, so some string variable contains text as follows: +** +**
+**  char *zText = "It's a happy day!";
+** 
+** +** One can use this text in an SQL statement as follows: +** +**
+**  char *zSQL = sqlite3_mprintf("INSERT INTO table VALUES('%q')", zText);
+**  sqlite3_exec(db, zSQL, 0, 0, 0);
+**  sqlite3_free(zSQL);
+** 
+** +** Because the %q format string is used, the '\'' character in zText +** is escaped and the SQL generated is as follows: +** +**
+**  INSERT INTO table1 VALUES('It''s a happy day!')
+** 
+** +** This is correct. Had we used %s instead of %q, the generated SQL +** would have looked like this: +** +**
+**  INSERT INTO table1 VALUES('It's a happy day!');
+** 
+** +** This second example is an SQL syntax error. As a general rule you +** should always use %q instead of %s when inserting text into a string +** literal. +** +** {F17411} The %Q option works like %q except it also adds single quotes around +** the outside of the total string. Or if the parameter in the argument +** list is a NULL pointer, %Q substitutes the text "NULL" (without single +** quotes) in place of the %Q option. {END} So, for example, one could say: +** +**
+**  char *zSQL = sqlite3_mprintf("INSERT INTO table VALUES(%Q)", zText);
+**  sqlite3_exec(db, zSQL, 0, 0, 0);
+**  sqlite3_free(zSQL);
+** 
+** +** The code above will render a correct SQL statement in the zSQL +** variable even if the zText variable is a NULL pointer. +** +** {F17412} The "%z" formatting option works exactly like "%s" with the +** addition that after the string has been read and copied into +** the result, [sqlite3_free()] is called on the input string. {END} +*/ +char *sqlite3_mprintf(const char*,...); +char *sqlite3_vmprintf(const char*, va_list); +char *sqlite3_snprintf(int,char*,const char*, ...); + +/* +** CAPI3REF: Memory Allocation Subsystem {F17300} +** +** {F17301} The SQLite core uses these three routines for all of its own +** internal memory allocation needs. {END} "Core" in the previous sentence +** does not include operating-system specific VFS implementation. The +** windows VFS uses native malloc and free for some operations. +** +** {F17302} The sqlite3_malloc() routine returns a pointer to a block +** of memory at least N bytes in length, where N is the parameter. +** {F17303} If sqlite3_malloc() is unable to obtain sufficient free +** memory, it returns a NULL pointer. {F17304} If the parameter N to +** sqlite3_malloc() is zero or negative then sqlite3_malloc() returns +** a NULL pointer. +** +** {F17305} Calling sqlite3_free() with a pointer previously returned +** by sqlite3_malloc() or sqlite3_realloc() releases that memory so +** that it might be reused. {F17306} The sqlite3_free() routine is +** a no-op if is called with a NULL pointer. Passing a NULL pointer +** to sqlite3_free() is harmless. {U17307} After being freed, memory +** should neither be read nor written. Even reading previously freed +** memory might result in a segmentation fault or other severe error. +** {U17309} Memory corruption, a segmentation fault, or other severe error +** might result if sqlite3_free() is called with a non-NULL pointer that +** was not obtained from sqlite3_malloc() or sqlite3_free(). +** +** {F17310} The sqlite3_realloc() interface attempts to resize a +** prior memory allocation to be at least N bytes, where N is the +** second parameter. The memory allocation to be resized is the first +** parameter. {F17311} If the first parameter to sqlite3_realloc() +** is a NULL pointer then its behavior is identical to calling +** sqlite3_malloc(N) where N is the second parameter to sqlite3_realloc(). +** {F17312} If the second parameter to sqlite3_realloc() is zero or +** negative then the behavior is exactly the same as calling +** sqlite3_free(P) where P is the first parameter to sqlite3_realloc(). +** {F17313} Sqlite3_realloc() returns a pointer to a memory allocation +** of at least N bytes in size or NULL if sufficient memory is unavailable. +** {F17314} If M is the size of the prior allocation, then min(N,M) bytes +** of the prior allocation are copied into the beginning of buffer returned +** by sqlite3_realloc() and the prior allocation is freed. +** {F17315} If sqlite3_realloc() returns NULL, then the prior allocation +** is not freed. +** +** {F17316} The memory returned by sqlite3_malloc() and sqlite3_realloc() +** is always aligned to at least an 8 byte boundary. {END} +** +** {F17381} The default implementation +** of the memory allocation subsystem uses the malloc(), realloc() +** and free() provided by the standard C library. {F17382} However, if +** SQLite is compiled with the following C preprocessor macro +** +**
SQLITE_MEMORY_SIZE=NNN
+** +** where NNN is an integer, then SQLite create a static +** array of at least NNN bytes in size and use that array +** for all of its dynamic memory allocation needs. {END} Additional +** memory allocator options may be added in future releases. +** +** In SQLite version 3.5.0 and 3.5.1, it was possible to define +** the SQLITE_OMIT_MEMORY_ALLOCATION which would cause the built-in +** implementation of these routines to be omitted. That capability +** is no longer provided. Only built-in memory allocators can be +** used. +** +** The windows OS interface layer calls +** the system malloc() and free() directly when converting +** filenames between the UTF-8 encoding used by SQLite +** and whatever filename encoding is used by the particular windows +** installation. Memory allocation errors are detected, but +** they are reported back as [SQLITE_CANTOPEN] or +** [SQLITE_IOERR] rather than [SQLITE_NOMEM]. +*/ +void *sqlite3_malloc(int); +void *sqlite3_realloc(void*, int); +void sqlite3_free(void*); + +/* +** CAPI3REF: Memory Allocator Statistics {F17370} +** +** In addition to the basic three allocation routines +** [sqlite3_malloc()], [sqlite3_free()], and [sqlite3_realloc()], +** the memory allocation subsystem included with the SQLite +** sources provides the interfaces shown here. +** +** {F17371} The sqlite3_memory_used() routine returns the +** number of bytes of memory currently outstanding (malloced but not freed). +** {F17372} The value returned by sqlite3_memory_used() includes +** any overhead added by SQLite, but not overhead added by the +** library malloc() that backs the sqlite3_malloc() implementation. +** {F17373} The sqlite3_memory_highwater() routines returns the +** maximum number of bytes that have been outstanding at any time +** since the highwater mark was last reset. +** {F17374} The byte count returned by sqlite3_memory_highwater() +** uses the same byte counting rules as sqlite3_memory_used(). {END} +** In other words, overhead added internally by SQLite is counted, +** but overhead from the underlying system malloc is not. +** {F17375} If the parameter to sqlite3_memory_highwater() is true, +** then the highwater mark is reset to the current value of +** sqlite3_memory_used() and the prior highwater mark (before the +** reset) is returned. {F17376} If the parameter to +** sqlite3_memory_highwater() is zero, then the highwater mark is +** unchanged. +*/ +sqlite3_int64 sqlite3_memory_used(void); +sqlite3_int64 sqlite3_memory_highwater(int resetFlag); + +/* +** CAPI3REF: Compile-Time Authorization Callbacks {F12500} +** +** {F12501} This routine registers a authorizer callback with a particular +** database connection, supplied in the first argument. {F12502} +** The authorizer callback is invoked as SQL statements are being compiled +** by [sqlite3_prepare()] or its variants [sqlite3_prepare_v2()], +** [sqlite3_prepare16()] and [sqlite3_prepare16_v2()]. {F12503} At various +** points during the compilation process, as logic is being created +** to perform various actions, the authorizer callback is invoked to +** see if those actions are allowed. The authorizer callback should +** return SQLITE_OK to allow the action, [SQLITE_IGNORE] to disallow the +** specific action but allow the SQL statement to continue to be +** compiled, or [SQLITE_DENY] to cause the entire SQL statement to be +** rejected with an error. {F12504} If the authorizer callback returns +** any value other than [SQLITE_IGNORE], [SQLITE_OK], or [SQLITE_DENY] +** then [sqlite3_prepare_v2()] or equivalent call that triggered +** the authorizer shall +** fail with an SQLITE_ERROR error code and an appropriate error message. {END} +** +** When the callback returns [SQLITE_OK], that means the operation +** requested is ok. {F12505} When the callback returns [SQLITE_DENY], the +** [sqlite3_prepare_v2()] or equivalent call that triggered the +** authorizer shall fail +** with an SQLITE_ERROR error code and an error message explaining that +** access is denied. {F12506} If the authorizer code (the 2nd parameter +** to the authorizer callback is anything other than [SQLITE_READ], then +** a return of [SQLITE_IGNORE] has the same effect as [SQLITE_DENY]. +** If the authorizer code is [SQLITE_READ] and the callback returns +** [SQLITE_IGNORE] then the prepared statement is constructed to +** insert a NULL value in place of the table column that would have +** been read if [SQLITE_OK] had been returned. {END} +** +** {F12510} The first parameter to the authorizer callback is a copy of +** the third parameter to the sqlite3_set_authorizer() interface. +** {F12511} The second parameter to the callback is an integer +** [SQLITE_COPY | action code] that specifies the particular action +** to be authorized. {END} The available action codes are +** [SQLITE_COPY | documented separately]. {F12512} The third through sixth +** parameters to the callback are zero-terminated strings that contain +** additional details about the action to be authorized. {END} +** +** An authorizer is used when preparing SQL statements from an untrusted +** source, to ensure that the SQL statements do not try to access data +** that they are not allowed to see, or that they do not try to +** execute malicious statements that damage the database. For +** example, an application may allow a user to enter arbitrary +** SQL queries for evaluation by a database. But the application does +** not want the user to be able to make arbitrary changes to the +** database. An authorizer could then be put in place while the +** user-entered SQL is being prepared that disallows everything +** except SELECT statements. +** +** {F12520} Only a single authorizer can be in place on a database connection +** at a time. Each call to sqlite3_set_authorizer overrides the +** previous call. {F12521} A NULL authorizer means that no authorization +** callback is invoked. {F12522} The default authorizer is NULL. {END} +** +** Note that the authorizer callback is invoked only during +** [sqlite3_prepare()] or its variants. {F12523} Authorization is not +** performed during statement evaluation in [sqlite3_step()]. {END} +*/ +int sqlite3_set_authorizer( + sqlite3*, + int (*xAuth)(void*,int,const char*,const char*,const char*,const char*), + void *pUserData +); + +/* +** CAPI3REF: Authorizer Return Codes {F12590} +** +** The [sqlite3_set_authorizer | authorizer callback function] must +** return either [SQLITE_OK] or one of these two constants in order +** to signal SQLite whether or not the action is permitted. See the +** [sqlite3_set_authorizer | authorizer documentation] for additional +** information. +*/ +#define SQLITE_DENY 1 /* Abort the SQL statement with an error */ +#define SQLITE_IGNORE 2 /* Don't allow access, but don't generate an error */ + +/* +** CAPI3REF: Authorizer Action Codes {F12550} +** +** The [sqlite3_set_authorizer()] interface registers a callback function +** that is invoked to authorizer certain SQL statement actions. {F12551} The +** second parameter to the callback is an integer code that specifies +** what action is being authorized. These are the integer action codes that +** the authorizer callback may be passed. {END} +** +** These action code values signify what kind of operation is to be +** authorized. {F12552} The 3rd and 4th parameters to the authorization +** callback function will be parameters or NULL depending on which of these +** codes is used as the second parameter. {F12553} The 5th parameter to the +** authorizer callback is the name of the database ("main", "temp", +** etc.) if applicable. {F12554} The 6th parameter to the authorizer callback +** is the name of the inner-most trigger or view that is responsible for +** the access attempt or NULL if this access attempt is directly from +** top-level SQL code. +*/ +/******************************************* 3rd ************ 4th ***********/ +#define SQLITE_CREATE_INDEX 1 /* Index Name Table Name */ +#define SQLITE_CREATE_TABLE 2 /* Table Name NULL */ +#define SQLITE_CREATE_TEMP_INDEX 3 /* Index Name Table Name */ +#define SQLITE_CREATE_TEMP_TABLE 4 /* Table Name NULL */ +#define SQLITE_CREATE_TEMP_TRIGGER 5 /* Trigger Name Table Name */ +#define SQLITE_CREATE_TEMP_VIEW 6 /* View Name NULL */ +#define SQLITE_CREATE_TRIGGER 7 /* Trigger Name Table Name */ +#define SQLITE_CREATE_VIEW 8 /* View Name NULL */ +#define SQLITE_DELETE 9 /* Table Name NULL */ +#define SQLITE_DROP_INDEX 10 /* Index Name Table Name */ +#define SQLITE_DROP_TABLE 11 /* Table Name NULL */ +#define SQLITE_DROP_TEMP_INDEX 12 /* Index Name Table Name */ +#define SQLITE_DROP_TEMP_TABLE 13 /* Table Name NULL */ +#define SQLITE_DROP_TEMP_TRIGGER 14 /* Trigger Name Table Name */ +#define SQLITE_DROP_TEMP_VIEW 15 /* View Name NULL */ +#define SQLITE_DROP_TRIGGER 16 /* Trigger Name Table Name */ +#define SQLITE_DROP_VIEW 17 /* View Name NULL */ +#define SQLITE_INSERT 18 /* Table Name NULL */ +#define SQLITE_PRAGMA 19 /* Pragma Name 1st arg or NULL */ +#define SQLITE_READ 20 /* Table Name Column Name */ +#define SQLITE_SELECT 21 /* NULL NULL */ +#define SQLITE_TRANSACTION 22 /* NULL NULL */ +#define SQLITE_UPDATE 23 /* Table Name Column Name */ +#define SQLITE_ATTACH 24 /* Filename NULL */ +#define SQLITE_DETACH 25 /* Database Name NULL */ +#define SQLITE_ALTER_TABLE 26 /* Database Name Table Name */ +#define SQLITE_REINDEX 27 /* Index Name NULL */ +#define SQLITE_ANALYZE 28 /* Table Name NULL */ +#define SQLITE_CREATE_VTABLE 29 /* Table Name Module Name */ +#define SQLITE_DROP_VTABLE 30 /* Table Name Module Name */ +#define SQLITE_FUNCTION 31 /* Function Name NULL */ +#define SQLITE_COPY 0 /* No longer used */ + +/* +** CAPI3REF: Tracing And Profiling Functions {F12280} +** +** These routines register callback functions that can be used for +** tracing and profiling the execution of SQL statements. +** +** {F12281} The callback function registered by sqlite3_trace() is invoked +** at the first [sqlite3_step()] for the evaluation of an SQL statement. +** {F12282} Only a single trace callback can be registered at a time. +** Each call to sqlite3_trace() overrides the previous. {F12283} A +** NULL callback for sqlite3_trace() disables tracing. {F12284} The +** first argument to the trace callback is a copy of the pointer which +** was the 3rd argument to sqlite3_trace. {F12285} The second argument +** to the trace callback is a zero-terminated UTF8 string containing +** the original text of the SQL statement as it was passed into +** [sqlite3_prepare_v2()] or the equivalent. {END} Note that the +** host parameter are not expanded in the SQL statement text. +** +** {F12287} The callback function registered by sqlite3_profile() is invoked +** as each SQL statement finishes. {F12288} The first parameter to the +** profile callback is a copy of the 3rd parameter to sqlite3_profile(). +** {F12289} The second parameter to the profile callback is a +** zero-terminated UTF-8 string that contains the complete text of +** the SQL statement as it was processed by [sqlite3_prepare_v2()] or +** the equivalent. {F12290} The third parameter to the profile +** callback is an estimate of the number of nanoseconds of +** wall-clock time required to run the SQL statement from start +** to finish. {END} +** +** The sqlite3_profile() API is currently considered experimental and +** is subject to change. +*/ +void *sqlite3_trace(sqlite3*, void(*xTrace)(void*,const char*), void*); +void *sqlite3_profile(sqlite3*, + void(*xProfile)(void*,const char*,sqlite3_uint64), void*); + +/* +** CAPI3REF: Query Progress Callbacks {F12910} +** +** {F12911} This routine configures a callback function - the +** progress callback - that is invoked periodically during long +** running calls to [sqlite3_exec()], [sqlite3_step()] and +** [sqlite3_get_table()]. {END} An example use for this +** interface is to keep a GUI updated during a large query. +** +** {F12912} The progress callback is invoked once for every N virtual +** machine opcodes, where N is the second argument to this function. +** {F12913} The progress callback itself is identified by the third +** argument to this function. {F12914} The fourth argument to this +** function is a void pointer passed to the progress callback +** function each time it is invoked. {END} +** +** {F12915} If a call to [sqlite3_exec()], [sqlite3_step()], or +** [sqlite3_get_table()] results in fewer than N opcodes being executed, +** then the progress callback is never invoked. {END} +** +** {F12916} Only a single progress callback function may be registered for each +** open database connection. Every call to sqlite3_progress_handler() +** overwrites the results of the previous call. {F12917} +** To remove the progress callback altogether, pass NULL as the third +** argument to this function. {END} +** +** {F12918} If the progress callback returns a result other than 0, then +** the current query is immediately terminated and any database changes +** rolled back. {F12919} +** The containing [sqlite3_exec()], [sqlite3_step()], or +** [sqlite3_get_table()] call returns SQLITE_INTERRUPT. {END} This feature +** can be used, for example, to implement the "Cancel" button on a +** progress dialog box in a GUI. +*/ +void sqlite3_progress_handler(sqlite3*, int, int(*)(void*), void*); + +/* +** CAPI3REF: Opening A New Database Connection {F12700} +** +** {F12701} These routines open an SQLite database file whose name +** is given by the filename argument. +** {F12702} The filename argument is interpreted as UTF-8 +** for [sqlite3_open()] and [sqlite3_open_v2()] and as UTF-16 +** in the native byte order for [sqlite3_open16()]. +** {F12703} An [sqlite3*] handle is returned in *ppDb, even +** if an error occurs. {F12723} (Exception: if SQLite is unable +** to allocate memory to hold the [sqlite3] object, a NULL will +** be written into *ppDb instead of a pointer to the [sqlite3] object.) +** {F12704} If the database is opened (and/or created) +** successfully, then [SQLITE_OK] is returned. {F12705} Otherwise an +** error code is returned. {F12706} The +** [sqlite3_errmsg()] or [sqlite3_errmsg16()] routines can be used to obtain +** an English language description of the error. +** +** {F12707} The default encoding for the database will be UTF-8 if +** [sqlite3_open()] or [sqlite3_open_v2()] is called and +** UTF-16 in the native byte order if [sqlite3_open16()] is used. +** +** {F12708} Whether or not an error occurs when it is opened, resources +** associated with the [sqlite3*] handle should be released by passing it +** to [sqlite3_close()] when it is no longer required. +** +** {F12709} The [sqlite3_open_v2()] interface works like [sqlite3_open()] +** except that it acccepts two additional parameters for additional control +** over the new database connection. {F12710} The flags parameter can be +** one of: +** +**
    +**
  1. [SQLITE_OPEN_READONLY] +**
  2. [SQLITE_OPEN_READWRITE] +**
  3. [SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE] +**
+** +** {F12711} The first value opens the database read-only. +** {F12712} If the database does not previously exist, an error is returned. +** {F12713} The second option opens +** the database for reading and writing if possible, or reading only if +** if the file is write protected. {F12714} In either case the database +** must already exist or an error is returned. {F12715} The third option +** opens the database for reading and writing and creates it if it does +** not already exist. {F12716} +** The third options is behavior that is always used for [sqlite3_open()] +** and [sqlite3_open16()]. +** +** {F12717} If the filename is ":memory:", then an private +** in-memory database is created for the connection. {F12718} This in-memory +** database will vanish when the database connection is closed. {END} Future +** version of SQLite might make use of additional special filenames +** that begin with the ":" character. It is recommended that +** when a database filename really does begin with +** ":" that you prefix the filename with a pathname like "./" to +** avoid ambiguity. +** +** {F12719} If the filename is an empty string, then a private temporary +** on-disk database will be created. {F12720} This private database will be +** automatically deleted as soon as the database connection is closed. +** +** {F12721} The fourth parameter to sqlite3_open_v2() is the name of the +** [sqlite3_vfs] object that defines the operating system +** interface that the new database connection should use. {F12722} If the +** fourth parameter is a NULL pointer then the default [sqlite3_vfs] +** object is used. {END} +** +** Note to windows users: The encoding used for the filename argument +** of [sqlite3_open()] and [sqlite3_open_v2()] must be UTF-8, not whatever +** codepage is currently defined. Filenames containing international +** characters must be converted to UTF-8 prior to passing them into +** [sqlite3_open()] or [sqlite3_open_v2()]. +*/ +int sqlite3_open( + const char *filename, /* Database filename (UTF-8) */ + sqlite3 **ppDb /* OUT: SQLite db handle */ +); +int sqlite3_open16( + const void *filename, /* Database filename (UTF-16) */ + sqlite3 **ppDb /* OUT: SQLite db handle */ +); +int sqlite3_open_v2( + const char *filename, /* Database filename (UTF-8) */ + sqlite3 **ppDb, /* OUT: SQLite db handle */ + int flags, /* Flags */ + const char *zVfs /* Name of VFS module to use */ +); + +/* +** CAPI3REF: Error Codes And Messages {F12800} +** +** {F12801} The sqlite3_errcode() interface returns the numeric +** [SQLITE_OK | result code] or [SQLITE_IOERR_READ | extended result code] +** for the most recent failed sqlite3_* API call associated +** with [sqlite3] handle 'db'. {U12802} If a prior API call failed but the +** most recent API call succeeded, the return value from sqlite3_errcode() +** is undefined. {END} +** +** {F12803} The sqlite3_errmsg() and sqlite3_errmsg16() return English-language +** text that describes the error, as either UTF8 or UTF16 respectively. +** {F12804} Memory to hold the error message string is managed internally. +** {U12805} The +** string may be overwritten or deallocated by subsequent calls to SQLite +** interface functions. {END} +** +** {F12806} Calls to many sqlite3_* functions set the error code and +** string returned by [sqlite3_errcode()], [sqlite3_errmsg()], and +** [sqlite3_errmsg16()] overwriting the previous values. {F12807} +** Except, calls to [sqlite3_errcode()], +** [sqlite3_errmsg()], and [sqlite3_errmsg16()] themselves do not affect the +** results of future invocations. {F12808} Calls to API routines that +** do not return an error code (example: [sqlite3_data_count()]) do not +** change the error code returned by this routine. {F12809} Interfaces that +** are not associated with a specific database connection (examples: +** [sqlite3_mprintf()] or [sqlite3_enable_shared_cache()] do not change +** the return code. {END} +** +** {F12810} Assuming no other intervening sqlite3_* API calls are made, +** the error code returned by this function is associated with the same +** error as the strings returned by [sqlite3_errmsg()] and [sqlite3_errmsg16()]. +*/ +int sqlite3_errcode(sqlite3 *db); +const char *sqlite3_errmsg(sqlite3*); +const void *sqlite3_errmsg16(sqlite3*); + +/* +** CAPI3REF: SQL Statement Object {F13000} +** +** An instance of this object represent single SQL statements. This +** object is variously known as a "prepared statement" or a +** "compiled SQL statement" or simply as a "statement". +** +** The life of a statement object goes something like this: +** +**
    +**
  1. Create the object using [sqlite3_prepare_v2()] or a related +** function. +**
  2. Bind values to host parameters using +** [sqlite3_bind_blob | sqlite3_bind_* interfaces]. +**
  3. Run the SQL by calling [sqlite3_step()] one or more times. +**
  4. Reset the statement using [sqlite3_reset()] then go back +** to step 2. Do this zero or more times. +**
  5. Destroy the object using [sqlite3_finalize()]. +**
+** +** Refer to documentation on individual methods above for additional +** information. +*/ +typedef struct sqlite3_stmt sqlite3_stmt; + +/* +** CAPI3REF: Compiling An SQL Statement {F13010} +** +** To execute an SQL query, it must first be compiled into a byte-code +** program using one of these routines. +** +** {F13011} The first argument "db" is an [sqlite3 | SQLite database handle] +** obtained from a prior call to [sqlite3_open()], [sqlite3_open_v2()] +** or [sqlite3_open16()]. {F13012} +** The second argument "zSql" is the statement to be compiled, encoded +** as either UTF-8 or UTF-16. The sqlite3_prepare() and sqlite3_prepare_v2() +** interfaces uses UTF-8 and sqlite3_prepare16() and sqlite3_prepare16_v2() +** use UTF-16. {END} +** +** {F13013} If the nByte argument is less +** than zero, then zSql is read up to the first zero terminator. +** {F13014} If nByte is non-negative, then it is the maximum number of +** bytes read from zSql. When nByte is non-negative, the +** zSql string ends at either the first '\000' or '\u0000' character or +** until the nByte-th byte, whichever comes first. {END} +** +** {F13015} *pzTail is made to point to the first byte past the end of the +** first SQL statement in zSql. These routines only compiles the first +** statement in zSql, so *pzTail is left pointing to what remains +** uncompiled. {END} +** +** {F13016} *ppStmt is left pointing to a compiled +** [sqlite3_stmt | SQL statement structure] that can be +** executed using [sqlite3_step()]. Or if there is an error, *ppStmt may be +** set to NULL. {F13017} If the input text contains no SQL (if the input +** is and empty string or a comment) then *ppStmt is set to NULL. +** {U13018} The calling procedure is responsible for deleting the +** compiled SQL statement +** using [sqlite3_finalize()] after it has finished with it. +** +** {F13019} On success, [SQLITE_OK] is returned. Otherwise an +** [SQLITE_ERROR | error code] is returned. {END} +** +** The sqlite3_prepare_v2() and sqlite3_prepare16_v2() interfaces are +** recommended for all new programs. The two older interfaces are retained +** for backwards compatibility, but their use is discouraged. +** {F13020} In the "v2" interfaces, the prepared statement +** that is returned (the [sqlite3_stmt] object) contains a copy of the +** original SQL text. {END} This causes the [sqlite3_step()] interface to +** behave a differently in two ways: +** +**
    +**
  1. {F13022} +** If the database schema changes, instead of returning [SQLITE_SCHEMA] as it +** always used to do, [sqlite3_step()] will automatically recompile the SQL +** statement and try to run it again. {F12023} If the schema has changed in +** a way that makes the statement no longer valid, [sqlite3_step()] will still +** return [SQLITE_SCHEMA]. {END} But unlike the legacy behavior, +** [SQLITE_SCHEMA] is now a fatal error. {F12024} Calling +** [sqlite3_prepare_v2()] again will not make the +** error go away. {F12025} Note: use [sqlite3_errmsg()] to find the text +** of the parsing error that results in an [SQLITE_SCHEMA] return. {END} +**
  2. +** +**
  3. +** {F13030} When an error occurs, +** [sqlite3_step()] will return one of the detailed +** [SQLITE_ERROR | result codes] or +** [SQLITE_IOERR_READ | extended result codes]. {F13031} +** The legacy behavior was that [sqlite3_step()] would only return a generic +** [SQLITE_ERROR] result code and you would have to make a second call to +** [sqlite3_reset()] in order to find the underlying cause of the problem. +** {F13032} +** With the "v2" prepare interfaces, the underlying reason for the error is +** returned immediately. {END} +**
  4. +**
+*/ +int sqlite3_prepare( + sqlite3 *db, /* Database handle */ + const char *zSql, /* SQL statement, UTF-8 encoded */ + int nByte, /* Maximum length of zSql in bytes. */ + sqlite3_stmt **ppStmt, /* OUT: Statement handle */ + const char **pzTail /* OUT: Pointer to unused portion of zSql */ +); +int sqlite3_prepare_v2( + sqlite3 *db, /* Database handle */ + const char *zSql, /* SQL statement, UTF-8 encoded */ + int nByte, /* Maximum length of zSql in bytes. */ + sqlite3_stmt **ppStmt, /* OUT: Statement handle */ + const char **pzTail /* OUT: Pointer to unused portion of zSql */ +); +int sqlite3_prepare16( + sqlite3 *db, /* Database handle */ + const void *zSql, /* SQL statement, UTF-16 encoded */ + int nByte, /* Maximum length of zSql in bytes. */ + sqlite3_stmt **ppStmt, /* OUT: Statement handle */ + const void **pzTail /* OUT: Pointer to unused portion of zSql */ +); +int sqlite3_prepare16_v2( + sqlite3 *db, /* Database handle */ + const void *zSql, /* SQL statement, UTF-16 encoded */ + int nByte, /* Maximum length of zSql in bytes. */ + sqlite3_stmt **ppStmt, /* OUT: Statement handle */ + const void **pzTail /* OUT: Pointer to unused portion of zSql */ +); + +/* +** CAPIREF: Retrieving Statement SQL {F13100} +** +** {F13101} If the compiled SQL statement passed as an argument was +** compiled using either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()], +** then this function returns a pointer to a zero-terminated string +** containing a copy of the original SQL statement. {F13102} The +** pointer is valid until the statement +** is deleted using sqlite3_finalize(). +** {F13103} The string returned by sqlite3_sql() is always UTF8 even +** if a UTF16 string was originally entered using [sqlite3_prepare16_v2()] +** or the equivalent. +** +** {F13104} If the statement was compiled using either of the legacy +** interfaces [sqlite3_prepare()] or [sqlite3_prepare16()], this +** function returns NULL. +*/ +const char *sqlite3_sql(sqlite3_stmt *pStmt); + +/* +** CAPI3REF: Dynamically Typed Value Object {F15000} +** +** {F15001} SQLite uses the sqlite3_value object to represent all values +** that are or can be stored in a database table. {END} +** SQLite uses dynamic typing for the values it stores. +** {F15002} Values stored in sqlite3_value objects can be +** be integers, floating point values, strings, BLOBs, or NULL. +*/ +typedef struct Mem sqlite3_value; + +/* +** CAPI3REF: SQL Function Context Object {F16001} +** +** The context in which an SQL function executes is stored in an +** sqlite3_context object. {F16002} A pointer to an sqlite3_context +** object is always first parameter to application-defined SQL functions. +*/ +typedef struct sqlite3_context sqlite3_context; + +/* +** CAPI3REF: Binding Values To Prepared Statements {F13500} +** +** {F13501} In the SQL strings input to [sqlite3_prepare_v2()] and its +** variants, literals may be replace by a parameter in one +** of these forms: +** +**
    +**
  • ? +**
  • ?NNN +**
  • :AAA +**
  • @AAA +**
  • $VVV +**
+** +** In the parameter forms shown above NNN is an integer literal, +** AAA is an alphanumeric identifier and VVV is a variable name according +** to the syntax rules of the TCL programming language. {END} +** The values of these parameters (also called "host parameter names") +** can be set using the sqlite3_bind_*() routines defined here. +** +** {F13502} The first argument to the sqlite3_bind_*() routines always +** is a pointer to the [sqlite3_stmt] object returned from +** [sqlite3_prepare_v2()] or its variants. {F13503} The second +** argument is the index of the parameter to be set. {F13504} The +** first parameter has an index of 1. {F13505} When the same named +** parameter is used more than once, second and subsequent +** occurrences have the same index as the first occurrence. +** {F13506} The index for named parameters can be looked up using the +** [sqlite3_bind_parameter_name()] API if desired. {F13507} The index +** for "?NNN" parameters is the value of NNN. +** {F13508} The NNN value must be between 1 and the compile-time +** parameter SQLITE_MAX_VARIABLE_NUMBER (default value: 999). {END} +** See limits.html for additional information. +** +** {F13509} The third argument is the value to bind to the parameter. {END} +** +** {F13510} In those +** routines that have a fourth argument, its value is the number of bytes +** in the parameter. To be clear: the value is the number of bytes in the +** string, not the number of characters. {F13511} The number +** of bytes does not include the zero-terminator at the end of strings. +** {F13512} +** If the fourth parameter is negative, the length of the string is +** number of bytes up to the first zero terminator. {END} +** +** {F13513} +** The fifth argument to sqlite3_bind_blob(), sqlite3_bind_text(), and +** sqlite3_bind_text16() is a destructor used to dispose of the BLOB or +** text after SQLite has finished with it. {F13514} If the fifth argument is +** the special value [SQLITE_STATIC], then the library assumes that the +** information is in static, unmanaged space and does not need to be freed. +** {F13515} If the fifth argument has the value [SQLITE_TRANSIENT], then +** SQLite makes its own private copy of the data immediately, before +** the sqlite3_bind_*() routine returns. {END} +** +** {F13520} The sqlite3_bind_zeroblob() routine binds a BLOB of length N that +** is filled with zeros. {F13521} A zeroblob uses a fixed amount of memory +** (just an integer to hold it size) while it is being processed. {END} +** Zeroblobs are intended to serve as place-holders for BLOBs whose +** content is later written using +** [sqlite3_blob_open | increment BLOB I/O] routines. {F13522} A negative +** value for the zeroblob results in a zero-length BLOB. {END} +** +** {F13530} The sqlite3_bind_*() routines must be called after +** [sqlite3_prepare_v2()] (and its variants) or [sqlite3_reset()] and +** before [sqlite3_step()]. {F13531} +** Bindings are not cleared by the [sqlite3_reset()] routine. +** {F13532} Unbound parameters are interpreted as NULL. {END} +** +** {F13540} These routines return [SQLITE_OK] on success or an error code if +** anything goes wrong. {F13541} [SQLITE_RANGE] is returned if the parameter +** index is out of range. {F13542} [SQLITE_NOMEM] is returned if malloc fails. +** {F13543} [SQLITE_MISUSE] is returned if these routines are called on a +** virtual machine that is the wrong state or which has already been finalized. +*/ +int sqlite3_bind_blob(sqlite3_stmt*, int, const void*, int n, void(*)(void*)); +int sqlite3_bind_double(sqlite3_stmt*, int, double); +int sqlite3_bind_int(sqlite3_stmt*, int, int); +int sqlite3_bind_int64(sqlite3_stmt*, int, sqlite3_int64); +int sqlite3_bind_null(sqlite3_stmt*, int); +int sqlite3_bind_text(sqlite3_stmt*, int, const char*, int n, void(*)(void*)); +int sqlite3_bind_text16(sqlite3_stmt*, int, const void*, int, void(*)(void*)); +int sqlite3_bind_value(sqlite3_stmt*, int, const sqlite3_value*); +int sqlite3_bind_zeroblob(sqlite3_stmt*, int, int n); + +/* +** CAPI3REF: Number Of Host Parameters {F13600} +** +** {F13601} Return the largest host parameter index in the precompiled +** statement given as the argument. {F13602} When the host parameters +** are of the forms like ":AAA", "$VVV", "@AAA", or "?", +** then they are assigned sequential increasing numbers beginning +** with one, so the value returned is the number of parameters. +** {F13603} However +** if the same host parameter name is used multiple times, each occurrance +** is given the same number, so the value returned in that case is the number +** of unique host parameter names. {F13604} If host parameters of the +** form "?NNN" are used (where NNN is an integer) then there might be +** gaps in the numbering and the value returned by this interface is +** the index of the host parameter with the largest index value. {END} +** +** {U13605} The prepared statement must not be [sqlite3_finalize | finalized] +** prior to this routine returning. Otherwise the results are undefined +** and probably undesirable. +*/ +int sqlite3_bind_parameter_count(sqlite3_stmt*); + +/* +** CAPI3REF: Name Of A Host Parameter {F13620} +** +** {F13621} This routine returns a pointer to the name of the n-th +** parameter in a [sqlite3_stmt | prepared statement]. {F13622} +** Host parameters of the form ":AAA" or "@AAA" or "$VVV" have a name +** which is the string ":AAA" or "@AAA" or "$VVV". +** In other words, the initial ":" or "$" or "@" +** is included as part of the name. {F13626} +** Parameters of the form "?" or "?NNN" have no name. +** +** {F13623} The first host parameter has an index of 1, not 0. +** +** {F13624} If the value n is out of range or if the n-th parameter is +** nameless, then NULL is returned. {F13625} The returned string is +** always in the UTF-8 encoding even if the named parameter was +** originally specified as UTF-16 in [sqlite3_prepare16()] or +** [sqlite3_prepare16_v2()]. +*/ +const char *sqlite3_bind_parameter_name(sqlite3_stmt*, int); + +/* +** CAPI3REF: Index Of A Parameter With A Given Name {F13640} +** +** {F13641} This routine returns the index of a host parameter with the +** given name. {F13642} The name must match exactly. {F13643} +** If no parameter with the given name is found, return 0. +** {F13644} Parameter names must be UTF8. +*/ +int sqlite3_bind_parameter_index(sqlite3_stmt*, const char *zName); + +/* +** CAPI3REF: Reset All Bindings On A Prepared Statement {F13660} +** +** {F13661} Contrary to the intuition of many, [sqlite3_reset()] does not +** reset the [sqlite3_bind_blob | bindings] on a +** [sqlite3_stmt | prepared statement]. {F13662} Use this routine to +** reset all host parameters to NULL. +*/ +int sqlite3_clear_bindings(sqlite3_stmt*); + +/* +** CAPI3REF: Number Of Columns In A Result Set {F13710} +** +** {F13711} Return the number of columns in the result set returned by the +** [sqlite3_stmt | compiled SQL statement]. {F13712} This routine returns 0 +** if pStmt is an SQL statement that does not return data (for +** example an UPDATE). +*/ +int sqlite3_column_count(sqlite3_stmt *pStmt); + +/* +** CAPI3REF: Column Names In A Result Set {F13720} +** +** {F13721} These routines return the name assigned to a particular column +** in the result set of a SELECT statement. {F13722} The sqlite3_column_name() +** interface returns a pointer to a zero-terminated UTF8 string +** and sqlite3_column_name16() returns a pointer to a zero-terminated +** UTF16 string. {F13723} The first parameter is the +** [sqlite3_stmt | prepared statement] that implements the SELECT statement. +** The second parameter is the column number. The left-most column is +** number 0. +** +** {F13724} The returned string pointer is valid until either the +** [sqlite3_stmt | prepared statement] is destroyed by [sqlite3_finalize()] +** or until the next call sqlite3_column_name() or sqlite3_column_name16() +** on the same column. +** +** {F13725} If sqlite3_malloc() fails during the processing of either routine +** (for example during a conversion from UTF-8 to UTF-16) then a +** NULL pointer is returned. +*/ +const char *sqlite3_column_name(sqlite3_stmt*, int N); +const void *sqlite3_column_name16(sqlite3_stmt*, int N); + +/* +** CAPI3REF: Source Of Data In A Query Result {F13740} +** +** {F13741} These routines provide a means to determine what column of what +** table in which database a result of a SELECT statement comes from. +** {F13742} The name of the database or table or column can be returned as +** either a UTF8 or UTF16 string. {F13743} The _database_ routines return +** the database name, the _table_ routines return the table name, and +** the origin_ routines return the column name. {F13744} +** The returned string is valid until +** the [sqlite3_stmt | prepared statement] is destroyed using +** [sqlite3_finalize()] or until the same information is requested +** again in a different encoding. +** +** {F13745} The names returned are the original un-aliased names of the +** database, table, and column. +** +** {F13746} The first argument to the following calls is a +** [sqlite3_stmt | compiled SQL statement]. +** {F13747} These functions return information about the Nth column returned by +** the statement, where N is the second function argument. +** +** {F13748} If the Nth column returned by the statement is an expression +** or subquery and is not a column value, then all of these functions +** return NULL. {F13749} Otherwise, they return the +** name of the attached database, table and column that query result +** column was extracted from. +** +** {F13750} As with all other SQLite APIs, those postfixed with "16" return +** UTF-16 encoded strings, the other functions return UTF-8. {END} +** +** These APIs are only available if the library was compiled with the +** SQLITE_ENABLE_COLUMN_METADATA preprocessor symbol defined. +** +** {U13751} +** If two or more threads call one or more of these routines against the same +** prepared statement and column at the same time then the results are +** undefined. +*/ +const char *sqlite3_column_database_name(sqlite3_stmt*,int); +const void *sqlite3_column_database_name16(sqlite3_stmt*,int); +const char *sqlite3_column_table_name(sqlite3_stmt*,int); +const void *sqlite3_column_table_name16(sqlite3_stmt*,int); +const char *sqlite3_column_origin_name(sqlite3_stmt*,int); +const void *sqlite3_column_origin_name16(sqlite3_stmt*,int); + +/* +** CAPI3REF: Declared Datatype Of A Query Result {F13760} +** +** The first parameter is a [sqlite3_stmt | compiled SQL statement]. +** {F13761} If this statement is a SELECT statement and the Nth column of the +** returned result set of that SELECT is a table column (not an +** expression or subquery) then the declared type of the table +** column is returned. {F13762} If the Nth column of the result set is an +** expression or subquery, then a NULL pointer is returned. +** {F13763} The returned string is always UTF-8 encoded. {END} +** For example, in the database schema: +** +** CREATE TABLE t1(c1 VARIANT); +** +** And the following statement compiled: +** +** SELECT c1 + 1, c1 FROM t1; +** +** Then this routine would return the string "VARIANT" for the second +** result column (i==1), and a NULL pointer for the first result column +** (i==0). +** +** SQLite uses dynamic run-time typing. So just because a column +** is declared to contain a particular type does not mean that the +** data stored in that column is of the declared type. SQLite is +** strongly typed, but the typing is dynamic not static. Type +** is associated with individual values, not with the containers +** used to hold those values. +*/ +const char *sqlite3_column_decltype(sqlite3_stmt *, int i); +const void *sqlite3_column_decltype16(sqlite3_stmt*,int); + +/* +** CAPI3REF: Evaluate An SQL Statement {F13200} +** +** After an [sqlite3_stmt | SQL statement] has been prepared with a call +** to either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()] or to one of +** the legacy interfaces [sqlite3_prepare()] or [sqlite3_prepare16()], +** then this function must be called one or more times to evaluate the +** statement. +** +** The details of the behavior of this sqlite3_step() interface depend +** on whether the statement was prepared using the newer "v2" interface +** [sqlite3_prepare_v2()] and [sqlite3_prepare16_v2()] or the older legacy +** interface [sqlite3_prepare()] and [sqlite3_prepare16()]. The use of the +** new "v2" interface is recommended for new applications but the legacy +** interface will continue to be supported. +** +** In the lagacy interface, the return value will be either [SQLITE_BUSY], +** [SQLITE_DONE], [SQLITE_ROW], [SQLITE_ERROR], or [SQLITE_MISUSE]. +** With the "v2" interface, any of the other [SQLITE_OK | result code] +** or [SQLITE_IOERR_READ | extended result code] might be returned as +** well. +** +** [SQLITE_BUSY] means that the database engine was unable to acquire the +** database locks it needs to do its job. If the statement is a COMMIT +** or occurs outside of an explicit transaction, then you can retry the +** statement. If the statement is not a COMMIT and occurs within a +** explicit transaction then you should rollback the transaction before +** continuing. +** +** [SQLITE_DONE] means that the statement has finished executing +** successfully. sqlite3_step() should not be called again on this virtual +** machine without first calling [sqlite3_reset()] to reset the virtual +** machine back to its initial state. +** +** If the SQL statement being executed returns any data, then +** [SQLITE_ROW] is returned each time a new row of data is ready +** for processing by the caller. The values may be accessed using +** the [sqlite3_column_int | column access functions]. +** sqlite3_step() is called again to retrieve the next row of data. +** +** [SQLITE_ERROR] means that a run-time error (such as a constraint +** violation) has occurred. sqlite3_step() should not be called again on +** the VM. More information may be found by calling [sqlite3_errmsg()]. +** With the legacy interface, a more specific error code (example: +** [SQLITE_INTERRUPT], [SQLITE_SCHEMA], [SQLITE_CORRUPT], and so forth) +** can be obtained by calling [sqlite3_reset()] on the +** [sqlite3_stmt | prepared statement]. In the "v2" interface, +** the more specific error code is returned directly by sqlite3_step(). +** +** [SQLITE_MISUSE] means that the this routine was called inappropriately. +** Perhaps it was called on a [sqlite3_stmt | prepared statement] that has +** already been [sqlite3_finalize | finalized] or on one that had +** previously returned [SQLITE_ERROR] or [SQLITE_DONE]. Or it could +** be the case that the same database connection is being used by two or +** more threads at the same moment in time. +** +** Goofy Interface Alert: +** In the legacy interface, +** the sqlite3_step() API always returns a generic error code, +** [SQLITE_ERROR], following any error other than [SQLITE_BUSY] +** and [SQLITE_MISUSE]. You must call [sqlite3_reset()] or +** [sqlite3_finalize()] in order to find one of the specific +** [SQLITE_ERROR | result codes] that better describes the error. +** We admit that this is a goofy design. The problem has been fixed +** with the "v2" interface. If you prepare all of your SQL statements +** using either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()] instead +** of the legacy [sqlite3_prepare()] and [sqlite3_prepare16()], then the +** more specific [SQLITE_ERROR | result codes] are returned directly +** by sqlite3_step(). The use of the "v2" interface is recommended. +*/ +int sqlite3_step(sqlite3_stmt*); + +/* +** CAPI3REF: Number of columns in a result set {F13770} +** +** Return the number of values in the current row of the result set. +** +** {F13771} After a call to [sqlite3_step()] that returns [SQLITE_ROW], +** this routine +** will return the same value as the [sqlite3_column_count()] function. +** {F13772} +** After [sqlite3_step()] has returned an [SQLITE_DONE], [SQLITE_BUSY], or +** a [SQLITE_ERROR | error code], or before [sqlite3_step()] has been +** called on the [sqlite3_stmt | prepared statement] for the first time, +** this routine returns zero. +*/ +int sqlite3_data_count(sqlite3_stmt *pStmt); + +/* +** CAPI3REF: Fundamental Datatypes {F10265} +** +** {F10266}Every value in SQLite has one of five fundamental datatypes: +** +**
    +**
  • 64-bit signed integer +**
  • 64-bit IEEE floating point number +**
  • string +**
  • BLOB +**
  • NULL +**
{END} +** +** These constants are codes for each of those types. +** +** Note that the SQLITE_TEXT constant was also used in SQLite version 2 +** for a completely different meaning. Software that links against both +** SQLite version 2 and SQLite version 3 should use SQLITE3_TEXT not +** SQLITE_TEXT. +*/ +#define SQLITE_INTEGER 1 +#define SQLITE_FLOAT 2 +#define SQLITE_BLOB 4 +#define SQLITE_NULL 5 +#ifdef SQLITE_TEXT +# undef SQLITE_TEXT +#else +# define SQLITE_TEXT 3 +#endif +#define SQLITE3_TEXT 3 + +/* +** CAPI3REF: Results Values From A Query {F13800} +** +** These routines return information about +** a single column of the current result row of a query. In every +** case the first argument is a pointer to the +** [sqlite3_stmt | SQL statement] that is being +** evaluated (the [sqlite3_stmt*] that was returned from +** [sqlite3_prepare_v2()] or one of its variants) and +** the second argument is the index of the column for which information +** should be returned. The left-most column of the result set +** has an index of 0. +** +** If the SQL statement is not currently point to a valid row, or if the +** the column index is out of range, the result is undefined. +** These routines may only be called when the most recent call to +** [sqlite3_step()] has returned [SQLITE_ROW] and neither +** [sqlite3_reset()] nor [sqlite3_finalize()] has been call subsequently. +** If any of these routines are called after [sqlite3_reset()] or +** [sqlite3_finalize()] or after [sqlite3_step()] has returned +** something other than [SQLITE_ROW], the results are undefined. +** If [sqlite3_step()] or [sqlite3_reset()] or [sqlite3_finalize()] +** are called from a different thread while any of these routines +** are pending, then the results are undefined. +** +** The sqlite3_column_type() routine returns +** [SQLITE_INTEGER | datatype code] for the initial data type +** of the result column. The returned value is one of [SQLITE_INTEGER], +** [SQLITE_FLOAT], [SQLITE_TEXT], [SQLITE_BLOB], or [SQLITE_NULL]. The value +** returned by sqlite3_column_type() is only meaningful if no type +** conversions have occurred as described below. After a type conversion, +** the value returned by sqlite3_column_type() is undefined. Future +** versions of SQLite may change the behavior of sqlite3_column_type() +** following a type conversion. +** +** If the result is a BLOB or UTF-8 string then the sqlite3_column_bytes() +** routine returns the number of bytes in that BLOB or string. +** If the result is a UTF-16 string, then sqlite3_column_bytes() converts +** the string to UTF-8 and then returns the number of bytes. +** If the result is a numeric value then sqlite3_column_bytes() uses +** [sqlite3_snprintf()] to convert that value to a UTF-8 string and returns +** the number of bytes in that string. +** The value returned does not include the zero terminator at the end +** of the string. For clarity: the value returned is the number of +** bytes in the string, not the number of characters. +** +** Strings returned by sqlite3_column_text() and sqlite3_column_text16(), +** even zero-length strings, are always zero terminated. The return +** value from sqlite3_column_blob() for a zero-length blob is an arbitrary +** pointer, possibly even a NULL pointer. +** +** The sqlite3_column_bytes16() routine is similar to sqlite3_column_bytes() +** but leaves the result in UTF-16 instead of UTF-8. +** The zero terminator is not included in this count. +** +** These routines attempt to convert the value where appropriate. For +** example, if the internal representation is FLOAT and a text result +** is requested, [sqlite3_snprintf()] is used internally to do the conversion +** automatically. The following table details the conversions that +** are applied: +** +**
+** +**
Internal
Type
Requested
Type
Conversion +** +**
NULL INTEGER Result is 0 +**
NULL FLOAT Result is 0.0 +**
NULL TEXT Result is NULL pointer +**
NULL BLOB Result is NULL pointer +**
INTEGER FLOAT Convert from integer to float +**
INTEGER TEXT ASCII rendering of the integer +**
INTEGER BLOB Same as for INTEGER->TEXT +**
FLOAT INTEGER Convert from float to integer +**
FLOAT TEXT ASCII rendering of the float +**
FLOAT BLOB Same as FLOAT->TEXT +**
TEXT INTEGER Use atoi() +**
TEXT FLOAT Use atof() +**
TEXT BLOB No change +**
BLOB INTEGER Convert to TEXT then use atoi() +**
BLOB FLOAT Convert to TEXT then use atof() +**
BLOB TEXT Add a zero terminator if needed +**
+**
+** +** The table above makes reference to standard C library functions atoi() +** and atof(). SQLite does not really use these functions. It has its +** on equavalent internal routines. The atoi() and atof() names are +** used in the table for brevity and because they are familiar to most +** C programmers. +** +** Note that when type conversions occur, pointers returned by prior +** calls to sqlite3_column_blob(), sqlite3_column_text(), and/or +** sqlite3_column_text16() may be invalidated. +** Type conversions and pointer invalidations might occur +** in the following cases: +** +**
    +**
  • The initial content is a BLOB and sqlite3_column_text() +** or sqlite3_column_text16() is called. A zero-terminator might +** need to be added to the string.

