Bug 1776013 - Add SIMD memchr-like implementations to MFBT r=iain

Differential Revision: https://phabricator.services.mozilla.com/D150067
This commit is contained in:
Doug Thayer 2022-07-14 18:30:27 +00:00
parent e304a056df
commit 67331b011d
9 changed files with 1019 additions and 6 deletions

509
mfbt/SIMD.cpp Normal file
View File

@ -0,0 +1,509 @@
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "mozilla/SIMD.h"
#include <stdint.h>
#include <type_traits>
#include "mozilla/SSE.h"
namespace mozilla {
#ifdef MOZILLA_PRESUME_SSE2
# include <immintrin.h>
const __m128i* Cast128(uintptr_t ptr) {
return reinterpret_cast<const __m128i*>(ptr);
}
template <typename T>
T GetAs(uintptr_t ptr) {
return *reinterpret_cast<const T*>(ptr);
}
// Akin to ceil/floor, AlignDown/AlignUp will return the original pointer if it
// is already aligned.
uintptr_t AlignDown16(uintptr_t ptr) { return ptr & ~0xf; }
uintptr_t AlignUp16(uintptr_t ptr) { return AlignDown16(ptr + 0xf); }
template <typename CharType>
__m128i CmpEq128(__m128i a, __m128i b) {
static_assert(sizeof(CharType) == 1 || sizeof(CharType) == 2);
if (sizeof(CharType) == 1) {
return _mm_cmpeq_epi8(a, b);
}
return _mm_cmpeq_epi16(a, b);
}
# ifdef __GNUC__
// Earlier versions of GCC are missing the _mm_loadu_si32 instruction. This
// workaround from Peter Cordes (https://stackoverflow.com/a/72837992) compiles
// down to the same instructions. We could just replace _mm_loadu_si32
__m128i Load32BitsIntoXMM(uintptr_t ptr) {
int tmp;
memcpy(&tmp, reinterpret_cast<const void*>(ptr),
sizeof(tmp)); // unaligned aliasing-safe load
return _mm_cvtsi32_si128(tmp); // efficient on GCC/clang/MSVC
}
# else
__m128i Load32BitsIntoXMM(uintptr_t ptr) {
return _mm_loadu_si32(Cast128(ptr));
}
# endif
const char* Check4x4Chars(__m128i needle, uintptr_t a, uintptr_t b, uintptr_t c,
uintptr_t d) {
__m128i haystackA = Load32BitsIntoXMM(a);
__m128i cmpA = CmpEq128<char>(needle, haystackA);
__m128i haystackB = Load32BitsIntoXMM(b);
__m128i cmpB = CmpEq128<char>(needle, haystackB);
__m128i haystackC = Load32BitsIntoXMM(c);
__m128i cmpC = CmpEq128<char>(needle, haystackC);
__m128i haystackD = Load32BitsIntoXMM(d);
__m128i cmpD = CmpEq128<char>(needle, haystackD);
__m128i or_ab = _mm_or_si128(cmpA, cmpB);
__m128i or_cd = _mm_or_si128(cmpC, cmpD);
__m128i or_abcd = _mm_or_si128(or_ab, or_cd);
int orMask = _mm_movemask_epi8(or_abcd);
if (orMask & 0xf) {
int cmpMask;
cmpMask = _mm_movemask_epi8(cmpA);
if (cmpMask & 0xf) {
return reinterpret_cast<const char*>(a + __builtin_ctz(cmpMask));
}
cmpMask = _mm_movemask_epi8(cmpB);
if (cmpMask & 0xf) {
return reinterpret_cast<const char*>(b + __builtin_ctz(cmpMask));
}
cmpMask = _mm_movemask_epi8(cmpC);
if (cmpMask & 0xf) {
return reinterpret_cast<const char*>(c + __builtin_ctz(cmpMask));
}
cmpMask = _mm_movemask_epi8(cmpD);
if (cmpMask & 0xf) {
return reinterpret_cast<const char*>(d + __builtin_ctz(cmpMask));
}
}
return nullptr;
}
template <typename CharType>
const CharType* Check4x16Bytes(__m128i needle, uintptr_t a, uintptr_t b,
uintptr_t c, uintptr_t d) {
__m128i haystackA = _mm_loadu_si128(Cast128(a));
__m128i cmpA = CmpEq128<CharType>(needle, haystackA);
__m128i haystackB = _mm_loadu_si128(Cast128(b));
__m128i cmpB = CmpEq128<CharType>(needle, haystackB);
__m128i haystackC = _mm_loadu_si128(Cast128(c));
__m128i cmpC = CmpEq128<CharType>(needle, haystackC);
__m128i haystackD = _mm_loadu_si128(Cast128(d));
__m128i cmpD = CmpEq128<CharType>(needle, haystackD);
__m128i or_ab = _mm_or_si128(cmpA, cmpB);
__m128i or_cd = _mm_or_si128(cmpC, cmpD);
__m128i or_abcd = _mm_or_si128(or_ab, or_cd);
int orMask = _mm_movemask_epi8(or_abcd);
if (orMask) {
int cmpMask;
cmpMask = _mm_movemask_epi8(cmpA);
if (cmpMask) {
return reinterpret_cast<const CharType*>(a + __builtin_ctz(cmpMask));
}
cmpMask = _mm_movemask_epi8(cmpB);
if (cmpMask) {
return reinterpret_cast<const CharType*>(b + __builtin_ctz(cmpMask));
}
cmpMask = _mm_movemask_epi8(cmpC);
if (cmpMask) {
return reinterpret_cast<const CharType*>(c + __builtin_ctz(cmpMask));
}
cmpMask = _mm_movemask_epi8(cmpD);
if (cmpMask) {
return reinterpret_cast<const CharType*>(d + __builtin_ctz(cmpMask));
}
}
return nullptr;
}
enum class HaystackOverlap {
Overlapping,
Sequential,
};
// Check two 16-byte chunks for the two-byte sequence loaded into needle1
// followed by needle1. `carryOut` is an optional pointer which we will
// populate based on whether the last character of b matches needle1. This
// should be provided on subsequent calls via `carryIn` so we can detect cases
// where the last byte of b's 16-byte chunk is needle1 and the first byte of
// the next a's 16-byte chunk is needle2. `overlap` and whether
// `carryIn`/`carryOut` are NULL should be knowable at compile time to avoid
// branching.
template <typename CharType>
const CharType* Check2x2x16Bytes(__m128i needle1, __m128i needle2, uintptr_t a,
uintptr_t b, __m128i* carryIn,
__m128i* carryOut, HaystackOverlap overlap) {
const int shiftRightAmount = 16 - sizeof(CharType);
const int shiftLeftAmount = sizeof(CharType);
__m128i haystackA = _mm_loadu_si128(Cast128(a));
__m128i cmpA1 = CmpEq128<CharType>(needle1, haystackA);
__m128i cmpA2 = CmpEq128<CharType>(needle2, haystackA);
__m128i cmpA;
if (carryIn) {
cmpA = _mm_and_si128(
_mm_or_si128(_mm_bslli_si128(cmpA1, shiftLeftAmount), *carryIn), cmpA2);
