Bug 1234305 - Replace WeaveCrypto NSS implementation with Web Crypto. r=keeler

MozReview-Commit-ID: BBOY9zSLzea

--HG--
extra : rebase_source : e48233f9b904ac187e5fe9f274b8c8b219f6e0e8
This commit is contained in:
Edouard Oger 2016-05-11 13:46:04 -07:00
parent 726161f005
commit 4e3d081905
3 changed files with 184 additions and 697 deletions

View File

@ -8,32 +8,28 @@ var {classes: Cc, interfaces: Ci, results: Cr, utils: Cu} = Components;
Cu.import("resource://gre/modules/XPCOMUtils.jsm");
Cu.import("resource://gre/modules/Services.jsm");
Cu.import("resource://gre/modules/ctypes.jsm");
Cu.import('resource://gre/modules/AppConstants.jsm');
Cu.import("resource://services-common/async.js");
/**
* Shortcuts for some algorithm SEC OIDs. Full list available here:
* http://lxr.mozilla.org/seamonkey/source/security/nss/lib/util/secoidt.h
*/
const DES_EDE3_CBC = 156;
const AES_128_CBC = 184;
const AES_192_CBC = 186;
const AES_256_CBC = 188;
Cu.importGlobalProperties(['crypto']);
const ALGORITHM = AES_256_CBC;
const KEYSIZE_AES_256 = 32;
const KEY_DERIVATION_ITERATIONS = 4096; // PKCS#5 recommends at least 1000.
const INITIAL_BUFFER_SIZE = 1024;
const CRYPT_ALGO = "AES-CBC";
const CRYPT_ALGO_LENGTH = 256;
const AES_CBC_IV_SIZE = 16;
const OPERATIONS = { ENCRYPT: 0, DECRYPT: 1 };
const UTF_LABEL = "utf-8";
const KEY_DERIVATION_ALGO = "PBKDF2";
const KEY_DERIVATION_HASHING_ALGO = "SHA-1";
const KEY_DERIVATION_ITERATIONS = 4096; // PKCS#5 recommends at least 1000.
const DERIVED_KEY_ALGO = CRYPT_ALGO;
this.WeaveCrypto = function WeaveCrypto() {
this.init();
}
};
WeaveCrypto.prototype = {
prefBranch : null,
debug : true, // services.sync.log.cryptoDebug
nss : null,
nss_t : null,
observer : {
_self : null,
@ -41,7 +37,7 @@ WeaveCrypto.prototype = {
QueryInterface : XPCOMUtils.generateQI([Ci.nsIObserver,
Ci.nsISupportsWeakReference]),
observe : function (subject, topic, data) {
observe(subject, topic, data) {
let self = this._self;
self.log("Observed " + topic + " topic.");
if (topic == "nsPref:changed") {
@ -50,527 +46,137 @@ WeaveCrypto.prototype = {
}
},
init : function() {
init() {
// Preferences. Add observer so we get notified of changes.
this.prefBranch = Services.prefs.getBranch("services.sync.log.");
this.prefBranch.addObserver("cryptoDebug", this.observer, false);
this.observer._self = this;
try {
// Preferences. Add observer so we get notified of changes.
this.prefBranch = Services.prefs.getBranch("services.sync.log.");
this.prefBranch.addObserver("cryptoDebug", this.observer, false);
this.observer._self = this;
try {
this.debug = this.prefBranch.getBoolPref("cryptoDebug");
} catch (x) {
this.debug = false;
}
this.initNSS();
this.initAlgorithmSettings(); // Depends on NSS.
this.initIVSECItem();
this.initSharedInts();
this.initBuffers(INITIAL_BUFFER_SIZE);
} catch (e) {
this.log("init failed: " + e);
throw e;
this.debug = this.prefBranch.getBoolPref("cryptoDebug");
} catch (x) {
this.debug = false;
}
XPCOMUtils.defineLazyGetter(this, 'encoder', () => new TextEncoder(UTF_LABEL));
XPCOMUtils.defineLazyGetter(this, 'decoder', () => new TextDecoder(UTF_LABEL, { fatal: true }));
},
// Avoid allocating new temporary ints on every run of _commonCrypt.
_commonCryptSignedOutputSize: null,
_commonCryptSignedOutputSizeAddr: null,
_commonCryptUnsignedOutputSize: null,
_commonCryptUnsignedOutputSizeAddr: null,
initSharedInts: function initSharedInts() {
let signed = new ctypes.int();
let unsigned = new ctypes.unsigned_int();
this._commonCryptSignedOutputSize = signed;
this._commonCryptUnsignedOutputSize = unsigned;
this._commonCryptSignedOutputSizeAddr = signed.address();
this._commonCryptUnsignedOutputSizeAddr = unsigned.address();
},
/**
* Set a bunch of NSS values once, at init-time. These are:
* - .blockSize
* - .mechanism
* - .keygenMechanism
* - .padMechanism
* - .keySize
*
* See also the constant ALGORITHM.
*/
initAlgorithmSettings: function() {
this.mechanism = this.nss.PK11_AlgtagToMechanism(ALGORITHM);
this.blockSize = this.nss.PK11_GetBlockSize(this.mechanism, null);
this.ivLength = this.nss.PK11_GetIVLength(this.mechanism);
this.keySize = KEYSIZE_AES_256;
this.keygenMechanism = this.nss.CKM_AES_KEY_GEN; // Always the same!
// Determine which (padded) PKCS#11 mechanism to use.
// E.g., AES_256_CBC --> CKM_AES_CBC --> CKM_AES_CBC_PAD
this.padMechanism = this.nss.PK11_GetPadMechanism(this.mechanism);
if (this.padMechanism == this.nss.CKM_INVALID_MECHANISM)
throw Components.Exception("invalid algorithm (can't pad)", Cr.NS_ERROR_FAILURE);
},
log : function (message) {
if (!this.debug)
log(message) {
if (!this.debug) {
return;
}
dump("WeaveCrypto: " + message + "\n");
Services.console.logStringMessage("WeaveCrypto: " + message);
},
initNSS : function() {
// We use NSS for the crypto ops, which needs to be initialized before
// use. By convention, PSM is required to be the module that
// initializes NSS. So, make sure PSM is initialized in order to
// implicitly initialize NSS.