  • +** +**
  • The initial content is UTF-8 text and sqlite3_column_bytes16() or +** sqlite3_column_text16() is called. The content must be converted +** to UTF-16.

  • +** +**
  • The initial content is UTF-16 text and sqlite3_column_bytes() or +** sqlite3_column_text() is called. The content must be converted +** to UTF-8.

  • +**
+** +** Conversions between UTF-16be and UTF-16le are always done in place and do +** not invalidate a prior pointer, though of course the content of the buffer +** that the prior pointer points to will have been modified. Other kinds +** of conversion are done in place when it is possible, but sometime it is +** not possible and in those cases prior pointers are invalidated. +** +** The safest and easiest to remember policy is to invoke these routines +** in one of the following ways: +** +**
    +**
  • sqlite3_column_text() followed by sqlite3_column_bytes()
  • +**
  • sqlite3_column_blob() followed by sqlite3_column_bytes()
  • +**
  • sqlite3_column_text16() followed by sqlite3_column_bytes16()
  • +**
+** +** In other words, you should call sqlite3_column_text(), sqlite3_column_blob(), +** or sqlite3_column_text16() first to force the result into the desired +** format, then invoke sqlite3_column_bytes() or sqlite3_column_bytes16() to +** find the size of the result. Do not mix call to sqlite3_column_text() or +** sqlite3_column_blob() with calls to sqlite3_column_bytes16(). And do not +** mix calls to sqlite3_column_text16() with calls to sqlite3_column_bytes(). +** +** The pointers returned are valid until a type conversion occurs as +** described above, or until [sqlite3_step()] or [sqlite3_reset()] or +** [sqlite3_finalize()] is called. The memory space used to hold strings +** and blobs is freed automatically. Do not pass the pointers returned +** [sqlite3_column_blob()], [sqlite3_column_text()], etc. into +** [sqlite3_free()]. +** +** If a memory allocation error occurs during the evaluation of any +** of these routines, a default value is returned. The default value +** is either the integer 0, the floating point number 0.0, or a NULL +** pointer. Subsequent calls to [sqlite3_errcode()] will return +** [SQLITE_NOMEM]. +*/ +const void *sqlite3_column_blob(sqlite3_stmt*, int iCol); +int sqlite3_column_bytes(sqlite3_stmt*, int iCol); +int sqlite3_column_bytes16(sqlite3_stmt*, int iCol); +double sqlite3_column_double(sqlite3_stmt*, int iCol); +int sqlite3_column_int(sqlite3_stmt*, int iCol); +sqlite3_int64 sqlite3_column_int64(sqlite3_stmt*, int iCol); +const unsigned char *sqlite3_column_text(sqlite3_stmt*, int iCol); +const void *sqlite3_column_text16(sqlite3_stmt*, int iCol); +int sqlite3_column_type(sqlite3_stmt*, int iCol); +sqlite3_value *sqlite3_column_value(sqlite3_stmt*, int iCol); + +/* +** CAPI3REF: Destroy A Prepared Statement Object {F13300} +** +** The sqlite3_finalize() function is called to delete a +** [sqlite3_stmt | compiled SQL statement]. If the statement was +** executed successfully, or not executed at all, then SQLITE_OK is returned. +** If execution of the statement failed then an +** [SQLITE_ERROR | error code] or [SQLITE_IOERR_READ | extended error code] +** is returned. +** +** This routine can be called at any point during the execution of the +** [sqlite3_stmt | virtual machine]. If the virtual machine has not +** completed execution when this routine is called, that is like +** encountering an error or an interrupt. (See [sqlite3_interrupt()].) +** Incomplete updates may be rolled back and transactions cancelled, +** depending on the circumstances, and the +** [SQLITE_ERROR | result code] returned will be [SQLITE_ABORT]. +*/ +int sqlite3_finalize(sqlite3_stmt *pStmt); + +/* +** CAPI3REF: Reset A Prepared Statement Object {F13330} +** +** The sqlite3_reset() function is called to reset a +** [sqlite3_stmt | compiled SQL statement] object. +** back to its initial state, ready to be re-executed. +** Any SQL statement variables that had values bound to them using +** the [sqlite3_bind_blob | sqlite3_bind_*() API] retain their values. +** Use [sqlite3_clear_bindings()] to reset the bindings. +*/ +int sqlite3_reset(sqlite3_stmt *pStmt); + +/* +** CAPI3REF: Create Or Redefine SQL Functions {F16100} +** +** The following two functions are used to add SQL functions or aggregates +** or to redefine the behavior of existing SQL functions or aggregates. The +** difference only between the two is that the second parameter, the +** name of the (scalar) function or aggregate, is encoded in UTF-8 for +** sqlite3_create_function() and UTF-16 for sqlite3_create_function16(). +** +** The first argument is the [sqlite3 | database handle] that holds the +** SQL function or aggregate is to be added or redefined. If a single +** program uses more than one database handle internally, then SQL +** functions or aggregates must be added individually to each database +** handle with which they will be used. +** +** The second parameter is the name of the SQL function to be created +** or redefined. +** The length of the name is limited to 255 bytes, exclusive of the +** zero-terminator. Note that the name length limit is in bytes, not +** characters. Any attempt to create a function with a longer name +** will result in an SQLITE_ERROR error. +** +** The third parameter is the number of arguments that the SQL function or +** aggregate takes. If this parameter is negative, then the SQL function or +** aggregate may take any number of arguments. +** +** The fourth parameter, eTextRep, specifies what +** [SQLITE_UTF8 | text encoding] this SQL function prefers for +** its parameters. Any SQL function implementation should be able to work +** work with UTF-8, UTF-16le, or UTF-16be. But some implementations may be +** more efficient with one encoding than another. It is allowed to +** invoke sqlite3_create_function() or sqlite3_create_function16() multiple +** times with the same function but with different values of eTextRep. +** When multiple implementations of the same function are available, SQLite +** will pick the one that involves the least amount of data conversion. +** If there is only a single implementation which does not care what +** text encoding is used, then the fourth argument should be +** [SQLITE_ANY]. +** +** The fifth parameter is an arbitrary pointer. The implementation +** of the function can gain access to this pointer using +** [sqlite3_user_data()]. +** +** The seventh, eighth and ninth parameters, xFunc, xStep and xFinal, are +** pointers to C-language functions that implement the SQL +** function or aggregate. A scalar SQL function requires an implementation of +** the xFunc callback only, NULL pointers should be passed as the xStep +** and xFinal parameters. An aggregate SQL function requires an implementation +** of xStep and xFinal and NULL should be passed for xFunc. To delete an +** existing SQL function or aggregate, pass NULL for all three function +** callback. +** +** It is permitted to register multiple implementations of the same +** functions with the same name but with either differing numbers of +** arguments or differing perferred text encodings. SQLite will use +** the implementation most closely matches the way in which the +** SQL function is used. +*/ +int sqlite3_create_function( + sqlite3 *, + const char *zFunctionName, + int nArg, + int eTextRep, + void*, + void (*xFunc)(sqlite3_context*,int,sqlite3_value**), + void (*xStep)(sqlite3_context*,int,sqlite3_value**), + void (*xFinal)(sqlite3_context*) +); +int sqlite3_create_function16( + sqlite3*, + const void *zFunctionName, + int nArg, + int eTextRep, + void*, + void (*xFunc)(sqlite3_context*,int,sqlite3_value**), + void (*xStep)(sqlite3_context*,int,sqlite3_value**), + void (*xFinal)(sqlite3_context*) +); + +/* +** CAPI3REF: Text Encodings {F10267} +** +** These constant define integer codes that represent the various +** text encodings supported by SQLite. +*/ +#define SQLITE_UTF8 1 +#define SQLITE_UTF16LE 2 +#define SQLITE_UTF16BE 3 +#define SQLITE_UTF16 4 /* Use native byte order */ +#define SQLITE_ANY 5 /* sqlite3_create_function only */ +#define SQLITE_UTF16_ALIGNED 8 /* sqlite3_create_collation only */ + +/* +** CAPI3REF: Obsolete Functions +** +** These functions are all now obsolete. In order to maintain +** backwards compatibility with older code, we continue to support +** these functions. However, new development projects should avoid +** the use of these functions. To help encourage people to avoid +** using these functions, we are not going to tell you want they do. +*/ +int sqlite3_aggregate_count(sqlite3_context*); +int sqlite3_expired(sqlite3_stmt*); +int sqlite3_transfer_bindings(sqlite3_stmt*, sqlite3_stmt*); +int sqlite3_global_recover(void); +void sqlite3_thread_cleanup(void); +int sqlite3_memory_alarm(void(*)(void*,sqlite3_int64,int),void*,sqlite3_int64); + +/* +** CAPI3REF: Obtaining SQL Function Parameter Values {F15100} +** +** The C-language implementation of SQL functions and aggregates uses +** this set of interface routines to access the parameter values on +** the function or aggregate. +** +** The xFunc (for scalar functions) or xStep (for aggregates) parameters +** to [sqlite3_create_function()] and [sqlite3_create_function16()] +** define callbacks that implement the SQL functions and aggregates. +** The 4th parameter to these callbacks is an array of pointers to +** [sqlite3_value] objects. There is one [sqlite3_value] object for +** each parameter to the SQL function. These routines are used to +** extract values from the [sqlite3_value] objects. +** +** These routines work just like the corresponding +** [sqlite3_column_blob | sqlite3_column_* routines] except that +** these routines take a single [sqlite3_value*] pointer instead +** of an [sqlite3_stmt*] pointer and an integer column number. +** +** The sqlite3_value_text16() interface extracts a UTF16 string +** in the native byte-order of the host machine. The +** sqlite3_value_text16be() and sqlite3_value_text16le() interfaces +** extract UTF16 strings as big-endian and little-endian respectively. +** +** The sqlite3_value_numeric_type() interface attempts to apply +** numeric affinity to the value. This means that an attempt is +** made to convert the value to an integer or floating point. If +** such a conversion is possible without loss of information (in other +** words if the value is a string that looks like a number) +** then the conversion is done. Otherwise no conversion occurs. The +** [SQLITE_INTEGER | datatype] after conversion is returned. +** +** Please pay particular attention to the fact that the pointer that +** is returned from [sqlite3_value_blob()], [sqlite3_value_text()], or +** [sqlite3_value_text16()] can be invalidated by a subsequent call to +** [sqlite3_value_bytes()], [sqlite3_value_bytes16()], [sqlite3_value_text()], +** or [sqlite3_value_text16()]. +** +** These routines must be called from the same thread as +** the SQL function that supplied the sqlite3_value* parameters. +** Or, if the sqlite3_value* argument comes from the [sqlite3_column_value()] +** interface, then these routines should be called from the same thread +** that ran [sqlite3_column_value()]. +** +*/ +const void *sqlite3_value_blob(sqlite3_value*); +int sqlite3_value_bytes(sqlite3_value*); +int sqlite3_value_bytes16(sqlite3_value*); +double sqlite3_value_double(sqlite3_value*); +int sqlite3_value_int(sqlite3_value*); +sqlite3_int64 sqlite3_value_int64(sqlite3_value*); +const unsigned char *sqlite3_value_text(sqlite3_value*); +const void *sqlite3_value_text16(sqlite3_value*); +const void *sqlite3_value_text16le(sqlite3_value*); +const void *sqlite3_value_text16be(sqlite3_value*); +int sqlite3_value_type(sqlite3_value*); +int sqlite3_value_numeric_type(sqlite3_value*); + +/* +** CAPI3REF: Obtain Aggregate Function Context {F16210} +** +** The implementation of aggregate SQL functions use this routine to allocate +** a structure for storing their state. +** {F16211} The first time the sqlite3_aggregate_context() routine is +** is called for a particular aggregate, SQLite allocates nBytes of memory +** zeros that memory, and returns a pointer to it. +** {F16212} On second and subsequent calls to sqlite3_aggregate_context() +** for the same aggregate function index, the same buffer is returned. {END} +** The implementation +** of the aggregate can use the returned buffer to accumulate data. +** +** {F16213} SQLite automatically frees the allocated buffer when the aggregate +** query concludes. {END} +** +** The first parameter should be a copy of the +** [sqlite3_context | SQL function context] that is the first +** parameter to the callback routine that implements the aggregate +** function. +** +** This routine must be called from the same thread in which +** the aggregate SQL function is running. +*/ +void *sqlite3_aggregate_context(sqlite3_context*, int nBytes); + +/* +** CAPI3REF: User Data For Functions {F16240} +** +** {F16241} The sqlite3_user_data() interface returns a copy of +** the pointer that was the pUserData parameter (the 5th parameter) +** of the the [sqlite3_create_function()] +** and [sqlite3_create_function16()] routines that originally +** registered the application defined function. {END} +** +** {U16243} This routine must be called from the same thread in which +** the application-defined function is running. +*/ +void *sqlite3_user_data(sqlite3_context*); + +/* +** CAPI3REF: Function Auxiliary Data {F16270} +** +** The following two functions may be used by scalar SQL functions to +** associate meta-data with argument values. If the same value is passed to +** multiple invocations of the same SQL function during query execution, under +** some circumstances the associated meta-data may be preserved. This may +** be used, for example, to add a regular-expression matching scalar +** function. The compiled version of the regular expression is stored as +** meta-data associated with the SQL value passed as the regular expression +** pattern. The compiled regular expression can be reused on multiple +** invocations of the same function so that the original pattern string +** does not need to be recompiled on each invocation. +** +** {F16271} +** The sqlite3_get_auxdata() interface returns a pointer to the meta-data +** associated by the sqlite3_set_auxdata() function with the Nth argument +** value to the application-defined function. +** {F16272} If no meta-data has been ever been set for the Nth +** argument of the function, or if the cooresponding function parameter +** has changed since the meta-data was set, then sqlite3_get_auxdata() +** returns a NULL pointer. +** +** {F16275} The sqlite3_set_auxdata() interface saves the meta-data +** pointed to by its 3rd parameter as the meta-data for the N-th +** argument of the application-defined function. {END} Subsequent +** calls to sqlite3_get_auxdata() might return this data, if it has +** not been destroyed. +** {F16277} If it is not NULL, SQLite will invoke the destructor +** function given by the 4th parameter to sqlite3_set_auxdata() on +** the meta-data when the corresponding function parameter changes +** or when the SQL statement completes, whichever comes first. {END} +** +** In practice, meta-data is preserved between function calls for +** expressions that are constant at compile time. This includes literal +** values and SQL variables. +** +** These routines must be called from the same thread in which +** the SQL function is running. +*/ +void *sqlite3_get_auxdata(sqlite3_context*, int N); +void sqlite3_set_auxdata(sqlite3_context*, int N, void*, void (*)(void*)); + + +/* +** CAPI3REF: Constants Defining Special Destructor Behavior {F10280} +** +** These are special value for the destructor that is passed in as the +** final argument to routines like [sqlite3_result_blob()]. If the destructor +** argument is SQLITE_STATIC, it means that the content pointer is constant +** and will never change. It does not need to be destroyed. The +** SQLITE_TRANSIENT value means that the content will likely change in +** the near future and that SQLite should make its own private copy of +** the content before returning. +** +** The typedef is necessary to work around problems in certain +** C++ compilers. See ticket #2191. +*/ +typedef void (*sqlite3_destructor_type)(void*); +#define SQLITE_STATIC ((sqlite3_destructor_type)0) +#define SQLITE_TRANSIENT ((sqlite3_destructor_type)-1) + +/* +** CAPI3REF: Setting The Result Of An SQL Function {F16400} +** +** These routines are used by the xFunc or xFinal callbacks that +** implement SQL functions and aggregates. See +** [sqlite3_create_function()] and [sqlite3_create_function16()] +** for additional information. +** +** These functions work very much like the +** [sqlite3_bind_blob | sqlite3_bind_*] family of functions used +** to bind values to host parameters in prepared statements. +** Refer to the +** [sqlite3_bind_blob | sqlite3_bind_* documentation] for +** additional information. +** +** {F16402} The sqlite3_result_blob() interface sets the result from +** an application defined function to be the BLOB whose content is pointed +** to by the second parameter and which is N bytes long where N is the +** third parameter. +** {F16403} The sqlite3_result_zeroblob() inerfaces set the result of +** the application defined function to be a BLOB containing all zero +** bytes and N bytes in size, where N is the value of the 2nd parameter. +** +** {F16407} The sqlite3_result_double() interface sets the result from +** an application defined function to be a floating point value specified +** by its 2nd argument. +** +** {F16409} The sqlite3_result_error() and sqlite3_result_error16() functions +** cause the implemented SQL function to throw an exception. +** {F16411} SQLite uses the string pointed to by the +** 2nd parameter of sqlite3_result_error() or sqlite3_result_error16() +** as the text of an error message. {F16412} SQLite interprets the error +** message string from sqlite3_result_error() as UTF8. {F16413} SQLite +** interprets the string from sqlite3_result_error16() as UTF16 in native +** byte order. {F16414} If the third parameter to sqlite3_result_error() +** or sqlite3_result_error16() is negative then SQLite takes as the error +** message all text up through the first zero character. +** {F16415} If the third parameter to sqlite3_result_error() or +** sqlite3_result_error16() is non-negative then SQLite takes that many +** bytes (not characters) from the 2nd parameter as the error message. +** {F16417} The sqlite3_result_error() and sqlite3_result_error16() +** routines make a copy private copy of the error message text before +** they return. {END} Hence, the calling function can deallocate or +** modify the text after they return without harm. +** +** {F16421} The sqlite3_result_toobig() interface causes SQLite +** to throw an error indicating that a string or BLOB is to long +** to represent. {F16422} The sqlite3_result_nomem() interface +** causes SQLite to throw an exception indicating that the a +** memory allocation failed. +** +** {F16431} The sqlite3_result_int() interface sets the return value +** of the application-defined function to be the 32-bit signed integer +** value given in the 2nd argument. +** {F16432} The sqlite3_result_int64() interface sets the return value +** of the application-defined function to be the 64-bit signed integer +** value given in the 2nd argument. +** +** {F16437} The sqlite3_result_null() interface sets the return value +** of the application-defined function to be NULL. +** +** {F16441} The sqlite3_result_text(), sqlite3_result_text16(), +** sqlite3_result_text16le(), and sqlite3_result_text16be() interfaces +** set the return value of the application-defined function to be +** a text string which is represented as UTF-8, UTF-16 native byte order, +** UTF-16 little endian, or UTF-16 big endian, respectively. +** {F16442} SQLite takes the text result from the application from +** the 2nd parameter of the sqlite3_result_text* interfaces. +** {F16444} If the 3rd parameter to the sqlite3_result_text* interfaces +** is negative, then SQLite takes result text from the 2nd parameter +** through the first zero character. +** {F16447} If the 3rd parameter to the sqlite3_result_text* interfaces +** is non-negative, then as many bytes (not characters) of the text +** pointed to by the 2nd parameter are taken as the application-defined +** function result. +** {F16451} If the 4th parameter to the sqlite3_result_text* interfaces +** or sqlite3_result_blob is a non-NULL pointer, then SQLite calls that +** function as the destructor on the text or blob result when it has +** finished using that result. +** {F16453} If the 4th parameter to the sqlite3_result_text* interfaces +** or sqlite3_result_blob is the special constant SQLITE_STATIC, then +** SQLite assumes that the text or blob result is constant space and +** does not copy the space or call a destructor when it has +** finished using that result. +** {F16454} If the 4th parameter to the sqlite3_result_text* interfaces +** or sqlite3_result_blob is the special constant SQLITE_TRANSIENT +** then SQLite makes a copy of the result into space obtained from +** from [sqlite3_malloc()] before it returns. +** +** {F16461} The sqlite3_result_value() interface sets the result of +** the application-defined function to be a copy the [sqlite3_value] +** object specified by the 2nd parameter. {F16463} The +** sqlite3_result_value() interface makes a copy of the [sqlite3_value] +** so that [sqlite3_value] specified in the parameter may change or +** be deallocated after sqlite3_result_value() returns without harm. +** +** {U16491} These routines are called from within the different thread +** than the one containing the application-defined function that recieved +** the [sqlite3_context] pointer, the results are undefined. +*/ +void sqlite3_result_blob(sqlite3_context*, const void*, int, void(*)(void*)); +void sqlite3_result_double(sqlite3_context*, double); +void sqlite3_result_error(sqlite3_context*, const char*, int); +void sqlite3_result_error16(sqlite3_context*, const void*, int); +void sqlite3_result_error_toobig(sqlite3_context*); +void sqlite3_result_error_nomem(sqlite3_context*); +void sqlite3_result_int(sqlite3_context*, int); +void sqlite3_result_int64(sqlite3_context*, sqlite3_int64); +void sqlite3_result_null(sqlite3_context*); +void sqlite3_result_text(sqlite3_context*, const char*, int, void(*)(void*)); +void sqlite3_result_text16(sqlite3_context*, const void*, int, void(*)(void*)); +void sqlite3_result_text16le(sqlite3_context*, const void*, int,void(*)(void*)); +void sqlite3_result_text16be(sqlite3_context*, const void*, int,void(*)(void*)); +void sqlite3_result_value(sqlite3_context*, sqlite3_value*); +void sqlite3_result_zeroblob(sqlite3_context*, int n); + +/* +** CAPI3REF: Define New Collating Sequences {F16600} +** +** {F16601} +** These functions are used to add new collation sequences to the +** [sqlite3*] handle specified as the first argument. +** +** {F16602} +** The name of the new collation sequence is specified as a UTF-8 string +** for sqlite3_create_collation() and sqlite3_create_collation_v2() +** and a UTF-16 string for sqlite3_create_collation16(). {F16603} In all cases +** the name is passed as the second function argument. +** +** {F16604} +** The third argument may be one of the constants [SQLITE_UTF8], +** [SQLITE_UTF16LE] or [SQLITE_UTF16BE], indicating that the user-supplied +** routine expects to be passed pointers to strings encoded using UTF-8, +** UTF-16 little-endian or UTF-16 big-endian respectively. {F16605} The +** third argument might also be [SQLITE_UTF16_ALIGNED] to indicate that +** the routine expects pointers to 16-bit word aligned strings +** of UTF16 in the native byte order of the host computer. +** +** {F16607} +** A pointer to the user supplied routine must be passed as the fifth +** argument. {F16609} If it is NULL, this is the same as deleting the collation +** sequence (so that SQLite cannot call it anymore). +** {F16611} Each time the application +** supplied function is invoked, it is passed a copy of the void* passed as +** the fourth argument to sqlite3_create_collation() or +** sqlite3_create_collation16() as its first parameter. +** +** {F16612} +** The remaining arguments to the application-supplied routine are two strings, +** each represented by a [length, data] pair and encoded in the encoding +** that was passed as the third argument when the collation sequence was +** registered. {END} The application defined collation routine should +** return negative, zero or positive if +** the first string is less than, equal to, or greater than the second +** string. i.e. (STRING1 - STRING2). +** +** {F16615} +** The sqlite3_create_collation_v2() works like sqlite3_create_collation() +** excapt that it takes an extra argument which is a destructor for +** the collation. {F16617} The destructor is called when the collation is +** destroyed and is passed a copy of the fourth parameter void* pointer +** of the sqlite3_create_collation_v2(). +** {F16618} Collations are destroyed when +** they are overridden by later calls to the collation creation functions +** or when the [sqlite3*] database handle is closed using [sqlite3_close()]. +*/ +int sqlite3_create_collation( + sqlite3*, + const char *zName, + int eTextRep, + void*, + int(*xCompare)(void*,int,const void*,int,const void*) +); +int sqlite3_create_collation_v2( + sqlite3*, + const char *zName, + int eTextRep, + void*, + int(*xCompare)(void*,int,const void*,int,const void*), + void(*xDestroy)(void*) +); +int sqlite3_create_collation16( + sqlite3*, + const char *zName, + int eTextRep, + void*, + int(*xCompare)(void*,int,const void*,int,const void*) +); + +/* +** CAPI3REF: Collation Needed Callbacks {F16700} +** +** {F16701} +** To avoid having to register all collation sequences before a database +** can be used, a single callback function may be registered with the +** database handle to be called whenever an undefined collation sequence is +** required. +** +** {F16702} +** If the function is registered using the sqlite3_collation_needed() API, +** then it is passed the names of undefined collation sequences as strings +** encoded in UTF-8. {F16703} If sqlite3_collation_needed16() is used, the names +** are passed as UTF-16 in machine native byte order. {F16704} A call to either +** function replaces any existing callback. +** +** {F16705} When the callback is invoked, the first argument passed is a copy +** of the second argument to sqlite3_collation_needed() or +** sqlite3_collation_needed16(). {F16706} The second argument is the database +** handle. {F16707} The third argument is one of [SQLITE_UTF8], +** [SQLITE_UTF16BE], or [SQLITE_UTF16LE], indicating the most +** desirable form of the collation sequence function required. +** {F16708} The fourth parameter is the name of the +** required collation sequence. {END} +** +** The callback function should register the desired collation using +** [sqlite3_create_collation()], [sqlite3_create_collation16()], or +** [sqlite3_create_collation_v2()]. +*/ +int sqlite3_collation_needed( + sqlite3*, + void*, + void(*)(void*,sqlite3*,int eTextRep,const char*) +); +int sqlite3_collation_needed16( + sqlite3*, + void*, + void(*)(void*,sqlite3*,int eTextRep,const void*) +); + +/* +** Specify the key for an encrypted database. This routine should be +** called right after sqlite3_open(). +** +** The code to implement this API is not available in the public release +** of SQLite. +*/ +int sqlite3_key( + sqlite3 *db, /* Database to be rekeyed */ + const void *pKey, int nKey /* The key */ +); + +/* +** Change the key on an open database. If the current database is not +** encrypted, this routine will encrypt it. If pNew==0 or nNew==0, the +** database is decrypted. +** +** The code to implement this API is not available in the public release +** of SQLite. +*/ +int sqlite3_rekey( + sqlite3 *db, /* Database to be rekeyed */ + const void *pKey, int nKey /* The new key */ +); + +/* +** CAPI3REF: Suspend Execution For A Short Time {F10530} +** +** {F10531} The sqlite3_sleep() function +** causes the current thread to suspend execution +** for at least a number of milliseconds specified in its parameter. +** +** {F10532} If the operating system does not support sleep requests with +** millisecond time resolution, then the time will be rounded up to +** the nearest second. {F10533} The number of milliseconds of sleep actually +** requested from the operating system is returned. +** +** {F10534} SQLite implements this interface by calling the xSleep() +** method of the default [sqlite3_vfs] object. {END} +*/ +int sqlite3_sleep(int); + +/* +** CAPI3REF: Name Of The Folder Holding Temporary Files {F10310} +** +** If this global variable is made to point to a string which is +** the name of a folder (a.ka. directory), then all temporary files +** created by SQLite will be placed in that directory. If this variable +** is NULL pointer, then SQLite does a search for an appropriate temporary +** file directory. +** +** It is not safe to modify this variable once a database connection +** has been opened. It is intended that this variable be set once +** as part of process initialization and before any SQLite interface +** routines have been call and remain unchanged thereafter. +*/ +SQLITE_EXTERN char *sqlite3_temp_directory; + +/* +** CAPI3REF: Test To See If The Database Is In Auto-Commit Mode {F12930} +** +** {F12931} The sqlite3_get_autocommit() interfaces returns non-zero or +** zero if the given database connection is or is not in autocommit mode, +** respectively. {F12932} Autocommit mode is on +** by default. {F12933} Autocommit mode is disabled by a BEGIN statement. +** {F12934} Autocommit mode is reenabled by a COMMIT or ROLLBACK. {END} +** +** If certain kinds of errors occur on a statement within a multi-statement +** transactions (errors including [SQLITE_FULL], [SQLITE_IOERR], +** [SQLITE_NOMEM], [SQLITE_BUSY], and [SQLITE_INTERRUPT]) then the +** transaction might be rolled back automatically. {F12935} The only way to +** find out if SQLite automatically rolled back the transaction after +** an error is to use this function. {END} +** +** {U12936} If another thread changes the autocommit status of the database +** connection while this routine is running, then the return value +** is undefined. {END} +*/ +int sqlite3_get_autocommit(sqlite3*); + +/* +** CAPI3REF: Find The Database Handle Of A Prepared Statement {F13120} +** +** {F13121} The sqlite3_db_handle interface +** returns the [sqlite3*] database handle to which a +** [sqlite3_stmt | prepared statement] belongs. +** {F13122} the database handle returned by sqlite3_db_handle +** is the same database handle that was +** the first argument to the [sqlite3_prepare_v2()] or its variants +** that was used to create the statement in the first place. +*/ +sqlite3 *sqlite3_db_handle(sqlite3_stmt*); + + +/* +** CAPI3REF: Commit And Rollback Notification Callbacks {F12950} +** +** {F12951} The sqlite3_commit_hook() interface registers a callback +** function to be invoked whenever a transaction is committed. +** {F12952} Any callback set by a previous call to sqlite3_commit_hook() +** for the same database connection is overridden. +** {F12953} The sqlite3_rollback_hook() interface registers a callback +** function to be invoked whenever a transaction is committed. +** {F12954} Any callback set by a previous call to sqlite3_commit_hook() +** for the same database connection is overridden. +** {F12956} The pArg argument is passed through +** to the callback. {F12957} If the callback on a commit hook function +** returns non-zero, then the commit is converted into a rollback. +** +** {F12958} If another function was previously registered, its +** pArg value is returned. Otherwise NULL is returned. +** +** {F12959} Registering a NULL function disables the callback. +** +** {F12961} For the purposes of this API, a transaction is said to have been +** rolled back if an explicit "ROLLBACK" statement is executed, or +** an error or constraint causes an implicit rollback to occur. +** {F12962} The rollback callback is not invoked if a transaction is +** automatically rolled back because the database connection is closed. +** {F12964} The rollback callback is not invoked if a transaction is +** rolled back because a commit callback returned non-zero. +** Check on this {END} +** +** These are experimental interfaces and are subject to change. +*/ +void *sqlite3_commit_hook(sqlite3*, int(*)(void*), void*); +void *sqlite3_rollback_hook(sqlite3*, void(*)(void *), void*); + +/* +** CAPI3REF: Data Change Notification Callbacks {F12970} +** +** {F12971} The sqlite3_update_hook() interface +** registers a callback function with the database connection identified by the +** first argument to be invoked whenever a row is updated, inserted or deleted. +** {F12972} Any callback set by a previous call to this function for the same +** database connection is overridden. +** +** {F12974} The second argument is a pointer to the function to invoke when a +** row is updated, inserted or deleted. +** {F12976} The first argument to the callback is +** a copy of the third argument to sqlite3_update_hook(). +** {F12977} The second callback +** argument is one of [SQLITE_INSERT], [SQLITE_DELETE] or [SQLITE_UPDATE], +** depending on the operation that caused the callback to be invoked. +** {F12978} The third and +** fourth arguments to the callback contain pointers to the database and +** table name containing the affected row. +** {F12979} The final callback parameter is +** the rowid of the row. +** {F12981} In the case of an update, this is the rowid after +** the update takes place. +** +** {F12983} The update hook is not invoked when internal system tables are +** modified (i.e. sqlite_master and sqlite_sequence). +** +** {F12984} If another function was previously registered, its pArg value +** is returned. {F12985} Otherwise NULL is returned. +*/ +void *sqlite3_update_hook( + sqlite3*, + void(*)(void *,int ,char const *,char const *,sqlite3_int64), + void* +); + +/* +** CAPI3REF: Enable Or Disable Shared Pager Cache {F10330} +** +** {F10331} +** This routine enables or disables the sharing of the database cache +** and schema data structures between connections to the same database. +** {F10332} +** Sharing is enabled if the argument is true and disabled if the argument +** is false. +** +** {F10333} Cache sharing is enabled and disabled +** for an entire process. {END} This is a change as of SQLite version 3.5.0. +** In prior versions of SQLite, sharing was +** enabled or disabled for each thread separately. +** +** {F10334} +** The cache sharing mode set by this interface effects all subsequent +** calls to [sqlite3_open()], [sqlite3_open_v2()], and [sqlite3_open16()]. +** {F10335} Existing database connections continue use the sharing mode +** that was in effect at the time they were opened. {END} +** +** Virtual tables cannot be used with a shared cache. {F10336} When shared +** cache is enabled, the [sqlite3_create_module()] API used to register +** virtual tables will always return an error. {END} +** +** {F10337} This routine returns [SQLITE_OK] if shared cache was +** enabled or disabled successfully. {F10338} An [SQLITE_ERROR | error code] +** is returned otherwise. {END} +** +** {F10339} Shared cache is disabled by default. {END} But this might change in +** future releases of SQLite. Applications that care about shared +** cache setting should set it explicitly. +*/ +int sqlite3_enable_shared_cache(int); + +/* +** CAPI3REF: Attempt To Free Heap Memory {F17340} +** +** {F17341} The sqlite3_release_memory() interface attempts to +** free N bytes of heap memory by deallocating non-essential memory +** allocations held by the database labrary. {END} Memory used +** to cache database pages to improve performance is an example of +** non-essential memory. {F16342} sqlite3_release_memory() returns +** the number of bytes actually freed, which might be more or less +** than the amount requested. +*/ +int sqlite3_release_memory(int); + +/* +** CAPI3REF: Impose A Limit On Heap Size {F17350} +** +** {F16351} The sqlite3_soft_heap_limit() interface +** places a "soft" limit on the amount of heap memory that may be allocated +** by SQLite. {F16352} If an internal allocation is requested +** that would exceed the soft heap limit, [sqlite3_release_memory()] is +** invoked one or more times to free up some space before the allocation +** is made. {END} +** +** {F16353} The limit is called "soft", because if +** [sqlite3_release_memory()] cannot +** free sufficient memory to prevent the limit from being exceeded, +** the memory is allocated anyway and the current operation proceeds. +** +** {F16354} +** A negative or zero value for N means that there is no soft heap limit and +** [sqlite3_release_memory()] will only be called when memory is exhausted. +** {F16355} The default value for the soft heap limit is zero. +** +** SQLite makes a best effort to honor the soft heap limit. +** {F16356} But if the soft heap limit cannot honored, execution will +** continue without error or notification. {END} This is why the limit is +** called a "soft" limit. It is advisory only. +** +** Prior to SQLite version 3.5.0, this routine only constrained the memory +** allocated by a single thread - the same thread in which this routine +** runs. Beginning with SQLite version 3.5.0, the soft heap limit is +** applied to all threads. {F16357} The value specified for the soft heap limit +** is an upper bound on the total memory allocation for all threads. {END} In +** version 3.5.0 there is no mechanism for limiting the heap usage for +** individual threads. +*/ +void sqlite3_soft_heap_limit(int); + +/* +** CAPI3REF: Extract Metadata About A Column Of A Table {F12850} +** +** This routine +** returns meta-data about a specific column of a specific database +** table accessible using the connection handle passed as the first function +** argument. +** +** The column is identified by the second, third and fourth parameters to +** this function. The second parameter is either the name of the database +** (i.e. "main", "temp" or an attached database) containing the specified +** table or NULL. If it is NULL, then all attached databases are searched +** for the table using the same algorithm as the database engine uses to +** resolve unqualified table references. +** +** The third and fourth parameters to this function are the table and column +** name of the desired column, respectively. Neither of these parameters +** may be NULL. +** +** Meta information is returned by writing to the memory locations passed as +** the 5th and subsequent parameters to this function. Any of these +** arguments may be NULL, in which case the corresponding element of meta +** information is ommitted. +** +**