} else {
cmpA = _mm_and_si128(_mm_bslli_si128(cmpA1, shiftLeftAmount), cmpA2);
}
__m128i haystackB = _mm_loadu_si128(Cast128(b));
__m128i cmpB1 = CmpEq128<CharType>(needle1, haystackB);
__m128i cmpB2 = CmpEq128<CharType>(needle2, haystackB);
__m128i cmpB;
if (overlap == HaystackOverlap::Overlapping) {
cmpB = _mm_and_si128(_mm_bslli_si128(cmpB1, shiftLeftAmount), cmpB2);
} else {
MOZ_ASSERT(overlap == HaystackOverlap::Sequential);
__m128i carryAB = _mm_bsrli_si128(cmpA1, shiftRightAmount);
cmpB = _mm_and_si128(
_mm_or_si128(_mm_bslli_si128(cmpB1, shiftLeftAmount), carryAB), cmpB2);
}
__m128i or_ab = _mm_or_si128(cmpA, cmpB);
int orMask = _mm_movemask_epi8(or_ab);
if (orMask) {
int cmpMask;
cmpMask = _mm_movemask_epi8(cmpA);
if (cmpMask) {
return reinterpret_cast<const CharType*>(a + __builtin_ctz(cmpMask) -
shiftLeftAmount);
}
cmpMask = _mm_movemask_epi8(cmpB);
if (cmpMask) {
return reinterpret_cast<const CharType*>(b + __builtin_ctz(cmpMask) -
shiftLeftAmount);
}
}
if (carryOut) {
_mm_store_si128(carryOut, _mm_bsrli_si128(cmpB1, shiftRightAmount));
}
return nullptr;
}
template <typename CharType>
const CharType* FindInBuffer(const CharType* ptr, CharType value,
size_t length) {
static_assert(sizeof(CharType) == 1 || sizeof(CharType) == 2);
static_assert(std::is_unsigned<CharType>::value);
uint64_t splat64;
if (sizeof(CharType) == 1) {
splat64 = 0x0101010101010101llu;
} else {
splat64 = 0x0001000100010001llu;
}
// Load our needle into a 16-byte register
uint64_t u64_value = static_cast<uint64_t>(value) * splat64;
int64_t i64_value = *reinterpret_cast<int64_t*>(&u64_value);
__m128i needle = _mm_set_epi64x(i64_value, i64_value);
size_t numBytes = length * sizeof(CharType);
uintptr_t cur = reinterpret_cast<uintptr_t>(ptr);
uintptr_t end = cur + numBytes;
if ((sizeof(CharType) > 1 && numBytes < 16) || numBytes < 4) {
while (cur < end) {
if (GetAs<CharType>(cur) == value) {
return reinterpret_cast<const CharType*>(cur);
}
cur += sizeof(CharType);
}
return nullptr;
}
if (numBytes < 16) {
// NOTE: here and below, we have some bit fiddling which could look a
// little weird. The important thing to note though is it's just a trick
// for getting the number 4 if numBytes is greater than or equal to 8,
// and 0 otherwise. This lets us fully cover the range without any
// branching for the case where numBytes is in [4,8), and [8,16). We get
// four ranges from this - if numbytes > 8, we get:
// [0,4), [4,8], [end - 8), [end - 4)
// and if numbytes < 8, we get
// [0,4), [0,4), [end - 4), [end - 4)
uintptr_t a = cur;
uintptr_t b = cur + ((numBytes & 8) >> 1);
uintptr_t c = end - 4 - ((numBytes & 8) >> 1);
uintptr_t d = end - 4;
const char* charResult = Check4x4Chars(needle, a, b, c, d);
// Note: we ensure above that sizeof(CharType) == 1 here, so this is
// either char to char or char to something like a uint8_t.
return reinterpret_cast<const CharType*>(charResult);
}
if (numBytes < 64) {
// NOTE: see the above explanation of the similar chunk of code, but in
// this case, replace 8 with 32 and 4 with 16.
uintptr_t a = cur;
uintptr_t b = cur + ((numBytes & 32) >> 1);
uintptr_t c = end - 16 - ((numBytes & 32) >> 1);
uintptr_t d = end - 16;
return Check4x16Bytes<CharType>(needle, a, b, c, d);
}
// Get the initial unaligned load out of the way. This will overlap with the
// aligned stuff below, but the overlapped part should effectively be free
// (relative to a mispredict from doing a byte-by-byte loop).
__m128i haystack = _mm_loadu_si128(Cast128(cur));
__m128i cmp = CmpEq128<CharType>(needle, haystack);
int cmpMask = _mm_movemask_epi8(cmp);
if (cmpMask) {
return reinterpret_cast<const CharType*>(cur + __builtin_ctz(cmpMask));
}
// Now we're working with aligned memory. Hooray! \o/
cur = AlignUp16(cur);
// The address of the final 48-63 bytes. We overlap this with what we check in
// our hot loop below to avoid branching. Again, the overlap should be
// negligible compared with a branch mispredict.
uintptr_t tailStartPtr = AlignDown16(end - 48);
uintptr_t tailEndPtr = end - 16;
while (cur < tailStartPtr) {
uintptr_t a = cur;
uintptr_t b = cur + 16;
uintptr_t c = cur + 32;
uintptr_t d = cur + 48;
const CharType* result = Check4x16Bytes<CharType>(needle, a, b, c, d);
if (result) {
return result;
}
cur += 64;
}
uintptr_t a = tailStartPtr;
uintptr_t b = tailStartPtr + 16;
uintptr_t c = tailStartPtr + 32;
uintptr_t d = tailEndPtr;
return Check4x16Bytes<CharType>(needle, a, b, c, d);
}
template <typename CharType>
const CharType* TwoByteLoop(uintptr_t start, uintptr_t end, CharType v1,
CharType v2);
template <>
const unsigned char* TwoByteLoop<unsigned char>(uintptr_t start, uintptr_t end,
unsigned char v1,
unsigned char v2) {
uintptr_t cur = start;
uintptr_t preEnd = end - sizeof(unsigned char);
while (cur < preEnd) {
// NOTE: this should only ever be called on little endian architectures.
static_assert(MOZ_LITTLE_ENDIAN());
uint16_t pattern =
static_cast<uint16_t>(v1) | (static_cast<uint16_t>(v2) << 8);
if (GetAs<uint16_t>(cur) == pattern) {
return reinterpret_cast<const unsigned char*>(cur);
}
cur += sizeof(unsigned char);
}
return nullptr;
}
template <>
const char16_t* TwoByteLoop<char16_t>(uintptr_t start, uintptr_t end,
char16_t v1, char16_t v2) {
uintptr_t cur = start;
uintptr_t preEnd = end - sizeof(char16_t);
while (cur < preEnd) {