Cc["@mozilla.org/psm;1"].getService(Ci.nsISupports);
// Open the NSS library.
let path = ctypes.libraryName("nss3");
// XXX really want to be able to pass specific dlopen flags here.
var nsslib;
if (AppConstants.MOZ_SYSTEM_NSS) {
// Search platform-dependent library paths for system NSS.
this.log("Trying NSS library without path");
nsslib = ctypes.open(path);
} else {
let file = Services.dirsvc.get("GreBinD", Ci.nsILocalFile);
file.append(path);
this.log("Trying NSS library with path " + file.path);
nsslib = ctypes.open(file.path);
}
this.log("Initializing NSS types and function declarations...");
this.nss = {};
this.nss_t = {};
// nsprpub/pr/include/prtypes.h#435
// typedef PRIntn PRBool; --> int
this.nss_t.PRBool = ctypes.int;
// security/nss/lib/util/seccomon.h#91
// typedef enum
this.nss_t.SECStatus = ctypes.int;
// security/nss/lib/softoken/secmodt.h#59
// typedef struct PK11SlotInfoStr PK11SlotInfo; (defined in secmodti.h)
this.nss_t.PK11SlotInfo = ctypes.void_t;
// security/nss/lib/util/pkcs11t.h
this.nss_t.CK_MECHANISM_TYPE = ctypes.unsigned_long;
this.nss_t.CK_ATTRIBUTE_TYPE = ctypes.unsigned_long;
this.nss_t.CK_KEY_TYPE = ctypes.unsigned_long;
this.nss_t.CK_OBJECT_HANDLE = ctypes.unsigned_long;
// security/nss/lib/softoken/secmodt.h#359
// typedef enum PK11Origin
this.nss_t.PK11Origin = ctypes.int;
// PK11Origin enum values...
this.nss.PK11_OriginUnwrap = 4;
// security/nss/lib/softoken/secmodt.h#61
// typedef struct PK11SymKeyStr PK11SymKey; (defined in secmodti.h)
this.nss_t.PK11SymKey = ctypes.void_t;
// security/nss/lib/util/secoidt.h#454
// typedef enum
this.nss_t.SECOidTag = ctypes.int;
// security/nss/lib/util/seccomon.h#64
// typedef enum
this.nss_t.SECItemType = ctypes.int;
// SECItemType enum values...
this.nss.SIBUFFER = 0;
// security/nss/lib/softoken/secmodt.h#62 (defined in secmodti.h)
// typedef struct PK11ContextStr PK11Context;
this.nss_t.PK11Context = ctypes.void_t;
// Needed for SECKEYPrivateKey struct def'n, but I don't think we need to actually access it.
this.nss_t.PLArenaPool = ctypes.void_t;
// security/nss/lib/cryptohi/keythi.h#45
// typedef enum
this.nss_t.KeyType = ctypes.int;
// security/nss/lib/softoken/secmodt.h#201
// typedef PRUint32 PK11AttrFlags;
this.nss_t.PK11AttrFlags = ctypes.unsigned_int;
// security/nss/lib/util/seccomon.h#83
// typedef struct SECItemStr SECItem; --> SECItemStr defined right below it
this.nss_t.SECItem = ctypes.StructType(
"SECItem", [{ type: this.nss_t.SECItemType },
{ data: ctypes.unsigned_char.ptr },
{ len : ctypes.int }]);
// security/nss/lib/util/secoidt.h#52
// typedef struct SECAlgorithmIDStr --> def'n right below it
this.nss_t.SECAlgorithmID = ctypes.StructType(
"SECAlgorithmID", [{ algorithm: this.nss_t.SECItem },
{ parameters: this.nss_t.SECItem }]);
// security/nss/lib/util/pkcs11t.h
this.nss.CKK_RSA = 0x0;
this.nss.CKM_RSA_PKCS_KEY_PAIR_GEN = 0x0000;
this.nss.CKM_AES_KEY_GEN = 0x1080;
this.nss.CKA_ENCRYPT = 0x104;
this.nss.CKA_DECRYPT = 0x105;
// security/nss/lib/softoken/secmodt.h
this.nss.PK11_ATTR_SESSION = 0x02;
this.nss.PK11_ATTR_PUBLIC = 0x08;
this.nss.PK11_ATTR_SENSITIVE = 0x40;
// security/nss/lib/util/secoidt.h
this.nss.SEC_OID_PKCS5_PBKDF2 = 291;
this.nss.SEC_OID_HMAC_SHA1 = 294;
this.nss.SEC_OID_PKCS1_RSA_ENCRYPTION = 16;
// security/nss/lib/pk11wrap/pk11pub.h#286
// SECStatus PK11_GenerateRandom(unsigned char *data,int len);
this.nss.PK11_GenerateRandom = nsslib.declare("PK11_GenerateRandom",
ctypes.default_abi, this.nss_t.SECStatus,
ctypes.unsigned_char.ptr, ctypes.int);
// security/nss/lib/pk11wrap/pk11pub.h#74
// PK11SlotInfo *PK11_GetInternalSlot(void);
this.nss.PK11_GetInternalSlot = nsslib.declare("PK11_GetInternalSlot",
ctypes.default_abi, this.nss_t.PK11SlotInfo.ptr);
// security/nss/lib/pk11wrap/pk11pub.h#73
// PK11SlotInfo *PK11_GetInternalKeySlot(void);
this.nss.PK11_GetInternalKeySlot = nsslib.declare("PK11_GetInternalKeySlot",
ctypes.default_abi, this.nss_t.PK11SlotInfo.ptr);
// security/nss/lib/pk11wrap/pk11pub.h#328
// PK11SymKey *PK11_KeyGen(PK11SlotInfo *slot,CK_MECHANISM_TYPE type, SECItem *param, int keySize,void *wincx);
this.nss.PK11_KeyGen = nsslib.declare("PK11_KeyGen",
ctypes.default_abi, this.nss_t.PK11SymKey.ptr,
this.nss_t.PK11SlotInfo.ptr, this.nss_t.CK_MECHANISM_TYPE,
this.nss_t.SECItem.ptr, ctypes.int, ctypes.voidptr_t);
// security/nss/lib/pk11wrap/pk11pub.h#477
// SECStatus PK11_ExtractKeyValue(PK11SymKey *symKey);
this.nss.PK11_ExtractKeyValue = nsslib.declare("PK11_ExtractKeyValue",
ctypes.default_abi, this.nss_t.SECStatus,
this.nss_t.PK11SymKey.ptr);
// security/nss/lib/pk11wrap/pk11pub.h#478
// SECItem * PK11_GetKeyData(PK11SymKey *symKey);
this.nss.PK11_GetKeyData = nsslib.declare("PK11_GetKeyData",
ctypes.default_abi, this.nss_t.SECItem.ptr,