+** Parameter     Output Type      Description
+** -----------------------------------
+**
+**   5th         const char*      Data type
+**   6th         const char*      Name of the default collation sequence 
+**   7th         int              True if the column has a NOT NULL constraint
+**   8th         int              True if the column is part of the PRIMARY KEY
+**   9th         int              True if the column is AUTOINCREMENT
+** 
+** +** +** The memory pointed to by the character pointers returned for the +** declaration type and collation sequence is valid only until the next +** call to any sqlite API function. +** +** If the specified table is actually a view, then an error is returned. +** +** If the specified column is "rowid", "oid" or "_rowid_" and an +** INTEGER PRIMARY KEY column has been explicitly declared, then the output +** parameters are set for the explicitly declared column. If there is no +** explicitly declared IPK column, then the output parameters are set as +** follows: +** +**
+**     data type: "INTEGER"
+**     collation sequence: "BINARY"
+**     not null: 0
+**     primary key: 1
+**     auto increment: 0
+** 
+** +** This function may load one or more schemas from database files. If an +** error occurs during this process, or if the requested table or column +** cannot be found, an SQLITE error code is returned and an error message +** left in the database handle (to be retrieved using sqlite3_errmsg()). +** +** This API is only available if the library was compiled with the +** SQLITE_ENABLE_COLUMN_METADATA preprocessor symbol defined. +*/ +int sqlite3_table_column_metadata( + sqlite3 *db, /* Connection handle */ + const char *zDbName, /* Database name or NULL */ + const char *zTableName, /* Table name */ + const char *zColumnName, /* Column name */ + char const **pzDataType, /* OUTPUT: Declared data type */ + char const **pzCollSeq, /* OUTPUT: Collation sequence name */ + int *pNotNull, /* OUTPUT: True if NOT NULL constraint exists */ + int *pPrimaryKey, /* OUTPUT: True if column part of PK */ + int *pAutoinc /* OUTPUT: True if column is auto-increment */ +); + +/* +** CAPI3REF: Load An Extension {F12600} +** +** {F12601} The sqlite3_load_extension() interface +** attempts to load an SQLite extension library contained in the file +** zFile. {F12602} The entry point is zProc. {F12603} zProc may be 0 +** in which case the name of the entry point defaults +** to "sqlite3_extension_init". +** +** {F12604} The sqlite3_load_extension() interface shall +** return [SQLITE_OK] on success and [SQLITE_ERROR] if something goes wrong. +** +** {F12605} +** If an error occurs and pzErrMsg is not 0, then the +** sqlite3_load_extension() interface shall attempt to fill *pzErrMsg with +** error message text stored in memory obtained from [sqlite3_malloc()]. +** {END} The calling function should free this memory +** by calling [sqlite3_free()]. +** +** {F12606} +** Extension loading must be enabled using [sqlite3_enable_load_extension()] +** prior to calling this API or an error will be returned. +*/ +int sqlite3_load_extension( + sqlite3 *db, /* Load the extension into this database connection */ + const char *zFile, /* Name of the shared library containing extension */ + const char *zProc, /* Entry point. Derived from zFile if 0 */ + char **pzErrMsg /* Put error message here if not 0 */ +); + +/* +** CAPI3REF: Enable Or Disable Extension Loading {F12620} +** +** So as not to open security holes in older applications that are +** unprepared to deal with extension loading, and as a means of disabling +** extension loading while evaluating user-entered SQL, the following +** API is provided to turn the [sqlite3_load_extension()] mechanism on and +** off. {F12622} It is off by default. {END} See ticket #1863. +** +** {F12621} Call the sqlite3_enable_load_extension() routine +** with onoff==1 to turn extension loading on +** and call it with onoff==0 to turn it back off again. {END} +*/ +int sqlite3_enable_load_extension(sqlite3 *db, int onoff); + +/* +** CAPI3REF: Make Arrangements To Automatically Load An Extension {F12640} +** +** {F12641} This function +** registers an extension entry point that is automatically invoked +** whenever a new database connection is opened using +** [sqlite3_open()], [sqlite3_open16()], or [sqlite3_open_v2()]. {END} +** +** This API can be invoked at program startup in order to register +** one or more statically linked extensions that will be available +** to all new database connections. +** +** {F12642} Duplicate extensions are detected so calling this routine multiple +** times with the same extension is harmless. +** +** {F12643} This routine stores a pointer to the extension in an array +** that is obtained from sqlite_malloc(). {END} If you run a memory leak +** checker on your program and it reports a leak because of this +** array, then invoke [sqlite3_reset_auto_extension()] prior +** to shutdown to free the memory. +** +** {F12644} Automatic extensions apply across all threads. {END} +** +** This interface is experimental and is subject to change or +** removal in future releases of SQLite. +*/ +int sqlite3_auto_extension(void *xEntryPoint); + + +/* +** CAPI3REF: Reset Automatic Extension Loading {F12660} +** +** {F12661} This function disables all previously registered +** automatic extensions. {END} This +** routine undoes the effect of all prior [sqlite3_automatic_extension()] +** calls. +** +** {F12662} This call disabled automatic extensions in all threads. {END} +** +** This interface is experimental and is subject to change or +** removal in future releases of SQLite. +*/ +void sqlite3_reset_auto_extension(void); + + +/* +****** EXPERIMENTAL - subject to change without notice ************** +** +** The interface to the virtual-table mechanism is currently considered +** to be experimental. The interface might change in incompatible ways. +** If this is a problem for you, do not use the interface at this time. +** +** When the virtual-table mechanism stablizes, we will declare the +** interface fixed, support it indefinitely, and remove this comment. +*/ + +/* +** Structures used by the virtual table interface +*/ +typedef struct sqlite3_vtab sqlite3_vtab; +typedef struct sqlite3_index_info sqlite3_index_info; +typedef struct sqlite3_vtab_cursor sqlite3_vtab_cursor; +typedef struct sqlite3_module sqlite3_module; + +/* +** A module is a class of virtual tables. Each module is defined +** by an instance of the following structure. This structure consists +** mostly of methods for the module. +*/ +struct sqlite3_module { + int iVersion; + int (*xCreate)(sqlite3*, void *pAux, + int argc, const char *const*argv, + sqlite3_vtab **ppVTab, char**); + int (*xConnect)(sqlite3*, void *pAux, + int argc, const char *const*argv, + sqlite3_vtab **ppVTab, char**); + int (*xBestIndex)(sqlite3_vtab *pVTab, sqlite3_index_info*); + int (*xDisconnect)(sqlite3_vtab *pVTab); + int (*xDestroy)(sqlite3_vtab *pVTab); + int (*xOpen)(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor); + int (*xClose)(sqlite3_vtab_cursor*); + int (*xFilter)(sqlite3_vtab_cursor*, int idxNum, const char *idxStr, + int argc, sqlite3_value **argv); + int (*xNext)(sqlite3_vtab_cursor*); + int (*xEof)(sqlite3_vtab_cursor*); + int (*xColumn)(sqlite3_vtab_cursor*, sqlite3_context*, int); + int (*xRowid)(sqlite3_vtab_cursor*, sqlite3_int64 *pRowid); + int (*xUpdate)(sqlite3_vtab *, int, sqlite3_value **, sqlite3_int64 *); + int (*xBegin)(sqlite3_vtab *pVTab); + int (*xSync)(sqlite3_vtab *pVTab); + int (*xCommit)(sqlite3_vtab *pVTab); + int (*xRollback)(sqlite3_vtab *pVTab); + int (*xFindFunction)(sqlite3_vtab *pVtab, int nArg, const char *zName, + void (**pxFunc)(sqlite3_context*,int,sqlite3_value**), + void **ppArg); + + int (*xRename)(sqlite3_vtab *pVtab, const char *zNew); +}; + +/* +** The sqlite3_index_info structure and its substructures is used to +** pass information into and receive the reply from the xBestIndex +** method of an sqlite3_module. The fields under **Inputs** are the +** inputs to xBestIndex and are read-only. xBestIndex inserts its +** results into the **Outputs** fields. +** +** The aConstraint[] array records WHERE clause constraints of the +** form: +** +** column OP expr +** +** Where OP is =, <, <=, >, or >=. +** The particular operator is stored +** in aConstraint[].op. The index of the column is stored in +** aConstraint[].iColumn. aConstraint[].usable is TRUE if the +** expr on the right-hand side can be evaluated (and thus the constraint +** is usable) and false if it cannot. +** +** The optimizer automatically inverts terms of the form "expr OP column" +** and makes other simplifications to the WHERE clause in an attempt to +** get as many WHERE clause terms into the form shown above as possible. +** The aConstraint[] array only reports WHERE clause terms in the correct +** form that refer to the particular virtual table being queried. +** +** Information about the ORDER BY clause is stored in aOrderBy[]. +** Each term of aOrderBy records a column of the ORDER BY clause. +** +** The xBestIndex method must fill aConstraintUsage[] with information +** about what parameters to pass to xFilter. If argvIndex>0 then +** the right-hand side of the corresponding aConstraint[] is evaluated +** and becomes the argvIndex-th entry in argv. If aConstraintUsage[].omit +** is true, then the constraint is assumed to be fully handled by the +** virtual table and is not checked again by SQLite. +** +** The idxNum and idxPtr values are recorded and passed into xFilter. +** sqlite3_free() is used to free idxPtr if needToFreeIdxPtr is true. +** +** The orderByConsumed means that output from xFilter will occur in +** the correct order to satisfy the ORDER BY clause so that no separate +** sorting step is required. +** +** The estimatedCost value is an estimate of the cost of doing the +** particular lookup. A full scan of a table with N entries should have +** a cost of N. A binary search of a table of N entries should have a +** cost of approximately log(N). +*/ +struct sqlite3_index_info { + /* Inputs */ + int nConstraint; /* Number of entries in aConstraint */ + struct sqlite3_index_constraint { + int iColumn; /* Column on left-hand side of constraint */ + unsigned char op; /* Constraint operator */ + unsigned char usable; /* True if this constraint is usable */ + int iTermOffset; /* Used internally - xBestIndex should ignore */ + } *aConstraint; /* Table of WHERE clause constraints */ + int nOrderBy; /* Number of terms in the ORDER BY clause */ + struct sqlite3_index_orderby { + int iColumn; /* Column number */ + unsigned char desc; /* True for DESC. False for ASC. */ + } *aOrderBy; /* The ORDER BY clause */ + + /* Outputs */ + struct sqlite3_index_constraint_usage { + int argvIndex; /* if >0, constraint is part of argv to xFilter */ + unsigned char omit; /* Do not code a test for this constraint */ + } *aConstraintUsage; + int idxNum; /* Number used to identify the index */ + char *idxStr; /* String, possibly obtained from sqlite3_malloc */ + int needToFreeIdxStr; /* Free idxStr using sqlite3_free() if true */ + int orderByConsumed; /* True if output is already ordered */ + double estimatedCost; /* Estimated cost of using this index */ +}; +#define SQLITE_INDEX_CONSTRAINT_EQ 2 +#define SQLITE_INDEX_CONSTRAINT_GT 4 +#define SQLITE_INDEX_CONSTRAINT_LE 8 +#define SQLITE_INDEX_CONSTRAINT_LT 16 +#define SQLITE_INDEX_CONSTRAINT_GE 32 +#define SQLITE_INDEX_CONSTRAINT_MATCH 64 + +/* +** This routine is used to register a new module name with an SQLite +** connection. Module names must be registered before creating new +** virtual tables on the module, or before using preexisting virtual +** tables of the module. +*/ +int sqlite3_create_module( + sqlite3 *db, /* SQLite connection to register module with */ + const char *zName, /* Name of the module */ + const sqlite3_module *, /* Methods for the module */ + void * /* Client data for xCreate/xConnect */ +); + +/* +** This routine is identical to the sqlite3_create_module() method above, +** except that it allows a destructor function to be specified. It is +** even more experimental than the rest of the virtual tables API. +*/ +int sqlite3_create_module_v2( + sqlite3 *db, /* SQLite connection to register module with */ + const char *zName, /* Name of the module */ + const sqlite3_module *, /* Methods for the module */ + void *, /* Client data for xCreate/xConnect */ + void(*xDestroy)(void*) /* Module destructor function */ +); + +/* +** Every module implementation uses a subclass of the following structure +** to describe a particular instance of the module. Each subclass will +** be tailored to the specific needs of the module implementation. The +** purpose of this superclass is to define certain fields that are common +** to all module implementations. +** +** Virtual tables methods can set an error message by assigning a +** string obtained from sqlite3_mprintf() to zErrMsg. The method should +** take care that any prior string is freed by a call to sqlite3_free() +** prior to assigning a new string to zErrMsg. After the error message +** is delivered up to the client application, the string will be automatically +** freed by sqlite3_free() and the zErrMsg field will be zeroed. Note +** that sqlite3_mprintf() and sqlite3_free() are used on the zErrMsg field +** since virtual tables are commonly implemented in loadable extensions which +** do not have access to sqlite3MPrintf() or sqlite3Free(). +*/ +struct sqlite3_vtab { + const sqlite3_module *pModule; /* The module for this virtual table */ + int nRef; /* Used internally */ + char *zErrMsg; /* Error message from sqlite3_mprintf() */ + /* Virtual table implementations will typically add additional fields */ +}; + +/* Every module implementation uses a subclass of the following structure +** to describe cursors that point into the virtual table and are used +** to loop through the virtual table. Cursors are created using the +** xOpen method of the module. Each module implementation will define +** the content of a cursor structure to suit its own needs. +** +** This superclass exists in order to define fields of the cursor that +** are common to all implementations. +*/ +struct sqlite3_vtab_cursor { + sqlite3_vtab *pVtab; /* Virtual table of this cursor */ + /* Virtual table implementations will typically add additional fields */ +}; + +/* +** The xCreate and xConnect methods of a module use the following API +** to declare the format (the names and datatypes of the columns) of +** the virtual tables they implement. +*/ +int sqlite3_declare_vtab(sqlite3*, const char *zCreateTable); + +/* +** Virtual tables can provide alternative implementations of functions +** using the xFindFunction method. But global versions of those functions +** must exist in order to be overloaded. +** +** This API makes sure a global version of a function with a particular +** name and number of parameters exists. If no such function exists +** before this API is called, a new function is created. The implementation +** of the new function always causes an exception to be thrown. So +** the new function is not good for anything by itself. Its only +** purpose is to be a place-holder function that can be overloaded +** by virtual tables. +** +** This API should be considered part of the virtual table interface, +** which is experimental and subject to change. +*/ +int sqlite3_overload_function(sqlite3*, const char *zFuncName, int nArg); + +/* +** The interface to the virtual-table mechanism defined above (back up +** to a comment remarkably similar to this one) is currently considered +** to be experimental. The interface might change in incompatible ways. +** If this is a problem for you, do not use the interface at this time. +** +** When the virtual-table mechanism stabilizes, we will declare the +** interface fixed, support it indefinitely, and remove this comment. +** +****** EXPERIMENTAL - subject to change without notice ************** +*/ + +/* +** CAPI3REF: A Handle To An Open BLOB {F17800} +** +** An instance of the following opaque structure is used to +** represent an blob-handle. A blob-handle is created by +** [sqlite3_blob_open()] and destroyed by [sqlite3_blob_close()]. +** The [sqlite3_blob_read()] and [sqlite3_blob_write()] interfaces +** can be used to read or write small subsections of the blob. +** The [sqlite3_blob_bytes()] interface returns the size of the +** blob in bytes. +*/ +typedef struct sqlite3_blob sqlite3_blob; + +/* +** CAPI3REF: Open A BLOB For Incremental I/O {F17810} +** +** {F17811} This interfaces opens a handle to the blob located +** in row iRow,, column zColumn, table zTable in database zDb; +** in other words, the same blob that would be selected by: +** +**
+**     SELECT zColumn FROM zDb.zTable WHERE rowid = iRow;
+** 
{END} +** +** {F17812} If the flags parameter is non-zero, the blob is opened for +** read and write access. If it is zero, the blob is opened for read +** access. {END} +** +** {F17813} On success, [SQLITE_OK] is returned and the new +** [sqlite3_blob | blob handle] is written to *ppBlob. +** {F17814} Otherwise an error code is returned and +** any value written to *ppBlob should not be used by the caller. +** {F17815} This function sets the database-handle error code and message +** accessible via [sqlite3_errcode()] and [sqlite3_errmsg()]. +** We should go through and mark all interfaces that behave this +** way with a similar statement +*/ +int sqlite3_blob_open( + sqlite3*, + const char *zDb, + const char *zTable, + const char *zColumn, + sqlite3_int64 iRow, + int flags, + sqlite3_blob **ppBlob +); + +/* +** CAPI3REF: Close A BLOB Handle {F17830} +** +** Close an open [sqlite3_blob | blob handle]. +** +** {F17831} Closing a BLOB shall cause the current transaction to commit +** if there are no other BLOBs, no pending prepared statements, and the +** database connection is in autocommit mode. +** {F17832} If any writes were made to the BLOB, they might be held in cache +** until the close operation if they will fit. {END} +** Closing the BLOB often forces the changes +** out to disk and so if any I/O errors occur, they will likely occur +** at the time when the BLOB is closed. {F17833} Any errors that occur during +** closing are reported as a non-zero return value. +** +** {F17839} The BLOB is closed unconditionally. Even if this routine returns +** an error code, the BLOB is still closed. +*/ +int sqlite3_blob_close(sqlite3_blob *); + +/* +** CAPI3REF: Return The Size Of An Open BLOB {F17805} +** +** {F16806} Return the size in bytes of the blob accessible via the open +** [sqlite3_blob | blob-handle] passed as an argument. +*/ +int sqlite3_blob_bytes(sqlite3_blob *); + +/* +** CAPI3REF: Read Data From A BLOB Incrementally {F17850} +** +** This function is used to read data from an open +** [sqlite3_blob | blob-handle] into a caller supplied buffer. +** {F17851} n bytes of data are copied into buffer +** z from the open blob, starting at offset iOffset. +** +** {F17852} If offset iOffset is less than n bytes from the end of the blob, +** [SQLITE_ERROR] is returned and no data is read. {F17853} If n is +** less than zero [SQLITE_ERROR] is returned and no data is read. +** +** {F17854} On success, SQLITE_OK is returned. Otherwise, an +** [SQLITE_ERROR | SQLite error code] or an +** [SQLITE_IOERR_READ | extended error code] is returned. +*/ +int sqlite3_blob_read(sqlite3_blob *, void *z, int n, int iOffset); + +/* +** CAPI3REF: Write Data Into A BLOB Incrementally {F17870} +** +** This function is used to write data into an open +** [sqlite3_blob | blob-handle] from a user supplied buffer. +** {F17871} n bytes of data are copied from the buffer +** pointed to by z into the open blob, starting at offset iOffset. +** +** {F17872} If the [sqlite3_blob | blob-handle] passed as the first argument +** was not opened for writing (the flags parameter to [sqlite3_blob_open()] +*** was zero), this function returns [SQLITE_READONLY]. +** +** {F17873} This function may only modify the contents of the blob; it is +** not possible to increase the size of a blob using this API. +** {F17874} If offset iOffset is less than n bytes from the end of the blob, +** [SQLITE_ERROR] is returned and no data is written. {F17875} If n is +** less than zero [SQLITE_ERROR] is returned and no data is written. +** +** {F17876} On success, SQLITE_OK is returned. Otherwise, an +** [SQLITE_ERROR | SQLite error code] or an +** [SQLITE_IOERR_READ | extended error code] is returned. +*/ +int sqlite3_blob_write(sqlite3_blob *, const void *z, int n, int iOffset); + +/* +** CAPI3REF: Virtual File System Objects {F11200} +** +** A virtual filesystem (VFS) is an [sqlite3_vfs] object +** that SQLite uses to interact +** with the underlying operating system. Most builds come with a +** single default VFS that is appropriate for the host computer. +** New VFSes can be registered and existing VFSes can be unregistered. +** The following interfaces are provided. +** +** {F11201} The sqlite3_vfs_find() interface returns a pointer to +** a VFS given its name. {F11202} Names are case sensitive. +** {F11203} Names are zero-terminated UTF-8 strings. +** {F11204} If there is no match, a NULL +** pointer is returned. {F11205} If zVfsName is NULL then the default +** VFS is returned. {END} +** +** {F11210} New VFSes are registered with sqlite3_vfs_register(). +** {F11211} Each new VFS becomes the default VFS if the makeDflt flag is set. +** {F11212} The same VFS can be registered multiple times without injury. +** {F11213} To make an existing VFS into the default VFS, register it again +** with the makeDflt flag set. {U11214} If two different VFSes with the +** same name are registered, the behavior is undefined. {U11215} If a +** VFS is registered with a name that is NULL or an empty string, +** then the behavior is undefined. +** +** {F11220} Unregister a VFS with the sqlite3_vfs_unregister() interface. +** {F11221} If the default VFS is unregistered, another VFS is chosen as +** the default. The choice for the new VFS is arbitrary. +*/ +sqlite3_vfs *sqlite3_vfs_find(const char *zVfsName); +int sqlite3_vfs_register(sqlite3_vfs*, int makeDflt); +int sqlite3_vfs_unregister(sqlite3_vfs*); + +/* +** CAPI3REF: Mutexes {F17000} +** +** The SQLite core uses these routines for thread +** synchronization. Though they are intended for internal +** use by SQLite, code that links against SQLite is +** permitted to use any of these routines. +** +** The SQLite source code contains multiple implementations +** of these mutex routines. An appropriate implementation +** is selected automatically at compile-time. The following +** implementations are available in the SQLite core: +** +**
    +**
  • SQLITE_MUTEX_OS2 +**
  • SQLITE_MUTEX_PTHREAD +**
  • SQLITE_MUTEX_W32 +**
  • SQLITE_MUTEX_NOOP +**
+** +** The SQLITE_MUTEX_NOOP implementation is a set of routines +** that does no real locking and is appropriate for use in +** a single-threaded application. The SQLITE_MUTEX_OS2, +** SQLITE_MUTEX_PTHREAD, and SQLITE_MUTEX_W32 implementations +** are appropriate for use on os/2, unix, and windows. +** +** If SQLite is compiled with the SQLITE_MUTEX_APPDEF preprocessor +** macro defined (with "-DSQLITE_MUTEX_APPDEF=1"), then no mutex +** implementation is included with the library. The +** mutex interface routines defined here become external +** references in the SQLite library for which implementations +** must be provided by the application. This facility allows an +** application that links against SQLite to provide its own mutex +** implementation without having to modify the SQLite core. +** +** {F17011} The sqlite3_mutex_alloc() routine allocates a new +** mutex and returns a pointer to it. {F17012} If it returns NULL +** that means that a mutex could not be allocated. {F17013} SQLite +** will unwind its stack and return an error. {F17014} The argument +** to sqlite3_mutex_alloc() is one of these integer constants: +** +**
    +**
  • SQLITE_MUTEX_FAST +**
  • SQLITE_MUTEX_RECURSIVE +**
  • SQLITE_MUTEX_STATIC_MASTER +**
  • SQLITE_MUTEX_STATIC_MEM +**
  • SQLITE_MUTEX_STATIC_MEM2 +**
  • SQLITE_MUTEX_STATIC_PRNG +**
  • SQLITE_MUTEX_STATIC_LRU +**
{END} +** +** {F17015} The first two constants cause sqlite3_mutex_alloc() to create +** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE +** is used but not necessarily so when SQLITE_MUTEX_FAST is used. {END} +** The mutex implementation does not need to make a distinction +** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does +** not want to. {F17016} But SQLite will only request a recursive mutex in +** cases where it really needs one. {END} If a faster non-recursive mutex +** implementation is available on the host platform, the mutex subsystem +** might return such a mutex in response to SQLITE_MUTEX_FAST. +** +** {F17017} The other allowed parameters to sqlite3_mutex_alloc() each return +** a pointer to a static preexisting mutex. {END} Four static mutexes are +** used by the current version of SQLite. Future versions of SQLite +** may add additional static mutexes. Static mutexes are for internal +** use by SQLite only. Applications that use SQLite mutexes should +** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or +** SQLITE_MUTEX_RECURSIVE. +** +** {F17018} Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST +** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc() +** returns a different mutex on every call. {F17034} But for the static +** mutex types, the same mutex is returned on every call that has +** the same type number. {END} +** +** {F17019} The sqlite3_mutex_free() routine deallocates a previously +** allocated dynamic mutex. {F17020} SQLite is careful to deallocate every +** dynamic mutex that it allocates. {U17021} The dynamic mutexes must not be in +** use when they are deallocated. {U17022} Attempting to deallocate a static +** mutex results in undefined behavior. {F17023} SQLite never deallocates +** a static mutex. {END} +** +** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt +** to enter a mutex. {F17024} If another thread is already within the mutex, +** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return +** SQLITE_BUSY. {F17025} The sqlite3_mutex_try() interface returns SQLITE_OK +** upon successful entry. {F17026} Mutexes created using +** SQLITE_MUTEX_RECURSIVE can be entered multiple times by the same thread. +** {F17027} In such cases the, +** mutex must be exited an equal number of times before another thread +** can enter. {U17028} If the same thread tries to enter any other +** kind of mutex more than once, the behavior is undefined. +** {F17029} SQLite will never exhibit +** such behavior in its own use of mutexes. {END} +** +** Some systems (ex: windows95) do not the operation implemented by +** sqlite3_mutex_try(). On those systems, sqlite3_mutex_try() will +** always return SQLITE_BUSY. {F17030} The SQLite core only ever uses +** sqlite3_mutex_try() as an optimization so this is acceptable behavior. {END} +** +** {F17031} The sqlite3_mutex_leave() routine exits a mutex that was +** previously entered by the same thread. {U17032} The behavior +** is undefined if the mutex is not currently entered by the +** calling thread or is not currently allocated. {F17033} SQLite will +** never do either. {END} +** +** See also: [sqlite3_mutex_held()] and [sqlite3_mutex_notheld()]. +*/ +sqlite3_mutex *sqlite3_mutex_alloc(int); +void sqlite3_mutex_free(sqlite3_mutex*); +void sqlite3_mutex_enter(sqlite3_mutex*); +int sqlite3_mutex_try(sqlite3_mutex*); +void sqlite3_mutex_leave(sqlite3_mutex*); + +/* +** CAPI3REF: Mutex Verifcation Routines {F17080} +** +** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routines +** are intended for use inside assert() statements. {F17081} The SQLite core +** never uses these routines except inside an assert() and applications +** are advised to follow the lead of the core. {F17082} The core only +** provides implementations for these routines when it is compiled +** with the SQLITE_DEBUG flag. {U17087} External mutex implementations +** are only required to provide these routines if SQLITE_DEBUG is +** defined and if NDEBUG is not defined. +** +** {F17083} These routines should return true if the mutex in their argument +** is held or not held, respectively, by the calling thread. {END} +** +** {X17084} The implementation is not required to provided versions of these +** routines that actually work. +** If the implementation does not provide working +** versions of these routines, it should at least provide stubs +** that always return true so that one does not get spurious +** assertion failures. {END} +** +** {F17085} If the argument to sqlite3_mutex_held() is a NULL pointer then +** the routine should return 1. {END} This seems counter-intuitive since +** clearly the mutex cannot be held if it does not exist. But the +** the reason the mutex does not exist is because the build is not +** using mutexes. And we do not want the assert() containing the +** call to sqlite3_mutex_held() to fail, so a non-zero return is +** the appropriate thing to do. {F17086} The sqlite3_mutex_notheld() +** interface should also return 1 when given a NULL pointer. +*/ +int sqlite3_mutex_held(sqlite3_mutex*); +int sqlite3_mutex_notheld(sqlite3_mutex*); + +/* +** CAPI3REF: Mutex Types {F17001} +** +** {F17002} The [sqlite3_mutex_alloc()] interface takes a single argument +** which is one of these integer constants. {END} +*/ +#define SQLITE_MUTEX_FAST 0 +#define SQLITE_MUTEX_RECURSIVE 1 +#define SQLITE_MUTEX_STATIC_MASTER 2 +#define SQLITE_MUTEX_STATIC_MEM 3 /* sqlite3_malloc() */ +#define SQLITE_MUTEX_STATIC_MEM2 4 /* sqlite3_release_memory() */ +#define SQLITE_MUTEX_STATIC_PRNG 5 /* sqlite3_random() */ +#define SQLITE_MUTEX_STATIC_LRU 6 /* lru page list */ + +/* +** CAPI3REF: Low-Level Control Of Database Files {F11300} +** +** {F11301} The [sqlite3_file_control()] interface makes a direct call to the +** xFileControl method for the [sqlite3_io_methods] object associated +** with a particular database identified by the second argument. {F11302} The +** name of the database is the name assigned to the database by the +** ATTACH SQL command that opened the +** database. {F11303} To control the main database file, use the name "main" +** or a NULL pointer. {F11304} The third and fourth parameters to this routine +** are passed directly through to the second and third parameters of +** the xFileControl method. {F11305} The return value of the xFileControl +** method becomes the return value of this routine. +** +** {F11306} If the second parameter (zDbName) does not match the name of any +** open database file, then SQLITE_ERROR is returned. {F11307} This error +** code is not remembered and will not be recalled by [sqlite3_errcode()] +** or [sqlite3_errmsg()]. {U11308} The underlying xFileControl method might +** also return SQLITE_ERROR. {U11309} There is no way to distinguish between +** an incorrect zDbName and an SQLITE_ERROR return from the underlying +** xFileControl method. {END} +** +** See also: [SQLITE_FCNTL_LOCKSTATE] +*/ +int sqlite3_file_control(sqlite3*, const char *zDbName, int op, void*); + +/* +** Undo the hack that converts floating point types to integer for +** builds on processors without floating point support. +*/ +#ifdef SQLITE_OMIT_FLOATING_POINT +# undef double +#endif + +#if 0 +} /* End of the 'extern "C"' block */ +#endif +#endif + +/************** End of sqlite3.h *********************************************/ +/************** Continuing where we left off in fts3_tokenizer.h *************/ + +/* +** Structures used by the tokenizer interface. When a new tokenizer +** implementation is registered, the caller provides a pointer to +** an sqlite3_tokenizer_module containing pointers to the callback +** functions that make up an implementation. +** +** When an fts3 table is created, it passes any arguments passed to +** the tokenizer clause of the CREATE VIRTUAL TABLE statement to the +** sqlite3_tokenizer_module.xCreate() function of the requested tokenizer +** implementation. The xCreate() function in turn returns an +** sqlite3_tokenizer structure representing the specific tokenizer to +** be used for the fts3 table (customized by the tokenizer clause arguments). +** +** To tokenize an input buffer, the sqlite3_tokenizer_module.xOpen() +** method is called. It returns an sqlite3_tokenizer_cursor object +** that may be used to tokenize a specific input buffer based on +** the tokenization rules supplied by a specific sqlite3_tokenizer +** object. +*/ +typedef struct sqlite3_tokenizer_module sqlite3_tokenizer_module; +typedef struct sqlite3_tokenizer sqlite3_tokenizer; +typedef struct sqlite3_tokenizer_cursor sqlite3_tokenizer_cursor; + +struct sqlite3_tokenizer_module { + + /* + ** Structure version. Should always be set to 0. + */ + int iVersion; + + /* + ** Create a new tokenizer. The values in the argv[] array are the + ** arguments passed to the "tokenizer" clause of the CREATE VIRTUAL + ** TABLE statement that created the fts3 table. For example, if + ** the following SQL is executed: + ** + ** CREATE .. USING fts3( ... , tokenizer arg1 arg2) + ** + ** then argc is set to 2, and the argv[] array contains pointers + ** to the strings "arg1" and "arg2". + ** + ** This method should return either SQLITE_OK (0), or an SQLite error + ** code. If SQLITE_OK is returned, then *ppTokenizer should be set + ** to point at the newly created tokenizer structure. The generic + ** sqlite3_tokenizer.pModule variable should not be initialised by + ** this callback. The caller will do so. + */ + int (*xCreate)( + int argc, /* Size of argv array */ + const char *const*argv, /* Tokenizer argument strings */ + sqlite3_tokenizer **ppTokenizer /* OUT: Created tokenizer */ + ); + + /* + ** Destroy an existing tokenizer. The fts3 module calls this method + ** exactly once for each successful call to xCreate(). + */ + int (*xDestroy)(sqlite3_tokenizer *pTokenizer); + + /* + ** Create a tokenizer cursor to tokenize an input buffer. The caller + ** is responsible for ensuring that the input buffer remains valid + ** until the cursor is closed (using the xClose() method). + */ + int (*xOpen)( + sqlite3_tokenizer *pTokenizer, /* Tokenizer object */ + const char *pInput, int nBytes, /* Input buffer */ + sqlite3_tokenizer_cursor **ppCursor /* OUT: Created tokenizer cursor */ + ); + + /* + ** Destroy an existing tokenizer cursor. The fts3 module calls this + ** method exactly once for each successful call to xOpen(). + */ + int (*xClose)(sqlite3_tokenizer_cursor *pCursor); + + /* + ** Retrieve the next token from the tokenizer cursor pCursor. This + ** method should either return SQLITE_OK and set the values of the + ** "OUT" variables identified below, or SQLITE_DONE to indicate that + ** the end of the buffer has been reached, or an SQLite error code. + ** + ** *ppToken should be set to point at a buffer containing the + ** normalized version of the token (i.e. after any case-folding and/or + ** stemming has been performed). *pnBytes should be set to the length + ** of this buffer in bytes. The input text that generated the token is + ** identified by the byte offsets returned in *piStartOffset and + ** *piEndOffset. + ** + ** The buffer *ppToken is set to point