// NOTE: this should only ever be called on little endian architectures
static_assert(MOZ_LITTLE_ENDIAN());
uint32_t pattern =
static_cast<uint32_t>(v1) | (static_cast<uint32_t>(v2) << 16);
if (GetAs<uint32_t>(cur) == pattern) {
return reinterpret_cast<const char16_t*>(cur);
}
cur += sizeof(char16_t);
}
return nullptr;
}
template <typename CharType>
const CharType* FindTwoInBuffer(const CharType* ptr, CharType v1, CharType v2,
size_t length) {
static_assert(sizeof(CharType) == 1 || sizeof(CharType) == 2);
static_assert(std::is_unsigned<CharType>::value);
uint64_t splat64;
if (sizeof(CharType) == 1) {
splat64 = 0x0101010101010101llu;
} else {
splat64 = 0x0001000100010001llu;
}
// Load our needle into a 16-byte register
uint64_t u64_v1 = static_cast<uint64_t>(v1) * splat64;
int64_t i64_v1 = *reinterpret_cast<int64_t*>(&u64_v1);
__m128i needle1 = _mm_set_epi64x(i64_v1, i64_v1);
uint64_t u64_v2 = static_cast<uint64_t>(v2) * splat64;
int64_t i64_v2 = *reinterpret_cast<int64_t*>(&u64_v2);
__m128i needle2 = _mm_set_epi64x(i64_v2, i64_v2);
size_t numBytes = length * sizeof(CharType);
uintptr_t cur = reinterpret_cast<uintptr_t>(ptr);
uintptr_t end = cur + numBytes;
if (numBytes < 16) {
return TwoByteLoop<CharType>(cur, end, v1, v2);
}
if (numBytes < 32) {
uintptr_t a = cur;
uintptr_t b = end - 16;
return Check2x2x16Bytes<CharType>(needle1, needle2, a, b, nullptr, nullptr,
HaystackOverlap::Overlapping);
}
// Get the initial unaligned load out of the way. This will likely overlap
// with the aligned stuff below, but the overlapped part should effectively
// be free.
__m128i haystack = _mm_loadu_si128(Cast128(cur));
__m128i cmp1 = CmpEq128<CharType>(needle1, haystack);
__m128i cmp2 = CmpEq128<CharType>(needle2, haystack);
int cmpMask1 = _mm_movemask_epi8(cmp1);
int cmpMask2 = _mm_movemask_epi8(cmp2);
int cmpMask = (cmpMask1 << sizeof(CharType)) & cmpMask2;
if (cmpMask) {
return reinterpret_cast<const CharType*>(cur + __builtin_ctz(cmpMask) -
sizeof(CharType));
}
// Now we're working with aligned memory. Hooray! \o/
cur = AlignUp16(cur);
// The address of the final 48-63 bytes. We overlap this with what we check in
// our hot loop below to avoid branching. Again, the overlap should be
// negligible compared with a branch mispredict.
uintptr_t tailEndPtr = end - 16;
uintptr_t tailStartPtr = AlignDown16(tailEndPtr);
__m128i cmpMaskCarry = _mm_set1_epi32(0);
while (cur < tailStartPtr) {
uintptr_t a = cur;
uintptr_t b = cur + 16;
const CharType* result =
Check2x2x16Bytes<CharType>(needle1, needle2, a, b, &cmpMaskCarry,
&cmpMaskCarry, HaystackOverlap::Sequential);
if (result) {
return result;
}
cur += 32;
}
uint32_t carry = (cur == tailStartPtr) ? 0xffffffff : 0;
__m128i wideCarry = Load32BitsIntoXMM(reinterpret_cast<uintptr_t>(&carry));
cmpMaskCarry = _mm_and_si128(cmpMaskCarry, wideCarry);
uintptr_t a = tailStartPtr;
uintptr_t b = tailEndPtr;
return Check2x2x16Bytes<CharType>(needle1, needle2, a, b, &cmpMaskCarry,
nullptr, HaystackOverlap::Overlapping);
}
const char* SIMD::memchr8(const char* ptr, char value, size_t length) {
// Signed chars are just really annoying to do bit logic with. Convert to
// unsigned at the outermost scope so we don't have to worry about it.
const unsigned char* uptr = reinterpret_cast<const unsigned char*>(ptr);
unsigned char uvalue = static_cast<unsigned char>(value);
const unsigned char* uresult =
FindInBuffer<unsigned char>(uptr, uvalue, length);
return reinterpret_cast<const char*>(uresult);
}
const char16_t* SIMD::memchr16(const char16_t* ptr, char16_t value,
size_t length) {
return FindInBuffer<char16_t>(ptr, value, length);
}
const char* SIMD::memchr2x8(const char* ptr, char v1, char v2, size_t length) {
// Signed chars are just really annoying to do bit logic with. Convert to
// unsigned at the outermost scope so we don't have to worry about it.
const unsigned char* uptr = reinterpret_cast<const unsigned char*>(ptr);
unsigned char uv1 = static_cast<unsigned char>(v1);
unsigned char uv2 = static_cast<unsigned char>(v2);
const unsigned char* uresult =
FindTwoInBuffer<unsigned char>(uptr, uv1, uv2, length);
return reinterpret_cast<const char*>(uresult);
}
const char16_t* SIMD::memchr2x16(const char16_t* ptr, char16_t v1, char16_t v2,
size_t length) {
return FindTwoInBuffer<char16_t>(ptr, v1, v2, length);
}
#else
# include <cstring>
const char* SIMD::memchr8(const char* ptr, char value, size_t length) {
const void* result = ::memchr(reinterpret_cast<const void*>(ptr),
static_cast<int>(value), length);
return reinterpret_cast<const char*>(result);
}
const char16_t* SIMD::memchr16(const char16_t* ptr, char16_t value,
size_t length) {
const char16_t* end = ptr + length;
while (ptr < end) {
if (*ptr == value) {
return ptr;
}
ptr++;
}
return nullptr;
}
const char* SIMD::memchr2x8(const char* ptr, char v1, char v2, size_t length) {
const char* end = ptr + length - 1;
while (ptr < end) {
ptr = memchr8(ptr, v1, end - ptr);
if (!ptr) {
return nullptr;
}
if (ptr[1] == v2) {
return ptr;
}
ptr++;
}
return nullptr;
}
const char16_t* SIMD::memchr2x16(const char16_t* ptr, char16_t v1, char16_t v2,
size_t length) {
const char16_t* end = ptr + length - 1;
while (ptr < end) {
ptr = memchr16(ptr, v1, end - ptr);
if (!ptr) {
return nullptr;
}
if (ptr[1] == v2) {
return ptr;
}
ptr++;
}
return nullptr;
}
#endif
} // namespace mozilla

