merge mozilla-inbound to mozilla-central a=merge

This commit is contained in:
Carsten "Tomcat" Book 2015-01-21 14:21:49 +01:00
commit a2f9315326
594 changed files with 43215 additions and 29455 deletions

View File

@ -22,4 +22,5 @@
# changes to stick? As of bug 928195, this shouldn't be necessary! Please
# don't change CLOBBER for WebIDL changes any more.
Bug 1121297 - Converted VolatileBuffer's CPP tests to GTests
Bug 1100184 - Lots of file moves from the /netwerk flattening and zero faith
in the build system to properly handle them.

View File

@ -29,6 +29,7 @@ int main(int argc, char* argv[], char* envp[]){
}
full_profile_path = (char*) malloc(strlen(cwd) + strlen(GAIA_PATH) + 2);
if (!full_profile_path) {
free(full_path);
error(NOMEM);
return -2;
}

View File

@ -20,10 +20,10 @@ Cu.import("resource://gre/modules/Services.jsm");
*/
/**
* If a hang hasn't been reported for more than 5 seconds, assume the
* If a hang hasn't been reported for more than 10 seconds, assume the
* content process has gotten unstuck (and hide the hang notification).
*/
const HANG_EXPIRATION_TIME = 5000;
const HANG_EXPIRATION_TIME = 10000;
let ProcessHangMonitor = {
/**

View File

@ -10,9 +10,9 @@ int operator+(X, int);
int operator++(X);
void badArithmeticsInArgs() {
int a;
int a = 1;
typedef int myint;
myint b;
myint b = 2;
X goodObj1(a);
goodObj1.baz(b);
X badObj1(a + b); // expected-error{{cannot pass an arithmetic expression of built-in types to 'X'}}

View File

@ -35,7 +35,7 @@ GENERATED_INCLUDES += [
]
LOCAL_INCLUDES += [
'/netwerk/base/src',
'/netwerk/base',
'/netwerk/protocol/res',
'/xpcom/components'
]

View File

@ -2211,17 +2211,15 @@ ia64*-hpux*)
_DEFINES_CXXFLAGS='-FI $(DEPTH)/dist/include/mozilla-config.h -DMOZILLA_CLIENT'
CFLAGS="$CFLAGS -W3 -Gy"
CXXFLAGS="$CXXFLAGS -W3 -Gy"
if test "$_CC_SUITE" -ge "11" -a "$CPU_ARCH" = "x86"; then
if test "$CPU_ARCH" = "x86"; then
dnl VS2012+ defaults to -arch:SSE2.
CFLAGS="$CFLAGS -arch:IA32"
CXXFLAGS="$CXXFLAGS -arch:IA32"
fi
if test "$_CC_SUITE" -ge "12"; then
dnl VS2013+ requires -FS when parallel building by make -jN.
dnl If nothing, compiler sometimes causes C1041 error.
CFLAGS="$CFLAGS -FS"
CXXFLAGS="$CXXFLAGS -FS"
fi
dnl VS2013+ requires -FS when parallel building by make -jN.
dnl If nothing, compiler sometimes causes C1041 error.
CFLAGS="$CFLAGS -FS"
CXXFLAGS="$CXXFLAGS -FS"
# khuey says we can safely ignore MSVC warning C4251
# MSVC warning C4244 (implicit type conversion may lose data) warns
# and requires workarounds for perfectly valid code. Also, GCC/clang
@ -2283,10 +2281,8 @@ ia64*-hpux*)
dnl both SSSE3 and SSE4.1.
HAVE_TOOLCHAIN_SUPPORT_MSSSE3=1
HAVE_TOOLCHAIN_SUPPORT_MSSE4_1=1
if test "$_CC_SUITE" -ge "11"; then
dnl allow AVX2 code from VS2012
HAVE_X86_AVX2=1
fi
dnl allow AVX2 code from VS2012
HAVE_X86_AVX2=1
MOZ_MEMORY=1
fi
AC_DEFINE(HAVE_SNPRINTF)
@ -3886,6 +3882,8 @@ LIBJPEG_TURBO_ASFLAGS=
LIBJPEG_TURBO_X86_ASM=
LIBJPEG_TURBO_X64_ASM=
LIBJPEG_TURBO_ARM_ASM=
LIBJPEG_TURBO_ARM64_ASM=
LIBJPEG_TURBO_MIPS_ASM=
MOZ_PERMISSIONS=1
MOZ_PLACES=1
MOZ_SOCIAL=1
@ -6154,6 +6152,14 @@ if test -n "$MOZ_LIBJPEG_TURBO"; then
LIBJPEG_TURBO_ASFLAGS="-march=armv7-a -mfpu=neon"
LIBJPEG_TURBO_ARM_ASM=1
;;
*:aarch64*)
LIBJPEG_TURBO_ASFLAGS="-march=armv8-a"
LIBJPEG_TURBO_ARM64_ASM=1
;;
*:mips*)
LIBJPEG_TURBO_ASFLAGS="-mdspr2"
LIBJPEG_TURBO_MIPS_ASM=1
;;
*:x86|*:i?86)
if $CC -E -dM -</dev/null | grep -q __ELF__; then
LIBJPEG_TURBO_ASFLAGS="-f elf32 -rnasm -pnasm -DPIC -DELF"
@ -8831,6 +8837,8 @@ AC_SUBST(LIBJPEG_TURBO_ASFLAGS)
AC_SUBST(LIBJPEG_TURBO_X86_ASM)
AC_SUBST(LIBJPEG_TURBO_X64_ASM)
AC_SUBST(LIBJPEG_TURBO_ARM_ASM)
AC_SUBST(LIBJPEG_TURBO_ARM64_ASM)
AC_SUBST(LIBJPEG_TURBO_MIPS_ASM)
AC_SUBST(MOZ_PACKAGE_JSSHELL)
AC_SUBST(MOZ_FOLD_LIBS)

View File

@ -411,7 +411,7 @@ LOCAL_INCLUDES += [
'/layout/style',
'/layout/svg',
'/layout/xul',
'/netwerk/base/src',
'/netwerk/base',
'/widget',
'/xpcom/ds',
]

View File

@ -509,6 +509,8 @@ Event::PreventDefaultInternal(bool aCalledByDefaultHandler)
// must be true when web apps check it after they call preventDefault().
if (!aCalledByDefaultHandler) {
mEvent->mFlags.mDefaultPreventedByContent = true;
} else {
mEvent->mFlags.mDefaultPreventedByChrome = true;
}
if (!IsTrusted()) {
@ -569,6 +571,8 @@ Event::InitEvent(const nsAString& aEventTypeArg,
mEvent->mFlags.mCancelable = aCancelableArg;
mEvent->mFlags.mDefaultPrevented = false;
mEvent->mFlags.mDefaultPreventedByContent = false;
mEvent->mFlags.mDefaultPreventedByChrome = false;
// Clearing the old targets, so that the event is targeted correctly when
// re-dispatching it.

View File

@ -204,7 +204,7 @@ protected:
uint32_t mLoadID;
};
class nsAsyncEventRunner : public nsMediaEvent
class HTMLMediaElement::nsAsyncEventRunner : public nsMediaEvent
{
private:
nsString mName;

View File

@ -217,8 +217,6 @@ public:
layers::ImageContainer* GetImageContainer();
// Dispatch events
using nsGenericHTMLElement::DispatchEvent;
virtual nsresult DispatchEvent(const nsAString& aName) MOZ_FINAL MOZ_OVERRIDE;
virtual nsresult DispatchAsyncEvent(const nsAString& aName) MOZ_FINAL MOZ_OVERRIDE;
// Dispatch events that were raised while in the bfcache
@ -980,6 +978,11 @@ protected:
// MediaElement doesn't yet have one then it will create it.
TextTrackManager* GetOrCreateTextTrackManager();
class nsAsyncEventRunner;
using nsGenericHTMLElement::DispatchEvent;
// For nsAsyncEventRunner.
nsresult DispatchEvent(const nsAString& aName);
// The current decoder. Load() has been called on this decoder.
// At most one of mDecoder and mSrcStream can be non-null.
nsRefPtr<MediaDecoder> mDecoder;

View File

@ -241,7 +241,7 @@ LOCAL_INCLUDES += [
'/layout/style',
'/layout/tables',
'/layout/xul',
'/netwerk/base/src',
'/netwerk/base',
]
FINAL_LIBRARY = 'xul'

View File

@ -0,0 +1,100 @@
<!DOCTYPE html>
<html lang="en">
<!--
https://bugzilla.mozilla.org/show_bug.cgi?id=910532
Verify that an ESC key press canceling the context menu
won't exit DOM fullscreen.
-->
<head>
<meta charset="UTF-8">
<title>Text for bug 910532</title>
<script type="application/javascript" src="/tests/SimpleTest/SimpleTest.js"></script>
<script type="application/javascript" src="/tests/SimpleTest/EventUtils.js"></script>
<script type="application/javascript" src="file_fullscreen-utils.js"></script>
<style>
body:-moz-full-screen {
background-color: red;
}
</style>
</head>
<body>
<script type="application/javascript">
const Ci = SpecialPowers.Ci;
SimpleTest.requestFlakyTimeout("We need to wait a small time to confirm " +
"that the first ESC key does not exit fullscreen.");
function ok(condition, msg) {
opener.ok(condition, "[esc-context-menu] " + msg);
}
function is(a, b, msg) {
opener.is(a, b, "[esc-context-menu] " + msg);
}
var contextMenu;
var escapeSent = 0;
function sendEscape() {
escapeSent++;
synthesizeKey("VK_ESCAPE", {});
}
function begin() {
// Copy from browser/base/content/test/general/test_contextmenu.html
var chromeWin = SpecialPowers.wrap(window)
.QueryInterface(Ci.nsIInterfaceRequestor)
.getInterface(Ci.nsIWebNavigation)
.QueryInterface(Ci.nsIDocShellTreeItem)
.rootTreeItem
.QueryInterface(Ci.nsIInterfaceRequestor)
.getInterface(Ci.nsIDOMWindow)
.QueryInterface(Ci.nsIDOMChromeWindow);
contextMenu = chromeWin.document.getElementById("contentAreaContextMenu");
ok(contextMenu, "Got context menu XUL");
addFullscreenChangeContinuation("enter", fullscreenEntered);
SpecialPowers.setBoolPref("full-screen-api.approval-required", false);
document.body.mozRequestFullScreen();
}
function finish() {
SpecialPowers.clearUserPref("full-screen-api.approval-required");
opener.nextTest();
}
function fullscreenEntered(event) {
ok(document.mozFullScreen, "Should have entered fullscreen mode");
is(document.mozFullScreenElement, document.body, "FSE should be doc");
contextMenu.addEventListener("popupshown", contextMenuOpened, false);
is(contextMenu.state, "closed", "Should not have opened context menu");
synthesizeMouseAtCenter(document.body, {type: 'contextmenu', button: 2});
}
function contextMenuOpened(event) {
contextMenu.removeEventListener("popupshown", contextMenuOpened);
is(contextMenu.state, "open", "Should have opened context menu");
addFullscreenChangeContinuation("exit", fullscreenExited);
contextMenu.addEventListener("popuphidden", contextMenuClosed, false);
sendEscape();
}
function contextMenuClosed(event) {
is(contextMenu.state, "closed", "Should have closed context menu");
setTimeout(function () {
ok(document.mozFullScreen, "Should still be in fullscreen mode");
sendEscape();
}, 100);
}
function fullscreenExited(event) {
is(escapeSent, 2, "Only the second escape should exit fullscreen");
ok(!document.mozFullScreen, "Should have left fullscreen mode");
finish();
}
</script>
</body>
</html>

View File

@ -51,6 +51,7 @@ support-files =
file_fullscreen-api.html
file_fullscreen-denied-inner.html
file_fullscreen-denied.html
file_fullscreen-esc-context-menu.html
file_fullscreen-esc-exit-inner.html
file_fullscreen-esc-exit.html
file_fullscreen-hidden.html

View File

@ -39,6 +39,7 @@ var gTestWindows = [
"file_fullscreen-ancestor-stacking-context.html",
"file_fullscreen-multiple.html",
"file_fullscreen-rollback.html",
"file_fullscreen-esc-context-menu.html",
"file_fullscreen-esc-exit.html",
"file_fullscreen-denied.html",
"file_fullscreen-api.html",

View File

@ -132,7 +132,7 @@ LOCAL_INCLUDES += [
'/hal/sandbox',
'/js/ipc',
'/layout/base',
'/netwerk/base/src',
'/netwerk/base',
'/toolkit/xre',
'/uriloader/exthandler',
'/widget',

View File

@ -16,7 +16,7 @@ FAIL_ON_WARNINGS = True
LOCAL_INCLUDES += [
"/dom/base",
"/netwerk/base/src",
"/netwerk/base",
]
FINAL_LIBRARY = 'xul'

View File

@ -1253,7 +1253,7 @@ void MediaDecoder::DurationChanged()
if (mOwner && oldDuration != mDuration && !IsInfinite()) {
DECODER_LOG("Duration changed to %lld", mDuration);
mOwner->DispatchEvent(NS_LITERAL_STRING("durationchange"));
mOwner->DispatchAsyncEvent(NS_LITERAL_STRING("durationchange"));
}
}

View File

@ -21,9 +21,6 @@ public:
// Called by the media decoder to indicate that the download is progressing.
virtual void DownloadProgressed() = 0;
// Dispatch a synchronous event to the decoder owner
virtual nsresult DispatchEvent(const nsAString& aName) = 0;
// Dispatch an asynchronous event to the decoder owner
virtual nsresult DispatchAsyncEvent(const nsAString& aName) = 0;

View File

@ -333,8 +333,9 @@ RTCPeerConnection.prototype = {
this._mustValidateRTCConfiguration(rtcConfig,
"RTCPeerConnection constructor passed invalid RTCConfiguration");
if (_globalPCList._networkdown || !this._win.navigator.onLine) {
throw new this._win.DOMError("InvalidStateError",
"Can't create RTCPeerConnections when the network is down");
throw new this._win.DOMException(
"Can't create RTCPeerConnections when the network is down",
"InvalidStateError");
}
this.makeGetterSetterEH("onaddstream");
@ -351,7 +352,7 @@ RTCPeerConnection.prototype = {
this.makeGetterSetterEH("onidpvalidationerror");
this._pc = new this._win.PeerConnectionImpl();
this._taskChain = this._win.Promise.resolve();
this._operationsChain = this._win.Promise.resolve();
this.__DOM_IMPL__._innerObject = this;
this._observer = new this._win.PeerConnectionObserver(this.__DOM_IMPL__);
@ -367,8 +368,9 @@ RTCPeerConnection.prototype = {
get _impl() {
if (!this._pc) {
throw new this._win.DOMError("InvalidStateError",
"RTCPeerConnection is gone (did you enter Offline mode?)");
throw new this._win.DOMException(
"RTCPeerConnection is gone (did you enter Offline mode?)",
"InvalidStateError");
}
return this._pc;
},
@ -383,19 +385,40 @@ RTCPeerConnection.prototype = {
this.dispatchEvent.bind(this));
},
/**
* Add a function to the task chain.
* onSuccess - legacy callback (optional)
* onError - legacy callback (optional)
*/
_queue: function(func, onSuccess, onError) {
let p = this._taskChain.then(() => {
this._checkClosed(); // TODO: Move outside promise once Bug 1107592 is fixed.
return func();
// Add a function to the internal operations chain.
_chain: function(func) {
this._checkClosed(); // out here DOMException line-numbers work.
let p = this._operationsChain.then(() => {
// Don't _checkClosed() inside the chain, because it throws, and spec
// behavior as of this writing is to NOT reject outstanding promises on
// close. This is what happens most of the time anyways, as the c++ code
// stops calling us once closed, hanging the chain. However, c++ may
// already have queued tasks on us, so if we're one of those then sit back.
if (!this._closed) {
return func();
}
});
this._taskChain = p.catch(() => {}); // don't propagate errors in taskChain!
return onSuccess? p.then(this._wrapLegacyCallback(onSuccess),
this._wrapLegacyCallback(onError)) : p;
// don't propagate errors in the operations chain (this is a fork of p).
this._operationsChain = p.catch(() => {});
return p;
},
// This wrapper helps implement legacy callbacks in a manner that produces
// correct line-numbers in errors, provided that methods validate their inputs
// before putting themselves on the pc's operations chain.
_legacyCatch: function(onSuccess, onError, func) {
if (!onSuccess) {
return func();
}
try {
return func().then(this._wrapLegacyCallback(onSuccess),
this._wrapLegacyCallback(onError));
} catch (e) {
this._wrapLegacyCallback(onError)(e);
return this._win.Promise.resolve(); // avoid webidl TypeError
}
},
_wrapLegacyCallback: function(func) {
@ -417,46 +440,44 @@ RTCPeerConnection.prototype = {
*
* WebIDL normalizes structure for us, so we test well-formed stun/turn urls,
* but not validity of servers themselves, before passing along to C++.
* ErrorMsg is passed in to detail which array-entry failed, if any.
*
* msg - Error message to detail which array-entry failed, if any.
*/
_mustValidateRTCConfiguration: function(rtcConfig, errorMsg) {
var errorCtor = this._win.DOMError;
var warningFunc = this.logWarning.bind(this);
function nicerNewURI(uriStr, errorMsg) {
let ios = Cc['@mozilla.org/network/io-service;1'].getService(Ci.nsIIOService);
_mustValidateRTCConfiguration: function(rtcConfig, msg) {
let ios = Cc['@mozilla.org/network/io-service;1'].getService(Ci.nsIIOService);
let nicerNewURI = uriStr => {
try {
return ios.newURI(uriStr, null, null);
} catch (e if (e.result == Cr.NS_ERROR_MALFORMED_URI)) {
throw new errorCtor("", errorMsg + " - malformed URI: " + uriStr);
throw new this._win.DOMException(msg + " - malformed URI: " + uriStr,
"SyntaxError");
}
}
function mustValidateServer(server) {
};
rtcConfig.iceServers.forEach(server => {
if (!server.url) {
throw new errorCtor("", errorMsg + " - missing url");
throw new this._win.DOMException(msg + " - missing url", "InvalidAccessError");
}
let url = nicerNewURI(server.url, errorMsg);
let url = nicerNewURI(server.url);
if (url.scheme in { turn:1, turns:1 }) {
if (!server.username) {
throw new errorCtor("", errorMsg + " - missing username: " + server.url);
throw new this._win.DOMException(msg + " - missing username: " + server.url,
"InvalidAccessError");
}
if (!server.credential) {
throw new errorCtor("", errorMsg + " - missing credential: " +
server.url);
throw new this._win.DOMException(msg + " - missing credential: " + server.url,
"InvalidAccessError");
}
}
else if (!(url.scheme in { stun:1, stuns:1 })) {
throw new errorCtor("", errorMsg + " - improper scheme: " + url.scheme);
throw new this._win.DOMException(msg + " - improper scheme: " + url.scheme,
"SyntaxError");
}
if (url.scheme in { stuns:1, turns:1 }) {
warningFunc(url.scheme.toUpperCase() + " is not yet supported.", null, 0);
this.logWarning(url.scheme.toUpperCase() + " is not yet supported.", null, 0);
}
}
if (rtcConfig.iceServers) {
let len = rtcConfig.iceServers.length;
for (let i=0; i < len; i++) {
mustValidateServer (rtcConfig.iceServers[i], errorMsg);
}
}
});
},
// Ideally, this should be of the form _checkState(state),
@ -465,7 +486,8 @@ RTCPeerConnection.prototype = {
// spec. See Bug 831756.
_checkClosed: function() {
if (this._closed) {
throw new this._win.DOMError("InvalidStateError", "Peer connection is closed");
throw new this._win.DOMException("Peer connection is closed",
"InvalidStateError");
}
},
@ -529,227 +551,168 @@ RTCPeerConnection.prototype = {
},
createOffer: function(optionsOrOnSuccess, onError, options) {
// TODO: Remove old constraint-like RTCOptions support soon (Bug 1064223).
// Note that webidl bindings make o.mandatory implicit but not o.optional.
function convertLegacyOptions(o) {
// Detect (mandatory OR optional) AND no other top-level members.
let lcy = ((o.mandatory && Object.keys(o.mandatory).length) || o.optional) &&
Object.keys(o).length == (o.mandatory? 1 : 0) + (o.optional? 1 : 0);
if (!lcy) {
return false;
}
let old = o.mandatory || {};
if (o.mandatory) {
delete o.mandatory;
}
if (o.optional) {
o.optional.forEach(one => {
// The old spec had optional as an array of objects w/1 attribute each.
// Assumes our JS-webidl bindings only populate passed-in properties.
let key = Object.keys(one)[0];
if (key && old[key] === undefined) {
old[key] = one[key];
}
});
delete o.optional;
}
o.offerToReceiveAudio = old.OfferToReceiveAudio;
o.offerToReceiveVideo = old.OfferToReceiveVideo;
o.mozDontOfferDataChannel = old.MozDontOfferDataChannel;
o.mozBundleOnly = old.MozBundleOnly;
Object.keys(o).forEach(k => {
if (o[k] === undefined) {
delete o[k];
}
});
return true;
}
let onSuccess;
if (optionsOrOnSuccess && typeof optionsOrOnSuccess === "function") {
if (typeof optionsOrOnSuccess == "function") {
onSuccess = optionsOrOnSuccess;
} else {
options = optionsOrOnSuccess;
onError = undefined;
}
if (options && convertLegacyOptions(options)) {
this.logWarning(
"Mandatory/optional in createOffer options is deprecated! Use " +
JSON.stringify(options) + " instead (note the case difference)!",
null, 0);
}
return this._queue(() => this._createOffer(options), onSuccess, onError);
},
return this._legacyCatch(onSuccess, onError, () => {
_createOffer: function(options) {
return new this._win.Promise((resolve, reject) => {
this._onCreateOfferSuccess = resolve;
this._onCreateOfferFailure = reject;
this._impl.createOffer(options);
});
},
// TODO: Remove old constraint-like RTCOptions support soon (Bug 1064223).
// Note that webidl bindings make o.mandatory implicit but not o.optional.
function convertLegacyOptions(o) {
// Detect (mandatory OR optional) AND no other top-level members.
let lcy = ((o.mandatory && Object.keys(o.mandatory).length) || o.optional) &&
Object.keys(o).length == (o.mandatory? 1 : 0) + (o.optional? 1 : 0);
if (!lcy) {
return false;
}
let old = o.mandatory || {};
if (o.mandatory) {
delete o.mandatory;
}
if (o.optional) {
o.optional.forEach(one => {
// The old spec had optional as an array of objects w/1 attribute each.
// Assumes our JS-webidl bindings only populate passed-in properties.
let key = Object.keys(one)[0];
if (key && old[key] === undefined) {
old[key] = one[key];
}
});
delete o.optional;
}
o.offerToReceiveAudio = old.OfferToReceiveAudio;
o.offerToReceiveVideo = old.OfferToReceiveVideo;
o.mozDontOfferDataChannel = old.MozDontOfferDataChannel;
o.mozBundleOnly = old.MozBundleOnly;
Object.keys(o).forEach(k => {
if (o[k] === undefined) {
delete o[k];
}
});
return true;
}
_createAnswer: function() {
return new this._win.Promise((resolve, reject) => {
if (!this.remoteDescription) {
throw new this._win.DOMError("InvalidStateError",
"setRemoteDescription not called");
if (options && convertLegacyOptions(options)) {
this.logWarning(
"Mandatory/optional in createOffer options is deprecated! Use " +
JSON.stringify(options) + " instead (note the case difference)!",
null, 0);
}
if (this.remoteDescription.type != "offer") {
throw new this._win.DOMError("InvalidStateError",
"No outstanding offer");
}
this._onCreateAnswerSuccess = resolve;
this._onCreateAnswerFailure = reject;
this._impl.createAnswer();
return this._chain(() => new this._win.Promise((resolve, reject) => {
this._onCreateOfferSuccess = resolve;
this._onCreateOfferFailure = reject;
this._impl.createOffer(options);
}));
});
},
createAnswer: function(onSuccess, onError) {
return this._queue(() => this._createAnswer(), onSuccess, onError);
return this._legacyCatch(onSuccess, onError, () => {
return this._chain(() => new this._win.Promise((resolve, reject) => {
// We give up line-numbers in errors by doing this here, but do all
// state-checks inside the chain, to support the legacy feature that
// callers don't have to wait for setRemoteDescription to finish.
if (!this.remoteDescription) {
throw new this._win.DOMException("setRemoteDescription not called",
"InvalidStateError");
}
if (this.remoteDescription.type != "offer") {
throw new this._win.DOMException("No outstanding offer",
"InvalidStateError");
}
this._onCreateAnswerSuccess = resolve;
this._onCreateAnswerFailure = reject;
this._impl.createAnswer();
}));
});
},
setLocalDescription: function(desc, onSuccess, onError) {
this._localType = desc.type;
return this._legacyCatch(onSuccess, onError, () => {
this._localType = desc.type;
let type;
switch (desc.type) {
case "offer":
type = Ci.IPeerConnection.kActionOffer;
break;
case "answer":
type = Ci.IPeerConnection.kActionAnswer;
break;
case "pranswer":
throw new this._win.DOMError("NotSupportedError", "pranswer not yet implemented");
default:
throw new this._win.DOMError("InvalidParameterError",
"Invalid type " + desc.type + " provided to setLocalDescription");
}
return this._queue(() => this._setLocalDescription(type, desc.sdp),
onSuccess, onError);
},
_setLocalDescription: function(type, sdp) {
return new this._win.Promise((resolve, reject) => {
this._onSetLocalDescriptionSuccess = resolve;
this._onSetLocalDescriptionFailure = reject;
this._impl.setLocalDescription(type, sdp);
let type;
switch (desc.type) {
case "offer":
type = Ci.IPeerConnection.kActionOffer;
break;
case "answer":
type = Ci.IPeerConnection.kActionAnswer;
break;
case "pranswer":
throw new this._win.DOMException("pranswer not yet implemented",
"NotSupportedError");
default:
throw new this._win.DOMException(
"Invalid type " + desc.type + " provided to setLocalDescription",
"InvalidParameterError");
}
return this._chain(() => new this._win.Promise((resolve, reject) => {
this._onSetLocalDescriptionSuccess = resolve;
this._onSetLocalDescriptionFailure = reject;
this._impl.setLocalDescription(type, desc.sdp);
}));
});
},
setRemoteDescription: function(desc, onSuccess, onError) {
this._remoteType = desc.type;
return this._legacyCatch(onSuccess, onError, () => {
this._remoteType = desc.type;
let type;
switch (desc.type) {
case "offer":
type = Ci.IPeerConnection.kActionOffer;
break;
case "answer":
type = Ci.IPeerConnection.kActionAnswer;
break;
case "pranswer":
throw new this._win.DOMError("NotSupportedError", "pranswer not yet implemented");
default:
throw new this._win.DOMError("InvalidParameterError",
"Invalid type " + desc.type + " provided to setRemoteDescription");
}
// Have to get caller's origin outside of Promise constructor and pass it in
let origin = Cu.getWebIDLCallerPrincipal().origin;
return this._queue(() => this._setRemoteDescription(type, desc.sdp, origin),
onSuccess, onError);
},
/**
* Takes a result from the IdP and checks it against expectations.
* If OK, generates events.
* Returns true if it is either present and valid, or if there is no
* need for identity.
*/
_processIdpResult: function(message) {
let good = !!message;
// This might be a valid assertion, but if we are constrained to a single peer
// identity, then we also need to make sure that the assertion matches
if (good && this._impl.peerIdentity) {
good = (message.identity === this._impl.peerIdentity);
}
if (good) {
this._impl.peerIdentity = message.identity;
this._peerIdentity = new this._win.RTCIdentityAssertion(
this._remoteIdp.provider, message.identity);
this.dispatchEvent(new this._win.Event("peeridentity"));
}
return good;
},
_setRemoteDescription: function(type, sdp, origin) {
return new this._win.Promise((resolve, reject) =>
this._setRemoteDescriptionImpl(type, sdp, origin, resolve, reject));
},
_setRemoteDescriptionImpl: function(type, sdp, origin, onSuccess, onError) {
let idpComplete = false;
let setRemoteComplete = false;
let idpError = null;
let isDone = false;
// we can run the IdP validation in parallel with setRemoteDescription this
// complicates much more than would be ideal, but it ensures that the IdP
// doesn't hold things up too much when it's not on the critical path
let allDone = () => {
if (!setRemoteComplete || !idpComplete || isDone) {
return;
let type;
switch (desc.type) {
case "offer":
type = Ci.IPeerConnection.kActionOffer;
break;
case "answer":
type = Ci.IPeerConnection.kActionAnswer;
break;
case "pranswer":
throw new this._win.DOMException("pranswer not yet implemented",
"NotSupportedError");
default:
throw new this._win.DOMException(
"Invalid type " + desc.type + " provided to setRemoteDescription",
"InvalidParameterError");
}
// May be null if the user didn't supply success/failure callbacks.
// Violation of spec, but we allow it for now
onSuccess();
isDone = true;
};
let setRemoteDone = () => {
setRemoteComplete = true;
allDone();
};
// Get caller's origin before chaining and pass it in
let origin = Cu.getWebIDLCallerPrincipal().origin;
// If we aren't waiting for something specific, allow this
// to complete asynchronously.
let idpDone;
if (!this._impl.peerIdentity) {
idpDone = this._processIdpResult.bind(this);
idpComplete = true; // lie about this for allDone()
} else {
idpDone = message => {
let idpGood = this._processIdpResult(message);
if (!idpGood) {
// iff we are waiting for a very specific peerIdentity
// call the error callback directly and then close
idpError = "Peer Identity mismatch, expected: " +
this._impl.peerIdentity;
onError(idpError);
this.close();
} else {
idpComplete = true;
allDone();
}
};
}
return this._chain(() => {
let expectedIdentity = this._impl.peerIdentity;
try {
this._remoteIdp.verifyIdentityFromSDP(sdp, origin, idpDone);
} catch (e) {
// if processing the SDP for identity doesn't work
this.logWarning(e.message, e.fileName, e.lineNumber);
idpDone(null);
}
// Do setRemoteDescription and identity validation in parallel
let p = new this._win.Promise((resolve, reject) => {
this._onSetRemoteDescriptionSuccess = resolve;
this._onSetRemoteDescriptionFailure = reject;
this._impl.setRemoteDescription(type, desc.sdp);
});
this._onSetRemoteDescriptionSuccess = setRemoteDone;
this._onSetRemoteDescriptionFailure = onError;
this._impl.setRemoteDescription(type, sdp);
let pp = new Promise(resolve =>
this._remoteIdp.verifyIdentityFromSDP(desc.sdp, origin, resolve))
.then(msg => {
// If this pc has an identity already, then identity in sdp must match
if (expectedIdentity && (!msg || msg.identity !== expectedIdentity)) {
throw new this._win.DOMException(
"Peer Identity mismatch, expected: " + expectedIdentity,
"IncompatibleSessionDescriptionError");
}
if (msg) {
// Set new identity and generate an event.
this._impl.peerIdentity = msg.identity;
this._peerIdentity = new this._win.RTCIdentityAssertion(
this._remoteIdp.provider, msg.identity);
this.dispatchEvent(new this._win.Event("peeridentity"));
}
});
// Only wait for Idp validation if we need identity matching.
return expectedIdentity? this._win.Promise.all([p, pp]).then(() => {}) : p;
});
});
},
setIdentityProvider: function(provider, protocol, username) {
@ -777,24 +740,21 @@ RTCPeerConnection.prototype = {
},
updateIce: function(config) {
throw new this._win.DOMError("NotSupportedError", "updateIce not yet implemented");
throw new this._win.DOMException("updateIce not yet implemented",
"NotSupportedError");
},
addIceCandidate: function(cand, onSuccess, onError) {
if (!cand.candidate && !cand.sdpMLineIndex) {
throw new this._win.DOMError("InvalidParameterError",
"Invalid candidate passed to addIceCandidate!");
}
return this._queue(() => this._addIceCandidate(cand), onSuccess, onError);
},
_addIceCandidate: function(cand) {
return new this._win.Promise((resolve, reject) => {
this._onAddIceCandidateSuccess = resolve;
this._onAddIceCandidateError = reject;
this._impl.addIceCandidate(cand.candidate, cand.sdpMid || "",
cand.sdpMLineIndex);
addIceCandidate: function(c, onSuccess, onError) {
return this._legacyCatch(onSuccess, onError, () => {
if (!c.candidate && !c.sdpMLineIndex) {
throw new this._win.DOMException("Invalid candidate passed to addIceCandidate!",
"InvalidParameterError");
}
return this._chain(() => new this._win.Promise((resolve, reject) => {
this._onAddIceCandidateSuccess = resolve;
this._onAddIceCandidateError = reject;
this._impl.addIceCandidate(c.candidate, c.sdpMid || "", c.sdpMLineIndex);
}));
});
},
@ -804,19 +764,22 @@ RTCPeerConnection.prototype = {
removeStream: function(stream) {
// Bug 844295: Not implementing this functionality.
throw new this._win.DOMError("NotSupportedError", "removeStream not yet implemented");
throw new this._win.DOMException("removeStream not yet implemented",
"NotSupportedError");
},
getStreamById: function(id) {
throw new this._win.DOMError("NotSupportedError", "getStreamById not yet implemented");
throw new this._win.DOMException("getStreamById not yet implemented",
"NotSupportedError");
},
addTrack: function(track, stream) {
if (stream.currentTime === undefined) {
throw new this._win.DOMError("InvalidParameterError", "invalid stream.");
throw new this._win.DOMException("invalid stream.", "InvalidParameterError");
}
if (stream.getTracks().indexOf(track) == -1) {
throw new this._win.DOMError("InvalidParameterError", "track is not in stream.");
if (stream.getTracks().indexOf(track) < 0) {
throw new this._win.DOMException("track is not in stream.",
"InvalidParameterError");
}
this._checkClosed();
this._impl.addTrack(track, stream);
@ -829,11 +792,12 @@ RTCPeerConnection.prototype = {
removeTrack: function(sender) {
// Bug 844295: Not implementing this functionality.
throw new this._win.DOMError("NotSupportedError", "removeTrack not yet implemented");
throw new this._win.DOMException("removeTrack not yet implemented",
"NotSupportedError");
},
_replaceTrack: function(sender, withTrack) {
// TODO: Do a (sender._stream.getTracks().indexOf(track) == -1) check
// TODO: Do a (sender._stream.getTracks().indexOf(track) < 0) check
// on both track args someday.
//
// The proposed API will be that both tracks must already be in the same
@ -961,14 +925,12 @@ RTCPeerConnection.prototype = {
},
getStats: function(selector, onSuccess, onError) {
return this._queue(() => this._getStats(selector), onSuccess, onError);
},
_getStats: function(selector) {
return new this._win.Promise((resolve, reject) => {
this._onGetStatsSuccess = resolve;
this._onGetStatsFailure = reject;
this._impl.getStats(selector);
return this._legacyCatch(onSuccess, onError, () => {
return this._chain(() => new this._win.Promise((resolve, reject) => {
this._onGetStatsSuccess = resolve;
this._onGetStatsFailure = reject;
this._impl.getStats(selector);
}));
});
},
@ -995,10 +957,10 @@ RTCPeerConnection.prototype = {
this.logWarning("Deprecated RTCDataChannelInit dictionary entry stream used!", null, 0);
}
if (dict.maxRetransmitTime != undefined &&
dict.maxRetransmits != undefined) {
throw new this._win.DOMError("InvalidParameterError",
"Both maxRetransmitTime and maxRetransmits cannot be provided");
if (dict.maxRetransmitTime !== null && dict.maxRetransmits !== null) {
throw new this._win.DOMException(
"Both maxRetransmitTime and maxRetransmits cannot be provided",
"InvalidParameterError");
}
let protocol;
if (dict.protocol == undefined) {
@ -1043,7 +1005,7 @@ PeerConnectionObserver.prototype = {
this._dompc = dompc._innerObject;
},
newError: function(code, message) {
newError: function(message, code) {
// These strings must match those defined in the WebRTC spec.
const reasonName = [
"",
@ -1058,7 +1020,7 @@ PeerConnectionObserver.prototype = {
"InternalError"
];
let name = reasonName[Math.min(code, reasonName.length - 1)];
return new this._dompc._win.DOMError(name, message);
return new this._dompc._win.DOMException(message, name);
},
dispatchEvent: function(event) {
@ -1079,7 +1041,7 @@ PeerConnectionObserver.prototype = {
},
onCreateOfferError: function(code, message) {
this._dompc._onCreateOfferFailure(this.newError(code, message));
this._dompc._onCreateOfferFailure(this.newError(message, code));
},
onCreateAnswerSuccess: function(sdp) {
@ -1096,7 +1058,7 @@ PeerConnectionObserver.prototype = {
},
onCreateAnswerError: function(code, message) {
this._dompc._onCreateAnswerFailure(this.newError(code, message));
this._dompc._onCreateAnswerFailure(this.newError(message, code));
},
onSetLocalDescriptionSuccess: function() {
@ -1109,12 +1071,12 @@ PeerConnectionObserver.prototype = {
onSetLocalDescriptionError: function(code, message) {
this._localType = null;
this._dompc._onSetLocalDescriptionFailure(this.newError(code, message));
this._dompc._onSetLocalDescriptionFailure(this.newError(message, code));
},
onSetRemoteDescriptionError: function(code, message) {
this._remoteType = null;
this._dompc._onSetRemoteDescriptionFailure(this.newError(code, message));
this._dompc._onSetRemoteDescriptionFailure(this.newError(message, code));
},
onAddIceCandidateSuccess: function() {
@ -1122,7 +1084,7 @@ PeerConnectionObserver.prototype = {
},
onAddIceCandidateError: function(code, message) {
this._dompc._onAddIceCandidateError(this.newError(code, message));
this._dompc._onAddIceCandidateError(this.newError(message, code));
},
onIceCandidate: function(level, mid, candidate) {
@ -1250,7 +1212,7 @@ PeerConnectionObserver.prototype = {
},
onGetStatsError: function(code, message) {
this._dompc._onGetStatsFailure(this.newError(code, message));
this._dompc._onGetStatsFailure(this.newError(message, code));
},
onAddStream: function(stream) {
@ -1287,7 +1249,7 @@ PeerConnectionObserver.prototype = {
var pc = this._dompc;
pc._onReplaceTrackWithTrack = null;
pc._onReplaceTrackSender = null;
pc._onReplaceTrackError(this.newError(code, message));
pc._onReplaceTrackError(this.newError(message, code));
},
foundIceCandidate: function(cand) {
@ -1333,7 +1295,7 @@ RTCRtpSender.prototype = {
QueryInterface: XPCOMUtils.generateQI([Ci.nsISupports]),
replaceTrack: function(withTrack) {
return this._pc._queue(() => this._pc._replaceTrack(this, withTrack));
return this._pc._chain(() => this._pc._replaceTrack(this, withTrack));
}
};

View File

@ -95,9 +95,12 @@ PeerConnectionIdp.prototype = {
_getIdentityFromSdp: function(sdp) {
// a=identity is session level
let idMatch;
let mLineMatch = sdp.match(PeerConnectionIdp._mLinePattern);
let sessionLevel = sdp.substring(0, mLineMatch.index);
let idMatch = sessionLevel.match(PeerConnectionIdp._identityPattern);
if (mLineMatch) {
let sessionLevel = sdp.substring(0, mLineMatch.index);
idMatch = sessionLevel.match(PeerConnectionIdp._identityPattern);
}
if (idMatch) {
let assertion = {};
try {

