Bug 774755 - 3/8 - ANGLE r1242: reapply/update existing patches - no review

--HG--
rename : gfx/angle/src/compiler/debug.cpp => gfx/angle/src/compiler/compilerdebug.cpp
rename : gfx/angle/src/compiler/debug.h => gfx/angle/src/compiler/compilerdebug.h
This commit is contained in:
Benoit Jacob 2012-07-25 12:13:45 -04:00
parent 32588ccc59
commit 81a2926391
17 changed files with 672 additions and 39 deletions

View File

@ -6,7 +6,7 @@
#include "compiler/Diagnostics.h"
#include "compiler/debug.h"
#include "compiler/compilerdebug.h"
#include "compiler/InfoSink.h"
#include "compiler/preprocessor/new/SourceLocation.h"

View File

@ -8,7 +8,7 @@
#include <sstream>
#include "compiler/debug.h"
#include "compiler/compilerdebug.h"
#include "compiler/Diagnostics.h"
static TBehavior getBehavior(const std::string& str)

View File

@ -5,6 +5,7 @@
//
#include "compiler/MapLongVariableNames.h"
#include "spooky.h"
namespace {
@ -12,13 +13,19 @@ TString mapLongName(int id, const TString& name, bool isGlobal)
{
ASSERT(name.size() > MAX_SHORTENED_IDENTIFIER_SIZE);
TStringStream stream;
stream << "webgl_";
if (isGlobal)
stream << "g";
stream << id;
if (name[0] != '_')
stream << "_";
stream << name.substr(0, MAX_SHORTENED_IDENTIFIER_SIZE - stream.str().size());
uint64 hash = SpookyHash::Hash64(name.data(), name.length(), 0);
// We want to avoid producing a string with a double underscore,
// which would be an illegal GLSL identifier. We can assume that the
// original identifier doesn't have a double underscore, otherwise
// it's illegal anyway.
stream << (name[0] == '_' ? "webgl" : "webgl_")
<< name.substr(0, 9)
<< (name[8] == '_' ? "" : "_")
<< std::hex
<< hash;
ASSERT(stream.str().length() <= MAX_SHORTENED_IDENTIFIER_SIZE);
ASSERT(stream.str().length() >= MAX_SHORTENED_IDENTIFIER_SIZE - 2);
return stream.str();
}

View File

@ -5,7 +5,7 @@
//
#include "compiler/OutputGLSLBase.h"
#include "compiler/debug.h"
#include "compiler/compilerdebug.h"
namespace
{

View File

@ -7,7 +7,7 @@
#include "compiler/OutputHLSL.h"
#include "common/angleutils.h"
#include "compiler/debug.h"
#include "compiler/compilerdebug.h"
#include "compiler/InfoSink.h"
#include "compiler/UnfoldShortCircuit.h"
#include "compiler/SearchSymbol.h"

View File

@ -9,7 +9,7 @@
#include "compiler/BaseTypes.h"
#include "compiler/Common.h"
#include "compiler/debug.h"
#include "compiler/compilerdebug.h"
//
// Need to have association of line numbers to types in a list for building structs.

View File

@ -6,7 +6,7 @@
// debug.cpp: Debugging utilities.
#include "compiler/debug.h"
#include "compiler/compilerdebug.h"
#include <stdarg.h>
#include <stdio.h>

View File

@ -4,7 +4,7 @@
// found in the LICENSE file.
//
// debug.h: Debugging utilities.
// compilerdebug.h: Debugging utilities.
#ifndef COMPILER_DEBUG_H_
#define COMPILER_DEBUG_H_

View File

@ -37,7 +37,7 @@
#endif // ANGLE_USE_NSPR
#include "compiler/debug.h"
#include "compiler/compilerdebug.h"
//
// Thread Local Storage Operations