56
mfbt/SIMD.h Normal file
View File

@ -0,0 +1,56 @@
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef mozilla_SIMD_h
#define mozilla_SIMD_h
#include "mozilla/Types.h"
namespace mozilla {
// A collection of SIMD-implemented algorithms. Some of these exist in the CRT.
// However, the quality of the C runtime implementation varies wildly across
// platforms, so these should at least ensure consistency.
//
// NOTE: these are currently only implemented with hand-written SIMD for x86
// and AMD64 platforms, and fallback to the the C runtime or naive loops on
// other architectures. Please consider this before switching an already
// optimized loop to these helpers.
class SIMD {
public:
// NOTE: for memchr we have a goofy void* signature just to be an easy drop
// in replacement for the CRT version. We also give memchr8 which is just a
// typed version of memchr.
static const void* memchr(const void* ptr, int value, size_t num) {
return memchr8(reinterpret_cast<const char*>(ptr), static_cast<char>(value),
num);
}
// Search through `ptr[0..length]` for the first occurrence of `value` and
// return the pointer to it, or nullptr if it cannot be found.
static MFBT_API const char* memchr8(const char* ptr, char value,
size_t length);
// Search through `ptr[0..length]` for the first occurrence of `value` and
// return the pointer to it, or nullptr if it cannot be found.
static MFBT_API const char16_t* memchr16(const char16_t* ptr, char16_t value,
size_t length);
// Search through `ptr[0..length]` for the first occurrence of `v1` which is
// immediately followed by `v2` and return the pointer to the occurrence of
// `v1`.
static MFBT_API const char* memchr2x8(const char* ptr, char v1, char v2,
size_t length);
// Search through `ptr[0..length]` for the first occurrence of `v1` which is
// immediately followed by `v2` and return the pointer to the occurrence of
// `v1`.
static MFBT_API const char16_t* memchr2x16(const char16_t* ptr, char16_t v1,
char16_t v2, size_t length);
};
} // namespace mozilla
#endif // mozilla_SIMD_h

View File

@ -99,10 +99,12 @@ EXPORTS.mozilla = [
"SegmentedVector.h",
"SHA1.h",
"SharedLibrary.h",
"SIMD.h",
"SmallPointerArray.h",
"Span.h",
"SplayTree.h",
"SPSCQueue.h",
"SSE.h",
"StaticAnalysisFunctions.h",
"TaggedAnonymousMemory.h",
"Tainting.h",
@ -175,12 +177,18 @@ UNIFIED_SOURCES += [
"Poison.cpp",
"RandomNum.cpp",
"SHA1.cpp",
"SIMD.cpp",
"TaggedAnonymousMemory.cpp",
"UniquePtrExtensions.cpp",
"Unused.cpp",
"Utf8.cpp",
]
if CONFIG["CPU_ARCH"].startswith("x86"):
SOURCES += [
"SSE.cpp",
]
if CONFIG["MOZ_BUILD_APP"] not in (
"memory",
"tools/update-programs",