this.nss_t.PK11SymKey.ptr);
// security/nss/lib/pk11wrap/pk11pub.h#278
// CK_MECHANISM_TYPE PK11_AlgtagToMechanism(SECOidTag algTag);
this.nss.PK11_AlgtagToMechanism = nsslib.declare("PK11_AlgtagToMechanism",
ctypes.default_abi, this.nss_t.CK_MECHANISM_TYPE,
this.nss_t.SECOidTag);
// security/nss/lib/pk11wrap/pk11pub.h#270
// int PK11_GetIVLength(CK_MECHANISM_TYPE type);
this.nss.PK11_GetIVLength = nsslib.declare("PK11_GetIVLength",
ctypes.default_abi, ctypes.int,
this.nss_t.CK_MECHANISM_TYPE);
// security/nss/lib/pk11wrap/pk11pub.h#269
// int PK11_GetBlockSize(CK_MECHANISM_TYPE type,SECItem *params);
this.nss.PK11_GetBlockSize = nsslib.declare("PK11_GetBlockSize",
ctypes.default_abi, ctypes.int,
this.nss_t.CK_MECHANISM_TYPE, this.nss_t.SECItem.ptr);
// security/nss/lib/pk11wrap/pk11pub.h#293
// CK_MECHANISM_TYPE PK11_GetPadMechanism(CK_MECHANISM_TYPE);
this.nss.PK11_GetPadMechanism = nsslib.declare("PK11_GetPadMechanism",
ctypes.default_abi, this.nss_t.CK_MECHANISM_TYPE,
this.nss_t.CK_MECHANISM_TYPE);
// security/nss/lib/pk11wrap/pk11pub.h#271
// SECItem *PK11_ParamFromIV(CK_MECHANISM_TYPE type,SECItem *iv);
this.nss.PK11_ParamFromIV = nsslib.declare("PK11_ParamFromIV",
ctypes.default_abi, this.nss_t.SECItem.ptr,
this.nss_t.CK_MECHANISM_TYPE, this.nss_t.SECItem.ptr);
// security/nss/lib/pk11wrap/pk11pub.h#301
// PK11SymKey *PK11_ImportSymKey(PK11SlotInfo *slot, CK_MECHANISM_TYPE type, PK11Origin origin,
// CK_ATTRIBUTE_TYPE operation, SECItem *key, void *wincx);
this.nss.PK11_ImportSymKey = nsslib.declare("PK11_ImportSymKey",
ctypes.default_abi, this.nss_t.PK11SymKey.ptr,
this.nss_t.PK11SlotInfo.ptr, this.nss_t.CK_MECHANISM_TYPE, this.nss_t.PK11Origin,
this.nss_t.CK_ATTRIBUTE_TYPE, this.nss_t.SECItem.ptr, ctypes.voidptr_t);
// security/nss/lib/pk11wrap/pk11pub.h#672
// PK11Context *PK11_CreateContextBySymKey(CK_MECHANISM_TYPE type, CK_ATTRIBUTE_TYPE operation,
// PK11SymKey *symKey, SECItem *param);
this.nss.PK11_CreateContextBySymKey = nsslib.declare("PK11_CreateContextBySymKey",
ctypes.default_abi, this.nss_t.PK11Context.ptr,
this.nss_t.CK_MECHANISM_TYPE, this.nss_t.CK_ATTRIBUTE_TYPE,
this.nss_t.PK11SymKey.ptr, this.nss_t.SECItem.ptr);
// security/nss/lib/pk11wrap/pk11pub.h#685
// SECStatus PK11_CipherOp(PK11Context *context, unsigned char *out
// int *outlen, int maxout, unsigned char *in, int inlen);
this.nss.PK11_CipherOp = nsslib.declare("PK11_CipherOp",
ctypes.default_abi, this.nss_t.SECStatus,
this.nss_t.PK11Context.ptr, ctypes.unsigned_char.ptr,
ctypes.int.ptr, ctypes.int, ctypes.unsigned_char.ptr, ctypes.int);
// security/nss/lib/pk11wrap/pk11pub.h#688
// SECStatus PK11_DigestFinal(PK11Context *context, unsigned char *data,
// unsigned int *outLen, unsigned int length);
this.nss.PK11_DigestFinal = nsslib.declare("PK11_DigestFinal",
ctypes.default_abi, this.nss_t.SECStatus,
this.nss_t.PK11Context.ptr, ctypes.unsigned_char.ptr,
ctypes.unsigned_int.ptr, ctypes.unsigned_int);
// security/nss/lib/pk11wrap/pk11pub.h#731
// SECAlgorithmID * PK11_CreatePBEV2AlgorithmID(SECOidTag pbeAlgTag, SECOidTag cipherAlgTag,
// SECOidTag prfAlgTag, int keyLength, int iteration,
// SECItem *salt);
this.nss.PK11_CreatePBEV2AlgorithmID = nsslib.declare("PK11_CreatePBEV2AlgorithmID",
ctypes.default_abi, this.nss_t.SECAlgorithmID.ptr,
this.nss_t.SECOidTag, this.nss_t.SECOidTag, this.nss_t.SECOidTag,
ctypes.int, ctypes.int, this.nss_t.SECItem.ptr);
// security/nss/lib/pk11wrap/pk11pub.h#736
// PK11SymKey * PK11_PBEKeyGen(PK11SlotInfo *slot, SECAlgorithmID *algid, SECItem *pwitem, PRBool faulty3DES, void *wincx);
this.nss.PK11_PBEKeyGen = nsslib.declare("PK11_PBEKeyGen",
ctypes.default_abi, this.nss_t.PK11SymKey.ptr,
this.nss_t.PK11SlotInfo.ptr, this.nss_t.SECAlgorithmID.ptr,
this.nss_t.SECItem.ptr, this.nss_t.PRBool, ctypes.voidptr_t);
// security/nss/lib/pk11wrap/pk11pub.h#675
// void PK11_DestroyContext(PK11Context *context, PRBool freeit);
this.nss.PK11_DestroyContext = nsslib.declare("PK11_DestroyContext",
ctypes.default_abi, ctypes.void_t,
this.nss_t.PK11Context.ptr, this.nss_t.PRBool);
// security/nss/lib/pk11wrap/pk11pub.h#299
// void PK11_FreeSymKey(PK11SymKey *key);
this.nss.PK11_FreeSymKey = nsslib.declare("PK11_FreeSymKey",
ctypes.default_abi, ctypes.void_t,
this.nss_t.PK11SymKey.ptr);
// security/nss/lib/pk11wrap/pk11pub.h#70
// void PK11_FreeSlot(PK11SlotInfo *slot);
this.nss.PK11_FreeSlot = nsslib.declare("PK11_FreeSlot",
ctypes.default_abi, ctypes.void_t,
this.nss_t.PK11SlotInfo.ptr);
// security/nss/lib/util/secitem.h#49
// extern SECItem *SECITEM_AllocItem(PRArenaPool *arena, SECItem *item, unsigned int len);
this.nss.SECITEM_AllocItem = nsslib.declare("SECITEM_AllocItem",
ctypes.default_abi, this.nss_t.SECItem.ptr,
this.nss_t.PLArenaPool.ptr, // Not used.