View File

@ -51,7 +51,7 @@ NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <string.h>
#include "common/angleutils.h"
#include "compiler/debug.h"
#include "compiler/compilerdebug.h"
#include "compiler/preprocessor/slglobals.h"
#undef malloc
@ -332,12 +332,7 @@ static int GrowAtomTable(AtomTable *atable, int size)
atable->size = 0;
}
if (!newmap || !newrev) {
/* failed to grow -- error */
if (newmap)
atable->amap = newmap;
if (newrev)
atable->arev = newrev;
return -1;
abort();
}
memset(&newmap[atable->size], 0, (size - atable->size) * sizeof(int));
memset(&newrev[atable->size], 0, (size - atable->size) * sizeof(int));

View File

@ -51,7 +51,7 @@ NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <ctype.h>
#include "common/angleutils.h"
#include "compiler/debug.h"
#include "compiler/compilerdebug.h"
#include "compiler/preprocessor/slglobals.h"
#include "compiler/util.h"

View File

@ -0,0 +1,348 @@
// Spooky Hash
// A 128-bit noncryptographic hash, for checksums and table lookup
// By Bob Jenkins. Public domain.
// Oct 31 2010: published framework, disclaimer ShortHash isn't right
// Nov 7 2010: disabled ShortHash
// Oct 31 2011: replace End, ShortMix, ShortEnd, enable ShortHash again
#include <memory.h>
#include <string.h>
#include "spooky.h"
#define ALLOW_UNALIGNED_READS 1
//
// short hash ... it could be used on any message,
// but it's used by Spooky just for short messages.
//
void SpookyHash::Short(
const void *message,
size_t length,
uint64 *hash1,
uint64 *hash2)
{
uint64 buf[sc_numVars];
union
{
const uint8 *p8;
uint32 *p32;
uint64 *p64;
size_t i;
} u;
u.p8 = (const uint8 *)message;
if (!ALLOW_UNALIGNED_READS && (u.i & 0x7))
{
memcpy(buf, message, length);
u.p64 = buf;
}
size_t remainder = length%32;
uint64 a=*hash1;
uint64 b=*hash2;
uint64 c=sc_const;
uint64 d=sc_const;
if (length > 15)
{
const uint64 *end = u.p64 + (length/32)*4;
// handle all complete sets of 32 bytes
for (; u.p64 < end; u.p64 += 4)
{
c += u.p64[0];
d += u.p64[1];
ShortMix(a,b,c,d);
a += u.p64[2];
b += u.p64[3];
}
//Handle the case of 16+ remaining bytes.
if (remainder >= 16)
{
c += u.p64[0];
d += u.p64[1];
ShortMix(a,b,c,d);
u.p64 += 2;
remainder -= 16;
}
}
// Handle the last 0..15 bytes, and its length
d = ((uint64)length) << 56;
switch (remainder)
{
case 15:
d += ((uint64)u.p8[14]) << 48;
case 14:
d += ((uint64)u.p8[13]) << 40;
case 13:
d += ((uint64)u.p8[12]) << 32;
case 12:
d += u.p32[2];
c += u.p64[0];
break;
case 11:
d += ((uint64)u.p8[10]) << 16;
case 10:
d += ((uint64)u.p8[9]) << 8;
case 9:
d += (uint64)u.p8[8];
case 8:
c += u.p64[0];
break;
case 7:
c += ((uint64)u.p8[6]) << 48;
case 6:
c += ((uint64)u.p8[5]) << 40;
case 5:
c += ((uint64)u.p8[4]) << 32;
case 4:
c += u.p32[0];
break;
case 3:
c += ((uint64)u.p8[2]) << 16;
case 2:
c += ((uint64)u.p8[1]) << 8;
case 1:
c += (uint64)u.p8[0];
break;
case 0:
c += sc_const;
d += sc_const;
}
ShortEnd(a,b,c,d);
*hash1 = a;
*hash2 = b;
}
// do the whole hash in one call
void SpookyHash::Hash128(
const void *message,
size_t length,
uint64 *hash1,
uint64 *hash2)
{
if (length < sc_bufSize)
{
Short(message, length, hash1, hash2);
return;
}
uint64 h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11;
uint64 buf[sc_numVars];
uint64 *end;
union
{
const uint8 *p8;
uint64 *p64;
size_t i;
} u;
size_t remainder;
h0=h3=h6=h9 = *hash1;
h1=h4=h7=h10 = *hash2;
h2=h5=h8=h11 = sc_const;
u.p8 = (const uint8 *)message;
end = u.p64 + (length/sc_blockSize)*sc_numVars;
// handle all whole sc_blockSize blocks of bytes
if (ALLOW_UNALIGNED_READS || ((u.i & 0x7) == 0))
{
while (u.p64 < end)
{
Mix(u.p64, h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11);
u.p64 += sc_numVars;
}
}
else
{
while (u.p64 < end)
{
memcpy(buf, u.p64, sc_blockSize);
Mix(buf, h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11);
u.p64 += sc_numVars;
}
}
// handle the last partial block of sc_blockSize bytes