444
mfbt/tests/TestSIMD.cpp Normal file
View File

@ -0,0 +1,444 @@
/* -*- Mode: C++; tab-width: 9; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this file,
* You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "mozilla/Assertions.h"
#include "mozilla/SIMD.h"
using mozilla::SIMD;
void TestTinyString() {
const char* test = "012\n";
MOZ_RELEASE_ASSERT(SIMD::memchr8(test, '0', 3) == test + 0x0);
MOZ_RELEASE_ASSERT(SIMD::memchr8(test, '1', 3) == test + 0x1);
MOZ_RELEASE_ASSERT(SIMD::memchr8(test, '2', 3) == test + 0x2);
MOZ_RELEASE_ASSERT(SIMD::memchr8(test, '\n', 3) == nullptr);
}
void TestShortString() {
const char* test = "0123456789\n";
MOZ_RELEASE_ASSERT(SIMD::memchr8(test, '0', 10) == test + 0x0);
MOZ_RELEASE_ASSERT(SIMD::memchr8(test, '1', 10) == test + 0x1);
MOZ_RELEASE_ASSERT(SIMD::memchr8(test, '2', 10) == test + 0x2);
MOZ_RELEASE_ASSERT(SIMD::memchr8(test, '3', 10) == test + 0x3);
MOZ_RELEASE_ASSERT(SIMD::memchr8(test, '4', 10) == test + 0x4);
MOZ_RELEASE_ASSERT(SIMD::memchr8(test, '5', 10) == test + 0x5);
MOZ_RELEASE_ASSERT(SIMD::memchr8(test, '6', 10) == test + 0x6);
MOZ_RELEASE_ASSERT(SIMD::memchr8(test, '7', 10) == test + 0x7);
MOZ_RELEASE_ASSERT(SIMD::memchr8(test, '8', 10) == test + 0x8);
MOZ_RELEASE_ASSERT(SIMD::memchr8(test, '9', 10) == test + 0x9);
MOZ_RELEASE_ASSERT(SIMD::memchr8(test, '\n', 10) == nullptr);
}
void TestMediumString() {
const char* test = "0123456789abcdef\n";
MOZ_RELEASE_ASSERT(SIMD::memchr8(test, '0', 16) == test + 0x0);
MOZ_RELEASE_ASSERT(SIMD::memchr8(test, '1', 16) == test + 0x1);
MOZ_RELEASE_ASSERT(SIMD::memchr8(test, '2', 16) == test + 0x2);
MOZ_RELEASE_ASSERT(SIMD::memchr8(test, '3', 16) == test + 0x3);
MOZ_RELEASE_ASSERT(SIMD::memchr8(test, '4', 16) == test + 0x4);
MOZ_RELEASE_ASSERT(SIMD::memchr8(test, '5', 16) == test + 0x5);
MOZ_RELEASE_ASSERT(SIMD::memchr8(test, '6', 16) == test + 0x6);
MOZ_RELEASE_ASSERT(SIMD::memchr8(test, '7', 16) == test + 0x7);
MOZ_RELEASE_ASSERT(SIMD::memchr8(test, '8', 16) == test + 0x8);
MOZ_RELEASE_ASSERT(SIMD::memchr8(test, '9', 16) == test + 0x9);
MOZ_RELEASE_ASSERT(SIMD::memchr8(test, 'a', 16) == test + 0xa);
MOZ_RELEASE_ASSERT(SIMD::memchr8(test, 'b', 16) == test + 0xb);
MOZ_RELEASE_ASSERT(SIMD::memchr8(test, 'c', 16) == test + 0xc);
MOZ_RELEASE_ASSERT(SIMD::memchr8(test, 'd', 16) == test + 0xd);
MOZ_RELEASE_ASSERT(SIMD::memchr8(test, 'e', 16) == test + 0xe);
MOZ_RELEASE_ASSERT(SIMD::memchr8(test, 'f', 16) == test + 0xf);
MOZ_RELEASE_ASSERT(SIMD::memchr8(test, '\n', 16) == nullptr);
}
void TestLongString() {
// NOTE: here we make sure we go all the way up to 256 to ensure we're
// handling negative-valued chars appropriately. We don't need to bother
// testing this side of things with char16_t's because they are very
// sensibly guaranteed to be unsigned.
const size_t count = 256;
char test[count];
for (size_t i = 0; i < count; ++i) {
test[i] = static_cast<char>(i);
}
for (size_t i = 0; i < count - 1; ++i) {
MOZ_RELEASE_ASSERT(SIMD::memchr8(test, static_cast<char>(i), count - 1) ==
test + i);
}
MOZ_RELEASE_ASSERT(
SIMD::memchr8(test, static_cast<char>(count - 1), count - 1) == nullptr);
}
void TestGauntlet() {
const size_t count = 256;
char test[count];
for (size_t i = 0; i < count; ++i) {
test[i] = static_cast<char>(i);
}
for (size_t i = 0; i < count - 1; ++i) {
for (size_t j = 0; j < count - 1; ++j) {
for (size_t k = 0; k < count - 1; ++k) {
if (i >= k) {
const char* expected = nullptr;
if (j >= k && j < i) {
expected = test + j;
}
MOZ_RELEASE_ASSERT(
SIMD::memchr8(test + k, static_cast<char>(j), i - k) == expected);
}
}
}
}
}
void TestTinyString16() {
const char16_t* test = u"012\n";
MOZ_RELEASE_ASSERT(SIMD::memchr16(test, u'0', 3) == test + 0x0);
MOZ_RELEASE_ASSERT(SIMD::memchr16(test, u'1', 3) == test + 0x1);
MOZ_RELEASE_ASSERT(SIMD::memchr16(test, u'2', 3) == test + 0x2);
MOZ_RELEASE_ASSERT(SIMD::memchr16(test, u'\n', 3) == nullptr);
}
void TestShortString16() {
const char16_t* test = u"0123456789\n";
MOZ_RELEASE_ASSERT(SIMD::memchr16(test, u'0', 10) == test + 0x0);
MOZ_RELEASE_ASSERT(SIMD::memchr16(test, u'1', 10) == test + 0x1);
MOZ_RELEASE_ASSERT(SIMD::memchr16(test, u'2', 10) == test + 0x2);