this.nss_t.SECItem.ptr, ctypes.unsigned_int);
// security/nss/lib/util/secitem.h#274
// extern void SECITEM_ZfreeItem(SECItem *zap, PRBool freeit);
this.nss.SECITEM_ZfreeItem = nsslib.declare("SECITEM_ZfreeItem",
ctypes.default_abi, ctypes.void_t,
this.nss_t.SECItem.ptr, this.nss_t.PRBool);
// security/nss/lib/util/secitem.h#114
// extern void SECITEM_FreeItem(SECItem *zap, PRBool freeit);
this.nss.SECITEM_FreeItem = nsslib.declare("SECITEM_FreeItem",
ctypes.default_abi, ctypes.void_t,
this.nss_t.SECItem.ptr, this.nss_t.PRBool);
// security/nss/lib/util/secoid.h#103
// extern void SECOID_DestroyAlgorithmID(SECAlgorithmID *aid, PRBool freeit);
this.nss.SECOID_DestroyAlgorithmID = nsslib.declare("SECOID_DestroyAlgorithmID",
ctypes.default_abi, ctypes.void_t,
this.nss_t.SECAlgorithmID.ptr, this.nss_t.PRBool);
// /!\ Only use this for tests! /!\
_getCrypto() {
return crypto;
},
_sharedInputBuffer: null,
_sharedInputBufferInts: null,
_sharedInputBufferSize: 0,
_sharedOutputBuffer: null,
_sharedOutputBufferSize: 0,
_randomByteBuffer: null,
_randomByteBufferAddr: null,
_randomByteBufferSize: 0,
_getInputBuffer: function _getInputBuffer(size) {
if (size > this._sharedInputBufferSize) {
let b = new ctypes.ArrayType(ctypes.unsigned_char, size)();
this._sharedInputBuffer = b;
this._sharedInputBufferInts = ctypes.cast(b, ctypes.uint8_t.array(size));
this._sharedInputBufferSize = size;
}
return this._sharedInputBuffer;
},
_getOutputBuffer: function _getOutputBuffer(size) {
if (size > this._sharedOutputBufferSize) {
let b = new ctypes.ArrayType(ctypes.unsigned_char, size)();
this._sharedOutputBuffer = b;
this._sharedOutputBufferSize = size;
}
return this._sharedOutputBuffer;
},
_getRandomByteBuffer: function _getRandomByteBuffer(size) {
if (size > this._randomByteBufferSize) {
let b = new ctypes.ArrayType(ctypes.unsigned_char, size)();
this._randomByteBuffer = b;
this._randomByteBufferAddr = b.address();
this._randomByteBufferSize = size;
}
return this._randomByteBuffer;
},
initBuffers: function initBuffers(initialSize) {
this._getInputBuffer(initialSize);
this._getOutputBuffer(initialSize);
this._getRandomByteBuffer(this.ivLength);
},
encrypt : function(clearTextUCS2, symmetricKey, iv) {
encrypt(clearTextUCS2, symmetricKey, iv) {
this.log("encrypt() called");
// js-ctypes autoconverts to a UTF8 buffer, but also includes a null
// at the end which we don't want. Decrement length to skip it.
let inputBuffer = new ctypes.ArrayType(ctypes.unsigned_char)(clearTextUCS2);
let inputBufferSize = inputBuffer.length - 1;
// When using CBC padding, the output size is the input size rounded
// up to the nearest block. If the input size is exactly on a block
// boundary, the output is 1 extra block long.
let outputBufferSize = inputBufferSize + this.blockSize;
let outputBuffer = this._getOutputBuffer(outputBufferSize);
outputBuffer = this._commonCrypt(inputBuffer, inputBufferSize,
outputBuffer, outputBufferSize,
symmetricKey, iv, this.nss.CKA_ENCRYPT);
return this.encodeBase64(outputBuffer.address(), outputBuffer.length);
let clearTextBuffer = this.encoder.encode(clearTextUCS2).buffer;
let encrypted = this._commonCrypt(clearTextBuffer, symmetricKey, iv, OPERATIONS.ENCRYPT);
return this.encodeBase64(encrypted);
},
decrypt : function(cipherText, symmetricKey, iv) {
decrypt(cipherText, symmetricKey, iv) {
this.log("decrypt() called");
let inputUCS2 = "";
if (cipherText.length)
inputUCS2 = atob(cipherText);
// We can't have js-ctypes create the buffer directly from the string
// (as in encrypt()), because we do _not_ want it to do UTF8
// conversion... We've got random binary data in the input's low byte.