remainder = (length - ((const uint8 *)end-(const uint8 *)message));
memcpy(buf, end, remainder);
memset(((uint8 *)buf)+remainder, 0, sc_blockSize-remainder);
((uint8 *)buf)[sc_blockSize-1] = remainder;
Mix(buf, h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11);
// do some final mixing
End(h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11);
*hash1 = h0;
*hash2 = h1;
}
// init spooky state
void SpookyHash::Init(uint64 seed1, uint64 seed2)
{
m_length = 0;
m_remainder = 0;
m_state[0] = seed1;
m_state[1] = seed2;
}
// add a message fragment to the state
void SpookyHash::Update(const void *message, size_t length)
{
uint64 h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11;
size_t newLength = length + m_remainder;
uint8 remainder;
union
{
const uint8 *p8;
uint64 *p64;
size_t i;
} u;
const uint64 *end;
// Is this message fragment too short? If it is, stuff it away.
if (newLength < sc_bufSize)
{
memcpy(&((uint8 *)m_data)[m_remainder], message, length);
m_length = length + m_length;
m_remainder = (uint8)newLength;
return;
}
// init the variables
if (m_length < sc_bufSize)
{
h0=h3=h6=h9 = m_state[0];
h1=h4=h7=h10 = m_state[1];
h2=h5=h8=h11 = sc_const;
}
else
{
h0 = m_state[0];
h1 = m_state[1];
h2 = m_state[2];
h3 = m_state[3];
h4 = m_state[4];
h5 = m_state[5];
h6 = m_state[6];
h7 = m_state[7];
h8 = m_state[8];
h9 = m_state[9];
h10 = m_state[10];
h11 = m_state[11];
}
m_length = length + m_length;
// if we've got anything stuffed away, use it now
if (m_remainder)
{
uint8 prefix = sc_bufSize-m_remainder;
memcpy(&(((uint8 *)m_data)[m_remainder]), message, prefix);
u.p64 = m_data;
Mix(u.p64, h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11);
Mix(&u.p64[sc_numVars], h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11);
u.p8 = ((const uint8 *)message) + prefix;
length -= prefix;
}
else
{
u.p8 = (const uint8 *)message;
}
// handle all whole blocks of sc_blockSize bytes
end = u.p64 + (length/sc_blockSize)*sc_numVars;
remainder = (uint8)(length-((const uint8 *)end-u.p8));
if (ALLOW_UNALIGNED_READS || (u.i & 0x7) == 0)
{
while (u.p64 < end)
{
Mix(u.p64, h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11);
u.p64 += sc_numVars;
}
}
else
{
while (u.p64 < end)
{
memcpy(m_data, u.p8, sc_blockSize);
Mix(m_data, h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11);
u.p64 += sc_numVars;
}
}
// stuff away the last few bytes
m_remainder = remainder;
memcpy(m_data, end, remainder);
// stuff away the variables
m_state[0] = h0;
m_state[1] = h1;
m_state[2] = h2;
m_state[3] = h3;
m_state[4] = h4;
m_state[5] = h5;
m_state[6] = h6;
m_state[7] = h7;
m_state[8] = h8;
m_state[9] = h9;
m_state[10] = h10;
m_state[11] = h11;
}
// report the hash for the concatenation of all message fragments so far
void SpookyHash::Final(uint64 *hash1, uint64 *hash2)
{
// init the variables
if (m_length < sc_bufSize)
{
Short( m_data, m_length, hash1, hash2);
return;
}
const uint64 *data = (const uint64 *)m_data;
uint8 remainder = m_remainder;
uint64 h0 = m_state[0];
uint64 h1 = m_state[1];
uint64 h2 = m_state[2];
uint64 h3 = m_state[3];
uint64 h4 = m_state[4];
uint64 h5 = m_state[5];
uint64 h6 = m_state[6];
uint64 h7 = m_state[7];
uint64 h8 = m_state[8];
uint64 h9 = m_state[9];
uint64 h10 = m_state[10];
uint64 h11 = m_state[11];
if (remainder >= sc_blockSize)
{
// m_data can contain two blocks; handle any whole first block
Mix(data, h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11);
data += sc_numVars;
remainder -= sc_blockSize;
}
// mix in the last partial block, and the length mod sc_blockSize
memset(&((uint8 *)data)[remainder], 0, (sc_blockSize-remainder));
((uint8 *)data)[sc_blockSize-1] = remainder;
Mix(data, h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11);
// do some final mixing
End(h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11);
*hash1 = h0;
*hash2 = h1;
}