MOZ_RELEASE_ASSERT(SIMD::memchr16(test, u'3', 10) == test + 0x3);
MOZ_RELEASE_ASSERT(SIMD::memchr16(test, u'4', 10) == test + 0x4);
MOZ_RELEASE_ASSERT(SIMD::memchr16(test, u'5', 10) == test + 0x5);
MOZ_RELEASE_ASSERT(SIMD::memchr16(test, u'6', 10) == test + 0x6);
MOZ_RELEASE_ASSERT(SIMD::memchr16(test, u'7', 10) == test + 0x7);
MOZ_RELEASE_ASSERT(SIMD::memchr16(test, u'8', 10) == test + 0x8);
MOZ_RELEASE_ASSERT(SIMD::memchr16(test, u'9', 10) == test + 0x9);
MOZ_RELEASE_ASSERT(SIMD::memchr16(test, u'\n', 10) == nullptr);
}
void TestMediumString16() {
const char16_t* test = u"0123456789abcdef\n";
MOZ_RELEASE_ASSERT(SIMD::memchr16(test, u'0', 16) == test + 0x0);
MOZ_RELEASE_ASSERT(SIMD::memchr16(test, u'1', 16) == test + 0x1);
MOZ_RELEASE_ASSERT(SIMD::memchr16(test, u'2', 16) == test + 0x2);
MOZ_RELEASE_ASSERT(SIMD::memchr16(test, u'3', 16) == test + 0x3);
MOZ_RELEASE_ASSERT(SIMD::memchr16(test, u'4', 16) == test + 0x4);
MOZ_RELEASE_ASSERT(SIMD::memchr16(test, u'5', 16) == test + 0x5);
MOZ_RELEASE_ASSERT(SIMD::memchr16(test, u'6', 16) == test + 0x6);
MOZ_RELEASE_ASSERT(SIMD::memchr16(test, u'7', 16) == test + 0x7);
MOZ_RELEASE_ASSERT(SIMD::memchr16(test, u'8', 16) == test + 0x8);
MOZ_RELEASE_ASSERT(SIMD::memchr16(test, u'9', 16) == test + 0x9);
MOZ_RELEASE_ASSERT(SIMD::memchr16(test, u'a', 16) == test + 0xa);
MOZ_RELEASE_ASSERT(SIMD::memchr16(test, u'b', 16) == test + 0xb);
MOZ_RELEASE_ASSERT(SIMD::memchr16(test, u'c', 16) == test + 0xc);
MOZ_RELEASE_ASSERT(SIMD::memchr16(test, u'd', 16) == test + 0xd);
MOZ_RELEASE_ASSERT(SIMD::memchr16(test, u'e', 16) == test + 0xe);
MOZ_RELEASE_ASSERT(SIMD::memchr16(test, u'f', 16) == test + 0xf);
MOZ_RELEASE_ASSERT(SIMD::memchr16(test, u'\n', 16) == nullptr);
}
void TestLongString16() {
const size_t count = 256;
char16_t test[count];
for (size_t i = 0; i < count; ++i) {
test[i] = i;
}
for (size_t i = 0; i < count - 1; ++i) {
MOZ_RELEASE_ASSERT(
SIMD::memchr16(test, static_cast<char16_t>(i), count - 1) == test + i);
}
MOZ_RELEASE_ASSERT(SIMD::memchr16(test, count - 1, count - 1) == nullptr);
}
void TestGauntlet16() {
const size_t count = 257;
char16_t test[count];
for (size_t i = 0; i < count; ++i) {
test[i] = i;
}
for (size_t i = 0; i < count - 1; ++i) {
for (size_t j = 0; j < count - 1; ++j) {
for (size_t k = 0; k < count - 1; ++k) {
if (i >= k) {
const char16_t* expected = nullptr;
if (j >= k && j < i) {
expected = test + j;
}
MOZ_RELEASE_ASSERT(SIMD::memchr16(test + k, static_cast<char16_t>(j),
i - k) == expected);
}
}
}
}
}
void TestTinyString2x8() {
const char* test = "012\n";
MOZ_RELEASE_ASSERT(SIMD::memchr2x8(test, '0', '1', 3) == test + 0x0);
MOZ_RELEASE_ASSERT(SIMD::memchr2x8(test, '1', '2', 3) == test + 0x1);
MOZ_RELEASE_ASSERT(SIMD::memchr2x8(test, '2', '\n', 3) == nullptr);
MOZ_RELEASE_ASSERT(SIMD::memchr2x8(test, '0', '2', 3) == nullptr);
MOZ_RELEASE_ASSERT(SIMD::memchr2x8(test, '1', '\n', 3) == nullptr);
}
void TestShortString2x8() {
const char* test = "0123456789\n";
MOZ_RELEASE_ASSERT(SIMD::memchr2x8(test, '0', '1', 10) == test + 0x0);
MOZ_RELEASE_ASSERT(SIMD::memchr2x8(test, '1', '2', 10) == test + 0x1);
MOZ_RELEASE_ASSERT(SIMD::memchr2x8(test, '2', '3', 10) == test + 0x2);
MOZ_RELEASE_ASSERT(SIMD::memchr2x8(test, '3', '4', 10) == test + 0x3);
MOZ_RELEASE_ASSERT(SIMD::memchr2x8(test, '4', '5', 10) == test + 0x4);
MOZ_RELEASE_ASSERT(SIMD::memchr2x8(test, '5', '6', 10) == test + 0x5);
MOZ_RELEASE_ASSERT(SIMD::memchr2x8(test, '6', '7', 10) == test + 0x6);
MOZ_RELEASE_ASSERT(SIMD::memchr2x8(test, '7', '8', 10) == test + 0x7);
MOZ_RELEASE_ASSERT(SIMD::memchr2x8(test, '8', '9', 10) == test + 0x8);
MOZ_RELEASE_ASSERT(SIMD::memchr2x8(test, '9', '\n', 10) == nullptr);
}
void TestMediumString2x8() {
const char* test = "0123456789abcdef\n";
MOZ_RELEASE_ASSERT(SIMD::memchr2x8(test, '0', '1', 16) == test + 0x0);
MOZ_RELEASE_ASSERT(SIMD::memchr2x8(test, '1', '2', 16) == test + 0x1);
MOZ_RELEASE_ASSERT(SIMD::memchr2x8(test, '2', '3', 16) == test + 0x2);
MOZ_RELEASE_ASSERT(SIMD::memchr2x8(test, '3', '4', 16) == test + 0x3);
MOZ_RELEASE_ASSERT(SIMD::memchr2x8(test, '4', '5', 16) == test + 0x4);
MOZ_RELEASE_ASSERT(SIMD::memchr2x8(test, '5', '6', 16) == test + 0x5);
MOZ_RELEASE_ASSERT(SIMD::memchr2x8(test, '6', '7', 16) == test + 0x6);