at is managed by the tokenizer + ** implementation. It is only required to be valid until the next call + ** to xNext() or xClose(). + */ + /* TODO(shess) current implementation requires pInput to be + ** nul-terminated. This should either be fixed, or pInput/nBytes + ** should be converted to zInput. + */ + int (*xNext)( + sqlite3_tokenizer_cursor *pCursor, /* Tokenizer cursor */ + const char **ppToken, int *pnBytes, /* OUT: Normalized text for token */ + int *piStartOffset, /* OUT: Byte offset of token in input buffer */ + int *piEndOffset, /* OUT: Byte offset of end of token in input buffer */ + int *piPosition /* OUT: Number of tokens returned before this one */ + ); +}; + +struct sqlite3_tokenizer { + const sqlite3_tokenizer_module *pModule; /* The module for this tokenizer */ + /* Tokenizer implementations will typically add additional fields */ +}; + +struct sqlite3_tokenizer_cursor { + sqlite3_tokenizer *pTokenizer; /* Tokenizer for this cursor. */ + /* Tokenizer implementations will typically add additional fields */ +}; + +#endif /* _FTS3_TOKENIZER_H_ */ + +/************** End of fts3_tokenizer.h **************************************/ +/************** Continuing where we left off in fts3_tokenizer1.c ************/ + +typedef struct simple_tokenizer { + sqlite3_tokenizer base; + char delim[128]; /* flag ASCII delimiters */ +} simple_tokenizer; + +typedef struct simple_tokenizer_cursor { + sqlite3_tokenizer_cursor base; + const char *pInput; /* input we are tokenizing */ + int nBytes; /* size of the input */ + int iOffset; /* current position in pInput */ + int iToken; /* index of next token to be returned */ + char *pToken; /* storage for current token */ + int nTokenAllocated; /* space allocated to zToken buffer */ +} simple_tokenizer_cursor; + + +/* Forward declaration */ +static const sqlite3_tokenizer_module simpleTokenizerModule; + +static int simpleDelim(simple_tokenizer *t, unsigned char c){ + return c<0x80 && t->delim[c]; +} + +/* +** Create a new tokenizer instance. +*/ +static int simpleCreate( + int argc, const char * const *argv, + sqlite3_tokenizer **ppTokenizer +){ + simple_tokenizer *t; + + t = (simple_tokenizer *) sqlite3_malloc(sizeof(*t)); + if( t==NULL ) return SQLITE_NOMEM; + memset(t, 0, sizeof(*t)); + + /* TODO(shess) Delimiters need to remain the same from run to run, + ** else we need to reindex. One solution would be a meta-table to + ** track such information in the database, then we'd only want this + ** information on the initial create. + */ + if( argc>1 ){ + int i, n = strlen(argv[1]); + for(i=0; i=0x80 ){ + sqlite3_free(t); + return SQLITE_ERROR; + } + t->delim[ch] = 1; + } + } else { + /* Mark non-alphanumeric ASCII characters as delimiters */ + int i; + for(i=1; i<0x80; i++){ + t->delim[i] = !isalnum(i); + } + } + + *ppTokenizer = &t->base; + return SQLITE_OK; +} + +/* +** Destroy a tokenizer +*/ +static int simpleDestroy(sqlite3_tokenizer *pTokenizer){ + sqlite3_free(pTokenizer); + return SQLITE_OK; +} + +/* +** Prepare to begin tokenizing a particular string. The input +** string to be tokenized is pInput[0..nBytes-1]. A cursor +** used to incrementally tokenize this string is returned in +** *ppCursor. +*/ +static int simpleOpen( + sqlite3_tokenizer *pTokenizer, /* The tokenizer */ + const char *pInput, int nBytes, /* String to be tokenized */ + sqlite3_tokenizer_cursor **ppCursor /* OUT: Tokenization cursor */ +){ + simple_tokenizer_cursor *c; + + c = (simple_tokenizer_cursor *) sqlite3_malloc(sizeof(*c)); + if( c==NULL ) return SQLITE_NOMEM; + + c->pInput = pInput; + if( pInput==0 ){ + c->nBytes = 0; + }else if( nBytes<0 ){ + c->nBytes = (int)strlen(pInput); + }else{ + c->nBytes = nBytes; + } + c->iOffset = 0; /* start tokenizing at the beginning */ + c->iToken = 0; + c->pToken = NULL; /* no space allocated, yet. */ + c->nTokenAllocated = 0; + + *ppCursor = &c->base; + return SQLITE_OK; +} + +/* +** Close a tokenization cursor previously opened by a call to +** simpleOpen() above. +*/ +static int simpleClose(sqlite3_tokenizer_cursor *pCursor){ + simple_tokenizer_cursor *c = (simple_tokenizer_cursor *) pCursor; + sqlite3_free(c->pToken); + sqlite3_free(c); + return SQLITE_OK; +} + +/* +** Extract the next token from a tokenization cursor. The cursor must +** have been opened by a prior call to simpleOpen(). +*/ +static int simpleNext( + sqlite3_tokenizer_cursor *pCursor, /* Cursor returned by simpleOpen */ + const char **ppToken, /* OUT: *ppToken is the token text */ + int *pnBytes, /* OUT: Number of bytes in token */ + int *piStartOffset, /* OUT: Starting offset of token */ + int *piEndOffset, /* OUT: Ending offset of token */ + int *piPosition /* OUT: Position integer of token */ +){ + simple_tokenizer_cursor *c = (simple_tokenizer_cursor *) pCursor; + simple_tokenizer *t = (simple_tokenizer *) pCursor->pTokenizer; + unsigned char *p = (unsigned char *)c->pInput; + + while( c->iOffsetnBytes ){ + int iStartOffset; + + /* Scan past delimiter characters */ + while( c->iOffsetnBytes && simpleDelim(t, p[c->iOffset]) ){ + c->iOffset++; + } + + /* Count non-delimiter characters. */ + iStartOffset = c->iOffset; + while( c->iOffsetnBytes && !simpleDelim(t, p[c->iOffset]) ){ + c->iOffset++; + } + + if( c->iOffset>iStartOffset ){ + int i, n = c->iOffset-iStartOffset; + if( n>c->nTokenAllocated ){ + c->nTokenAllocated = n+20; + c->pToken = sqlite3_realloc(c->pToken, c->nTokenAllocated); + if( c->pToken==NULL ) return SQLITE_NOMEM; + } + for(i=0; ipToken[i] = ch<0x80 ? tolower(ch) : ch; + } + *ppToken = c->pToken; + *pnBytes = n; + *piStartOffset = iStartOffset; + *piEndOffset = c->iOffset; + *piPosition = c->iToken++; + + return SQLITE_OK; + } + } + return SQLITE_DONE; +} + +/* +** The set of routines that implement the simple tokenizer +*/ +static const sqlite3_tokenizer_module simpleTokenizerModule = { + 0, + simpleCreate, + simpleDestroy, + simpleOpen, + simpleClose, + simpleNext, +}; + +/* +** Allocate a new simple tokenizer. Return a pointer to the new +** tokenizer in *ppModule +*/ +void sqlite3Fts3SimpleTokenizerModule( + sqlite3_tokenizer_module const**ppModule +){ + *ppModule = &simpleTokenizerModule; +} + +#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */ + +/************** End of fts3_tokenizer1.c *************************************/ +/************** Begin file fts3_icu.c ****************************************/ +/* +** 2007 June 22 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file implements a tokenizer for fts3 based on the ICU library. +** +** $Id: sqlite3.c,v 1.13 2008/01/29 23:34:19 myk%mozilla.org Exp $ +*/ + +#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) +#ifdef SQLITE_ENABLE_ICU + +/************** Include fts3_tokenizer.h in the middle of fts3_icu.c *********/ +/************** Begin file fts3_tokenizer.h **********************************/ +/* +** 2006 July 10 +** +** The author disclaims copyright to this source code. +** +************************************************************************* +** Defines the interface to tokenizers used by fulltext-search. There +** are three basic components: +** +** sqlite3_tokenizer_module is a singleton defining the tokenizer +** interface functions. This is essentially the class structure for +** tokenizers. +** +** sqlite3_tokenizer is used to define a particular tokenizer, perhaps +** including customization information defined at creation time. +** +** sqlite3_tokenizer_cursor is generated by a tokenizer to generate +** tokens from a particular input. +*/ +#ifndef _FTS3_TOKENIZER_H_ +#define _FTS3_TOKENIZER_H_ + +/* TODO(shess) Only used for SQLITE_OK and SQLITE_DONE at this time. +** If tokenizers are to be allowed to call sqlite3_*() functions, then +** we will need a way to register the API consistently. +*/ +/************** Include sqlite3.h in the middle of fts3_tokenizer.h **********/ +/************** Begin file sqlite3.h *****************************************/ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This header file defines the interface that the SQLite library +** presents to client programs. If a C-function, structure, datatype, +** or constant definition does not appear in this file, then it is +** not a published API of SQLite, is subject to change without +** notice, and should not be referenced by programs that use SQLite. +** +** Some of the definitions that are in this file are marked as +** "experimental". Experimental interfaces are normally new +** features recently added to SQLite. We do not anticipate changes +** to experimental interfaces but reserve to make minor changes if +** experience from use "in the wild" suggest such changes are prudent. +** +** The official C-language API documentation for SQLite is derived +** from comments in this file. This file is the authoritative source +** on how SQLite interfaces are suppose to operate. +** +** The name of this file under configuration management is "sqlite.h.in". +** The makefile makes some minor changes to this file (such as inserting +** the version number) and changes its name to "sqlite3.h" as +** part of the build process. +** +** @(#) $Id: sqlite3.c,v 1.13 2008/01/29 23:34:19 myk%mozilla.org Exp $ +*/ +#ifndef _SQLITE3_H_ +#define _SQLITE3_H_ + +/* +** Make sure we can call this stuff from C++. +*/ +#if 0 +extern "C" { +#endif + + +/* +** Add the ability to override 'extern' +*/ +#ifndef SQLITE_EXTERN +# define SQLITE_EXTERN extern +#endif + +/* +** Make sure these symbols where not defined by some previous header +** file. +*/ +#ifdef SQLITE_VERSION +# undef SQLITE_VERSION +#endif +#ifdef SQLITE_VERSION_NUMBER +# undef SQLITE_VERSION_NUMBER +#endif + +/* +** CAPI3REF: Compile-Time Library Version Numbers {F10010} +** +** {F10011} The #define in the sqlite3.h header file named +** SQLITE_VERSION resolves to a string literal that identifies +** the version of the SQLite library in the format "X.Y.Z", where +** X is the major version number, Y is the minor version number and Z +** is the release number. The X.Y.Z might be followed by "alpha" or "beta". +** {END} For example "3.1.1beta". +** +** The X value is always 3 in SQLite. The X value only changes when +** backwards compatibility is broken and we intend to never break +** backwards compatibility. The Y value only changes when +** there are major feature enhancements that are forwards compatible +** but not backwards compatible. The Z value is incremented with +** each release but resets back to 0 when Y is incremented. +** +** {F10014} The SQLITE_VERSION_NUMBER #define resolves to an integer +** with the value (X*1000000 + Y*1000 + Z) where X, Y, and Z are as +** with SQLITE_VERSION. {END} For example, for version "3.1.1beta", +** SQLITE_VERSION_NUMBER is set to 3001001. To detect if they are using +** version 3.1.1 or greater at compile time, programs may use the test +** (SQLITE_VERSION_NUMBER>=3001001). +** +** See also: [sqlite3_libversion()] and [sqlite3_libversion_number()]. +*/ +#define SQLITE_VERSION "3.5.4" +#define SQLITE_VERSION_NUMBER 3005004 + +/* +** CAPI3REF: Run-Time Library Version Numbers {F10020} +** +** {F10021} The sqlite3_libversion_number() interface returns an integer +** equal to [SQLITE_VERSION_NUMBER]. {END} The value returned +** by this routine should only be different from the header values +** if the application is compiled using an sqlite3.h header from a +** different version of SQLite than library. Cautious programmers might +** include a check in their application to verify that +** sqlite3_libversion_number() always returns the value +** [SQLITE_VERSION_NUMBER]. +** +** {F10022} The sqlite3_version[] string constant contains the text of the +** [SQLITE_VERSION] string. {F10023} The sqlite3_libversion() function returns +** a pointer to the sqlite3_version[] string constant. {END} The +** sqlite3_libversion() function +** is provided for DLL users who can only access functions and not +** constants within the DLL. +*/ +SQLITE_EXTERN const char sqlite3_version[]; +const char *sqlite3_libversion(void); +int sqlite3_libversion_number(void); + +/* +** CAPI3REF: Test To See If The Library Is Threadsafe {F10100} +** +** {F10101} The sqlite3_threadsafe() routine returns nonzero +** if SQLite was compiled with its mutexes enabled or zero if +** SQLite was compiled with mutexes disabled. {END} If this +** routine returns false, then it is not safe for simultaneously +** running threads to both invoke SQLite interfaces. +** +** Really all this routine does is return true if SQLite was +** compiled with the -DSQLITE_THREADSAFE=1 option and false if +** compiled with -DSQLITE_THREADSAFE=0. If SQLite uses an +** application-defined mutex subsystem, malloc subsystem, collating +** sequence, VFS, SQL function, progress callback, commit hook, +** extension, or other accessories and these add-ons are not +** threadsafe, then clearly the combination will not be threadsafe +** either. Hence, this routine never reports that the library +** is guaranteed to be threadsafe, only when it is guaranteed not +** to be. +*/ +int sqlite3_threadsafe(void); + +/* +** CAPI3REF: Database Connection Handle {F12000} +** +** Each open SQLite database is represented by pointer to an instance of the +** opaque structure named "sqlite3". It is useful to think of an sqlite3 +** pointer as an object. The [sqlite3_open()], [sqlite3_open16()], and +** [sqlite3_open_v2()] interfaces are its constructors +** and [sqlite3_close()] is its destructor. There are many other interfaces +** (such as [sqlite3_prepare_v2()], [sqlite3_create_function()], and +** [sqlite3_busy_timeout()] to name but three) that are methods on this +** object. +*/ +typedef struct sqlite3 sqlite3; + + +/* +** CAPI3REF: 64-Bit Integer Types {F10200} +** +** Because there is no cross-platform way to specify such types +** SQLite includes typedefs for 64-bit signed and unsigned integers. +** {F10201} The sqlite_int64 and sqlite3_int64 types specify a +** 64-bit signed integer. {F10202} The sqlite_uint64 and +** sqlite3_uint64 types specify a 64-bit unsigned integer. {END} +** +** The sqlite3_int64 and sqlite3_uint64 are the preferred type +** definitions. The sqlite_int64 and sqlite_uint64 types are +** supported for backwards compatibility only. +*/ +#ifdef SQLITE_INT64_TYPE + typedef SQLITE_INT64_TYPE sqlite_int64; + typedef unsigned SQLITE_INT64_TYPE sqlite_uint64; +#elif defined(_MSC_VER) || defined(__BORLANDC__) + typedef __int64 sqlite_int64; + typedef unsigned __int64 sqlite_uint64; +#else + typedef long long int sqlite_int64; + typedef unsigned long long int sqlite_uint64; +#endif +typedef sqlite_int64 sqlite3_int64; +typedef sqlite_uint64 sqlite3_uint64; + +/* +** If compiling for a processor that lacks floating point support, +** substitute integer for floating-point +*/ +#ifdef SQLITE_OMIT_FLOATING_POINT +# define double sqlite3_int64 +#endif + +/* +** CAPI3REF: Closing A Database Connection {F12010} +** +** {F12011} The sqlite3_close() interfaces destroys an [sqlite3] object +** allocated by a prior call to [sqlite3_open()], [sqlite3_open16()], or +** [sqlite3_open_v2()]. {F12012} Sqlite3_close() releases all +** memory used by the connection and closes all open files. {END}. +** +** {F12013} If the database connection contains +** [sqlite3_stmt | prepared statements] that have not been finalized +** by [sqlite3_finalize()], then sqlite3_close() returns SQLITE_BUSY +** and leaves the connection open. {F12014} Giving sqlite3_close() +** a NULL pointer is a harmless no-op. {END} +** +** {U12015} Passing this routine a database connection that has already been +** closed results in undefined behavior. {U12016} If other interfaces that +** reference the same database connection are pending (either in the +** same thread or in different threads) when this routine is called, +** then the behavior is undefined and is almost certainly undesirable. +*/ +int sqlite3_close(sqlite3 *); + +/* +** The type for a callback function. +** This is legacy and deprecated. It is included for historical +** compatibility and is not documented. +*/ +typedef int (*sqlite3_callback)(void*,int,char**, char**); + +/* +** CAPI3REF: One-Step Query Execution Interface {F12100} +** +** {F12101} The sqlite3_exec() interface evaluates zero or more +** UTF-8 encoded, semicolon-separated SQL statements in the zero-terminated +** string of its second argument. {F12102} The SQL +** statements are evaluated in the context of the database connection +** specified by in the first argument. +** {F12103} SQL statements are prepared one by one using +** [sqlite3_prepare()] or the equivalent, evaluated +** using one or more calls to [sqlite3_step()], then destroyed +** using [sqlite3_finalize()]. {F12104} The return value of +** sqlite3_exec() is SQLITE_OK if all SQL statement run +** successfully. +** +** {F12105} If one or more of the SQL statements handed to +** sqlite3_exec() are queries, then +** the callback function specified by the 3rd parameter is +** invoked once for each row of the query result. {F12106} +** If the callback returns a non-zero value then the query +** is aborted, all subsequent SQL statements +** are skipped and the sqlite3_exec() function returns the [SQLITE_ABORT]. +** +** {F12107} The 4th parameter to sqlite3_exec() is an arbitrary pointer +** that is passed through to the callback function as its first parameter. +** +** {F12108} The 2nd parameter to the callback function is the number of +** columns in the query result. {F12109} The 3rd parameter to the callback +** is an array of pointers to strings holding the values for each column +** as extracted using [sqlite3_column_text()]. NULL values in the result +** set result in a NULL pointer. All other value are in their UTF-8 +** string representation. {F12117} +** The 4th parameter to the callback is an array of strings +** obtained using [sqlite3_column_name()] and holding +** the names of each column, also in UTF-8. +** +** {F12110} The callback function may be NULL, even for queries. A NULL +** callback is not an error. It just means that no callback +** will be invoked. +** +** {F12112} If an error occurs while parsing or evaluating the SQL +** then an appropriate error message is written into memory obtained +** from [sqlite3_malloc()] and *errmsg is made to point to that message +** assuming errmsg is not NULL. +** {U12113} The calling function is responsible for freeing the memory +** using [sqlite3_free()]. +** {F12116} If [sqlite3_malloc()] fails while attempting to generate +** the error message, *errmsg is set to NULL. +** {F12114} If errmsg is NULL then no attempt is made to generate an +** error message. Is the return code SQLITE_NOMEM or the original +** error code? What happens if there are multiple errors? +** Do we get code for the first error, or is the choice of reported +** error arbitrary? +** +** {F12115} The return value is is SQLITE_OK if there are no errors and +** some other [SQLITE_OK | return code] if there is an error. +** The particular return value depends on the type of error. {END} +*/ +int sqlite3_exec( + sqlite3*, /* An open database */ + const char *sql, /* SQL to be evaluted */ + int (*callback)(void*,int,char**,char**), /* Callback function */ + void *, /* 1st argument to callback */ + char **errmsg /* Error msg written here */ +); + +/* +** CAPI3REF: Result Codes {F10210} +** KEYWORDS: SQLITE_OK +** +** Many SQLite functions return an integer result code from the set shown +** above in order to indicates success or failure. +** +** {F10211} The result codes shown here are the only ones returned +** by SQLite in its default configuration. {F10212} However, the +** [sqlite3_extended_result_codes()] API can be used to set a database +** connectoin to return more detailed result codes. {END} +** +** See also: [SQLITE_IOERR_READ | extended result codes] +** +*/ +#define SQLITE_OK 0 /* Successful result */ +/* beginning-of-error-codes */ +#define SQLITE_ERROR 1 /* SQL error or missing database */ +#define SQLITE_INTERNAL 2 /* Internal logic error in SQLite */ +#define SQLITE_PERM 3 /* Access permission denied */ +#define SQLITE_ABORT 4 /* Callback routine requested an abort */ +#define SQLITE_BUSY 5 /* The database file is locked */ +#define SQLITE_LOCKED 6 /* A table in the database is locked */ +#define SQLITE_NOMEM 7 /* A malloc() failed */ +#define SQLITE_READONLY 8 /* Attempt to write a readonly database */ +#define SQLITE_INTERRUPT 9 /* Operation terminated by sqlite3_interrupt()*/ +#define SQLITE_IOERR 10 /* Some kind of disk I/O error occurred */ +#define SQLITE_CORRUPT 11 /* The database disk image is malformed */ +#define SQLITE_NOTFOUND 12 /* NOT USED. Table or record not found */ +#define SQLITE_FULL 13 /* Insertion failed because database is full */ +#define SQLITE_CANTOPEN 14 /* Unable to open the database file */ +#define SQLITE_PROTOCOL 15 /* NOT USED. Database lock protocol error */ +#define SQLITE_EMPTY 16 /* Database is empty */ +#define SQLITE_SCHEMA 17 /* The database schema changed */ +#define SQLITE_TOOBIG 18 /* String or BLOB exceeds size limit */ +#define SQLITE_CONSTRAINT 19 /* Abort due to constraint violation */ +#define SQLITE_MISMATCH 20 /* Data type mismatch */ +#define SQLITE_MISUSE 21 /* Library used incorrectly */ +#define SQLITE_NOLFS 22 /* Uses OS features not supported on host */ +#define SQLITE_AUTH 23 /* Authorization denied */ +#define SQLITE_FORMAT 24 /* Auxiliary database format error */ +#define SQLITE_RANGE 25 /* 2nd parameter to sqlite3_bind out of range */ +#define SQLITE_NOTADB 26 /* File opened that is not a database file */ +#define SQLITE_ROW 100 /* sqlite3_step() has another row ready */ +#define SQLITE_DONE 101 /* sqlite3_step() has finished executing */ +/* end-of-error-codes */ + +/* +** CAPI3REF: Extended Result Codes {F10220} +** +** In its default configuration, SQLite API routines return one of 26 integer +** [SQLITE_OK | result codes]. However, experience has shown that +** many of these result codes are too course-grained. They do not provide as +** much information about problems as programmers might like. In an effort to +** address this, newer versions of SQLite (version 3.3.8 and later) include +** support for additional result codes that provide more detailed information +** about errors. {F10221} The extended result codes are enabled or disabled +** for each database connection using the [sqlite3_extended_result_codes()] +** API. {END} +** +** Some of the available extended result codes are listed above. +** We expect the number of extended result codes will be expand +** over time. {U10422} Software that uses extended result codes should expect +** to see new result codes in future releases of SQLite. {END} +** +** {F10223} The symbolic name for an extended result code always contains +** a related primary result code as a prefix. {F10224} Primary result +** codes contain a single "_" character. {F10225} Extended result codes +** contain two or more "_" characters. {F10226} The numeric value of an +** extended result code can be converted to its +** corresponding primary result code by masking off the lower 8 bytes. {END} +** +** The SQLITE_OK result code will never be extended. It will always +** be exactly zero. +*/ +#define SQLITE_IOERR_READ (SQLITE_IOERR | (1<<8)) +#define SQLITE_IOERR_SHORT_READ (SQLITE_IOERR | (2<<8)) +#define SQLITE_IOERR_WRITE (SQLITE_IOERR | (3<<8)) +#define SQLITE_IOERR_FSYNC (SQLITE_IOERR | (4<<8)) +#define SQLITE_IOERR_DIR_FSYNC (SQLITE_IOERR | (5<<8)) +#define SQLITE_IOERR_TRUNCATE (SQLITE_IOERR | (6<<8)) +#define SQLITE_IOERR_FSTAT (SQLITE_IOERR | (7<<8)) +#define SQLITE_IOERR_UNLOCK (SQLITE_IOERR | (8<<8)) +#define SQLITE_IOERR_RDLOCK (SQLITE_IOERR | (9<<8)) +#define SQLITE_IOERR_DELETE (SQLITE_IOERR | (10<<8)) +#define SQLITE_IOERR_BLOCKED (SQLITE_IOERR | (11<<8)) +#define SQLITE_IOERR_NOMEM (SQLITE_IOERR | (12<<8)) + +/* +** CAPI3REF: Flags For File Open Operations {F10230} +** +** {F10231} Some combination of the these bit values are used as the +** third argument to the [sqlite3_open_v2()] interface and +** as fourth argument to the xOpen method of the +** [sqlite3_vfs] object. +*/ +#define SQLITE_OPEN_READONLY 0x00000001 +#define SQLITE_OPEN_READWRITE 0x00000002 +#define SQLITE_OPEN_CREATE 0x00000004 +#define SQLITE_OPEN_DELETEONCLOSE 0x00000008 +#define SQLITE_OPEN_EXCLUSIVE 0x00000010 +#define SQLITE_OPEN_MAIN_DB 0x00000100 +#define SQLITE_OPEN_TEMP_DB 0x00000200 +#define SQLITE_OPEN_TRANSIENT_DB 0x00000400 +#define SQLITE_OPEN_MAIN_JOURNAL 0x00000800 +#define SQLITE_OPEN_TEMP_JOURNAL 0x00001000 +#define SQLITE_OPEN_SUBJOURNAL 0x00002000 +#define SQLITE_OPEN_MASTER_JOURNAL 0x00004000 + +/* +** CAPI3REF: Device Characteristics {F10240} +** +** {F10241} The xDeviceCapabilities method of the [sqlite3_io_methods] +** object returns an integer which is a vector of the these +** bit values expressing I/O characteristics of the mass storage +** device that holds the file that the [sqlite3_io_methods] +** refers to. {END} +** +** {F10242} The SQLITE_IOCAP_ATOMIC property means that all writes of +** any size are atomic. {F10243} The SQLITE_IOCAP_ATOMICnnn values +** mean that writes of blocks that are nnn bytes in size and +** are aligned to an address which is an integer multiple of +** nnn are atomic. {F10244} The SQLITE_IOCAP_SAFE_APPEND value means +** that when data is appended to a file, the data is appended +** first then the size of the file is extended, never the other +** way around. {F10245} The SQLITE_IOCAP_SEQUENTIAL property means that +** information is written to disk in the same order as calls +** to xWrite(). +*/ +#define SQLITE_IOCAP_ATOMIC 0x00000001 +#define SQLITE_IOCAP_ATOMIC512 0x00000002 +#define SQLITE_IOCAP_ATOMIC1K 0x00000004 +#define SQLITE_IOCAP_ATOMIC2K 0x00000008 +#define SQLITE_IOCAP_ATOMIC4K 0x00000010 +#define SQLITE_IOCAP_ATOMIC8K 0x00000020 +#define SQLITE_IOCAP_ATOMIC16K 0x00000040 +#define SQLITE_IOCAP_ATOMIC32K 0x00000080 +#define SQLITE_IOCAP_ATOMIC64K 0x00000100 +#define SQLITE_IOCAP_SAFE_APPEND 0x00000200 +#define SQLITE_IOCAP_SEQUENTIAL 0x00000400 + +/* +** CAPI3REF: File Locking Levels {F10250} +** +** {F10251} SQLite uses one of the following integer values as the second +** argument to calls it makes to the xLock() and xUnlock() methods +** of an [sqlite3_io_methods] object. {END} +*/ +#define SQLITE_LOCK_NONE 0 +#define SQLITE_LOCK_SHARED 1 +#define SQLITE_LOCK_RESERVED 2 +#define SQLITE_LOCK_PENDING 3 +#define SQLITE_LOCK_EXCLUSIVE 4 + +/* +** CAPI3REF: Synchronization Type Flags {F10260} +** +** {F10261} When SQLite invokes the xSync() method of an +** [sqlite3_io_methods] object it uses a combination of the +** these integer values as the second argument. +** +** {F10262} When the SQLITE_SYNC_DATAONLY flag is used, it means that the +** sync operation only needs to flush data to mass storage. Inode +** information need not be flushed. {F10263} The SQLITE_SYNC_NORMAL means +** to use normal fsync() semantics. {F10264} The SQLITE_SYNC_FULL flag means +** to use Mac OS-X style fullsync instead of fsync(). +*/ +#define SQLITE_SYNC_NORMAL 0x00002 +#define SQLITE_SYNC_FULL 0x00003 +#define SQLITE_SYNC_DATAONLY 0x00010 + + +/* +** CAPI3REF: OS Interface Open File Handle {F11110} +** +** An [sqlite3_file] object represents an open file in the OS +** interface layer. Individual OS interface implementations will +** want to subclass this object by appending additional fields +** for their own use. The pMethods entry is a pointer to an +** [sqlite3_io_methods] object that defines methods for performing +** I/O operations on the open file. +*/ +typedef struct sqlite3_file sqlite3_file; +struct sqlite3_file { + const struct sqlite3_io_methods *pMethods; /* Methods for an open file */ +}; + +/* +** CAPI3REF: OS Interface File Virtual Methods Object {F11120} +** +** Every file opened by the [sqlite3_vfs] xOpen method contains a pointer to +** an instance of the this object. This object defines the +** methods used to perform various operations against the open file. +** +** The flags argument to xSync may be one of [SQLITE_SYNC_NORMAL] or +** [SQLITE_SYNC_FULL]. The first choice is the normal fsync(). +* The second choice is an +** OS-X style fullsync. The SQLITE_SYNC_DATA flag may be ORed in to +** indicate that only the data of the file and not its inode needs to be +** synced. +** +** The integer values to xLock() and xUnlock() are one of +**
    +**
  • [SQLITE_LOCK_NONE], +**
  • [SQLITE_LOCK_SHARED], +**
  • [SQLITE_LOCK_RESERVED], +**
  • [SQLITE_LOCK_PENDING], or +**
  • [SQLITE_LOCK_EXCLUSIVE]. +**
+** xLock() increases the lock. xUnlock() decreases the lock. +** The xCheckReservedLock() method looks +** to see if any database connection, either in this +** process or in some other process, is holding an RESERVED, +** PENDING, or EXCLUSIVE lock on the file. It returns true +** if such a lock exists and false if not. +** +** The xFileControl() method is a generic interface that allows custom +** VFS implementations to directly control an open file using the +** [sqlite3_file_control()] interface. The second "op" argument +** is an integer opcode. The third +** argument is a generic pointer which is intended to be a pointer +** to a structure that may contain arguments or space in which to +** write return values. Potential uses for xFileControl() might be +** functions to enable blocking locks with timeouts, to change the +** locking strategy (for example to use dot-file locks), to inquire +** about the status of a lock, or to break stale locks. The SQLite +** core reserves opcodes less than 100 for its own use. +** A [SQLITE_FCNTL_LOCKSTATE | list of opcodes] less than 100 is available. +** Applications that define a custom xFileControl method should use opcodes +** greater than 100 to avoid conflicts. +** +** The xSectorSize() method returns the sector size of the +** device that underlies the file. The sector size is the +** minimum write that can be performed without disturbing +** other bytes in the file. The xDeviceCharacteristics() +** method returns a bit vector describing behaviors of the +** underlying device: +** +**
    +**
  • [SQLITE_IOCAP_ATOMIC] +**
  • [SQLITE_IOCAP_ATOMIC512] +**
  • [SQLITE_IOCAP_ATOMIC1K] +**
  • [SQLITE_IOCAP_ATOMIC2K] +**
  • [SQLITE_IOCAP_ATOMIC4K] +**
  • [SQLITE_IOCAP_ATOMIC8K] +**
  • [SQLITE_IOCAP_ATOMIC16K] +**
  • [SQLITE_IOCAP_ATOMIC32K] +**
  • [SQLITE_IOCAP_ATOMIC64K] +**
  • [SQLITE_IOCAP_SAFE_APPEND] +**
  • [SQLITE_IOCAP_SEQUENTIAL] +**
+** +** The SQLITE_IOCAP_ATOMIC property means that all writes of +** any size are atomic. The SQLITE_IOCAP_ATOMICnnn values +** mean that writes of blocks that are nnn bytes in size and +** are aligned to an address which is an integer multiple of +** nnn are atomic. The SQLITE_IOCAP_SAFE_APPEND value means +** that when data is appended to a file, the data is appended +** first then the size of the file is extended, never the other +** way around. The SQLITE_IOCAP_SEQUENTIAL property means that +** information is written to disk in the same order as calls +** to xWrite(). +*/ +typedef struct sqlite3_io_methods sqlite3_io_methods; +struct sqlite3_io_methods { + int iVersion; + int (*xClose)(sqlite3_file*); + int (*xRead)(sqlite3_file*, void*, int iAmt, sqlite3_int64 iOfst); + int (*xWrite)(sqlite3_file*, const void*, int iAmt, sqlite3_int64 iOfst); + int (*xTruncate)(sqlite3_file*, sqlite3_int64 size); + int (*xSync)(sqlite3_file*, int flags); + int (*xFileSize)(sqlite3_file*, sqlite3_int64 *pSize); + int (*xLock)(sqlite3_file*, int); + int (*xUnlock)(sqlite3_file*, int); + int (*xCheckReservedLock)(sqlite3_file*); + int (*xFileControl)(sqlite3_file*, int op, void *pArg); + int (*xSectorSize)(sqlite3_file*); + int (*xDeviceCharacteristics)(sqlite3_file*); + /* Additional methods may be added in future releases */ +}; + +/* +** CAPI3REF: Standard File Control Opcodes {F11310} +** +** These integer constants are opcodes for the xFileControl method +** of the [sqlite3_io_methods] object and to the [sqlite3_file_control()] +** interface. +** +** {F11311} The [SQLITE_FCNTL_LOCKSTATE] opcode is used for debugging. This +** opcode cases the xFileControl method to write the current state of +** the lock (one of [SQLITE_LOCK_NONE], [SQLITE_LOCK_SHARED], +** [SQLITE_LOCK_RESERVED], [SQLITE_LOCK_PENDING], or [SQLITE_LOCK_EXCLUSIVE]) +** into an integer that the pArg argument points to. {F11312} This capability +** is used during testing and only needs to be supported when SQLITE_TEST +** is defined. +*/ +#define SQLITE_FCNTL_LOCKSTATE 1 + +/* +** CAPI3REF: Mutex Handle {F17110} +** +** The mutex module within SQLite defines [sqlite3_mutex] to be an +** abstract type for a mutex object. {F17111} The SQLite core never looks +** at the internal representation of an [sqlite3_mutex]. {END} It only +** deals with pointers to the [sqlite3_mutex] object. +** +** Mutexes are created using [sqlite3_mutex_alloc()]. +*/ +typedef struct sqlite3_mutex sqlite3_mutex; + +/* +** CAPI3REF: OS Interface Object {F11140} +** +** An instance of this object defines the interface between the +** SQLite core and the underlying operating system. The "vfs" +** in the name of the object stands for "virtual file system". +** +** The iVersion field is initially 1 but may be larger for future +** versions of SQLite. Additional fields may be appended to this +** object when the iVersion value is increased. +** +** The szOsFile field is the size of the subclassed [sqlite3_file] +** structure used by this VFS. mxPathname is the maximum length of +** a pathname in this VFS. +** +** Registered vfs modules are kept on a linked list formed by +** the pNext pointer. The [sqlite3_vfs_register()] +** and [sqlite3_vfs_unregister()] interfaces manage this list +** in a thread-safe way. The [sqlite3_vfs_find()] interface +** searches the list. +** +** The pNext field is the only fields in the sqlite3_vfs +** structure that SQLite will ever modify. SQLite will only access +** or modify this field while holding a particular static mutex. +** The application should never modify anything within the sqlite3_vfs +** object once the object has been registered. +** +** The zName field holds the name of the VFS module. The name must +** be unique across all VFS modules. +** +** {F11141} SQLite will guarantee that the zFilename string passed to +** xOpen() is a full pathname as generated by xFullPathname() and +** that the string will be valid and unchanged until xClose() is +** called. {END} So the [sqlite3_file] can store a pointer to the +** filename if it needs to remember the filename for some reason. +** +** {F11142} The flags argument to xOpen() includes all bits set in +** the flags argument to [sqlite3_open_v2()]. Or if [sqlite3_open()] +** or [sqlite3_open16()] is used, then flags includes at least +** [SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE]. {END} +** If xOpen() opens a file read-only then it sets *pOutFlags to +** include [SQLITE_OPEN_READONLY]. Other bits in *pOutFlags may be +** set. +** +** {F11143} SQLite will also add one of the following flags to the xOpen() +** call, depending on the object being opened: +** +**
    +**
  • [SQLITE_OPEN_MAIN_DB] +**
  • [SQLITE_OPEN_MAIN_JOURNAL] +**
  • [SQLITE_OPEN_TEMP_DB] +**
  • [SQLITE_OPEN_TEMP_JOURNAL] +**
  • [SQLITE_OPEN_TRANSIENT_DB] +**
  • [SQLITE_OPEN_SUBJOURNAL] +**
  • [SQLITE_OPEN_MASTER_JOURNAL] +**
{END} +** +** The file I/O implementation can use the object type flags to +** changes the way it deals with files. For example, an application +** that does not care about crash recovery or rollback, might make +** the open of a journal file a no-op. Writes to this journal are +** also a no-op. Any attempt to read the journal return SQLITE_IOERR. +** Or the implementation might recognize the a database file will +** be doing page-aligned sector reads and writes in a random order +** and set up its I/O subsystem accordingly. +** +** {F11144} SQLite might also add one of the following flags to the xOpen +** method: +** +**
    +**
  • [SQLITE_OPEN_DELETEONCLOSE] +**
  • [SQLITE_OPEN_EXCLUSIVE] +**