View File

@ -18,6 +18,7 @@
#include "mp4_demuxer/DecoderData.h"
#include "prlog.h"
#include "gfx2DGlue.h"
#include "gfxWindowsPlatform.h"
#ifdef PR_LOGGING
PRLogModuleInfo* GetDemuxerLog();
@ -149,6 +150,10 @@ WMFVideoMFTManager::InitializeDXVA()
return false;
}
if (gfxWindowsPlatform::GetPlatform()->IsWARP()) {
return false;
}
// The DXVA manager must be created on the main thread.
nsRefPtr<CreateDXVAManagerEvent> event(new CreateDXVAManagerEvent());
NS_DispatchToMainThread(event, NS_DISPATCH_SYNC);

View File

@ -22,3 +22,5 @@ UNIFIED_SOURCES += [
FINAL_LIBRARY = 'xul'
FAIL_ON_WARNINGS = True
CXXFLAGS += CONFIG['MOZ_CAIRO_CFLAGS']

View File

@ -317,7 +317,7 @@ GMPChild::PreLoadLibraries(const std::string& aPluginPath)
std::ifstream stream;
#ifdef _MSC_VER
stream.open(path.get());
stream.open(static_cast<const wchar_t*>(path.get()));
#else
stream.open(NS_ConvertUTF16toUTF8(path).get());
#endif

View File

@ -13,10 +13,6 @@ namespace mozilla
class MockMediaDecoderOwner : public MediaDecoderOwner
{
public:
virtual nsresult DispatchEvent(const nsAString& aName) MOZ_OVERRIDE
{
return NS_OK;
}
virtual nsresult DispatchAsyncEvent(const nsAString& aName) MOZ_OVERRIDE
{
return NS_OK;

View File

@ -339,7 +339,7 @@ TrackBuffer::EvictData(double aPlaybackTime,
bool evicted = toEvict < (totalSize - aThreshold);
if (evicted) {
nsRefPtr<TimeRanges> ranges = new TimeRanges();
nsRefPtr<dom::TimeRanges> ranges = new dom::TimeRanges();
mCurrentDecoder->GetBuffered(ranges);
*aBufferStartTime = std::max(0.0, ranges->GetStartTime());
}

View File

@ -27,25 +27,25 @@ runWithMSE(function (ms, v) {
v.addEventListener("loadedmetadata", function () {
v.addEventListener("durationchange", function () {
durationChangeCount++;
if (durationChangeCount == 1) {
sb.addEventListener('updateend', function(e) {
sb.removeEventListener('updateend', arguments.callee);
sb.appendBuffer(new Uint8Array(arrayBuffer, 318));
});
}
});
// Set mediasource duration to 0, so future appendBuffer
// will update the mediasource duration
// setting ms.duration will fire updatestart/update/updateend
// event as per w3c spec
// event as per w3c spec followed by a durationchange
ms.duration = 0;
});
} else if (updateCount == 2) {
// will fire updatestart/update/updateend
// and a durationchange
sb.appendBuffer(new Uint8Array(arrayBuffer, 318));
} else if (updateCount == 3) {
// this will not fire durationchange as new duration == old duration
ms.endOfStream();
}
});
});
});
v.addEventListener("loadeddata", function () {
ms.addEventListener("sourceended", function () {
// XXX: Duration should be exactly 4.0, see bug 1065207.
is(durationChangeCount, 2, "durationchange not fired as many times as expected");
ok(Math.abs(v.duration - 4) <= 0.002, "Video has correct duration");

View File

@ -251,7 +251,7 @@ LOCAL_INCLUDES += [
'/dom/camera',
'/layout/generic',
'/layout/xul',
'/netwerk/base/src',
'/netwerk/base',
]
if CONFIG['MOZ_DIRECTSHOW']:

View File

@ -511,9 +511,13 @@ bool MediaCodecProxy::Prepare()
bool MediaCodecProxy::UpdateOutputBuffers()
{
if (mCodec == nullptr) {
MCP_LOG("MediaCodec has not been inited from input!");
return false;
// Read Lock for mCodec
{
RWLock::AutoRLock autolock(mCodecLock);
if (mCodec == nullptr) {
MCP_LOG("MediaCodec has not been inited from UpdateOutputBuffers");
return false;
}
}
status_t err = getOutputBuffers(&mOutputBuffers);
@ -527,9 +531,13 @@ bool MediaCodecProxy::UpdateOutputBuffers()
status_t MediaCodecProxy::Input(const uint8_t* aData, uint32_t aDataSize,
int64_t aTimestampUsecs, uint64_t aflags)
{
if (mCodec == nullptr) {
MCP_LOG("MediaCodec has not been inited from input!");
return NO_INIT;
// Read Lock for mCodec
{
RWLock::AutoRLock autolock(mCodecLock);
if (mCodec == nullptr) {
MCP_LOG("MediaCodec has not been inited from input!");
return NO_INIT;
}
}
size_t index;
@ -560,9 +568,13 @@ status_t MediaCodecProxy::Input(const uint8_t* aData, uint32_t aDataSize,
status_t MediaCodecProxy::Output(MediaBuffer** aBuffer, int64_t aTimeoutUs)
{
if (mCodec == nullptr) {
MCP_LOG("MediaCodec has not been inited from output!");
return NO_INIT;
// Read Lock for mCodec
{
RWLock::AutoRLock autolock(mCodecLock);
if (mCodec == nullptr) {
MCP_LOG("MediaCodec has not been inited from output!");
return NO_INIT;
}
}
size_t index = 0;

View File

@ -33,6 +33,7 @@
#include "MediaStreamSource.h"
#include "MediaTaskQueue.h"
#include "MP3FrameParser.h"
#include "nsMimeTypes.h"
#include "nsThreadUtils.h"
#include "ImageContainer.h"
#include "SharedThreadPool.h"
@ -688,7 +689,9 @@ MediaCodecReader::ReadMetadata(MediaInfo* aInfo,
return NS_ERROR_FAILURE;
}
if (!TriggerIncrementalParser()) {
bool incrementalParserNeeded =
mDecoder->GetResource()->GetContentType().EqualsASCII(AUDIO_MP3);
if (incrementalParserNeeded && !TriggerIncrementalParser()) {
return NS_ERROR_FAILURE;
}
@ -1419,10 +1422,10 @@ MediaCodecReader::TriggerIncrementalParser()
mParsedDataLength = INT64_C(0);
// MP3 file duration
mMP3FrameParser = new MP3FrameParser(mDecoder->GetResource()->GetLength());
const char* mime = nullptr;
if (mMetaData->findCString(kKeyMIMEType, &mime) &&
!strcasecmp(mime, MEDIA_MIMETYPE_AUDIO_MPEG)) {
mMP3FrameParser = new MP3FrameParser(mDecoder->GetResource()->GetLength());
{
MonitorAutoUnlock monUnlock(mParserMonitor);
// trigger parsing logic and wait for finishing parsing data in the beginning.

View File

@ -26,14 +26,14 @@
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
// For M_PI from cmath
#ifdef _MSC_VER
# define _USE_MATH_DEFINES
#endif
// For M_PI
// VS2015 requires <math.h> to be used; <cmath> doesn't seem to honor
// _USE_MATH_DEFINES.
#define _USE_MATH_DEFINES
#include <math.h>
#include "Biquad.h"
#include <cmath>
#include <float.h>
#include <algorithm>

View File

@ -17,6 +17,7 @@
#include "ImageContainer.h"
#include "Layers.h"
#include "mozilla/layers/LayersTypes.h"
#include "gfxWindowsPlatform.h"
#ifndef MOZ_SAMPLE_TYPE_FLOAT32
#error We expect 32bit float audio samples on desktop for the Windows Media Foundation media backend.
@ -110,6 +111,10 @@ WMFReader::InitializeDXVA()
return false;
}
if (gfxWindowsPlatform::GetPlatform()->IsWARP()) {
return false;
}
mDXVA2Manager = DXVA2Manager::Create();
return mDXVA2Manager != nullptr;

View File

@ -30,3 +30,5 @@ FINAL_LIBRARY = 'xul'
if CONFIG['OS_ARCH'] == 'WINNT':
DEFINES['NOMINMAX'] = True
CXXFLAGS += CONFIG['MOZ_CAIRO_CFLAGS']

View File

@ -29,5 +29,5 @@ FAIL_ON_WARNINGS = True
FINAL_LIBRARY = 'xul'
LOCAL_INCLUDES += [
'/caps',
'/netwerk/base/src',
'/netwerk/base',
]

View File

@ -12,7 +12,7 @@
#include <fstream>
#if defined(_MSC_VER)
#include <hash_set>
#include <unordered_set>
#else
#include <set>
#endif
@ -53,7 +53,7 @@ protected:
virtual void Flush() = 0;
#if defined(_MSC_VER)
typedef stdext::hash_set<const void*> ObjectSet;
typedef std::unordered_set<const void*> ObjectSet;
#else
typedef std::set<const void*> ObjectSet;
#endif

View File

@ -14,11 +14,7 @@
#include <vector>
#include <sstream>
#ifdef _MSC_VER
#include <hash_set>
#else
#include <unordered_set>
#endif
struct IDWriteFactory;
@ -165,11 +161,7 @@ private:
friend class AutoSaveRestoreClippedOut;
friend class SourceSurfaceD2DTarget;
#ifdef _MSC_VER
typedef stdext::hash_set<DrawTargetD2D*> TargetSet;
#else
typedef std::unordered_set<DrawTargetD2D*> TargetSet;
#endif
bool InitD2DRenderTarget();
void PrepareForDrawing(ID2D1RenderTarget *aRT);

View File

@ -15,11 +15,7 @@
#include <vector>
#include <sstream>
#ifdef _MSC_VER
#include <hash_set>
#else
#include <unordered_set>
#endif
struct IDWriteFactory;
@ -154,11 +150,7 @@ public:
private:
friend class SourceSurfaceD2D1;
#ifdef _MSC_VER
typedef stdext::hash_set<DrawTargetD2D1*> TargetSet;
#else
typedef std::unordered_set<DrawTargetD2D1*> TargetSet;
#endif
// This function will mark the surface as changing, and make sure any
// copy-on-write snapshots are notified.

View File

@ -1,4 +1,5 @@
/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/* vim:set ts=4 sw=4 sts=4 et: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
@ -365,6 +366,8 @@ StaticAutoPtr<LayerScopeWebSocketManager> WebSocketHelper::sWebSocketManager;
* 1. DebugGLFrameStatusData (Frame start/end packet)
* 2. DebugGLColorData (Color data packet)
* 3. DebugGLTextureData (Texture data packet)
* 4. DebugGLLayersData (Layers Tree data packet)
* 5. DebugGLMetaData (Meta data packet)
*/
class DebugGLData: public LinkedListElement<DebugGLData> {
public:
@ -566,6 +569,37 @@ protected:
UniquePtr<Packet> mPacket;
};
class DebugGLMetaData : public DebugGLData
{
public:
DebugGLMetaData(Packet::DataType aDataType,
bool aValue)
: DebugGLData(aDataType),
mComposedByHwc(aValue)
{ }
explicit DebugGLMetaData(Packet::DataType aDataType)
: DebugGLData(aDataType),
mComposedByHwc(false)
{ }
virtual bool Write() MOZ_OVERRIDE {
Packet packet;
packet.set_type(mDataType);
MetaPacket* mp = packet.mutable_meta();
mp->set_composedbyhwc(mComposedByHwc);
if (!WriteToStream(packet))
return false;
return true;
}
protected:
bool mComposedByHwc;
};
class DebugListener : public nsIServerSocketListener
{
virtual ~DebugListener() { }
@ -1005,6 +1039,16 @@ LayerScope::CleanLayer()
}
}
void
LayerScope::SetHWComposed()
{
if (CheckSendable()) {
WebSocketHelper::GetSocketManager()->AppendDebugData(
new DebugGLMetaData(Packet::META, true));
}
}
// ----------------------------------------------
// LayerScopeAutoFrame implementation
// ----------------------------------------------

View File

@ -1,4 +1,5 @@
/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/* vim:set ts=4 sw=4 sts=4 et: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
@ -34,6 +35,7 @@ public:
static void SendLayerDump(UniquePtr<layerscope::Packet> aPacket);
static bool CheckSendable();
static void CleanLayer();
static void SetHWComposed();
private:
static void Init();

View File

@ -662,6 +662,7 @@ LayerManagerComposite::Render()
}
if (!mTarget && composer2D && composer2D->TryRender(mRoot, mGeometryChanged)) {
LayerScope::SetHWComposed();
if (mFPS) {
double fps = mFPS->mCompositionFps.AddFrameAndGetFps(TimeStamp::Now());
if (gfxPrefs::LayersDrawFPS()) {

View File

@ -25,6 +25,7 @@ void protobuf_ShutdownFile_LayerScopePacket_2eproto() {
delete LayersPacket_Layer_Region::default_instance_;
delete LayersPacket_Layer_Matrix::default_instance_;
delete LayersPacket_Layer_Shadow::default_instance_;
delete MetaPacket::default_instance_;
delete Packet::default_instance_;
}
@ -44,6 +45,7 @@ void protobuf_AddDesc_LayerScopePacket_2eproto() {
LayersPacket_Layer_Region::default_instance_ = new LayersPacket_Layer_Region();
LayersPacket_Layer_Matrix::default_instance_ = new LayersPacket_Layer_Matrix();
LayersPacket_Layer_Shadow::default_instance_ = new LayersPacket_Layer_Shadow();
MetaPacket::default_instance_ = new MetaPacket();
Packet::default_instance_ = new Packet();
FramePacket::default_instance_->InitAsDefaultInstance();
ColorPacket::default_instance_->InitAsDefaultInstance();
@ -55,6 +57,7 @@ void protobuf_AddDesc_LayerScopePacket_2eproto() {
LayersPacket_Layer_Region::default_instance_->InitAsDefaultInstance();
LayersPacket_Layer_Matrix::default_instance_->InitAsDefaultInstance();
LayersPacket_Layer_Shadow::default_instance_->InitAsDefaultInstance();
MetaPacket::default_instance_->InitAsDefaultInstance();
Packet::default_instance_->InitAsDefaultInstance();
::google::protobuf::internal::OnShutdown(&protobuf_ShutdownFile_LayerScopePacket_2eproto);
}
@ -3028,6 +3031,162 @@ void LayersPacket::Swap(LayersPacket* other) {
}
// ===================================================================
#ifndef _MSC_VER
const int MetaPacket::kComposedByHwcFieldNumber;
#endif // !_MSC_VER
MetaPacket::MetaPacket()
: ::google::protobuf::MessageLite() {
SharedCtor();
}
void MetaPacket::InitAsDefaultInstance() {
}
MetaPacket::MetaPacket(const MetaPacket& from)
: ::google::protobuf::MessageLite() {
SharedCtor();
MergeFrom(from);
}
void MetaPacket::SharedCtor() {
_cached_size_ = 0;
composedbyhwc_ = false;
::memset(_has_bits_, 0, sizeof(_has_bits_));
}
MetaPacket::~MetaPacket() {
SharedDtor();
}
void MetaPacket::SharedDtor() {
if (this != default_instance_) {
}
}
void MetaPacket::SetCachedSize(int size) const {
GOOGLE_SAFE_CONCURRENT_WRITES_BEGIN();
_cached_size_ = size;
GOOGLE_SAFE_CONCURRENT_WRITES_END();
}
const MetaPacket& MetaPacket::default_instance() {
if (default_instance_ == NULL) protobuf_AddDesc_LayerScopePacket_2eproto(); return *default_instance_;
}
MetaPacket* MetaPacket::default_instance_ = NULL;
MetaPacket* MetaPacket::New() const {
return new MetaPacket;
}
void MetaPacket::Clear() {
if (_has_bits_[0 / 32] & (0xffu << (0 % 32))) {
composedbyhwc_ = false;
}
::memset(_has_bits_, 0, sizeof(_has_bits_));
}
bool MetaPacket::MergePartialFromCodedStream(
::google::protobuf::io::CodedInputStream* input) {
#define DO_(EXPRESSION) if (!(EXPRESSION)) return false
::google::protobuf::uint32 tag;
while ((tag = input->ReadTag()) != 0) {
switch (::google::protobuf::internal::WireFormatLite::GetTagFieldNumber(tag)) {
// optional bool composedByHwc = 1;
case 1: {
if (::google::protobuf::internal::WireFormatLite::GetTagWireType(tag) ==
::google::protobuf::internal::WireFormatLite::WIRETYPE_VARINT) {
DO_((::google::protobuf::internal::WireFormatLite::ReadPrimitive<
bool, ::google::protobuf::internal::WireFormatLite::TYPE_BOOL>(
input, &composedbyhwc_)));
set_has_composedbyhwc();
} else {
goto handle_uninterpreted;
}
if (input->ExpectAtEnd()) return true;
break;
}
default: {
handle_uninterpreted:
if (::google::protobuf::internal::WireFormatLite::GetTagWireType(tag) ==
::google::protobuf::internal::WireFormatLite::WIRETYPE_END_GROUP) {
return true;
}
DO_(::google::protobuf::internal::WireFormatLite::SkipField(input, tag));
break;
}
}
}
return true;
#undef DO_
}
void MetaPacket::SerializeWithCachedSizes(
::google::protobuf::io::CodedOutputStream* output) const {
// optional bool composedByHwc = 1;
if (has_composedbyhwc()) {
::google::protobuf::internal::WireFormatLite::WriteBool(1, this->composedbyhwc(), output);
}
}
int MetaPacket::ByteSize() const {
int total_size = 0;
if (_has_bits_[0 / 32] & (0xffu << (0 % 32))) {
// optional bool composedByHwc = 1;
if (has_composedbyhwc()) {
total_size += 1 + 1;
}
}
GOOGLE_SAFE_CONCURRENT_WRITES_BEGIN();
_cached_size_ = total_size;
GOOGLE_SAFE_CONCURRENT_WRITES_END();
return total_size;
}
void MetaPacket::CheckTypeAndMergeFrom(
const ::google::protobuf::MessageLite& from) {
MergeFrom(*::google::protobuf::down_cast<const MetaPacket*>(&from));
}
void MetaPacket::MergeFrom(const MetaPacket& from) {
GOOGLE_CHECK_NE(&from, this);
if (from._has_bits_[0 / 32] & (0xffu << (0 % 32))) {
if (from.has_composedbyhwc()) {
set_composedbyhwc(from.composedbyhwc());
}
}
}
void MetaPacket::CopyFrom(const MetaPacket& from) {
if (&from == this) return;
Clear();
MergeFrom(from);
}
bool MetaPacket::IsInitialized() const {
return true;
}
void MetaPacket::Swap(MetaPacket* other) {
if (other != this) {
std::swap(composedbyhwc_, other->composedbyhwc_);
std::swap(_has_bits_[0], other->_has_bits_[0]);
std::swap(_cached_size_, other->_cached_size_);
}
}
::std::string MetaPacket::GetTypeName() const {
return "mozilla.layers.layerscope.MetaPacket";
}
// ===================================================================
bool Packet_DataType_IsValid(int value) {
@ -3037,6 +3196,7 @@ bool Packet_DataType_IsValid(int value) {
case 3:
case 4:
case 5:
case 6:
return true;
default:
return false;
@ -3049,6 +3209,7 @@ const Packet_DataType Packet::FRAMEEND;
const Packet_DataType Packet::COLOR;
const Packet_DataType Packet::TEXTURE;
const Packet_DataType Packet::LAYERS;
const Packet_DataType Packet::META;
const Packet_DataType Packet::DataType_MIN;
const Packet_DataType Packet::DataType_MAX;
const int Packet::DataType_ARRAYSIZE;
@ -3059,6 +3220,7 @@ const int Packet::kFrameFieldNumber;
const int Packet::kColorFieldNumber;
const int Packet::kTextureFieldNumber;
const int Packet::kLayersFieldNumber;
const int Packet::kMetaFieldNumber;
#endif // !_MSC_VER
Packet::Packet()
@ -3071,6 +3233,7 @@ void Packet::InitAsDefaultInstance() {
color_ = const_cast< ::mozilla::layers::layerscope::ColorPacket*>(&::mozilla::layers::layerscope::ColorPacket::default_instance());
texture_ = const_cast< ::mozilla::layers::layerscope::TexturePacket*>(&::mozilla::layers::layerscope::TexturePacket::default_instance());
layers_ = const_cast< ::mozilla::layers::layerscope::LayersPacket*>(&::mozilla::layers::layerscope::LayersPacket::default_instance());
meta_ = const_cast< ::mozilla::layers::layerscope::MetaPacket*>(&::mozilla::layers::layerscope::MetaPacket::default_instance());
}
Packet::Packet(const Packet& from)
@ -3086,6 +3249,7 @@ void Packet::SharedCtor() {
color_ = NULL;
texture_ = NULL;
layers_ = NULL;
meta_ = NULL;
::memset(_has_bits_, 0, sizeof(_has_bits_));
}
@ -3099,6 +3263,7 @@ void Packet::SharedDtor() {
delete color_;
delete texture_;
delete layers_;
delete meta_;
}
}
@ -3132,6 +3297,9 @@ void Packet::Clear() {
if (has_layers()) {
if (layers_ != NULL) layers_->::mozilla::layers::layerscope::LayersPacket::Clear();
}
if (has_meta()) {
if (meta_ != NULL) meta_->::mozilla::layers::layerscope::MetaPacket::Clear();
}
}
::memset(_has_bits_, 0, sizeof(_has_bits_));
}
@ -3212,6 +3380,20 @@ bool Packet::MergePartialFromCodedStream(
} else {
goto handle_uninterpreted;
}
if (input->ExpectTag(50)) goto parse_meta;
break;
}
// optional .mozilla.layers.layerscope.MetaPacket meta = 6;
case 6: {
if (::google::protobuf::internal::WireFormatLite::GetTagWireType(tag) ==
::google::protobuf::internal::WireFormatLite::WIRETYPE_LENGTH_DELIMITED) {
parse_meta:
DO_(::google::protobuf::internal::WireFormatLite::ReadMessageNoVirtual(
input, mutable_meta()));
} else {
goto handle_uninterpreted;
}
if (input->ExpectAtEnd()) return true;
break;
}
@ -3263,6 +3445,12 @@ void Packet::SerializeWithCachedSizes(
5, this->layers(), output);
}
// optional .mozilla.layers.layerscope.MetaPacket meta = 6;
if (has_meta()) {
::google::protobuf::internal::WireFormatLite::WriteMessage(
6, this->meta(), output);
}
}
int Packet::ByteSize() const {
@ -3303,6 +3491,13 @@ int Packet::ByteSize() const {
this->layers());
}
// optional .mozilla.layers.layerscope.MetaPacket meta = 6;
if (has_meta()) {
total_size += 1 +
::google::protobuf::internal::WireFormatLite::MessageSizeNoVirtual(
this->meta());
}
}
GOOGLE_SAFE_CONCURRENT_WRITES_BEGIN();
_cached_size_ = total_size;
@ -3333,6 +3528,9 @@ void Packet::MergeFrom(const Packet& from) {
if (from.has_layers()) {
mutable_layers()->::mozilla::layers::layerscope::LayersPacket::MergeFrom(from.layers());
}
if (from.has_meta()) {
mutable_meta()->::mozilla::layers::layerscope::MetaPacket::MergeFrom(from.meta());
}
}
}
@ -3364,6 +3562,7 @@ void Packet::Swap(Packet* other) {
std::swap(color_, other->color_);
std::swap(texture_, other->texture_);
std::swap(layers_, other->layers_);
std::swap(meta_, other->meta_);
std::swap(_has_bits_[0], other->_has_bits_[0]);
std::swap(_cached_size_, other->_cached_size_);
}

View File

@ -43,6 +43,7 @@ class LayersPacket_Layer_Rect;
class LayersPacket_Layer_Region;
class LayersPacket_Layer_Matrix;
class LayersPacket_Layer_Shadow;
class MetaPacket;
class Packet;
enum LayersPacket_Layer_LayerType {
@ -89,11 +90,12 @@ enum Packet_DataType {
Packet_DataType_FRAMEEND = 2,
Packet_DataType_COLOR = 3,
Packet_DataType_TEXTURE = 4,
Packet_DataType_LAYERS = 5
Packet_DataType_LAYERS = 5,
Packet_DataType_META = 6
};
bool Packet_DataType_IsValid(int value);
const Packet_DataType Packet_DataType_DataType_MIN = Packet_DataType_FRAMESTART;
const Packet_DataType Packet_DataType_DataType_MAX = Packet_DataType_LAYERS;
const Packet_DataType Packet_DataType_DataType_MAX = Packet_DataType_META;
const int Packet_DataType_DataType_ARRAYSIZE = Packet_DataType_DataType_MAX + 1;
// ===================================================================
@ -1229,6 +1231,75 @@ class LayersPacket : public ::google::protobuf::MessageLite {
};
// -------------------------------------------------------------------
class MetaPacket : public ::google::protobuf::MessageLite {
public:
MetaPacket();
virtual ~MetaPacket();
MetaPacket(const MetaPacket& from);
inline MetaPacket& operator=(const MetaPacket& from) {
CopyFrom(from);
return *this;
}
static const MetaPacket& default_instance();
void Swap(MetaPacket* other);
// implements Message ----------------------------------------------
MetaPacket* New() const;
void CheckTypeAndMergeFrom(const ::google::protobuf::MessageLite& from);
void CopyFrom(const MetaPacket& from);
void MergeFrom(const MetaPacket& from);
void Clear();
bool IsInitialized() const;
int ByteSize() const;
bool MergePartialFromCodedStream(
::google::protobuf::io::CodedInputStream* input);
void SerializeWithCachedSizes(
::google::protobuf::io::CodedOutputStream* output) const;
int GetCachedSize() const { return _cached_size_; }
private:
void SharedCtor();
void SharedDtor();
void SetCachedSize(int size) const;
public:
::std::string GetTypeName() const;
// nested types ----------------------------------------------------
// accessors -------------------------------------------------------
// optional bool composedByHwc = 1;
inline bool has_composedbyhwc() const;
inline void clear_composedbyhwc();
static const int kComposedByHwcFieldNumber = 1;
inline bool composedbyhwc() const;
inline void set_composedbyhwc(bool value);
// @@protoc_insertion_point(class_scope:mozilla.layers.layerscope.MetaPacket)
private:
inline void set_has_composedbyhwc();
inline void clear_has_composedbyhwc();
bool composedbyhwc_;
mutable int _cached_size_;
::google::protobuf::uint32 _has_bits_[(1 + 31) / 32];
friend void protobuf_AddDesc_LayerScopePacket_2eproto();
friend void protobuf_AssignDesc_LayerScopePacket_2eproto();
friend void protobuf_ShutdownFile_LayerScopePacket_2eproto();
void InitAsDefaultInstance();
static MetaPacket* default_instance_;
};
// -------------------------------------------------------------------
class Packet : public ::google::protobuf::MessageLite {
public:
Packet();
@ -1276,6 +1347,7 @@ class Packet : public ::google::protobuf::MessageLite {
static const DataType COLOR = Packet_DataType_COLOR;
static const DataType TEXTURE = Packet_DataType_TEXTURE;
static const DataType LAYERS = Packet_DataType_LAYERS;
static const DataType META = Packet_DataType_META;
static inline bool DataType_IsValid(int value) {
return Packet_DataType_IsValid(value);
}
@ -1327,6 +1399,14 @@ class Packet : public ::google::protobuf::MessageLite {
inline ::mozilla::layers::layerscope::LayersPacket* mutable_layers();
inline ::mozilla::layers::layerscope::LayersPacket* release_layers();
// optional .mozilla.layers.layerscope.MetaPacket meta = 6;
inline bool has_meta() const;
inline void clear_meta();
static const int kMetaFieldNumber = 6;
inline const ::mozilla::layers::layerscope::MetaPacket& meta() const;
inline ::mozilla::layers::layerscope::MetaPacket* mutable_meta();
inline ::mozilla::layers::layerscope::MetaPacket* release_meta();
// @@protoc_insertion_point(class_scope:mozilla.layers.layerscope.Packet)
private:
inline void set_has_type();
@ -1339,15 +1419,18 @@ class Packet : public ::google::protobuf::MessageLite {
inline void clear_has_texture();
inline void set_has_layers();
inline void clear_has_layers();
inline void set_has_meta();
inline void clear_has_meta();
::mozilla::layers::layerscope::FramePacket* frame_;
::mozilla::layers::layerscope::ColorPacket* color_;
::mozilla::layers::layerscope::TexturePacket* texture_;
::mozilla::layers::layerscope::LayersPacket* layers_;
::mozilla::layers::layerscope::MetaPacket* meta_;
int type_;
mutable int _cached_size_;
::google::protobuf::uint32 _has_bits_[(5 + 31) / 32];
::google::protobuf::uint32 _has_bits_[(6 + 31) / 32];
friend void protobuf_AddDesc_LayerScopePacket_2eproto();
friend void protobuf_AssignDesc_LayerScopePacket_2eproto();
@ -2524,6 +2607,32 @@ LayersPacket::mutable_layer() {
// -------------------------------------------------------------------
// MetaPacket
// optional bool composedByHwc = 1;
inline bool MetaPacket::has_composedbyhwc() const {
return (_has_bits_[0] & 0x00000001u) != 0;
}
inline void MetaPacket::set_has_composedbyhwc() {
_has_bits_[0] |= 0x00000001u;
}
inline void MetaPacket::clear_has_composedbyhwc() {
_has_bits_[0] &= ~0x00000001u;
}
inline void MetaPacket::clear_composedbyhwc() {
composedbyhwc_ = false;
clear_has_composedbyhwc();
}
inline bool MetaPacket::composedbyhwc() const {
return composedbyhwc_;
}
inline void MetaPacket::set_composedbyhwc(bool value) {
set_has_composedbyhwc();
composedbyhwc_ = value;
}
// -------------------------------------------------------------------
// Packet
// required .mozilla.layers.layerscope.Packet.DataType type = 1;
@ -2665,6 +2774,35 @@ inline ::mozilla::layers::layerscope::LayersPacket* Packet::release_layers() {
return temp;
}
// optional .mozilla.layers.layerscope.MetaPacket meta = 6;
inline bool Packet::has_meta() const {
return (_has_bits_[0] & 0x00000020u) != 0;
}
inline void Packet::set_has_meta() {
_has_bits_[0] |= 0x00000020u;
}
inline void Packet::clear_has_meta() {
_has_bits_[0] &= ~0x00000020u;
}
inline void Packet::clear_meta() {
if (meta_ != NULL) meta_->::mozilla::layers::layerscope::MetaPacket::Clear();
clear_has_meta();
}
inline const ::mozilla::layers::layerscope::MetaPacket& Packet::meta() const {
return meta_ != NULL ? *meta_ : *default_instance_->meta_;
}
inline ::mozilla::layers::layerscope::MetaPacket* Packet::mutable_meta() {
set_has_meta();
if (meta_ == NULL) meta_ = new ::mozilla::layers::layerscope::MetaPacket;
return meta_;
}
inline ::mozilla::layers::layerscope::MetaPacket* Packet::release_meta() {
clear_has_meta();
::mozilla::layers::layerscope::MetaPacket* temp = meta_;
meta_ = NULL;
return temp;
}
// @@protoc_insertion_point(namespace_scope)

View File

@ -1,3 +1,5 @@
/* vim:set ts=2 sw=2 sts=2 et: */
option optimize_for = LITE_RUNTIME;
package mozilla.layers.layerscope;
@ -108,6 +110,10 @@ message LayersPacket {
repeated Layer layer = 1;
}
message MetaPacket {
optional bool composedByHwc = 1;
}
// We only need to use this Packet.
// Other packet definitions are just type defines
message Packet {
@ -117,6 +123,7 @@ message Packet {
COLOR = 3;
TEXTURE = 4;
LAYERS = 5;
META = 6;
}
required DataType type = 1;
@ -124,4 +131,5 @@ message Packet {
optional ColorPacket color = 3;
optional TexturePacket texture = 4;
optional LayersPacket layers = 5;
optional MetaPacket meta = 6;
}

View File

@ -375,18 +375,19 @@ nsDeviceContext::SetDPI()
nsresult
nsDeviceContext::Init(nsIWidget *aWidget)
{
nsresult rv = NS_OK;
if (mScreenManager && mWidget == aWidget)
return NS_OK;
return rv;
mWidget = aWidget;
SetDPI();
if (mScreenManager)
return NS_OK;
return rv;
mScreenManager = do_GetService("@mozilla.org/gfx/screenmanager;1");
mScreenManager = do_GetService("@mozilla.org/gfx/screenmanager;1", &rv);
return NS_OK;
return rv;
}
already_AddRefed<gfxContext>
@ -422,7 +423,7 @@ nsDeviceContext::CreateRenderingContext()
nsresult
nsDeviceContext::GetDepth(uint32_t& aDepth)
{
if (mDepth == 0) {
if (mDepth == 0 && mScreenManager) {
nsCOMPtr<nsIScreen> primaryScreen;
mScreenManager->GetPrimaryScreen(getter_AddRefs(primaryScreen));
primaryScreen->GetColorDepth(reinterpret_cast<int32_t *>(&mDepth));
@ -644,11 +645,15 @@ nsDeviceContext::ComputeFullAreaUsingScreen(nsRect* outRect)
void
nsDeviceContext::FindScreen(nsIScreen** outScreen)
{
if (mWidget && mWidget->GetOwningTabChild()) {
if (!mWidget || !mScreenManager) {
return;
}
if (mWidget->GetOwningTabChild()) {
mScreenManager->ScreenForNativeWidget((void *)mWidget->GetOwningTabChild(),
outScreen);
}
else if (mWidget && mWidget->GetNativeData(NS_NATIVE_WINDOW)) {
else if (mWidget->GetNativeData(NS_NATIVE_WINDOW)) {
mScreenManager->ScreenForNativeWidget(mWidget->GetNativeData(NS_NATIVE_WINDOW),
outScreen);
}

View File

@ -327,6 +327,7 @@ NS_IMPL_ISUPPORTS(GPUAdapterReporter, nsIMemoryReporter)
gfxWindowsPlatform::gfxWindowsPlatform()
: mD3D11DeviceInitialized(false)
, mIsWARP(false)
{
mUseClearTypeForDownloadableFonts = UNINITIALIZED_VALUE;
mUseClearTypeAlways = UNINITIALIZED_VALUE;
@ -1787,6 +1788,7 @@ gfxWindowsPlatform::InitD3D11Devices()
MOZ_CRASH();
}
mIsWARP = true;
reporterWARP.SetSuccessful();
}

View File

@ -250,6 +250,8 @@ public:
static bool IsOptimus();
bool IsWARP() { return mIsWARP; }
protected:
RenderMode mRenderMode;
@ -279,6 +281,7 @@ private:
mozilla::RefPtr<ID3D11Device> mD3D11ContentDevice;
bool mD3D11DeviceInitialized;
mozilla::RefPtr<mozilla::layers::ReadbackManagerD3D11> mD3D11ReadbackManager;
bool mIsWARP;
virtual void GetPlatformCMSOutputProfile(void* &mem, size_t &size);
};

View File

@ -66,7 +66,7 @@ LOCAL_INCLUDES += [
# Because VectorImage.cpp includes nsSVGUtils.h and nsSVGEffects.h
'/layout/svg',
# For URI-related functionality
'/netwerk/base/src',
'/netwerk/base',
]
# Because imgFrame.cpp includes "cairo.h"

View File

@ -20,8 +20,15 @@
#include "base/string16.h"
#if defined(COMPILER_MSVC) || (defined(ANDROID) && defined(_STLP_STD_NAME))
#ifdef COMPILER_MSVC
#pragma push_macro("_SILENCE_STDEXT_HASH_DEPRECATION_WARNINGS")
#define _SILENCE_STDEXT_HASH_DEPRECATION_WARNINGS
#endif
#include <hash_map>
#include <hash_set>
#ifdef COMPILER_MSVC
#pragma pop_macro("_SILENCE_STDEXT_HASH_DEPRECATION_WARNINGS")
#endif
namespace base {
#ifdef ANDROID
using _STLP_STD_NAME::hash_map;

View File

@ -197,7 +197,8 @@ class ScopedRunnableMethodFactory : public RevocableStore {
virtual void Run() { DispatchToMethod(obj_, meth_, params_); }
private:
T* obj_;
T* MOZ_UNSAFE_REF("The validity of this pointer must be enforced by "
"external factors.") obj_;
Method meth_;
Params params_;
@ -225,7 +226,8 @@ class DeleteTask : public CancelableTask {
obj_ = NULL;
}
private:
T* obj_;
T* MOZ_UNSAFE_REF("The validity of this pointer must be enforced by "
"external factors.") obj_;
};
// Task to Release() an object
@ -242,7 +244,8 @@ class ReleaseTask : public CancelableTask {
obj_ = NULL;
}
private:
T* obj_;
T* MOZ_UNSAFE_REF("The validity of this pointer must be enforced by "
"external factors.") obj_;
};
// RunnableMethodTraits --------------------------------------------------------
@ -319,7 +322,9 @@ class RunnableMethod : public CancelableTask,
}
}
T* obj_;
// This is owning because of the RetainCallee and ReleaseCallee calls in the
// constructor and destructor.
T* MOZ_OWNING_REF obj_;
Method meth_;
Params params_;
};
@ -513,7 +518,8 @@ class CallbackStorage {
}
protected:
T* obj_;
T* MOZ_UNSAFE_REF("The validity of this pointer must be enforced by "
"external factors.") obj_;
Method meth_;
};

View File

@ -71,7 +71,7 @@ TestDataStructuresParent::DeallocPTestDataStructuresSubParent(PTestDataStructure
}
bool TestDataStructuresParent::RecvTest1(
const InfallibleTArray<int>& ia,
InfallibleTArray<int>&& ia,
InfallibleTArray<int>* oa)
{
test_assert(5 == ia.Length(), "wrong length");
@ -84,7 +84,7 @@ bool TestDataStructuresParent::RecvTest1(
}
bool TestDataStructuresParent::RecvTest2(
const InfallibleTArray<PTestDataStructuresSubParent*>& i1,
InfallibleTArray<PTestDataStructuresSubParent*>&& i1,
InfallibleTArray<PTestDataStructuresSubParent*>* o1)
{
test_assert(nactors == i1.Length(), "wrong #actors");
@ -110,7 +110,7 @@ bool TestDataStructuresParent::RecvTest3(
}
bool TestDataStructuresParent::RecvTest4(
const InfallibleTArray<IntDouble>& i1,
InfallibleTArray<IntDouble>&& i1,
InfallibleTArray<IntDouble>* o1)
{
test_assert(4 == i1.Length(), "wrong length");
@ -171,7 +171,7 @@ TestDataStructuresParent::RecvTest7_0(const ActorWrapper& i1,
}
bool TestDataStructuresParent::RecvTest6(
const InfallibleTArray<IntDoubleArrays>& i1,
InfallibleTArray<IntDoubleArrays>&& i1,
InfallibleTArray<IntDoubleArrays>* o1)
{
test_assert(3 == i1.Length(), "wrong length");
@ -224,7 +224,7 @@ bool TestDataStructuresParent::RecvTest7(
}
bool TestDataStructuresParent::RecvTest8(
const InfallibleTArray<Actors>& i1,
InfallibleTArray<Actors>&& i1,
InfallibleTArray<Actors>* o1)
{
test_assert(3 == i1.Length(), "wrong length");
@ -276,7 +276,7 @@ bool TestDataStructuresParent::RecvTest9(
}
bool TestDataStructuresParent::RecvTest10(
const InfallibleTArray<Unions>& i1,
InfallibleTArray<Unions>&& i1,
InfallibleTArray<Unions>* o1)
{
test_assert(42 == i1[0].get_int(), "wrong value");
@ -438,14 +438,14 @@ bool TestDataStructuresParent::RecvTest16(
return true;
}
bool TestDataStructuresParent::RecvTest17(const InfallibleTArray<Op>& sa)
bool TestDataStructuresParent::RecvTest17(InfallibleTArray<Op>&& sa)
{
test_assert(sa.Length() == 1 && Op::TSetAttrs == sa[0].type(),
"wrong value");
return true;
}
bool TestDataStructuresParent::RecvTest18(const RegionArray& ra)
bool TestDataStructuresParent::RecvTest18(RegionArray&& ra)
{
for (RegionArray::index_type i = 0; i < ra.Length(); ++i) {
nsIntRegionRectIterator it(ra[i]);