MOZ_RELEASE_ASSERT(SIMD::memchr2x8(test, '7', '8', 16) == test + 0x7);
MOZ_RELEASE_ASSERT(SIMD::memchr2x8(test, '8', '9', 16) == test + 0x8);
MOZ_RELEASE_ASSERT(SIMD::memchr2x8(test, '9', 'a', 16) == test + 0x9);
MOZ_RELEASE_ASSERT(SIMD::memchr2x8(test, 'a', 'b', 16) == test + 0xa);
MOZ_RELEASE_ASSERT(SIMD::memchr2x8(test, 'b', 'c', 16) == test + 0xb);
MOZ_RELEASE_ASSERT(SIMD::memchr2x8(test, 'c', 'd', 16) == test + 0xc);
MOZ_RELEASE_ASSERT(SIMD::memchr2x8(test, 'd', 'e', 16) == test + 0xd);
MOZ_RELEASE_ASSERT(SIMD::memchr2x8(test, 'e', 'f', 16) == test + 0xe);
MOZ_RELEASE_ASSERT(SIMD::memchr2x8(test, 'f', '\n', 16) == nullptr);
}
void TestLongString2x8() {
const size_t count = 256;
char test[count];
for (size_t i = 0; i < count; ++i) {
test[i] = static_cast<char>(i);
}
for (size_t i = 0; i < count - 2; ++i) {
MOZ_RELEASE_ASSERT(SIMD::memchr2x8(test, static_cast<char>(i),
static_cast<char>(i + 1),
count - 1) == test + i);
}
MOZ_RELEASE_ASSERT(SIMD::memchr2x8(test, static_cast<char>(count - 2),
static_cast<char>(count - 1),
count - 1) == nullptr);
}
void TestTinyString2x16() {
const char16_t* test = u"012\n";
MOZ_RELEASE_ASSERT(SIMD::memchr2x16(test, u'0', u'1', 3) == test + 0x0);
MOZ_RELEASE_ASSERT(SIMD::memchr2x16(test, u'1', u'2', 3) == test + 0x1);
MOZ_RELEASE_ASSERT(SIMD::memchr2x16(test, u'2', u'\n', 3) == nullptr);
MOZ_RELEASE_ASSERT(SIMD::memchr2x16(test, u'0', u'2', 3) == nullptr);
MOZ_RELEASE_ASSERT(SIMD::memchr2x16(test, u'1', u'\n', 3) == nullptr);
}
void TestShortString2x16() {
const char16_t* test = u"0123456789\n";
MOZ_RELEASE_ASSERT(SIMD::memchr2x16(test, u'0', u'1', 10) == test + 0x0);
MOZ_RELEASE_ASSERT(SIMD::memchr2x16(test, u'1', u'2', 10) == test + 0x1);
MOZ_RELEASE_ASSERT(SIMD::memchr2x16(test, u'2', u'3', 10) == test + 0x2);
MOZ_RELEASE_ASSERT(SIMD::memchr2x16(test, u'3', u'4', 10) == test + 0x3);
MOZ_RELEASE_ASSERT(SIMD::memchr2x16(test, u'4', u'5', 10) == test + 0x4);
MOZ_RELEASE_ASSERT(SIMD::memchr2x16(test, u'5', u'6', 10) == test + 0x5);
MOZ_RELEASE_ASSERT(SIMD::memchr2x16(test, u'6', u'7', 10) == test + 0x6);
MOZ_RELEASE_ASSERT(SIMD::memchr2x16(test, u'7', u'8', 10) == test + 0x7);
MOZ_RELEASE_ASSERT(SIMD::memchr2x16(test, u'8', u'9', 10) == test + 0x8);
MOZ_RELEASE_ASSERT(SIMD::memchr2x16(test, u'9', u'\n', 10) == nullptr);
MOZ_RELEASE_ASSERT(SIMD::memchr2x16(test, u'0', u'2', 10) == nullptr);
}
void TestMediumString2x16() {
const char16_t* test = u"0123456789abcdef\n";
MOZ_RELEASE_ASSERT(SIMD::memchr2x16(test, u'0', u'1', 16) == test + 0x0);
MOZ_RELEASE_ASSERT(SIMD::memchr2x16(test, u'1', u'2', 16) == test + 0x1);
MOZ_RELEASE_ASSERT(SIMD::memchr2x16(test, u'2', u'3', 16) == test + 0x2);
MOZ_RELEASE_ASSERT(SIMD::memchr2x16(test, u'3', u'4', 16) == test + 0x3);
MOZ_RELEASE_ASSERT(SIMD::memchr2x16(test, u'4', u'5', 16) == test + 0x4);
MOZ_RELEASE_ASSERT(SIMD::memchr2x16(test, u'5', u'6', 16) == test + 0x5);
MOZ_RELEASE_ASSERT(SIMD::memchr2x16(test, u'6', u'7', 16) == test + 0x6);
MOZ_RELEASE_ASSERT(SIMD::memchr2x16(test, u'7', u'8', 16) == test + 0x7);
MOZ_RELEASE_ASSERT(SIMD::memchr2x16(test, u'8', u'9', 16) == test + 0x8);
MOZ_RELEASE_ASSERT(SIMD::memchr2x16(test, u'9', u'a', 16) == test + 0x9);
MOZ_RELEASE_ASSERT(SIMD::memchr2x16(test, u'a', u'b', 16) == test + 0xa);
MOZ_RELEASE_ASSERT(SIMD::memchr2x16(test, u'b', u'c', 16) == test + 0xb);
MOZ_RELEASE_ASSERT(SIMD::memchr2x16(test, u'c', u'd', 16) == test + 0xc);
MOZ_RELEASE_ASSERT(SIMD::memchr2x16(test, u'd', u'e', 16) == test + 0xd);
MOZ_RELEASE_ASSERT(SIMD::memchr2x16(test, u'e', u'f', 16) == test + 0xe);
MOZ_RELEASE_ASSERT(SIMD::memchr2x16(test, u'f', u'\n', 16) == nullptr);
MOZ_RELEASE_ASSERT(SIMD::memchr2x16(test, u'0', u'2', 10) == nullptr);
}
void TestLongString2x16() {
const size_t count = 257;
char16_t test[count];
for (size_t i = 0; i < count; ++i) {
test[i] = static_cast<char16_t>(i);
}
for (size_t i = 0; i < count - 2; ++i) {
MOZ_RELEASE_ASSERT(SIMD::memchr2x16(test, static_cast<char16_t>(i),
static_cast<char16_t>(i + 1),
count - 1) == test + i);
}
MOZ_RELEASE_ASSERT(SIMD::memchr2x16(test, static_cast<char16_t>(count - 2),
static_cast<char16_t>(count - 1),
count - 1) == nullptr);
}
void TestGauntlet2x8() {