+** +** {F11145} The [SQLITE_OPEN_DELETEONCLOSE] flag means the file should be +** deleted when it is closed. {F11146} The [SQLITE_OPEN_DELETEONCLOSE] +** will be set for TEMP databases, journals and for subjournals. +** {F11147} The [SQLITE_OPEN_EXCLUSIVE] flag means the file should be opened +** for exclusive access. This flag is set for all files except +** for the main database file. {END} +** +** {F11148} At least szOsFile bytes of memory is allocated by SQLite +** to hold the [sqlite3_file] structure passed as the third +** argument to xOpen. {END} The xOpen method does not have to +** allocate the structure; it should just fill it in. +** +** {F11149} The flags argument to xAccess() may be [SQLITE_ACCESS_EXISTS] +** to test for the existance of a file, +** or [SQLITE_ACCESS_READWRITE] to test to see +** if a file is readable and writable, or [SQLITE_ACCESS_READ] +** to test to see if a file is at least readable. {END} The file can be a +** directory. +** +** {F11150} SQLite will always allocate at least mxPathname+1 byte for +** the output buffers for xGetTempname and xFullPathname. {F11151} The exact +** size of the output buffer is also passed as a parameter to both +** methods. {END} If the output buffer is not large enough, SQLITE_CANTOPEN +** should be returned. As this is handled as a fatal error by SQLite, +** vfs implementations should endeavor to prevent this by setting +** mxPathname to a sufficiently large value. +** +** The xRandomness(), xSleep(), and xCurrentTime() interfaces +** are not strictly a part of the filesystem, but they are +** included in the VFS structure for completeness. +** The xRandomness() function attempts to return nBytes bytes +** of good-quality randomness into zOut. The return value is +** the actual number of bytes of randomness obtained. The +** xSleep() method cause the calling thread to sleep for at +** least the number of microseconds given. The xCurrentTime() +** method returns a Julian Day Number for the current date and +** time. +*/ +typedef struct sqlite3_vfs sqlite3_vfs; +struct sqlite3_vfs { + int iVersion; /* Structure version number */ + int szOsFile; /* Size of subclassed sqlite3_file */ + int mxPathname; /* Maximum file pathname length */ + sqlite3_vfs *pNext; /* Next registered VFS */ + const char *zName; /* Name of this virtual file system */ + void *pAppData; /* Pointer to application-specific data */ + int (*xOpen)(sqlite3_vfs*, const char *zName, sqlite3_file*, + int flags, int *pOutFlags); + int (*xDelete)(sqlite3_vfs*, const char *zName, int syncDir); + int (*xAccess)(sqlite3_vfs*, const char *zName, int flags); + int (*xGetTempname)(sqlite3_vfs*, int nOut, char *zOut); + int (*xFullPathname)(sqlite3_vfs*, const char *zName, int nOut, char *zOut); + void *(*xDlOpen)(sqlite3_vfs*, const char *zFilename); + void (*xDlError)(sqlite3_vfs*, int nByte, char *zErrMsg); + void *(*xDlSym)(sqlite3_vfs*,void*, const char *zSymbol); + void (*xDlClose)(sqlite3_vfs*, void*); + int (*xRandomness)(sqlite3_vfs*, int nByte, char *zOut); + int (*xSleep)(sqlite3_vfs*, int microseconds); + int (*xCurrentTime)(sqlite3_vfs*, double*); + /* New fields may be appended in figure versions. The iVersion + ** value will increment whenever this happens. */ +}; + +/* +** CAPI3REF: Flags for the xAccess VFS method {F11190} +** +** {F11191} These integer constants can be used as the third parameter to +** the xAccess method of an [sqlite3_vfs] object. {END} They determine +** the kind of what kind of permissions the xAccess method is +** looking for. {F11192} With SQLITE_ACCESS_EXISTS, the xAccess method +** simply checks to see if the file exists. {F11193} With +** SQLITE_ACCESS_READWRITE, the xAccess method checks to see +** if the file is both readable and writable. {F11194} With +** SQLITE_ACCESS_READ the xAccess method +** checks to see if the file is readable. +*/ +#define SQLITE_ACCESS_EXISTS 0 +#define SQLITE_ACCESS_READWRITE 1 +#define SQLITE_ACCESS_READ 2 + +/* +** CAPI3REF: Enable Or Disable Extended Result Codes {F12200} +** +** {F12201} The sqlite3_extended_result_codes() routine enables or disables the +** [SQLITE_IOERR_READ | extended result codes] feature on a database +** connection if its 2nd parameter is +** non-zero or zero, respectively. {F12202} +** By default, SQLite API routines return one of only 26 integer +** [SQLITE_OK | result codes]. {F12203} When extended result codes +** are enabled by this routine, the repetoire of result codes can be +** much larger and can (hopefully) provide more detailed information +** about the cause of an error. +** +** {F12204} The second argument is a boolean value that turns extended result +** codes on and off. {F12205} Extended result codes are off by default for +** backwards compatibility with older versions of SQLite. +*/ +int sqlite3_extended_result_codes(sqlite3*, int onoff); + +/* +** CAPI3REF: Last Insert Rowid {F12220} +** +** {F12221} Each entry in an SQLite table has a unique 64-bit signed +** integer key called the "rowid". {F12222} The rowid is always available +** as an undeclared column named ROWID, OID, or _ROWID_ as long as those +** names are not also used by explicitly declared columns. {F12223} If +** the table has a column of type INTEGER PRIMARY KEY then that column +** is another an alias for the rowid. +** +** {F12224} This routine returns the rowid of the most recent +** successful INSERT into the database from the database connection +** shown in the first argument. {F12225} If no successful inserts +** have ever occurred on this database connection, zero is returned. +** +** {F12226} If an INSERT occurs within a trigger, then the rowid of the +** inserted row is returned by this routine as long as the trigger +** is running. {F12227} But once the trigger terminates, the value returned +** by this routine reverts to the last value inserted before the +** trigger fired. +** +** {F12228} An INSERT that fails due to a constraint violation is not a +** successful insert and does not change the value returned by this +** routine. {F12229} Thus INSERT OR FAIL, INSERT OR IGNORE, INSERT OR ROLLBACK, +** and INSERT OR ABORT make no changes to the return value of this +** routine when their insertion fails. {F12231} When INSERT OR REPLACE +** encounters a constraint violation, it does not fail. The +** INSERT continues to completion after deleting rows that caused +** the constraint problem so INSERT OR REPLACE will always change +** the return value of this interface. +** +** {UF12232} If another thread does a new insert on the same database connection +** while this routine is running and thus changes the last insert rowid, +** then the return value of this routine is undefined. +*/ +sqlite3_int64 sqlite3_last_insert_rowid(sqlite3*); + +/* +** CAPI3REF: Count The Number Of Rows Modified {F12240} +** +** {F12241} This function returns the number of database rows that were changed +** or inserted or deleted by the most recently completed SQL statement +** on the connection specified by the first parameter. {F12242} Only +** changes that are directly specified by the INSERT, UPDATE, or +** DELETE statement are counted. Auxiliary changes caused by +** triggers are not counted. {F12243} Use the [sqlite3_total_changes()] function +** to find the total number of changes including changes caused by triggers. +** +** {F12244} Within the body of a trigger, the sqlite3_changes() interface +** can be called to find the number of +** changes in the most recently completed INSERT, UPDATE, or DELETE +** statement within the body of the same trigger. +** +** {F12245} All changes are counted, even if they are later undone by a +** ROLLBACK or ABORT. {F12246} Except, changes associated with creating and +** dropping tables are not counted. +** +** {F12247} If a callback invokes [sqlite3_exec()] or [sqlite3_step()] +** recursively, then the changes in the inner, recursive call are +** counted together with the changes in the outer call. +** +** {F12248} SQLite implements the command "DELETE FROM table" without +** a WHERE clause by dropping and recreating the table. (This is much +** faster than going through and deleting individual elements from the +** table.) Because of this optimization, the change count for +** "DELETE FROM table" will be zero regardless of the number of elements +** that were originally in the table. {F12251} To get an accurate count +** of the number of rows deleted, use +** "DELETE FROM table WHERE 1" instead. +** +** {UF12252} If another thread makes changes on the same database connection +** while this routine is running then the return value of this routine +** is undefined. +*/ +int sqlite3_changes(sqlite3*); + +/* +** CAPI3REF: Total Number Of Rows Modified {F12260} +*** +** {F12261} This function returns the number of database rows that have been +** modified by INSERT, UPDATE or DELETE statements since the database handle +** was opened. {F12262} The count includes UPDATE, INSERT and DELETE +** statements executed as part of trigger programs. {F12263} All changes +** are counted as soon as the statement that makes them is completed +** (when the statement handle is passed to [sqlite3_reset()] or +** [sqlite3_finalize()]). {END} +** +** See also the [sqlite3_change()] interface. +** +** {F12265} SQLite implements the command "DELETE FROM table" without +** a WHERE clause by dropping and recreating the table. (This is much +** faster than going +** through and deleting individual elements form the table.) Because of +** this optimization, the change count for "DELETE FROM table" will be +** zero regardless of the number of elements that were originally in the +** table. To get an accurate count of the number of rows deleted, use +** "DELETE FROM table WHERE 1" instead. +** +** {U12264} If another thread makes changes on the same database connection +** while this routine is running then the return value of this routine +** is undefined. {END} +*/ +int sqlite3_total_changes(sqlite3*); + +/* +** CAPI3REF: Interrupt A Long-Running Query {F12270} +** +** {F12271} This function causes any pending database operation to abort and +** return at its earliest opportunity. {END} This routine is typically +** called in response to a user action such as pressing "Cancel" +** or Ctrl-C where the user wants a long query operation to halt +** immediately. +** +** {F12272} It is safe to call this routine from a thread different from the +** thread that is currently running the database operation. {U12273} But it +** is not safe to call this routine with a database connection that +** is closed or might close before sqlite3_interrupt() returns. +** +** If an SQL is very nearly finished at the time when sqlite3_interrupt() +** is called, then it might not have an opportunity to be interrupted. +** It might continue to completion. +** {F12274} The SQL operation that is interrupted will return +** [SQLITE_INTERRUPT]. {F12275} If the interrupted SQL operation is an +** INSERT, UPDATE, or DELETE that is inside an explicit transaction, +** then the entire transaction will be rolled back automatically. +** {F12276} A call to sqlite3_interrupt() has no effect on SQL statements +** that are started after sqlite3_interrupt() returns. +*/ +void sqlite3_interrupt(sqlite3*); + +/* +** CAPI3REF: Determine If An SQL Statement Is Complete {F10510} +** +** These routines are useful for command-line input to determine if the +** currently entered text seems to form complete a SQL statement or +** if additional input is needed before sending the text into +** SQLite for parsing. These routines return true if the input string +** appears to be a complete SQL statement. A statement is judged to be +** complete if it ends with a semicolon and is not a fragment of a +** CREATE TRIGGER statement. These routines do not parse the SQL and +** so will not detect syntactically incorrect SQL. +** +** {F10511} These functions return true if the given input string +** ends with a semicolon optionally followed by whitespace or +** comments. {F10512} For sqlite3_complete(), +** the parameter must be a zero-terminated UTF-8 string. {F10513} For +** sqlite3_complete16(), a zero-terminated machine byte order UTF-16 string +** is required. {F10514} These routines return false if the terminal +** semicolon is within a comment, a string literal or a quoted identifier +** (in other words if the final semicolon is not really a separate token +** but part of a larger token) or if the final semicolon is +** in between the BEGIN and END keywords of a CREATE TRIGGER statement. +** {END} +*/ +int sqlite3_complete(const char *sql); +int sqlite3_complete16(const void *sql); + +/* +** CAPI3REF: Register A Callback To Handle SQLITE_BUSY Errors {F12310} +** +** {F12311} This routine identifies a callback function that might be +** invoked whenever an attempt is made to open a database table +** that another thread or process has locked. +** {F12312} If the busy callback is NULL, then [SQLITE_BUSY] +** or [SQLITE_IOERR_BLOCKED] +** is returned immediately upon encountering the lock. +** {F12313} If the busy callback is not NULL, then the +** callback will be invoked with two arguments. {F12314} The +** first argument to the handler is a copy of the void* pointer which +** is the third argument to this routine. {F12315} The second argument to +** the handler is the number of times that the busy handler has +** been invoked for this locking event. {F12316} If the +** busy callback returns 0, then no additional attempts are made to +** access the database and [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED] is returned. +** {F12317} If the callback returns non-zero, then another attempt +** is made to open the database for reading and the cycle repeats. +** +** The presence of a busy handler does not guarantee that +** it will be invoked when there is lock contention. {F12319} +** If SQLite determines that invoking the busy handler could result in +** a deadlock, it will go ahead and return [SQLITE_BUSY] or +** [SQLITE_IOERR_BLOCKED] instead of invoking the +** busy handler. {END} +** Consider a scenario where one process is holding a read lock that +** it is trying to promote to a reserved lock and +** a second process is holding a reserved lock that it is trying +** to promote to an exclusive lock. The first process cannot proceed +** because it is blocked by the second and the second process cannot +** proceed because it is blocked by the first. If both processes +** invoke the busy handlers, neither will make any progress. Therefore, +** SQLite returns [SQLITE_BUSY] for the first process, hoping that this +** will induce the first process to release its read lock and allow +** the second process to proceed. +** +** {F12321} The default busy callback is NULL. {END} +** +** {F12322} The [SQLITE_BUSY] error is converted to [SQLITE_IOERR_BLOCKED] +** when SQLite is in the middle of a large transaction where all the +** changes will not fit into the in-memory cache. {F12323} SQLite will +** already hold a RESERVED lock on the database file, but it needs +** to promote this lock to EXCLUSIVE so that it can spill cache +** pages into the database file without harm to concurrent +** readers. {F12324} If it is unable to promote the lock, then the in-memory +** cache will be left in an inconsistent state and so the error +** code is promoted from the relatively benign [SQLITE_BUSY] to +** the more severe [SQLITE_IOERR_BLOCKED]. {F12325} This error code promotion +** forces an automatic rollback of the changes. {END} See the +** +** CorruptionFollowingBusyError wiki page for a discussion of why +** this is important. +** +** {F12326} Sqlite is re-entrant, so the busy handler may start a new +** query. {END} (It is not clear why anyone would every want to do this, +** but it is allowed, in theory.) {U12327} But the busy handler may not +** close the database. Closing the database from a busy handler will delete +** data structures out from under the executing query and will +** probably result in a segmentation fault or other runtime error. {END} +** +** {F12328} There can only be a single busy handler defined for each database +** connection. Setting a new busy handler clears any previous one. +** {F12329} Note that calling [sqlite3_busy_timeout()] will also set or clear +** the busy handler. +** +** {F12331} When operating in [sqlite3_enable_shared_cache | shared cache mode], +** only a single busy handler can be defined for each database file. +** So if two database connections share a single cache, then changing +** the busy handler on one connection will also change the busy +** handler in the other connection. {F12332} The busy handler is invoked +** in the thread that was running when the lock contention occurs. +*/ +int sqlite3_busy_handler(sqlite3*, int(*)(void*,int), void*); + +/* +** CAPI3REF: Set A Busy Timeout {F12340} +** +** {F12341} This routine sets a [sqlite3_busy_handler | busy handler] +** that sleeps for a while when a +** table is locked. {F12342} The handler will sleep multiple times until +** at least "ms" milliseconds of sleeping have been done. {F12343} After +** "ms" milliseconds of sleeping, the handler returns 0 which +** causes [sqlite3_step()] to return [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED]. +** +** {F12344} Calling this routine with an argument less than or equal to zero +** turns off all busy handlers. +** +** {F12345} There can only be a single busy handler for a particular database +** connection. If another busy handler was defined +** (using [sqlite3_busy_handler()]) prior to calling +** this routine, that other busy handler is cleared. +*/ +int sqlite3_busy_timeout(sqlite3*, int ms); + +/* +** CAPI3REF: Convenience Routines For Running Queries {F12370} +** +** This next routine is a convenience wrapper around [sqlite3_exec()]. +** {F12371} Instead of invoking a user-supplied callback for each row of the +** result, this routine remembers each row of the result in memory +** obtained from [sqlite3_malloc()], then returns all of the result after the +** query has finished. {F12372} +** +** As an example, suppose the query result where this table: +** +**
+**        Name        | Age
+**        -----------------------
+**        Alice       | 43
+**        Bob         | 28
+**        Cindy       | 21
+** 
+** +** If the 3rd argument were &azResult then after the function returns +** azResult will contain the following data: +** +**
+**        azResult[0] = "Name";
+**        azResult[1] = "Age";
+**        azResult[2] = "Alice";
+**        azResult[3] = "43";
+**        azResult[4] = "Bob";
+**        azResult[5] = "28";
+**        azResult[6] = "Cindy";
+**        azResult[7] = "21";
+** 
+** +** Notice that there is an extra row of data containing the column +** headers. But the *nrow return value is still 3. *ncolumn is +** set to 2. In general, the number of values inserted into azResult +** will be ((*nrow) + 1)*(*ncolumn). +** +** {U12374} After the calling function has finished using the result, it should +** pass the result data pointer to sqlite3_free_table() in order to +** release the memory that was malloc-ed. Because of the way the +** [sqlite3_malloc()] happens, the calling function must not try to call +** [sqlite3_free()] directly. Only [sqlite3_free_table()] is able to release +** the memory properly and safely. {END} +** +** {F12373} The return value of this routine is the same as +** from [sqlite3_exec()]. +*/ +int sqlite3_get_table( + sqlite3*, /* An open database */ + const char *sql, /* SQL to be executed */ + char ***resultp, /* Result written to a char *[] that this points to */ + int *nrow, /* Number of result rows written here */ + int *ncolumn, /* Number of result columns written here */ + char **errmsg /* Error msg written here */ +); +void sqlite3_free_table(char **result); + +/* +** CAPI3REF: Formatted String Printing Functions {F17400} +** +** These routines are workalikes of the "printf()" family of functions +** from the standard C library. +** +** {F17401} The sqlite3_mprintf() and sqlite3_vmprintf() routines write their +** results into memory obtained from [sqlite3_malloc()]. +** {U17402} The strings returned by these two routines should be +** released by [sqlite3_free()]. {F17403} Both routines return a +** NULL pointer if [sqlite3_malloc()] is unable to allocate enough +** memory to hold the resulting string. +** +** {F17404} In sqlite3_snprintf() routine is similar to "snprintf()" from +** the standard C library. The result is written into the +** buffer supplied as the second parameter whose size is given by +** the first parameter. {END} Note that the order of the +** first two parameters is reversed from snprintf(). This is an +** historical accident that cannot be fixed without breaking +** backwards compatibility. {F17405} Note also that sqlite3_snprintf() +** returns a pointer to its buffer instead of the number of +** characters actually written into the buffer. {END} We admit that +** the number of characters written would be a more useful return +** value but we cannot change the implementation of sqlite3_snprintf() +** now without breaking compatibility. +** +** {F17406} As long as the buffer size is greater than zero, sqlite3_snprintf() +** guarantees that the buffer is always zero-terminated. {F17407} The first +** parameter "n" is the total size of the buffer, including space for +** the zero terminator. {END} So the longest string that can be completely +** written will be n-1 characters. +** +** These routines all implement some additional formatting +** options that are useful for constructing SQL statements. +** All of the usual printf formatting options apply. In addition, there +** is are "%q", "%Q", and "%z" options. +** +** {F17410} The %q option works like %s in that it substitutes a null-terminated +** string from the argument list. But %q also doubles every '\'' character. +** %q is designed for use inside a string literal. {END} By doubling each '\'' +** character it escapes that character and allows it to be inserted into +** the string. +** +** For example, so some string variable contains text as follows: +** +**
+**  char *zText = "It's a happy day!";
+** 
+** +** One can use this text in an SQL statement as follows: +** +**
+**  char *zSQL = sqlite3_mprintf("INSERT INTO table VALUES('%q')", zText);
+**  sqlite3_exec(db, zSQL, 0, 0, 0);
+**  sqlite3_free(zSQL);
+** 
+** +** Because the %q format string is used, the '\'' character in zText +** is escaped and the SQL generated is as follows: +** +**
+**  INSERT INTO table1 VALUES('It''s a happy day!')
+** 
+** +** This is correct. Had we used %s instead of %q, the generated SQL +** would have looked like this: +** +**
+**  INSERT INTO table1 VALUES('It's a happy day!');
+** 
+** +** This second example is an SQL syntax error. As a general rule you +** should always use %q instead of %s when inserting text into a string +** literal. +** +** {F17411} The %Q option works like %q except it also adds single quotes around +** the outside of the total string. Or if the parameter in the argument +** list is a NULL pointer, %Q substitutes the text "NULL" (without single +** quotes) in place of the %Q option. {END} So, for example, one could say: +** +**
+**  char *zSQL = sqlite3_mprintf("INSERT INTO table VALUES(%Q)", zText);
+**  sqlite3_exec(db, zSQL, 0, 0, 0);
+**  sqlite3_free(zSQL);
+** 
+** +** The code above will render a correct SQL statement in the zSQL +** variable even if the zText variable is a NULL pointer. +** +** {F17412} The "%z" formatting option works exactly like "%s" with the +** addition that after the string has been read and copied into +** the result, [sqlite3_free()] is called on the input string. {END} +*/ +char *sqlite3_mprintf(const char*,...); +char *sqlite3_vmprintf(const char*, va_list); +char *sqlite3_snprintf(int,char*,const char*, ...); + +/* +** CAPI3REF: Memory Allocation Subsystem {F17300} +** +** {F17301} The SQLite core uses these three routines for all of its own +** internal memory allocation needs. {END} "Core" in the previous sentence +** does not include operating-system specific VFS implementation. The +** windows VFS uses native malloc and free for some operations. +** +** {F17302} The sqlite3_malloc() routine returns a pointer to a block +** of memory at least N bytes in length, where N is the parameter. +** {F17303} If sqlite3_malloc() is unable to obtain sufficient free +** memory, it returns a NULL pointer. {F17304} If the parameter N to +** sqlite3_malloc() is zero or negative then sqlite3_malloc() returns +** a NULL pointer. +** +** {F17305} Calling sqlite3_free() with a pointer previously returned +** by sqlite3_malloc() or sqlite3_realloc() releases that memory so +** that it might be reused. {F17306} The sqlite3_free() routine is +** a no-op if is called with a NULL pointer. Passing a NULL pointer +** to sqlite3_free() is harmless. {U17307} After being freed, memory +** should neither be read nor written. Even reading previously freed +** memory might result in a segmentation fault or other severe error. +** {U17309} Memory corruption, a segmentation fault, or other severe error +** might result if sqlite3_free() is called with a non-NULL pointer that +** was not obtained from sqlite3_malloc() or sqlite3_free(). +** +** {F17310} The sqlite3_realloc() interface attempts to resize a +** prior memory allocation to be at least N bytes, where N is the +** second parameter. The memory allocation to be resized is the first +** parameter. {F17311} If the first parameter to sqlite3_realloc() +** is a NULL pointer then its behavior is identical to calling +** sqlite3_malloc(N) where N is the second parameter to sqlite3_realloc(). +** {F17312} If the second parameter to sqlite3_realloc() is zero or +** negative then the behavior is exactly the same as calling +** sqlite3_free(P) where P is the first parameter to sqlite3_realloc(). +** {F17313} Sqlite3_realloc() returns a pointer to a memory allocation +** of at least N bytes in size or NULL if sufficient memory is unavailable. +** {F17314} If M is the size of the prior allocation, then min(N,M) bytes +** of the prior allocation are copied into the beginning of buffer returned +** by sqlite3_realloc() and the prior allocation is freed. +** {F17315} If sqlite3_realloc() returns NULL, then the prior allocation +** is not freed. +** +** {F17316} The memory returned by sqlite3_malloc() and sqlite3_realloc() +** is always aligned to at least an 8 byte boundary. {END} +** +** {F17381} The default implementation +** of the memory allocation subsystem uses the malloc(), realloc() +** and free() provided by the standard C library. {F17382} However, if +** SQLite is compiled with the following C preprocessor macro +** +**
SQLITE_MEMORY_SIZE=NNN
+** +** where NNN is an integer, then SQLite create a static +** array of at least NNN bytes in size and use that array +** for all of its dynamic memory allocation needs. {END} Additional +** memory allocator options may be added in future releases. +** +** In SQLite version 3.5.0 and 3.5.1, it was possible to define +** the SQLITE_OMIT_MEMORY_ALLOCATION which would cause the built-in +** implementation of these routines to be omitted. That capability +** is no longer provided. Only built-in memory allocators can be +** used. +** +** The windows OS interface layer calls +** the system malloc() and free() directly when converting +** filenames between the UTF-8 encoding used by SQLite +** and whatever filename encoding is used by the particular windows +** installation. Memory allocation errors are detected, but +** they are reported back as [SQLITE_CANTOPEN] or +** [SQLITE_IOERR] rather than [SQLITE_NOMEM]. +*/ +void *sqlite3_malloc(int); +void *sqlite3_realloc(void*, int); +void sqlite3_free(void*); + +/* +** CAPI3REF: Memory Allocator Statistics {F17370} +** +** In addition to the basic three allocation routines +** [sqlite3_malloc()], [sqlite3_free()], and [sqlite3_realloc()], +** the memory allocation subsystem included with the SQLite +** sources provides the interfaces shown here. +** +** {F17371} The sqlite3_memory_used() routine returns the +** number of bytes of memory currently outstanding (malloced but not freed). +** {F17372} The value returned by sqlite3_memory_used() includes +** any overhead added by SQLite, but not overhead added by the +** library malloc() that backs the sqlite3_malloc() implementation. +** {F17373} The sqlite3_memory_highwater() routines returns the +** maximum number of bytes that have been outstanding at any time +** since the highwater mark was last reset. +** {F17374} The byte count returned by sqlite3_memory_highwater() +** uses the same byte counting rules as sqlite3_memory_used(). {END} +** In other words, overhead added internally by SQLite is counted, +** but overhead from the underlying system malloc is not. +** {F17375} If the parameter to sqlite3_memory_highwater() is true, +** then the highwater mark is reset to the current value of +** sqlite3_memory_used() and the prior highwater mark (before the +** reset) is returned. {F17376} If the parameter to +** sqlite3_memory_highwater() is zero, then the highwater mark is +** unchanged. +*/ +sqlite3_int64 sqlite3_memory_used(void); +sqlite3_int64 sqlite3_memory_highwater(int resetFlag); + +/* +** CAPI3REF: Compile-Time Authorization Callbacks {F12500} +** +** {F12501} This routine registers a authorizer callback with a particular +** database connection, supplied in the first argument. {F12502} +** The authorizer callback is invoked as SQL statements are being compiled +** by [sqlite3_prepare()] or its variants [sqlite3_prepare_v2()], +** [sqlite3_prepare16()] and [sqlite3_prepare16_v2()]. {F12503} At various +** points during the compilation process, as logic is being created +** to perform various actions, the authorizer callback is invoked to +** see if those actions are allowed. The authorizer callback should +** return SQLITE_OK to allow the action, [SQLITE_IGNORE] to disallow the +** specific action but allow the SQL statement to continue to be +** compiled, or [SQLITE_DENY] to cause the entire SQL statement to be +** rejected with an error. {F12504} If the authorizer callback returns +** any value other than [SQLITE_IGNORE], [SQLITE_OK], or [SQLITE_DENY] +** then [sqlite3_prepare_v2()] or equivalent call that triggered +** the authorizer shall +** fail with an SQLITE_ERROR error code and an appropriate error message. {END} +** +** When the callback returns [SQLITE_OK], that means the operation +** requested is ok. {F12505} When the callback returns [SQLITE_DENY], the +** [sqlite3_prepare_v2()] or equivalent call that triggered the +** authorizer shall fail +** with an SQLITE_ERROR error code and an error message explaining that +** access is denied. {F12506} If the authorizer code (the 2nd parameter +** to the authorizer callback is anything other than [SQLITE_READ], then +** a return of [SQLITE_IGNORE] has the same effect as [SQLITE_DENY]. +** If the authorizer code is [SQLITE_READ] and the callback returns +** [SQLITE_IGNORE] then the prepared statement is constructed to +** insert a NULL value in place of the table column that would have +** been read if [SQLITE_OK] had been returned. {END} +** +** {F12510} The first parameter to the authorizer callback is a copy of +** the third parameter to the sqlite3_set_authorizer() interface. +** {F12511} The second parameter to the callback is an integer +** [SQLITE_COPY | action code] that specifies the particular action +** to be authorized. {END} The available action codes are +** [SQLITE_COPY | documented separately]. {F12512} The third through sixth +** parameters to the callback are zero-terminated strings that contain +** additional details about the action to be authorized. {END} +** +** An authorizer is used when preparing SQL statements from an untrusted +** source, to ensure that the SQL statements do not try to access data +** that they are not allowed to see, or that they do not try to +** execute malicious statements that damage the database. For +** example, an application may allow a user to enter arbitrary +** SQL queries for evaluation by a database. But the application does +** not want the user to be able to make arbitrary changes to the +** database. An authorizer could then be put in place while the +** user-entered SQL is being prepared that disallows everything +** except SELECT statements. +** +** {F12520} Only a single authorizer can be in place on a database connection +** at a time. Each call to sqlite3_set_authorizer overrides the +** previous call. {F12521} A NULL authorizer means that no authorization +** callback is invoked. {F12522} The default authorizer is NULL. {END} +** +** Note that the authorizer callback is invoked only during +** [sqlite3_prepare()] or its variants. {F12523} Authorization is not +** performed during statement evaluation in [sqlite3_step()]. {END} +*/ +int sqlite3_set_authorizer( + sqlite3*, + int (*xAuth)(void*,int,const char*,const char*,const char*,const char*), + void *pUserData +); + +/* +** CAPI3REF: Authorizer Return Codes {F12590} +** +** The [sqlite3_set_authorizer | authorizer callback function] must +** return either [SQLITE_OK] or one of these two constants in order +** to signal SQLite whether or not the action is permitted. See the +** [sqlite3_set_authorizer | authorizer documentation] for additional +** information. +*/ +#define SQLITE_DENY 1 /* Abort the SQL statement with an error */ +#define SQLITE_IGNORE 2 /* Don't allow access, but don't generate an error */ + +/* +** CAPI3REF: Authorizer Action Codes {F12550} +** +** The [sqlite3_set_authorizer()] interface registers a callback function +** that is invoked to authorizer certain SQL statement actions. {F12551} The +** second parameter to the callback is an integer code that specifies +** what action is being authorized. These are the integer action codes that +** the authorizer callback may be passed. {END} +** +** These action code values signify what kind of operation is to be +** authorized. {F12552} The 3rd and 4th parameters to the authorization +** callback function will be parameters or NULL depending on which of these +** codes is used as the second parameter. {F12553} The 5th parameter to the +** authorizer callback is the name of the database ("main", "temp", +** etc.) if applicable. {F12554} The 6th parameter to the authorizer callback +** is the name of the inner-most trigger or view that is responsible for +** the access attempt or NULL if this access attempt is directly from +** top-level SQL code. +*/ +/******************************************* 3rd ************ 4th ***********/ +#define SQLITE_CREATE_INDEX 1 /* Index Name Table Name */ +#define SQLITE_CREATE_TABLE 2 /* Table Name NULL */ +#define SQLITE_CREATE_TEMP_INDEX 3 /* Index Name Table Name */ +#define SQLITE_CREATE_TEMP_TABLE 4 /* Table Name NULL */ +#define SQLITE_CREATE_TEMP_TRIGGER 5 /* Trigger Name Table Name */ +#define SQLITE_CREATE_TEMP_VIEW 6 /* View Name NULL */ +#define SQLITE_CREATE_TRIGGER 7 /* Trigger Name Table Name */ +#define SQLITE_CREATE_VIEW 8 /* View Name NULL */ +#define SQLITE_DELETE 9 /* Table Name NULL */ +#define SQLITE_DROP_INDEX 10 /* Index Name Table Name */ +#define SQLITE_DROP_TABLE 11 /* Table Name NULL */ +#define SQLITE_DROP_TEMP_INDEX 12 /* Index Name Table Name */ +#define SQLITE_DROP_TEMP_TABLE 13 /* Table Name NULL */ +#define SQLITE_DROP_TEMP_TRIGGER 14 /* Trigger Name Table Name */ +#define SQLITE_DROP_TEMP_VIEW 15 /* View Name NULL */ +#define SQLITE_DROP_TRIGGER 16 /* Trigger Name Table Name */ +#define SQLITE_DROP_VIEW 17 /* View Name NULL */ +#define SQLITE_INSERT 18 /* Table Name NULL */ +#define SQLITE_PRAGMA 19 /* Pragma Name 1st arg or NULL */ +#define SQLITE_READ 20 /* Table Name Column Name */ +#define SQLITE_SELECT 21 /* NULL NULL */ +#define SQLITE_TRANSACTION 22 /* NULL NULL */ +#define SQLITE_UPDATE 23 /* Table Name Column Name */ +#define SQLITE_ATTACH 24 /* Filename NULL */ +#define SQLITE_DETACH 25 /* Database Name NULL */ +#define SQLITE_ALTER_TABLE 26 /* Database Name Table Name */ +#define SQLITE_REINDEX 27 /* Index Name NULL */ +#define SQLITE_ANALYZE 28 /* Table Name NULL */ +#define SQLITE_CREATE_VTABLE 29 /* Table Name Module Name */ +#define SQLITE_DROP_VTABLE 30 /* Table Name Module Name */ +#define SQLITE_FUNCTION 31 /* Function Name NULL */ +#define SQLITE_COPY 0 /* No longer used */ + +/* +** CAPI3REF: Tracing And Profiling Functions {F12280} +** +** These routines register callback functions that can be used for +** tracing and profiling the execution of SQL statements. +** +** {F12281} The callback function registered by sqlite3_trace() is invoked +** at the first [sqlite3_step()] for the evaluation of an SQL statement. +** {F12282} Only a single trace callback can be registered at a time. +** Each call to sqlite3_trace() overrides the previous. {F12283} A +** NULL callback for sqlite3_trace() disables tracing. {F12284} The +** first argument to the trace callback is a copy of the pointer which +** was the 3rd argument to sqlite3_trace. {F12285} The second argument +** to the trace callback is a zero-terminated UTF8 string containing +** the original text of the SQL statement as it was passed into +** [sqlite3_prepare_v2()] or the equivalent. {END} Note that the +** host parameter are not expanded in the SQL statement text. +** +** {F12287} The callback function registered by sqlite3_profile() is invoked +** as each SQL statement finishes. {F12288} The first parameter to the +** profile callback is a copy of the 3rd parameter to sqlite3_profile(). +** {F12289} The second parameter to the profile callback is a +** zero-terminated UTF-8 string that contains the complete text of +** the SQL statement as it was processed by [sqlite3_prepare_v2()] or +** the equivalent. {F12290} The third parameter to the profile +** callback is an estimate of the number of nanoseconds of +** wall-clock time required to run the SQL statement from start +** to finish. {END} +** +** The sqlite3_profile() API is currently considered experimental and +** is subject to change. +*/ +void *sqlite3_trace(sqlite3*, void(*xTrace)(void*,const char*), void*); +void *sqlite3_profile(sqlite3*, + void(*xProfile)(void*,const char*,sqlite3_uint64), void*); + +/* +** CAPI3REF: Query Progress Callbacks {F12910} +** +** {F12911} This routine configures a callback function - the +** progress callback - that is invoked periodically during long +** running calls to [sqlite3_exec()], [sqlite3_step()] and +** [sqlite3_get_table()]. {END} An example use for this +** interface is to keep a GUI updated during a large query. +** +** {F12912} The progress callback is invoked once for every N virtual +** machine opcodes, where N is the second argument to this function. +** {F12913} The progress callback itself is identified by the third +** argument to this function. {F12914} The fourth argument to this +** function is a void pointer passed to the progress callback +** function each time it is invoked. {END} +** +** {F12915} If a call to [sqlite3_exec()], [sqlite3_step()], or +** [sqlite3_get_table()] results in fewer than N opcodes being executed, +** then the progress callback is never invoked. {END} +** +** {F12916} Only a single progress callback function may be registered for each +** open database connection. Every call to sqlite3_progress_handler() +** overwrites the results of the previous call. {F12917} +** To remove the progress callback altogether, pass NULL as the third +** argument to this function. {END} +** +** {F12918} If the progress callback returns a result other than 0, then +** the current query is immediately terminated and any database changes +** rolled back. {F12919} +** The containing [sqlite3_exec()], [sqlite3_step()], or +** [sqlite3_get_table()] call returns SQLITE_INTERRUPT. {END} This feature +** can be used, for example, to implement the "Cancel" button on a +** progress dialog box in a GUI. +*/ +void sqlite3_progress_handler(sqlite3*, int, int(*)(void*), void*); + +/* +** CAPI3REF: Opening A New Database Connection {F12700} +** +** {F12701} These routines open an SQLite database file whose name +** is given by the filename argument. +** {F12702} The filename argument is interpreted as UTF-8 +** for [sqlite3_open()] and [sqlite3_open_v2()] and as UTF-16 +** in the native byte order for [sqlite3_open16()]. +** {F12703} An [sqlite3*] handle is returned in *ppDb, even +** if an error occurs. {F12723} (Exception: if SQLite is unable +** to allocate memory to hold the [sqlite3] object, a NULL will +** be written into *ppDb instead of a pointer to the [sqlite3] object.) +** {F12704} If the database is opened (and/or created) +** successfully, then [SQLITE_OK] is returned. {F12705} Otherwise an +** error code is returned. {F12706} The +** [sqlite3_errmsg()] or [sqlite3_errmsg16()] routines can be used to obtain +** an English language description of the error. +** +** {F12707} The default encoding for the database will be UTF-8 if +** [sqlite3_open()] or [sqlite3_open_v2()] is called and +** UTF-16 in the native byte order if [sqlite3_open16()] is used. +** +** {F12708} Whether or not an error occurs when it is opened, resources +** associated with the [sqlite3*] handle should be released by passing it +** to [sqlite3_close()] when it is no longer required. +** +** {F12709} The [sqlite3_open_v2()] interface works like [sqlite3_open()] +** except that it acccepts two additional parameters for additional control +** over the new database connection. {F12710} The flags parameter can be +** one of: +** +**