View File

@ -0,0 +1,293 @@
//
// SpookyHash: a 128-bit noncryptographic hash function
// By Bob Jenkins, public domain
// Oct 31 2010: alpha, framework + SpookyHash::Mix appears right
// Oct 31 2011: alpha again, Mix only good to 2^^69 but rest appears right
// Dec 31 2011: beta, improved Mix, tested it for 2-bit deltas
// Feb 2 2012: production, same bits as beta
// Feb 5 2012: adjusted definitions of uint* to be more portable
//
// Up to 4 bytes/cycle for long messages. Reasonably fast for short messages.
// All 1 or 2 bit deltas achieve avalanche within 1% bias per output bit.
//
// This was developed for and tested on 64-bit x86-compatible processors.
// It assumes the processor is little-endian. There is a macro
// controlling whether unaligned reads are allowed (by default they are).
// This should be an equally good hash on big-endian machines, but it will
// compute different results on them than on little-endian machines.
//
// Google's CityHash has similar specs to SpookyHash, and CityHash is faster
// on some platforms. MD4 and MD5 also have similar specs, but they are orders
// of magnitude slower. CRCs are two or more times slower, but unlike
// SpookyHash, they have nice math for combining the CRCs of pieces to form
// the CRCs of wholes. There are also cryptographic hashes, but those are even
// slower than MD5.
//
#include <stddef.h>
#ifdef _MSC_VER
# define INLINE __forceinline
typedef unsigned __int64 uint64;
typedef unsigned __int32 uint32;
typedef unsigned __int16 uint16;
typedef unsigned __int8 uint8;
#else
# include <stdint.h>
# define INLINE inline
typedef uint64_t uint64;
typedef uint32_t uint32;
typedef uint16_t uint16;
typedef uint8_t uint8;
#endif
class SpookyHash
{
public:
//
// SpookyHash: hash a single message in one call, produce 128-bit output
//
static void Hash128(
const void *message, // message to hash
size_t length, // length of message in bytes
uint64 *hash1, // in/out: in seed 1, out hash value 1
uint64 *hash2); // in/out: in seed 2, out hash value 2
//
// Hash64: hash a single message in one call, return 64-bit output
//
static uint64 Hash64(
const void *message, // message to hash
size_t length, // length of message in bytes
uint64 seed) // seed
{
uint64 hash1 = seed;
Hash128(message, length, &hash1, &seed);
return hash1;
}
//
// Hash32: hash a single message in one call, produce 32-bit output
//
static uint32 Hash32(
const void *message, // message to hash
size_t length, // length of message in bytes
uint32 seed) // seed
{
uint64 hash1 = seed, hash2 = seed;
Hash128(message, length, &hash1, &hash2);
return (uint32)hash1;
}
//
// Init: initialize the context of a SpookyHash
//
void Init(
uint64 seed1, // any 64-bit value will do, including 0
uint64 seed2); // different seeds produce independent hashes
//
// Update: add a piece of a message to a SpookyHash state
//
void Update(
const void *message, // message fragment
size_t length); // length of message fragment in bytes
//
// Final: compute the hash for the current SpookyHash state
//
// This does not modify the state; you can keep updating it afterward
//
// The result is the same as if SpookyHash() had been called with
// all the pieces concatenated into one message.
//
void Final(