//
// Compress a JS string (2-byte chars) into a normal C string (1-byte chars).
let len = inputUCS2.length;
let input = this._getInputBuffer(len);
this.byteCompressInts(inputUCS2, this._sharedInputBufferInts, len);
let outputBuffer = this._commonCrypt(input, len,
this._getOutputBuffer(len), len,
symmetricKey, iv, this.nss.CKA_DECRYPT);
// outputBuffer contains UTF-8 data, let js-ctypes autoconvert that to a JS string.
// XXX Bug 573842: wrap the string from ctypes to get a new string, so
// we don't hit bug 573841.
return "" + outputBuffer.readString() + "";
if (cipherText.length) {
cipherText = atob(cipherText);
}
let cipherTextBuffer = this.byteCompressInts(cipherText);
let decrypted = this._commonCrypt(cipherTextBuffer, symmetricKey, iv, OPERATIONS.DECRYPT);
return this.decoder.decode(decrypted);
},
_commonCrypt : function (input, inputLength, output, outputLength, symmetricKey, iv, operation) {
/**
* _commonCrypt
*
* @args
* data: data to encrypt/decrypt (ArrayBuffer)
* symKeyStr: symmetric key (Base64 String)
* ivStr: initialization vector (Base64 String)
* operation: operation to apply (either OPERATIONS.ENCRYPT or OPERATIONS.DECRYPT)
* @returns
* the encrypted/decrypted data (ArrayBuffer)
*/
_commonCrypt(data, symKeyStr, ivStr, operation) {
this.log("_commonCrypt() called");
iv = atob(iv);
ivStr = atob(ivStr);
if (operation !== OPERATIONS.ENCRYPT && operation !== OPERATIONS.DECRYPT) {
throw new Error("Unsupported operation in _commonCrypt.");
}
// We never want an IV longer than the block size, which is 16 bytes
// for AES. Neither do we want one smaller; throw in that case.
if (iv.length < this.blockSize)
throw "IV too short; must be " + this.blockSize + " bytes.";
if (iv.length > this.blockSize)
iv = iv.slice(0, this.blockSize);
// We use a single IV SECItem for the sake of efficiency. Fill it here.
this.byteCompressInts(iv, this._ivSECItemContents, iv.length);
let ctx, symKey, ivParam;
try {
ivParam = this.nss.PK11_ParamFromIV(this.padMechanism, this._ivSECItem);
if (ivParam.isNull())
throw Components.Exception("can't convert IV to param", Cr.NS_ERROR_FAILURE);
symKey = this.importSymKey(symmetricKey, operation);
ctx = this.nss.PK11_CreateContextBySymKey(this.padMechanism, operation, symKey, ivParam);
if (ctx.isNull())
throw Components.Exception("couldn't create context for symkey", Cr.NS_ERROR_FAILURE);
let maxOutputSize = outputLength;
if (this.nss.PK11_CipherOp(ctx, output, this._commonCryptSignedOutputSize.address(), maxOutputSize, input, inputLength))
throw Components.Exception("cipher operation failed", Cr.NS_ERROR_FAILURE);
let actualOutputSize = this._commonCryptSignedOutputSize.value;
let finalOutput = output.addressOfElement(actualOutputSize);
maxOutputSize -= actualOutputSize;
// PK11_DigestFinal sure sounds like the last step for *hashing*, but it
// just seems to be an odd name -- NSS uses this to finish the current
// cipher operation. You'd think it would be called PK11_CipherOpFinal...
if (this.nss.PK11_DigestFinal(ctx, finalOutput, this._commonCryptUnsignedOutputSizeAddr, maxOutputSize))
throw Components.Exception("cipher finalize failed", Cr.NS_ERROR_FAILURE);
actualOutputSize += this._commonCryptUnsignedOutputSize.value;
let newOutput = ctypes.cast(output, ctypes.unsigned_char.array(actualOutputSize));
return newOutput;
} catch (e) {
this.log("_commonCrypt: failed: " + e);
throw e;
} finally {
if (ctx && !ctx.isNull())
this.nss.PK11_DestroyContext(ctx, true);
if (ivParam && !ivParam.isNull())
this.nss.SECITEM_FreeItem(ivParam, true);
// Note that we do not free the IV SECItem; we reuse it.
// Neither do we free the symKey, because that's memoized.
// for AES, neither do we want one smaller; throw in both cases.
if (ivStr.length !== AES_CBC_IV_SIZE) {
throw "Invalid IV size; must be " + AES_CBC_IV_SIZE + " bytes.";
}
let iv = this.byteCompressInts(ivStr);
let symKey = this.importSymKey(symKeyStr, operation);
let cryptMethod = (operation === OPERATIONS.ENCRYPT
? crypto.subtle.encrypt
: crypto.subtle.decrypt)
.bind(crypto.subtle);
let algo = { name: CRYPT_ALGO, iv: iv };
return Async.promiseSpinningly(
cryptMethod(algo, symKey, data)
.then(keyBytes => new Uint8Array(keyBytes))
);
},
generateRandomKey : function() {
generateRandomKey() {
this.log("generateRandomKey() called");
let slot, randKey, keydata;
try {
slot = this.nss.PK11_GetInternalSlot();
if (slot.isNull())
throw Components.Exception("couldn't get internal slot", Cr.NS_ERROR_FAILURE);
randKey = this.nss.PK11_KeyGen(slot, this.keygenMechanism, null, this.keySize, null);
if (randKey.isNull())
throw Components.Exception("PK11_KeyGen failed.", Cr.NS_ERROR_FAILURE);
// Slightly odd API, this call just prepares the key value for
// extraction, we get the actual bits from the call to PK11_GetKeyData().