View File

@ -58,11 +58,11 @@ protected:
virtual bool DeallocPTestDataStructuresSubParent(PTestDataStructuresSubParent* actor) MOZ_OVERRIDE;
virtual bool RecvTest1(
const InfallibleTArray<int>& i1,
InfallibleTArray<int>&& i1,
InfallibleTArray<int>* o1) MOZ_OVERRIDE;
virtual bool RecvTest2(
const InfallibleTArray<PTestDataStructuresSubParent*>& i1,
InfallibleTArray<PTestDataStructuresSubParent*>&& i1,
InfallibleTArray<PTestDataStructuresSubParent*>* o1) MOZ_OVERRIDE;
virtual bool RecvTest3(
@ -72,7 +72,7 @@ protected:
IntDouble* o2) MOZ_OVERRIDE;
virtual bool RecvTest4(
const InfallibleTArray<IntDouble>& i1,
InfallibleTArray<IntDouble>&& i1,
InfallibleTArray<IntDouble>* o1) MOZ_OVERRIDE;
virtual bool RecvTest5(
@ -84,7 +84,7 @@ protected:
IntDoubleArrays* o3) MOZ_OVERRIDE;
virtual bool RecvTest6(
const InfallibleTArray<IntDoubleArrays>& i1,
InfallibleTArray<IntDoubleArrays>&& i1,
InfallibleTArray<IntDoubleArrays>* o1) MOZ_OVERRIDE;
@ -100,7 +100,7 @@ protected:
Actors* o3) MOZ_OVERRIDE;
virtual bool RecvTest8(
const InfallibleTArray<Actors>& i1,
InfallibleTArray<Actors>&& i1,
InfallibleTArray<Actors>* o1) MOZ_OVERRIDE;
virtual bool RecvTest9(
@ -114,7 +114,7 @@ protected:
Unions* o4) MOZ_OVERRIDE;
virtual bool RecvTest10(
const InfallibleTArray<Unions>& i1,
InfallibleTArray<Unions>&& i1,
InfallibleTArray<Unions>* o1) MOZ_OVERRIDE;
virtual bool RecvTest11(
@ -149,9 +149,9 @@ protected:
const WithUnions& i,
WithUnions* o) MOZ_OVERRIDE;
virtual bool RecvTest17(const InfallibleTArray<Op>& sa) MOZ_OVERRIDE;
virtual bool RecvTest17(InfallibleTArray<Op>&& sa) MOZ_OVERRIDE;
virtual bool RecvTest18(const InfallibleTArray<nsIntRegion>& ra) MOZ_OVERRIDE;
virtual bool RecvTest18(InfallibleTArray<nsIntRegion>&& ra) MOZ_OVERRIDE;
virtual bool RecvDummy(const ShmemUnion& su, ShmemUnion* rsu) MOZ_OVERRIDE
{

View File

@ -51,7 +51,7 @@ TestShmemParent::Main()
bool
TestShmemParent::RecvTake(Shmem& mem, Shmem& unsafe,
TestShmemParent::RecvTake(Shmem&& mem, Shmem&& unsafe,
const size_t& expectedSize)
{
if (mem.Size<char>() != expectedSize)
@ -80,7 +80,7 @@ TestShmemParent::RecvTake(Shmem& mem, Shmem& unsafe,
// Child
bool
TestShmemChild::RecvGive(Shmem& mem, Shmem& unsafe, const size_t& expectedSize)
TestShmemChild::RecvGive(Shmem&& mem, Shmem&& unsafe, const size_t& expectedSize)
{
if (mem.Size<char>() != expectedSize)
fail("expected shmem size %lu, but it has size %lu",

View File

@ -24,8 +24,8 @@ public:
protected:
virtual bool RecvTake(
Shmem& mem,
Shmem& unsafe,
Shmem&& mem,
Shmem&& unsafe,
const size_t& expectedSize) MOZ_OVERRIDE;
virtual void ActorDestroy(ActorDestroyReason why) MOZ_OVERRIDE
@ -47,8 +47,8 @@ public:
protected:
virtual bool RecvGive(
Shmem& mem,
Shmem& unsafe,
Shmem&& mem,
Shmem&& unsafe,
const size_t& expectedSize) MOZ_OVERRIDE;
virtual void ActorDestroy(ActorDestroyReason why) MOZ_OVERRIDE

View File

@ -56,7 +56,7 @@ TestSysVShmemParent::Main()
bool
TestSysVShmemParent::RecvTake(Shmem& mem, Shmem& unsafe,
TestSysVShmemParent::RecvTake(Shmem&& mem, Shmem&& unsafe,
const size_t& expectedSize)
{
if (mem.Size<char>() != expectedSize)
@ -85,7 +85,7 @@ TestSysVShmemParent::RecvTake(Shmem& mem, Shmem& unsafe,
// Child
bool
TestSysVShmemChild::RecvGive(Shmem& mem, Shmem& unsafe, const size_t& expectedSize)
TestSysVShmemChild::RecvGive(Shmem&& mem, Shmem&& unsafe, const size_t& expectedSize)
{
if (mem.Size<char>() != expectedSize)
fail("expected shmem size %lu, but it has size %lu",

View File

@ -24,8 +24,8 @@ public:
protected:
virtual bool RecvTake(
Shmem& mem,
Shmem& unsafe,
Shmem&& mem,
Shmem&& unsafe,
const size_t& expectedSize) MOZ_OVERRIDE;
virtual void ActorDestroy(ActorDestroyReason why) MOZ_OVERRIDE
@ -47,8 +47,8 @@ public:
protected:
virtual bool RecvGive(
Shmem& mem,
Shmem& unsafe,
Shmem&& mem,
Shmem&& unsafe,
const size_t& expectedSize) MOZ_OVERRIDE;
virtual void ActorDestroy(ActorDestroyReason why) MOZ_OVERRIDE

View File

@ -1751,17 +1751,15 @@ ia64*-hpux*)
_DEFINES_CXXFLAGS='-FI $(DEPTH)/js/src/js-confdefs.h -DMOZILLA_CLIENT'
CFLAGS="$CFLAGS -W3 -Gy"
CXXFLAGS="$CXXFLAGS -W3 -Gy"
if test "$_CC_SUITE" -ge "11" -a "$CPU_ARCH" = "x86"; then
if test "$CPU_ARCH" = "x86"; then
dnl VS2012+ defaults to -arch:SSE2.
CFLAGS="$CFLAGS -arch:IA32"
CXXFLAGS="$CXXFLAGS -arch:IA32"
fi
if test "$_CC_SUITE" -ge "12"; then
dnl VS2013+ requires -FS when parallel building by make -jN.
dnl If nothing, compiler sometimes causes C1041 error.
CFLAGS="$CFLAGS -FS"
CXXFLAGS="$CXXFLAGS -FS"
fi
dnl VS2013+ requires -FS when parallel building by make -jN.
dnl If nothing, compiler sometimes causes C1041 error.
CFLAGS="$CFLAGS -FS"
CXXFLAGS="$CXXFLAGS -FS"
# khuey says we can safely ignore MSVC warning C4251
# MSVC warning C4244 (implicit type conversion may lose data) warns
# and requires workarounds for perfectly valid code. Also, GCC/clang

View File

@ -110,7 +110,9 @@ LBlock::init(TempAllocator &alloc)
if (!inputs)
return false;
LPhi *lphi = new (&phis_[phiIndex++]) LPhi(phi, inputs);
// MSVC 2015 cannot handle "new (&phis_[phiIndex++])"
void *addr = &phis_[phiIndex++];
LPhi *lphi = new (addr) LPhi(phi, inputs);
lphi->setBlock(this);
}
}

View File

@ -1415,6 +1415,8 @@ js::math_hypot_handle(JSContext *cx, HandleValueArray args, MutableHandleValue r
isInfinite |= mozilla::IsInfinite(x);
isNaN |= mozilla::IsNaN(x);
if (isInfinite || isNaN)
continue;
double xabs = mozilla::Abs(x);

View File

@ -2470,6 +2470,8 @@ DisassWithSrc(JSContext *cx, unsigned argc, jsval *vp)
pc += len;
}
fprintf(stdout, "%s\n", sprinter.string());
bail:
fclose(file);
}

View File

@ -206,7 +206,11 @@ class XPCStringConvert
// would take a lot more machinery.
struct ZoneStringCache
{
nsStringBuffer* mBuffer;
// mString owns mBuffer. mString is a JS thing, so it can only die
// during GC. We clear mString and mBuffer during GC. As long as
// the above holds, mBuffer should not be a dangling pointer, so
// using this as a cache key should be safe.
void* mBuffer;
JSString* mString;
};

View File

@ -801,6 +801,7 @@ PresShell::PresShell()
mPaintingIsFrozen = false;
mHasCSSBackgroundColor = true;
mIsLastChromeOnlyEscapeKeyConsumed = false;
}
NS_IMPL_ISUPPORTS(PresShell, nsIPresShell, nsIDocumentObserver,
@ -8005,7 +8006,10 @@ PresShell::HandleEventInternal(WidgetEvent* aEvent, nsEventStatus* aStatus)
aEvent->mFlags.mDefaultPrevented = true;
aEvent->mFlags.mOnlyChromeDispatch = true;
if (aEvent->message == NS_KEY_UP) {
// The event listeners in chrome can prevent this ESC behavior by
// calling prevent default on the preceding keydown/press events.
if (!mIsLastChromeOnlyEscapeKeyConsumed &&
aEvent->message == NS_KEY_UP) {
// ESC key released while in DOM fullscreen mode.
// If fullscreen is running in content-only mode, exit the target
// doctree branch from fullscreen, otherwise fully exit all
@ -8021,7 +8025,7 @@ PresShell::HandleEventInternal(WidgetEvent* aEvent, nsEventStatus* aStatus)
}
nsCOMPtr<nsIDocument> pointerLockedDoc =
do_QueryReferent(EventStateManager::sPointerLockedDoc);
if (pointerLockedDoc) {
if (!mIsLastChromeOnlyEscapeKeyConsumed && pointerLockedDoc) {
aEvent->mFlags.mDefaultPrevented = true;
aEvent->mFlags.mOnlyChromeDispatch = true;
if (aEvent->message == NS_KEY_UP) {
@ -8256,11 +8260,30 @@ PresShell::HandleEventInternal(WidgetEvent* aEvent, nsEventStatus* aStatus)
}
}
if (aEvent->message == NS_MOUSE_BUTTON_UP) {
switch (aEvent->message) {
case NS_KEY_PRESS:
case NS_KEY_DOWN:
case NS_KEY_UP: {
if (aEvent->AsKeyboardEvent()->keyCode == NS_VK_ESCAPE) {
if (aEvent->message == NS_KEY_UP) {
// Reset this flag after key up is handled.
mIsLastChromeOnlyEscapeKeyConsumed = false;
} else {
if (aEvent->mFlags.mOnlyChromeDispatch &&
aEvent->mFlags.mDefaultPreventedByChrome) {
mIsLastChromeOnlyEscapeKeyConsumed = true;
}
}
}
break;
}
case NS_MOUSE_BUTTON_UP:
// reset the capturing content now that the mouse button is up
SetCapturingContent(nullptr, 0);
} else if (aEvent->message == NS_MOUSE_MOVE) {
break;
case NS_MOUSE_MOVE:
nsIPresShell::AllowMouseCapture(false);
break;
}
}
return rv;

View File

@ -868,6 +868,9 @@ protected:
// applied to rendered layers.
bool mScaleToResolution : 1;
// Whether the last chrome-only escape key event is consumed.
bool mIsLastChromeOnlyEscapeKeyConsumed : 1;
static bool sDisableNonTestMouseEvents;
};

View File

@ -67,7 +67,7 @@ LOCAL_INCLUDES += [
'/extensions/cookie',
'/js/xpconnect/loader',
'/js/xpconnect/src',
'/netwerk/base/src',
'/netwerk/base',
'/netwerk/cookie',
'/view',
]

View File

@ -31,7 +31,7 @@ ComputesRGBLuminanceMask_NEON(const uint8_t *aSourceData,
uint8x8_t redVector = vdup_n_u8(redFactor);
uint8x8_t greenVector = vdup_n_u8(greenFactor);
uint8x8_t blueVector = vdup_n_u8(blueFactor);
uint8x8_t zeroVector = vdup_n_u8(0);
uint8x8_t fullBitVector = vdup_n_u8(255);
uint8x8_t oneVector = vdup_n_u8(1);
for (int32_t y = 0; y < aSize.height; y++) {
// Calculate luminance by neon with 8 pixels per loop
@ -43,7 +43,7 @@ ComputesRGBLuminanceMask_NEON(const uint8_t *aSourceData,
gray = vshrn_n_u16(temp, 8); // gray = temp >> 8
// Check alpha value
uint8x8_t alphaVector = vcgt_u8(argb.val[GFX_ARGB32_OFFSET_A], zeroVector);
uint8x8_t alphaVector = vtst_u8(argb.val[GFX_ARGB32_OFFSET_A], fullBitVector);
gray = vmul_u8(gray, vand_u8(alphaVector, oneVector));
// Put the result to the 8 pixels

View File

@ -12,8 +12,8 @@ To upgrade to a new revision of libjpeg-turbo, do the following:
* Copy win/jsimdcfg.inc to simd/.
* Since libjpeg-turbo normally creates config.h and jconfig.h at build time and
we use pre-generated versions, changes to jconfig.h.in and win/config.h.in
* Since libjpeg-turbo normally creates jconfig.h and jconfigint.h at build time
and we use pre-generated versions, changes to jconfig.h.in and jconfigint.h.in
should be looked for and noted for later inclusion.
* Now look through the new files and rm any which are npotb. When I upgraded
@ -43,10 +43,10 @@ To upgrade to a new revision of libjpeg-turbo, do the following:
* Restore files modified in the Mozilla repository.
$ hg revert --no-backup config.h jconfig.h Makefile.in MOZCHANGES \
$ hg revert --no-backup jconfig.h jconfigint.h Makefile.in MOZCHANGES \
mozilla.diff simd/Makefile.in genTables.py
* Update config.h and jconfig.h as noted previously.
* Update jconfig.h and jconfigint.h as noted previously.
* Apply Mozilla-specific changes to upstream files.
@ -58,6 +58,10 @@ To upgrade to a new revision of libjpeg-turbo, do the following:
$ hg addremove
== January 15, 2015 (libjpeg-turbo v1.4.0 r1481 2015-01-07) ==
* Updated to v1.4.0 release.
== March 24, 2014 (libjpeg-turbo v1.3.1 r1205 2014-03-22) ==
* Updated to v1.3.1 release.

View File

@ -14,5 +14,3 @@ endif
include $(topsrcdir)/config/rules.mk
jpeg_nbits_table.h: $(srcdir)/genTables.py
$(PYTHON) $(srcdir)/genTables.py

View File

@ -36,7 +36,6 @@ TO DO Plans for future IJG releases.
Other documentation files in the distribution are:
User documentation:
install.txt How to configure and install the IJG software.
usage.txt Usage instructions for cjpeg, djpeg, jpegtran,
rdjpgcom, and wrjpgcom.
*.1 Unix-style man pages for programs (same info as usage.txt).
@ -48,9 +47,9 @@ Programmer and internal documentation:
structure.txt Overview of the JPEG library's internal structure.
coderules.txt Coding style rules --- please read if you contribute code.
Please read at least the files install.txt and usage.txt. Some information
can also be found in the JPEG FAQ (Frequently Asked Questions) article. See
ARCHIVE LOCATIONS below to find out where to obtain the FAQ article.
Please read at least usage.txt. Some information can also be found in the JPEG
FAQ (Frequently Asked Questions) article. See ARCHIVE LOCATIONS below to find
out where to obtain the FAQ article.
If you want to understand how the JPEG code works, we suggest reading one or
more of the REFERENCES, then looking at the documentation files (in roughly
@ -62,7 +61,7 @@ OVERVIEW
This package contains C software to implement JPEG image encoding, decoding,
and transcoding. JPEG (pronounced "jay-peg") is a standardized compression
method for full-color and gray-scale images. JPEG's strong suit is compressing
method for full-color and grayscale images. JPEG's strong suit is compressing
photographic images or other types of images that have smooth color and
brightness transitions between neighboring pixels. Images with sharp lines or
other abrupt features may not compress well with JPEG, and a higher JPEG

162
media/libjpeg/README-turbo.txt Normal file → Executable file
View File

@ -81,131 +81,6 @@ JPEG images:
There is no significant performance advantage to either API when both are used
to perform similar operations.
======================
Installation Directory
======================
This document assumes that libjpeg-turbo will be installed in the default
directory (/opt/libjpeg-turbo on Un*x and Mac systems and
c:\libjpeg-turbo[-gcc][64] on Windows systems. If your installation of
libjpeg-turbo resides in a different directory, then adjust the instructions
accordingly.
=============================
Replacing libjpeg at Run Time
=============================
Un*x
----
If a Un*x application is dynamically linked with libjpeg, then you can replace
libjpeg with libjpeg-turbo at run time by manipulating LD_LIBRARY_PATH.
For instance:
[Using libjpeg]
> time cjpeg <vgl_5674_0098.ppm >vgl_5674_0098.jpg
real 0m0.392s
user 0m0.074s
sys 0m0.020s
[Using libjpeg-turbo]
> export LD_LIBRARY_PATH=/opt/libjpeg-turbo/{lib}:$LD_LIBRARY_PATH
> time cjpeg <vgl_5674_0098.ppm >vgl_5674_0098.jpg
real 0m0.109s
user 0m0.029s
sys 0m0.010s
({lib} = lib32 or lib64, depending on whether you wish to use the 32-bit or the
64-bit version of libjpeg-turbo.)
System administrators can also replace the libjpeg symlinks in /usr/lib* with
links to the libjpeg-turbo dynamic library located in /opt/libjpeg-turbo/{lib}.
This will effectively accelerate every application that uses the libjpeg
dynamic library on the system.
Windows
-------
If a Windows application is dynamically linked with libjpeg, then you can
replace libjpeg with libjpeg-turbo at run time by backing up the application's
copy of jpeg62.dll, jpeg7.dll, or jpeg8.dll (assuming the application has its
own local copy of this library) and copying the corresponding DLL from
libjpeg-turbo into the application's install directory. The official
libjpeg-turbo binary packages only provide jpeg62.dll. If the application uses
jpeg7.dll or jpeg8.dll instead, then it will be necessary to build
libjpeg-turbo from source (see "libjpeg v7 and v8 API/ABI Emulation" below.)
The following information is specific to the official libjpeg-turbo binary
packages for Visual C++:
-- jpeg62.dll requires the Visual C++ 2008 C run-time DLL (msvcr90.dll).
msvcr90.dll ships with more recent versions of Windows, but users of older
Windows releases can obtain it from the Visual C++ 2008 Redistributable
Package, which is available as a free download from Microsoft's web site.
-- Features of the libjpeg API that require passing a C run-time structure,
such as a file handle, from an application to the library will probably not
work with jpeg62.dll, unless the application is also built to use the Visual
C++ 2008 C run-time DLL. In particular, this affects jpeg_stdio_dest() and
jpeg_stdio_src().
Mac
---
Mac applications typically embed their own copies of the libjpeg dylib inside
the (hidden) application bundle, so it is not possible to globally replace
libjpeg on OS X systems. Replacing the application's version of the libjpeg
dylib would generally involve copying libjpeg.*.dylib from libjpeg-turbo into
the appropriate place in the application bundle and using install_name_tool to
repoint the libjpeg-turbo dylib to its new directory. This requires an
advanced knowledge of OS X and would not survive an upgrade or a re-install of
the application. Thus, it is not recommended for most users.
========================================
Using libjpeg-turbo in Your Own Programs
========================================
For the most part, libjpeg-turbo should work identically to libjpeg, so in
most cases, an application can be built against libjpeg and then run against
libjpeg-turbo. On Un*x systems and Cygwin, you can build against libjpeg-turbo
instead of libjpeg by setting
CPATH=/opt/libjpeg-turbo/include
and
LIBRARY_PATH=/opt/libjpeg-turbo/{lib}
({lib} = lib32 or lib64, depending on whether you are building a 32-bit or a
64-bit application.)
If using MinGW, then set
CPATH=/c/libjpeg-turbo-gcc[64]/include
and
LIBRARY_PATH=/c/libjpeg-turbo-gcc[64]/lib
Building against libjpeg-turbo is useful, for instance, if you want to build an
application that leverages the libjpeg-turbo colorspace extensions (see below.)
On Un*x systems, you would still need to manipulate LD_LIBRARY_PATH or create
appropriate symlinks to use libjpeg-turbo at run time. On such systems, you
can pass -R /opt/libjpeg-turbo/{lib} to the linker to force the use of
libjpeg-turbo at run time rather than libjpeg (also useful if you want to
leverage the colorspace extensions), or you can link against the libjpeg-turbo
static library.
To force a Un*x or MinGW application to link against the static version of
libjpeg-turbo, you can use the following linker options:
-Wl,-Bstatic -ljpeg -Wl,-Bdynamic
On OS X, simply add /opt/libjpeg-turbo/lib/libjpeg.a to the linker command
line.
To build Visual C++ applications using libjpeg-turbo, add
c:\libjpeg-turbo[64]\include to the system or user INCLUDE environment
variable and c:\libjpeg-turbo[64]\lib to the system or user LIB environment
variable, and then link against either jpeg.lib (to use the DLL version of
libjpeg-turbo) or jpeg-static.lib (to use the static version of libjpeg-turbo.)
=====================
Colorspace Extensions
=====================
@ -265,7 +140,7 @@ compression and decompression structures. Unfortunately, due to the exposed
nature of those structures, extending them also necessitated breaking backward
ABI compatibility with previous libjpeg releases. Thus, programs that were
built to use libjpeg v7 or v8 did not work with libjpeg-turbo, since it is
based on the libjpeg v6b code base. Although libjpeg v7 and v8 are still not
based on the libjpeg v6b code base. Although libjpeg v7 and v8 are not
as widely used as v6b, enough programs (including a few Linux distros) made
the switch that there was a demand to emulate the libjpeg v7 and v8 ABIs
in libjpeg-turbo. It should be noted, however, that this feature was added
@ -419,10 +294,25 @@ details.
For the most part, libjpeg-turbo should produce identical output to libjpeg
v6b. The one exception to this is when using the floating point DCT/IDCT, in
which case the outputs of libjpeg v6b and libjpeg-turbo are not guaranteed to
be identical (the accuracy of the floating point DCT/IDCT is constant when
using libjpeg-turbo's SIMD extensions, but otherwise, it can depend heavily on
the compiler and compiler settings.)
which case the outputs of libjpeg v6b and libjpeg-turbo can differ for the
following reasons:
-- The SSE/SSE2 floating point DCT implementation in libjpeg-turbo is ever so
slightly more accurate than the implementation in libjpeg v6b, but not by
any amount perceptible to human vision (generally in the range of 0.01 to
0.08 dB gain in PNSR.)
-- When not using the SIMD extensions, libjpeg-turbo uses the more accurate
(and slightly faster) floating point IDCT algorithm introduced in libjpeg
v8a as opposed to the algorithm used in libjpeg v6b. It should be noted,
however, that this algorithm basically brings the accuracy of the floating
point IDCT in line with the accuracy of the slow integer IDCT. The floating
point DCT/IDCT algorithms are mainly a legacy feature, and they do not
produce significantly more accuracy than the slow integer algorithms (to put
numbers on this, the typical difference in PNSR between the two algorithms
is less than 0.10 dB, whereas changing the quality level by 1 in the upper
range of the quality scale is typically more like a 1.0 dB difference.)
-- When not using the SIMD extensions, then the accuracy of the floating point
DCT/IDCT can depend on the compiler and compiler settings.
While libjpeg-turbo does emulate the libjpeg v8 API/ABI, under the hood, it is
still using the same algorithms as libjpeg v6b, so there are several specific
@ -430,16 +320,14 @@ cases in which libjpeg-turbo cannot be expected to produce the same output as
libjpeg v8:
-- When decompressing using scaling factors of 1/2 and 1/4, because libjpeg v8
implements those scaling algorithms a bit differently than libjpeg v6b does,
and libjpeg-turbo's SIMD extensions are based on the libjpeg v6b behavior.
implements those scaling algorithms differently than libjpeg v6b does, and
libjpeg-turbo's SIMD extensions are based on the libjpeg v6b behavior.
-- When using chrominance subsampling, because libjpeg v8 implements this
with its DCT/IDCT scaling algorithms rather than with a separate
downsampling/upsampling algorithm.
-- When using the floating point IDCT, for the reasons stated above and also
because the floating point IDCT algorithm was modified in libjpeg v8a to
improve accuracy.
downsampling/upsampling algorithm. In our testing, the subsampled/upsampled
output of libjpeg v8 is less accurate than that of libjpeg v6b for this
reason.
-- When decompressing using a scaling factor > 1 and merged (AKA "non-fancy" or
"non-smooth") chrominance upsampling, because libjpeg v8 does not support

View File

@ -1,16 +0,0 @@
#!/usr/bin/python
import math
f = open("jpeg_nbits_table.h", "w")
for i in range(65536):
f.write('%2d' % math.ceil(math.log(i + 1, 2)))
if i != 65535:
f.write(',')
if (i + 1) % 16 == 0:
f.write('\n')
else:
f.write(' ')
f.close()

View File

@ -1,9 +1,11 @@
/*
* jcapimin.c
*
* This file was part of the Independent JPEG Group's software:
* Copyright (C) 1994-1998, Thomas G. Lane.
* Modified 2003-2010 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* It was modified by The libjpeg-turbo Project to include only code relevant
* to libjpeg-turbo.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains application interface code for the compression half
@ -33,12 +35,12 @@ jpeg_CreateCompress (j_compress_ptr cinfo, int version, size_t structsize)
int i;
/* Guard against version mismatches between library and caller. */
cinfo->mem = NULL; /* so jpeg_destroy knows mem mgr not called */
cinfo->mem = NULL; /* so jpeg_destroy knows mem mgr not called */
if (version != JPEG_LIB_VERSION)
ERREXIT2(cinfo, JERR_BAD_LIB_VERSION, JPEG_LIB_VERSION, version);
if (structsize != SIZEOF(struct jpeg_compress_struct))
ERREXIT2(cinfo, JERR_BAD_STRUCT_SIZE,
(int) SIZEOF(struct jpeg_compress_struct), (int) structsize);
if (structsize != sizeof(struct jpeg_compress_struct))
ERREXIT2(cinfo, JERR_BAD_STRUCT_SIZE,
(int) sizeof(struct jpeg_compress_struct), (int) structsize);
/* For debugging purposes, we zero the whole master structure.
* But the application has already set the err pointer, and may have set
@ -49,7 +51,7 @@ jpeg_CreateCompress (j_compress_ptr cinfo, int version, size_t structsize)
{
struct jpeg_error_mgr * err = cinfo->err;
void * client_data = cinfo->client_data; /* ignore Purify complaint here */
MEMZERO(cinfo, SIZEOF(struct jpeg_compress_struct));
MEMZERO(cinfo, sizeof(struct jpeg_compress_struct));
cinfo->err = err;
cinfo->client_data = client_data;
}
@ -85,7 +87,7 @@ jpeg_CreateCompress (j_compress_ptr cinfo, int version, size_t structsize)
cinfo->script_space = NULL;
cinfo->input_gamma = 1.0; /* in case application forgets */
cinfo->input_gamma = 1.0; /* in case application forgets */
/* OK, I'm ready */
cinfo->global_state = CSTATE_START;
@ -173,15 +175,15 @@ jpeg_finish_compress (j_compress_ptr cinfo)
(*cinfo->master->prepare_for_pass) (cinfo);
for (iMCU_row = 0; iMCU_row < cinfo->total_iMCU_rows; iMCU_row++) {
if (cinfo->progress != NULL) {
cinfo->progress->pass_counter = (long) iMCU_row;
cinfo->progress->pass_limit = (long) cinfo->total_iMCU_rows;
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
cinfo->progress->pass_counter = (long) iMCU_row;
cinfo->progress->pass_limit = (long) cinfo->total_iMCU_rows;
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
}
/* We bypass the main controller and invoke coef controller directly;
* all work is being done from the coefficient buffer.
*/
if (! (*cinfo->coef->compress_data) (cinfo, (JSAMPIMAGE) NULL))
ERREXIT(cinfo, JERR_CANT_SUSPEND);
ERREXIT(cinfo, JERR_CANT_SUSPEND);
}
(*cinfo->master->finish_pass) (cinfo);
}
@ -202,9 +204,9 @@ jpeg_finish_compress (j_compress_ptr cinfo)
GLOBAL(void)
jpeg_write_marker (j_compress_ptr cinfo, int marker,
const JOCTET *dataptr, unsigned int datalen)
const JOCTET *dataptr, unsigned int datalen)
{
JMETHOD(void, write_marker_byte, (j_compress_ptr info, int val));
void (*write_marker_byte) (j_compress_ptr info, int val);
if (cinfo->next_scanline != 0 ||
(cinfo->global_state != CSTATE_SCANNING &&
@ -213,7 +215,7 @@ jpeg_write_marker (j_compress_ptr cinfo, int marker,
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
(*cinfo->marker->write_marker_header) (cinfo, marker, datalen);
write_marker_byte = cinfo->marker->write_marker_byte; /* copy for speed */
write_marker_byte = cinfo->marker->write_marker_byte; /* copy for speed */
while (datalen--) {
(*write_marker_byte) (cinfo, *dataptr);
dataptr++;
@ -248,14 +250,14 @@ jpeg_write_m_byte (j_compress_ptr cinfo, int val)
* To produce a pair of files containing abbreviated tables and abbreviated
* image data, one would proceed as follows:
*
* initialize JPEG object
* set JPEG parameters
* set destination to table file
* jpeg_write_tables(cinfo);
* set destination to image file
* jpeg_start_compress(cinfo, FALSE);
* write data...
* jpeg_finish_compress(cinfo);
* initialize JPEG object
* set JPEG parameters
* set destination to table file
* jpeg_write_tables(cinfo);
* set destination to image file
* jpeg_start_compress(cinfo, FALSE);
* write data...
* jpeg_finish_compress(cinfo);
*
* jpeg_write_tables has the side effect of marking all tables written
* (same as jpeg_suppress_tables(..., TRUE)). Thus a subsequent start_compress

View File

@ -41,7 +41,7 @@ jpeg_start_compress (j_compress_ptr cinfo, boolean write_all_tables)
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
if (write_all_tables)
jpeg_suppress_tables(cinfo, FALSE); /* mark all tables to be written */
jpeg_suppress_tables(cinfo, FALSE); /* mark all tables to be written */
/* (Re)initialize error mgr and destination modules */
(*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo);
@ -75,7 +75,7 @@ jpeg_start_compress (j_compress_ptr cinfo, boolean write_all_tables)
GLOBAL(JDIMENSION)
jpeg_write_scanlines (j_compress_ptr cinfo, JSAMPARRAY scanlines,
JDIMENSION num_lines)
JDIMENSION num_lines)
{
JDIMENSION row_ctr, rows_left;
@ -118,7 +118,7 @@ jpeg_write_scanlines (j_compress_ptr cinfo, JSAMPARRAY scanlines,
GLOBAL(JDIMENSION)
jpeg_write_raw_data (j_compress_ptr cinfo, JSAMPIMAGE data,
JDIMENSION num_lines)
JDIMENSION num_lines)
{
JDIMENSION lines_per_iMCU_row;