uint64 *hash1, // out only: first 64 bits of hash value.
uint64 *hash2); // out only: second 64 bits of hash value.
//
// left rotate a 64-bit value by k bytes
//
static INLINE uint64 Rot64(uint64 x, int k)
{
return (x << k) | (x >> (64 - k));
}
//
// This is used if the input is 96 bytes long or longer.
//
// The internal state is fully overwritten every 96 bytes.
// Every input bit appears to cause at least 128 bits of entropy
// before 96 other bytes are combined, when run forward or backward
// For every input bit,
// Two inputs differing in just that input bit
// Where "differ" means xor or subtraction
// And the base value is random
// When run forward or backwards one Mix
// I tried 3 pairs of each; they all differed by at least 212 bits.
//
static INLINE void Mix(
const uint64 *data,
uint64 &s0, uint64 &s1, uint64 &s2, uint64 &s3,
uint64 &s4, uint64 &s5, uint64 &s6, uint64 &s7,
uint64 &s8, uint64 &s9, uint64 &s10,uint64 &s11)
{
s0 += data[0]; s2 ^= s10; s11 ^= s0; s0 = Rot64(s0,11); s11 += s1;
s1 += data[1]; s3 ^= s11; s0 ^= s1; s1 = Rot64(s1,32); s0 += s2;
s2 += data[2]; s4 ^= s0; s1 ^= s2; s2 = Rot64(s2,43); s1 += s3;
s3 += data[3]; s5 ^= s1; s2 ^= s3; s3 = Rot64(s3,31); s2 += s4;
s4 += data[4]; s6 ^= s2; s3 ^= s4; s4 = Rot64(s4,17); s3 += s5;
s5 += data[5]; s7 ^= s3; s4 ^= s5; s5 = Rot64(s5,28); s4 += s6;
s6 += data[6]; s8 ^= s4; s5 ^= s6; s6 = Rot64(s6,39); s5 += s7;
s7 += data[7]; s9 ^= s5; s6 ^= s7; s7 = Rot64(s7,57); s6 += s8;
s8 += data[8]; s10 ^= s6; s7 ^= s8; s8 = Rot64(s8,55); s7 += s9;
s9 += data[9]; s11 ^= s7; s8 ^= s9; s9 = Rot64(s9,54); s8 += s10;
s10 += data[10]; s0 ^= s8; s9 ^= s10; s10 = Rot64(s10,22); s9 += s11;
s11 += data[11]; s1 ^= s9; s10 ^= s11; s11 = Rot64(s11,46); s10 += s0;
}
//
// Mix all 12 inputs together so that h0, h1 are a hash of them all.
//
// For two inputs differing in just the input bits
// Where "differ" means xor or subtraction
// And the base value is random, or a counting value starting at that bit
// The final result will have each bit of h0, h1 flip
// For every input bit,
// with probability 50 +- .3%
// For every pair of input bits,
// with probability 50 +- 3%
//
// This does not rely on the last Mix() call having already mixed some.
// Two iterations was almost good enough for a 64-bit result, but a
// 128-bit result is reported, so End() does three iterations.
//
static INLINE void EndPartial(
uint64 &h0, uint64 &h1, uint64 &h2, uint64 &h3,
uint64 &h4, uint64 &h5, uint64 &h6, uint64 &h7,
uint64 &h8, uint64 &h9, uint64 &h10,uint64 &h11)
{
h11+= h1; h2 ^= h11; h1 = Rot64(h1,44);
h0 += h2; h3 ^= h0; h2 = Rot64(h2,15);
h1 += h3; h4 ^= h1; h3 = Rot64(h3,34);
h2 += h4; h5 ^= h2; h4 = Rot64(h4,21);
h3 += h5; h6 ^= h3; h5 = Rot64(h5,38);
h4 += h6; h7 ^= h4; h6 = Rot64(h6,33);
h5 += h7; h8 ^= h5; h7 = Rot64(h7,10);
h6 += h8; h9 ^= h6; h8 = Rot64(h8,13);
h7 += h9; h10^= h7; h9 = Rot64(h9,38);
h8 += h10; h11^= h8; h10= Rot64(h10,53);
h9 += h11; h0 ^= h9; h11= Rot64(h11,42);
h10+= h0; h1 ^= h10; h0 = Rot64(h0,54);
}
static INLINE void End(
uint64 &h0, uint64 &h1, uint64 &h2, uint64 &h3,
uint64 &h4, uint64 &h5, uint64 &h6, uint64 &h7,
uint64 &h8, uint64 &h9, uint64 &h10,uint64 &h11)
{
EndPartial(h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11);