if (this.nss.PK11_ExtractKeyValue(randKey))
throw Components.Exception("PK11_ExtractKeyValue failed.", Cr.NS_ERROR_FAILURE);
keydata = this.nss.PK11_GetKeyData(randKey);
if (keydata.isNull())
throw Components.Exception("PK11_GetKeyData failed.", Cr.NS_ERROR_FAILURE);
return this.encodeBase64(keydata.contents.data, keydata.contents.len);
} catch (e) {
this.log("generateRandomKey: failed: " + e);
throw e;
} finally {
if (randKey && !randKey.isNull())
this.nss.PK11_FreeSymKey(randKey);
if (slot && !slot.isNull())
this.nss.PK11_FreeSlot(slot);
}
let algo = {
name: CRYPT_ALGO,
length: CRYPT_ALGO_LENGTH
};
return Async.promiseSpinningly(
crypto.subtle.generateKey(algo, true, [])
.then(key => crypto.subtle.exportKey("raw", key))
.then(keyBytes => {
keyBytes = new Uint8Array(keyBytes);
return this.encodeBase64(keyBytes);
})
);
},
generateRandomIV : function() {
return this.generateRandomBytes(this.ivLength);
generateRandomIV() {
return this.generateRandomBytes(AES_CBC_IV_SIZE);
},
generateRandomBytes : function(byteCount) {
generateRandomBytes(byteCount) {
this.log("generateRandomBytes() called");
// Temporary buffer to hold the generated data.
let scratch = this._getRandomByteBuffer(byteCount);
if (this.nss.PK11_GenerateRandom(scratch, byteCount))
throw Components.Exception("PK11_GenrateRandom failed", Cr.NS_ERROR_FAILURE);
let randBytes = new Uint8Array(byteCount);
crypto.getRandomValues(randBytes);
return this.encodeBase64(this._randomByteBufferAddr, byteCount);
return this.encodeBase64(randBytes);
},
//
// PK11SymKey memoization.
// SymKey CryptoKey memoization.
//
// Memoize the lookup of symmetric keys. We do this by using the base64
// string itself as a key -- the overhead of SECItem creation during the
// initial population is negligible, so that phase is not memoized.
// Memoize the import of symmetric keys. We do this by using the base64
// string itself as a key.
_encryptionSymKeyMemo: {},
_decryptionSymKeyMemo: {},
importSymKey: function importSymKey(encodedKeyString, operation) {
importSymKey(encodedKeyString, operation) {
let memo;
// We use two separate memos for thoroughness: operation is an input to
// key import.
switch (operation) {
case this.nss.CKA_ENCRYPT:
case OPERATIONS.ENCRYPT:
memo = this._encryptionSymKeyMemo;
break;
case this.nss.CKA_DECRYPT:
case OPERATIONS.DECRYPT:
memo = this._decryptionSymKeyMemo;
break;
default:
@ -580,27 +186,17 @@ WeaveCrypto.prototype = {
if (encodedKeyString in memo)
return memo[encodedKeyString];
let keyItem, slot;
try {
keyItem = this.makeSECItem(encodedKeyString, true);
slot = this.nss.PK11_GetInternalKeySlot();
if (slot.isNull())
throw Components.Exception("can't get internal key slot",
Cr.NS_ERROR_FAILURE);
let symmetricKeyBuffer = this.makeUint8Array(encodedKeyString, true);
let algo = { name: CRYPT_ALGO };
let usages = [operation === OPERATIONS.ENCRYPT ? "encrypt" : "decrypt"];
let symKey = this.nss.PK11_ImportSymKey(slot, this.padMechanism,
this.nss.PK11_OriginUnwrap,
operation, keyItem, null);
if (!symKey || symKey.isNull())
throw Components.Exception("symkey import failed",
Cr.NS_ERROR_FAILURE);
return memo[encodedKeyString] = symKey;
} finally {
if (slot && !slot.isNull())
this.nss.PK11_FreeSlot(slot);
this.freeSECItem(keyItem);
}
return Async.promiseSpinningly(
crypto.subtle.importKey("raw", symmetricKeyBuffer, algo, false, usages)
.then(symKey => {
memo[encodedKeyString] = symKey;
return symKey;
})
);
},
@ -609,152 +205,62 @@ WeaveCrypto.prototype = {
//
/**
* Compress a JS string into a C uint8 array. count is the number of
* elements in the destination array. If the array is smaller than the
* string, the string is effectively truncated. If the string is smaller
* than the array, the array is not 0-padded.
* Returns an Uint8Array filled with a JS string,
* which means we only keep utf-16 characters from 0x00 to 0xFF.
*/
byteCompressInts : function byteCompressInts (jsString, intArray, count) {
let len = jsString.length;
let end = Math.min(len, count);
for (let i = 0; i < end; i++)
intArray[i] = jsString.charCodeAt(i) & 0xFF; // convert to bytes.
byteCompressInts(str) {
let arrayBuffer = new Uint8Array(str.length);
for (let i = 0; i < str.length; i++) {
arrayBuffer[i] = str.charCodeAt(i) & 0xFF;
}
return arrayBuffer;
},
// Expand a normal C string (1-byte chars) into a JS string (2-byte chars)
// EG, for "ABC", 0x41, 0x42, 0x43 --> 0x0041, 0x0042, 0x0043
byteExpand : function (charArray) {
expandData(data) {
let expanded = "";
let len = charArray.length;
let intData = ctypes.cast(charArray, ctypes.uint8_t.array(len));
for (let i = 0; i < len; i++)
expanded += String.fromCharCode(intData[i]);
for (let i = 0; i < data.length; i++) {
expanded += String.fromCharCode(data[i]);
}
return expanded;
},
expandData : function expandData(data, len) {
// Byte-expand the buffer, so we can treat it as a UCS-2 string
// consisting of u0000 - u00FF.
let expanded = "";
let intData = ctypes.cast(data, ctypes.uint8_t.array(len).ptr).contents;
for (let i = 0; i < len; i++)
expanded += String.fromCharCode(intData[i]);
return expanded;
encodeBase64(data) {
return btoa(this.expandData(data));
},
encodeBase64 : function (data, len) {
return btoa(this.expandData(data, len));
},
// Returns a filled SECItem *, as returned by SECITEM_AllocItem.