View File

@ -1,8 +1,10 @@
/*
* jcarith.c
*
* This file was part of the Independent JPEG Group's software:
* Developed 1997-2009 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* It was modified by The libjpeg-turbo Project to include only code relevant
* to libjpeg-turbo.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains portable arithmetic entropy encoding routines for JPEG
@ -34,8 +36,8 @@ typedef struct {
int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */
unsigned int restarts_to_go; /* MCUs left in this restart interval */
int next_restart_num; /* next restart number to write (0-7) */
unsigned int restarts_to_go; /* MCUs left in this restart interval */
int next_restart_num; /* next restart number to write (0-7) */
/* Pointers to statistics areas (these workspaces have image lifespan) */
unsigned char * dc_stats[NUM_ARITH_TBLS];
@ -101,14 +103,14 @@ typedef arith_entropy_encoder * arith_entropy_ptr;
*/
#ifdef RIGHT_SHIFT_IS_UNSIGNED
#define ISHIFT_TEMPS int ishift_temp;
#define ISHIFT_TEMPS int ishift_temp;
#define IRIGHT_SHIFT(x,shft) \
((ishift_temp = (x)) < 0 ? \
(ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \
(ishift_temp >> (shft)))
((ishift_temp = (x)) < 0 ? \
(ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \
(ishift_temp >> (shft)))
#else
#define ISHIFT_TEMPS
#define IRIGHT_SHIFT(x,shft) ((x) >> (shft))
#define IRIGHT_SHIFT(x,shft) ((x) >> (shft))
#endif
@ -149,11 +151,11 @@ finish_pass (j_compress_ptr cinfo)
/* One final overflow has to be handled */
if (e->buffer >= 0) {
if (e->zc)
do emit_byte(0x00, cinfo);
while (--e->zc);
do emit_byte(0x00, cinfo);
while (--e->zc);
emit_byte(e->buffer + 1, cinfo);
if (e->buffer + 1 == 0xFF)
emit_byte(0x00, cinfo);
emit_byte(0x00, cinfo);
}
e->zc += e->sc; /* carry-over converts stacked 0xFF bytes to 0x00 */
e->sc = 0;
@ -162,17 +164,17 @@ finish_pass (j_compress_ptr cinfo)
++e->zc;
else if (e->buffer >= 0) {
if (e->zc)
do emit_byte(0x00, cinfo);
while (--e->zc);
do emit_byte(0x00, cinfo);
while (--e->zc);
emit_byte(e->buffer, cinfo);
}
if (e->sc) {
if (e->zc)
do emit_byte(0x00, cinfo);
while (--e->zc);
do emit_byte(0x00, cinfo);
while (--e->zc);
do {
emit_byte(0xFF, cinfo);
emit_byte(0x00, cinfo);
emit_byte(0xFF, cinfo);
emit_byte(0x00, cinfo);
} while (--e->sc);
}
}
@ -187,7 +189,7 @@ finish_pass (j_compress_ptr cinfo)
if (e->c & 0x7F800L) {
emit_byte((e->c >> 11) & 0xFF, cinfo);
if (((e->c >> 11) & 0xFF) == 0xFF)
emit_byte(0x00, cinfo);
emit_byte(0x00, cinfo);
}
}
}
@ -216,7 +218,7 @@ finish_pass (j_compress_ptr cinfo)
*/
LOCAL(void)
arith_encode (j_compress_ptr cinfo, unsigned char *st, int val)
arith_encode (j_compress_ptr cinfo, unsigned char *st, int val)
{
register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
register unsigned char nl, nm;
@ -227,9 +229,9 @@ arith_encode (j_compress_ptr cinfo, unsigned char *st, int val)
* Qe values and probability estimation state machine
*/
sv = *st;
qe = jpeg_aritab[sv & 0x7F]; /* => Qe_Value */
nl = qe & 0xFF; qe >>= 8; /* Next_Index_LPS + Switch_MPS */
nm = qe & 0xFF; qe >>= 8; /* Next_Index_MPS */
qe = jpeg_aritab[sv & 0x7F]; /* => Qe_Value */
nl = qe & 0xFF; qe >>= 8; /* Next_Index_LPS + Switch_MPS */
nm = qe & 0xFF; qe >>= 8; /* Next_Index_MPS */
/* Encode & estimation procedures per sections D.1.4 & D.1.5 */
e->a -= qe;
@ -243,7 +245,7 @@ arith_encode (j_compress_ptr cinfo, unsigned char *st, int val)
e->c += e->a;
e->a = qe;
}
*st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */
*st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */
} else {
/* Encode the more probable symbol */
if (e->a >= 0x8000L)
@ -255,7 +257,7 @@ arith_encode (j_compress_ptr cinfo, unsigned char *st, int val)
e->c += e->a;
e->a = qe;
}
*st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */
*st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */
}
/* Renormalization & data output per section D.1.6 */
@ -266,43 +268,43 @@ arith_encode (j_compress_ptr cinfo, unsigned char *st, int val)
/* Another byte is ready for output */
temp = e->c >> 19;
if (temp > 0xFF) {
/* Handle overflow over all stacked 0xFF bytes */
if (e->buffer >= 0) {
if (e->zc)
do emit_byte(0x00, cinfo);
while (--e->zc);
emit_byte(e->buffer + 1, cinfo);
if (e->buffer + 1 == 0xFF)
emit_byte(0x00, cinfo);
}
e->zc += e->sc; /* carry-over converts stacked 0xFF bytes to 0x00 */
e->sc = 0;
/* Note: The 3 spacer bits in the C register guarantee
* that the new buffer byte can't be 0xFF here
* (see page 160 in the P&M JPEG book). */
e->buffer = temp & 0xFF; /* new output byte, might overflow later */
/* Handle overflow over all stacked 0xFF bytes */
if (e->buffer >= 0) {
if (e->zc)
do emit_byte(0x00, cinfo);
while (--e->zc);
emit_byte(e->buffer + 1, cinfo);
if (e->buffer + 1 == 0xFF)
emit_byte(0x00, cinfo);
}
e->zc += e->sc; /* carry-over converts stacked 0xFF bytes to 0x00 */
e->sc = 0;
/* Note: The 3 spacer bits in the C register guarantee
* that the new buffer byte can't be 0xFF here
* (see page 160 in the P&M JPEG book). */
e->buffer = temp & 0xFF; /* new output byte, might overflow later */
} else if (temp == 0xFF) {
++e->sc; /* stack 0xFF byte (which might overflow later) */
++e->sc; /* stack 0xFF byte (which might overflow later) */
} else {
/* Output all stacked 0xFF bytes, they will not overflow any more */
if (e->buffer == 0)
++e->zc;
else if (e->buffer >= 0) {
if (e->zc)
do emit_byte(0x00, cinfo);
while (--e->zc);
emit_byte(e->buffer, cinfo);
}
if (e->sc) {
if (e->zc)
do emit_byte(0x00, cinfo);
while (--e->zc);
do {
emit_byte(0xFF, cinfo);
emit_byte(0x00, cinfo);
} while (--e->sc);
}
e->buffer = temp & 0xFF; /* new output byte (can still overflow) */
/* Output all stacked 0xFF bytes, they will not overflow any more */
if (e->buffer == 0)
++e->zc;
else if (e->buffer >= 0) {
if (e->zc)
do emit_byte(0x00, cinfo);
while (--e->zc);
emit_byte(e->buffer, cinfo);
}
if (e->sc) {
if (e->zc)
do emit_byte(0x00, cinfo);
while (--e->zc);
do {
emit_byte(0xFF, cinfo);
emit_byte(0x00, cinfo);
} while (--e->sc);
}
e->buffer = temp & 0xFF; /* new output byte (can still overflow) */
}
e->c &= 0x7FFFFL;
e->ct += 8;
@ -398,45 +400,45 @@ encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
/* Figure F.4: Encode_DC_DIFF */
if ((v = m - entropy->last_dc_val[ci]) == 0) {
arith_encode(cinfo, st, 0);
entropy->dc_context[ci] = 0; /* zero diff category */
entropy->dc_context[ci] = 0; /* zero diff category */
} else {
entropy->last_dc_val[ci] = m;
arith_encode(cinfo, st, 1);
/* Figure F.6: Encoding nonzero value v */
/* Figure F.7: Encoding the sign of v */
if (v > 0) {
arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */
st += 2; /* Table F.4: SP = S0 + 2 */
entropy->dc_context[ci] = 4; /* small positive diff category */
arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */
st += 2; /* Table F.4: SP = S0 + 2 */
entropy->dc_context[ci] = 4; /* small positive diff category */
} else {
v = -v;
arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */
st += 3; /* Table F.4: SN = S0 + 3 */
entropy->dc_context[ci] = 8; /* small negative diff category */
v = -v;
arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */
st += 3; /* Table F.4: SN = S0 + 3 */
entropy->dc_context[ci] = 8; /* small negative diff category */
}
/* Figure F.8: Encoding the magnitude category of v */
m = 0;
if (v -= 1) {
arith_encode(cinfo, st, 1);
m = 1;
v2 = v;
st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
while (v2 >>= 1) {
arith_encode(cinfo, st, 1);
m <<= 1;
st += 1;
}
arith_encode(cinfo, st, 1);
m = 1;
v2 = v;
st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
while (v2 >>= 1) {
arith_encode(cinfo, st, 1);
m <<= 1;
st += 1;
}
}
arith_encode(cinfo, st, 0);
/* Section F.1.4.4.1.2: Establish dc_context conditioning category */
if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
entropy->dc_context[ci] = 0; /* zero diff category */
entropy->dc_context[ci] = 0; /* zero diff category */
else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
entropy->dc_context[ci] += 8; /* large diff category */
entropy->dc_context[ci] += 8; /* large diff category */
/* Figure F.9: Encoding the magnitude bit pattern of v */
st += 14;
while (m >>= 1)
arith_encode(cinfo, st, (m & v) ? 1 : 0);
arith_encode(cinfo, st, (m & v) ? 1 : 0);
}
}
@ -491,21 +493,21 @@ encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
/* Figure F.5: Encode_AC_Coefficients */
for (k = cinfo->Ss; k <= ke; k++) {
st = entropy->ac_stats[tbl] + 3 * (k - 1);
arith_encode(cinfo, st, 0); /* EOB decision */
arith_encode(cinfo, st, 0); /* EOB decision */
for (;;) {
if ((v = (*block)[jpeg_natural_order[k]]) >= 0) {
if (v >>= cinfo->Al) {
arith_encode(cinfo, st + 1, 1);
arith_encode(cinfo, entropy->fixed_bin, 0);
break;
}
if (v >>= cinfo->Al) {
arith_encode(cinfo, st + 1, 1);
arith_encode(cinfo, entropy->fixed_bin, 0);
break;
}
} else {
v = -v;
if (v >>= cinfo->Al) {
arith_encode(cinfo, st + 1, 1);
arith_encode(cinfo, entropy->fixed_bin, 1);
break;
}
v = -v;
if (v >>= cinfo->Al) {
arith_encode(cinfo, st + 1, 1);
arith_encode(cinfo, entropy->fixed_bin, 1);
break;
}
}
arith_encode(cinfo, st + 1, 0); st += 3; k++;
}
@ -517,15 +519,15 @@ encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
m = 1;
v2 = v;
if (v2 >>= 1) {
arith_encode(cinfo, st, 1);
m <<= 1;
st = entropy->ac_stats[tbl] +
(k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
while (v2 >>= 1) {
arith_encode(cinfo, st, 1);
m <<= 1;
st += 1;
}
arith_encode(cinfo, st, 1);
m <<= 1;
st = entropy->ac_stats[tbl] +
(k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
while (v2 >>= 1) {
arith_encode(cinfo, st, 1);
m <<= 1;
st += 1;
}
}
}
arith_encode(cinfo, st, 0);
@ -566,7 +568,7 @@ encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
entropy->restarts_to_go--;
}
st = entropy->fixed_bin; /* use fixed probability estimation */
st = entropy->fixed_bin; /* use fixed probability estimation */
Al = cinfo->Al;
/* Encode the MCU data blocks */
@ -635,29 +637,29 @@ encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
for (k = cinfo->Ss; k <= ke; k++) {
st = entropy->ac_stats[tbl] + 3 * (k - 1);
if (k > kex)
arith_encode(cinfo, st, 0); /* EOB decision */
arith_encode(cinfo, st, 0); /* EOB decision */
for (;;) {
if ((v = (*block)[jpeg_natural_order[k]]) >= 0) {
if (v >>= cinfo->Al) {
if (v >> 1) /* previously nonzero coef */
arith_encode(cinfo, st + 2, (v & 1));
else { /* newly nonzero coef */
arith_encode(cinfo, st + 1, 1);
arith_encode(cinfo, entropy->fixed_bin, 0);
}
break;
}
if (v >>= cinfo->Al) {
if (v >> 1) /* previously nonzero coef */
arith_encode(cinfo, st + 2, (v & 1));
else { /* newly nonzero coef */
arith_encode(cinfo, st + 1, 1);
arith_encode(cinfo, entropy->fixed_bin, 0);
}
break;
}
} else {
v = -v;
if (v >>= cinfo->Al) {
if (v >> 1) /* previously nonzero coef */
arith_encode(cinfo, st + 2, (v & 1));
else { /* newly nonzero coef */
arith_encode(cinfo, st + 1, 1);
arith_encode(cinfo, entropy->fixed_bin, 1);
}
break;
}
v = -v;
if (v >>= cinfo->Al) {
if (v >> 1) /* previously nonzero coef */
arith_encode(cinfo, st + 2, (v & 1));
else { /* newly nonzero coef */
arith_encode(cinfo, st + 1, 1);
arith_encode(cinfo, entropy->fixed_bin, 1);
}
break;
}
}
arith_encode(cinfo, st + 1, 0); st += 3; k++;
}
@ -713,45 +715,45 @@ encode_mcu (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
/* Figure F.4: Encode_DC_DIFF */
if ((v = (*block)[0] - entropy->last_dc_val[ci]) == 0) {
arith_encode(cinfo, st, 0);
entropy->dc_context[ci] = 0; /* zero diff category */
entropy->dc_context[ci] = 0; /* zero diff category */
} else {
entropy->last_dc_val[ci] = (*block)[0];
arith_encode(cinfo, st, 1);
/* Figure F.6: Encoding nonzero value v */
/* Figure F.7: Encoding the sign of v */
if (v > 0) {
arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */
st += 2; /* Table F.4: SP = S0 + 2 */
entropy->dc_context[ci] = 4; /* small positive diff category */
arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */
st += 2; /* Table F.4: SP = S0 + 2 */
entropy->dc_context[ci] = 4; /* small positive diff category */
} else {
v = -v;
arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */
st += 3; /* Table F.4: SN = S0 + 3 */
entropy->dc_context[ci] = 8; /* small negative diff category */
v = -v;
arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */
st += 3; /* Table F.4: SN = S0 + 3 */
entropy->dc_context[ci] = 8; /* small negative diff category */
}
/* Figure F.8: Encoding the magnitude category of v */
m = 0;
if (v -= 1) {
arith_encode(cinfo, st, 1);
m = 1;
v2 = v;
st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
while (v2 >>= 1) {
arith_encode(cinfo, st, 1);
m <<= 1;
st += 1;
}
arith_encode(cinfo, st, 1);
m = 1;
v2 = v;
st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
while (v2 >>= 1) {
arith_encode(cinfo, st, 1);
m <<= 1;
st += 1;
}
}
arith_encode(cinfo, st, 0);
/* Section F.1.4.4.1.2: Establish dc_context conditioning category */
if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
entropy->dc_context[ci] = 0; /* zero diff category */
entropy->dc_context[ci] = 0; /* zero diff category */
else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
entropy->dc_context[ci] += 8; /* large diff category */
entropy->dc_context[ci] += 8; /* large diff category */
/* Figure F.9: Encoding the magnitude bit pattern of v */
st += 14;
while (m >>= 1)
arith_encode(cinfo, st, (m & v) ? 1 : 0);
arith_encode(cinfo, st, (m & v) ? 1 : 0);
}
/* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */
@ -765,43 +767,43 @@ encode_mcu (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
/* Figure F.5: Encode_AC_Coefficients */
for (k = 1; k <= ke; k++) {
st = entropy->ac_stats[tbl] + 3 * (k - 1);
arith_encode(cinfo, st, 0); /* EOB decision */
arith_encode(cinfo, st, 0); /* EOB decision */
while ((v = (*block)[jpeg_natural_order[k]]) == 0) {
arith_encode(cinfo, st + 1, 0); st += 3; k++;
arith_encode(cinfo, st + 1, 0); st += 3; k++;
}
arith_encode(cinfo, st + 1, 1);
/* Figure F.6: Encoding nonzero value v */
/* Figure F.7: Encoding the sign of v */
if (v > 0) {
arith_encode(cinfo, entropy->fixed_bin, 0);
arith_encode(cinfo, entropy->fixed_bin, 0);
} else {
v = -v;
arith_encode(cinfo, entropy->fixed_bin, 1);
v = -v;
arith_encode(cinfo, entropy->fixed_bin, 1);
}
st += 2;
/* Figure F.8: Encoding the magnitude category of v */
m = 0;
if (v -= 1) {
arith_encode(cinfo, st, 1);
m = 1;
v2 = v;
if (v2 >>= 1) {
arith_encode(cinfo, st, 1);
m <<= 1;
st = entropy->ac_stats[tbl] +
(k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
while (v2 >>= 1) {
arith_encode(cinfo, st, 1);
m <<= 1;
st += 1;
}
}
arith_encode(cinfo, st, 1);
m = 1;
v2 = v;
if (v2 >>= 1) {
arith_encode(cinfo, st, 1);
m <<= 1;
st = entropy->ac_stats[tbl] +
(k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
while (v2 >>= 1) {
arith_encode(cinfo, st, 1);
m <<= 1;
st += 1;
}
}
}
arith_encode(cinfo, st, 0);
/* Figure F.9: Encoding the magnitude bit pattern of v */
st += 14;
while (m >>= 1)
arith_encode(cinfo, st, (m & v) ? 1 : 0);
arith_encode(cinfo, st, (m & v) ? 1 : 0);
}
/* Encode EOB decision only if k <= DCTSIZE2 - 1 */
if (k <= DCTSIZE2 - 1) {
@ -838,14 +840,14 @@ start_pass (j_compress_ptr cinfo, boolean gather_statistics)
if (cinfo->progressive_mode) {
if (cinfo->Ah == 0) {
if (cinfo->Ss == 0)
entropy->pub.encode_mcu = encode_mcu_DC_first;
entropy->pub.encode_mcu = encode_mcu_DC_first;
else
entropy->pub.encode_mcu = encode_mcu_AC_first;
entropy->pub.encode_mcu = encode_mcu_AC_first;
} else {
if (cinfo->Ss == 0)
entropy->pub.encode_mcu = encode_mcu_DC_refine;
entropy->pub.encode_mcu = encode_mcu_DC_refine;
else
entropy->pub.encode_mcu = encode_mcu_AC_refine;
entropy->pub.encode_mcu = encode_mcu_AC_refine;
}
} else
entropy->pub.encode_mcu = encode_mcu;
@ -857,10 +859,10 @@ start_pass (j_compress_ptr cinfo, boolean gather_statistics)
if (cinfo->progressive_mode == 0 || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
tbl = compptr->dc_tbl_no;
if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
if (entropy->dc_stats[tbl] == NULL)
entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS);
entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS);
MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS);
/* Initialize DC predictions to 0 */
entropy->last_dc_val[ci] = 0;
@ -870,15 +872,15 @@ start_pass (j_compress_ptr cinfo, boolean gather_statistics)
if (cinfo->progressive_mode == 0 || cinfo->Se) {
tbl = compptr->ac_tbl_no;
if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
if (entropy->ac_stats[tbl] == NULL)
entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS);
entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS);
MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS);
#ifdef CALCULATE_SPECTRAL_CONDITIONING
if (cinfo->progressive_mode)
/* Section G.1.3.2: Set appropriate arithmetic conditioning value Kx */
cinfo->arith_ac_K[tbl] = cinfo->Ss + ((8 + cinfo->Se - cinfo->Ss) >> 4);
/* Section G.1.3.2: Set appropriate arithmetic conditioning value Kx */
cinfo->arith_ac_K[tbl] = cinfo->Ss + ((8 + cinfo->Se - cinfo->Ss) >> 4);
#endif
}
}
@ -909,7 +911,7 @@ jinit_arith_encoder (j_compress_ptr cinfo)
entropy = (arith_entropy_ptr)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF(arith_entropy_encoder));
sizeof(arith_entropy_encoder));
cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
entropy->pub.start_pass = start_pass;
entropy->pub.finish_pass = finish_pass;

View File

@ -1,8 +1,10 @@
/*
* jccoefct.c
*
* This file was part of the Independent JPEG Group's software:
* Copyright (C) 1994-1997, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* It was modified by The libjpeg-turbo Project to include only code and
* information relevant to libjpeg-turbo.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains the coefficient buffer controller for compression.
@ -34,19 +36,16 @@
typedef struct {
struct jpeg_c_coef_controller pub; /* public fields */
JDIMENSION iMCU_row_num; /* iMCU row # within image */
JDIMENSION mcu_ctr; /* counts MCUs processed in current row */
int MCU_vert_offset; /* counts MCU rows within iMCU row */
int MCU_rows_per_iMCU_row; /* number of such rows needed */
JDIMENSION iMCU_row_num; /* iMCU row # within image */
JDIMENSION mcu_ctr; /* counts MCUs processed in current row */
int MCU_vert_offset; /* counts MCU rows within iMCU row */
int MCU_rows_per_iMCU_row; /* number of such rows needed */
/* For single-pass compression, it's sufficient to buffer just one MCU
* (although this may prove a bit slow in practice). We allocate a
* workspace of C_MAX_BLOCKS_IN_MCU coefficient blocks, and reuse it for each
* MCU constructed and sent. (On 80x86, the workspace is FAR even though
* it's not really very big; this is to keep the module interfaces unchanged
* when a large coefficient buffer is necessary.)
* In multi-pass modes, this array points to the current MCU's blocks
* within the virtual arrays.
* MCU constructed and sent. In multi-pass modes, this array points to the
* current MCU's blocks within the virtual arrays.
*/
JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU];
@ -59,12 +58,12 @@ typedef my_coef_controller * my_coef_ptr;
/* Forward declarations */
METHODDEF(boolean) compress_data
JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
(j_compress_ptr cinfo, JSAMPIMAGE input_buf);
#ifdef FULL_COEF_BUFFER_SUPPORTED
METHODDEF(boolean) compress_first_pass
JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
(j_compress_ptr cinfo, JSAMPIMAGE input_buf);
METHODDEF(boolean) compress_output
JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
(j_compress_ptr cinfo, JSAMPIMAGE input_buf);
#endif
@ -143,7 +142,7 @@ METHODDEF(boolean)
compress_data (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
{
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
JDIMENSION MCU_col_num; /* index of current MCU within row */
JDIMENSION MCU_col_num; /* index of current MCU within row */
JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
int blkn, bi, ci, yindex, yoffset, blockcnt;
@ -154,7 +153,7 @@ compress_data (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
yoffset++) {
for (MCU_col_num = coef->mcu_ctr; MCU_col_num <= last_MCU_col;
MCU_col_num++) {
MCU_col_num++) {
/* Determine where data comes from in input_buf and do the DCT thing.
* Each call on forward_DCT processes a horizontal row of DCT blocks
* as wide as an MCU; we rely on having allocated the MCU_buffer[] blocks
@ -166,46 +165,46 @@ compress_data (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
*/
blkn = 0;
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
compptr = cinfo->cur_comp_info[ci];
blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
: compptr->last_col_width;
xpos = MCU_col_num * compptr->MCU_sample_width;
ypos = yoffset * DCTSIZE; /* ypos == (yoffset+yindex) * DCTSIZE */
for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
if (coef->iMCU_row_num < last_iMCU_row ||
yoffset+yindex < compptr->last_row_height) {
(*cinfo->fdct->forward_DCT) (cinfo, compptr,
input_buf[compptr->component_index],
coef->MCU_buffer[blkn],
ypos, xpos, (JDIMENSION) blockcnt);
if (blockcnt < compptr->MCU_width) {
/* Create some dummy blocks at the right edge of the image. */
jzero_far((void FAR *) coef->MCU_buffer[blkn + blockcnt],
(compptr->MCU_width - blockcnt) * SIZEOF(JBLOCK));
for (bi = blockcnt; bi < compptr->MCU_width; bi++) {
coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn+bi-1][0][0];
}
}
} else {
/* Create a row of dummy blocks at the bottom of the image. */
jzero_far((void FAR *) coef->MCU_buffer[blkn],
compptr->MCU_width * SIZEOF(JBLOCK));
for (bi = 0; bi < compptr->MCU_width; bi++) {
coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn-1][0][0];
}
}
blkn += compptr->MCU_width;
ypos += DCTSIZE;
}
compptr = cinfo->cur_comp_info[ci];
blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
: compptr->last_col_width;
xpos = MCU_col_num * compptr->MCU_sample_width;
ypos = yoffset * DCTSIZE; /* ypos == (yoffset+yindex) * DCTSIZE */
for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
if (coef->iMCU_row_num < last_iMCU_row ||
yoffset+yindex < compptr->last_row_height) {
(*cinfo->fdct->forward_DCT) (cinfo, compptr,
input_buf[compptr->component_index],
coef->MCU_buffer[blkn],
ypos, xpos, (JDIMENSION) blockcnt);
if (blockcnt < compptr->MCU_width) {
/* Create some dummy blocks at the right edge of the image. */
jzero_far((void *) coef->MCU_buffer[blkn + blockcnt],
(compptr->MCU_width - blockcnt) * sizeof(JBLOCK));
for (bi = blockcnt; bi < compptr->MCU_width; bi++) {
coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn+bi-1][0][0];
}
}
} else {
/* Create a row of dummy blocks at the bottom of the image. */
jzero_far((void *) coef->MCU_buffer[blkn],
compptr->MCU_width * sizeof(JBLOCK));
for (bi = 0; bi < compptr->MCU_width; bi++) {
coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn-1][0][0];
}
}
blkn += compptr->MCU_width;
ypos += DCTSIZE;
}
}
/* Try to write the MCU. In event of a suspension failure, we will
* re-DCT the MCU on restart (a bit inefficient, could be fixed...)
*/
if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) {
/* Suspension forced; update state counters and exit */
coef->MCU_vert_offset = yoffset;
coef->mcu_ctr = MCU_col_num;
return FALSE;
/* Suspension forced; update state counters and exit */
coef->MCU_vert_offset = yoffset;
coef->mcu_ctr = MCU_col_num;
return FALSE;
}
}
/* Completed an MCU row, but perhaps not an iMCU row */
@ -280,17 +279,17 @@ compress_first_pass (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
for (block_row = 0; block_row < block_rows; block_row++) {
thisblockrow = buffer[block_row];
(*cinfo->fdct->forward_DCT) (cinfo, compptr,
input_buf[ci], thisblockrow,
(JDIMENSION) (block_row * DCTSIZE),
(JDIMENSION) 0, blocks_across);
input_buf[ci], thisblockrow,
(JDIMENSION) (block_row * DCTSIZE),
(JDIMENSION) 0, blocks_across);
if (ndummy > 0) {
/* Create dummy blocks at the right edge of the image. */
thisblockrow += blocks_across; /* => first dummy block */
jzero_far((void FAR *) thisblockrow, ndummy * SIZEOF(JBLOCK));
lastDC = thisblockrow[-1][0];
for (bi = 0; bi < ndummy; bi++) {
thisblockrow[bi][0] = lastDC;
}
/* Create dummy blocks at the right edge of the image. */
thisblockrow += blocks_across; /* => first dummy block */
jzero_far((void *) thisblockrow, ndummy * sizeof(JBLOCK));
lastDC = thisblockrow[-1][0];
for (bi = 0; bi < ndummy; bi++) {
thisblockrow[bi][0] = lastDC;
}
}
}
/* If at end of image, create dummy block rows as needed.
@ -299,22 +298,22 @@ compress_first_pass (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
* This squeezes a few more bytes out of the resulting file...
*/
if (coef->iMCU_row_num == last_iMCU_row) {
blocks_across += ndummy; /* include lower right corner */
blocks_across += ndummy; /* include lower right corner */
MCUs_across = blocks_across / h_samp_factor;
for (block_row = block_rows; block_row < compptr->v_samp_factor;
block_row++) {
thisblockrow = buffer[block_row];
lastblockrow = buffer[block_row-1];
jzero_far((void FAR *) thisblockrow,
(size_t) (blocks_across * SIZEOF(JBLOCK)));
for (MCUindex = 0; MCUindex < MCUs_across; MCUindex++) {
lastDC = lastblockrow[h_samp_factor-1][0];
for (bi = 0; bi < h_samp_factor; bi++) {
thisblockrow[bi][0] = lastDC;
}
thisblockrow += h_samp_factor; /* advance to next MCU in row */
lastblockrow += h_samp_factor;
}
block_row++) {
thisblockrow = buffer[block_row];
lastblockrow = buffer[block_row-1];
jzero_far((void *) thisblockrow,
(size_t) (blocks_across * sizeof(JBLOCK)));
for (MCUindex = 0; MCUindex < MCUs_across; MCUindex++) {
lastDC = lastblockrow[h_samp_factor-1][0];
for (bi = 0; bi < h_samp_factor; bi++) {
thisblockrow[bi][0] = lastDC;
}
thisblockrow += h_samp_factor; /* advance to next MCU in row */
lastblockrow += h_samp_factor;
}
}
}
}
@ -341,7 +340,7 @@ METHODDEF(boolean)
compress_output (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
{
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
JDIMENSION MCU_col_num; /* index of current MCU within row */
JDIMENSION MCU_col_num; /* index of current MCU within row */
int blkn, ci, xindex, yindex, yoffset;
JDIMENSION start_col;
JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
@ -364,25 +363,25 @@ compress_output (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
yoffset++) {
for (MCU_col_num = coef->mcu_ctr; MCU_col_num < cinfo->MCUs_per_row;
MCU_col_num++) {
MCU_col_num++) {
/* Construct list of pointers to DCT blocks belonging to this MCU */
blkn = 0; /* index of current DCT block within MCU */
blkn = 0; /* index of current DCT block within MCU */
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
compptr = cinfo->cur_comp_info[ci];
start_col = MCU_col_num * compptr->MCU_width;
for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
coef->MCU_buffer[blkn++] = buffer_ptr++;
}
}
compptr = cinfo->cur_comp_info[ci];
start_col = MCU_col_num * compptr->MCU_width;
for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
coef->MCU_buffer[blkn++] = buffer_ptr++;
}
}
}
/* Try to write the MCU. */
if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) {
/* Suspension forced; update state counters and exit */
coef->MCU_vert_offset = yoffset;
coef->mcu_ctr = MCU_col_num;
return FALSE;
/* Suspension forced; update state counters and exit */
coef->MCU_vert_offset = yoffset;
coef->mcu_ctr = MCU_col_num;
return FALSE;
}
}
/* Completed an MCU row, but perhaps not an iMCU row */
@ -408,7 +407,7 @@ jinit_c_coef_controller (j_compress_ptr cinfo, boolean need_full_buffer)
coef = (my_coef_ptr)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF(my_coef_controller));
sizeof(my_coef_controller));
cinfo->coef = (struct jpeg_c_coef_controller *) coef;
coef->pub.start_pass = start_pass_coef;
@ -421,14 +420,14 @@ jinit_c_coef_controller (j_compress_ptr cinfo, boolean need_full_buffer)
jpeg_component_info *compptr;
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
ci++, compptr++) {
coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE,
(JDIMENSION) jround_up((long) compptr->width_in_blocks,
(long) compptr->h_samp_factor),
(JDIMENSION) jround_up((long) compptr->height_in_blocks,
(long) compptr->v_samp_factor),
(JDIMENSION) compptr->v_samp_factor);
((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE,
(JDIMENSION) jround_up((long) compptr->width_in_blocks,
(long) compptr->h_samp_factor),
(JDIMENSION) jround_up((long) compptr->height_in_blocks,
(long) compptr->v_samp_factor),
(JDIMENSION) compptr->v_samp_factor);
}
#else
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
@ -440,7 +439,7 @@ jinit_c_coef_controller (j_compress_ptr cinfo, boolean need_full_buffer)
buffer = (JBLOCKROW)
(*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
C_MAX_BLOCKS_IN_MCU * sizeof(JBLOCK));
for (i = 0; i < C_MAX_BLOCKS_IN_MCU; i++) {
coef->MCU_buffer[i] = buffer + i;
}

View File

@ -58,16 +58,16 @@ rgb_ycc_convert_internal (j_compress_ptr cinfo,
*/
/* Y */
outptr0[col] = (JSAMPLE)
((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF])
>> SCALEBITS);
((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF])
>> SCALEBITS);
/* Cb */
outptr1[col] = (JSAMPLE)
((ctab[r+R_CB_OFF] + ctab[g+G_CB_OFF] + ctab[b+B_CB_OFF])
>> SCALEBITS);
((ctab[r+R_CB_OFF] + ctab[g+G_CB_OFF] + ctab[b+B_CB_OFF])
>> SCALEBITS);
/* Cr */
outptr2[col] = (JSAMPLE)
((ctab[r+R_CR_OFF] + ctab[g+G_CR_OFF] + ctab[b+B_CR_OFF])
>> SCALEBITS);
((ctab[r+R_CR_OFF] + ctab[g+G_CR_OFF] + ctab[b+B_CR_OFF])
>> SCALEBITS);
}
}
}
@ -108,8 +108,8 @@ rgb_gray_convert_internal (j_compress_ptr cinfo,
inptr += RGB_PIXELSIZE;
/* Y */
outptr[col] = (JSAMPLE)
((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF])
>> SCALEBITS);
((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF])
>> SCALEBITS);
}
}
}

View File

@ -6,6 +6,7 @@
* libjpeg-turbo Modifications:
* Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
* Copyright (C) 2009-2012, D. R. Commander.
* Copyright (C) 2014, MIPS Technologies, Inc., California
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains input colorspace conversion routines.
@ -15,7 +16,7 @@
#include "jinclude.h"
#include "jpeglib.h"
#include "jsimd.h"
#include "config.h"
#include "jconfigint.h"
/* Private subobject */
@ -24,7 +25,7 @@ typedef struct {
struct jpeg_color_converter pub; /* public fields */
/* Private state for RGB->YCC conversion */
INT32 * rgb_ycc_tab; /* => table for RGB to YCbCr conversion */
INT32 * rgb_ycc_tab; /* => table for RGB to YCbCr conversion */
} my_color_converter;
typedef my_color_converter * my_cconvert_ptr;
@ -36,9 +37,9 @@ typedef my_color_converter * my_cconvert_ptr;
* YCbCr is defined per CCIR 601-1, except that Cb and Cr are
* normalized to the range 0..MAXJSAMPLE rather than -0.5 .. 0.5.
* The conversion equations to be implemented are therefore
* Y = 0.29900 * R + 0.58700 * G + 0.11400 * B
* Cb = -0.16874 * R - 0.33126 * G + 0.50000 * B + CENTERJSAMPLE
* Cr = 0.50000 * R - 0.41869 * G - 0.08131 * B + CENTERJSAMPLE
* Y = 0.29900 * R + 0.58700 * G + 0.11400 * B
* Cb = -0.16874 * R - 0.33126 * G + 0.50000 * B + CENTERJSAMPLE
* Cr = 0.50000 * R - 0.41869 * G - 0.08131 * B + CENTERJSAMPLE
* (These numbers are derived from TIFF 6.0 section 21, dated 3-June-92.)
* Note: older versions of the IJG code used a zero offset of MAXJSAMPLE/2,
* rather than CENTERJSAMPLE, for Cb and Cr. This gave equal positive and
@ -60,10 +61,10 @@ typedef my_color_converter * my_cconvert_ptr;
* in the tables to save adding them separately in the inner loop.
*/
#define SCALEBITS 16 /* speediest right-shift on some machines */
#define CBCR_OFFSET ((INT32) CENTERJSAMPLE << SCALEBITS)
#define ONE_HALF ((INT32) 1 << (SCALEBITS-1))
#define FIX(x) ((INT32) ((x) * (1L<<SCALEBITS) + 0.5))
#define SCALEBITS 16 /* speediest right-shift on some machines */
#define CBCR_OFFSET ((INT32) CENTERJSAMPLE << SCALEBITS)
#define ONE_HALF ((INT32) 1 << (SCALEBITS-1))
#define FIX(x) ((INT32) ((x) * (1L<<SCALEBITS) + 0.5))
/* We allocate one big table and divide it up into eight parts, instead of
* doing eight alloc_small requests. This lets us use a single table base
@ -71,16 +72,16 @@ typedef my_color_converter * my_cconvert_ptr;
* machines (more than can hold all eight addresses, anyway).
*/
#define R_Y_OFF 0 /* offset to R => Y section */
#define G_Y_OFF (1*(MAXJSAMPLE+1)) /* offset to G => Y section */
#define B_Y_OFF (2*(MAXJSAMPLE+1)) /* etc. */
#define R_CB_OFF (3*(MAXJSAMPLE+1))
#define G_CB_OFF (4*(MAXJSAMPLE+1))
#define B_CB_OFF (5*(MAXJSAMPLE+1))
#define R_CR_OFF B_CB_OFF /* B=>Cb, R=>Cr are the same */
#define G_CR_OFF (6*(MAXJSAMPLE+1))
#define B_CR_OFF (7*(MAXJSAMPLE+1))
#define TABLE_SIZE (8*(MAXJSAMPLE+1))
#define R_Y_OFF 0 /* offset to R => Y section */
#define G_Y_OFF (1*(MAXJSAMPLE+1)) /* offset to G => Y section */
#define B_Y_OFF (2*(MAXJSAMPLE+1)) /* etc. */
#define R_CB_OFF (3*(MAXJSAMPLE+1))
#define G_CB_OFF (4*(MAXJSAMPLE+1))
#define B_CB_OFF (5*(MAXJSAMPLE+1))
#define R_CR_OFF B_CB_OFF /* B=>Cb, R=>Cr are the same */
#define G_CR_OFF (6*(MAXJSAMPLE+1))
#define B_CR_OFF (7*(MAXJSAMPLE+1))
#define TABLE_SIZE (8*(MAXJSAMPLE+1))
/* Include inline routines for colorspace extensions */
@ -202,7 +203,7 @@ rgb_ycc_start (j_compress_ptr cinfo)
/* Allocate and fill in the conversion tables. */
cconvert->rgb_ycc_tab = rgb_ycc_tab = (INT32 *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
(TABLE_SIZE * SIZEOF(INT32)));
(TABLE_SIZE * sizeof(INT32)));
for (i = 0; i <= MAXJSAMPLE; i++) {
rgb_ycc_tab[i+R_Y_OFF] = FIX(0.29900) * i;
@ -230,8 +231,8 @@ rgb_ycc_start (j_compress_ptr cinfo)
METHODDEF(void)
rgb_ycc_convert (j_compress_ptr cinfo,
JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
JDIMENSION output_row, int num_rows)
JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
JDIMENSION output_row, int num_rows)
{
switch (cinfo->in_color_space) {
case JCS_EXT_RGB:
@ -279,8 +280,8 @@ rgb_ycc_convert (j_compress_ptr cinfo,
METHODDEF(void)
rgb_gray_convert (j_compress_ptr cinfo,
JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
JDIMENSION output_row, int num_rows)
JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
JDIMENSION output_row, int num_rows)
{
switch (cinfo->in_color_space) {
case JCS_EXT_RGB:
@ -325,8 +326,8 @@ rgb_gray_convert (j_compress_ptr cinfo,
METHODDEF(void)
rgb_rgb_convert (j_compress_ptr cinfo,
JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
JDIMENSION output_row, int num_rows)
JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
JDIMENSION output_row, int num_rows)
{
switch (cinfo->in_color_space) {
case JCS_EXT_RGB:
@ -375,8 +376,8 @@ rgb_rgb_convert (j_compress_ptr cinfo,
METHODDEF(void)
cmyk_ycck_convert (j_compress_ptr cinfo,
JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
JDIMENSION output_row, int num_rows)
JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
JDIMENSION output_row, int num_rows)
{
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
register int r, g, b;
@ -398,7 +399,7 @@ cmyk_ycck_convert (j_compress_ptr cinfo,
g = MAXJSAMPLE - GETJSAMPLE(inptr[1]);
b = MAXJSAMPLE - GETJSAMPLE(inptr[2]);
/* K passes through as-is */
outptr3[col] = inptr[3]; /* don't need GETJSAMPLE here */
outptr3[col] = inptr[3]; /* don't need GETJSAMPLE here */
inptr += 4;
/* If the inputs are 0..MAXJSAMPLE, the outputs of these equations
* must be too; we do not need an explicit range-limiting operation.
@ -407,16 +408,16 @@ cmyk_ycck_convert (j_compress_ptr cinfo,
*/
/* Y */
outptr0[col] = (JSAMPLE)
((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF])
>> SCALEBITS);
((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF])
>> SCALEBITS);
/* Cb */
outptr1[col] = (JSAMPLE)
((ctab[r+R_CB_OFF] + ctab[g+G_CB_OFF] + ctab[b+B_CB_OFF])
>> SCALEBITS);
((ctab[r+R_CB_OFF] + ctab[g+G_CB_OFF] + ctab[b+B_CB_OFF])
>> SCALEBITS);
/* Cr */
outptr2[col] = (JSAMPLE)
((ctab[r+R_CR_OFF] + ctab[g+G_CR_OFF] + ctab[b+B_CR_OFF])
>> SCALEBITS);
((ctab[r+R_CR_OFF] + ctab[g+G_CR_OFF] + ctab[b+B_CR_OFF])
>> SCALEBITS);
}
}
}
@ -430,8 +431,8 @@ cmyk_ycck_convert (j_compress_ptr cinfo,
METHODDEF(void)
grayscale_convert (j_compress_ptr cinfo,
JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
JDIMENSION output_row, int num_rows)
JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
JDIMENSION output_row, int num_rows)
{
register JSAMPROW inptr;
register JSAMPROW outptr;
@ -444,7 +445,7 @@ grayscale_convert (j_compress_ptr cinfo,
outptr = output_buf[0][output_row];
output_row++;
for (col = 0; col < num_cols; col++) {
outptr[col] = inptr[0]; /* don't need GETJSAMPLE() here */
outptr[col] = inptr[0]; /* don't need GETJSAMPLE() here */
inptr += instride;
}
}
@ -459,8 +460,8 @@ grayscale_convert (j_compress_ptr cinfo,
METHODDEF(void)
null_convert (j_compress_ptr cinfo,
JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
JDIMENSION output_row, int num_rows)
JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
JDIMENSION output_row, int num_rows)
{
register JSAMPROW inptr;
register JSAMPROW outptr;
@ -475,8 +476,8 @@ null_convert (j_compress_ptr cinfo,
inptr = *input_buf;
outptr = output_buf[ci][output_row];
for (col = 0; col < num_cols; col++) {
outptr[col] = inptr[ci]; /* don't need GETJSAMPLE() here */
inptr += nc;
outptr[col] = inptr[ci]; /* don't need GETJSAMPLE() here */
inptr += nc;
}
}
input_buf++;
@ -507,7 +508,7 @@ jinit_color_converter (j_compress_ptr cinfo)
cconvert = (my_cconvert_ptr)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF(my_color_converter));
sizeof(my_color_converter));
cinfo->cconvert = (struct jpeg_color_converter *) cconvert;
/* set start_pass to null method until we find out differently */
cconvert->pub.start_pass = null_method;
@ -545,7 +546,7 @@ jinit_color_converter (j_compress_ptr cinfo)
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
break;
default: /* JCS_UNKNOWN can be anything */
default: /* JCS_UNKNOWN can be anything */
if (cinfo->input_components < 1)
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
break;
@ -587,19 +588,24 @@ jinit_color_converter (j_compress_ptr cinfo)
if (rgb_red[cinfo->in_color_space] == 0 &&
rgb_green[cinfo->in_color_space] == 1 &&
rgb_blue[cinfo->in_color_space] == 2 &&
rgb_pixelsize[cinfo->in_color_space] == 3)
cconvert->pub.color_convert = null_convert;
else if (cinfo->in_color_space == JCS_RGB ||
cinfo->in_color_space == JCS_EXT_RGB ||
cinfo->in_color_space == JCS_EXT_RGBX ||
cinfo->in_color_space == JCS_EXT_BGR ||
cinfo->in_color_space == JCS_EXT_BGRX ||
cinfo->in_color_space == JCS_EXT_XBGR ||
cinfo->in_color_space == JCS_EXT_XRGB ||
cinfo->in_color_space == JCS_EXT_RGBA ||
cinfo->in_color_space == JCS_EXT_BGRA ||
cinfo->in_color_space == JCS_EXT_ABGR ||
cinfo->in_color_space == JCS_EXT_ARGB)
rgb_pixelsize[cinfo->in_color_space] == 3) {
#if defined(__mips__)
if (jsimd_c_can_null_convert())
cconvert->pub.color_convert = jsimd_c_null_convert;
else
#endif
cconvert->pub.color_convert = null_convert;
} else if (cinfo->in_color_space == JCS_RGB ||
cinfo->in_color_space == JCS_EXT_RGB ||
cinfo->in_color_space == JCS_EXT_RGBX ||
cinfo->in_color_space == JCS_EXT_BGR ||
cinfo->in_color_space == JCS_EXT_BGRX ||
cinfo->in_color_space == JCS_EXT_XBGR ||
cinfo->in_color_space == JCS_EXT_XRGB ||
cinfo->in_color_space == JCS_EXT_RGBA ||
cinfo->in_color_space == JCS_EXT_BGRA ||
cinfo->in_color_space == JCS_EXT_ABGR ||
cinfo->in_color_space == JCS_EXT_ARGB)
cconvert->pub.color_convert = rgb_rgb_convert;
else
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
@ -625,18 +631,28 @@ jinit_color_converter (j_compress_ptr cinfo)
cconvert->pub.start_pass = rgb_ycc_start;
cconvert->pub.color_convert = rgb_ycc_convert;
}
} else if (cinfo->in_color_space == JCS_YCbCr)
cconvert->pub.color_convert = null_convert;
else
} else if (cinfo->in_color_space == JCS_YCbCr) {
#if defined(__mips__)
if (jsimd_c_can_null_convert())
cconvert->pub.color_convert = jsimd_c_null_convert;
else
#endif
cconvert->pub.color_convert = null_convert;
} else
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
break;
case JCS_CMYK:
if (cinfo->num_components != 4)
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
if (cinfo->in_color_space == JCS_CMYK)
cconvert->pub.color_convert = null_convert;
else
if (cinfo->in_color_space == JCS_CMYK) {
#if defined(__mips__)
if (jsimd_c_can_null_convert())
cconvert->pub.color_convert = jsimd_c_null_convert;
else
#endif
cconvert->pub.color_convert = null_convert;
} else
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
break;
@ -646,17 +662,27 @@ jinit_color_converter (j_compress_ptr cinfo)
if (cinfo->in_color_space == JCS_CMYK) {
cconvert->pub.start_pass = rgb_ycc_start;
cconvert->pub.color_convert = cmyk_ycck_convert;
} else if (cinfo->in_color_space == JCS_YCCK)
cconvert->pub.color_convert = null_convert;
else
} else if (cinfo->in_color_space == JCS_YCCK) {
#if defined(__mips__)
if (jsimd_c_can_null_convert())
cconvert->pub.color_convert = jsimd_c_null_convert;
else
#endif
cconvert->pub.color_convert = null_convert;
} else
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
break;
default: /* allow null conversion of JCS_UNKNOWN */
default: /* allow null conversion of JCS_UNKNOWN */
if (cinfo->jpeg_color_space != cinfo->in_color_space ||
cinfo->num_components != cinfo->input_components)
cinfo->num_components != cinfo->input_components)
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
cconvert->pub.color_convert = null_convert;
#if defined(__mips__)
if (jsimd_c_can_null_convert())
cconvert->pub.color_convert = jsimd_c_null_convert;
else
#endif
cconvert->pub.color_convert = null_convert;
break;
}
}