EndPartial(h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11);
EndPartial(h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11);
}
//
// The goal is for each bit of the input to expand into 128 bits of
// apparent entropy before it is fully overwritten.
// n trials both set and cleared at least m bits of h0 h1 h2 h3
// n: 2 m: 29
// n: 3 m: 46
// n: 4 m: 57
// n: 5 m: 107
// n: 6 m: 146
// n: 7 m: 152
// when run forwards or backwards
// for all 1-bit and 2-bit diffs
// with diffs defined by either xor or subtraction
// with a base of all zeros plus a counter, or plus another bit, or random
//
static INLINE void ShortMix(uint64 &h0, uint64 &h1, uint64 &h2, uint64 &h3)
{
h2 = Rot64(h2,50); h2 += h3; h0 ^= h2;
h3 = Rot64(h3,52); h3 += h0; h1 ^= h3;
h0 = Rot64(h0,30); h0 += h1; h2 ^= h0;
h1 = Rot64(h1,41); h1 += h2; h3 ^= h1;
h2 = Rot64(h2,54); h2 += h3; h0 ^= h2;
h3 = Rot64(h3,48); h3 += h0; h1 ^= h3;
h0 = Rot64(h0,38); h0 += h1; h2 ^= h0;
h1 = Rot64(h1,37); h1 += h2; h3 ^= h1;
h2 = Rot64(h2,62); h2 += h3; h0 ^= h2;
h3 = Rot64(h3,34); h3 += h0; h1 ^= h3;
h0 = Rot64(h0,5); h0 += h1; h2 ^= h0;
h1 = Rot64(h1,36); h1 += h2; h3 ^= h1;
}
//
// Mix all 4 inputs together so that h0, h1 are a hash of them all.
//
// For two inputs differing in just the input bits
// Where "differ" means xor or subtraction
// And the base value is random, or a counting value starting at that bit
// The final result will have each bit of h0, h1 flip
// For every input bit,
// with probability 50 +- .3% (it is probably better than that)
// For every pair of input bits,
// with probability 50 +- .75% (the worst case is approximately that)
//
static INLINE void ShortEnd(uint64 &h0, uint64 &h1, uint64 &h2, uint64 &h3)
{
h3 ^= h2; h2 = Rot64(h2,15); h3 += h2;
h0 ^= h3; h3 = Rot64(h3,52); h0 += h3;
h1 ^= h0; h0 = Rot64(h0,26); h1 += h0;
h2 ^= h1; h1 = Rot64(h1,51); h2 += h1;
h3 ^= h2; h2 = Rot64(h2,28); h3 += h2;
h0 ^= h3; h3 = Rot64(h3,9); h0 += h3;
h1 ^= h0; h0 = Rot64(h0,47); h1 += h0;
h2 ^= h1; h1 = Rot64(h1,54); h2 += h1;
h3 ^= h2; h2 = Rot64(h2,32); h3 += h2;
h0 ^= h3; h3 = Rot64(h3,25); h0 += h3;
h1 ^= h0; h0 = Rot64(h0,63); h1 += h0;
}
private:
//
// Short is used for messages under 192 bytes in length
// Short has a low startup cost, the normal mode is good for long
// keys, the cost crossover is at about 192 bytes. The two modes were
// held to the same quality bar.
//
static void Short(
const void *message,
size_t length,
uint64 *hash1,
uint64 *hash2);
// number of uint64's in internal state
static const size_t sc_numVars = 12;
// size of the internal state
static const size_t sc_blockSize = sc_numVars*8;
// size of buffer of unhashed data, in bytes
static const size_t sc_bufSize = 2*sc_blockSize;
//
// sc_const: a constant which:
// * is not zero
// * is odd
// * is a not-very-regular mix of 1's and 0's
// * does not need any other special mathematical properties
//
static const uint64 sc_const = 0xdeadbeefdeadbeefLL;
uint64 m_data[2*sc_numVars]; // unhashed data, for partial messages
uint64 m_state[sc_numVars]; // internal state of the hash
size_t m_length; // total length of the input so far
uint8 m_remainder; // length of unhashed data stashed in m_data
};