//
// Note that this must be released with freeSECItem, which will also
// deallocate the internal buffer.
makeSECItem : function(input, isEncoded) {
if (isEncoded)
makeUint8Array(input, isEncoded) {
if (isEncoded) {
input = atob(input);
let len = input.length;
let item = this.nss.SECITEM_AllocItem(null, null, len);
if (item.isNull())
throw "SECITEM_AllocItem failed.";
let ptr = ctypes.cast(item.contents.data,
ctypes.unsigned_char.array(len).ptr);
let dest = ctypes.cast(ptr.contents, ctypes.uint8_t.array(len));
this.byteCompressInts(input, dest, len);
return item;
},
freeSECItem : function(zap) {
if (zap && !zap.isNull())
this.nss.SECITEM_ZfreeItem(zap, true);
},
// We only ever handle one IV at a time, and they're always different.
// Consequently, we maintain a single SECItem, and a handy pointer into its
// contents to avoid repetitive and expensive casts.
_ivSECItem: null,
_ivSECItemContents: null,
initIVSECItem: function initIVSECItem() {
if (this._ivSECItem) {
this._ivSECItemContents = null;
this.freeSECItem(this._ivSECItem);
}
let item = this.nss.SECITEM_AllocItem(null, null, this.blockSize);
if (item.isNull())
throw "SECITEM_AllocItem failed.";
let ptr = ctypes.cast(item.contents.data,
ctypes.unsigned_char.array(this.blockSize).ptr);
let contents = ctypes.cast(ptr.contents,
ctypes.uint8_t.array(this.blockSize));
this._ivSECItem = item;
this._ivSECItemContents = contents;
return this.byteCompressInts(input);
},
/**
* Returns the expanded data string for the derived key.
*/
deriveKeyFromPassphrase : function deriveKeyFromPassphrase(passphrase, salt, keyLength) {
deriveKeyFromPassphrase(passphrase, saltStr, keyLength = 32) {
this.log("deriveKeyFromPassphrase() called.");
let passItem = this.makeSECItem(passphrase, false);
let saltItem = this.makeSECItem(salt, true);
let pbeAlg = ALGORITHM;
let cipherAlg = ALGORITHM; // Ignored by callee when pbeAlg != a pkcs5 mech.
// Callee picks if SEC_OID_UNKNOWN, but only SHA1 is supported.
let prfAlg = this.nss.SEC_OID_HMAC_SHA1;
keyLength = keyLength || 0; // 0 = Callee will pick.
let iterations = KEY_DERIVATION_ITERATIONS;
let algid, slot, symKey, keyData;
try {
algid = this.nss.PK11_CreatePBEV2AlgorithmID(pbeAlg, cipherAlg, prfAlg,
keyLength, iterations,
saltItem);
if (algid.isNull())
throw Components.Exception("PK11_CreatePBEV2AlgorithmID failed", Cr.NS_ERROR_FAILURE);
slot = this.nss.PK11_GetInternalSlot();
if (slot.isNull())
throw Components.Exception("couldn't get internal slot", Cr.NS_ERROR_FAILURE);
symKey = this.nss.PK11_PBEKeyGen(slot, algid, passItem, false, null);
if (symKey.isNull())
throw Components.Exception("PK11_PBEKeyGen failed", Cr.NS_ERROR_FAILURE);
// Take the PK11SymKeyStr, returning the extracted key data.
if (this.nss.PK11_ExtractKeyValue(symKey)) {
throw this.makeException("PK11_ExtractKeyValue failed.", Cr.NS_ERROR_FAILURE);
}
keyData = this.nss.PK11_GetKeyData(symKey);
if (keyData.isNull())
throw Components.Exception("PK11_GetKeyData failed", Cr.NS_ERROR_FAILURE);
// This copies the key contents into a JS string, so we don't leak.
// The `finally` block below will clean up.
return this.expandData(keyData.contents.data, keyData.contents.len);
} catch (e) {
this.log("deriveKeyFromPassphrase: failed: " + e);
throw e;
} finally {
if (algid && !algid.isNull())
this.nss.SECOID_DestroyAlgorithmID(algid, true);
if (slot && !slot.isNull())
this.nss.PK11_FreeSlot(slot);
if (symKey && !symKey.isNull())
this.nss.PK11_FreeSymKey(symKey);
this.freeSECItem(passItem);
this.freeSECItem(saltItem);
}
let keyData = this.makeUint8Array(passphrase, false);
let salt = this.makeUint8Array(saltStr, true);
let importAlgo = { name: KEY_DERIVATION_ALGO };
let deriveAlgo = {
name: KEY_DERIVATION_ALGO,
salt: salt,
iterations: KEY_DERIVATION_ITERATIONS,
hash: { name: KEY_DERIVATION_HASHING_ALGO },
};
let derivedKeyType = {
name: DERIVED_KEY_ALGO,
length: keyLength * 8,
};
return Async.promiseSpinningly(
crypto.subtle.importKey("raw", keyData, importAlgo, false, ["deriveKey"])
.then(key => crypto.subtle.deriveKey(deriveAlgo, key, derivedKeyType, true, []))
.then(derivedKey => crypto.subtle.exportKey("raw", derivedKey))
.then(keyBytes => {
keyBytes = new Uint8Array(keyBytes);
return this.expandData(keyBytes);
})
);
},
};

View File

@ -1,37 +1,38 @@
Cu.import("resource://services-crypto/WeaveCrypto.js");
Cu.importGlobalProperties(['crypto']);
var cryptoSvc = new WeaveCrypto();
function run_test() {
if ("makeSECItem" in cryptoSvc) // Only for js-ctypes WeaveCrypto.
test_makeSECItem();
if (this.gczeal) {
_("Running crypto tests with gczeal(2).");
gczeal(2);
}
test_bug_617650();
test_encrypt_decrypt();
test_SECItem_byteCompressInts();
test_key_memoization();
if (this.gczeal)
gczeal(0);
}
function test_key_memoization() {
let oldImport = cryptoSvc.nss && cryptoSvc.nss.PK11_ImportSymKey;
let cryptoGlobal = cryptoSvc._getCrypto();
let oldImport = cryptoGlobal.subtle.importKey;
if (!oldImport) {
_("Couldn't swizzle PK11_ImportSymKey; returning.");
_("Couldn't swizzle crypto.subtle.importKey; returning.");
return;
}
let iv = cryptoSvc.generateRandomIV();
let key = cryptoSvc.generateRandomKey();
let c = 0;
cryptoSvc.nss.PK11_ImportSymKey = function(slot, type, origin, operation, key, wincx) {
cryptoGlobal.subtle.importKey = function(format, keyData, algo, extractable, usages) {
c++;
return oldImport(slot, type, origin, operation, key, wincx);
return oldImport.call(cryptoGlobal.subtle, format, keyData, algo, extractable, usages);
}
// Encryption should cause a single counter increment.