const size_t count = 256;
char test[count * 2];
// load in the evens
for (size_t i = 0; i < count / 2; ++i) {
test[i] = static_cast<char>(2 * i);
}
// load in the odds
for (size_t i = 0; i < count / 2; ++i) {
test[count / 2 + i] = static_cast<char>(2 * i + 1);
}
// load in evens and odds sequentially
for (size_t i = 0; i < count; ++i) {
test[count + i] = static_cast<char>(i);
}
for (size_t i = 0; i < count - 1; ++i) {
for (size_t j = 0; j < count - 2; ++j) {
for (size_t k = 0; k < count - 1; ++k) {
if (i > k + 1) {
const char* expected1 = nullptr;
const char* expected2 = nullptr;
if (i > j + 1) {
expected1 = test + j + count; // Add count to skip over odds/evens
if (j >= k) {
expected2 = test + j + count;
}
}
char a = static_cast<char>(j);
char b = static_cast<char>(j + 1);
// Make sure it doesn't pick up any in the alternating odd/even
MOZ_RELEASE_ASSERT(SIMD::memchr2x8(test + k, a, b, i - k + count) ==
expected1);
// Make sure we cover smaller inputs
MOZ_RELEASE_ASSERT(SIMD::memchr2x8(test + k + count, a, b, i - k) ==
expected2);
}
}
}
}
}
void TestGauntlet2x16() {
const size_t count = 1024;
char16_t test[count * 2];
// load in the evens
for (size_t i = 0; i < count / 2; ++i) {
test[i] = static_cast<char16_t>(2 * i);
}
// load in the odds
for (size_t i = 0; i < count / 2; ++i) {
test[count / 2 + i] = static_cast<char16_t>(2 * i + 1);
}
// load in evens and odds sequentially
for (size_t i = 0; i < count; ++i) {
test[count + i] = static_cast<char16_t>(i);
}
for (size_t i = 0; i < count - 1; ++i) {
for (size_t j = 0; j < count - 2; ++j) {
for (size_t k = 0; k < count - 1; ++k) {
if (i > k + 1) {
const char16_t* expected1 = nullptr;
const char16_t* expected2 = nullptr;
if (i > j + 1) {
expected1 = test + j + count; // Add count to skip over odds/evens
if (j >= k) {
expected2 = test + j + count;
}
}
char16_t a = static_cast<char16_t>(j);
char16_t b = static_cast<char16_t>(j + 1);
// Make sure it doesn't pick up any in the alternating odd/even
MOZ_RELEASE_ASSERT(SIMD::memchr2x16(test + k, a, b, i - k + count) ==
expected1);
// Make sure we cover smaller inputs
MOZ_RELEASE_ASSERT(SIMD::memchr2x16(test + k + count, a, b, i - k) ==
expected2);
}
}
}
}
}
void TestSpecialCases() {
// The following 4 asserts test the case where we do two overlapping checks,
// where the first one ends with our first search character, and the second
// one begins with our search character. Since they are overlapping, we want
// to ensure that the search function doesn't carry the match from the
// first check over to the second check.
const char* test1 = "x123456789abcdey";
MOZ_RELEASE_ASSERT(SIMD::memchr2x8(test1, 'y', 'x', 16) == nullptr);
const char* test2 = "1000000000000000200000000000000030b000000000000a40";
MOZ_RELEASE_ASSERT(SIMD::memchr2x8(test2, 'a', 'b', 50) == nullptr);
const char16_t* test1wide = u"x123456y";
MOZ_RELEASE_ASSERT(SIMD::memchr2x16(test1wide, 'y', 'x', 8) == nullptr);
const char16_t* test2wide = u"100000002000000030b0000a40";
MOZ_RELEASE_ASSERT(SIMD::memchr2x16(test2wide, 'a', 'b', 26) == nullptr);
}
int main(void) {
TestTinyString();
TestShortString();
TestMediumString();
TestLongString();
TestGauntlet();
TestTinyString16();
TestShortString16();
TestMediumString16();
TestLongString16();
TestGauntlet16();
TestTinyString2x8();
TestShortString2x8();
TestMediumString2x8();
TestLongString2x8();
TestTinyString2x16();
TestShortString2x16();
TestMediumString2x16();
TestLongString2x16();
TestSpecialCases();
// These are too slow to run all the time, but they should be run when making
// meaningful changes just to be sure.
// TestGauntlet2x8();
// TestGauntlet2x16();
return 0;
}

View File

@ -57,6 +57,7 @@ CppUnitTests(
"TestScopeExit",
"TestSegmentedVector",
"TestSHA1",
"TestSIMD",
"TestSmallPointerArray",
"TestSplayTree",
"TestTemplateLib",

View File

@ -78,14 +78,8 @@ if CONFIG["MOZ_WIDGET_TOOLKIT"]:
"arm.h",
"mips.h",
"ppc.h",
"SSE.h",
]
if CONFIG["CPU_ARCH"].startswith("x86"):
SOURCES += [
"SSE.cpp",
]
if CONFIG["CPU_ARCH"] == "arm":
SOURCES += [
"arm.cpp",

View File

@ -75,6 +75,7 @@ skip-if =
[TestScopeExit]
[TestSegmentedVector]
[TestSHA1]
[TestSIMD]
[TestSmallPointerArray]
[TestSaturate]
[TestSplayTree]