View File

@ -585,7 +585,7 @@
>
</File>
<File
RelativePath=".\debug.h"
RelativePath=".\compilerdebug.h"
>
</File>
<File

View File

@ -2616,6 +2616,7 @@ void Context::readPixels(GLint x, GLint y, GLsizei width, GLsizei height,
// Fast path for EXT_read_format_bgra, given
// an RGBA source buffer. Note that buffers with no
// alpha go through the slow path below.
// Note that this is also the combo exposed by IMPLEMENTATION_COLOR_READ_TYPE/FORMAT
memcpy(dest + j * outputPitch,
source + j * inputPitch,
(rect.right - rect.left) * 4);
@ -2763,10 +2764,10 @@ void Context::readPixels(GLint x, GLint y, GLsizei width, GLsizei height,
default: UNREACHABLE();
}
break;
case GL_RGB: // IMPLEMENTATION_COLOR_READ_FORMAT
case GL_RGB:
switch (type)
{
case GL_UNSIGNED_SHORT_5_6_5: // IMPLEMENTATION_COLOR_READ_TYPE
case GL_UNSIGNED_SHORT_5_6_5:
dest16[i + j * outputPitch / sizeof(unsigned short)] =
((unsigned short)(31 * b + 0.5f) << 0) |
((unsigned short)(63 * g + 0.5f) << 5) |

View File

@ -75,8 +75,8 @@ enum
MAX_FRAGMENT_UNIFORM_VECTORS_SM3 = 224 - 3,
MAX_DRAW_BUFFERS = 1,
IMPLEMENTATION_COLOR_READ_FORMAT = GL_RGB,
IMPLEMENTATION_COLOR_READ_TYPE = GL_UNSIGNED_SHORT_5_6_5
IMPLEMENTATION_COLOR_READ_FORMAT = GL_BGRA_EXT,
IMPLEMENTATION_COLOR_READ_TYPE = GL_UNSIGNED_BYTE
};
enum QueryType

View File

@ -236,17 +236,6 @@ bool validReadFormatType(GLenum format, GLenum type)
return false;
}
break;
case GL_BGRA_EXT:
switch (type)
{
case GL_UNSIGNED_BYTE:
case GL_UNSIGNED_SHORT_4_4_4_4_REV_EXT:
case GL_UNSIGNED_SHORT_1_5_5_5_REV_EXT:
break;
default:
return false;
}
break;
case gl::IMPLEMENTATION_COLOR_READ_FORMAT:
switch (type)
{