View File

@ -6,7 +6,7 @@
* libjpeg-turbo Modifications:
* Copyright (C) 1999-2006, MIYASAKA Masaru.
* Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
* Copyright (C) 2011 D. R. Commander
* Copyright (C) 2011, 2014 D. R. Commander
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains the forward-DCT management logic.
@ -18,33 +18,32 @@
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#include "jdct.h" /* Private declarations for DCT subsystem */
#include "jdct.h" /* Private declarations for DCT subsystem */
#include "jsimddct.h"
/* Private subobject for this module */
typedef JMETHOD(void, forward_DCT_method_ptr, (DCTELEM * data));
typedef JMETHOD(void, float_DCT_method_ptr, (FAST_FLOAT * data));
typedef void (*forward_DCT_method_ptr) (DCTELEM * data);
typedef void (*float_DCT_method_ptr) (FAST_FLOAT * data);
typedef JMETHOD(void, convsamp_method_ptr,
(JSAMPARRAY sample_data, JDIMENSION start_col,
DCTELEM * workspace));
typedef JMETHOD(void, float_convsamp_method_ptr,
(JSAMPARRAY sample_data, JDIMENSION start_col,
FAST_FLOAT *workspace));
typedef void (*convsamp_method_ptr) (JSAMPARRAY sample_data,
JDIMENSION start_col,
DCTELEM * workspace);
typedef void (*float_convsamp_method_ptr) (JSAMPARRAY sample_data,
JDIMENSION start_col,
FAST_FLOAT *workspace);
typedef JMETHOD(void, quantize_method_ptr,
(JCOEFPTR coef_block, DCTELEM * divisors,
DCTELEM * workspace));
typedef JMETHOD(void, float_quantize_method_ptr,
(JCOEFPTR coef_block, FAST_FLOAT * divisors,
FAST_FLOAT * workspace));
typedef void (*quantize_method_ptr) (JCOEFPTR coef_block, DCTELEM * divisors,
DCTELEM * workspace);
typedef void (*float_quantize_method_ptr) (JCOEFPTR coef_block,
FAST_FLOAT * divisors,
FAST_FLOAT * workspace);
METHODDEF(void) quantize (JCOEFPTR, DCTELEM *, DCTELEM *);
typedef struct {
struct jpeg_forward_dct pub; /* public fields */
struct jpeg_forward_dct pub; /* public fields */
/* Pointer to the DCT routine actually in use */
forward_DCT_method_ptr dct;
@ -73,9 +72,12 @@ typedef struct {
typedef my_fdct_controller * my_fdct_ptr;
#if BITS_IN_JSAMPLE == 8
/*
* Find the highest bit in an integer through binary search.
*/
LOCAL(int)
flss (UINT16 val)
{
@ -106,6 +108,7 @@ flss (UINT16 val)
return bit;
}
/*
* Compute values to do a division using reciprocal.
*
@ -147,7 +150,7 @@ flss (UINT16 val)
*
* In order to allow SIMD implementations we also tweak the values to
* allow the same calculation to be made at all times:
*
*
* dctbl[0] = f rounded to nearest integer
* dctbl[1] = divisor / 2 (+ 1 if fractional part of f < 0.5)
* dctbl[2] = 1 << ((word size) * 2 - r)
@ -164,6 +167,7 @@ flss (UINT16 val)
* of in a consecutive manner, yet again in order to allow SIMD
* routines.
*/
LOCAL(int)
compute_reciprocal (UINT16 divisor, DCTELEM * dtbl)
{
@ -198,6 +202,9 @@ compute_reciprocal (UINT16 divisor, DCTELEM * dtbl)
else return 1;
}
#endif
/*
* Initialize for a processing pass.
* Verify that all referenced Q-tables are present, and set up
@ -221,7 +228,7 @@ start_pass_fdctmgr (j_compress_ptr cinfo)
qtblno = compptr->quant_tbl_no;
/* Make sure specified quantization table is present */
if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS ||
cinfo->quant_tbl_ptrs[qtblno] == NULL)
cinfo->quant_tbl_ptrs[qtblno] == NULL)
ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno);
qtbl = cinfo->quant_tbl_ptrs[qtblno];
/* Compute divisors for this quant table */
@ -233,91 +240,102 @@ start_pass_fdctmgr (j_compress_ptr cinfo)
* coefficients multiplied by 8 (to counteract scaling).
*/
if (fdct->divisors[qtblno] == NULL) {
fdct->divisors[qtblno] = (DCTELEM *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
(DCTSIZE2 * 4) * SIZEOF(DCTELEM));
fdct->divisors[qtblno] = (DCTELEM *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
(DCTSIZE2 * 4) * sizeof(DCTELEM));
}
dtbl = fdct->divisors[qtblno];
for (i = 0; i < DCTSIZE2; i++) {
if(!compute_reciprocal(qtbl->quantval[i] << 3, &dtbl[i])
&& fdct->quantize == jsimd_quantize)
fdct->quantize = quantize;
#if BITS_IN_JSAMPLE == 8
if(!compute_reciprocal(qtbl->quantval[i] << 3, &dtbl[i])
&& fdct->quantize == jsimd_quantize)
fdct->quantize = quantize;
#else
dtbl[i] = ((DCTELEM) qtbl->quantval[i]) << 3;
#endif
}
break;
#endif
#ifdef DCT_IFAST_SUPPORTED
case JDCT_IFAST:
{
/* For AA&N IDCT method, divisors are equal to quantization
* coefficients scaled by scalefactor[row]*scalefactor[col], where
* scalefactor[0] = 1
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
* We apply a further scale factor of 8.
*/
/* For AA&N IDCT method, divisors are equal to quantization
* coefficients scaled by scalefactor[row]*scalefactor[col], where
* scalefactor[0] = 1
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
* We apply a further scale factor of 8.
*/
#define CONST_BITS 14
static const INT16 aanscales[DCTSIZE2] = {
/* precomputed values scaled up by 14 bits */
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
};
SHIFT_TEMPS
static const INT16 aanscales[DCTSIZE2] = {
/* precomputed values scaled up by 14 bits */
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
};
SHIFT_TEMPS
if (fdct->divisors[qtblno] == NULL) {
fdct->divisors[qtblno] = (DCTELEM *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
(DCTSIZE2 * 4) * SIZEOF(DCTELEM));
}
dtbl = fdct->divisors[qtblno];
for (i = 0; i < DCTSIZE2; i++) {
if(!compute_reciprocal(
DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i],
(INT32) aanscales[i]),
CONST_BITS-3), &dtbl[i])
&& fdct->quantize == jsimd_quantize)
fdct->quantize = quantize;
}
if (fdct->divisors[qtblno] == NULL) {
fdct->divisors[qtblno] = (DCTELEM *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
(DCTSIZE2 * 4) * sizeof(DCTELEM));
}
dtbl = fdct->divisors[qtblno];
for (i = 0; i < DCTSIZE2; i++) {
#if BITS_IN_JSAMPLE == 8
if(!compute_reciprocal(
DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i],
(INT32) aanscales[i]),
CONST_BITS-3), &dtbl[i])
&& fdct->quantize == jsimd_quantize)
fdct->quantize = quantize;
#else
dtbl[i] = (DCTELEM)
DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i],
(INT32) aanscales[i]),
CONST_BITS-3);
#endif
}
}
break;
#endif
#ifdef DCT_FLOAT_SUPPORTED
case JDCT_FLOAT:
{
/* For float AA&N IDCT method, divisors are equal to quantization
* coefficients scaled by scalefactor[row]*scalefactor[col], where
* scalefactor[0] = 1
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
* We apply a further scale factor of 8.
* What's actually stored is 1/divisor so that the inner loop can
* use a multiplication rather than a division.
*/
FAST_FLOAT * fdtbl;
int row, col;
static const double aanscalefactor[DCTSIZE] = {
1.0, 1.387039845, 1.306562965, 1.175875602,
1.0, 0.785694958, 0.541196100, 0.275899379
};
/* For float AA&N IDCT method, divisors are equal to quantization
* coefficients scaled by scalefactor[row]*scalefactor[col], where
* scalefactor[0] = 1
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
* We apply a further scale factor of 8.
* What's actually stored is 1/divisor so that the inner loop can
* use a multiplication rather than a division.
*/
FAST_FLOAT * fdtbl;
int row, col;
static const double aanscalefactor[DCTSIZE] = {
1.0, 1.387039845, 1.306562965, 1.175875602,
1.0, 0.785694958, 0.541196100, 0.275899379
};
if (fdct->float_divisors[qtblno] == NULL) {
fdct->float_divisors[qtblno] = (FAST_FLOAT *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
DCTSIZE2 * SIZEOF(FAST_FLOAT));
}
fdtbl = fdct->float_divisors[qtblno];
i = 0;
for (row = 0; row < DCTSIZE; row++) {
for (col = 0; col < DCTSIZE; col++) {
fdtbl[i] = (FAST_FLOAT)
(1.0 / (((double) qtbl->quantval[i] *
aanscalefactor[row] * aanscalefactor[col] * 8.0)));
i++;
}
}
if (fdct->float_divisors[qtblno] == NULL) {
fdct->float_divisors[qtblno] = (FAST_FLOAT *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
DCTSIZE2 * sizeof(FAST_FLOAT));
}
fdtbl = fdct->float_divisors[qtblno];
i = 0;
for (row = 0; row < DCTSIZE; row++) {
for (col = 0; col < DCTSIZE; col++) {
fdtbl[i] = (FAST_FLOAT)
(1.0 / (((double) qtbl->quantval[i] *
aanscalefactor[row] * aanscalefactor[col] * 8.0)));
i++;
}
}
}
break;
#endif
@ -344,7 +362,7 @@ convsamp (JSAMPARRAY sample_data, JDIMENSION start_col, DCTELEM * workspace)
for (elemr = 0; elemr < DCTSIZE; elemr++) {
elemptr = sample_data[elemr] + start_col;
#if DCTSIZE == 8 /* unroll the inner loop */
#if DCTSIZE == 8 /* unroll the inner loop */
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
@ -373,9 +391,12 @@ quantize (JCOEFPTR coef_block, DCTELEM * divisors, DCTELEM * workspace)
{
int i;
DCTELEM temp;
JCOEFPTR output_ptr = coef_block;
#if BITS_IN_JSAMPLE == 8
UDCTELEM recip, corr, shift;
UDCTELEM2 product;
JCOEFPTR output_ptr = coef_block;
for (i = 0; i < DCTSIZE2; i++) {
temp = workspace[i];
@ -394,9 +415,47 @@ quantize (JCOEFPTR coef_block, DCTELEM * divisors, DCTELEM * workspace)
product >>= shift + sizeof(DCTELEM)*8;
temp = product;
}
output_ptr[i] = (JCOEF) temp;
}
#else
register DCTELEM qval;
for (i = 0; i < DCTSIZE2; i++) {
qval = divisors[i];
temp = workspace[i];
/* Divide the coefficient value by qval, ensuring proper rounding.
* Since C does not specify the direction of rounding for negative
* quotients, we have to force the dividend positive for portability.
*
* In most files, at least half of the output values will be zero
* (at default quantization settings, more like three-quarters...)
* so we should ensure that this case is fast. On many machines,
* a comparison is enough cheaper than a divide to make a special test
* a win. Since both inputs will be nonnegative, we need only test
* for a < b to discover whether a/b is 0.
* If your machine's division is fast enough, define FAST_DIVIDE.
*/
#ifdef FAST_DIVIDE
#define DIVIDE_BY(a,b) a /= b
#else
#define DIVIDE_BY(a,b) if (a >= b) a /= b; else a = 0
#endif
if (temp < 0) {
temp = -temp;
temp += qval>>1; /* for rounding */
DIVIDE_BY(temp, qval);
temp = -temp;
} else {
temp += qval>>1; /* for rounding */
DIVIDE_BY(temp, qval);
}
output_ptr[i] = (JCOEF) temp;
}
#endif
}
@ -410,9 +469,9 @@ quantize (JCOEFPTR coef_block, DCTELEM * divisors, DCTELEM * workspace)
METHODDEF(void)
forward_DCT (j_compress_ptr cinfo, jpeg_component_info * compptr,
JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
JDIMENSION start_row, JDIMENSION start_col,
JDIMENSION num_blocks)
JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
JDIMENSION start_row, JDIMENSION start_col,
JDIMENSION num_blocks)
/* This version is used for integer DCT implementations. */
{
/* This routine is heavily used, so it's worth coding it tightly. */
@ -427,7 +486,7 @@ forward_DCT (j_compress_ptr cinfo, jpeg_component_info * compptr,
quantize_method_ptr do_quantize = fdct->quantize;
workspace = fdct->workspace;
sample_data += start_row; /* fold in the vertical offset once */
sample_data += start_row; /* fold in the vertical offset once */
for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
/* Load data into workspace, applying unsigned->signed conversion */
@ -455,7 +514,7 @@ convsamp_float (JSAMPARRAY sample_data, JDIMENSION start_col, FAST_FLOAT * works
workspaceptr = workspace;
for (elemr = 0; elemr < DCTSIZE; elemr++) {
elemptr = sample_data[elemr] + start_col;
#if DCTSIZE == 8 /* unroll the inner loop */
#if DCTSIZE == 8 /* unroll the inner loop */
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
@ -500,9 +559,9 @@ quantize_float (JCOEFPTR coef_block, FAST_FLOAT * divisors, FAST_FLOAT * workspa
METHODDEF(void)
forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info * compptr,
JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
JDIMENSION start_row, JDIMENSION start_col,
JDIMENSION num_blocks)
JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
JDIMENSION start_row, JDIMENSION start_col,
JDIMENSION num_blocks)
/* This version is used for floating-point DCT implementations. */
{
/* This routine is heavily used, so it's worth coding it tightly. */
@ -518,7 +577,7 @@ forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info * compptr,
float_quantize_method_ptr do_quantize = fdct->float_quantize;
workspace = fdct->float_workspace;
sample_data += start_row; /* fold in the vertical offset once */
sample_data += start_row; /* fold in the vertical offset once */
for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
/* Load data into workspace, applying unsigned->signed conversion */
@ -547,7 +606,7 @@ jinit_forward_dct (j_compress_ptr cinfo)
fdct = (my_fdct_ptr)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF(my_fdct_controller));
sizeof(my_fdct_controller));
cinfo->fdct = (struct jpeg_forward_dct *) fdct;
fdct->pub.start_pass = start_pass_fdctmgr;
@ -626,12 +685,12 @@ jinit_forward_dct (j_compress_ptr cinfo)
if (cinfo->dct_method == JDCT_FLOAT)
fdct->float_workspace = (FAST_FLOAT *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF(FAST_FLOAT) * DCTSIZE2);
sizeof(FAST_FLOAT) * DCTSIZE2);
else
#endif
fdct->workspace = (DCTELEM *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF(DCTELEM) * DCTSIZE2);
sizeof(DCTELEM) * DCTSIZE2);
/* Mark divisor tables unallocated */
for (i = 0; i < NUM_QUANT_TBLS; i++) {

View File

@ -4,7 +4,7 @@
* This file was part of the Independent JPEG Group's software:
* Copyright (C) 1991-1997, Thomas G. Lane.
* libjpeg-turbo Modifications:
* Copyright (C) 2009-2011, D. R. Commander.
* Copyright (C) 2009-2011, 2014 D. R. Commander.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains Huffman entropy encoding routines.
@ -19,13 +19,38 @@
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#include "jchuff.h" /* Declarations shared with jcphuff.c */
#include "jchuff.h" /* Declarations shared with jcphuff.c */
#include <limits.h>
static const unsigned char jpeg_nbits_table[65536] = {
/* Number i needs jpeg_nbits_table[i] bits to be represented. */
/*
* NOTE: If USE_CLZ_INTRINSIC is defined, then clz/bsr instructions will be
* used for bit counting rather than the lookup table. This will reduce the
* memory footprint by 64k, which is important for some mobile applications
* that create many isolated instances of libjpeg-turbo (web browsers, for
* instance.) This may improve performance on some mobile platforms as well.
* This feature is enabled by default only on ARM processors, because some x86
* chips have a slow implementation of bsr, and the use of clz/bsr cannot be
* shown to have a significant performance impact even on the x86 chips that
* have a fast implementation of it. When building for ARMv6, you can
* explicitly disable the use of clz/bsr by adding -mthumb to the compiler
* flags (this defines __thumb__).
*/
/* NOTE: Both GCC and Clang define __GNUC__ */
#if defined __GNUC__ && (defined __arm__ || defined __aarch64__)
#if !defined __thumb__ || defined __thumb2__
#define USE_CLZ_INTRINSIC
#endif
#endif
#ifdef USE_CLZ_INTRINSIC
#define JPEG_NBITS_NONZERO(x) (32 - __builtin_clz(x))
#define JPEG_NBITS(x) (x ? JPEG_NBITS_NONZERO(x) : 0)
#else
#include "jpeg_nbits_table.h"
};
#define JPEG_NBITS(x) (jpeg_nbits_table[x])
#define JPEG_NBITS_NONZERO(x) JPEG_NBITS(x)
#endif
#ifndef min
#define min(a,b) ((a)<(b)?(a):(b))
@ -39,8 +64,8 @@ static const unsigned char jpeg_nbits_table[65536] = {
*/
typedef struct {
size_t put_buffer; /* current bit-accumulation buffer */
int put_bits; /* # of bits now in it */
size_t put_buffer; /* current bit-accumulation buffer */
int put_bits; /* # of bits now in it */
int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
} savable_state;
@ -54,12 +79,12 @@ typedef struct {
#else
#if MAX_COMPS_IN_SCAN == 4
#define ASSIGN_STATE(dest,src) \
((dest).put_buffer = (src).put_buffer, \
(dest).put_bits = (src).put_bits, \
(dest).last_dc_val[0] = (src).last_dc_val[0], \
(dest).last_dc_val[1] = (src).last_dc_val[1], \
(dest).last_dc_val[2] = (src).last_dc_val[2], \
(dest).last_dc_val[3] = (src).last_dc_val[3])
((dest).put_buffer = (src).put_buffer, \
(dest).put_bits = (src).put_bits, \
(dest).last_dc_val[0] = (src).last_dc_val[0], \
(dest).last_dc_val[1] = (src).last_dc_val[1], \
(dest).last_dc_val[2] = (src).last_dc_val[2], \
(dest).last_dc_val[3] = (src).last_dc_val[3])
#endif
#endif
@ -67,17 +92,17 @@ typedef struct {
typedef struct {
struct jpeg_entropy_encoder pub; /* public fields */
savable_state saved; /* Bit buffer & DC state at start of MCU */
savable_state saved; /* Bit buffer & DC state at start of MCU */
/* These fields are NOT loaded into local working state. */
unsigned int restarts_to_go; /* MCUs left in this restart interval */
int next_restart_num; /* next restart number to write (0-7) */
unsigned int restarts_to_go; /* MCUs left in this restart interval */
int next_restart_num; /* next restart number to write (0-7) */
/* Pointers to derived tables (these workspaces have image lifespan) */
c_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
c_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
#ifdef ENTROPY_OPT_SUPPORTED /* Statistics tables for optimization */
#ifdef ENTROPY_OPT_SUPPORTED /* Statistics tables for optimization */
long * dc_count_ptrs[NUM_HUFF_TBLS];
long * ac_count_ptrs[NUM_HUFF_TBLS];
#endif
@ -90,21 +115,20 @@ typedef huff_entropy_encoder * huff_entropy_ptr;
*/
typedef struct {
JOCTET * next_output_byte; /* => next byte to write in buffer */
size_t free_in_buffer; /* # of byte spaces remaining in buffer */
savable_state cur; /* Current bit buffer & DC state */
j_compress_ptr cinfo; /* dump_buffer needs access to this */
JOCTET * next_output_byte; /* => next byte to write in buffer */
size_t free_in_buffer; /* # of byte spaces remaining in buffer */
savable_state cur; /* Current bit buffer & DC state */
j_compress_ptr cinfo; /* dump_buffer needs access to this */
} working_state;
/* Forward declarations */
METHODDEF(boolean) encode_mcu_huff JPP((j_compress_ptr cinfo,
JBLOCKROW *MCU_data));
METHODDEF(void) finish_pass_huff JPP((j_compress_ptr cinfo));
METHODDEF(boolean) encode_mcu_huff (j_compress_ptr cinfo, JBLOCKROW *MCU_data);
METHODDEF(void) finish_pass_huff (j_compress_ptr cinfo);
#ifdef ENTROPY_OPT_SUPPORTED
METHODDEF(boolean) encode_mcu_gather JPP((j_compress_ptr cinfo,
JBLOCKROW *MCU_data));
METHODDEF(void) finish_pass_gather JPP((j_compress_ptr cinfo));
METHODDEF(boolean) encode_mcu_gather (j_compress_ptr cinfo,
JBLOCKROW *MCU_data);
METHODDEF(void) finish_pass_gather (j_compress_ptr cinfo);
#endif
@ -142,29 +166,29 @@ start_pass_huff (j_compress_ptr cinfo, boolean gather_statistics)
/* Check for invalid table indexes */
/* (make_c_derived_tbl does this in the other path) */
if (dctbl < 0 || dctbl >= NUM_HUFF_TBLS)
ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, dctbl);
ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, dctbl);
if (actbl < 0 || actbl >= NUM_HUFF_TBLS)
ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, actbl);
ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, actbl);
/* Allocate and zero the statistics tables */
/* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
if (entropy->dc_count_ptrs[dctbl] == NULL)
entropy->dc_count_ptrs[dctbl] = (long *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
257 * SIZEOF(long));
MEMZERO(entropy->dc_count_ptrs[dctbl], 257 * SIZEOF(long));
entropy->dc_count_ptrs[dctbl] = (long *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
257 * sizeof(long));
MEMZERO(entropy->dc_count_ptrs[dctbl], 257 * sizeof(long));
if (entropy->ac_count_ptrs[actbl] == NULL)
entropy->ac_count_ptrs[actbl] = (long *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
257 * SIZEOF(long));
MEMZERO(entropy->ac_count_ptrs[actbl], 257 * SIZEOF(long));
entropy->ac_count_ptrs[actbl] = (long *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
257 * sizeof(long));
MEMZERO(entropy->ac_count_ptrs[actbl], 257 * sizeof(long));
#endif
} else {
/* Compute derived values for Huffman tables */
/* We may do this more than once for a table, but it's not expensive */
jpeg_make_c_derived_tbl(cinfo, TRUE, dctbl,
& entropy->dc_derived_tbls[dctbl]);
& entropy->dc_derived_tbls[dctbl]);
jpeg_make_c_derived_tbl(cinfo, FALSE, actbl,
& entropy->ac_derived_tbls[actbl]);
& entropy->ac_derived_tbls[actbl]);
}
/* Initialize DC predictions to 0 */
entropy->saved.last_dc_val[ci] = 0;
@ -189,7 +213,7 @@ start_pass_huff (j_compress_ptr cinfo, boolean gather_statistics)
GLOBAL(void)
jpeg_make_c_derived_tbl (j_compress_ptr cinfo, boolean isDC, int tblno,
c_derived_tbl ** pdtbl)
c_derived_tbl ** pdtbl)
{
JHUFF_TBL *htbl;
c_derived_tbl *dtbl;
@ -214,22 +238,22 @@ jpeg_make_c_derived_tbl (j_compress_ptr cinfo, boolean isDC, int tblno,
if (*pdtbl == NULL)
*pdtbl = (c_derived_tbl *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF(c_derived_tbl));
sizeof(c_derived_tbl));
dtbl = *pdtbl;
/* Figure C.1: make table of Huffman code length for each symbol */
p = 0;
for (l = 1; l <= 16; l++) {
i = (int) htbl->bits[l];
if (i < 0 || p + i > 256) /* protect against table overrun */
if (i < 0 || p + i > 256) /* protect against table overrun */
ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
while (i--)
huffsize[p++] = (char) l;
}
huffsize[p] = 0;
lastp = p;
/* Figure C.2: generate the codes themselves */
/* We also validate that the counts represent a legal Huffman code tree. */
@ -249,7 +273,7 @@ jpeg_make_c_derived_tbl (j_compress_ptr cinfo, boolean isDC, int tblno,
code <<= 1;
si++;
}
/* Figure C.3: generate encoding tables */
/* These are code and size indexed by symbol value */
@ -257,7 +281,7 @@ jpeg_make_c_derived_tbl (j_compress_ptr cinfo, boolean isDC, int tblno,
* this lets us detect duplicate VAL entries here, and later
* allows emit_bits to detect any attempt to emit such symbols.
*/
MEMZERO(dtbl->ehufsi, SIZEOF(dtbl->ehufsi));
MEMZERO(dtbl->ehufsi, sizeof(dtbl->ehufsi));
/* This is also a convenient place to check for out-of-range
* and duplicated VAL entries. We allow 0..255 for AC symbols
@ -280,10 +304,10 @@ jpeg_make_c_derived_tbl (j_compress_ptr cinfo, boolean isDC, int tblno,
/* Emit a byte, taking 'action' if must suspend. */
#define emit_byte(state,val,action) \
{ *(state)->next_output_byte++ = (JOCTET) (val); \
if (--(state)->free_in_buffer == 0) \
if (! dump_buffer(state)) \
{ action; } }
{ *(state)->next_output_byte++ = (JOCTET) (val); \
if (--(state)->free_in_buffer == 0) \
if (! dump_buffer(state)) \
{ action; } }
LOCAL(boolean)
@ -384,7 +408,16 @@ dump_buffer (working_state * state)
#endif
#define BUFSIZE (DCTSIZE2 * 2)
/* Although it is exceedingly rare, it is possible for a Huffman-encoded
* coefficient block to be larger than the 128-byte unencoded block. For each
* of the 64 coefficients, PUT_BITS is invoked twice, and each invocation can
* theoretically store 16 bits (for a maximum of 2048 bits or 256 bytes per
* encoded block.) If, for instance, one artificially sets the AC
* coefficients to alternating values of 32767 and -32768 (using the JPEG
* scanning order-- 1, 8, 16, etc.), then this will produce an encoded block
* larger than 200 bytes.
*/
#define BUFSIZE (DCTSIZE2 * 4)
#define LOAD_BUFFER() { \
if (state->free_in_buffer < BUFSIZE) { \
@ -431,7 +464,7 @@ flush_bits (working_state * state)
PUT_BITS(0x7F, 7)
while (put_bits >= 8) EMIT_BYTE()
state->cur.put_buffer = 0; /* and reset bit-buffer to empty */
state->cur.put_buffer = 0; /* and reset bit-buffer to empty */
state->cur.put_bits = 0;
STORE_BUFFER()
@ -443,7 +476,7 @@ flush_bits (working_state * state)
LOCAL(boolean)
encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val,
c_derived_tbl *dctbl, c_derived_tbl *actbl)
c_derived_tbl *dctbl, c_derived_tbl *actbl)
{
int temp, temp2, temp3;
int nbits;
@ -458,7 +491,7 @@ encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val,
LOAD_BUFFER()
/* Encode the DC coefficient difference per section F.1.2.1 */
temp = temp2 = block[0] - last_dc_val;
/* This is a well-known technique for obtaining the absolute value without a
@ -475,7 +508,7 @@ encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val,
temp2 += temp3;
/* Find the number of bits needed for the magnitude of the coefficient */
nbits = jpeg_nbits_table[temp];
nbits = JPEG_NBITS(temp);
/* Emit the Huffman-coded symbol for the number of bits */
code = dctbl->ehufco[nbits];
@ -492,8 +525,8 @@ encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val,
CHECKBUF15()
/* Encode the AC coefficients per section F.1.2.2 */
r = 0; /* r = run length of zeros */
r = 0; /* r = run length of zeros */
/* Manually unroll the k loop to eliminate the counter variable. This
* improves performance greatly on systems with a limited number of
@ -509,7 +542,7 @@ encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val,
temp ^= temp3; \
temp -= temp3; \
temp2 += temp3; \
nbits = jpeg_nbits_table[temp]; \
nbits = JPEG_NBITS_NONZERO(temp); \
/* if run length > 15, must emit special run-length-16 codes (0xF0) */ \
while (r > 15) { \
EMIT_BITS(code_0xf0, size_0xf0) \
@ -599,7 +632,7 @@ encode_mcu_huff (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
if (cinfo->restart_interval) {
if (entropy->restarts_to_go == 0)
if (! emit_restart(&state, entropy->next_restart_num))
return FALSE;
return FALSE;
}
/* Encode the MCU data blocks */
@ -607,9 +640,9 @@ encode_mcu_huff (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
ci = cinfo->MCU_membership[blkn];
compptr = cinfo->cur_comp_info[ci];
if (! encode_one_block(&state,
MCU_data[blkn][0], state.cur.last_dc_val[ci],
entropy->dc_derived_tbls[compptr->dc_tbl_no],
entropy->ac_derived_tbls[compptr->ac_tbl_no]))
MCU_data[blkn][0], state.cur.last_dc_val[ci],
entropy->dc_derived_tbls[compptr->dc_tbl_no],
entropy->ac_derived_tbls[compptr->ac_tbl_no]))
return FALSE;
/* Update last_dc_val */
state.cur.last_dc_val[ci] = MCU_data[blkn][0][0];
@ -679,18 +712,18 @@ finish_pass_huff (j_compress_ptr cinfo)
LOCAL(void)
htest_one_block (j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val,
long dc_counts[], long ac_counts[])
long dc_counts[], long ac_counts[])
{
register int temp;
register int nbits;
register int k, r;
/* Encode the DC coefficient difference per section F.1.2.1 */
temp = block[0] - last_dc_val;
if (temp < 0)
temp = -temp;
/* Find the number of bits needed for the magnitude of the coefficient */
nbits = 0;
while (temp) {
@ -705,36 +738,36 @@ htest_one_block (j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val,
/* Count the Huffman symbol for the number of bits */
dc_counts[nbits]++;
/* Encode the AC coefficients per section F.1.2.2 */
r = 0; /* r = run length of zeros */
r = 0; /* r = run length of zeros */
for (k = 1; k < DCTSIZE2; k++) {
if ((temp = block[jpeg_natural_order[k]]) == 0) {
r++;
} else {
/* if run length > 15, must emit special run-length-16 codes (0xF0) */
while (r > 15) {
ac_counts[0xF0]++;
r -= 16;
ac_counts[0xF0]++;
r -= 16;
}
/* Find the number of bits needed for the magnitude of the coefficient */
if (temp < 0)
temp = -temp;
temp = -temp;
/* Find the number of bits needed for the magnitude of the coefficient */
nbits = 1; /* there must be at least one 1 bit */
nbits = 1; /* there must be at least one 1 bit */
while ((temp >>= 1))
nbits++;
nbits++;
/* Check for out-of-range coefficient values */
if (nbits > MAX_COEF_BITS)
ERREXIT(cinfo, JERR_BAD_DCT_COEF);
ERREXIT(cinfo, JERR_BAD_DCT_COEF);
/* Count Huffman symbol for run length / number of bits */
ac_counts[(r << 4) + nbits]++;
r = 0;
}
}
@ -762,7 +795,7 @@ encode_mcu_gather (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
if (entropy->restarts_to_go == 0) {
/* Re-initialize DC predictions to 0 */
for (ci = 0; ci < cinfo->comps_in_scan; ci++)
entropy->saved.last_dc_val[ci] = 0;
entropy->saved.last_dc_val[ci] = 0;
/* Update restart state */
entropy->restarts_to_go = cinfo->restart_interval;
}
@ -773,8 +806,8 @@ encode_mcu_gather (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
ci = cinfo->MCU_membership[blkn];
compptr = cinfo->cur_comp_info[ci];
htest_one_block(cinfo, MCU_data[blkn][0], entropy->saved.last_dc_val[ci],
entropy->dc_count_ptrs[compptr->dc_tbl_no],
entropy->ac_count_ptrs[compptr->ac_tbl_no]);
entropy->dc_count_ptrs[compptr->dc_tbl_no],
entropy->ac_count_ptrs[compptr->ac_tbl_no]);
entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0];
}
@ -813,22 +846,22 @@ encode_mcu_gather (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
GLOBAL(void)
jpeg_gen_optimal_table (j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[])
{
#define MAX_CLEN 32 /* assumed maximum initial code length */
UINT8 bits[MAX_CLEN+1]; /* bits[k] = # of symbols with code length k */
int codesize[257]; /* codesize[k] = code length of symbol k */
int others[257]; /* next symbol in current branch of tree */
#define MAX_CLEN 32 /* assumed maximum initial code length */
UINT8 bits[MAX_CLEN+1]; /* bits[k] = # of symbols with code length k */
int codesize[257]; /* codesize[k] = code length of symbol k */
int others[257]; /* next symbol in current branch of tree */
int c1, c2;
int p, i, j;
long v;
/* This algorithm is explained in section K.2 of the JPEG standard */
MEMZERO(bits, SIZEOF(bits));
MEMZERO(codesize, SIZEOF(codesize));
MEMZERO(bits, sizeof(bits));
MEMZERO(codesize, sizeof(codesize));
for (i = 0; i < 257; i++)
others[i] = -1; /* init links to empty */
freq[256] = 1; /* make sure 256 has a nonzero count */
others[i] = -1; /* init links to empty */
freq[256] = 1; /* make sure 256 has a nonzero count */
/* Including the pseudo-symbol 256 in the Huffman procedure guarantees
* that no real symbol is given code-value of all ones, because 256
* will be placed last in the largest codeword category.
@ -843,8 +876,8 @@ jpeg_gen_optimal_table (j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[])
v = 1000000000L;
for (i = 0; i <= 256; i++) {
if (freq[i] && freq[i] <= v) {
v = freq[i];
c1 = i;
v = freq[i];
c1 = i;
}
}
@ -854,15 +887,15 @@ jpeg_gen_optimal_table (j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[])
v = 1000000000L;
for (i = 0; i <= 256; i++) {
if (freq[i] && freq[i] <= v && i != c1) {
v = freq[i];
c2 = i;
v = freq[i];
c2 = i;
}
}
/* Done if we've merged everything into one frequency */
if (c2 < 0)
break;
/* Else merge the two counts/trees */
freq[c1] += freq[c2];
freq[c2] = 0;
@ -873,9 +906,9 @@ jpeg_gen_optimal_table (j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[])
c1 = others[c1];
codesize[c1]++;
}
others[c1] = c2; /* chain c2 onto c1's tree branch */
others[c1] = c2; /* chain c2 onto c1's tree branch */
/* Increment the codesize of everything in c2's tree branch */
codesize[c2]++;
while (others[c2] >= 0) {
@ -890,7 +923,7 @@ jpeg_gen_optimal_table (j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[])
/* The JPEG standard seems to think that this can't happen, */
/* but I'm paranoid... */
if (codesize[i] > MAX_CLEN)
ERREXIT(cinfo, JERR_HUFF_CLEN_OVERFLOW);
ERREXIT(cinfo, JERR_HUFF_CLEN_OVERFLOW);
bits[codesize[i]]++;
}
@ -906,28 +939,28 @@ jpeg_gen_optimal_table (j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[])
* shortest nonzero BITS entry is converted into a prefix for two code words
* one bit longer.
*/
for (i = MAX_CLEN; i > 16; i--) {
while (bits[i] > 0) {
j = i - 2; /* find length of new prefix to be used */
j = i - 2; /* find length of new prefix to be used */
while (bits[j] == 0)
j--;
bits[i] -= 2; /* remove two symbols */
bits[i-1]++; /* one goes in this length */
bits[j+1] += 2; /* two new symbols in this length */
bits[j]--; /* symbol of this length is now a prefix */
j--;
bits[i] -= 2; /* remove two symbols */
bits[i-1]++; /* one goes in this length */
bits[j+1] += 2; /* two new symbols in this length */
bits[j]--; /* symbol of this length is now a prefix */
}
}
/* Remove the count for the pseudo-symbol 256 from the largest codelength */
while (bits[i] == 0) /* find largest codelength still in use */
while (bits[i] == 0) /* find largest codelength still in use */
i--;
bits[i]--;
/* Return final symbol counts (only for lengths 0..16) */
MEMCOPY(htbl->bits, bits, SIZEOF(htbl->bits));
MEMCOPY(htbl->bits, bits, sizeof(htbl->bits));
/* Return a list of the symbols sorted by code length */
/* It's not real clear to me why we don't need to consider the codelength
* changes made above, but the JPEG spec seems to think this works.
@ -936,8 +969,8 @@ jpeg_gen_optimal_table (j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[])
for (i = 1; i <= MAX_CLEN; i++) {
for (j = 0; j <= 255; j++) {
if (codesize[j] == i) {
htbl->huffval[p] = (UINT8) j;
p++;
htbl->huffval[p] = (UINT8) j;
p++;
}
}
}
@ -964,8 +997,8 @@ finish_pass_gather (j_compress_ptr cinfo)
/* It's important not to apply jpeg_gen_optimal_table more than once
* per table, because it clobbers the input frequency counts!
*/
MEMZERO(did_dc, SIZEOF(did_dc));
MEMZERO(did_ac, SIZEOF(did_ac));
MEMZERO(did_dc, sizeof(did_dc));
MEMZERO(did_ac, sizeof(did_ac));
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
compptr = cinfo->cur_comp_info[ci];
@ -974,14 +1007,14 @@ finish_pass_gather (j_compress_ptr cinfo)
if (! did_dc[dctbl]) {
htblptr = & cinfo->dc_huff_tbl_ptrs[dctbl];
if (*htblptr == NULL)
*htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
*htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[dctbl]);
did_dc[dctbl] = TRUE;
}
if (! did_ac[actbl]) {
htblptr = & cinfo->ac_huff_tbl_ptrs[actbl];
if (*htblptr == NULL)
*htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
*htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[actbl]);
did_ac[actbl] = TRUE;
}
@ -1004,7 +1037,7 @@ jinit_huff_encoder (j_compress_ptr cinfo)
entropy = (huff_entropy_ptr)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF(huff_entropy_encoder));
sizeof(huff_entropy_encoder));
cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
entropy->pub.start_pass = start_pass_huff;