    +**
  1. [SQLITE_OPEN_READONLY] +**
  2. [SQLITE_OPEN_READWRITE] +**
  3. [SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE] +**
+** +** {F12711} The first value opens the database read-only. +** {F12712} If the database does not previously exist, an error is returned. +** {F12713} The second option opens +** the database for reading and writing if possible, or reading only if +** if the file is write protected. {F12714} In either case the database +** must already exist or an error is returned. {F12715} The third option +** opens the database for reading and writing and creates it if it does +** not already exist. {F12716} +** The third options is behavior that is always used for [sqlite3_open()] +** and [sqlite3_open16()]. +** +** {F12717} If the filename is ":memory:", then an private +** in-memory database is created for the connection. {F12718} This in-memory +** database will vanish when the database connection is closed. {END} Future +** version of SQLite might make use of additional special filenames +** that begin with the ":" character. It is recommended that +** when a database filename really does begin with +** ":" that you prefix the filename with a pathname like "./" to +** avoid ambiguity. +** +** {F12719} If the filename is an empty string, then a private temporary +** on-disk database will be created. {F12720} This private database will be +** automatically deleted as soon as the database connection is closed. +** +** {F12721} The fourth parameter to sqlite3_open_v2() is the name of the +** [sqlite3_vfs] object that defines the operating system +** interface that the new database connection should use. {F12722} If the +** fourth parameter is a NULL pointer then the default [sqlite3_vfs] +** object is used. {END} +** +** Note to windows users: The encoding used for the filename argument +** of [sqlite3_open()] and [sqlite3_open_v2()] must be UTF-8, not whatever +** codepage is currently defined. Filenames containing international +** characters must be converted to UTF-8 prior to passing them into +** [sqlite3_open()] or [sqlite3_open_v2()]. +*/ +int sqlite3_open( + const char *filename, /* Database filename (UTF-8) */ + sqlite3 **ppDb /* OUT: SQLite db handle */ +); +int sqlite3_open16( + const void *filename, /* Database filename (UTF-16) */ + sqlite3 **ppDb /* OUT: SQLite db handle */ +); +int sqlite3_open_v2( + const char *filename, /* Database filename (UTF-8) */ + sqlite3 **ppDb, /* OUT: SQLite db handle */ + int flags, /* Flags */ + const char *zVfs /* Name of VFS module to use */ +); + +/* +** CAPI3REF: Error Codes And Messages {F12800} +** +** {F12801} The sqlite3_errcode() interface returns the numeric +** [SQLITE_OK | result code] or [SQLITE_IOERR_READ | extended result code] +** for the most recent failed sqlite3_* API call associated +** with [sqlite3] handle 'db'. {U12802} If a prior API call failed but the +** most recent API call succeeded, the return value from sqlite3_errcode() +** is undefined. {END} +** +** {F12803} The sqlite3_errmsg() and sqlite3_errmsg16() return English-language +** text that describes the error, as either UTF8 or UTF16 respectively. +** {F12804} Memory to hold the error message string is managed internally. +** {U12805} The +** string may be overwritten or deallocated by subsequent calls to SQLite +** interface functions. {END} +** +** {F12806} Calls to many sqlite3_* functions set the error code and +** string returned by [sqlite3_errcode()], [sqlite3_errmsg()], and +** [sqlite3_errmsg16()] overwriting the previous values. {F12807} +** Except, calls to [sqlite3_errcode()], +** [sqlite3_errmsg()], and [sqlite3_errmsg16()] themselves do not affect the +** results of future invocations. {F12808} Calls to API routines that +** do not return an error code (example: [sqlite3_data_count()]) do not +** change the error code returned by this routine. {F12809} Interfaces that +** are not associated with a specific database connection (examples: +** [sqlite3_mprintf()] or [sqlite3_enable_shared_cache()] do not change +** the return code. {END} +** +** {F12810} Assuming no other intervening sqlite3_* API calls are made, +** the error code returned by this function is associated with the same +** error as the strings returned by [sqlite3_errmsg()] and [sqlite3_errmsg16()]. +*/ +int sqlite3_errcode(sqlite3 *db); +const char *sqlite3_errmsg(sqlite3*); +const void *sqlite3_errmsg16(sqlite3*); + +/* +** CAPI3REF: SQL Statement Object {F13000} +** +** An instance of this object represent single SQL statements. This +** object is variously known as a "prepared statement" or a +** "compiled SQL statement" or simply as a "statement". +** +** The life of a statement object goes something like this: +** +**
    +**
  1. Create the object using [sqlite3_prepare_v2()] or a related +** function. +**
  2. Bind values to host parameters using +** [sqlite3_bind_blob | sqlite3_bind_* interfaces]. +**
  3. Run the SQL by calling [sqlite3_step()] one or more times. +**
  4. Reset the statement using [sqlite3_reset()] then go back +** to step 2. Do this zero or more times. +**
  5. Destroy the object using [sqlite3_finalize()]. +**
+** +** Refer to documentation on individual methods above for additional +** information. +*/ +typedef struct sqlite3_stmt sqlite3_stmt; + +/* +** CAPI3REF: Compiling An SQL Statement {F13010} +** +** To execute an SQL query, it must first be compiled into a byte-code +** program using one of these routines. +** +** {F13011} The first argument "db" is an [sqlite3 | SQLite database handle] +** obtained from a prior call to [sqlite3_open()], [sqlite3_open_v2()] +** or [sqlite3_open16()]. {F13012} +** The second argument "zSql" is the statement to be compiled, encoded +** as either UTF-8 or UTF-16. The sqlite3_prepare() and sqlite3_prepare_v2() +** interfaces uses UTF-8 and sqlite3_prepare16() and sqlite3_prepare16_v2() +** use UTF-16. {END} +** +** {F13013} If the nByte argument is less +** than zero, then zSql is read up to the first zero terminator. +** {F13014} If nByte is non-negative, then it is the maximum number of +** bytes read from zSql. When nByte is non-negative, the +** zSql string ends at either the first '\000' or '\u0000' character or +** until the nByte-th byte, whichever comes first. {END} +** +** {F13015} *pzTail is made to point to the first byte past the end of the +** first SQL statement in zSql. These routines only compiles the first +** statement in zSql, so *pzTail is left pointing to what remains +** uncompiled. {END} +** +** {F13016} *ppStmt is left pointing to a compiled +** [sqlite3_stmt | SQL statement structure] that can be +** executed using [sqlite3_step()]. Or if there is an error, *ppStmt may be +** set to NULL. {F13017} If the input text contains no SQL (if the input +** is and empty string or a comment) then *ppStmt is set to NULL. +** {U13018} The calling procedure is responsible for deleting the +** compiled SQL statement +** using [sqlite3_finalize()] after it has finished with it. +** +** {F13019} On success, [SQLITE_OK] is returned. Otherwise an +** [SQLITE_ERROR | error code] is returned. {END} +** +** The sqlite3_prepare_v2() and sqlite3_prepare16_v2() interfaces are +** recommended for all new programs. The two older interfaces are retained +** for backwards compatibility, but their use is discouraged. +** {F13020} In the "v2" interfaces, the prepared statement +** that is returned (the [sqlite3_stmt] object) contains a copy of the +** original SQL text. {END} This causes the [sqlite3_step()] interface to +** behave a differently in two ways: +** +**
    +**
  1. {F13022} +** If the database schema changes, instead of returning [SQLITE_SCHEMA] as it +** always used to do, [sqlite3_step()] will automatically recompile the SQL +** statement and try to run it again. {F12023} If the schema has changed in +** a way that makes the statement no longer valid, [sqlite3_step()] will still +** return [SQLITE_SCHEMA]. {END} But unlike the legacy behavior, +** [SQLITE_SCHEMA] is now a fatal error. {F12024} Calling +** [sqlite3_prepare_v2()] again will not make the +** error go away. {F12025} Note: use [sqlite3_errmsg()] to find the text +** of the parsing error that results in an [SQLITE_SCHEMA] return. {END} +**
  2. +** +**
  3. +** {F13030} When an error occurs, +** [sqlite3_step()] will return one of the detailed +** [SQLITE_ERROR | result codes] or +** [SQLITE_IOERR_READ | extended result codes]. {F13031} +** The legacy behavior was that [sqlite3_step()] would only return a generic +** [SQLITE_ERROR] result code and you would have to make a second call to +** [sqlite3_reset()] in order to find the underlying cause of the problem. +** {F13032} +** With the "v2" prepare interfaces, the underlying reason for the error is +** returned immediately. {END} +**
  4. +**
+*/ +int sqlite3_prepare( + sqlite3 *db, /* Database handle */ + const char *zSql, /* SQL statement, UTF-8 encoded */ + int nByte, /* Maximum length of zSql in bytes. */ + sqlite3_stmt **ppStmt, /* OUT: Statement handle */ + const char **pzTail /* OUT: Pointer to unused portion of zSql */ +); +int sqlite3_prepare_v2( + sqlite3 *db, /* Database handle */ + const char *zSql, /* SQL statement, UTF-8 encoded */ + int nByte, /* Maximum length of zSql in bytes. */ + sqlite3_stmt **ppStmt, /* OUT: Statement handle */ + const char **pzTail /* OUT: Pointer to unused portion of zSql */ +); +int sqlite3_prepare16( + sqlite3 *db, /* Database handle */ + const void *zSql, /* SQL statement, UTF-16 encoded */ + int nByte, /* Maximum length of zSql in bytes. */ + sqlite3_stmt **ppStmt, /* OUT: Statement handle */ + const void **pzTail /* OUT: Pointer to unused portion of zSql */ +); +int sqlite3_prepare16_v2( + sqlite3 *db, /* Database handle */ + const void *zSql, /* SQL statement, UTF-16 encoded */ + int nByte, /* Maximum length of zSql in bytes. */ + sqlite3_stmt **ppStmt, /* OUT: Statement handle */ + const void **pzTail /* OUT: Pointer to unused portion of zSql */ +); + +/* +** CAPIREF: Retrieving Statement SQL {F13100} +** +** {F13101} If the compiled SQL statement passed as an argument was +** compiled using either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()], +** then this function returns a pointer to a zero-terminated string +** containing a copy of the original SQL statement. {F13102} The +** pointer is valid until the statement +** is deleted using sqlite3_finalize(). +** {F13103} The string returned by sqlite3_sql() is always UTF8 even +** if a UTF16 string was originally entered using [sqlite3_prepare16_v2()] +** or the equivalent. +** +** {F13104} If the statement was compiled using either of the legacy +** interfaces [sqlite3_prepare()] or [sqlite3_prepare16()], this +** function returns NULL. +*/ +const char *sqlite3_sql(sqlite3_stmt *pStmt); + +/* +** CAPI3REF: Dynamically Typed Value Object {F15000} +** +** {F15001} SQLite uses the sqlite3_value object to represent all values +** that are or can be stored in a database table. {END} +** SQLite uses dynamic typing for the values it stores. +** {F15002} Values stored in sqlite3_value objects can be +** be integers, floating point values, strings, BLOBs, or NULL. +*/ +typedef struct Mem sqlite3_value; + +/* +** CAPI3REF: SQL Function Context Object {F16001} +** +** The context in which an SQL function executes is stored in an +** sqlite3_context object. {F16002} A pointer to an sqlite3_context +** object is always first parameter to application-defined SQL functions. +*/ +typedef struct sqlite3_context sqlite3_context; + +/* +** CAPI3REF: Binding Values To Prepared Statements {F13500} +** +** {F13501} In the SQL strings input to [sqlite3_prepare_v2()] and its +** variants, literals may be replace by a parameter in one +** of these forms: +** +**
    +**
  • ? +**
  • ?NNN +**
  • :AAA +**
  • @AAA +**
  • $VVV +**
+** +** In the parameter forms shown above NNN is an integer literal, +** AAA is an alphanumeric identifier and VVV is a variable name according +** to the syntax rules of the TCL programming language. {END} +** The values of these parameters (also called "host parameter names") +** can be set using the sqlite3_bind_*() routines defined here. +** +** {F13502} The first argument to the sqlite3_bind_*() routines always +** is a pointer to the [sqlite3_stmt] object returned from +** [sqlite3_prepare_v2()] or its variants. {F13503} The second +** argument is the index of the parameter to be set. {F13504} The +** first parameter has an index of 1. {F13505} When the same named +** parameter is used more than once, second and subsequent +** occurrences have the same index as the first occurrence. +** {F13506} The index for named parameters can be looked up using the +** [sqlite3_bind_parameter_name()] API if desired. {F13507} The index +** for "?NNN" parameters is the value of NNN. +** {F13508} The NNN value must be between 1 and the compile-time +** parameter SQLITE_MAX_VARIABLE_NUMBER (default value: 999). {END} +** See limits.html for additional information. +** +** {F13509} The third argument is the value to bind to the parameter. {END} +** +** {F13510} In those +** routines that have a fourth argument, its value is the number of bytes +** in the parameter. To be clear: the value is the number of bytes in the +** string, not the number of characters. {F13511} The number +** of bytes does not include the zero-terminator at the end of strings. +** {F13512} +** If the fourth parameter is negative, the length of the string is +** number of bytes up to the first zero terminator. {END} +** +** {F13513} +** The fifth argument to sqlite3_bind_blob(), sqlite3_bind_text(), and +** sqlite3_bind_text16() is a destructor used to dispose of the BLOB or +** text after SQLite has finished with it. {F13514} If the fifth argument is +** the special value [SQLITE_STATIC], then the library assumes that the +** information is in static, unmanaged space and does not need to be freed. +** {F13515} If the fifth argument has the value [SQLITE_TRANSIENT], then +** SQLite makes its own private copy of the data immediately, before +** the sqlite3_bind_*() routine returns. {END} +** +** {F13520} The sqlite3_bind_zeroblob() routine binds a BLOB of length N that +** is filled with zeros. {F13521} A zeroblob uses a fixed amount of memory +** (just an integer to hold it size) while it is being processed. {END} +** Zeroblobs are intended to serve as place-holders for BLOBs whose +** content is later written using +** [sqlite3_blob_open | increment BLOB I/O] routines. {F13522} A negative +** value for the zeroblob results in a zero-length BLOB. {END} +** +** {F13530} The sqlite3_bind_*() routines must be called after +** [sqlite3_prepare_v2()] (and its variants) or [sqlite3_reset()] and +** before [sqlite3_step()]. {F13531} +** Bindings are not cleared by the [sqlite3_reset()] routine. +** {F13532} Unbound parameters are interpreted as NULL. {END} +** +** {F13540} These routines return [SQLITE_OK] on success or an error code if +** anything goes wrong. {F13541} [SQLITE_RANGE] is returned if the parameter +** index is out of range. {F13542} [SQLITE_NOMEM] is returned if malloc fails. +** {F13543} [SQLITE_MISUSE] is returned if these routines are called on a +** virtual machine that is the wrong state or which has already been finalized. +*/ +int sqlite3_bind_blob(sqlite3_stmt*, int, const void*, int n, void(*)(void*)); +int sqlite3_bind_double(sqlite3_stmt*, int, double); +int sqlite3_bind_int(sqlite3_stmt*, int, int); +int sqlite3_bind_int64(sqlite3_stmt*, int, sqlite3_int64); +int sqlite3_bind_null(sqlite3_stmt*, int); +int sqlite3_bind_text(sqlite3_stmt*, int, const char*, int n, void(*)(void*)); +int sqlite3_bind_text16(sqlite3_stmt*, int, const void*, int, void(*)(void*)); +int sqlite3_bind_value(sqlite3_stmt*, int, const sqlite3_value*); +int sqlite3_bind_zeroblob(sqlite3_stmt*, int, int n); + +/* +** CAPI3REF: Number Of Host Parameters {F13600} +** +** {F13601} Return the largest host parameter index in the precompiled +** statement given as the argument. {F13602} When the host parameters +** are of the forms like ":AAA", "$VVV", "@AAA", or "?", +** then they are assigned sequential increasing numbers beginning +** with one, so the value returned is the number of parameters. +** {F13603} However +** if the same host parameter name is used multiple times, each occurrance +** is given the same number, so the value returned in that case is the number +** of unique host parameter names. {F13604} If host parameters of the +** form "?NNN" are used (where NNN is an integer) then there might be +** gaps in the numbering and the value returned by this interface is +** the index of the host parameter with the largest index value. {END} +** +** {U13605} The prepared statement must not be [sqlite3_finalize | finalized] +** prior to this routine returning. Otherwise the results are undefined +** and probably undesirable. +*/ +int sqlite3_bind_parameter_count(sqlite3_stmt*); + +/* +** CAPI3REF: Name Of A Host Parameter {F13620} +** +** {F13621} This routine returns a pointer to the name of the n-th +** parameter in a [sqlite3_stmt | prepared statement]. {F13622} +** Host parameters of the form ":AAA" or "@AAA" or "$VVV" have a name +** which is the string ":AAA" or "@AAA" or "$VVV". +** In other words, the initial ":" or "$" or "@" +** is included as part of the name. {F13626} +** Parameters of the form "?" or "?NNN" have no name. +** +** {F13623} The first host parameter has an index of 1, not 0. +** +** {F13624} If the value n is out of range or if the n-th parameter is +** nameless, then NULL is returned. {F13625} The returned string is +** always in the UTF-8 encoding even if the named parameter was +** originally specified as UTF-16 in [sqlite3_prepare16()] or +** [sqlite3_prepare16_v2()]. +*/ +const char *sqlite3_bind_parameter_name(sqlite3_stmt*, int); + +/* +** CAPI3REF: Index Of A Parameter With A Given Name {F13640} +** +** {F13641} This routine returns the index of a host parameter with the +** given name. {F13642} The name must match exactly. {F13643} +** If no parameter with the given name is found, return 0. +** {F13644} Parameter names must be UTF8. +*/ +int sqlite3_bind_parameter_index(sqlite3_stmt*, const char *zName); + +/* +** CAPI3REF: Reset All Bindings On A Prepared Statement {F13660} +** +** {F13661} Contrary to the intuition of many, [sqlite3_reset()] does not +** reset the [sqlite3_bind_blob | bindings] on a +** [sqlite3_stmt | prepared statement]. {F13662} Use this routine to +** reset all host parameters to NULL. +*/ +int sqlite3_clear_bindings(sqlite3_stmt*); + +/* +** CAPI3REF: Number Of Columns In A Result Set {F13710} +** +** {F13711} Return the number of columns in the result set returned by the +** [sqlite3_stmt | compiled SQL statement]. {F13712} This routine returns 0 +** if pStmt is an SQL statement that does not return data (for +** example an UPDATE). +*/ +int sqlite3_column_count(sqlite3_stmt *pStmt); + +/* +** CAPI3REF: Column Names In A Result Set {F13720} +** +** {F13721} These routines return the name assigned to a particular column +** in the result set of a SELECT statement. {F13722} The sqlite3_column_name() +** interface returns a pointer to a zero-terminated UTF8 string +** and sqlite3_column_name16() returns a pointer to a zero-terminated +** UTF16 string. {F13723} The first parameter is the +** [sqlite3_stmt | prepared statement] that implements the SELECT statement. +** The second parameter is the column number. The left-most column is +** number 0. +** +** {F13724} The returned string pointer is valid until either the +** [sqlite3_stmt | prepared statement] is destroyed by [sqlite3_finalize()] +** or until the next call sqlite3_column_name() or sqlite3_column_name16() +** on the same column. +** +** {F13725} If sqlite3_malloc() fails during the processing of either routine +** (for example during a conversion from UTF-8 to UTF-16) then a +** NULL pointer is returned. +*/ +const char *sqlite3_column_name(sqlite3_stmt*, int N); +const void *sqlite3_column_name16(sqlite3_stmt*, int N); + +/* +** CAPI3REF: Source Of Data In A Query Result {F13740} +** +** {F13741} These routines provide a means to determine what column of what +** table in which database a result of a SELECT statement comes from. +** {F13742} The name of the database or table or column can be returned as +** either a UTF8 or UTF16 string. {F13743} The _database_ routines return +** the database name, the _table_ routines return the table name, and +** the origin_ routines return the column name. {F13744} +** The returned string is valid until +** the [sqlite3_stmt | prepared statement] is destroyed using +** [sqlite3_finalize()] or until the same information is requested +** again in a different encoding. +** +** {F13745} The names returned are the original un-aliased names of the +** database, table, and column. +** +** {F13746} The first argument to the following calls is a +** [sqlite3_stmt | compiled SQL statement]. +** {F13747} These functions return information about the Nth column returned by +** the statement, where N is the second function argument. +** +** {F13748} If the Nth column returned by the statement is an expression +** or subquery and is not a column value, then all of these functions +** return NULL. {F13749} Otherwise, they return the +** name of the attached database, table and column that query result +** column was extracted from. +** +** {F13750} As with all other SQLite APIs, those postfixed with "16" return +** UTF-16 encoded strings, the other functions return UTF-8. {END} +** +** These APIs are only available if the library was compiled with the +** SQLITE_ENABLE_COLUMN_METADATA preprocessor symbol defined. +** +** {U13751} +** If two or more threads call one or more of these routines against the same +** prepared statement and column at the same time then the results are +** undefined. +*/ +const char *sqlite3_column_database_name(sqlite3_stmt*,int); +const void *sqlite3_column_database_name16(sqlite3_stmt*,int); +const char *sqlite3_column_table_name(sqlite3_stmt*,int); +const void *sqlite3_column_table_name16(sqlite3_stmt*,int); +const char *sqlite3_column_origin_name(sqlite3_stmt*,int); +const void *sqlite3_column_origin_name16(sqlite3_stmt*,int); + +/* +** CAPI3REF: Declared Datatype Of A Query Result {F13760} +** +** The first parameter is a [sqlite3_stmt | compiled SQL statement]. +** {F13761} If this statement is a SELECT statement and the Nth column of the +** returned result set of that SELECT is a table column (not an +** expression or subquery) then the declared type of the table +** column is returned. {F13762} If the Nth column of the result set is an +** expression or subquery, then a NULL pointer is returned. +** {F13763} The returned string is always UTF-8 encoded. {END} +** For example, in the database schema: +** +** CREATE TABLE t1(c1 VARIANT); +** +** And the following statement compiled: +** +** SELECT c1 + 1, c1 FROM t1; +** +** Then this routine would return the string "VARIANT" for the second +** result column (i==1), and a NULL pointer for the first result column +** (i==0). +** +** SQLite uses dynamic run-time typing. So just because a column +** is declared to contain a particular type does not mean that the +** data stored in that column is of the declared type. SQLite is +** strongly typed, but the typing is dynamic not static. Type +** is associated with individual values, not with the containers +** used to hold those values. +*/ +const char *sqlite3_column_decltype(sqlite3_stmt *, int i); +const void *sqlite3_column_decltype16(sqlite3_stmt*,int); + +/* +** CAPI3REF: Evaluate An SQL Statement {F13200} +** +** After an [sqlite3_stmt | SQL statement] has been prepared with a call +** to either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()] or to one of +** the legacy interfaces [sqlite3_prepare()] or [sqlite3_prepare16()], +** then this function must be called one or more times to evaluate the +** statement. +** +** The details of the behavior of this sqlite3_step() interface depend +** on whether the statement was prepared using the newer "v2" interface +** [sqlite3_prepare_v2()] and [sqlite3_prepare16_v2()] or the older legacy +** interface [sqlite3_prepare()] and [sqlite3_prepare16()]. The use of the +** new "v2" interface is recommended for new applications but the legacy +** interface will continue to be supported. +** +** In the lagacy interface, the return value will be either [SQLITE_BUSY], +** [SQLITE_DONE], [SQLITE_ROW], [SQLITE_ERROR], or [SQLITE_MISUSE]. +** With the "v2" interface, any of the other [SQLITE_OK | result code] +** or [SQLITE_IOERR_READ | extended result code] might be returned as +** well. +** +** [SQLITE_BUSY] means that the database engine was unable to acquire the +** database locks it needs to do its job. If the statement is a COMMIT +** or occurs outside of an explicit transaction, then you can retry the +** statement. If the statement is not a COMMIT and occurs within a +** explicit transaction then you should rollback the transaction before +** continuing. +** +** [SQLITE_DONE] means that the statement has finished executing +** successfully. sqlite3_step() should not be called again on this virtual +** machine without first calling [sqlite3_reset()] to reset the virtual +** machine back to its initial state. +** +** If the SQL statement being executed returns any data, then +** [SQLITE_ROW] is returned each time a new row of data is ready +** for processing by the caller. The values may be accessed using +** the [sqlite3_column_int | column access functions]. +** sqlite3_step() is called again to retrieve the next row of data. +** +** [SQLITE_ERROR] means that a run-time error (such as a constraint +** violation) has occurred. sqlite3_step() should not be called again on +** the VM. More information may be found by calling [sqlite3_errmsg()]. +** With the legacy interface, a more specific error code (example: +** [SQLITE_INTERRUPT], [SQLITE_SCHEMA], [SQLITE_CORRUPT], and so forth) +** can be obtained by calling [sqlite3_reset()] on the +** [sqlite3_stmt | prepared statement]. In the "v2" interface, +** the more specific error code is returned directly by sqlite3_step(). +** +** [SQLITE_MISUSE] means that the this routine was called inappropriately. +** Perhaps it was called on a [sqlite3_stmt | prepared statement] that has +** already been [sqlite3_finalize | finalized] or on one that had +** previously returned [SQLITE_ERROR] or [SQLITE_DONE]. Or it could +** be the case that the same database connection is being used by two or +** more threads at the same moment in time. +** +** Goofy Interface Alert: +** In the legacy interface, +** the sqlite3_step() API always returns a generic error code, +** [SQLITE_ERROR], following any error other than [SQLITE_BUSY] +** and [SQLITE_MISUSE]. You must call [sqlite3_reset()] or +** [sqlite3_finalize()] in order to find one of the specific +** [SQLITE_ERROR | result codes] that better describes the error. +** We admit that this is a goofy design. The problem has been fixed +** with the "v2" interface. If you prepare all of your SQL statements +** using either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()] instead +** of the legacy [sqlite3_prepare()] and [sqlite3_prepare16()], then the +** more specific [SQLITE_ERROR | result codes] are returned directly +** by sqlite3_step(). The use of the "v2" interface is recommended. +*/ +int sqlite3_step(sqlite3_stmt*); + +/* +** CAPI3REF: Number of columns in a result set {F13770} +** +** Return the number of values in the current row of the result set. +** +** {F13771} After a call to [sqlite3_step()] that returns [SQLITE_ROW], +** this routine +** will return the same value as the [sqlite3_column_count()] function. +** {F13772} +** After [sqlite3_step()] has returned an [SQLITE_DONE], [SQLITE_BUSY], or +** a [SQLITE_ERROR | error code], or before [sqlite3_step()] has been +** called on the [sqlite3_stmt | prepared statement] for the first time, +** this routine returns zero. +*/ +int sqlite3_data_count(sqlite3_stmt *pStmt); + +/* +** CAPI3REF: Fundamental Datatypes {F10265} +** +** {F10266}Every value in SQLite has one of five fundamental datatypes: +** +**
    +**
  • 64-bit signed integer +**
  • 64-bit IEEE floating point number +**
  • string +**
  • BLOB +**
  • NULL +**
{END} +** +** These constants are codes for each of those types. +** +** Note that the SQLITE_TEXT constant was also used in SQLite version 2 +** for a completely different meaning. Software that links against both +** SQLite version 2 and SQLite version 3 should use SQLITE3_TEXT not +** SQLITE_TEXT. +*/ +#define SQLITE_INTEGER 1 +#define SQLITE_FLOAT 2 +#define SQLITE_BLOB 4 +#define SQLITE_NULL 5 +#ifdef SQLITE_TEXT +# undef SQLITE_TEXT +#else +# define SQLITE_TEXT 3 +#endif +#define SQLITE3_TEXT 3 + +/* +** CAPI3REF: Results Values From A Query {F13800} +** +** These routines return information about +** a single column of the current result row of a query. In every +** case the first argument is a pointer to the +** [sqlite3_stmt | SQL statement] that is being +** evaluated (the [sqlite3_stmt*] that was returned from +** [sqlite3_prepare_v2()] or one of its variants) and +** the second argument is the index of the column for which information +** should be returned. The left-most column of the result set +** has an index of 0. +** +** If the SQL statement is not currently point to a valid row, or if the +** the column index is out of range, the result is undefined. +** These routines may only be called when the most recent call to +** [sqlite3_step()] has returned [SQLITE_ROW] and neither +** [sqlite3_reset()] nor [sqlite3_finalize()] has been call subsequently. +** If any of these routines are called after [sqlite3_reset()] or +** [sqlite3_finalize()] or after [sqlite3_step()] has returned +** something other than [SQLITE_ROW], the results are undefined. +** If [sqlite3_step()] or [sqlite3_reset()] or [sqlite3_finalize()] +** are called from a different thread while any of these routines +** are pending, then the results are undefined. +** +** The sqlite3_column_type() routine returns +** [SQLITE_INTEGER | datatype code] for the initial data type +** of the result column. The returned value is one of [SQLITE_INTEGER], +** [SQLITE_FLOAT], [SQLITE_TEXT], [SQLITE_BLOB], or [SQLITE_NULL]. The value +** returned by sqlite3_column_type() is only meaningful if no type +** conversions have occurred as described below. After a type conversion, +** the value returned by sqlite3_column_type() is undefined. Future +** versions of SQLite may change the behavior of sqlite3_column_type() +** following a type conversion. +** +** If the result is a BLOB or UTF-8 string then the sqlite3_column_bytes() +** routine returns the number of bytes in that BLOB or string. +** If the result is a UTF-16 string, then sqlite3_column_bytes() converts +** the string to UTF-8 and then returns the number of bytes. +** If the result is a numeric value then sqlite3_column_bytes() uses +** [sqlite3_snprintf()] to convert that value to a UTF-8 string and returns +** the number of bytes in that string. +** The value returned does not include the zero terminator at the end +** of the string. For clarity: the value returned is the number of +** bytes in the string, not the number of characters. +** +** Strings returned by sqlite3_column_text() and sqlite3_column_text16(), +** even zero-length strings, are always zero terminated. The return +** value from sqlite3_column_blob() for a zero-length blob is an arbitrary +** pointer, possibly even a NULL pointer. +** +** The sqlite3_column_bytes16() routine is similar to sqlite3_column_bytes() +** but leaves the result in UTF-16 instead of UTF-8. +** The zero terminator is not included in this count. +** +** These routines attempt to convert the value where appropriate. For +** example, if the internal representation is FLOAT and a text result +** is requested, [sqlite3_snprintf()] is used internally to do the conversion +** automatically. The following table details the conversions that +** are applied: +** +**
+** +**
Internal
Type
Requested
Type
Conversion +** +**
NULL INTEGER Result is 0 +**
NULL FLOAT Result is 0.0 +**
NULL TEXT Result is NULL pointer +**
NULL BLOB Result is NULL pointer +**
INTEGER FLOAT Convert from integer to float +**
INTEGER TEXT ASCII rendering of the integer +**
INTEGER BLOB Same as for INTEGER->TEXT +**
FLOAT INTEGER Convert from float to integer +**
FLOAT TEXT ASCII rendering of the float +**
FLOAT BLOB Same as FLOAT->TEXT +**
TEXT INTEGER Use atoi() +**
TEXT FLOAT Use atof() +**
TEXT BLOB No change +**
BLOB INTEGER Convert to TEXT then use atoi() +**
BLOB FLOAT Convert to TEXT then use atof() +**
BLOB TEXT Add a zero terminator if needed +**
+**
+** +** The table above makes reference to standard C library functions atoi() +** and atof(). SQLite does not really use these functions. It has its +** on equavalent internal routines. The atoi() and atof() names are +** used in the table for brevity and because they are familiar to most +** C programmers. +** +** Note that when type conversions occur, pointers returned by prior +** calls to sqlite3_column_blob(), sqlite3_column_text(), and/or +** sqlite3_column_text16() may be invalidated. +** Type conversions and pointer invalidations might occur +** in the following cases: +** +**
    +**
  • The initial content is a BLOB and sqlite3_column_text() +** or sqlite3_column_text16() is called. A zero-terminator might +** need to be added to the string.

  • +** +**
  • The initial content is UTF-8 text and sqlite3_column_bytes16() or +** sqlite3_column_text16() is called. The content must be converted +** to UTF-16.

  • +** +**
  • The initial content is UTF-16 text and sqlite3_column_bytes() or +** sqlite3_column_text() is called. The content must be converted +** to UTF-8.