@ -48,7 +49,7 @@ function test_key_memoization() {
do_check_eq(c, 2);
// Un-swizzle.
cryptoSvc.nss.PK11_ImportSymKey = oldImport;
cryptoGlobal.subtle.importKey = oldImport;
}
function multiple_decrypts(iterations) {
@ -78,32 +79,13 @@ function test_bug_617650() {
}
// Just verify that it gets populated with the correct bytes.
function test_makeSECItem() {
function test_makeUint8Array() {
Components.utils.import("resource://gre/modules/ctypes.jsm");
let item1 = cryptoSvc.makeSECItem("abcdefghi", false);
do_check_true(!item1.isNull());
let intData = ctypes.cast(item1.contents.data, ctypes.uint8_t.array(8).ptr).contents;
let item1 = cryptoSvc.makeUint8Array("abcdefghi", false);
do_check_true(item1);
for (let i = 0; i < 8; ++i)
do_check_eq(intData[i], "abcdefghi".charCodeAt(i));
}
function test_SECItem_byteCompressInts() {
Components.utils.import("resource://gre/modules/ctypes.jsm");
let item1 = cryptoSvc.makeSECItem("abcdefghi", false);
do_check_true(!item1.isNull());
let intData = ctypes.cast(item1.contents.data, ctypes.uint8_t.array(8).ptr).contents;
// Fill it too short.
cryptoSvc.byteCompressInts("MMM", intData, 8);
for (let i = 0; i < 3; ++i)
do_check_eq(intData[i], [77, 77, 77][i]);
// Fill it too much. Doesn't buffer overrun.
cryptoSvc.byteCompressInts("NNNNNNNNNNNNNNNN", intData, 8);
for (let i = 0; i < 8; ++i)
do_check_eq(intData[i], "NNNNNNNNNNNNNNNN".charCodeAt(i));
do_check_eq(item1[i], "abcdefghi".charCodeAt(i));
}
function test_encrypt_decrypt() {
@ -122,7 +104,7 @@ function test_encrypt_decrypt() {
var clearText = cryptoSvc.decrypt(cipherText, key, iv);
do_check_eq(clearText.length, 20);
// Did the text survive the encryption round-trip?
do_check_eq(clearText, mySecret);
do_check_neq(cipherText, mySecret); // just to be explicit
@ -134,7 +116,7 @@ function test_encrypt_decrypt() {
_("Testing small IV.");
mySecret = "YWJjZGVmZ2hpamtsbW5vcHFyc3R1dnd4eXo=";
shortiv = "YWJj"; // "abc": Less than 16.
let shortiv = "YWJj";
let err;
try {
cryptoSvc.encrypt(mySecret, key, shortiv);
@ -143,6 +125,15 @@ function test_encrypt_decrypt() {
}
do_check_true(!!err);
_("Testing long IV.");
let longiv = "gsgLRDaxWvIfKt75RjuvFWERt83FFsY2A0TW+0b2iVk=";
try {
cryptoSvc.encrypt(mySecret, key, longiv);
} catch (ex) {
err = ex;
}
do_check_true(!!err);
// Test small input sizes
mySecret = "";
cipherText = cryptoSvc.encrypt(mySecret, key, iv);
@ -203,7 +194,7 @@ function test_encrypt_decrypt() {
key = "iz35tuIMq4/H+IYw2KTgow==";
iv = "TJYrvva2KxvkM8hvOIvWp3xgjTXgq5Ss";
iv = "TJYrvva2KxvkM8hvOIvWp3==";
mySecret = "i like pie";
cipherText = cryptoSvc.encrypt(mySecret, key, iv);
@ -212,7 +203,7 @@ function test_encrypt_decrypt() {
do_check_eq(clearText, mySecret);
key = "c5hG3YG+NC61FFy8NOHQak1ZhMEWO79bwiAfar2euzI=";
iv = "gsgLRDaxWvIfKt75RjuvFWERt83FFsY2A0TW+0b2iVk=";
iv = "gsgLRDaxWvIfKt75RjuvFW==";
mySecret = "i like pie";
cipherText = cryptoSvc.encrypt(mySecret, key, iv);

View File

@ -1,38 +1,28 @@
var btoa;
Components.utils.import("resource://services-crypto/WeaveCrypto.js");
function test_derive(cryptoSvc) {
function run_test() {
let cryptoSvc = new WeaveCrypto();
// Extracted from test_utils_deriveKey.
let pp = "secret phrase";
let salt = "RE5YUHpQcGl3bg=="; // btoa("DNXPzPpiwn")
// 16-byte, extract key data.
let k = cryptoSvc.deriveKeyFromPassphrase(pp, salt, 16);
do_check_eq(16, k.length);
do_check_eq(btoa(k), "d2zG0d2cBfXnRwMUGyMwyg==");
// Test different key lengths.
k = cryptoSvc.deriveKeyFromPassphrase(pp, salt, 32);
do_check_eq(32, k.length);
do_check_eq(btoa(k), "d2zG0d2cBfXnRwMUGyMwyroRXtnrSIeLwSDvReSfcyA=");
let encKey = btoa(k);
// Test via encryption.
let iv = cryptoSvc.generateRandomIV();
do_check_eq(cryptoSvc.decrypt(cryptoSvc.encrypt("bacon", encKey, iv), encKey, iv), "bacon");
// Test default length (32).
k = cryptoSvc.deriveKeyFromPassphrase(pp, salt, null);
k = cryptoSvc.deriveKeyFromPassphrase(pp, salt);
do_check_eq(32, k.length);
do_check_eq(encKey, btoa(k));
}
function run_test() {
let cryptoSvc;
try {
let backstagePass = Components.utils.import("resource://services-crypto/WeaveCrypto.js");
btoa = backstagePass.btoa;
} catch (ex) {
_("Aborting test: no WeaveCrypto.js.");
return;
}
test_derive(new WeaveCrypto());
}