View File

@ -1,8 +1,10 @@
/*
* jchuff.h
*
* This file was part of the Independent JPEG Group's software:
* Copyright (C) 1991-1997, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* It was modified by The libjpeg-turbo Project to include only code relevant
* to libjpeg-turbo.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains declarations for Huffman entropy encoding routines
@ -25,23 +27,16 @@
/* Derived data constructed for each Huffman table */
typedef struct {
unsigned int ehufco[256]; /* code for each symbol */
char ehufsi[256]; /* length of code for each symbol */
unsigned int ehufco[256]; /* code for each symbol */
char ehufsi[256]; /* length of code for each symbol */
/* If no code has been allocated for a symbol S, ehufsi[S] contains 0 */
} c_derived_tbl;
/* Short forms of external names for systems with brain-damaged linkers. */
#ifdef NEED_SHORT_EXTERNAL_NAMES
#define jpeg_make_c_derived_tbl jMkCDerived
#define jpeg_gen_optimal_table jGenOptTbl
#endif /* NEED_SHORT_EXTERNAL_NAMES */
/* Expand a Huffman table definition into the derived format */
EXTERN(void) jpeg_make_c_derived_tbl
JPP((j_compress_ptr cinfo, boolean isDC, int tblno,
c_derived_tbl ** pdtbl));
(j_compress_ptr cinfo, boolean isDC, int tblno,
c_derived_tbl ** pdtbl);
/* Generate an optimal table definition given the specified counts */
EXTERN(void) jpeg_gen_optimal_table
JPP((j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[]));
(j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[]);

View File

@ -60,7 +60,7 @@ jinit_compress_master (j_compress_ptr cinfo)
/* Need a full-image coefficient buffer in any multi-pass mode. */
jinit_c_coef_controller(cinfo,
(boolean) (cinfo->num_scans > 1 || cinfo->optimize_coding));
(boolean) (cinfo->num_scans > 1 || cinfo->optimize_coding));
jinit_c_main_controller(cinfo, FALSE /* never need full buffer here */);
jinit_marker_writer(cinfo);

View File

@ -1,8 +1,10 @@
/*
* jcmainct.c
*
* This file was part of the Independent JPEG Group's software:
* Copyright (C) 1994-1996, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* It was modified by The libjpeg-turbo Project to include only code relevant
* to libjpeg-turbo.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains the main buffer controller for compression.
@ -15,36 +17,21 @@
#include "jpeglib.h"
/* Note: currently, there is no operating mode in which a full-image buffer
* is needed at this step. If there were, that mode could not be used with
* "raw data" input, since this module is bypassed in that case. However,
* we've left the code here for possible use in special applications.
*/
#undef FULL_MAIN_BUFFER_SUPPORTED
/* Private buffer controller object */
typedef struct {
struct jpeg_c_main_controller pub; /* public fields */
JDIMENSION cur_iMCU_row; /* number of current iMCU row */
JDIMENSION rowgroup_ctr; /* counts row groups received in iMCU row */
boolean suspended; /* remember if we suspended output */
J_BUF_MODE pass_mode; /* current operating mode */
JDIMENSION cur_iMCU_row; /* number of current iMCU row */
JDIMENSION rowgroup_ctr; /* counts row groups received in iMCU row */
boolean suspended; /* remember if we suspended output */
J_BUF_MODE pass_mode; /* current operating mode */
/* If using just a strip buffer, this points to the entire set of buffers
* (we allocate one for each component). In the full-image case, this
* points to the currently accessible strips of the virtual arrays.
*/
JSAMPARRAY buffer[MAX_COMPONENTS];
#ifdef FULL_MAIN_BUFFER_SUPPORTED
/* If using full-image storage, this array holds pointers to virtual-array
* control blocks for each component. Unused if not full-image storage.
*/
jvirt_sarray_ptr whole_image[MAX_COMPONENTS];
#endif
} my_main_controller;
typedef my_main_controller * my_main_ptr;
@ -52,13 +39,8 @@ typedef my_main_controller * my_main_ptr;
/* Forward declarations */
METHODDEF(void) process_data_simple_main
JPP((j_compress_ptr cinfo, JSAMPARRAY input_buf,
JDIMENSION *in_row_ctr, JDIMENSION in_rows_avail));
#ifdef FULL_MAIN_BUFFER_SUPPORTED
METHODDEF(void) process_data_buffer_main
JPP((j_compress_ptr cinfo, JSAMPARRAY input_buf,
JDIMENSION *in_row_ctr, JDIMENSION in_rows_avail));
#endif
(j_compress_ptr cinfo, JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
JDIMENSION in_rows_avail);
/*
@ -74,32 +56,14 @@ start_pass_main (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
if (cinfo->raw_data_in)
return;
main_ptr->cur_iMCU_row = 0; /* initialize counters */
if (pass_mode != JBUF_PASS_THRU)
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
main_ptr->cur_iMCU_row = 0; /* initialize counters */
main_ptr->rowgroup_ctr = 0;
main_ptr->suspended = FALSE;
main_ptr->pass_mode = pass_mode; /* save mode for use by process_data */
switch (pass_mode) {
case JBUF_PASS_THRU:
#ifdef FULL_MAIN_BUFFER_SUPPORTED
if (main_ptr->whole_image[0] != NULL)
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
#endif
main_ptr->pub.process_data = process_data_simple_main;
break;
#ifdef FULL_MAIN_BUFFER_SUPPORTED
case JBUF_SAVE_SOURCE:
case JBUF_CRANK_DEST:
case JBUF_SAVE_AND_PASS:
if (main_ptr->whole_image[0] == NULL)
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
main_ptr->pub.process_data = process_data_buffer_main;
break;
#endif
default:
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
break;
}
main_ptr->pass_mode = pass_mode; /* save mode for use by process_data */
main_ptr->pub.process_data = process_data_simple_main;
}
@ -111,8 +75,8 @@ start_pass_main (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
METHODDEF(void)
process_data_simple_main (j_compress_ptr cinfo,
JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
JDIMENSION in_rows_avail)
JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
JDIMENSION in_rows_avail)
{
my_main_ptr main_ptr = (my_main_ptr) cinfo->main;
@ -120,9 +84,9 @@ process_data_simple_main (j_compress_ptr cinfo,
/* Read input data if we haven't filled the main buffer yet */
if (main_ptr->rowgroup_ctr < DCTSIZE)
(*cinfo->prep->pre_process_data) (cinfo,
input_buf, in_row_ctr, in_rows_avail,
main_ptr->buffer, &main_ptr->rowgroup_ctr,
(JDIMENSION) DCTSIZE);
input_buf, in_row_ctr, in_rows_avail,
main_ptr->buffer, &main_ptr->rowgroup_ctr,
(JDIMENSION) DCTSIZE);
/* If we don't have a full iMCU row buffered, return to application for
* more data. Note that preprocessor will always pad to fill the iMCU row
@ -140,8 +104,8 @@ process_data_simple_main (j_compress_ptr cinfo,
* think we were done.
*/
if (! main_ptr->suspended) {
(*in_row_ctr)--;
main_ptr->suspended = TRUE;
(*in_row_ctr)--;
main_ptr->suspended = TRUE;
}
return;
}
@ -158,85 +122,6 @@ process_data_simple_main (j_compress_ptr cinfo,
}
#ifdef FULL_MAIN_BUFFER_SUPPORTED
/*
* Process some data.
* This routine handles all of the modes that use a full-size buffer.
*/
METHODDEF(void)
process_data_buffer_main (j_compress_ptr cinfo,
JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
JDIMENSION in_rows_avail)
{
my_main_ptr main_ptr = (my_main_ptr) cinfo->main;
int ci;
jpeg_component_info *compptr;
boolean writing = (main_ptr->pass_mode != JBUF_CRANK_DEST);
while (main_ptr->cur_iMCU_row < cinfo->total_iMCU_rows) {
/* Realign the virtual buffers if at the start of an iMCU row. */
if (main_ptr->rowgroup_ctr == 0) {
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
main_ptr->buffer[ci] = (*cinfo->mem->access_virt_sarray)
((j_common_ptr) cinfo, main_ptr->whole_image[ci],
main_ptr->cur_iMCU_row * (compptr->v_samp_factor * DCTSIZE),
(JDIMENSION) (compptr->v_samp_factor * DCTSIZE), writing);
}
/* In a read pass, pretend we just read some source data. */
if (! writing) {
*in_row_ctr += cinfo->max_v_samp_factor * DCTSIZE;
main_ptr->rowgroup_ctr = DCTSIZE;
}
}
/* If a write pass, read input data until the current iMCU row is full. */
/* Note: preprocessor will pad if necessary to fill the last iMCU row. */
if (writing) {
(*cinfo->prep->pre_process_data) (cinfo,
input_buf, in_row_ctr, in_rows_avail,
main_ptr->buffer, &main_ptr->rowgroup_ctr,
(JDIMENSION) DCTSIZE);
/* Return to application if we need more data to fill the iMCU row. */
if (main_ptr->rowgroup_ctr < DCTSIZE)
return;
}
/* Emit data, unless this is a sink-only pass. */
if (main_ptr->pass_mode != JBUF_SAVE_SOURCE) {
if (! (*cinfo->coef->compress_data) (cinfo, main_ptr->buffer)) {
/* If compressor did not consume the whole row, then we must need to
* suspend processing and return to the application. In this situation
* we pretend we didn't yet consume the last input row; otherwise, if
* it happened to be the last row of the image, the application would
* think we were done.
*/
if (! main_ptr->suspended) {
(*in_row_ctr)--;
main_ptr->suspended = TRUE;
}
return;
}
/* We did finish the row. Undo our little suspension hack if a previous
* call suspended; then mark the main buffer empty.
*/
if (main_ptr->suspended) {
(*in_row_ctr)++;
main_ptr->suspended = FALSE;
}
}
/* If get here, we are done with this iMCU row. Mark buffer empty. */
main_ptr->rowgroup_ctr = 0;
main_ptr->cur_iMCU_row++;
}
}
#endif /* FULL_MAIN_BUFFER_SUPPORTED */
/*
* Initialize main buffer controller.
*/
@ -250,7 +135,7 @@ jinit_c_main_controller (j_compress_ptr cinfo, boolean need_full_buffer)
main_ptr = (my_main_ptr)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF(my_main_controller));
sizeof(my_main_controller));
cinfo->main = (struct jpeg_c_main_controller *) main_ptr;
main_ptr->pub.start_pass = start_pass_main;
@ -262,32 +147,15 @@ jinit_c_main_controller (j_compress_ptr cinfo, boolean need_full_buffer)
* may be of a different size.
*/
if (need_full_buffer) {
#ifdef FULL_MAIN_BUFFER_SUPPORTED
/* Allocate a full-image virtual array for each component */
/* Note we pad the bottom to a multiple of the iMCU height */
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
main_ptr->whole_image[ci] = (*cinfo->mem->request_virt_sarray)
((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE,
compptr->width_in_blocks * DCTSIZE,
(JDIMENSION) jround_up((long) compptr->height_in_blocks,
(long) compptr->v_samp_factor) * DCTSIZE,
(JDIMENSION) (compptr->v_samp_factor * DCTSIZE));
}
#else
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
#endif
} else {
#ifdef FULL_MAIN_BUFFER_SUPPORTED
main_ptr->whole_image[0] = NULL; /* flag for no virtual arrays */
#endif
/* Allocate a strip buffer for each component */
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
ci++, compptr++) {
main_ptr->buffer[ci] = (*cinfo->mem->alloc_sarray)
((j_common_ptr) cinfo, JPOOL_IMAGE,
compptr->width_in_blocks * DCTSIZE,
(JDIMENSION) (compptr->v_samp_factor * DCTSIZE));
((j_common_ptr) cinfo, JPOOL_IMAGE,
compptr->width_in_blocks * DCTSIZE,
(JDIMENSION) (compptr->v_samp_factor * DCTSIZE));
}
}
}

View File

@ -17,7 +17,7 @@
#include "jpegcomp.h"
typedef enum { /* JPEG marker codes */
typedef enum { /* JPEG marker codes */
M_SOF0 = 0xc0,
M_SOF1 = 0xc1,
M_SOF2 = 0xc2,
@ -173,7 +173,7 @@ emit_dqt (j_compress_ptr cinfo, int index)
/* The table entries must be emitted in zigzag order. */
unsigned int qval = qtbl->quantval[jpeg_natural_order[i]];
if (prec)
emit_byte(cinfo, (int) (qval >> 8));
emit_byte(cinfo, (int) (qval >> 8));
emit_byte(cinfo, (int) (qval & 0xFF));
}
@ -190,33 +190,33 @@ emit_dht (j_compress_ptr cinfo, int index, boolean is_ac)
{
JHUFF_TBL * htbl;
int length, i;
if (is_ac) {
htbl = cinfo->ac_huff_tbl_ptrs[index];
index += 0x10; /* output index has AC bit set */
index += 0x10; /* output index has AC bit set */
} else {
htbl = cinfo->dc_huff_tbl_ptrs[index];
}
if (htbl == NULL)
ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, index);
if (! htbl->sent_table) {
emit_marker(cinfo, M_DHT);
length = 0;
for (i = 1; i <= 16; i++)
length += htbl->bits[i];
emit_2bytes(cinfo, length + 2 + 1 + 16);
emit_byte(cinfo, index);
for (i = 1; i <= 16; i++)
emit_byte(cinfo, htbl->bits[i]);
for (i = 0; i < length; i++)
emit_byte(cinfo, htbl->huffval[i]);
htbl->sent_table = TRUE;
}
}
@ -258,12 +258,12 @@ emit_dac (j_compress_ptr cinfo)
for (i = 0; i < NUM_ARITH_TBLS; i++) {
if (dc_in_use[i]) {
emit_byte(cinfo, i);
emit_byte(cinfo, cinfo->arith_dc_L[i] + (cinfo->arith_dc_U[i]<<4));
emit_byte(cinfo, i);
emit_byte(cinfo, cinfo->arith_dc_L[i] + (cinfo->arith_dc_U[i]<<4));
}
if (ac_in_use[i]) {
emit_byte(cinfo, i + 0x10);
emit_byte(cinfo, cinfo->arith_ac_K[i]);
emit_byte(cinfo, i + 0x10);
emit_byte(cinfo, cinfo->arith_ac_K[i]);
}
}
}
@ -276,8 +276,8 @@ emit_dri (j_compress_ptr cinfo)
/* Emit a DRI marker */
{
emit_marker(cinfo, M_DRI);
emit_2bytes(cinfo, 4); /* fixed length */
emit_2bytes(cinfo, 4); /* fixed length */
emit_2bytes(cinfo, (int) cinfo->restart_interval);
}
@ -289,9 +289,9 @@ emit_sof (j_compress_ptr cinfo, JPEG_MARKER code)
{
int ci;
jpeg_component_info *compptr;
emit_marker(cinfo, code);
emit_2bytes(cinfo, 3 * cinfo->num_components + 2 + 5 + 1); /* length */
/* Make sure image isn't bigger than SOF field can handle */
@ -320,13 +320,13 @@ emit_sos (j_compress_ptr cinfo)
{
int i, td, ta;
jpeg_component_info *compptr;
emit_marker(cinfo, M_SOS);
emit_2bytes(cinfo, 2 * cinfo->comps_in_scan + 2 + 1 + 3); /* length */
emit_byte(cinfo, cinfo->comps_in_scan);
for (i = 0; i < cinfo->comps_in_scan; i++) {
compptr = cinfo->cur_comp_info[i];
emit_byte(cinfo, compptr->component_id);
@ -354,22 +354,22 @@ emit_jfif_app0 (j_compress_ptr cinfo)
/* Emit a JFIF-compliant APP0 marker */
{
/*
* Length of APP0 block (2 bytes)
* Block ID (4 bytes - ASCII "JFIF")
* Zero byte (1 byte to terminate the ID string)
* Version Major, Minor (2 bytes - major first)
* Units (1 byte - 0x00 = none, 0x01 = inch, 0x02 = cm)
* Xdpu (2 bytes - dots per unit horizontal)
* Ydpu (2 bytes - dots per unit vertical)
* Thumbnail X size (1 byte)
* Thumbnail Y size (1 byte)
* Length of APP0 block (2 bytes)
* Block ID (4 bytes - ASCII "JFIF")
* Zero byte (1 byte to terminate the ID string)
* Version Major, Minor (2 bytes - major first)
* Units (1 byte - 0x00 = none, 0x01 = inch, 0x02 = cm)
* Xdpu (2 bytes - dots per unit horizontal)
* Ydpu (2 bytes - dots per unit vertical)
* Thumbnail X size (1 byte)
* Thumbnail Y size (1 byte)
*/
emit_marker(cinfo, M_APP0);
emit_2bytes(cinfo, 2 + 4 + 1 + 2 + 1 + 2 + 2 + 1 + 1); /* length */
emit_byte(cinfo, 0x4A); /* Identifier: ASCII "JFIF" */
emit_byte(cinfo, 0x4A); /* Identifier: ASCII "JFIF" */
emit_byte(cinfo, 0x46);
emit_byte(cinfo, 0x49);
emit_byte(cinfo, 0x46);
@ -379,7 +379,7 @@ emit_jfif_app0 (j_compress_ptr cinfo)
emit_byte(cinfo, cinfo->density_unit); /* Pixel size information */
emit_2bytes(cinfo, (int) cinfo->X_density);
emit_2bytes(cinfo, (int) cinfo->Y_density);
emit_byte(cinfo, 0); /* No thumbnail image */
emit_byte(cinfo, 0); /* No thumbnail image */
emit_byte(cinfo, 0);
}
@ -389,12 +389,12 @@ emit_adobe_app14 (j_compress_ptr cinfo)
/* Emit an Adobe APP14 marker */
{
/*
* Length of APP14 block (2 bytes)
* Block ID (5 bytes - ASCII "Adobe")
* Version Number (2 bytes - currently 100)
* Flags0 (2 bytes - currently 0)
* Flags1 (2 bytes - currently 0)
* Color transform (1 byte)
* Length of APP14 block (2 bytes)
* Block ID (5 bytes - ASCII "Adobe")
* Version Number (2 bytes - currently 100)
* Flags0 (2 bytes - currently 0)
* Flags1 (2 bytes - currently 0)
* Color transform (1 byte)
*
* Although Adobe TN 5116 mentions Version = 101, all the Adobe files
* now in circulation seem to use Version = 100, so that's what we write.
@ -403,28 +403,28 @@ emit_adobe_app14 (j_compress_ptr cinfo)
* YCbCr, 2 if it's YCCK, 0 otherwise. Adobe's definition has to do with
* whether the encoder performed a transformation, which is pretty useless.
*/
emit_marker(cinfo, M_APP14);
emit_2bytes(cinfo, 2 + 5 + 2 + 2 + 2 + 1); /* length */
emit_byte(cinfo, 0x41); /* Identifier: ASCII "Adobe" */
emit_byte(cinfo, 0x41); /* Identifier: ASCII "Adobe" */
emit_byte(cinfo, 0x64);
emit_byte(cinfo, 0x6F);
emit_byte(cinfo, 0x62);
emit_byte(cinfo, 0x65);
emit_2bytes(cinfo, 100); /* Version */
emit_2bytes(cinfo, 0); /* Flags0 */
emit_2bytes(cinfo, 0); /* Flags1 */
emit_2bytes(cinfo, 100); /* Version */
emit_2bytes(cinfo, 0); /* Flags0 */
emit_2bytes(cinfo, 0); /* Flags1 */
switch (cinfo->jpeg_color_space) {
case JCS_YCbCr:
emit_byte(cinfo, 1); /* Color transform = 1 */
emit_byte(cinfo, 1); /* Color transform = 1 */
break;
case JCS_YCCK:
emit_byte(cinfo, 2); /* Color transform = 2 */
emit_byte(cinfo, 2); /* Color transform = 2 */
break;
default:
emit_byte(cinfo, 0); /* Color transform = 0 */
emit_byte(cinfo, 0); /* Color transform = 0 */
break;
}
}
@ -442,12 +442,12 @@ METHODDEF(void)
write_marker_header (j_compress_ptr cinfo, int marker, unsigned int datalen)
/* Emit an arbitrary marker header */
{
if (datalen > (unsigned int) 65533) /* safety check */
if (datalen > (unsigned int) 65533) /* safety check */
ERREXIT(cinfo, JERR_BAD_LENGTH);
emit_marker(cinfo, (JPEG_MARKER) marker);
emit_2bytes(cinfo, (int) (datalen + 2)); /* total length */
emit_2bytes(cinfo, (int) (datalen + 2)); /* total length */
}
METHODDEF(void)
@ -474,12 +474,12 @@ write_file_header (j_compress_ptr cinfo)
{
my_marker_ptr marker = (my_marker_ptr) cinfo->marker;
emit_marker(cinfo, M_SOI); /* first the SOI */
emit_marker(cinfo, M_SOI); /* first the SOI */
/* SOI is defined to reset restart interval to 0 */
marker->last_restart_interval = 0;
if (cinfo->write_JFIF_header) /* next an optional JFIF APP0 */
if (cinfo->write_JFIF_header) /* next an optional JFIF APP0 */
emit_jfif_app0(cinfo);
if (cinfo->write_Adobe_marker) /* next an optional Adobe APP14 */
emit_adobe_app14(cinfo);
@ -500,7 +500,7 @@ write_frame_header (j_compress_ptr cinfo)
int ci, prec;
boolean is_baseline;
jpeg_component_info *compptr;
/* Emit DQT for each quantization table.
* Note that emit_dqt() suppresses any duplicate tables.
*/
@ -520,9 +520,9 @@ write_frame_header (j_compress_ptr cinfo)
} else {
is_baseline = TRUE;
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
ci++, compptr++) {
if (compptr->dc_tbl_no > 1 || compptr->ac_tbl_no > 1)
is_baseline = FALSE;
is_baseline = FALSE;
}
if (prec && is_baseline) {
is_baseline = FALSE;
@ -539,11 +539,11 @@ write_frame_header (j_compress_ptr cinfo)
emit_sof(cinfo, M_SOF9); /* SOF code for sequential arithmetic */
} else {
if (cinfo->progressive_mode)
emit_sof(cinfo, M_SOF2); /* SOF code for progressive Huffman */
emit_sof(cinfo, M_SOF2); /* SOF code for progressive Huffman */
else if (is_baseline)
emit_sof(cinfo, M_SOF0); /* SOF code for baseline implementation */
emit_sof(cinfo, M_SOF0); /* SOF code for baseline implementation */
else
emit_sof(cinfo, M_SOF1); /* SOF code for non-baseline Huffman file */
emit_sof(cinfo, M_SOF1); /* SOF code for non-baseline Huffman file */
}
}
@ -575,10 +575,10 @@ write_scan_header (j_compress_ptr cinfo)
compptr = cinfo->cur_comp_info[i];
/* DC needs no table for refinement scan */
if (cinfo->Ss == 0 && cinfo->Ah == 0)
emit_dht(cinfo, compptr->dc_tbl_no, FALSE);
emit_dht(cinfo, compptr->dc_tbl_no, FALSE);
/* AC needs no table when not present */
if (cinfo->Se)
emit_dht(cinfo, compptr->ac_tbl_no, TRUE);
emit_dht(cinfo, compptr->ac_tbl_no, TRUE);
}
}
@ -627,9 +627,9 @@ write_tables_only (j_compress_ptr cinfo)
if (! cinfo->arith_code) {
for (i = 0; i < NUM_HUFF_TBLS; i++) {
if (cinfo->dc_huff_tbl_ptrs[i] != NULL)
emit_dht(cinfo, i, FALSE);
emit_dht(cinfo, i, FALSE);
if (cinfo->ac_huff_tbl_ptrs[i] != NULL)
emit_dht(cinfo, i, TRUE);
emit_dht(cinfo, i, TRUE);
}
}
@ -649,7 +649,7 @@ jinit_marker_writer (j_compress_ptr cinfo)
/* Create the subobject */
marker = (my_marker_ptr)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF(my_marker_writer));
sizeof(my_marker_writer));
cinfo->marker = (struct jpeg_marker_writer *) marker;
/* Initialize method pointers */
marker->pub.write_file_header = write_file_header;

View File

@ -10,7 +10,7 @@
*
* This file contains master control logic for the JPEG compressor.
* These routines are concerned with parameter validation, initial setup,
* and inter-pass control (determining the number of passes and the work
* and inter-pass control (determining the number of passes and the work
* to be done in each pass).
*/
@ -23,20 +23,20 @@
/* Private state */
typedef enum {
main_pass, /* input data, also do first output step */
huff_opt_pass, /* Huffman code optimization pass */
output_pass /* data output pass */
main_pass, /* input data, also do first output step */
huff_opt_pass, /* Huffman code optimization pass */
output_pass /* data output pass */
} c_pass_type;
typedef struct {
struct jpeg_comp_master pub; /* public fields */
struct jpeg_comp_master pub; /* public fields */
c_pass_type pass_type; /* the type of the current pass */
c_pass_type pass_type; /* the type of the current pass */
int pass_number; /* # of passes completed */
int total_passes; /* total # of passes needed */
int pass_number; /* # of passes completed */
int total_passes; /* total # of passes needed */
int scan_number; /* current index in scan_info[] */
int scan_number; /* current index in scan_info[] */
} my_comp_master;
typedef my_comp_master * my_master_ptr;
@ -105,7 +105,7 @@ initial_setup (j_compress_ptr cinfo, boolean transcode_only)
/* Check that number of components won't exceed internal array sizes */
if (cinfo->num_components > MAX_COMPONENTS)
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
MAX_COMPONENTS);
MAX_COMPONENTS);
/* Compute maximum sampling factors; check factor validity */
cinfo->max_h_samp_factor = 1;
@ -113,12 +113,12 @@ initial_setup (j_compress_ptr cinfo, boolean transcode_only)
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
if (compptr->h_samp_factor<=0 || compptr->h_samp_factor>MAX_SAMP_FACTOR ||
compptr->v_samp_factor<=0 || compptr->v_samp_factor>MAX_SAMP_FACTOR)
compptr->v_samp_factor<=0 || compptr->v_samp_factor>MAX_SAMP_FACTOR)
ERREXIT(cinfo, JERR_BAD_SAMPLING);
cinfo->max_h_samp_factor = MAX(cinfo->max_h_samp_factor,
compptr->h_samp_factor);
compptr->h_samp_factor);
cinfo->max_v_samp_factor = MAX(cinfo->max_v_samp_factor,
compptr->v_samp_factor);
compptr->v_samp_factor);
}
/* Compute dimensions of components */
@ -135,17 +135,17 @@ initial_setup (j_compress_ptr cinfo, boolean transcode_only)
/* Size in DCT blocks */
compptr->width_in_blocks = (JDIMENSION)
jdiv_round_up((long) cinfo->_jpeg_width * (long) compptr->h_samp_factor,
(long) (cinfo->max_h_samp_factor * DCTSIZE));
(long) (cinfo->max_h_samp_factor * DCTSIZE));
compptr->height_in_blocks = (JDIMENSION)
jdiv_round_up((long) cinfo->_jpeg_height * (long) compptr->v_samp_factor,
(long) (cinfo->max_v_samp_factor * DCTSIZE));
(long) (cinfo->max_v_samp_factor * DCTSIZE));
/* Size in samples */
compptr->downsampled_width = (JDIMENSION)
jdiv_round_up((long) cinfo->_jpeg_width * (long) compptr->h_samp_factor,
(long) cinfo->max_h_samp_factor);
(long) cinfo->max_h_samp_factor);
compptr->downsampled_height = (JDIMENSION)
jdiv_round_up((long) cinfo->_jpeg_height * (long) compptr->v_samp_factor,
(long) cinfo->max_v_samp_factor);
(long) cinfo->max_v_samp_factor);
/* Mark component needed (this flag isn't actually used for compression) */
compptr->component_needed = TRUE;
}
@ -155,7 +155,7 @@ initial_setup (j_compress_ptr cinfo, boolean transcode_only)
*/
cinfo->total_iMCU_rows = (JDIMENSION)
jdiv_round_up((long) cinfo->_jpeg_height,
(long) (cinfo->max_v_samp_factor*DCTSIZE));
(long) (cinfo->max_v_samp_factor*DCTSIZE));
}
@ -188,15 +188,15 @@ validate_script (j_compress_ptr cinfo)
#ifdef C_PROGRESSIVE_SUPPORTED
cinfo->progressive_mode = TRUE;
last_bitpos_ptr = & last_bitpos[0][0];
for (ci = 0; ci < cinfo->num_components; ci++)
for (ci = 0; ci < cinfo->num_components; ci++)
for (coefi = 0; coefi < DCTSIZE2; coefi++)
*last_bitpos_ptr++ = -1;
*last_bitpos_ptr++ = -1;
#else
ERREXIT(cinfo, JERR_NOT_COMPILED);
#endif
} else {
cinfo->progressive_mode = FALSE;
for (ci = 0; ci < cinfo->num_components; ci++)
for (ci = 0; ci < cinfo->num_components; ci++)
component_sent[ci] = FALSE;
}
@ -208,10 +208,10 @@ validate_script (j_compress_ptr cinfo)
for (ci = 0; ci < ncomps; ci++) {
thisi = scanptr->component_index[ci];
if (thisi < 0 || thisi >= cinfo->num_components)
ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno);
ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno);
/* Components must appear in SOF order within each scan */
if (ci > 0 && thisi <= scanptr->component_index[ci-1])
ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno);
ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno);
}
/* Validate progression parameters */
Ss = scanptr->Ss;
@ -233,43 +233,43 @@ validate_script (j_compress_ptr cinfo)
#define MAX_AH_AL 13
#endif
if (Ss < 0 || Ss >= DCTSIZE2 || Se < Ss || Se >= DCTSIZE2 ||
Ah < 0 || Ah > MAX_AH_AL || Al < 0 || Al > MAX_AH_AL)
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
Ah < 0 || Ah > MAX_AH_AL || Al < 0 || Al > MAX_AH_AL)
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
if (Ss == 0) {
if (Se != 0) /* DC and AC together not OK */
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
if (Se != 0) /* DC and AC together not OK */
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
} else {
if (ncomps != 1) /* AC scans must be for only one component */
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
if (ncomps != 1) /* AC scans must be for only one component */
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
}
for (ci = 0; ci < ncomps; ci++) {
last_bitpos_ptr = & last_bitpos[scanptr->component_index[ci]][0];
if (Ss != 0 && last_bitpos_ptr[0] < 0) /* AC without prior DC scan */
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
for (coefi = Ss; coefi <= Se; coefi++) {
if (last_bitpos_ptr[coefi] < 0) {
/* first scan of this coefficient */
if (Ah != 0)
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
} else {
/* not first scan */
if (Ah != last_bitpos_ptr[coefi] || Al != Ah-1)
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
}
last_bitpos_ptr[coefi] = Al;
}
last_bitpos_ptr = & last_bitpos[scanptr->component_index[ci]][0];
if (Ss != 0 && last_bitpos_ptr[0] < 0) /* AC without prior DC scan */
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
for (coefi = Ss; coefi <= Se; coefi++) {
if (last_bitpos_ptr[coefi] < 0) {
/* first scan of this coefficient */
if (Ah != 0)
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
} else {
/* not first scan */
if (Ah != last_bitpos_ptr[coefi] || Al != Ah-1)
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
}
last_bitpos_ptr[coefi] = Al;
}
}
#endif
} else {
/* For sequential JPEG, all progression parameters must be these: */
if (Ss != 0 || Se != DCTSIZE2-1 || Ah != 0 || Al != 0)
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
/* Make sure components are not sent twice */
for (ci = 0; ci < ncomps; ci++) {
thisi = scanptr->component_index[ci];
if (component_sent[thisi])
ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno);
component_sent[thisi] = TRUE;
thisi = scanptr->component_index[ci];
if (component_sent[thisi])
ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno);
component_sent[thisi] = TRUE;
}
}
}
@ -284,13 +284,13 @@ validate_script (j_compress_ptr cinfo)
*/
for (ci = 0; ci < cinfo->num_components; ci++) {
if (last_bitpos[ci][0] < 0)
ERREXIT(cinfo, JERR_MISSING_DATA);
ERREXIT(cinfo, JERR_MISSING_DATA);
}
#endif
} else {
for (ci = 0; ci < cinfo->num_components; ci++) {
if (! component_sent[ci])
ERREXIT(cinfo, JERR_MISSING_DATA);
ERREXIT(cinfo, JERR_MISSING_DATA);
}
}
}
@ -313,7 +313,7 @@ select_scan_parameters (j_compress_ptr cinfo)
cinfo->comps_in_scan = scanptr->comps_in_scan;
for (ci = 0; ci < scanptr->comps_in_scan; ci++) {
cinfo->cur_comp_info[ci] =
&cinfo->comp_info[scanptr->component_index[ci]];
&cinfo->comp_info[scanptr->component_index[ci]];
}
cinfo->Ss = scanptr->Ss;
cinfo->Se = scanptr->Se;
@ -326,7 +326,7 @@ select_scan_parameters (j_compress_ptr cinfo)
/* Prepare for single sequential-JPEG scan containing all components */
if (cinfo->num_components > MAX_COMPS_IN_SCAN)
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
MAX_COMPS_IN_SCAN);
MAX_COMPS_IN_SCAN);
cinfo->comps_in_scan = cinfo->num_components;
for (ci = 0; ci < cinfo->num_components; ci++) {
cinfo->cur_comp_info[ci] = &cinfo->comp_info[ci];
@ -346,16 +346,16 @@ per_scan_setup (j_compress_ptr cinfo)
{
int ci, mcublks, tmp;
jpeg_component_info *compptr;
if (cinfo->comps_in_scan == 1) {
/* Noninterleaved (single-component) scan */
compptr = cinfo->cur_comp_info[0];
/* Overall image size in MCUs */
cinfo->MCUs_per_row = compptr->width_in_blocks;
cinfo->MCU_rows_in_scan = compptr->height_in_blocks;
/* For noninterleaved scan, always one block per MCU */
compptr->MCU_width = 1;
compptr->MCU_height = 1;
@ -368,28 +368,28 @@ per_scan_setup (j_compress_ptr cinfo)
tmp = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
if (tmp == 0) tmp = compptr->v_samp_factor;
compptr->last_row_height = tmp;
/* Prepare array describing MCU composition */
cinfo->blocks_in_MCU = 1;
cinfo->MCU_membership[0] = 0;
} else {
/* Interleaved (multi-component) scan */
if (cinfo->comps_in_scan <= 0 || cinfo->comps_in_scan > MAX_COMPS_IN_SCAN)
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->comps_in_scan,
MAX_COMPS_IN_SCAN);
MAX_COMPS_IN_SCAN);
/* Overall image size in MCUs */
cinfo->MCUs_per_row = (JDIMENSION)
jdiv_round_up((long) cinfo->_jpeg_width,
(long) (cinfo->max_h_samp_factor*DCTSIZE));
(long) (cinfo->max_h_samp_factor*DCTSIZE));
cinfo->MCU_rows_in_scan = (JDIMENSION)
jdiv_round_up((long) cinfo->_jpeg_height,
(long) (cinfo->max_v_samp_factor*DCTSIZE));
(long) (cinfo->max_v_samp_factor*DCTSIZE));
cinfo->blocks_in_MCU = 0;
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
compptr = cinfo->cur_comp_info[ci];
/* Sampling factors give # of blocks of component in each MCU */
@ -407,12 +407,12 @@ per_scan_setup (j_compress_ptr cinfo)
/* Prepare array describing MCU composition */
mcublks = compptr->MCU_blocks;
if (cinfo->blocks_in_MCU + mcublks > C_MAX_BLOCKS_IN_MCU)
ERREXIT(cinfo, JERR_BAD_MCU_SIZE);
ERREXIT(cinfo, JERR_BAD_MCU_SIZE);
while (mcublks-- > 0) {
cinfo->MCU_membership[cinfo->blocks_in_MCU++] = ci;
cinfo->MCU_membership[cinfo->blocks_in_MCU++] = ci;
}
}
}
/* Convert restart specified in rows to actual MCU count. */
@ -452,8 +452,8 @@ prepare_for_pass (j_compress_ptr cinfo)
(*cinfo->fdct->start_pass) (cinfo);
(*cinfo->entropy->start_pass) (cinfo, cinfo->optimize_coding);
(*cinfo->coef->start_pass) (cinfo,
(master->total_passes > 1 ?
JBUF_SAVE_AND_PASS : JBUF_PASS_THRU));
(master->total_passes > 1 ?
JBUF_SAVE_AND_PASS : JBUF_PASS_THRU));
(*cinfo->main->start_pass) (cinfo, JBUF_PASS_THRU);
if (cinfo->optimize_coding) {
/* No immediate data output; postpone writing frame/scan headers */
@ -581,7 +581,7 @@ jinit_c_master_control (j_compress_ptr cinfo, boolean transcode_only)
master = (my_master_ptr)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF(my_comp_master));
sizeof(my_comp_master));
cinfo->master = (struct jpeg_comp_master *) master;
master->pub.prepare_for_pass = prepare_for_pass;
master->pub.pass_startup = pass_startup;
@ -602,7 +602,7 @@ jinit_c_master_control (j_compress_ptr cinfo, boolean transcode_only)
cinfo->num_scans = 1;
}
if (cinfo->progressive_mode && !cinfo->arith_code) /* TEMPORARY HACK ??? */
if (cinfo->progressive_mode && !cinfo->arith_code) /* TEMPORARY HACK ??? */
cinfo->optimize_coding = TRUE; /* assume default tables no good for progressive mode */
/* Initialize my private state */

View File

@ -1,8 +1,10 @@
/*
* jcomapi.c
*
* Copyright (C) 1994-1997, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* This file was part of the Independent JPEG Group's software:
* Copyright (C) 1994-1997, Thomas G. Lane.0
* It was modified by The libjpeg-turbo Project to include only code relevant
* to libjpeg-turbo.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains application interface routines that are used for both
@ -72,8 +74,8 @@ jpeg_destroy (j_common_ptr cinfo)
/* NB: mem pointer is NULL if memory mgr failed to initialize. */
if (cinfo->mem != NULL)
(*cinfo->mem->self_destruct) (cinfo);
cinfo->mem = NULL; /* be safe if jpeg_destroy is called twice */
cinfo->global_state = 0; /* mark it destroyed */
cinfo->mem = NULL; /* be safe if jpeg_destroy is called twice */
cinfo->global_state = 0; /* mark it destroyed */
}
@ -88,8 +90,8 @@ jpeg_alloc_quant_table (j_common_ptr cinfo)
JQUANT_TBL *tbl;
tbl = (JQUANT_TBL *)
(*cinfo->mem->alloc_small) (cinfo, JPOOL_PERMANENT, SIZEOF(JQUANT_TBL));
tbl->sent_table = FALSE; /* make sure this is false in any new table */
(*cinfo->mem->alloc_small) (cinfo, JPOOL_PERMANENT, sizeof(JQUANT_TBL));
tbl->sent_table = FALSE; /* make sure this is false in any new table */
return tbl;
}
@ -100,7 +102,7 @@ jpeg_alloc_huff_table (j_common_ptr cinfo)
JHUFF_TBL *tbl;
tbl = (JHUFF_TBL *)
(*cinfo->mem->alloc_small) (cinfo, JPOOL_PERMANENT, SIZEOF(JHUFF_TBL));
tbl->sent_table = FALSE; /* make sure this is false in any new table */
(*cinfo->mem->alloc_small) (cinfo, JPOOL_PERMANENT, sizeof(JHUFF_TBL));
tbl->sent_table = FALSE; /* make sure this is false in any new table */
return tbl;
}