  • +**
+** +** Conversions between UTF-16be and UTF-16le are always done in place and do +** not invalidate a prior pointer, though of course the content of the buffer +** that the prior pointer points to will have been modified. Other kinds +** of conversion are done in place when it is possible, but sometime it is +** not possible and in those cases prior pointers are invalidated. +** +** The safest and easiest to remember policy is to invoke these routines +** in one of the following ways: +** +**
    +**
  • sqlite3_column_text() followed by sqlite3_column_bytes()
  • +**
  • sqlite3_column_blob() followed by sqlite3_column_bytes()
  • +**
  • sqlite3_column_text16() followed by sqlite3_column_bytes16()
  • +**
+** +** In other words, you should call sqlite3_column_text(), sqlite3_column_blob(), +** or sqlite3_column_text16() first to force the result into the desired +** format, then invoke sqlite3_column_bytes() or sqlite3_column_bytes16() to +** find the size of the result. Do not mix call to sqlite3_column_text() or +** sqlite3_column_blob() with calls to sqlite3_column_bytes16(). And do not +** mix calls to sqlite3_column_text16() with calls to sqlite3_column_bytes(). +** +** The pointers returned are valid until a type conversion occurs as +** described above, or until [sqlite3_step()] or [sqlite3_reset()] or +** [sqlite3_finalize()] is called. The memory space used to hold strings +** and blobs is freed automatically. Do not pass the pointers returned +** [sqlite3_column_blob()], [sqlite3_column_text()], etc. into +** [sqlite3_free()]. +** +** If a memory allocation error occurs during the evaluation of any +** of these routines, a default value is returned. The default value +** is either the integer 0, the floating point number 0.0, or a NULL +** pointer. Subsequent calls to [sqlite3_errcode()] will return +** [SQLITE_NOMEM]. +*/ +const void *sqlite3_column_blob(sqlite3_stmt*, int iCol); +int sqlite3_column_bytes(sqlite3_stmt*, int iCol); +int sqlite3_column_bytes16(sqlite3_stmt*, int iCol); +double sqlite3_column_double(sqlite3_stmt*, int iCol); +int sqlite3_column_int(sqlite3_stmt*, int iCol); +sqlite3_int64 sqlite3_column_int64(sqlite3_stmt*, int iCol); +const unsigned char *sqlite3_column_text(sqlite3_stmt*, int iCol); +const void *sqlite3_column_text16(sqlite3_stmt*, int iCol); +int sqlite3_column_type(sqlite3_stmt*, int iCol); +sqlite3_value *sqlite3_column_value(sqlite3_stmt*, int iCol); + +/* +** CAPI3REF: Destroy A Prepared Statement Object {F13300} +** +** The sqlite3_finalize() function is called to delete a +** [sqlite3_stmt | compiled SQL statement]. If the statement was +** executed successfully, or not executed at all, then SQLITE_OK is returned. +** If execution of the statement failed then an +** [SQLITE_ERROR | error code] or [SQLITE_IOERR_READ | extended error code] +** is returned. +** +** This routine can be called at any point during the execution of the +** [sqlite3_stmt | virtual machine]. If the virtual machine has not +** completed execution when this routine is called, that is like +** encountering an error or an interrupt. (See [sqlite3_interrupt()].) +** Incomplete updates may be rolled back and transactions cancelled, +** depending on the circumstances, and the +** [SQLITE_ERROR | result code] returned will be [SQLITE_ABORT]. +*/ +int sqlite3_finalize(sqlite3_stmt *pStmt); + +/* +** CAPI3REF: Reset A Prepared Statement Object {F13330} +** +** The sqlite3_reset() function is called to reset a +** [sqlite3_stmt | compiled SQL statement] object. +** back to its initial state, ready to be re-executed. +** Any SQL statement variables that had values bound to them using +** the [sqlite3_bind_blob | sqlite3_bind_*() API] retain their values. +** Use [sqlite3_clear_bindings()] to reset the bindings. +*/ +int sqlite3_reset(sqlite3_stmt *pStmt); + +/* +** CAPI3REF: Create Or Redefine SQL Functions {F16100} +** +** The following two functions are used to add SQL functions or aggregates +** or to redefine the behavior of existing SQL functions or aggregates. The +** difference only between the two is that the second parameter, the +** name of the (scalar) function or aggregate, is encoded in UTF-8 for +** sqlite3_create_function() and UTF-16 for sqlite3_create_function16(). +** +** The first argument is the [sqlite3 | database handle] that holds the +** SQL function or aggregate is to be added or redefined. If a single +** program uses more than one database handle internally, then SQL +** functions or aggregates must be added individually to each database +** handle with which they will be used. +** +** The second parameter is the name of the SQL function to be created +** or redefined. +** The length of the name is limited to 255 bytes, exclusive of the +** zero-terminator. Note that the name length limit is in bytes, not +** characters. Any attempt to create a function with a longer name +** will result in an SQLITE_ERROR error. +** +** The third parameter is the number of arguments that the SQL function or +** aggregate takes. If this parameter is negative, then the SQL function or +** aggregate may take any number of arguments. +** +** The fourth parameter, eTextRep, specifies what +** [SQLITE_UTF8 | text encoding] this SQL function prefers for +** its parameters. Any SQL function implementation should be able to work +** work with UTF-8, UTF-16le, or UTF-16be. But some implementations may be +** more efficient with one encoding than another. It is allowed to +** invoke sqlite3_create_function() or sqlite3_create_function16() multiple +** times with the same function but with different values of eTextRep. +** When multiple implementations of the same function are available, SQLite +** will pick the one that involves the least amount of data conversion. +** If there is only a single implementation which does not care what +** text encoding is used, then the fourth argument should be +** [SQLITE_ANY]. +** +** The fifth parameter is an arbitrary pointer. The implementation +** of the function can gain access to this pointer using +** [sqlite3_user_data()]. +** +** The seventh, eighth and ninth parameters, xFunc, xStep and xFinal, are +** pointers to C-language functions that implement the SQL +** function or aggregate. A scalar SQL function requires an implementation of +** the xFunc callback only, NULL pointers should be passed as the xStep +** and xFinal parameters. An aggregate SQL function requires an implementation +** of xStep and xFinal and NULL should be passed for xFunc. To delete an +** existing SQL function or aggregate, pass NULL for all three function +** callback. +** +** It is permitted to register multiple implementations of the same +** functions with the same name but with either differing numbers of +** arguments or differing perferred text encodings. SQLite will use +** the implementation most closely matches the way in which the +** SQL function is used. +*/ +int sqlite3_create_function( + sqlite3 *, + const char *zFunctionName, + int nArg, + int eTextRep, + void*, + void (*xFunc)(sqlite3_context*,int,sqlite3_value**), + void (*xStep)(sqlite3_context*,int,sqlite3_value**), + void (*xFinal)(sqlite3_context*) +); +int sqlite3_create_function16( + sqlite3*, + const void *zFunctionName, + int nArg, + int eTextRep, + void*, + void (*xFunc)(sqlite3_context*,int,sqlite3_value**), + void (*xStep)(sqlite3_context*,int,sqlite3_value**), + void (*xFinal)(sqlite3_context*) +); + +/* +** CAPI3REF: Text Encodings {F10267} +** +** These constant define integer codes that represent the various +** text encodings supported by SQLite. +*/ +#define SQLITE_UTF8 1 +#define SQLITE_UTF16LE 2 +#define SQLITE_UTF16BE 3 +#define SQLITE_UTF16 4 /* Use native byte order */ +#define SQLITE_ANY 5 /* sqlite3_create_function only */ +#define SQLITE_UTF16_ALIGNED 8 /* sqlite3_create_collation only */ + +/* +** CAPI3REF: Obsolete Functions +** +** These functions are all now obsolete. In order to maintain +** backwards compatibility with older code, we continue to support +** these functions. However, new development projects should avoid +** the use of these functions. To help encourage people to avoid +** using these functions, we are not going to tell you want they do. +*/ +int sqlite3_aggregate_count(sqlite3_context*); +int sqlite3_expired(sqlite3_stmt*); +int sqlite3_transfer_bindings(sqlite3_stmt*, sqlite3_stmt*); +int sqlite3_global_recover(void); +void sqlite3_thread_cleanup(void); +int sqlite3_memory_alarm(void(*)(void*,sqlite3_int64,int),void*,sqlite3_int64); + +/* +** CAPI3REF: Obtaining SQL Function Parameter Values {F15100} +** +** The C-language implementation of SQL functions and aggregates uses +** this set of interface routines to access the parameter values on +** the function or aggregate. +** +** The xFunc (for scalar functions) or xStep (for aggregates) parameters +** to [sqlite3_create_function()] and [sqlite3_create_function16()] +** define callbacks that implement the SQL functions and aggregates. +** The 4th parameter to these callbacks is an array of pointers to +** [sqlite3_value] objects. There is one [sqlite3_value] object for +** each parameter to the SQL function. These routines are used to +** extract values from the [sqlite3_value] objects. +** +** These routines work just like the corresponding +** [sqlite3_column_blob | sqlite3_column_* routines] except that +** these routines take a single [sqlite3_value*] pointer instead +** of an [sqlite3_stmt*] pointer and an integer column number. +** +** The sqlite3_value_text16() interface extracts a UTF16 string +** in the native byte-order of the host machine. The +** sqlite3_value_text16be() and sqlite3_value_text16le() interfaces +** extract UTF16 strings as big-endian and little-endian respectively. +** +** The sqlite3_value_numeric_type() interface attempts to apply +** numeric affinity to the value. This means that an attempt is +** made to convert the value to an integer or floating point. If +** such a conversion is possible without loss of information (in other +** words if the value is a string that looks like a number) +** then the conversion is done. Otherwise no conversion occurs. The +** [SQLITE_INTEGER | datatype] after conversion is returned. +** +** Please pay particular attention to the fact that the pointer that +** is returned from [sqlite3_value_blob()], [sqlite3_value_text()], or +** [sqlite3_value_text16()] can be invalidated by a subsequent call to +** [sqlite3_value_bytes()], [sqlite3_value_bytes16()], [sqlite3_value_text()], +** or [sqlite3_value_text16()]. +** +** These routines must be called from the same thread as +** the SQL function that supplied the sqlite3_value* parameters. +** Or, if the sqlite3_value* argument comes from the [sqlite3_column_value()] +** interface, then these routines should be called from the same thread +** that ran [sqlite3_column_value()]. +** +*/ +const void *sqlite3_value_blob(sqlite3_value*); +int sqlite3_value_bytes(sqlite3_value*); +int sqlite3_value_bytes16(sqlite3_value*); +double sqlite3_value_double(sqlite3_value*); +int sqlite3_value_int(sqlite3_value*); +sqlite3_int64 sqlite3_value_int64(sqlite3_value*); +const unsigned char *sqlite3_value_text(sqlite3_value*); +const void *sqlite3_value_text16(sqlite3_value*); +const void *sqlite3_value_text16le(sqlite3_value*); +const void *sqlite3_value_text16be(sqlite3_value*); +int sqlite3_value_type(sqlite3_value*); +int sqlite3_value_numeric_type(sqlite3_value*); + +/* +** CAPI3REF: Obtain Aggregate Function Context {F16210} +** +** The implementation of aggregate SQL functions use this routine to allocate +** a structure for storing their state. +** {F16211} The first time the sqlite3_aggregate_context() routine is +** is called for a particular aggregate, SQLite allocates nBytes of memory +** zeros that memory, and returns a pointer to it. +** {F16212} On second and subsequent calls to sqlite3_aggregate_context() +** for the same aggregate function index, the same buffer is returned. {END} +** The implementation +** of the aggregate can use the returned buffer to accumulate data. +** +** {F16213} SQLite automatically frees the allocated buffer when the aggregate +** query concludes. {END} +** +** The first parameter should be a copy of the +** [sqlite3_context | SQL function context] that is the first +** parameter to the callback routine that implements the aggregate +** function. +** +** This routine must be called from the same thread in which +** the aggregate SQL function is running. +*/ +void *sqlite3_aggregate_context(sqlite3_context*, int nBytes); + +/* +** CAPI3REF: User Data For Functions {F16240} +** +** {F16241} The sqlite3_user_data() interface returns a copy of +** the pointer that was the pUserData parameter (the 5th parameter) +** of the the [sqlite3_create_function()] +** and [sqlite3_create_function16()] routines that originally +** registered the application defined function. {END} +** +** {U16243} This routine must be called from the same thread in which +** the application-defined function is running. +*/ +void *sqlite3_user_data(sqlite3_context*); + +/* +** CAPI3REF: Function Auxiliary Data {F16270} +** +** The following two functions may be used by scalar SQL functions to +** associate meta-data with argument values. If the same value is passed to +** multiple invocations of the same SQL function during query execution, under +** some circumstances the associated meta-data may be preserved. This may +** be used, for example, to add a regular-expression matching scalar +** function. The compiled version of the regular expression is stored as +** meta-data associated with the SQL value passed as the regular expression +** pattern. The compiled regular expression can be reused on multiple +** invocations of the same function so that the original pattern string +** does not need to be recompiled on each invocation. +** +** {F16271} +** The sqlite3_get_auxdata() interface returns a pointer to the meta-data +** associated by the sqlite3_set_auxdata() function with the Nth argument +** value to the application-defined function. +** {F16272} If no meta-data has been ever been set for the Nth +** argument of the function, or if the cooresponding function parameter +** has changed since the meta-data was set, then sqlite3_get_auxdata() +** returns a NULL pointer. +** +** {F16275} The sqlite3_set_auxdata() interface saves the meta-data +** pointed to by its 3rd parameter as the meta-data for the N-th +** argument of the application-defined function. {END} Subsequent +** calls to sqlite3_get_auxdata() might return this data, if it has +** not been destroyed. +** {F16277} If it is not NULL, SQLite will invoke the destructor +** function given by the 4th parameter to sqlite3_set_auxdata() on +** the meta-data when the corresponding function parameter changes +** or when the SQL statement completes, whichever comes first. {END} +** +** In practice, meta-data is preserved between function calls for +** expressions that are constant at compile time. This includes literal +** values and SQL variables. +** +** These routines must be called from the same thread in which +** the SQL function is running. +*/ +void *sqlite3_get_auxdata(sqlite3_context*, int N); +void sqlite3_set_auxdata(sqlite3_context*, int N, void*, void (*)(void*)); + + +/* +** CAPI3REF: Constants Defining Special Destructor Behavior {F10280} +** +** These are special value for the destructor that is passed in as the +** final argument to routines like [sqlite3_result_blob()]. If the destructor +** argument is SQLITE_STATIC, it means that the content pointer is constant +** and will never change. It does not need to be destroyed. The +** SQLITE_TRANSIENT value means that the content will likely change in +** the near future and that SQLite should make its own private copy of +** the content before returning. +** +** The typedef is necessary to work around problems in certain +** C++ compilers. See ticket #2191. +*/ +typedef void (*sqlite3_destructor_type)(void*); +#define SQLITE_STATIC ((sqlite3_destructor_type)0) +#define SQLITE_TRANSIENT ((sqlite3_destructor_type)-1) + +/* +** CAPI3REF: Setting The Result Of An SQL Function {F16400} +** +** These routines are used by the xFunc or xFinal callbacks that +** implement SQL functions and aggregates. See +** [sqlite3_create_function()] and [sqlite3_create_function16()] +** for additional information. +** +** These functions work very much like the +** [sqlite3_bind_blob | sqlite3_bind_*] family of functions used +** to bind values to host parameters in prepared statements. +** Refer to the +** [sqlite3_bind_blob | sqlite3_bind_* documentation] for +** additional information. +** +** {F16402} The sqlite3_result_blob() interface sets the result from +** an application defined function to be the BLOB whose content is pointed +** to by the second parameter and which is N bytes long where N is the +** third parameter. +** {F16403} The sqlite3_result_zeroblob() inerfaces set the result of +** the application defined function to be a BLOB containing all zero +** bytes and N bytes in size, where N is the value of the 2nd parameter. +** +** {F16407} The sqlite3_result_double() interface sets the result from +** an application defined function to be a floating point value specified +** by its 2nd argument. +** +** {F16409} The sqlite3_result_error() and sqlite3_result_error16() functions +** cause the implemented SQL function to throw an exception. +** {F16411} SQLite uses the string pointed to by the +** 2nd parameter of sqlite3_result_error() or sqlite3_result_error16() +** as the text of an error message. {F16412} SQLite interprets the error +** message string from sqlite3_result_error() as UTF8. {F16413} SQLite +** interprets the string from sqlite3_result_error16() as UTF16 in native +** byte order. {F16414} If the third parameter to sqlite3_result_error() +** or sqlite3_result_error16() is negative then SQLite takes as the error +** message all text up through the first zero character. +** {F16415} If the third parameter to sqlite3_result_error() or +** sqlite3_result_error16() is non-negative then SQLite takes that many +** bytes (not characters) from the 2nd parameter as the error message. +** {F16417} The sqlite3_result_error() and sqlite3_result_error16() +** routines make a copy private copy of the error message text before +** they return. {END} Hence, the calling function can deallocate or +** modify the text after they return without harm. +** +** {F16421} The sqlite3_result_toobig() interface causes SQLite +** to throw an error indicating that a string or BLOB is to long +** to represent. {F16422} The sqlite3_result_nomem() interface +** causes SQLite to throw an exception indicating that the a +** memory allocation failed. +** +** {F16431} The sqlite3_result_int() interface sets the return value +** of the application-defined function to be the 32-bit signed integer +** value given in the 2nd argument. +** {F16432} The sqlite3_result_int64() interface sets the return value +** of the application-defined function to be the 64-bit signed integer +** value given in the 2nd argument. +** +** {F16437} The sqlite3_result_null() interface sets the return value +** of the application-defined function to be NULL. +** +** {F16441} The sqlite3_result_text(), sqlite3_result_text16(), +** sqlite3_result_text16le(), and sqlite3_result_text16be() interfaces +** set the return value of the application-defined function to be +** a text string which is represented as UTF-8, UTF-16 native byte order, +** UTF-16 little endian, or UTF-16 big endian, respectively. +** {F16442} SQLite takes the text result from the application from +** the 2nd parameter of the sqlite3_result_text* interfaces. +** {F16444} If the 3rd parameter to the sqlite3_result_text* interfaces +** is negative, then SQLite takes result text from the 2nd parameter +** through the first zero character. +** {F16447} If the 3rd parameter to the sqlite3_result_text* interfaces +** is non-negative, then as many bytes (not characters) of the text +** pointed to by the 2nd parameter are taken as the application-defined +** function result. +** {F16451} If the 4th parameter to the sqlite3_result_text* interfaces +** or sqlite3_result_blob is a non-NULL pointer, then SQLite calls that +** function as the destructor on the text or blob result when it has +** finished using that result. +** {F16453} If the 4th parameter to the sqlite3_result_text* interfaces +** or sqlite3_result_blob is the special constant SQLITE_STATIC, then +** SQLite assumes that the text or blob result is constant space and +** does not copy the space or call a destructor when it has +** finished using that result. +** {F16454} If the 4th parameter to the sqlite3_result_text* interfaces +** or sqlite3_result_blob is the special constant SQLITE_TRANSIENT +** then SQLite makes a copy of the result into space obtained from +** from [sqlite3_malloc()] before it returns. +** +** {F16461} The sqlite3_result_value() interface sets the result of +** the application-defined function to be a copy the [sqlite3_value] +** object specified by the 2nd parameter. {F16463} The +** sqlite3_result_value() interface makes a copy of the [sqlite3_value] +** so that [sqlite3_value] specified in the parameter may change or +** be deallocated after sqlite3_result_value() returns without harm. +** +** {U16491} These routines are called from within the different thread +** than the one containing the application-defined function that recieved +** the [sqlite3_context] pointer, the results are undefined. +*/ +void sqlite3_result_blob(sqlite3_context*, const void*, int, void(*)(void*)); +void sqlite3_result_double(sqlite3_context*, double); +void sqlite3_result_error(sqlite3_context*, const char*, int); +void sqlite3_result_error16(sqlite3_context*, const void*, int); +void sqlite3_result_error_toobig(sqlite3_context*); +void sqlite3_result_error_nomem(sqlite3_context*); +void sqlite3_result_int(sqlite3_context*, int); +void sqlite3_result_int64(sqlite3_context*, sqlite3_int64); +void sqlite3_result_null(sqlite3_context*); +void sqlite3_result_text(sqlite3_context*, const char*, int, void(*)(void*)); +void sqlite3_result_text16(sqlite3_context*, const void*, int, void(*)(void*)); +void sqlite3_result_text16le(sqlite3_context*, const void*, int,void(*)(void*)); +void sqlite3_result_text16be(sqlite3_context*, const void*, int,void(*)(void*)); +void sqlite3_result_value(sqlite3_context*, sqlite3_value*); +void sqlite3_result_zeroblob(sqlite3_context*, int n); + +/* +** CAPI3REF: Define New Collating Sequences {F16600} +** +** {F16601} +** These functions are used to add new collation sequences to the +** [sqlite3*] handle specified as the first argument. +** +** {F16602} +** The name of the new collation sequence is specified as a UTF-8 string +** for sqlite3_create_collation() and sqlite3_create_collation_v2() +** and a UTF-16 string for sqlite3_create_collation16(). {F16603} In all cases +** the name is passed as the second function argument. +** +** {F16604} +** The third argument may be one of the constants [SQLITE_UTF8], +** [SQLITE_UTF16LE] or [SQLITE_UTF16BE], indicating that the user-supplied +** routine expects to be passed pointers to strings encoded using UTF-8, +** UTF-16 little-endian or UTF-16 big-endian respectively. {F16605} The +** third argument might also be [SQLITE_UTF16_ALIGNED] to indicate that +** the routine expects pointers to 16-bit word aligned strings +** of UTF16 in the native byte order of the host computer. +** +** {F16607} +** A pointer to the user supplied routine must be passed as the fifth +** argument. {F16609} If it is NULL, this is the same as deleting the collation +** sequence (so that SQLite cannot call it anymore). +** {F16611} Each time the application +** supplied function is invoked, it is passed a copy of the void* passed as +** the fourth argument to sqlite3_create_collation() or +** sqlite3_create_collation16() as its first parameter. +** +** {F16612} +** The remaining arguments to the application-supplied routine are two strings, +** each represented by a [length, data] pair and encoded in the encoding +** that was passed as the third argument when the collation sequence was +** registered. {END} The application defined collation routine should +** return negative, zero or positive if +** the first string is less than, equal to, or greater than the second +** string. i.e. (STRING1 - STRING2). +** +** {F16615} +** The sqlite3_create_collation_v2() works like sqlite3_create_collation() +** excapt that it takes an extra argument which is a destructor for +** the collation. {F16617} The destructor is called when the collation is +** destroyed and is passed a copy of the fourth parameter void* pointer +** of the sqlite3_create_collation_v2(). +** {F16618} Collations are destroyed when +** they are overridden by later calls to the collation creation functions +** or when the [sqlite3*] database handle is closed using [sqlite3_close()]. +*/ +int sqlite3_create_collation( + sqlite3*, + const char *zName, + int eTextRep, + void*, + int(*xCompare)(void*,int,const void*,int,const void*) +); +int sqlite3_create_collation_v2( + sqlite3*, + const char *zName, + int eTextRep, + void*, + int(*xCompare)(void*,int,const void*,int,const void*), + void(*xDestroy)(void*) +); +int sqlite3_create_collation16( + sqlite3*, + const char *zName, + int eTextRep, + void*, + int(*xCompare)(void*,int,const void*,int,const void*) +); + +/* +** CAPI3REF: Collation Needed Callbacks {F16700} +** +** {F16701} +** To avoid having to register all collation sequences before a database +** can be used, a single callback function may be registered with the +** database handle to be called whenever an undefined collation sequence is +** required. +** +** {F16702} +** If the function is registered using the sqlite3_collation_needed() API, +** then it is passed the names of undefined collation sequences as strings +** encoded in UTF-8. {F16703} If sqlite3_collation_needed16() is used, the names +** are passed as UTF-16 in machine native byte order. {F16704} A call to either +** function replaces any existing callback. +** +** {F16705} When the callback is invoked, the first argument passed is a copy +** of the second argument to sqlite3_collation_needed() or +** sqlite3_collation_needed16(). {F16706} The second argument is the database +** handle. {F16707} The third argument is one of [SQLITE_UTF8], +** [SQLITE_UTF16BE], or [SQLITE_UTF16LE], indicating the most +** desirable form of the collation sequence function required. +** {F16708} The fourth parameter is the name of the +** required collation sequence. {END} +** +** The callback function should register the desired collation using +** [sqlite3_create_collation()], [sqlite3_create_collation16()], or +** [sqlite3_create_collation_v2()]. +*/ +int sqlite3_collation_needed( + sqlite3*, + void*, + void(*)(void*,sqlite3*,int eTextRep,const char*) +); +int sqlite3_collation_needed16( + sqlite3*, + void*, + void(*)(void*,sqlite3*,int eTextRep,const void*) +); + +/* +** Specify the key for an encrypted database. This routine should be +** called right after sqlite3_open(). +** +** The code to implement this API is not available in the public release +** of SQLite. +*/ +int sqlite3_key( + sqlite3 *db, /* Database to be rekeyed */ + const void *pKey, int nKey /* The key */ +); + +/* +** Change the key on an open database. If the current database is not +** encrypted, this routine will encrypt it. If pNew==0 or nNew==0, the +** database is decrypted. +** +** The code to implement this API is not available in the public release +** of SQLite. +*/ +int sqlite3_rekey( + sqlite3 *db, /* Database to be rekeyed */ + const void *pKey, int nKey /* The new key */ +); + +/* +** CAPI3REF: Suspend Execution For A Short Time {F10530} +** +** {F10531} The sqlite3_sleep() function +** causes the current thread to suspend execution +** for at least a number of milliseconds specified in its parameter. +** +** {F10532} If the operating system does not support sleep requests with +** millisecond time resolution, then the time will be rounded up to +** the nearest second. {F10533} The number of milliseconds of sleep actually +** requested from the operating system is returned. +** +** {F10534} SQLite implements this interface by calling the xSleep() +** method of the default [sqlite3_vfs] object. {END} +*/ +int sqlite3_sleep(int); + +/* +** CAPI3REF: Name Of The Folder Holding Temporary Files {F10310} +** +** If this global variable is made to point to a string which is +** the name of a folder (a.ka. directory), then all temporary files +** created by SQLite will be placed in that directory. If this variable +** is NULL pointer, then SQLite does a search for an appropriate temporary +** file directory. +** +** It is not safe to modify this variable once a database connection +** has been opened. It is intended that this variable be set once +** as part of process initialization and before any SQLite interface +** routines have been call and remain unchanged thereafter. +*/ +SQLITE_EXTERN char *sqlite3_temp_directory; + +/* +** CAPI3REF: Test To See If The Database Is In Auto-Commit Mode {F12930} +** +** {F12931} The sqlite3_get_autocommit() interfaces returns non-zero or +** zero if the given database connection is or is not in autocommit mode, +** respectively. {F12932} Autocommit mode is on +** by default. {F12933} Autocommit mode is disabled by a BEGIN statement. +** {F12934} Autocommit mode is reenabled by a COMMIT or ROLLBACK. {END} +** +** If certain kinds of errors occur on a statement within a multi-statement +** transactions (errors including [SQLITE_FULL], [SQLITE_IOERR], +** [SQLITE_NOMEM], [SQLITE_BUSY], and [SQLITE_INTERRUPT]) then the +** transaction might be rolled back automatically. {F12935} The only way to +** find out if SQLite automatically rolled back the transaction after +** an error is to use this function. {END} +** +** {U12936} If another thread changes the autocommit status of the database +** connection while this routine is running, then the return value +** is undefined. {END} +*/ +int sqlite3_get_autocommit(sqlite3*); + +/* +** CAPI3REF: Find The Database Handle Of A Prepared Statement {F13120} +** +** {F13121} The sqlite3_db_handle interface +** returns the [sqlite3*] database handle to which a +** [sqlite3_stmt | prepared statement] belongs. +** {F13122} the database handle returned by sqlite3_db_handle +** is the same database handle that was +** the first argument to the [sqlite3_prepare_v2()] or its variants +** that was used to create the statement in the first place. +*/ +sqlite3 *sqlite3_db_handle(sqlite3_stmt*); + + +/* +** CAPI3REF: Commit And Rollback Notification Callbacks {F12950} +** +** {F12951} The sqlite3_commit_hook() interface registers a callback +** function to be invoked whenever a transaction is committed. +** {F12952} Any callback set by a previous call to sqlite3_commit_hook() +** for the same database connection is overridden. +** {F12953} The sqlite3_rollback_hook() interface registers a callback +** function to be invoked whenever a transaction is committed. +** {F12954} Any callback set by a previous call to sqlite3_commit_hook() +** for the same database connection is overridden. +** {F12956} The pArg argument is passed through +** to the callback. {F12957} If the callback on a commit hook function +** returns non-zero, then the commit is converted into a rollback. +** +** {F12958} If another function was previously registered, its +** pArg value is returned. Otherwise NULL is returned. +** +** {F12959} Registering a NULL function disables the callback. +** +** {F12961} For the purposes of this API, a transaction is said to have been +** rolled back if an explicit "ROLLBACK" statement is executed, or +** an error or constraint causes an implicit rollback to occur. +** {F12962} The rollback callback is not invoked if a transaction is +** automatically rolled back because the database connection is closed. +** {F12964} The rollback callback is not invoked if a transaction is +** rolled back because a commit callback returned non-zero. +** Check on this {END} +** +** These are experimental interfaces and are subject to change. +*/ +void *sqlite3_commit_hook(sqlite3*, int(*)(void*), void*); +void *sqlite3_rollback_hook(sqlite3*, void(*)(void *), void*); + +/* +** CAPI3REF: Data Change Notification Callbacks {F12970} +** +** {F12971} The sqlite3_update_hook() interface +** registers a callback function with the database connection identified by the +** first argument to be invoked whenever a row is updated, inserted or deleted. +** {F12972} Any callback set by a previous call to this function for the same +** database connection is overridden. +** +** {F12974} The second argument is a pointer to the function to invoke when a +** row is updated, inserted or deleted. +** {F12976} The first argument to the callback is +** a copy of the third argument to sqlite3_update_hook(). +** {F12977} The second callback +** argument is one of [SQLITE_INSERT], [SQLITE_DELETE] or [SQLITE_UPDATE], +** depending on the operation that caused the callback to be invoked. +** {F12978} The third and +** fourth arguments to the callback contain pointers to the database and +** table name containing the affected row. +** {F12979} The final callback parameter is +** the rowid of the row. +** {F12981} In the case of an update, this is the rowid after +** the update takes place. +** +** {F12983} The update hook is not invoked when internal system tables are +** modified (i.e. sqlite_master and sqlite_sequence). +** +** {F12984} If another function was previously registered, its pArg value +** is returned. {F12985} Otherwise NULL is returned. +*/ +void *sqlite3_update_hook( + sqlite3*, + void(*)(void *,int ,char const *,char const *,sqlite3_int64), + void* +); + +/* +** CAPI3REF: Enable Or Disable Shared Pager Cache {F10330} +** +** {F10331} +** This routine enables or disables the sharing of the database cache +** and schema data structures between connections to the same database. +** {F10332} +** Sharing is enabled if the argument is true and disabled if the argument +** is false. +** +** {F10333} Cache sharing is enabled and disabled +** for an entire process. {END} This is a change as of SQLite version 3.5.0. +** In prior versions of SQLite, sharing was +** enabled or disabled for each thread separately. +** +** {F10334} +** The cache sharing mode set by this interface effects all subsequent +** calls to [sqlite3_open()], [sqlite3_open_v2()], and [sqlite3_open16()]. +** {F10335} Existing database connections continue use the sharing mode +** that was in effect at the time they were opened. {END} +** +** Virtual tables cannot be used with a shared cache. {F10336} When shared +** cache is enabled, the [sqlite3_create_module()] API used to register +** virtual tables will always return an error. {END} +** +** {F10337} This routine returns [SQLITE_OK] if shared cache was +** enabled or disabled successfully. {F10338} An [SQLITE_ERROR | error code] +** is returned otherwise. {END} +** +** {F10339} Shared cache is disabled by default. {END} But this might change in +** future releases of SQLite. Applications that care about shared +** cache setting should set it explicitly. +*/ +int sqlite3_enable_shared_cache(int); + +/* +** CAPI3REF: Attempt To Free Heap Memory {F17340} +** +** {F17341} The sqlite3_release_memory() interface attempts to +** free N bytes of heap memory by deallocating non-essential memory +** allocations held by the database labrary. {END} Memory used +** to cache database pages to improve performance is an example of +** non-essential memory. {F16342} sqlite3_release_memory() returns +** the number of bytes actually freed, which might be more or less +** than the amount requested. +*/ +int sqlite3_release_memory(int); + +/* +** CAPI3REF: Impose A Limit On Heap Size {F17350} +** +** {F16351} The sqlite3_soft_heap_limit() interface +** places a "soft" limit on the amount of heap memory that may be allocated +** by SQLite. {F16352} If an internal allocation is requested +** that would exceed the soft heap limit, [sqlite3_release_memory()] is +** invoked one or more times to free up some space before the allocation +** is made. {END} +** +** {F16353} The limit is called "soft", because if +** [sqlite3_release_memory()] cannot +** free sufficient memory to prevent the limit from being exceeded, +** the memory is allocated anyway and the current operation proceeds. +** +** {F16354} +** A negative or zero value for N means that there is no soft heap limit and +** [sqlite3_release_memory()] will only be called when memory is exhausted. +** {F16355} The default value for the soft heap limit is zero. +** +** SQLite makes a best effort to honor the soft heap limit. +** {F16356} But if the soft heap limit cannot honored, execution will +** continue without error or notification. {END} This is why the limit is +** called a "soft" limit. It is advisory only. +** +** Prior to SQLite version 3.5.0, this routine only constrained the memory +** allocated by a single thread - the same thread in which this routine +** runs. Beginning with SQLite version 3.5.0, the soft heap limit is +** applied to all threads. {F16357} The value specified for the soft heap limit +** is an upper bound on the total memory allocation for all threads. {END} In +** version 3.5.0 there is no mechanism for limiting the heap usage for +** individual threads. +*/ +void sqlite3_soft_heap_limit(int); + +/* +** CAPI3REF: Extract Metadata About A Column Of A Table {F12850} +** +** This routine +** returns meta-data about a specific column of a specific database +** table accessible using the connection handle passed as the first function +** argument. +** +** The column is identified by the second, third and fourth parameters to +** this function. The second parameter is either the name of the database +** (i.e. "main", "temp" or an attached database) containing the specified +** table or NULL. If it is NULL, then all attached databases are searched +** for the table using the same algorithm as the database engine uses to +** resolve unqualified table references. +** +** The third and fourth parameters to this function are the table and column +** name of the desired column, respectively. Neither of these parameters +** may be NULL. +** +** Meta information is returned by writing to the memory locations passed as +** the 5th and subsequent parameters to this function. Any of these +** arguments may be NULL, in which case the corresponding element of meta +** information is ommitted. +** +**
+** Parameter     Output Type      Description
+** -----------------------------------
+**
+**   5th         const char*      Data type
+**   6th         const char*      Name of the default collation sequence 
+**   7th         int              True if the column has a NOT NULL constraint
+**   8th         int              True if the column is part of the PRIMARY KEY
+**   9th         int              True if the column is AUTOINCREMENT
+** 
+** +** +** The memory pointed to by the character pointers returned for the +** declaration type and collation sequence is valid only until the next +** call to any sqlite API function. +** +** If the specified table is actually a view, then an error is returned. +** +** If the specified column is "rowid", "oid" or "_rowid_" and an +** INTEGER PRIMARY KEY column has been explicitly declared, then the output +** parameters are set for the explicitly declared column. If there is no +** explicitly declared IPK column, then the output parameters are set as +** follows: +** +**
+**     data type: "INTEGER"
+**     collation sequence: "BINARY"
+**     not null: 0
+**     primary key: 1
+**     auto increment: 0
+** 