View File

@ -5,13 +5,26 @@
#define JPEG_LIB_VERSION 62
/* libjpeg-turbo version */
#define LIBJPEG_TURBO_VERSION 1.3.1
#define LIBJPEG_TURBO_VERSION 1.4.0
/* Support in-memory source/destination managers */
/* #undef MEM_SRCDST_SUPPORTED */
/* Support arithmetic encoding */
/*#undef C_ARITH_CODING_SUPPORTED */
/* Compiler supports function prototypes. */
#define HAVE_PROTOTYPES 1
/* Support arithmetic decoding */
/*#undef D_ARITH_CODING_SUPPORTED */
/*
* Define BITS_IN_JSAMPLE as either
* 8 for 8-bit sample values (the usual setting)
* 12 for 12-bit sample values
* Only 8 and 12 are legal data precisions for lossy JPEG according to the
* JPEG standard, and the IJG code does not support anything else!
* We do not support run-time selection of data precision, sorry.
*/
#define BITS_IN_JSAMPLE 8 /* use 8 or 12 */
/* Define to 1 if you have the <locale.h> header file. */
/*#undef HAVE_LOCALE_H */
/* Define to 1 if you have the <stddef.h> header file. */
#define HAVE_STDDEF_H 1
@ -28,21 +41,18 @@
/* Compiler does not support pointers to unspecified structures. */
/* #define INCOMPLETE_TYPES_BROKEN 1 */
/* Support in-memory source/destination managers */
/* #undef MEM_SRCDST_SUPPORTED */
/* Compiler has <strings.h> rather than standard <string.h>. */
/* #undef NEED_BSD_STRINGS */
/* Linker requires that global names be unique in first 15 characters. */
/* #undef NEED_SHORT_EXTERNAL_NAMES */
/* Need to include <sys/types.h> in order to obtain size_t. */
#define NEED_SYS_TYPES_H 1
/* Broken compiler shifts signed values as an unsigned shift. */
/* #undef RIGHT_SHIFT_IS_UNSIGNED */
/* The size of a `long', as computed by sizeof. */
#undef SIZEOF_LONG
/* Use accelerated SIMD routines. */
#define WITH_SIMD 1

View File

@ -1,5 +1,5 @@
#define VERSION "1.3.1"
#define BUILD "2014-03-22"
#define VERSION "1.4.0"
#define BUILD "2015-01-07"
#define PACKAGE_NAME "libjpeg-turbo"
/* Need to use Mozilla-specific function inlining. */

View File

@ -25,8 +25,8 @@
GLOBAL(void)
jpeg_add_quant_table (j_compress_ptr cinfo, int which_tbl,
const unsigned int *basic_table,
int scale_factor, boolean force_baseline)
const unsigned int *basic_table,
int scale_factor, boolean force_baseline)
/* Define a quantization table equal to the basic_table times
* a scale factor (given as a percentage).
* If force_baseline is TRUE, the computed quantization table entries
@ -55,7 +55,7 @@ jpeg_add_quant_table (j_compress_ptr cinfo, int which_tbl,
if (temp <= 0L) temp = 1L;
if (temp > 32767L) temp = 32767L; /* max quantizer needed for 12 bits */
if (force_baseline && temp > 255L)
temp = 255L; /* limit to baseline range if requested */
temp = 255L; /* limit to baseline range if requested */
(*qtblptr)->quantval[i] = (UINT16) temp;
}
@ -100,16 +100,16 @@ jpeg_default_qtables (j_compress_ptr cinfo, boolean force_baseline)
{
/* Set up two quantization tables using the specified scaling */
jpeg_add_quant_table(cinfo, 0, std_luminance_quant_tbl,
cinfo->q_scale_factor[0], force_baseline);
cinfo->q_scale_factor[0], force_baseline);
jpeg_add_quant_table(cinfo, 1, std_chrominance_quant_tbl,
cinfo->q_scale_factor[1], force_baseline);
cinfo->q_scale_factor[1], force_baseline);
}
#endif
GLOBAL(void)
jpeg_set_linear_quality (j_compress_ptr cinfo, int scale_factor,
boolean force_baseline)
boolean force_baseline)
/* Set or change the 'quality' (quantization) setting, using default tables
* and a straight percentage-scaling quality scale. In most cases it's better
* to use jpeg_set_quality (below); this entry point is provided for
@ -118,9 +118,9 @@ jpeg_set_linear_quality (j_compress_ptr cinfo, int scale_factor,
{
/* Set up two quantization tables using the specified scaling */
jpeg_add_quant_table(cinfo, 0, std_luminance_quant_tbl,
scale_factor, force_baseline);
scale_factor, force_baseline);
jpeg_add_quant_table(cinfo, 1, std_chrominance_quant_tbl,
scale_factor, force_baseline);
scale_factor, force_baseline);
}
@ -192,12 +192,12 @@ jpeg_set_defaults (j_compress_ptr cinfo)
if (cinfo->comp_info == NULL)
cinfo->comp_info = (jpeg_component_info *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
MAX_COMPONENTS * SIZEOF(jpeg_component_info));
MAX_COMPONENTS * sizeof(jpeg_component_info));
/* Initialize everything not dependent on the color space */
#if JPEG_LIB_VERSION >= 70
cinfo->scale_num = 1; /* 1:1 scaling */
cinfo->scale_num = 1; /* 1:1 scaling */
cinfo->scale_denom = 1;
#endif
cinfo->data_precision = BITS_IN_JSAMPLE;
@ -262,8 +262,8 @@ jpeg_set_defaults (j_compress_ptr cinfo)
*/
cinfo->JFIF_major_version = 1; /* Default JFIF version = 1.01 */
cinfo->JFIF_minor_version = 1;
cinfo->density_unit = 0; /* Pixel size is unknown by default */
cinfo->X_density = 1; /* Pixel aspect ratio is square by default */
cinfo->density_unit = 0; /* Pixel size is unknown by default */
cinfo->X_density = 1; /* Pixel aspect ratio is square by default */
cinfo->Y_density = 1;
/* Choose JPEG colorspace based on input space, set defaults accordingly */
@ -389,7 +389,7 @@ jpeg_set_colorspace (j_compress_ptr cinfo, J_COLOR_SPACE colorspace)
cinfo->num_components = cinfo->input_components;
if (cinfo->num_components < 1 || cinfo->num_components > MAX_COMPONENTS)
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
MAX_COMPONENTS);
MAX_COMPONENTS);
for (ci = 0; ci < cinfo->num_components; ci++) {
SET_COMP(ci, ci, 1,1, 0, 0,0);
}
@ -404,7 +404,7 @@ jpeg_set_colorspace (j_compress_ptr cinfo, J_COLOR_SPACE colorspace)
LOCAL(jpeg_scan_info *)
fill_a_scan (jpeg_scan_info * scanptr, int ci,
int Ss, int Se, int Ah, int Al)
int Ss, int Se, int Ah, int Al)
/* Support routine: generate one scan for specified component */
{
scanptr->comps_in_scan = 1;
@ -419,7 +419,7 @@ fill_a_scan (jpeg_scan_info * scanptr, int ci,
LOCAL(jpeg_scan_info *)
fill_scans (jpeg_scan_info * scanptr, int ncomps,
int Ss, int Se, int Ah, int Al)
int Ss, int Se, int Ah, int Al)
/* Support routine: generate one scan for each component */
{
int ci;
@ -482,9 +482,9 @@ jpeg_simple_progression (j_compress_ptr cinfo)
} else {
/* All-purpose script for other color spaces. */
if (ncomps > MAX_COMPS_IN_SCAN)
nscans = 6 * ncomps; /* 2 DC + 4 AC scans per component */
nscans = 6 * ncomps; /* 2 DC + 4 AC scans per component */
else
nscans = 2 + 4 * ncomps; /* 2 DC scans; 4 AC scans per component */
nscans = 2 + 4 * ncomps; /* 2 DC scans; 4 AC scans per component */
}
/* Allocate space for script.
@ -498,7 +498,7 @@ jpeg_simple_progression (j_compress_ptr cinfo)
cinfo->script_space_size = MAX(nscans, 10);
cinfo->script_space = (jpeg_scan_info *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
cinfo->script_space_size * SIZEOF(jpeg_scan_info));
cinfo->script_space_size * sizeof(jpeg_scan_info));
}
scanptr = cinfo->script_space;
cinfo->scan_info = scanptr;

View File

@ -1,8 +1,10 @@
/*
* jcphuff.c
*
* This file was part of the Independent JPEG Group's software:
* Copyright (C) 1995-1997, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* It was modified by The libjpeg-turbo Project to include only code relevant
* to libjpeg-turbo.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains Huffman entropy encoding routines for progressive JPEG.
@ -15,7 +17,7 @@
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#include "jchuff.h" /* Declarations shared with jchuff.c */
#include "jchuff.h" /* Declarations shared with jchuff.c */
#ifdef C_PROGRESSIVE_SUPPORTED
@ -30,24 +32,24 @@ typedef struct {
/* Bit-level coding status.
* next_output_byte/free_in_buffer are local copies of cinfo->dest fields.
*/
JOCTET * next_output_byte; /* => next byte to write in buffer */
size_t free_in_buffer; /* # of byte spaces remaining in buffer */
INT32 put_buffer; /* current bit-accumulation buffer */
int put_bits; /* # of bits now in it */
j_compress_ptr cinfo; /* link to cinfo (needed for dump_buffer) */
JOCTET * next_output_byte; /* => next byte to write in buffer */
size_t free_in_buffer; /* # of byte spaces remaining in buffer */
INT32 put_buffer; /* current bit-accumulation buffer */
int put_bits; /* # of bits now in it */
j_compress_ptr cinfo; /* link to cinfo (needed for dump_buffer) */
/* Coding status for DC components */
int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
/* Coding status for AC components */
int ac_tbl_no; /* the table number of the single component */
unsigned int EOBRUN; /* run length of EOBs */
unsigned int BE; /* # of buffered correction bits before MCU */
char * bit_buffer; /* buffer for correction bits (1 per char) */
int ac_tbl_no; /* the table number of the single component */
unsigned int EOBRUN; /* run length of EOBs */
unsigned int BE; /* # of buffered correction bits before MCU */
char * bit_buffer; /* buffer for correction bits (1 per char) */
/* packing correction bits tightly would save some space but cost time... */
unsigned int restarts_to_go; /* MCUs left in this restart interval */
int next_restart_num; /* next restart number to write (0-7) */
unsigned int restarts_to_go; /* MCUs left in this restart interval */
int next_restart_num; /* next restart number to write (0-7) */
/* Pointers to derived tables (these workspaces have image lifespan).
* Since any one scan codes only DC or only AC, we only need one set
@ -67,7 +69,7 @@ typedef phuff_entropy_encoder * phuff_entropy_ptr;
* The minimum safe size is 64 bits.
*/
#define MAX_CORR_BITS 1000 /* Max # of correction bits I can buffer */
#define MAX_CORR_BITS 1000 /* Max # of correction bits I can buffer */
/* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32.
* We assume that int right shift is unsigned if INT32 right shift is,
@ -75,27 +77,27 @@ typedef phuff_entropy_encoder * phuff_entropy_ptr;
*/
#ifdef RIGHT_SHIFT_IS_UNSIGNED
#define ISHIFT_TEMPS int ishift_temp;
#define ISHIFT_TEMPS int ishift_temp;
#define IRIGHT_SHIFT(x,shft) \
((ishift_temp = (x)) < 0 ? \
(ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \
(ishift_temp >> (shft)))
((ishift_temp = (x)) < 0 ? \
(ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \
(ishift_temp >> (shft)))
#else
#define ISHIFT_TEMPS
#define IRIGHT_SHIFT(x,shft) ((x) >> (shft))
#define IRIGHT_SHIFT(x,shft) ((x) >> (shft))
#endif
/* Forward declarations */
METHODDEF(boolean) encode_mcu_DC_first JPP((j_compress_ptr cinfo,
JBLOCKROW *MCU_data));
METHODDEF(boolean) encode_mcu_AC_first JPP((j_compress_ptr cinfo,
JBLOCKROW *MCU_data));
METHODDEF(boolean) encode_mcu_DC_refine JPP((j_compress_ptr cinfo,
JBLOCKROW *MCU_data));
METHODDEF(boolean) encode_mcu_AC_refine JPP((j_compress_ptr cinfo,
JBLOCKROW *MCU_data));
METHODDEF(void) finish_pass_phuff JPP((j_compress_ptr cinfo));
METHODDEF(void) finish_pass_gather_phuff JPP((j_compress_ptr cinfo));
METHODDEF(boolean) encode_mcu_DC_first (j_compress_ptr cinfo,
JBLOCKROW *MCU_data);
METHODDEF(boolean) encode_mcu_AC_first (j_compress_ptr cinfo,
JBLOCKROW *MCU_data);
METHODDEF(boolean) encode_mcu_DC_refine (j_compress_ptr cinfo,
JBLOCKROW *MCU_data);
METHODDEF(boolean) encode_mcu_AC_refine (j_compress_ptr cinfo,
JBLOCKROW *MCU_data);
METHODDEF(void) finish_pass_phuff (j_compress_ptr cinfo);
METHODDEF(void) finish_pass_gather_phuff (j_compress_ptr cinfo);
/*
@ -104,7 +106,7 @@ METHODDEF(void) finish_pass_gather_phuff JPP((j_compress_ptr cinfo));
METHODDEF(void)
start_pass_phuff (j_compress_ptr cinfo, boolean gather_statistics)
{
{
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
boolean is_DC_band;
int ci, tbl;
@ -130,9 +132,9 @@ start_pass_phuff (j_compress_ptr cinfo, boolean gather_statistics)
entropy->pub.encode_mcu = encode_mcu_AC_refine;
/* AC refinement needs a correction bit buffer */
if (entropy->bit_buffer == NULL)
entropy->bit_buffer = (char *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
MAX_CORR_BITS * SIZEOF(char));
entropy->bit_buffer = (char *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
MAX_CORR_BITS * sizeof(char));
}
}
if (gather_statistics)
@ -149,8 +151,8 @@ start_pass_phuff (j_compress_ptr cinfo, boolean gather_statistics)
entropy->last_dc_val[ci] = 0;
/* Get table index */
if (is_DC_band) {
if (cinfo->Ah != 0) /* DC refinement needs no table */
continue;
if (cinfo->Ah != 0) /* DC refinement needs no table */
continue;
tbl = compptr->dc_tbl_no;
} else {
entropy->ac_tbl_no = tbl = compptr->ac_tbl_no;
@ -163,15 +165,15 @@ start_pass_phuff (j_compress_ptr cinfo, boolean gather_statistics)
/* Allocate and zero the statistics tables */
/* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
if (entropy->count_ptrs[tbl] == NULL)
entropy->count_ptrs[tbl] = (long *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
257 * SIZEOF(long));
MEMZERO(entropy->count_ptrs[tbl], 257 * SIZEOF(long));
entropy->count_ptrs[tbl] = (long *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
257 * sizeof(long));
MEMZERO(entropy->count_ptrs[tbl], 257 * sizeof(long));
} else {
/* Compute derived values for Huffman table */
/* We may do this more than once for a table, but it's not expensive */
jpeg_make_c_derived_tbl(cinfo, is_DC_band, tbl,
& entropy->derived_tbls[tbl]);
& entropy->derived_tbls[tbl]);
}
}
@ -196,9 +198,9 @@ start_pass_phuff (j_compress_ptr cinfo, boolean gather_statistics)
/* Emit a byte */
#define emit_byte(entropy,val) \
{ *(entropy)->next_output_byte++ = (JOCTET) (val); \
if (--(entropy)->free_in_buffer == 0) \
dump_buffer(entropy); }
{ *(entropy)->next_output_byte++ = (JOCTET) (val); \
if (--(entropy)->free_in_buffer == 0) \
dump_buffer(entropy); }
LOCAL(void)
@ -236,21 +238,21 @@ emit_bits (phuff_entropy_ptr entropy, unsigned int code, int size)
ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE);
if (entropy->gather_statistics)
return; /* do nothing if we're only getting stats */
return; /* do nothing if we're only getting stats */
put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */
put_bits += size; /* new number of bits in buffer */
put_bits += size; /* new number of bits in buffer */
put_buffer <<= 24 - put_bits; /* align incoming bits */
put_buffer |= entropy->put_buffer; /* and merge with old buffer contents */
while (put_bits >= 8) {
int c = (int) ((put_buffer >> 16) & 0xFF);
emit_byte(entropy, c);
if (c == 0xFF) { /* need to stuff a zero byte? */
if (c == 0xFF) { /* need to stuff a zero byte? */
emit_byte(entropy, 0);
}
put_buffer <<= 8;
@ -293,10 +295,10 @@ emit_symbol (phuff_entropy_ptr entropy, int tbl_no, int symbol)
LOCAL(void)
emit_buffered_bits (phuff_entropy_ptr entropy, char * bufstart,
unsigned int nbits)
unsigned int nbits)
{
if (entropy->gather_statistics)
return; /* no real work */
return; /* no real work */
while (nbits > 0) {
emit_bits(entropy, (unsigned int) (*bufstart), 1);
@ -315,7 +317,7 @@ emit_eobrun (phuff_entropy_ptr entropy)
{
register int temp, nbits;
if (entropy->EOBRUN > 0) { /* if there is any pending EOBRUN */
if (entropy->EOBRUN > 0) { /* if there is any pending EOBRUN */
temp = entropy->EOBRUN;
nbits = 0;
while ((temp >>= 1))
@ -409,12 +411,12 @@ encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
/* Encode the DC coefficient difference per section G.1.2.1 */
temp2 = temp;
if (temp < 0) {
temp = -temp; /* temp is abs value of input */
temp = -temp; /* temp is abs value of input */
/* For a negative input, want temp2 = bitwise complement of abs(input) */
/* This code assumes we are on a two's complement machine */
temp2--;
}
/* Find the number of bits needed for the magnitude of the coefficient */
nbits = 0;
while (temp) {
@ -426,13 +428,13 @@ encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
*/
if (nbits > MAX_COEF_BITS+1)
ERREXIT(cinfo, JERR_BAD_DCT_COEF);
/* Count/emit the Huffman-coded symbol for the number of bits */
emit_symbol(entropy, compptr->dc_tbl_no, nbits);
/* Emit that number of bits of the value, if positive, */
/* or the complement of its magnitude, if negative. */
if (nbits) /* emit_bits rejects calls with size 0 */
if (nbits) /* emit_bits rejects calls with size 0 */
emit_bits(entropy, (unsigned int) temp2, nbits);
}
@ -481,9 +483,9 @@ encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
block = MCU_data[0];
/* Encode the AC coefficients per section G.1.2.2, fig. G.3 */
r = 0; /* r = run length of zeros */
r = 0; /* r = run length of zeros */
for (k = cinfo->Ss; k <= Se; k++) {
if ((temp = (*block)[jpeg_natural_order[k]]) == 0) {
r++;
@ -495,12 +497,12 @@ encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
* interwoven with finding the abs value (temp) and output bits (temp2).
*/
if (temp < 0) {
temp = -temp; /* temp is abs value of input */
temp >>= Al; /* apply the point transform */
temp = -temp; /* temp is abs value of input */
temp >>= Al; /* apply the point transform */
/* For a negative coef, want temp2 = bitwise complement of abs(coef) */
temp2 = ~temp;
} else {
temp >>= Al; /* apply the point transform */
temp >>= Al; /* apply the point transform */
temp2 = temp;
}
/* Watch out for case that nonzero coef is zero after point transform */
@ -519,7 +521,7 @@ encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
}
/* Find the number of bits needed for the magnitude of the coefficient */
nbits = 1; /* there must be at least one 1 bit */
nbits = 1; /* there must be at least one 1 bit */
while ((temp >>= 1))
nbits++;
/* Check for out-of-range coefficient values */
@ -533,13 +535,13 @@ encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
/* or the complement of its magnitude, if negative. */
emit_bits(entropy, (unsigned int) temp2, nbits);
r = 0; /* reset zero run length */
r = 0; /* reset zero run length */
}
if (r > 0) { /* If there are trailing zeroes, */
entropy->EOBRUN++; /* count an EOB */
if (r > 0) { /* If there are trailing zeroes, */
entropy->EOBRUN++; /* count an EOB */
if (entropy->EOBRUN == 0x7FFF)
emit_eobrun(entropy); /* force it out to avoid overflow */
emit_eobrun(entropy); /* force it out to avoid overflow */
}
cinfo->dest->next_output_byte = entropy->next_output_byte;
@ -648,17 +650,17 @@ encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
* in C, we shift after obtaining the absolute value.
*/
if (temp < 0)
temp = -temp; /* temp is abs value of input */
temp >>= Al; /* apply the point transform */
absvalues[k] = temp; /* save abs value for main pass */
temp = -temp; /* temp is abs value of input */
temp >>= Al; /* apply the point transform */
absvalues[k] = temp; /* save abs value for main pass */
if (temp == 1)
EOB = k; /* EOB = index of last newly-nonzero coef */
EOB = k; /* EOB = index of last newly-nonzero coef */
}
/* Encode the AC coefficients per section G.1.2.3, fig. G.7 */
r = 0; /* r = run length of zeros */
BR = 0; /* BR = count of buffered bits added now */
r = 0; /* r = run length of zeros */
BR = 0; /* BR = count of buffered bits added now */
BR_buffer = entropy->bit_buffer + entropy->BE; /* Append bits to buffer */
for (k = cinfo->Ss; k <= Se; k++) {
@ -705,12 +707,12 @@ encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
emit_buffered_bits(entropy, BR_buffer, BR);
BR_buffer = entropy->bit_buffer; /* BE bits are gone now */
BR = 0;
r = 0; /* reset zero run length */
r = 0; /* reset zero run length */
}
if (r > 0 || BR > 0) { /* If there are trailing zeroes, */
entropy->EOBRUN++; /* count an EOB */
entropy->BE += BR; /* concat my correction bits to older ones */
if (r > 0 || BR > 0) { /* If there are trailing zeroes, */
entropy->EOBRUN++; /* count an EOB */
entropy->BE += BR; /* concat my correction bits to older ones */
/* We force out the EOB if we risk either:
* 1. overflow of the EOB counter;
* 2. overflow of the correction bit buffer during the next MCU.
@ -742,7 +744,7 @@ encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
METHODDEF(void)
finish_pass_phuff (j_compress_ptr cinfo)
{
{
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
entropy->next_output_byte = cinfo->dest->next_output_byte;
@ -779,13 +781,13 @@ finish_pass_gather_phuff (j_compress_ptr cinfo)
/* It's important not to apply jpeg_gen_optimal_table more than once
* per table, because it clobbers the input frequency counts!
*/
MEMZERO(did, SIZEOF(did));
MEMZERO(did, sizeof(did));
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
compptr = cinfo->cur_comp_info[ci];
if (is_DC_band) {
if (cinfo->Ah != 0) /* DC refinement needs no table */
continue;
if (cinfo->Ah != 0) /* DC refinement needs no table */
continue;
tbl = compptr->dc_tbl_no;
} else {
tbl = compptr->ac_tbl_no;
@ -816,7 +818,7 @@ jinit_phuff_encoder (j_compress_ptr cinfo)
entropy = (phuff_entropy_ptr)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF(phuff_entropy_encoder));
sizeof(phuff_entropy_encoder));
cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
entropy->pub.start_pass = start_pass_phuff;
@ -825,7 +827,7 @@ jinit_phuff_encoder (j_compress_ptr cinfo)
entropy->derived_tbls[i] = NULL;
entropy->count_ptrs[i] = NULL;
}
entropy->bit_buffer = NULL; /* needed only in AC refinement scan */
entropy->bit_buffer = NULL; /* needed only in AC refinement scan */
}
#endif /* C_PROGRESSIVE_SUPPORTED */

View File

@ -1,8 +1,10 @@
/*
* jcprepct.c
*
* This file is part of the Independent JPEG Group's software:
* Copyright (C) 1994-1996, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* It was modified by The libjpeg-turbo Project to include only code relevant
* to libjpeg-turbo.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains the compression preprocessing controller.
@ -58,12 +60,12 @@ typedef struct {
*/
JSAMPARRAY color_buf[MAX_COMPONENTS];
JDIMENSION rows_to_go; /* counts rows remaining in source image */
int next_buf_row; /* index of next row to store in color_buf */
JDIMENSION rows_to_go; /* counts rows remaining in source image */
int next_buf_row; /* index of next row to store in color_buf */
#ifdef CONTEXT_ROWS_SUPPORTED /* only needed for context case */
int this_row_group; /* starting row index of group to process */
int next_buf_stop; /* downsample when we reach this index */
#ifdef CONTEXT_ROWS_SUPPORTED /* only needed for context case */
int this_row_group; /* starting row index of group to process */
int next_buf_stop; /* downsample when we reach this index */
#endif
} my_prep_controller;
@ -104,13 +106,13 @@ start_pass_prep (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
LOCAL(void)
expand_bottom_edge (JSAMPARRAY image_data, JDIMENSION num_cols,
int input_rows, int output_rows)
int input_rows, int output_rows)
{
register int row;
for (row = input_rows; row < output_rows; row++) {
jcopy_sample_rows(image_data, input_rows-1, image_data, row,
1, num_cols);
1, num_cols);
}
}
@ -126,10 +128,10 @@ expand_bottom_edge (JSAMPARRAY image_data, JDIMENSION num_cols,
METHODDEF(void)
pre_process_data (j_compress_ptr cinfo,
JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
JDIMENSION in_rows_avail,
JSAMPIMAGE output_buf, JDIMENSION *out_row_group_ctr,
JDIMENSION out_row_groups_avail)
JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
JDIMENSION in_rows_avail,
JSAMPIMAGE output_buf, JDIMENSION *out_row_group_ctr,
JDIMENSION out_row_groups_avail)
{
my_prep_ptr prep = (my_prep_ptr) cinfo->prep;
int numrows, ci;
@ -137,32 +139,32 @@ pre_process_data (j_compress_ptr cinfo,
jpeg_component_info * compptr;
while (*in_row_ctr < in_rows_avail &&
*out_row_group_ctr < out_row_groups_avail) {
*out_row_group_ctr < out_row_groups_avail) {
/* Do color conversion to fill the conversion buffer. */
inrows = in_rows_avail - *in_row_ctr;
numrows = cinfo->max_v_samp_factor - prep->next_buf_row;
numrows = (int) MIN((JDIMENSION) numrows, inrows);
(*cinfo->cconvert->color_convert) (cinfo, input_buf + *in_row_ctr,
prep->color_buf,
(JDIMENSION) prep->next_buf_row,
numrows);
prep->color_buf,
(JDIMENSION) prep->next_buf_row,
numrows);
*in_row_ctr += numrows;
prep->next_buf_row += numrows;
prep->rows_to_go -= numrows;
/* If at bottom of image, pad to fill the conversion buffer. */
if (prep->rows_to_go == 0 &&
prep->next_buf_row < cinfo->max_v_samp_factor) {
prep->next_buf_row < cinfo->max_v_samp_factor) {
for (ci = 0; ci < cinfo->num_components; ci++) {
expand_bottom_edge(prep->color_buf[ci], cinfo->image_width,
prep->next_buf_row, cinfo->max_v_samp_factor);
expand_bottom_edge(prep->color_buf[ci], cinfo->image_width,
prep->next_buf_row, cinfo->max_v_samp_factor);
}
prep->next_buf_row = cinfo->max_v_samp_factor;
}
/* If we've filled the conversion buffer, empty it. */
if (prep->next_buf_row == cinfo->max_v_samp_factor) {
(*cinfo->downsample->downsample) (cinfo,
prep->color_buf, (JDIMENSION) 0,
output_buf, *out_row_group_ctr);
prep->color_buf, (JDIMENSION) 0,
output_buf, *out_row_group_ctr);
prep->next_buf_row = 0;
(*out_row_group_ctr)++;
}
@ -170,16 +172,16 @@ pre_process_data (j_compress_ptr cinfo,
* Note we assume the caller is providing a one-iMCU-height output buffer!
*/
if (prep->rows_to_go == 0 &&
*out_row_group_ctr < out_row_groups_avail) {
*out_row_group_ctr < out_row_groups_avail) {
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
expand_bottom_edge(output_buf[ci],
compptr->width_in_blocks * DCTSIZE,
(int) (*out_row_group_ctr * compptr->v_samp_factor),
(int) (out_row_groups_avail * compptr->v_samp_factor));
ci++, compptr++) {
expand_bottom_edge(output_buf[ci],
compptr->width_in_blocks * DCTSIZE,
(int) (*out_row_group_ctr * compptr->v_samp_factor),
(int) (out_row_groups_avail * compptr->v_samp_factor));
}
*out_row_group_ctr = out_row_groups_avail;
break; /* can exit outer loop without test */
break; /* can exit outer loop without test */
}
}
}
@ -193,10 +195,10 @@ pre_process_data (j_compress_ptr cinfo,
METHODDEF(void)
pre_process_context (j_compress_ptr cinfo,
JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
JDIMENSION in_rows_avail,
JSAMPIMAGE output_buf, JDIMENSION *out_row_group_ctr,
JDIMENSION out_row_groups_avail)
JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
JDIMENSION in_rows_avail,
JSAMPIMAGE output_buf, JDIMENSION *out_row_group_ctr,
JDIMENSION out_row_groups_avail)
{
my_prep_ptr prep = (my_prep_ptr) cinfo->prep;
int numrows, ci;
@ -210,19 +212,19 @@ pre_process_context (j_compress_ptr cinfo,
numrows = prep->next_buf_stop - prep->next_buf_row;
numrows = (int) MIN((JDIMENSION) numrows, inrows);
(*cinfo->cconvert->color_convert) (cinfo, input_buf + *in_row_ctr,
prep->color_buf,
(JDIMENSION) prep->next_buf_row,
numrows);
prep->color_buf,
(JDIMENSION) prep->next_buf_row,
numrows);
/* Pad at top of image, if first time through */
if (prep->rows_to_go == cinfo->image_height) {
for (ci = 0; ci < cinfo->num_components; ci++) {
int row;
for (row = 1; row <= cinfo->max_v_samp_factor; row++) {
jcopy_sample_rows(prep->color_buf[ci], 0,
prep->color_buf[ci], -row,
1, cinfo->image_width);
}
}
for (ci = 0; ci < cinfo->num_components; ci++) {
int row;
for (row = 1; row <= cinfo->max_v_samp_factor; row++) {
jcopy_sample_rows(prep->color_buf[ci], 0,
prep->color_buf[ci], -row,
1, cinfo->image_width);
}
}
}
*in_row_ctr += numrows;
prep->next_buf_row += numrows;
@ -230,29 +232,29 @@ pre_process_context (j_compress_ptr cinfo,
} else {
/* Return for more data, unless we are at the bottom of the image. */
if (prep->rows_to_go != 0)
break;
break;
/* When at bottom of image, pad to fill the conversion buffer. */
if (prep->next_buf_row < prep->next_buf_stop) {
for (ci = 0; ci < cinfo->num_components; ci++) {
expand_bottom_edge(prep->color_buf[ci], cinfo->image_width,
prep->next_buf_row, prep->next_buf_stop);
}
prep->next_buf_row = prep->next_buf_stop;
for (ci = 0; ci < cinfo->num_components; ci++) {
expand_bottom_edge(prep->color_buf[ci], cinfo->image_width,
prep->next_buf_row, prep->next_buf_stop);
}
prep->next_buf_row = prep->next_buf_stop;
}
}
/* If we've gotten enough data, downsample a row group. */
if (prep->next_buf_row == prep->next_buf_stop) {
(*cinfo->downsample->downsample) (cinfo,
prep->color_buf,
(JDIMENSION) prep->this_row_group,
output_buf, *out_row_group_ctr);
prep->color_buf,
(JDIMENSION) prep->this_row_group,
output_buf, *out_row_group_ctr);
(*out_row_group_ctr)++;
/* Advance pointers with wraparound as necessary. */
prep->this_row_group += cinfo->max_v_samp_factor;
if (prep->this_row_group >= buf_height)
prep->this_row_group = 0;
prep->this_row_group = 0;
if (prep->next_buf_row >= buf_height)
prep->next_buf_row = 0;
prep->next_buf_row = 0;
prep->next_buf_stop = prep->next_buf_row + cinfo->max_v_samp_factor;
}
}
@ -277,8 +279,8 @@ create_context_buffer (j_compress_ptr cinfo)
*/
fake_buffer = (JSAMPARRAY)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
(cinfo->num_components * 5 * rgroup_height) *
SIZEOF(JSAMPROW));
(cinfo->num_components * 5 * rgroup_height) *
sizeof(JSAMPROW));
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
@ -289,11 +291,11 @@ create_context_buffer (j_compress_ptr cinfo)
true_buffer = (*cinfo->mem->alloc_sarray)
((j_common_ptr) cinfo, JPOOL_IMAGE,
(JDIMENSION) (((long) compptr->width_in_blocks * DCTSIZE *
cinfo->max_h_samp_factor) / compptr->h_samp_factor),
cinfo->max_h_samp_factor) / compptr->h_samp_factor),
(JDIMENSION) (3 * rgroup_height));
/* Copy true buffer row pointers into the middle of the fake row array */
MEMCOPY(fake_buffer + rgroup_height, true_buffer,
3 * rgroup_height * SIZEOF(JSAMPROW));
3 * rgroup_height * sizeof(JSAMPROW));
/* Fill in the above and below wraparound pointers */
for (i = 0; i < rgroup_height; i++) {
fake_buffer[i] = true_buffer[2 * rgroup_height + i];
@ -318,12 +320,12 @@ jinit_c_prep_controller (j_compress_ptr cinfo, boolean need_full_buffer)
int ci;
jpeg_component_info * compptr;
if (need_full_buffer) /* safety check */
if (need_full_buffer) /* safety check */
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
prep = (my_prep_ptr)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF(my_prep_controller));
sizeof(my_prep_controller));
cinfo->prep = (struct jpeg_c_prep_controller *) prep;
prep->pub.start_pass = start_pass_prep;
@ -343,12 +345,12 @@ jinit_c_prep_controller (j_compress_ptr cinfo, boolean need_full_buffer)
/* No context, just make it tall enough for one row group */
prep->pub.pre_process_data = pre_process_data;
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
ci++, compptr++) {
prep->color_buf[ci] = (*cinfo->mem->alloc_sarray)
((j_common_ptr) cinfo, JPOOL_IMAGE,
(JDIMENSION) (((long) compptr->width_in_blocks * DCTSIZE *
cinfo->max_h_samp_factor) / compptr->h_samp_factor),
(JDIMENSION) cinfo->max_v_samp_factor);
((j_common_ptr) cinfo, JPOOL_IMAGE,
(JDIMENSION) (((long) compptr->width_in_blocks * DCTSIZE *
cinfo->max_h_samp_factor) / compptr->h_samp_factor),
(JDIMENSION) cinfo->max_v_samp_factor);
}
}
}