+** +** This function may load one or more schemas from database files. If an +** error occurs during this process, or if the requested table or column +** cannot be found, an SQLITE error code is returned and an error message +** left in the database handle (to be retrieved using sqlite3_errmsg()). +** +** This API is only available if the library was compiled with the +** SQLITE_ENABLE_COLUMN_METADATA preprocessor symbol defined. +*/ +int sqlite3_table_column_metadata( + sqlite3 *db, /* Connection handle */ + const char *zDbName, /* Database name or NULL */ + const char *zTableName, /* Table name */ + const char *zColumnName, /* Column name */ + char const **pzDataType, /* OUTPUT: Declared data type */ + char const **pzCollSeq, /* OUTPUT: Collation sequence name */ + int *pNotNull, /* OUTPUT: True if NOT NULL constraint exists */ + int *pPrimaryKey, /* OUTPUT: True if column part of PK */ + int *pAutoinc /* OUTPUT: True if column is auto-increment */ +); + +/* +** CAPI3REF: Load An Extension {F12600} +** +** {F12601} The sqlite3_load_extension() interface +** attempts to load an SQLite extension library contained in the file +** zFile. {F12602} The entry point is zProc. {F12603} zProc may be 0 +** in which case the name of the entry point defaults +** to "sqlite3_extension_init". +** +** {F12604} The sqlite3_load_extension() interface shall +** return [SQLITE_OK] on success and [SQLITE_ERROR] if something goes wrong. +** +** {F12605} +** If an error occurs and pzErrMsg is not 0, then the +** sqlite3_load_extension() interface shall attempt to fill *pzErrMsg with +** error message text stored in memory obtained from [sqlite3_malloc()]. +** {END} The calling function should free this memory +** by calling [sqlite3_free()]. +** +** {F12606} +** Extension loading must be enabled using [sqlite3_enable_load_extension()] +** prior to calling this API or an error will be returned. +*/ +int sqlite3_load_extension( + sqlite3 *db, /* Load the extension into this database connection */ + const char *zFile, /* Name of the shared library containing extension */ + const char *zProc, /* Entry point. Derived from zFile if 0 */ + char **pzErrMsg /* Put error message here if not 0 */ +); + +/* +** CAPI3REF: Enable Or Disable Extension Loading {F12620} +** +** So as not to open security holes in older applications that are +** unprepared to deal with extension loading, and as a means of disabling +** extension loading while evaluating user-entered SQL, the following +** API is provided to turn the [sqlite3_load_extension()] mechanism on and +** off. {F12622} It is off by default. {END} See ticket #1863. +** +** {F12621} Call the sqlite3_enable_load_extension() routine +** with onoff==1 to turn extension loading on +** and call it with onoff==0 to turn it back off again. {END} +*/ +int sqlite3_enable_load_extension(sqlite3 *db, int onoff); + +/* +** CAPI3REF: Make Arrangements To Automatically Load An Extension {F12640} +** +** {F12641} This function +** registers an extension entry point that is automatically invoked +** whenever a new database connection is opened using +** [sqlite3_open()], [sqlite3_open16()], or [sqlite3_open_v2()]. {END} +** +** This API can be invoked at program startup in order to register +** one or more statically linked extensions that will be available +** to all new database connections. +** +** {F12642} Duplicate extensions are detected so calling this routine multiple +** times with the same extension is harmless. +** +** {F12643} This routine stores a pointer to the extension in an array +** that is obtained from sqlite_malloc(). {END} If you run a memory leak +** checker on your program and it reports a leak because of this +** array, then invoke [sqlite3_reset_auto_extension()] prior +** to shutdown to free the memory. +** +** {F12644} Automatic extensions apply across all threads. {END} +** +** This interface is experimental and is subject to change or +** removal in future releases of SQLite. +*/ +int sqlite3_auto_extension(void *xEntryPoint); + + +/* +** CAPI3REF: Reset Automatic Extension Loading {F12660} +** +** {F12661} This function disables all previously registered +** automatic extensions. {END} This +** routine undoes the effect of all prior [sqlite3_automatic_extension()] +** calls. +** +** {F12662} This call disabled automatic extensions in all threads. {END} +** +** This interface is experimental and is subject to change or +** removal in future releases of SQLite. +*/ +void sqlite3_reset_auto_extension(void); + + +/* +****** EXPERIMENTAL - subject to change without notice ************** +** +** The interface to the virtual-table mechanism is currently considered +** to be experimental. The interface might change in incompatible ways. +** If this is a problem for you, do not use the interface at this time. +** +** When the virtual-table mechanism stablizes, we will declare the +** interface fixed, support it indefinitely, and remove this comment. +*/ + +/* +** Structures used by the virtual table interface +*/ +typedef struct sqlite3_vtab sqlite3_vtab; +typedef struct sqlite3_index_info sqlite3_index_info; +typedef struct sqlite3_vtab_cursor sqlite3_vtab_cursor; +typedef struct sqlite3_module sqlite3_module; + +/* +** A module is a class of virtual tables. Each module is defined +** by an instance of the following structure. This structure consists +** mostly of methods for the module. +*/ +struct sqlite3_module { + int iVersion; + int (*xCreate)(sqlite3*, void *pAux, + int argc, const char *const*argv, + sqlite3_vtab **ppVTab, char**); + int (*xConnect)(sqlite3*, void *pAux, + int argc, const char *const*argv, + sqlite3_vtab **ppVTab, char**); + int (*xBestIndex)(sqlite3_vtab *pVTab, sqlite3_index_info*); + int (*xDisconnect)(sqlite3_vtab *pVTab); + int (*xDestroy)(sqlite3_vtab *pVTab); + int (*xOpen)(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor); + int (*xClose)(sqlite3_vtab_cursor*); + int (*xFilter)(sqlite3_vtab_cursor*, int idxNum, const char *idxStr, + int argc, sqlite3_value **argv); + int (*xNext)(sqlite3_vtab_cursor*); + int (*xEof)(sqlite3_vtab_cursor*); + int (*xColumn)(sqlite3_vtab_cursor*, sqlite3_context*, int); + int (*xRowid)(sqlite3_vtab_cursor*, sqlite3_int64 *pRowid); + int (*xUpdate)(sqlite3_vtab *, int, sqlite3_value **, sqlite3_int64 *); + int (*xBegin)(sqlite3_vtab *pVTab); + int (*xSync)(sqlite3_vtab *pVTab); + int (*xCommit)(sqlite3_vtab *pVTab); + int (*xRollback)(sqlite3_vtab *pVTab); + int (*xFindFunction)(sqlite3_vtab *pVtab, int nArg, const char *zName, + void (**pxFunc)(sqlite3_context*,int,sqlite3_value**), + void **ppArg); + + int (*xRename)(sqlite3_vtab *pVtab, const char *zNew); +}; + +/* +** The sqlite3_index_info structure and its substructures is used to +** pass information into and receive the reply from the xBestIndex +** method of an sqlite3_module. The fields under **Inputs** are the +** inputs to xBestIndex and are read-only. xBestIndex inserts its +** results into the **Outputs** fields. +** +** The aConstraint[] array records WHERE clause constraints of the +** form: +** +** column OP expr +** +** Where OP is =, <, <=, >, or >=. +** The particular operator is stored +** in aConstraint[].op. The index of the column is stored in +** aConstraint[].iColumn. aConstraint[].usable is TRUE if the +** expr on the right-hand side can be evaluated (and thus the constraint +** is usable) and false if it cannot. +** +** The optimizer automatically inverts terms of the form "expr OP column" +** and makes other simplifications to the WHERE clause in an attempt to +** get as many WHERE clause terms into the form shown above as possible. +** The aConstraint[] array only reports WHERE clause terms in the correct +** form that refer to the particular virtual table being queried. +** +** Information about the ORDER BY clause is stored in aOrderBy[]. +** Each term of aOrderBy records a column of the ORDER BY clause. +** +** The xBestIndex method must fill aConstraintUsage[] with information +** about what parameters to pass to xFilter. If argvIndex>0 then +** the right-hand side of the corresponding aConstraint[] is evaluated +** and becomes the argvIndex-th entry in argv. If aConstraintUsage[].omit +** is true, then the constraint is assumed to be fully handled by the +** virtual table and is not checked again by SQLite. +** +** The idxNum and idxPtr values are recorded and passed into xFilter. +** sqlite3_free() is used to free idxPtr if needToFreeIdxPtr is true. +** +** The orderByConsumed means that output from xFilter will occur in +** the correct order to satisfy the ORDER BY clause so that no separate +** sorting step is required. +** +** The estimatedCost value is an estimate of the cost of doing the +** particular lookup. A full scan of a table with N entries should have +** a cost of N. A binary search of a table of N entries should have a +** cost of approximately log(N). +*/ +struct sqlite3_index_info { + /* Inputs */ + int nConstraint; /* Number of entries in aConstraint */ + struct sqlite3_index_constraint { + int iColumn; /* Column on left-hand side of constraint */ + unsigned char op; /* Constraint operator */ + unsigned char usable; /* True if this constraint is usable */ + int iTermOffset; /* Used internally - xBestIndex should ignore */ + } *aConstraint; /* Table of WHERE clause constraints */ + int nOrderBy; /* Number of terms in the ORDER BY clause */ + struct sqlite3_index_orderby { + int iColumn; /* Column number */ + unsigned char desc; /* True for DESC. False for ASC. */ + } *aOrderBy; /* The ORDER BY clause */ + + /* Outputs */ + struct sqlite3_index_constraint_usage { + int argvIndex; /* if >0, constraint is part of argv to xFilter */ + unsigned char omit; /* Do not code a test for this constraint */ + } *aConstraintUsage; + int idxNum; /* Number used to identify the index */ + char *idxStr; /* String, possibly obtained from sqlite3_malloc */ + int needToFreeIdxStr; /* Free idxStr using sqlite3_free() if true */ + int orderByConsumed; /* True if output is already ordered */ + double estimatedCost; /* Estimated cost of using this index */ +}; +#define SQLITE_INDEX_CONSTRAINT_EQ 2 +#define SQLITE_INDEX_CONSTRAINT_GT 4 +#define SQLITE_INDEX_CONSTRAINT_LE 8 +#define SQLITE_INDEX_CONSTRAINT_LT 16 +#define SQLITE_INDEX_CONSTRAINT_GE 32 +#define SQLITE_INDEX_CONSTRAINT_MATCH 64 + +/* +** This routine is used to register a new module name with an SQLite +** connection. Module names must be registered before creating new +** virtual tables on the module, or before using preexisting virtual +** tables of the module. +*/ +int sqlite3_create_module( + sqlite3 *db, /* SQLite connection to register module with */ + const char *zName, /* Name of the module */ + const sqlite3_module *, /* Methods for the module */ + void * /* Client data for xCreate/xConnect */ +); + +/* +** This routine is identical to the sqlite3_create_module() method above, +** except that it allows a destructor function to be specified. It is +** even more experimental than the rest of the virtual tables API. +*/ +int sqlite3_create_module_v2( + sqlite3 *db, /* SQLite connection to register module with */ + const char *zName, /* Name of the module */ + const sqlite3_module *, /* Methods for the module */ + void *, /* Client data for xCreate/xConnect */ + void(*xDestroy)(void*) /* Module destructor function */ +); + +/* +** Every module implementation uses a subclass of the following structure +** to describe a particular instance of the module. Each subclass will +** be tailored to the specific needs of the module implementation. The +** purpose of this superclass is to define certain fields that are common +** to all module implementations. +** +** Virtual tables methods can set an error message by assigning a +** string obtained from sqlite3_mprintf() to zErrMsg. The method should +** take care that any prior string is freed by a call to sqlite3_free() +** prior to assigning a new string to zErrMsg. After the error message +** is delivered up to the client application, the string will be automatically +** freed by sqlite3_free() and the zErrMsg field will be zeroed. Note +** that sqlite3_mprintf() and sqlite3_free() are used on the zErrMsg field +** since virtual tables are commonly implemented in loadable extensions which +** do not have access to sqlite3MPrintf() or sqlite3Free(). +*/ +struct sqlite3_vtab { + const sqlite3_module *pModule; /* The module for this virtual table */ + int nRef; /* Used internally */ + char *zErrMsg; /* Error message from sqlite3_mprintf() */ + /* Virtual table implementations will typically add additional fields */ +}; + +/* Every module implementation uses a subclass of the following structure +** to describe cursors that point into the virtual table and are used +** to loop through the virtual table. Cursors are created using the +** xOpen method of the module. Each module implementation will define +** the content of a cursor structure to suit its own needs. +** +** This superclass exists in order to define fields of the cursor that +** are common to all implementations. +*/ +struct sqlite3_vtab_cursor { + sqlite3_vtab *pVtab; /* Virtual table of this cursor */ + /* Virtual table implementations will typically add additional fields */ +}; + +/* +** The xCreate and xConnect methods of a module use the following API +** to declare the format (the names and datatypes of the columns) of +** the virtual tables they implement. +*/ +int sqlite3_declare_vtab(sqlite3*, const char *zCreateTable); + +/* +** Virtual tables can provide alternative implementations of functions +** using the xFindFunction method. But global versions of those functions +** must exist in order to be overloaded. +** +** This API makes sure a global version of a function with a particular +** name and number of parameters exists. If no such function exists +** before this API is called, a new function is created. The implementation +** of the new function always causes an exception to be thrown. So +** the new function is not good for anything by itself. Its only +** purpose is to be a place-holder function that can be overloaded +** by virtual tables. +** +** This API should be considered part of the virtual table interface, +** which is experimental and subject to change. +*/ +int sqlite3_overload_function(sqlite3*, const char *zFuncName, int nArg); + +/* +** The interface to the virtual-table mechanism defined above (back up +** to a comment remarkably similar to this one) is currently considered +** to be experimental. The interface might change in incompatible ways. +** If this is a problem for you, do not use the interface at this time. +** +** When the virtual-table mechanism stabilizes, we will declare the +** interface fixed, support it indefinitely, and remove this comment. +** +****** EXPERIMENTAL - subject to change without notice ************** +*/ + +/* +** CAPI3REF: A Handle To An Open BLOB {F17800} +** +** An instance of the following opaque structure is used to +** represent an blob-handle. A blob-handle is created by +** [sqlite3_blob_open()] and destroyed by [sqlite3_blob_close()]. +** The [sqlite3_blob_read()] and [sqlite3_blob_write()] interfaces +** can be used to read or write small subsections of the blob. +** The [sqlite3_blob_bytes()] interface returns the size of the +** blob in bytes. +*/ +typedef struct sqlite3_blob sqlite3_blob; + +/* +** CAPI3REF: Open A BLOB For Incremental I/O {F17810} +** +** {F17811} This interfaces opens a handle to the blob located +** in row iRow,, column zColumn, table zTable in database zDb; +** in other words, the same blob that would be selected by: +** +**
+**     SELECT zColumn FROM zDb.zTable WHERE rowid = iRow;
+** 
{END} +** +** {F17812} If the flags parameter is non-zero, the blob is opened for +** read and write access. If it is zero, the blob is opened for read +** access. {END} +** +** {F17813} On success, [SQLITE_OK] is returned and the new +** [sqlite3_blob | blob handle] is written to *ppBlob. +** {F17814} Otherwise an error code is returned and +** any value written to *ppBlob should not be used by the caller. +** {F17815} This function sets the database-handle error code and message +** accessible via [sqlite3_errcode()] and [sqlite3_errmsg()]. +** We should go through and mark all interfaces that behave this +** way with a similar statement +*/ +int sqlite3_blob_open( + sqlite3*, + const char *zDb, + const char *zTable, + const char *zColumn, + sqlite3_int64 iRow, + int flags, + sqlite3_blob **ppBlob +); + +/* +** CAPI3REF: Close A BLOB Handle {F17830} +** +** Close an open [sqlite3_blob | blob handle]. +** +** {F17831} Closing a BLOB shall cause the current transaction to commit +** if there are no other BLOBs, no pending prepared statements, and the +** database connection is in autocommit mode. +** {F17832} If any writes were made to the BLOB, they might be held in cache +** until the close operation if they will fit. {END} +** Closing the BLOB often forces the changes +** out to disk and so if any I/O errors occur, they will likely occur +** at the time when the BLOB is closed. {F17833} Any errors that occur during +** closing are reported as a non-zero return value. +** +** {F17839} The BLOB is closed unconditionally. Even if this routine returns +** an error code, the BLOB is still closed. +*/ +int sqlite3_blob_close(sqlite3_blob *); + +/* +** CAPI3REF: Return The Size Of An Open BLOB {F17805} +** +** {F16806} Return the size in bytes of the blob accessible via the open +** [sqlite3_blob | blob-handle] passed as an argument. +*/ +int sqlite3_blob_bytes(sqlite3_blob *); + +/* +** CAPI3REF: Read Data From A BLOB Incrementally {F17850} +** +** This function is used to read data from an open +** [sqlite3_blob | blob-handle] into a caller supplied buffer. +** {F17851} n bytes of data are copied into buffer +** z from the open blob, starting at offset iOffset. +** +** {F17852} If offset iOffset is less than n bytes from the end of the blob, +** [SQLITE_ERROR] is returned and no data is read. {F17853} If n is +** less than zero [SQLITE_ERROR] is returned and no data is read. +** +** {F17854} On success, SQLITE_OK is returned. Otherwise, an +** [SQLITE_ERROR | SQLite error code] or an +** [SQLITE_IOERR_READ | extended error code] is returned. +*/ +int sqlite3_blob_read(sqlite3_blob *, void *z, int n, int iOffset); + +/* +** CAPI3REF: Write Data Into A BLOB Incrementally {F17870} +** +** This function is used to write data into an open +** [sqlite3_blob | blob-handle] from a user supplied buffer. +** {F17871} n bytes of data are copied from the buffer +** pointed to by z into the open blob, starting at offset iOffset. +** +** {F17872} If the [sqlite3_blob | blob-handle] passed as the first argument +** was not opened for writing (the flags parameter to [sqlite3_blob_open()] +*** was zero), this function returns [SQLITE_READONLY]. +** +** {F17873} This function may only modify the contents of the blob; it is +** not possible to increase the size of a blob using this API. +** {F17874} If offset iOffset is less than n bytes from the end of the blob, +** [SQLITE_ERROR] is returned and no data is written. {F17875} If n is +** less than zero [SQLITE_ERROR] is returned and no data is written. +** +** {F17876} On success, SQLITE_OK is returned. Otherwise, an +** [SQLITE_ERROR | SQLite error code] or an +** [SQLITE_IOERR_READ | extended error code] is returned. +*/ +int sqlite3_blob_write(sqlite3_blob *, const void *z, int n, int iOffset); + +/* +** CAPI3REF: Virtual File System Objects {F11200} +** +** A virtual filesystem (VFS) is an [sqlite3_vfs] object +** that SQLite uses to interact +** with the underlying operating system. Most builds come with a +** single default VFS that is appropriate for the host computer. +** New VFSes can be registered and existing VFSes can be unregistered. +** The following interfaces are provided. +** +** {F11201} The sqlite3_vfs_find() interface returns a pointer to +** a VFS given its name. {F11202} Names are case sensitive. +** {F11203} Names are zero-terminated UTF-8 strings. +** {F11204} If there is no match, a NULL +** pointer is returned. {F11205} If zVfsName is NULL then the default +** VFS is returned. {END} +** +** {F11210} New VFSes are registered with sqlite3_vfs_register(). +** {F11211} Each new VFS becomes the default VFS if the makeDflt flag is set. +** {F11212} The same VFS can be registered multiple times without injury. +** {F11213} To make an existing VFS into the default VFS, register it again +** with the makeDflt flag set. {U11214} If two different VFSes with the +** same name are registered, the behavior is undefined. {U11215} If a +** VFS is registered with a name that is NULL or an empty string, +** then the behavior is undefined. +** +** {F11220} Unregister a VFS with the sqlite3_vfs_unregister() interface. +** {F11221} If the default VFS is unregistered, another VFS is chosen as +** the default. The choice for the new VFS is arbitrary. +*/ +sqlite3_vfs *sqlite3_vfs_find(const char *zVfsName); +int sqlite3_vfs_register(sqlite3_vfs*, int makeDflt); +int sqlite3_vfs_unregister(sqlite3_vfs*); + +/* +** CAPI3REF: Mutexes {F17000} +** +** The SQLite core uses these routines for thread +** synchronization. Though they are intended for internal +** use by SQLite, code that links against SQLite is +** permitted to use any of these routines. +** +** The SQLite source code contains multiple implementations +** of these mutex routines. An appropriate implementation +** is selected automatically at compile-time. The following +** implementations are available in the SQLite core: +** +**
    +**
  • SQLITE_MUTEX_OS2 +**
  • SQLITE_MUTEX_PTHREAD +**
  • SQLITE_MUTEX_W32 +**
  • SQLITE_MUTEX_NOOP +**
+** +** The SQLITE_MUTEX_NOOP implementation is a set of routines +** that does no real locking and is appropriate for use in +** a single-threaded application. The SQLITE_MUTEX_OS2, +** SQLITE_MUTEX_PTHREAD, and SQLITE_MUTEX_W32 implementations +** are appropriate for use on os/2, unix, and windows. +** +** If SQLite is compiled with the SQLITE_MUTEX_APPDEF preprocessor +** macro defined (with "-DSQLITE_MUTEX_APPDEF=1"), then no mutex +** implementation is included with the library. The +** mutex interface routines defined here become external +** references in the SQLite library for which implementations +** must be provided by the application. This facility allows an +** application that links against SQLite to provide its own mutex +** implementation without having to modify the SQLite core. +** +** {F17011} The sqlite3_mutex_alloc() routine allocates a new +** mutex and returns a pointer to it. {F17012} If it returns NULL +** that means that a mutex could not be allocated. {F17013} SQLite +** will unwind its stack and return an error. {F17014} The argument +** to sqlite3_mutex_alloc() is one of these integer constants: +** +**
    +**
  • SQLITE_MUTEX_FAST +**
  • SQLITE_MUTEX_RECURSIVE +**
  • SQLITE_MUTEX_STATIC_MASTER +**
  • SQLITE_MUTEX_STATIC_MEM +**
  • SQLITE_MUTEX_STATIC_MEM2 +**
  • SQLITE_MUTEX_STATIC_PRNG +**
  • SQLITE_MUTEX_STATIC_LRU +**
{END} +** +** {F17015} The first two constants cause sqlite3_mutex_alloc() to create +** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE +** is used but not necessarily so when SQLITE_MUTEX_FAST is used. {END} +** The mutex implementation does not need to make a distinction +** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does +** not want to. {F17016} But SQLite will only request a recursive mutex in +** cases where it really needs one. {END} If a faster non-recursive mutex +** implementation is available on the host platform, the mutex subsystem +** might return such a mutex in response to SQLITE_MUTEX_FAST. +** +** {F17017} The other allowed parameters to sqlite3_mutex_alloc() each return +** a pointer to a static preexisting mutex. {END} Four static mutexes are +** used by the current version of SQLite. Future versions of SQLite +** may add additional static mutexes. Static mutexes are for internal +** use by SQLite only. Applications that use SQLite mutexes should +** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or +** SQLITE_MUTEX_RECURSIVE. +** +** {F17018} Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST +** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc() +** returns a different mutex on every call. {F17034} But for the static +** mutex types, the same mutex is returned on every call that has +** the same type number. {END} +** +** {F17019} The sqlite3_mutex_free() routine deallocates a previously +** allocated dynamic mutex. {F17020} SQLite is careful to deallocate every +** dynamic mutex that it allocates. {U17021} The dynamic mutexes must not be in +** use when they are deallocated. {U17022} Attempting to deallocate a static +** mutex results in undefined behavior. {F17023} SQLite never deallocates +** a static mutex. {END} +** +** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt +** to enter a mutex. {F17024} If another thread is already within the mutex, +** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return +** SQLITE_BUSY. {F17025} The sqlite3_mutex_try() interface returns SQLITE_OK +** upon successful entry. {F17026} Mutexes created using +** SQLITE_MUTEX_RECURSIVE can be entered multiple times by the same thread. +** {F17027} In such cases the, +** mutex must be exited an equal number of times before another thread +** can enter. {U17028} If the same thread tries to enter any other +** kind of mutex more than once, the behavior is undefined. +** {F17029} SQLite will never exhibit +** such behavior in its own use of mutexes. {END} +** +** Some systems (ex: windows95) do not the operation implemented by +** sqlite3_mutex_try(). On those systems, sqlite3_mutex_try() will +** always return SQLITE_BUSY. {F17030} The SQLite core only ever uses +** sqlite3_mutex_try() as an optimization so this is acceptable behavior. {END} +** +** {F17031} The sqlite3_mutex_leave() routine exits a mutex that was +** previously entered by the same thread. {U17032} The behavior +** is undefined if the mutex is not currently entered by the +** calling thread or is not currently allocated. {F17033} SQLite will +** never do either. {END} +** +** See also: [sqlite3_mutex_held()] and [sqlite3_mutex_notheld()]. +*/ +sqlite3_mutex *sqlite3_mutex_alloc(int); +void sqlite3_mutex_free(sqlite3_mutex*); +void sqlite3_mutex_enter(sqlite3_mutex*); +int sqlite3_mutex_try(sqlite3_mutex*); +void sqlite3_mutex_leave(sqlite3_mutex*); + +/* +** CAPI3REF: Mutex Verifcation Routines {F17080} +** +** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routines +** are intended for use inside assert() statements. {F17081} The SQLite core +** never uses these routines except inside an assert() and applications +** are advised to follow the lead of the core. {F17082} The core only +** provides implementations for these routines when it is compiled +** with the SQLITE_DEBUG flag. {U17087} External mutex implementations +** are only required to provide these routines if SQLITE_DEBUG is +** defined and if NDEBUG is not defined. +** +** {F17083} These routines should return true if the mutex in their argument +** is held or not held, respectively, by the calling thread. {END} +** +** {X17084} The implementation is not required to provided versions of these +** routines that actually work. +** If the implementation does not provide working +** versions of these routines, it should at least provide stubs +** that always return true so that one does not get spurious +** assertion failures. {END} +** +** {F17085} If the argument to sqlite3_mutex_held() is a NULL pointer then +** the routine should return 1. {END} This seems counter-intuitive since +** clearly the mutex cannot be held if it does not exist. But the +** the reason the mutex does not exist is because the build is not +** using mutexes. And we do not want the assert() containing the +** call to sqlite3_mutex_held() to fail, so a non-zero return is +** the appropriate thing to do. {F17086} The sqlite3_mutex_notheld() +** interface should also return 1 when given a NULL pointer. +*/ +int sqlite3_mutex_held(sqlite3_mutex*); +int sqlite3_mutex_notheld(sqlite3_mutex*); + +/* +** CAPI3REF: Mutex Types {F17001} +** +** {F17002} The [sqlite3_mutex_alloc()] interface takes a single argument +** which is one of these integer constants. {END} +*/ +#define SQLITE_MUTEX_FAST 0 +#define SQLITE_MUTEX_RECURSIVE 1 +#define SQLITE_MUTEX_STATIC_MASTER 2 +#define SQLITE_MUTEX_STATIC_MEM 3 /* sqlite3_malloc() */ +#define SQLITE_MUTEX_STATIC_MEM2 4 /* sqlite3_release_memory() */ +#define SQLITE_MUTEX_STATIC_PRNG 5 /* sqlite3_random() */ +#define SQLITE_MUTEX_STATIC_LRU 6 /* lru page list */ + +/* +** CAPI3REF: Low-Level Control Of Database Files {F11300} +** +** {F11301} The [sqlite3_file_control()] interface makes a direct call to the +** xFileControl method for the [sqlite3_io_methods] object associated +** with a particular database identified by the second argument. {F11302} The +** name of the database is the name assigned to the database by the +** ATTACH SQL command that opened the +** database. {F11303} To control the main database file, use the name "main" +** or a NULL pointer. {F11304} The third and fourth parameters to this routine +** are passed directly through to the second and third parameters of +** the xFileControl method. {F11305} The return value of the xFileControl +** method becomes the return value of this routine. +** +** {F11306} If the second parameter (zDbName) does not match the name of any +** open database file, then SQLITE_ERROR is returned. {F11307} This error +** code is not remembered and will not be recalled by [sqlite3_errcode()] +** or [sqlite3_errmsg()]. {U11308} The underlying xFileControl method might +** also return SQLITE_ERROR. {U11309} There is no way to distinguish between +** an incorrect zDbName and an SQLITE_ERROR return from the underlying +** xFileControl method. {END} +** +** See also: [SQLITE_FCNTL_LOCKSTATE] +*/ +int sqlite3_file_control(sqlite3*, const char *zDbName, int op, void*); + +/* +** Undo the hack that converts floating point types to integer for +** builds on processors without floating point support. +*/ +#ifdef SQLITE_OMIT_FLOATING_POINT +# undef double +#endif + +#if 0 +} /* End of the 'extern "C"' block */ +#endif +#endif + +/************** End of sqlite3.h *********************************************/ +/************** Continuing where we left off in fts3_tokenizer.h *************/ + +/* +** Structures used by the tokenizer interface. When a new tokenizer +** implementation is registered, the caller provides a pointer to +** an sqlite3_tokenizer_module containing pointers to the callback +** functions that make up an implementation. +** +** When an fts3 table is created, it passes any arguments passed to +** the tokenizer clause of the CREATE VIRTUAL TABLE statement to the +** sqlite3_tokenizer_module.xCreate() function of the requested tokenizer +** implementation. The xCreate() function in turn returns an +** sqlite3_tokenizer structure representing the specific tokenizer to +** be used for the fts3 table (customized by the tokenizer clause arguments). +** +** To tokenize an input buffer, the sqlite3_tokenizer_module.xOpen() +** method is called. It returns an sqlite3_tokenizer_cursor object +** that may be used to tokenize a specific input buffer based on +** the tokenization rules supplied by a specific sqlite3_tokenizer +** object. +*/ +typedef struct sqlite3_tokenizer_module sqlite3_tokenizer_module; +typedef struct sqlite3_tokenizer sqlite3_tokenizer; +typedef struct sqlite3_tokenizer_cursor sqlite3_tokenizer_cursor; + +struct sqlite3_tokenizer_module { + + /* + ** Structure version. Should always be set to 0. + */ + int iVersion; + + /* + ** Create a new tokenizer. The values in the argv[] array are the + ** arguments passed to the "tokenizer" clause of the CREATE VIRTUAL + ** TABLE statement that created the fts3 table. For example, if + ** the following SQL is executed: + ** + ** CREATE .. USING fts3( ... , tokenizer arg1 arg2) + ** + ** then argc is set to 2, and the argv[] array contains pointers + ** to the strings "arg1" and "arg2". + ** + ** This method should return either SQLITE_OK (0), or an SQLite error + ** code. If SQLITE_OK is returned, then *ppTokenizer should be set + ** to point at the newly created tokenizer structure. The generic + ** sqlite3_tokenizer.pModule variable should not be initialised by + ** this callback. The caller will do so. + */ + int (*xCreate)( + int argc, /* Size of argv array */ + const char *const*argv, /* Tokenizer argument strings */ + sqlite3_tokenizer **ppTokenizer /* OUT: Created tokenizer */ + ); + + /* + ** Destroy an existing tokenizer. The fts3 module calls this method + ** exactly once for each successful call to xCreate(). + */ + int (*xDestroy)(sqlite3_tokenizer *pTokenizer); + + /* + ** Create a tokenizer cursor to tokenize an input buffer. The caller + ** is responsible for ensuring that the input buffer remains valid + ** until the cursor is closed (using the xClose() method). + */ + int (*xOpen)( + sqlite3_tokenizer *pTokenizer, /* Tokenizer object */ + const char *pInput, int nBytes, /* Input buffer */ + sqlite3_tokenizer_cursor **ppCursor /* OUT: Created tokenizer cursor */ + ); + + /* + ** Destroy an existing tokenizer cursor. The fts3 module calls this + ** method exactly once for each successful call to xOpen(). + */ + int (*xClose)(sqlite3_tokenizer_cursor *pCursor); + + /* + ** Retrieve the next token from the tokenizer cursor pCursor. This + ** method should either return SQLITE_OK and set the values of the + ** "OUT" variables identified below, or SQLITE_DONE to indicate that + ** the end of the buffer has been reached, or an SQLite error code. + ** + ** *ppToken should be set to point at a buffer containing the + ** normalized version of the token (i.e. after any case-folding and/or + ** stemming has been performed). *pnBytes should be set to the length + ** of this buffer in bytes. The input text that generated the token is + ** identified by the byte offsets returned in *piStartOffset and + ** *piEndOffset. + ** + ** The buffer *ppToken is set to point at is managed by the tokenizer + ** implementation. It is only required to be valid until the next call + ** to xNext() or xClose(). + */ + /* TODO(shess) current implementation requires pInput to be + ** nul-terminated. This should either be fixed, or pInput/nBytes + ** should be converted to zInput. + */ + int (*xNext)( + sqlite3_tokenizer_cursor *pCursor, /* Tokenizer cursor */ + const char **ppToken, int *pnBytes, /* OUT: Normalized text for token */ + int *piStartOffset, /* OUT: Byte offset of token in input buffer */ + int *piEndOffset, /* OUT: Byte offset of end of token in input buffer */ + int *piPosition /* OUT: Number of tokens returned before this one */ + ); +}; + +struct sqlite3_tokenizer { + const sqlite3_tokenizer_module *pModule; /* The module for this tokenizer */ + /* Tokenizer implementations will typically add additional fields */ +}; + +struct sqlite3_tokenizer_cursor { + sqlite3_tokenizer *pTokenizer; /* Tokenizer for this cursor. */ + /* Tokenizer implementations will typically add additional fields */ +}; + +#endif /* _FTS3_TOKENIZER_H_ */ + +/************** End of fts3_tokenizer.h **************************************/ +/************** Continuing where we left off in fts3_icu.c *******************/ + +#include +#include +#include +#include + +typedef struct IcuTokenizer IcuTokenizer; +typedef struct IcuCursor IcuCursor; + +struct IcuTokenizer { + sqlite3_tokenizer base; + char *zLocale; +}; + +struct IcuCursor { + sqlite3_tokenizer_cursor base; + + UBreakIterator *pIter; /* ICU break-iterator object */ + int nChar; /* Number of UChar elements in pInput */ + UChar *aChar; /* Copy of input using utf-16 encoding */ + int *aOffset; /* Offsets of each character in utf-8 input */ + + int nBuffer; + char *zBuffer; + + int iToken; +}; + +/* +** Create a new tokenizer instance. +*/ +static int icuCreate( + int argc, /* Number of entries in argv[] */ + const char * const *argv, /* Tokenizer creation arguments */ + sqlite3_tokenizer **ppTokenizer /* OUT: Created tokenizer */ +){ + IcuTokenizer *p; + int n = 0; + + if( argc>0 ){ + n = strlen(argv[0])+1; + } + p = (IcuTokenizer *)sqlite3_malloc(sizeof(IcuTokenizer)+n); + if( !p ){ + return SQLITE_NOMEM; + } + memset(p, 0, sizeof(IcuTokenizer)); + + if( n ){ + p->zLocale = (char *)&p[1]; + memcpy(p->zLocale, argv[0], n); + } + + *ppTokenizer = (sqlite3_tokenizer *)p; + + return SQLITE_OK; +} + +/* +** Destroy a tokenizer +*/ +static int icuDestroy(sqlite3_tokenizer *pTokenizer){ + IcuTokenizer *p = (IcuTokenizer *)pTokenizer; + sqlite3_free(p); + return SQLITE_OK; +} + +/* +** Prepare to begin tokenizing a particular string. The input +** string to be tokenized is pInput[0..nBytes-1]. A cursor +** used to incrementally tokenize this string is returned in +** *ppCursor. +*/ +static int icuOpen( + sqlite3_tokenizer *pTokenizer, /* The tokenizer */ + const char *zInput, /* Input string */ + int nInput, /* Length of zInput in bytes */ + sqlite3_tokenizer_cursor **ppCursor /* OUT: Tokenization cursor */ +){ + IcuTokenizer *p = (IcuTokenizer *)pTokenizer; + IcuCursor *pCsr; + + const int32_t opt = U_FOLD_CASE_DEFAULT; + UErrorCode status = U_ZERO_ERROR; + int nChar; + + UChar32 c; + int iInput = 0; + int iOut = 0; + + *ppCursor = 0; + + if( -1 == nInput ) nInput = strlen(nInput); + nChar = nInput+1; + pCsr = (IcuCursor *)sqlite3_malloc( + sizeof(IcuCursor) + /* IcuCursor */ + nChar * sizeof(UChar) + /* IcuCursor.aChar[] */ + (nChar+1) * sizeof(int) /* IcuCursor.aOffset[] */ + ); + if( !pCsr ){ + return SQLITE_NOMEM; + } + memset(pCsr, 0, sizeof(IcuCursor)); + pCsr->aChar = (UChar *)&pCsr[1]; + pCsr->aOffset = (int *)&pCsr->aChar[nChar]; + + pCsr->aOffset[iOut] = iInput; + U8_NEXT(zInput, iInput, nInput, c); + while( c>0 ){ + int isError = 0; + c = u_foldCase(c, opt); + U16_APPEND(pCsr->aChar, iOut, nChar, c, isError); + if( isError ){ + sqlite3_free(pCsr); + return SQLITE_ERROR; + } + pCsr->aOffset[iOut] = iInput; + + if( iInputpIter = ubrk_open(UBRK_WORD, p->zLocale, pCsr->aChar, iOut, &status); + if( !U_SUCCESS(status) ){ + sqlite3_free(pCsr); + return SQLITE_ERROR; + } + pCsr->nChar = iOut; + + ubrk_first(pCsr->pIter); + *ppCursor = (sqlite3_tokenizer_cursor *)pCsr; + return SQLITE_OK; +} + +/* +** Close a tokenization cursor previously opened by a call to icuOpen(). +*/ +static int icuClose(sqlite3_tokenizer_cursor *pCursor){ + IcuCursor *pCsr = (IcuCursor *)pCursor; + ubrk_close(pCsr->pIter); + sqlite3_free(pCsr->zBuffer); + sqlite3_free(pCsr); + return SQLITE_OK; +} + +/* +** Extract the next token from a tokenization cursor. +*/ +static int icuNext( + sqlite3_tokenizer_cursor *pCursor, /* Cursor returned by simpleOpen */ + const char **ppToken, /* OUT: *ppToken is the token text */ + int *pnBytes, /* OUT: Number of bytes in token */ + int *piStartOffset, /* OUT: Starting offset of token */ + int *piEndOffset, /* OUT: Ending offset of token */ + int *piPosition /* OUT: Position integer of token */ +){ + IcuCursor *pCsr = (IcuCursor *)pCursor; + + int iStart = 0; + int iEnd = 0; + int nByte = 0; + + while( iStart==iEnd ){ + UChar32 c; + + iStart = ubrk_current(pCsr->pIter); + iEnd = ubrk_next(pCsr->pIter); + if( iEnd==UBRK_DONE ){ + return SQLITE_DONE; + } + + while( iStartaChar, iWhite, pCsr->nChar, c); + if( u_isspace(c) ){ + iStart = iWhite; + }else{ + break; + } + } + assert(iStart<=iEnd); + } + + do { + UErrorCode status = U_ZERO_ERROR; + if( nByte ){ + char *zNew = sqlite3_realloc(pCsr->zBuffer, nByte); + if( !zNew ){ + return SQLITE_NOMEM; + } + pCsr->zBuffer = zNew; + pCsr->nBuffer = nByte; + } + + u_strToUTF8( + pCsr->zBuffer, pCsr->nBuffer, &nByte, /* Output vars */ + &pCsr->aChar[iStart], iEnd-iStart, /* Input vars */ + &status /* Output success/failure */ + ); + } while( nByte>pCsr->nBuffer ); + + *ppToken = pCsr->zBuffer; + *pnBytes = nByte; + *piStartOffset = pCsr->aOffset[iStart]; + *piEndOffset = pCsr->aOffset[iEnd]; + *piPosition = pCsr->iToken++; + + return SQLITE_OK; +} + +/* +** The set of routines that implement the simple tokenizer +*/ +static const sqlite3_tokenizer_module icuTokenizerModule = { + 0, /* iVersion */ + icuCreate, /* xCreate */ + icuDestroy, /* xCreate */ + icuOpen, /* xOpen */ + icuClose, /* xClose */ + icuNext, /* xNext */ +}; + +/* +** Set *ppModule to point at the implementation of the ICU tokenizer. +*/ +void sqlite3Fts3IcuTokenizerModule( + sqlite3_tokenizer_module const**ppModule +){ + *ppModule = &icuTokenizerModule; +} + +#endif /* defined(SQLITE_ENABLE_ICU) */ +#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */ + +/************** End of fts3_icu.c ********************************************/ diff --git a/storage/public/mozIStorageService.idl b/storage/public/mozIStorageService.idl index 808459551d80..947f59dcd870 100644 --- a/storage/public/mozIStorageService.idl +++ b/storage/public/mozIStorageService.idl @@ -48,7 +48,7 @@ interface nsIFile; * * This is the only way to open a database connection. */ -[scriptable, uuid(a4a0cad9-e0da-4379-bee4-2feef3dddc7e)] +[scriptable, uuid(336d2741-8438-449d-8746-8c37c62a2ccb)] interface mozIStorageService : nsISupports { /** * Get a connection to a named special database storage. @@ -82,16 +82,48 @@ interface mozIStorageService : nsISupports { * The connection object returned by this function is not threadsafe. You must * use it only from the thread you created it from. * + * If your database contains virtual tables (f.e. for full-text indexes), you + * must open it with openUnsharedDatabase, as those tables are incompatible + * with a shared cache. If you attempt to use this method to open a database + * containing virtual tables, it will think the database is corrupted and + * throw NS_ERROR_FILE_CORRUPTED. + * * @param aDatabaseFile a nsIFile of the database to open. * - * @returns a mozIStorageConnection for the requested - * database file. + * @returns a mozIStorageConnection for the requested database file. * - * @throws NS_ERROR_FAILURE if any operation fails while opening - * the database. + * @throws NS_ERROR_FAILURE if any operation fails while opening the database. */ mozIStorageConnection openDatabase(in nsIFile aDatabaseFile); + /** + * Open a connection to the specified file that doesn't share a sqlite cache. + * + * Each connection uses its own sqlite cache, which is inefficient, so you + * should use openDatabase instead of this method unless you need a feature + * of SQLite that is incompatible with a shared cache, like virtual table + * and full text indexing support. + * + * ========== + * DANGER + * ========== + * + * If you have more than one connection to a file, you MUST use the EXACT + * SAME NAME for the file each time, including case. The sqlite code uses + * a simple string compare to see if there is already a connection. Opening + * a connection to "Foo.sqlite" and "foo.sqlite" will CORRUPT YOUR DATABASE. + * + * The connection object returned by this function is not threadsafe. You must + * use it only from the thread you created it from. + * + * @param aDatabaseFile a nsIFile of the database to open. + * + * @returns a mozIStorageConnection for the requested database file. + * + * @throws NS_ERROR_FAILURE if any operation fails while opening the database. + */ + mozIStorageConnection openUnsharedDatabase(in nsIFile aDatabaseFile); + }; %{C++ diff --git a/storage/src/mozStorageService.cpp b/storage/src/mozStorageService.cpp index 29ec5c678c52..e0b8700204a3 100644 --- a/storage/src/mozStorageService.cpp +++ b/storage/src/mozStorageService.cpp @@ -141,3 +141,28 @@ mozStorageService::OpenDatabase(nsIFile *aDatabaseFile, mozIStorageConnection ** NS_ADDREF(*_retval = msc); return NS_OK; } + +/* mozIStorageConnection openUnsharedDatabase(in nsIFile aDatabaseFile); */ +NS_IMETHODIMP +mozStorageService::OpenUnsharedDatabase(nsIFile *aDatabaseFile, mozIStorageConnection **_retval) +{ + nsresult rv; + + mozStorageConnection *msc = new mozStorageConnection(this); + if (!msc) + return NS_ERROR_OUT_OF_MEMORY; + + // Initialize the connection, temporarily turning off shared caches so the + // new connection gets its own cache. Database connections are assigned + // caches when they are opened, and they retain those caches for their + // lifetimes, unaffected by changes to the shared caches setting, so we can + // disable shared caches temporarily while we initialize the new connection + // without affecting the caches currently in use by other connections. + sqlite3_enable_shared_cache(0); + rv = msc->Initialize (aDatabaseFile); + sqlite3_enable_shared_cache(1); + NS_ENSURE_SUCCESS(rv, rv); + + NS_ADDREF(*_retval = msc); + return NS_OK; +} diff --git a/storage/test/unit/head_storage.js b/storage/test/unit/head_storage.js index c2a9f341b281..39b10492ba53 100644 --- a/storage/test/unit/head_storage.js +++ b/storage/test/unit/head_storage.js @@ -72,10 +72,22 @@ function getService() } var gDBConn = null; -function getOpenedDatabase() + +/** + * Get a connection to the test database. Creates and caches the connection + * if necessary, otherwise reuses the existing cached connection. + * + * @param unshared {boolean} + * whether or not to open a connection to the database that doesn't share + * its cache; if true, we use mozIStorageService::openUnsharedDatabase + * to create the connection; otherwise we use openDatabase. + */ +function getOpenedDatabase(unshared) { if (!gDBConn) { - gDBConn = getService().openDatabase(getTestDB()); + gDBConn = getService() + [unshared ? "openUnsharedDatabase" : "openDatabase"] + (getTestDB()); } return gDBConn; } diff --git a/storage/test/unit/test_storage_fulltextindex.js b/storage/test/unit/test_storage_fulltextindex.js new file mode 100644 index 000000000000..e8542aa8f413 --- /dev/null +++ b/storage/test/unit/test_storage_fulltextindex.js @@ -0,0 +1,119 @@ +/* ***** BEGIN LICENSE BLOCK ***** + * Version: MPL 1.1/GPL 2.0/LGPL 2.1 + * + * The contents of this file are subject to the Mozilla Public License Version + * 1.1 (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * http://www.mozilla.org/MPL/ + * + * Software distributed under the License is distributed on an "AS IS" basis, + * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License + * for the specific language governing rights and limitations under the + * License. + * + * The Original Code is Storage Test Code. + * + * The Initial Developer of the Original Code is + * Mozilla Corporation. + * Portions created by the Initial Developer are Copyright (C) 2008 + * the Initial Developer. All Rights Reserved. + * + * Contributor(s): + * Myk Melez (Original Author) + * + * Alternatively, the contents of this file may be used under the terms of + * either the GNU General Public License Version 2 or later (the "GPL"), or + * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), + * in which case the provisions of the GPL or the LGPL are applicable instead + * of those above. If you wish to allow use of your version of this file only + * under the terms of either the GPL or the LGPL, and not to allow others to + * use your version of this file under the terms of the MPL, indicate your + * decision by deleting the provisions above and replace them with the notice + * and other provisions required by the GPL or the LGPL. If you do not delete + * the provisions above, a recipient may use your version of this file under + * the terms of any one of the MPL, the GPL or the LGPL. + * + * ***** END LICENSE BLOCK ***** */ + +// This file tests support for the fts3 (full-text index) module. + +// Example statements in these tests are taken from the Full Text Index page +// on the SQLite wiki: http://www.sqlite.org/cvstrac/wiki?p=FullTextIndex + +function test_table_creation() +{ + var msc = getOpenedDatabase(true); + + msc.executeSimpleSQL( + "CREATE VIRTUAL TABLE recipe USING fts3(name, ingredients)"); + + do_check_true(msc.tableExists("recipe")); +} + +function test_insertion() +{ + var msc = getOpenedDatabase(true); + + msc.executeSimpleSQL("INSERT INTO recipe (name, ingredients) VALUES " + + "('broccoli stew', 'broccoli peppers cheese tomatoes')"); + msc.executeSimpleSQL("INSERT INTO recipe (name, ingredients) VALUES " + + "('pumpkin stew', 'pumpkin onions garlic celery')"); + msc.executeSimpleSQL("INSERT INTO recipe (name, ingredients) VALUES " + + "('broccoli pie', 'broccoli cheese onions flour')"); + msc.executeSimpleSQL("INSERT INTO recipe (name, ingredients) VALUES " + + "('pumpkin pie', 'pumpkin sugar flour butter')"); + + var stmt = msc.createStatement("SELECT COUNT(*) FROM recipe"); + stmt.executeStep(); + + do_check_eq(stmt.getInt32(0), 4); + + stmt.reset(); + stmt.finalize(); +} + +function test_selection() +{ + var msc = getOpenedDatabase(true); + + var stmt = msc.createStatement( + "SELECT rowid, name, ingredients FROM recipe WHERE name MATCH 'pie'"); + + do_check_true(stmt.executeStep()); + do_check_eq(stmt.getInt32(0), 3); + do_check_eq(stmt.getString(1), "broccoli pie"); + do_check_eq(stmt.getString(2), "broccoli cheese onions flour"); + + do_check_true(stmt.executeStep()); + do_check_eq(stmt.getInt32(0), 4); + do_check_eq(stmt.getString(1), "pumpkin pie"); + do_check_eq(stmt.getString(2), "pumpkin sugar flour butter"); + + do_check_false(stmt.executeStep()); + + stmt.reset(); + stmt.finalize(); +} + +var tests = [test_table_creation, test_insertion, test_selection]; + +function run_test() +{ + // It's extra important to start from scratch, since these tests won't work + // with an existing shared cache connection, so we do it even though the last + // test probably did it already. + cleanup(); + + try { + for (var i = 0; i < tests.length; i++) { + tests[i](); + } + } + // It's extra important to clean up afterwards, since later tests that use + // a shared cache connection will not be able to read the database we create, + // so we do this in a finally block to ensure it happens even if some of our + // tests fail. + finally { + cleanup(); + } +} diff --git a/storage/test/unit/test_storage_service.js b/storage/test/unit/test_storage_service.js index 1af6b38a4f85..743c1c6de045 100644 --- a/storage/test/unit/test_storage_service.js +++ b/storage/test/unit/test_storage_service.js @@ -35,7 +35,8 @@ * * ***** END LICENSE BLOCK ***** */ -// This file tests the functions of mozIStorageService +// This file tests the functions of mozIStorageService except for +// openUnsharedDatabase, which is tested by test_storage_service_unshared.js. function test_openSpecialDatabase_invalid_arg() { diff --git a/storage/test/unit/test_storage_service_unshared.js b/storage/test/unit/test_storage_service_unshared.js new file mode 100644 index 000000000000..afcae9b05a14 --- /dev/null +++ b/storage/test/unit/test_storage_service_unshared.js @@ -0,0 +1,68 @@ +/* ***** BEGIN LICENSE BLOCK ***** + * Version: MPL 1.1/GPL 2.0/LGPL 2.1 + * + * The contents of this file are subject to the Mozilla Public License Version + * 1.1 (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * http://www.mozilla.org/MPL/ + * + * Software distributed under the License is distributed on an "AS IS" basis, + * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License + * for the specific language governing rights and limitations under the + * License. + * + * The Original Code is Storage Test Code. + * + * The Initial Developer of the Original Code is + * Mozilla Corporation. + * Portions created by the Initial Developer are Copyright (C) 2007 + * the Initial Developer. All Rights Reserved. + * + * Contributor(s): + * Shawn Wilsher (Original Author) + * + * Alternatively, the contents of this file may be used under the terms of + * either the GNU General Public License Version 2 or later (the "GPL"), or + * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), + * in which case the provisions of the GPL or the LGPL are applicable instead + * of those above. If you wish to allow use of your version of this file only + * under the terms of either the GPL or the LGPL, and not to allow others to + * use your version of this file under the terms of the MPL, indicate your + * decision by deleting the provisions above and replace them with the notice + * and other provisions required by the GPL or the LGPL. If you do not delete + * the provisions above, a recipient may use your version of this file under + * the terms of any one of the MPL, the GPL or the LGPL. + * + * ***** END LICENSE BLOCK ***** */ + +// This file tests the openUnsharedDatabase function of mozIStorageService. + +function test_openUnsharedDatabase_file_DNE() +{ + // the file should be created after calling + var db = getTestDB(); + do_check_false(db.exists()); + getService().openUnsharedDatabase(db); + do_check_true(db.exists()); +} + +function test_openUnsharedDatabase_file_exists() +{ + // it should already exist from our last test + var db = getTestDB(); + do_check_true(db.exists()); + getService().openUnsharedDatabase(db); + do_check_true(db.exists()); +} + +var tests = [test_openUnsharedDatabase_file_DNE, + test_openUnsharedDatabase_file_exists]; + +function run_test() +{ + for (var i = 0; i < tests.length; i++) + tests[i](); + + cleanup(); +} +