View File

@ -1,9 +1,11 @@
/*
* jcsample.c
*
* This file was part of the Independent JPEG Group's software:
* Copyright (C) 1991-1996, Thomas G. Lane.
* libjpeg-turbo Modifications:
* Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
* This file is part of the Independent JPEG Group's software.
* Copyright (C) 2014, MIPS Technologies, Inc., California
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains downsampling routines.
@ -53,14 +55,15 @@
/* Pointer to routine to downsample a single component */
typedef JMETHOD(void, downsample1_ptr,
(j_compress_ptr cinfo, jpeg_component_info * compptr,
JSAMPARRAY input_data, JSAMPARRAY output_data));
typedef void (*downsample1_ptr) (j_compress_ptr cinfo,
jpeg_component_info * compptr,
JSAMPARRAY input_data,
JSAMPARRAY output_data);
/* Private subobject */
typedef struct {
struct jpeg_downsampler pub; /* public fields */
struct jpeg_downsampler pub; /* public fields */
/* Downsampling method pointers, one per component */
downsample1_ptr methods[MAX_COMPONENTS];
@ -87,7 +90,7 @@ start_pass_downsample (j_compress_ptr cinfo)
LOCAL(void)
expand_right_edge (JSAMPARRAY image_data, int num_rows,
JDIMENSION input_cols, JDIMENSION output_cols)
JDIMENSION input_cols, JDIMENSION output_cols)
{
register JSAMPROW ptr;
register JSAMPLE pixval;
@ -98,9 +101,9 @@ expand_right_edge (JSAMPARRAY image_data, int num_rows,
if (numcols > 0) {
for (row = 0; row < num_rows; row++) {
ptr = image_data[row] + input_cols;
pixval = ptr[-1]; /* don't need GETJSAMPLE() here */
pixval = ptr[-1]; /* don't need GETJSAMPLE() here */
for (count = numcols; count > 0; count--)
*ptr++ = pixval;
*ptr++ = pixval;
}
}
}
@ -114,8 +117,8 @@ expand_right_edge (JSAMPARRAY image_data, int num_rows,
METHODDEF(void)
sep_downsample (j_compress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION in_row_index,
JSAMPIMAGE output_buf, JDIMENSION out_row_group_index)
JSAMPIMAGE input_buf, JDIMENSION in_row_index,
JSAMPIMAGE output_buf, JDIMENSION out_row_group_index)
{
my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample;
int ci;
@ -140,10 +143,10 @@ sep_downsample (j_compress_ptr cinfo,
METHODDEF(void)
int_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
JSAMPARRAY input_data, JSAMPARRAY output_data)
JSAMPARRAY input_data, JSAMPARRAY output_data)
{
int inrow, outrow, h_expand, v_expand, numpix, numpix2, h, v;
JDIMENSION outcol, outcol_h; /* outcol_h == outcol*h_expand */
JDIMENSION outcol, outcol_h; /* outcol_h == outcol*h_expand */
JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
JSAMPROW inptr, outptr;
INT32 outvalue;
@ -158,19 +161,19 @@ int_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
* efficient.
*/
expand_right_edge(input_data, cinfo->max_v_samp_factor,
cinfo->image_width, output_cols * h_expand);
cinfo->image_width, output_cols * h_expand);
inrow = 0;
for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
outptr = output_data[outrow];
for (outcol = 0, outcol_h = 0; outcol < output_cols;
outcol++, outcol_h += h_expand) {
outcol++, outcol_h += h_expand) {
outvalue = 0;
for (v = 0; v < v_expand; v++) {
inptr = input_data[inrow+v] + outcol_h;
for (h = 0; h < h_expand; h++) {
outvalue += (INT32) GETJSAMPLE(*inptr++);
}
inptr = input_data[inrow+v] + outcol_h;
for (h = 0; h < h_expand; h++) {
outvalue += (INT32) GETJSAMPLE(*inptr++);
}
}
*outptr++ = (JSAMPLE) ((outvalue + numpix2) / numpix);
}
@ -187,14 +190,14 @@ int_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
METHODDEF(void)
fullsize_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
JSAMPARRAY input_data, JSAMPARRAY output_data)
JSAMPARRAY input_data, JSAMPARRAY output_data)
{
/* Copy the data */
jcopy_sample_rows(input_data, 0, output_data, 0,
cinfo->max_v_samp_factor, cinfo->image_width);
cinfo->max_v_samp_factor, cinfo->image_width);
/* Edge-expand */
expand_right_edge(output_data, cinfo->max_v_samp_factor,
cinfo->image_width, compptr->width_in_blocks * DCTSIZE);
cinfo->image_width, compptr->width_in_blocks * DCTSIZE);
}
@ -212,7 +215,7 @@ fullsize_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
METHODDEF(void)
h2v1_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
JSAMPARRAY input_data, JSAMPARRAY output_data)
JSAMPARRAY input_data, JSAMPARRAY output_data)
{
int outrow;
JDIMENSION outcol;
@ -225,16 +228,16 @@ h2v1_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
* efficient.
*/
expand_right_edge(input_data, cinfo->max_v_samp_factor,
cinfo->image_width, output_cols * 2);
cinfo->image_width, output_cols * 2);
for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
outptr = output_data[outrow];
inptr = input_data[outrow];
bias = 0; /* bias = 0,1,0,1,... for successive samples */
bias = 0; /* bias = 0,1,0,1,... for successive samples */
for (outcol = 0; outcol < output_cols; outcol++) {
*outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr) + GETJSAMPLE(inptr[1])
+ bias) >> 1);
bias ^= 1; /* 0=>1, 1=>0 */
+ bias) >> 1);
bias ^= 1; /* 0=>1, 1=>0 */
inptr += 2;
}
}
@ -249,7 +252,7 @@ h2v1_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
METHODDEF(void)
h2v2_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
JSAMPARRAY input_data, JSAMPARRAY output_data)
JSAMPARRAY input_data, JSAMPARRAY output_data)
{
int inrow, outrow;
JDIMENSION outcol;
@ -262,19 +265,19 @@ h2v2_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
* efficient.
*/
expand_right_edge(input_data, cinfo->max_v_samp_factor,
cinfo->image_width, output_cols * 2);
cinfo->image_width, output_cols * 2);
inrow = 0;
for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
outptr = output_data[outrow];
inptr0 = input_data[inrow];
inptr1 = input_data[inrow+1];
bias = 1; /* bias = 1,2,1,2,... for successive samples */
bias = 1; /* bias = 1,2,1,2,... for successive samples */
for (outcol = 0; outcol < output_cols; outcol++) {
*outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1])
+ bias) >> 2);
bias ^= 3; /* 1=>2, 2=>1 */
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1])
+ bias) >> 2);
bias ^= 3; /* 1=>2, 2=>1 */
inptr0 += 2; inptr1 += 2;
}
inrow += 2;
@ -292,7 +295,7 @@ h2v2_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
METHODDEF(void)
h2v2_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
JSAMPARRAY input_data, JSAMPARRAY output_data)
JSAMPARRAY input_data, JSAMPARRAY output_data)
{
int inrow, outrow;
JDIMENSION colctr;
@ -305,7 +308,7 @@ h2v2_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
* efficient.
*/
expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2,
cinfo->image_width, output_cols * 2);
cinfo->image_width, output_cols * 2);
/* We don't bother to form the individual "smoothed" input pixel values;
* we can directly compute the output which is the average of the four
@ -333,14 +336,14 @@ h2v2_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
/* Special case for first column: pretend column -1 is same as column 0 */
membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[2]) +
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[2]);
GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[2]) +
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[2]);
neighsum += neighsum;
neighsum += GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[2]) +
GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[2]);
GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[2]);
membersum = membersum * memberscale + neighsum * neighscale;
*outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2;
@ -348,17 +351,17 @@ h2v2_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
for (colctr = output_cols - 2; colctr > 0; colctr--) {
/* sum of pixels directly mapped to this output element */
membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
/* sum of edge-neighbor pixels */
neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[2]) +
GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[2]);
GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[2]) +
GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[2]);
/* The edge-neighbors count twice as much as corner-neighbors */
neighsum += neighsum;
/* Add in the corner-neighbors */
neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[2]) +
GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[2]);
GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[2]);
/* form final output scaled up by 2^16 */
membersum = membersum * memberscale + neighsum * neighscale;
/* round, descale and output it */
@ -368,14 +371,14 @@ h2v2_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
/* Special case for last column */
membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[1]) +
GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[1]);
GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[1]) +
GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[1]);
neighsum += neighsum;
neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[1]) +
GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[1]);
GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[1]);
membersum = membersum * memberscale + neighsum * neighscale;
*outptr = (JSAMPLE) ((membersum + 32768) >> 16);
@ -392,7 +395,7 @@ h2v2_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
METHODDEF(void)
fullsize_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info *compptr,
JSAMPARRAY input_data, JSAMPARRAY output_data)
JSAMPARRAY input_data, JSAMPARRAY output_data)
{
int outrow;
JDIMENSION colctr;
@ -406,7 +409,7 @@ fullsize_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info *compptr,
* efficient.
*/
expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2,
cinfo->image_width, output_cols);
cinfo->image_width, output_cols);
/* Each of the eight neighbor pixels contributes a fraction SF to the
* smoothed pixel, while the main pixel contributes (1-8*SF). In order
@ -425,10 +428,10 @@ fullsize_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info *compptr,
/* Special case for first column */
colsum = GETJSAMPLE(*above_ptr++) + GETJSAMPLE(*below_ptr++) +
GETJSAMPLE(*inptr);
GETJSAMPLE(*inptr);
membersum = GETJSAMPLE(*inptr++);
nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) +
GETJSAMPLE(*inptr);
GETJSAMPLE(*inptr);
neighsum = colsum + (colsum - membersum) + nextcolsum;
membersum = membersum * memberscale + neighsum * neighscale;
*outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
@ -438,7 +441,7 @@ fullsize_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info *compptr,
membersum = GETJSAMPLE(*inptr++);
above_ptr++; below_ptr++;
nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) +
GETJSAMPLE(*inptr);
GETJSAMPLE(*inptr);
neighsum = lastcolsum + (colsum - membersum) + nextcolsum;
membersum = membersum * memberscale + neighsum * neighscale;
*outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
@ -472,7 +475,7 @@ jinit_downsampler (j_compress_ptr cinfo)
downsample = (my_downsample_ptr)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF(my_downsampler));
sizeof(my_downsampler));
cinfo->downsample = (struct jpeg_downsampler *) downsample;
downsample->pub.start_pass = start_pass_downsample;
downsample->pub.downsample = sep_downsample;
@ -485,35 +488,42 @@ jinit_downsampler (j_compress_ptr cinfo)
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
if (compptr->h_samp_factor == cinfo->max_h_samp_factor &&
compptr->v_samp_factor == cinfo->max_v_samp_factor) {
compptr->v_samp_factor == cinfo->max_v_samp_factor) {
#ifdef INPUT_SMOOTHING_SUPPORTED
if (cinfo->smoothing_factor) {
downsample->methods[ci] = fullsize_smooth_downsample;
downsample->pub.need_context_rows = TRUE;
downsample->methods[ci] = fullsize_smooth_downsample;
downsample->pub.need_context_rows = TRUE;
} else
#endif
downsample->methods[ci] = fullsize_downsample;
downsample->methods[ci] = fullsize_downsample;
} else if (compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor &&
compptr->v_samp_factor == cinfo->max_v_samp_factor) {
compptr->v_samp_factor == cinfo->max_v_samp_factor) {
smoothok = FALSE;
if (jsimd_can_h2v1_downsample())
downsample->methods[ci] = jsimd_h2v1_downsample;
else
downsample->methods[ci] = h2v1_downsample;
} else if (compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor &&
compptr->v_samp_factor * 2 == cinfo->max_v_samp_factor) {
compptr->v_samp_factor * 2 == cinfo->max_v_samp_factor) {
#ifdef INPUT_SMOOTHING_SUPPORTED
if (cinfo->smoothing_factor) {
downsample->methods[ci] = h2v2_smooth_downsample;
downsample->pub.need_context_rows = TRUE;
#if defined(__mips__)
if (jsimd_can_h2v2_smooth_downsample())
downsample->methods[ci] = jsimd_h2v2_smooth_downsample;
else
#endif
downsample->methods[ci] = h2v2_smooth_downsample;
downsample->pub.need_context_rows = TRUE;
} else
#endif
if (jsimd_can_h2v2_downsample())
downsample->methods[ci] = jsimd_h2v2_downsample;
else
downsample->methods[ci] = h2v2_downsample;
{
if (jsimd_can_h2v2_downsample())
downsample->methods[ci] = jsimd_h2v2_downsample;
else
downsample->methods[ci] = h2v2_downsample;
}
} else if ((cinfo->max_h_samp_factor % compptr->h_samp_factor) == 0 &&
(cinfo->max_v_samp_factor % compptr->v_samp_factor) == 0) {
(cinfo->max_v_samp_factor % compptr->v_samp_factor) == 0) {
smoothok = FALSE;
downsample->methods[ci] = int_downsample;
} else

View File

@ -1,9 +1,11 @@
/*
* jctrans.c
*
* This file was part of the Independent JPEG Group's software:
* Copyright (C) 1995-1998, Thomas G. Lane.
* Modified 2000-2009 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* It was modified by The libjpeg-turbo Project to include only code relevant
* to libjpeg-turbo.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains library routines for transcoding compression,
@ -18,9 +20,9 @@
/* Forward declarations */
LOCAL(void) transencode_master_selection
JPP((j_compress_ptr cinfo, jvirt_barray_ptr * coef_arrays));
(j_compress_ptr cinfo, jvirt_barray_ptr * coef_arrays);
LOCAL(void) transencode_coef_controller
JPP((j_compress_ptr cinfo, jvirt_barray_ptr * coef_arrays));
(j_compress_ptr cinfo, jvirt_barray_ptr * coef_arrays);
/*
@ -48,7 +50,7 @@ jpeg_write_coefficients (j_compress_ptr cinfo, jvirt_barray_ptr * coef_arrays)
/* Perform master selection of active modules */
transencode_master_selection(cinfo, coef_arrays);
/* Wait for jpeg_finish_compress() call */
cinfo->next_scanline = 0; /* so jpeg_write_marker works */
cinfo->next_scanline = 0; /* so jpeg_write_marker works */
cinfo->global_state = CSTATE_WRCOEFS;
}
@ -62,7 +64,7 @@ jpeg_write_coefficients (j_compress_ptr cinfo, jvirt_barray_ptr * coef_arrays)
GLOBAL(void)
jpeg_copy_critical_parameters (j_decompress_ptr srcinfo,
j_compress_ptr dstinfo)
j_compress_ptr dstinfo)
{
JQUANT_TBL ** qtblptr;
jpeg_component_info *incomp, *outcomp;
@ -96,10 +98,10 @@ jpeg_copy_critical_parameters (j_decompress_ptr srcinfo,
if (srcinfo->quant_tbl_ptrs[tblno] != NULL) {
qtblptr = & dstinfo->quant_tbl_ptrs[tblno];
if (*qtblptr == NULL)
*qtblptr = jpeg_alloc_quant_table((j_common_ptr) dstinfo);
*qtblptr = jpeg_alloc_quant_table((j_common_ptr) dstinfo);
MEMCOPY((*qtblptr)->quantval,
srcinfo->quant_tbl_ptrs[tblno]->quantval,
SIZEOF((*qtblptr)->quantval));
srcinfo->quant_tbl_ptrs[tblno]->quantval,
sizeof((*qtblptr)->quantval));
(*qtblptr)->sent_table = FALSE;
}
}
@ -109,7 +111,7 @@ jpeg_copy_critical_parameters (j_decompress_ptr srcinfo,
dstinfo->num_components = srcinfo->num_components;
if (dstinfo->num_components < 1 || dstinfo->num_components > MAX_COMPONENTS)
ERREXIT2(dstinfo, JERR_COMPONENT_COUNT, dstinfo->num_components,
MAX_COMPONENTS);
MAX_COMPONENTS);
for (ci = 0, incomp = srcinfo->comp_info, outcomp = dstinfo->comp_info;
ci < dstinfo->num_components; ci++, incomp++, outcomp++) {
outcomp->component_id = incomp->component_id;
@ -122,14 +124,14 @@ jpeg_copy_critical_parameters (j_decompress_ptr srcinfo,
*/
tblno = outcomp->quant_tbl_no;
if (tblno < 0 || tblno >= NUM_QUANT_TBLS ||
srcinfo->quant_tbl_ptrs[tblno] == NULL)
srcinfo->quant_tbl_ptrs[tblno] == NULL)
ERREXIT1(dstinfo, JERR_NO_QUANT_TABLE, tblno);
slot_quant = srcinfo->quant_tbl_ptrs[tblno];
c_quant = incomp->quant_table;
if (c_quant != NULL) {
for (coefi = 0; coefi < DCTSIZE2; coefi++) {
if (c_quant->quantval[coefi] != slot_quant->quantval[coefi])
ERREXIT1(dstinfo, JERR_MISMATCHED_QUANT_TABLE, tblno);
if (c_quant->quantval[coefi] != slot_quant->quantval[coefi])
ERREXIT1(dstinfo, JERR_MISMATCHED_QUANT_TABLE, tblno);
}
}
/* Note: we do not copy the source's Huffman table assignments;
@ -163,7 +165,7 @@ jpeg_copy_critical_parameters (j_decompress_ptr srcinfo,
LOCAL(void)
transencode_master_selection (j_compress_ptr cinfo,
jvirt_barray_ptr * coef_arrays)
jvirt_barray_ptr * coef_arrays)
{
/* Although we don't actually use input_components for transcoding,
* jcmaster.c's initial_setup will complain if input_components is 0.
@ -219,10 +221,10 @@ transencode_master_selection (j_compress_ptr cinfo,
typedef struct {
struct jpeg_c_coef_controller pub; /* public fields */
JDIMENSION iMCU_row_num; /* iMCU row # within image */
JDIMENSION mcu_ctr; /* counts MCUs processed in current row */
int MCU_vert_offset; /* counts MCU rows within iMCU row */
int MCU_rows_per_iMCU_row; /* number of such rows needed */
JDIMENSION iMCU_row_num; /* iMCU row # within image */
JDIMENSION mcu_ctr; /* counts MCUs processed in current row */
int MCU_vert_offset; /* counts MCU rows within iMCU row */
int MCU_rows_per_iMCU_row; /* number of such rows needed */
/* Virtual block array for each component. */
jvirt_barray_ptr * whole_image;
@ -289,7 +291,7 @@ METHODDEF(boolean)
compress_output (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
{
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
JDIMENSION MCU_col_num; /* index of current MCU within row */
JDIMENSION MCU_col_num; /* index of current MCU within row */
JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
int blkn, ci, xindex, yindex, yoffset, blockcnt;
@ -312,44 +314,44 @@ compress_output (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
yoffset++) {
for (MCU_col_num = coef->mcu_ctr; MCU_col_num < cinfo->MCUs_per_row;
MCU_col_num++) {
MCU_col_num++) {
/* Construct list of pointers to DCT blocks belonging to this MCU */
blkn = 0; /* index of current DCT block within MCU */
blkn = 0; /* index of current DCT block within MCU */
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
compptr = cinfo->cur_comp_info[ci];
start_col = MCU_col_num * compptr->MCU_width;
blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
: compptr->last_col_width;
for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
if (coef->iMCU_row_num < last_iMCU_row ||
yindex+yoffset < compptr->last_row_height) {
/* Fill in pointers to real blocks in this row */
buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
for (xindex = 0; xindex < blockcnt; xindex++)
MCU_buffer[blkn++] = buffer_ptr++;
} else {
/* At bottom of image, need a whole row of dummy blocks */
xindex = 0;
}
/* Fill in any dummy blocks needed in this row.
* Dummy blocks are filled in the same way as in jccoefct.c:
* all zeroes in the AC entries, DC entries equal to previous
* block's DC value. The init routine has already zeroed the
* AC entries, so we need only set the DC entries correctly.
*/
for (; xindex < compptr->MCU_width; xindex++) {
MCU_buffer[blkn] = coef->dummy_buffer[blkn];
MCU_buffer[blkn][0][0] = MCU_buffer[blkn-1][0][0];
blkn++;
}
}
compptr = cinfo->cur_comp_info[ci];
start_col = MCU_col_num * compptr->MCU_width;
blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
: compptr->last_col_width;
for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
if (coef->iMCU_row_num < last_iMCU_row ||
yindex+yoffset < compptr->last_row_height) {
/* Fill in pointers to real blocks in this row */
buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
for (xindex = 0; xindex < blockcnt; xindex++)
MCU_buffer[blkn++] = buffer_ptr++;
} else {
/* At bottom of image, need a whole row of dummy blocks */
xindex = 0;
}
/* Fill in any dummy blocks needed in this row.
* Dummy blocks are filled in the same way as in jccoefct.c:
* all zeroes in the AC entries, DC entries equal to previous
* block's DC value. The init routine has already zeroed the
* AC entries, so we need only set the DC entries correctly.
*/
for (; xindex < compptr->MCU_width; xindex++) {
MCU_buffer[blkn] = coef->dummy_buffer[blkn];
MCU_buffer[blkn][0][0] = MCU_buffer[blkn-1][0][0];
blkn++;
}
}
}
/* Try to write the MCU. */
if (! (*cinfo->entropy->encode_mcu) (cinfo, MCU_buffer)) {
/* Suspension forced; update state counters and exit */
coef->MCU_vert_offset = yoffset;
coef->mcu_ctr = MCU_col_num;
return FALSE;
/* Suspension forced; update state counters and exit */
coef->MCU_vert_offset = yoffset;
coef->mcu_ctr = MCU_col_num;
return FALSE;
}
}
/* Completed an MCU row, but perhaps not an iMCU row */
@ -372,7 +374,7 @@ compress_output (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
LOCAL(void)
transencode_coef_controller (j_compress_ptr cinfo,
jvirt_barray_ptr * coef_arrays)
jvirt_barray_ptr * coef_arrays)
{
my_coef_ptr coef;
JBLOCKROW buffer;
@ -380,7 +382,7 @@ transencode_coef_controller (j_compress_ptr cinfo,
coef = (my_coef_ptr)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF(my_coef_controller));
sizeof(my_coef_controller));
cinfo->coef = (struct jpeg_c_coef_controller *) coef;
coef->pub.start_pass = start_pass_coef;
coef->pub.compress_data = compress_output;
@ -391,8 +393,8 @@ transencode_coef_controller (j_compress_ptr cinfo,
/* Allocate and pre-zero space for dummy DCT blocks. */
buffer = (JBLOCKROW)
(*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
jzero_far((void FAR *) buffer, C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
C_MAX_BLOCKS_IN_MCU * sizeof(JBLOCK));
jzero_far((void *) buffer, C_MAX_BLOCKS_IN_MCU * sizeof(JBLOCK));
for (i = 0; i < C_MAX_BLOCKS_IN_MCU; i++) {
coef->dummy_buffer[i] = buffer + i;
}

View File

@ -1,8 +1,10 @@
/*
* jdapimin.c
*
* This file was part of the Independent JPEG Group's software:
* Copyright (C) 1994-1998, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* It was modified by The libjpeg-turbo Project to include only code relevant
* to libjpeg-turbo.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains application interface code for the decompression half
@ -32,12 +34,12 @@ jpeg_CreateDecompress (j_decompress_ptr cinfo, int version, size_t structsize)
int i;
/* Guard against version mismatches between library and caller. */
cinfo->mem = NULL; /* so jpeg_destroy knows mem mgr not called */
cinfo->mem = NULL; /* so jpeg_destroy knows mem mgr not called */
if (version != JPEG_LIB_VERSION)
ERREXIT2(cinfo, JERR_BAD_LIB_VERSION, JPEG_LIB_VERSION, version);
if (structsize != SIZEOF(struct jpeg_decompress_struct))
ERREXIT2(cinfo, JERR_BAD_STRUCT_SIZE,
(int) SIZEOF(struct jpeg_decompress_struct), (int) structsize);
if (structsize != sizeof(struct jpeg_decompress_struct))
ERREXIT2(cinfo, JERR_BAD_STRUCT_SIZE,
(int) sizeof(struct jpeg_decompress_struct), (int) structsize);
/* For debugging purposes, we zero the whole master structure.
* But the application has already set the err pointer, and may have set
@ -48,7 +50,7 @@ jpeg_CreateDecompress (j_decompress_ptr cinfo, int version, size_t structsize)
{
struct jpeg_error_mgr * err = cinfo->err;
void * client_data = cinfo->client_data; /* ignore Purify complaint here */
MEMZERO(cinfo, SIZEOF(struct jpeg_decompress_struct));
MEMZERO(cinfo, sizeof(struct jpeg_decompress_struct));
cinfo->err = err;
cinfo->client_data = client_data;
}
@ -121,22 +123,22 @@ default_decompress_parms (j_decompress_ptr cinfo)
cinfo->jpeg_color_space = JCS_GRAYSCALE;
cinfo->out_color_space = JCS_GRAYSCALE;
break;
case 3:
if (cinfo->saw_JFIF_marker) {
cinfo->jpeg_color_space = JCS_YCbCr; /* JFIF implies YCbCr */
} else if (cinfo->saw_Adobe_marker) {
switch (cinfo->Adobe_transform) {
case 0:
cinfo->jpeg_color_space = JCS_RGB;
break;
cinfo->jpeg_color_space = JCS_RGB;
break;
case 1:
cinfo->jpeg_color_space = JCS_YCbCr;
break;
cinfo->jpeg_color_space = JCS_YCbCr;
break;
default:
WARNMS1(cinfo, JWRN_ADOBE_XFORM, cinfo->Adobe_transform);
cinfo->jpeg_color_space = JCS_YCbCr; /* assume it's YCbCr */
break;
WARNMS1(cinfo, JWRN_ADOBE_XFORM, cinfo->Adobe_transform);
cinfo->jpeg_color_space = JCS_YCbCr; /* assume it's YCbCr */
break;
}
} else {
/* Saw no special markers, try to guess from the component IDs */
@ -145,31 +147,31 @@ default_decompress_parms (j_decompress_ptr cinfo)
int cid2 = cinfo->comp_info[2].component_id;
if (cid0 == 1 && cid1 == 2 && cid2 == 3)
cinfo->jpeg_color_space = JCS_YCbCr; /* assume JFIF w/out marker */
cinfo->jpeg_color_space = JCS_YCbCr; /* assume JFIF w/out marker */
else if (cid0 == 82 && cid1 == 71 && cid2 == 66)
cinfo->jpeg_color_space = JCS_RGB; /* ASCII 'R', 'G', 'B' */
cinfo->jpeg_color_space = JCS_RGB; /* ASCII 'R', 'G', 'B' */
else {
TRACEMS3(cinfo, 1, JTRC_UNKNOWN_IDS, cid0, cid1, cid2);
cinfo->jpeg_color_space = JCS_YCbCr; /* assume it's YCbCr */
TRACEMS3(cinfo, 1, JTRC_UNKNOWN_IDS, cid0, cid1, cid2);
cinfo->jpeg_color_space = JCS_YCbCr; /* assume it's YCbCr */
}
}
/* Always guess RGB is proper output colorspace. */
cinfo->out_color_space = JCS_RGB;
break;
case 4:
if (cinfo->saw_Adobe_marker) {
switch (cinfo->Adobe_transform) {
case 0:
cinfo->jpeg_color_space = JCS_CMYK;
break;
cinfo->jpeg_color_space = JCS_CMYK;
break;
case 2:
cinfo->jpeg_color_space = JCS_YCCK;
break;
cinfo->jpeg_color_space = JCS_YCCK;
break;
default:
WARNMS1(cinfo, JWRN_ADOBE_XFORM, cinfo->Adobe_transform);
cinfo->jpeg_color_space = JCS_YCCK; /* assume it's YCCK */
break;
WARNMS1(cinfo, JWRN_ADOBE_XFORM, cinfo->Adobe_transform);
cinfo->jpeg_color_space = JCS_YCCK; /* assume it's YCCK */
break;
}
} else {
/* No special markers, assume straight CMYK. */
@ -177,7 +179,7 @@ default_decompress_parms (j_decompress_ptr cinfo)
}
cinfo->out_color_space = JCS_CMYK;
break;
default:
cinfo->jpeg_color_space = JCS_UNKNOWN;
cinfo->out_color_space = JCS_UNKNOWN;
@ -185,7 +187,7 @@ default_decompress_parms (j_decompress_ptr cinfo)
}
/* Set defaults for other decompression parameters. */
cinfo->scale_num = 1; /* 1:1 scaling */
cinfo->scale_num = 1; /* 1:1 scaling */
cinfo->scale_denom = 1;
cinfo->output_gamma = 1.0;
cinfo->buffered_image = FALSE;
@ -253,7 +255,7 @@ jpeg_read_header (j_decompress_ptr cinfo, boolean require_image)
retcode = JPEG_HEADER_OK;
break;
case JPEG_REACHED_EOI:
if (require_image) /* Complain if application wanted an image */
if (require_image) /* Complain if application wanted an image */
ERREXIT(cinfo, JERR_NO_IMAGE);
/* Reset to start state; it would be safer to require the application to
* call jpeg_abort, but we can't change it now for compatibility reasons.
@ -385,7 +387,7 @@ jpeg_finish_decompress (j_decompress_ptr cinfo)
/* Read until EOI */
while (! cinfo->inputctl->eoi_reached) {
if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED)
return FALSE; /* Suspend, come back later */
return FALSE; /* Suspend, come back later */
}
/* Do final cleanup */
(*cinfo->src->term_source) (cinfo);

View File

@ -23,7 +23,7 @@
/* Forward declarations */
LOCAL(boolean) output_pass_setup JPP((j_decompress_ptr cinfo));
LOCAL(boolean) output_pass_setup (j_decompress_ptr cinfo);
/*
@ -55,24 +55,24 @@ jpeg_start_decompress (j_decompress_ptr cinfo)
if (cinfo->inputctl->has_multiple_scans) {
#ifdef D_MULTISCAN_FILES_SUPPORTED
for (;;) {
int retcode;
/* Call progress monitor hook if present */
if (cinfo->progress != NULL)
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
/* Absorb some more input */
retcode = (*cinfo->inputctl->consume_input) (cinfo);
if (retcode == JPEG_SUSPENDED)
return FALSE;
if (retcode == JPEG_REACHED_EOI)
break;
/* Advance progress counter if appropriate */
if (cinfo->progress != NULL &&
(retcode == JPEG_ROW_COMPLETED || retcode == JPEG_REACHED_SOS)) {
if (++cinfo->progress->pass_counter >= cinfo->progress->pass_limit) {
/* jdmaster underestimated number of scans; ratchet up one scan */
cinfo->progress->pass_limit += (long) cinfo->total_iMCU_rows;
}
}
int retcode;
/* Call progress monitor hook if present */
if (cinfo->progress != NULL)
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
/* Absorb some more input */
retcode = (*cinfo->inputctl->consume_input) (cinfo);
if (retcode == JPEG_SUSPENDED)
return FALSE;
if (retcode == JPEG_REACHED_EOI)
break;
/* Advance progress counter if appropriate */
if (cinfo->progress != NULL &&
(retcode == JPEG_ROW_COMPLETED || retcode == JPEG_REACHED_SOS)) {
if (++cinfo->progress->pass_counter >= cinfo->progress->pass_limit) {
/* jdmaster underestimated number of scans; ratchet up one scan */
cinfo->progress->pass_limit += (long) cinfo->total_iMCU_rows;
}
}
}
#else
ERREXIT(cinfo, JERR_NOT_COMPILED);
@ -111,16 +111,16 @@ output_pass_setup (j_decompress_ptr cinfo)
JDIMENSION last_scanline;
/* Call progress monitor hook if present */
if (cinfo->progress != NULL) {
cinfo->progress->pass_counter = (long) cinfo->output_scanline;
cinfo->progress->pass_limit = (long) cinfo->output_height;
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
cinfo->progress->pass_counter = (long) cinfo->output_scanline;
cinfo->progress->pass_limit = (long) cinfo->output_height;
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
}
/* Process some data */
last_scanline = cinfo->output_scanline;
(*cinfo->main->process_data) (cinfo, (JSAMPARRAY) NULL,
&cinfo->output_scanline, (JDIMENSION) 0);
&cinfo->output_scanline, (JDIMENSION) 0);
if (cinfo->output_scanline == last_scanline)
return FALSE; /* No progress made, must suspend */
return FALSE; /* No progress made, must suspend */
}
/* Finish up dummy pass, and set up for another one */
(*cinfo->master->finish_output_pass) (cinfo);
@ -153,7 +153,7 @@ output_pass_setup (j_decompress_ptr cinfo)
GLOBAL(JDIMENSION)
jpeg_read_scanlines (j_decompress_ptr cinfo, JSAMPARRAY scanlines,
JDIMENSION max_lines)
JDIMENSION max_lines)
{
JDIMENSION row_ctr;
@ -186,7 +186,7 @@ jpeg_read_scanlines (j_decompress_ptr cinfo, JSAMPARRAY scanlines,
GLOBAL(JDIMENSION)
jpeg_read_raw_data (j_decompress_ptr cinfo, JSAMPIMAGE data,
JDIMENSION max_lines)
JDIMENSION max_lines)
{
JDIMENSION lines_per_iMCU_row;
@ -211,7 +211,7 @@ jpeg_read_raw_data (j_decompress_ptr cinfo, JSAMPIMAGE data,
/* Decompress directly into user's buffer. */
if (! (*cinfo->coef->decompress_data) (cinfo, data))
return 0; /* suspension forced, can do nothing more */
return 0; /* suspension forced, can do nothing more */
/* OK, we processed one iMCU row. */
cinfo->output_scanline += lines_per_iMCU_row;
@ -267,9 +267,9 @@ jpeg_finish_output (j_decompress_ptr cinfo)
}
/* Read markers looking for SOS or EOI */
while (cinfo->input_scan_number <= cinfo->output_scan_number &&
! cinfo->inputctl->eoi_reached) {
! cinfo->inputctl->eoi_reached) {
if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED)
return FALSE; /* Suspend, come back later */
return FALSE; /* Suspend, come back later */
}
cinfo->global_state = DSTATE_BUFIMAGE;
return TRUE;

View File

@ -1,8 +1,10 @@
/*
* jdarith.c
*
* This file was part of the Independent JPEG Group's software:
* Developed 1997-2009 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* It was modified by The libjpeg-turbo Project to include only code relevant
* to libjpeg-turbo.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains portable arithmetic entropy decoding routines for JPEG
@ -32,7 +34,7 @@ typedef struct {
int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */
unsigned int restarts_to_go; /* MCUs left in this restart interval */
unsigned int restarts_to_go; /* MCUs left in this restart interval */
/* Pointers to statistics areas (these workspaces have image lifespan) */
unsigned char * dc_stats[NUM_ARITH_TBLS];
@ -115,32 +117,32 @@ arith_decode (j_decompress_ptr cinfo, unsigned char *st)
if (--e->ct < 0) {
/* Need to fetch next data byte */
if (cinfo->unread_marker)
data = 0; /* stuff zero data */
data = 0; /* stuff zero data */
else {
data = get_byte(cinfo); /* read next input byte */
if (data == 0xFF) { /* zero stuff or marker code */
do data = get_byte(cinfo);
while (data == 0xFF); /* swallow extra 0xFF bytes */
if (data == 0)
data = 0xFF; /* discard stuffed zero byte */
else {
/* Note: Different from the Huffman decoder, hitting
* a marker while processing the compressed data
* segment is legal in arithmetic coding.
* The convention is to supply zero data
* then until decoding is complete.
*/
cinfo->unread_marker = data;
data = 0;
}
}
data = get_byte(cinfo); /* read next input byte */
if (data == 0xFF) { /* zero stuff or marker code */
do data = get_byte(cinfo);
while (data == 0xFF); /* swallow extra 0xFF bytes */
if (data == 0)
data = 0xFF; /* discard stuffed zero byte */
else {
/* Note: Different from the Huffman decoder, hitting
* a marker while processing the compressed data
* segment is legal in arithmetic coding.
* The convention is to supply zero data
* then until decoding is complete.
*/
cinfo->unread_marker = data;
data = 0;
}
}
}
e->c = (e->c << 8) | data; /* insert data into C register */
if ((e->ct += 8) < 0) /* update bit shift counter */
/* Need more initial bytes */
if (++e->ct == 0)
/* Got 2 initial bytes -> re-init A and exit loop */
e->a = 0x8000L; /* => e->a = 0x10000L after loop exit */
if ((e->ct += 8) < 0) /* update bit shift counter */
/* Need more initial bytes */
if (++e->ct == 0)
/* Got 2 initial bytes -> re-init A and exit loop */
e->a = 0x8000L; /* => e->a = 0x10000L after loop exit */
}
e->a <<= 1;
}
@ -149,9 +151,9 @@ arith_decode (j_decompress_ptr cinfo, unsigned char *st)
* Qe values and probability estimation state machine
*/
sv = *st;
qe = jpeg_aritab[sv & 0x7F]; /* => Qe_Value */
nl = qe & 0xFF; qe >>= 8; /* Next_Index_LPS + Switch_MPS */
nm = qe & 0xFF; qe >>= 8; /* Next_Index_MPS */
qe = jpeg_aritab[sv & 0x7F]; /* => Qe_Value */
nl = qe & 0xFF; qe >>= 8; /* Next_Index_LPS + Switch_MPS */
nm = qe & 0xFF; qe >>= 8; /* Next_Index_MPS */
/* Decode & estimation procedures per sections D.2.4 & D.2.5 */
temp = e->a - qe;
@ -162,19 +164,19 @@ arith_decode (j_decompress_ptr cinfo, unsigned char *st)
/* Conditional LPS (less probable symbol) exchange */
if (e->a < qe) {
e->a = qe;
*st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */
*st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */
} else {
e->a = qe;
*st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */
sv ^= 0x80; /* Exchange LPS/MPS */
*st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */
sv ^= 0x80; /* Exchange LPS/MPS */
}
} else if (e->a < 0x8000L) {
/* Conditional MPS (more probable symbol) exchange */
if (e->a < qe) {
*st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */
sv ^= 0x80; /* Exchange LPS/MPS */
*st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */
sv ^= 0x80; /* Exchange LPS/MPS */
} else {
*st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */
*st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */
}
}
@ -214,7 +216,7 @@ process_restart (j_decompress_ptr cinfo)
/* Reset arithmetic decoding variables */
entropy->c = 0;
entropy->a = 0;
entropy->ct = -16; /* force reading 2 initial bytes to fill C */
entropy->ct = -16; /* force reading 2 initial bytes to fill C */
/* Reset restart counter */
entropy->restarts_to_go = cinfo->restart_interval;
@ -253,7 +255,7 @@ decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
entropy->restarts_to_go--;
}
if (entropy->ct == -1) return TRUE; /* if error do nothing */
if (entropy->ct == -1) return TRUE; /* if error do nothing */
/* Outer loop handles each block in the MCU */
@ -277,28 +279,28 @@ decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
st += 2; st += sign;
/* Figure F.23: Decoding the magnitude category of v */
if ((m = arith_decode(cinfo, st)) != 0) {
st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
while (arith_decode(cinfo, st)) {
if ((m <<= 1) == 0x8000) {
WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
entropy->ct = -1; /* magnitude overflow */
return TRUE;
}
st += 1;
}
st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
while (arith_decode(cinfo, st)) {
if ((m <<= 1) == 0x8000) {
WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
entropy->ct = -1; /* magnitude overflow */
return TRUE;
}
st += 1;
}
}
/* Section F.1.4.4.1.2: Establish dc_context conditioning category */
if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
entropy->dc_context[ci] = 0; /* zero diff category */
entropy->dc_context[ci] = 0; /* zero diff category */
else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */
entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */
else
entropy->dc_context[ci] = 4 + (sign * 4); /* small diff category */
entropy->dc_context[ci] = 4 + (sign * 4); /* small diff category */
v = m;
/* Figure F.24: Decoding the magnitude bit pattern of v */
st += 14;
while (m >>= 1)
if (arith_decode(cinfo, st)) v |= m;
if (arith_decode(cinfo, st)) v |= m;
v += 1; if (sign) v = -v;
entropy->last_dc_val[ci] += v;
}
@ -332,7 +334,7 @@ decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
entropy->restarts_to_go--;
}
if (entropy->ct == -1) return TRUE; /* if error do nothing */
if (entropy->ct == -1) return TRUE; /* if error do nothing */
/* There is always only one block per MCU */
block = MCU_data[0];
@ -343,13 +345,13 @@ decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
/* Figure F.20: Decode_AC_coefficients */
for (k = cinfo->Ss; k <= cinfo->Se; k++) {
st = entropy->ac_stats[tbl] + 3 * (k - 1);
if (arith_decode(cinfo, st)) break; /* EOB flag */
if (arith_decode(cinfo, st)) break; /* EOB flag */
while (arith_decode(cinfo, st + 1) == 0) {
st += 3; k++;
if (k > cinfo->Se) {
WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
entropy->ct = -1; /* spectral overflow */
return TRUE;
WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
entropy->ct = -1; /* spectral overflow */
return TRUE;
}
}
/* Figure F.21: Decoding nonzero value v */
@ -359,17 +361,17 @@ decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
/* Figure F.23: Decoding the magnitude category of v */
if ((m = arith_decode(cinfo, st)) != 0) {
if (arith_decode(cinfo, st)) {
m <<= 1;
st = entropy->ac_stats[tbl] +
(k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
while (arith_decode(cinfo, st)) {
if ((m <<= 1) == 0x8000) {
WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
entropy->ct = -1; /* magnitude overflow */
return TRUE;
}
st += 1;
}
m <<= 1;
st = entropy->ac_stats[tbl] +
(k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
while (arith_decode(cinfo, st)) {
if ((m <<= 1) == 0x8000) {
WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
entropy->ct = -1; /* magnitude overflow */
return TRUE;
}
st += 1;
}
}
}
v = m;
@ -404,8 +406,8 @@ decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
entropy->restarts_to_go--;
}
st = entropy->fixed_bin; /* use fixed probability estimation */
p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */
st = entropy->fixed_bin; /* use fixed probability estimation */
p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */
/* Outer loop handles each block in the MCU */
@ -440,14 +442,14 @@ decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
entropy->restarts_to_go--;
}
if (entropy->ct == -1) return TRUE; /* if error do nothing */
if (entropy->ct == -1) return TRUE; /* if error do nothing */
/* There is always only one block per MCU */
block = MCU_data[0];
tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */
m1 = (-1) << cinfo->Al; /* -1 in the bit position being coded */
p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */
m1 = (-1) << cinfo->Al; /* -1 in the bit position being coded */
/* Establish EOBx (previous stage end-of-block) index */
for (kex = cinfo->Se; kex > 0; kex--)
@ -456,30 +458,30 @@ decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
for (k = cinfo->Ss; k <= cinfo->Se; k++) {
st = entropy->ac_stats[tbl] + 3 * (k - 1);
if (k > kex)
if (arith_decode(cinfo, st)) break; /* EOB flag */
if (arith_decode(cinfo, st)) break; /* EOB flag */
for (;;) {
thiscoef = *block + jpeg_natural_order[k];
if (*thiscoef) { /* previously nonzero coef */
if (arith_decode(cinfo, st + 2)) {
if (*thiscoef < 0)
*thiscoef += m1;
else
*thiscoef += p1;
}
break;
if (*thiscoef) { /* previously nonzero coef */
if (arith_decode(cinfo, st + 2)) {
if (*thiscoef < 0)
*thiscoef += m1;
else
*thiscoef += p1;
}
break;
}
if (arith_decode(cinfo, st + 1)) { /* newly nonzero coef */
if (arith_decode(cinfo, entropy->fixed_bin))
*thiscoef = m1;
else
*thiscoef = p1;
break;
if (arith_decode(cinfo, st + 1)) { /* newly nonzero coef */
if (arith_decode(cinfo, entropy->fixed_bin))
*thiscoef = m1;
else
*thiscoef = p1;
break;
}
st += 3; k++;
if (k > cinfo->Se) {
WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
entropy->ct = -1; /* spectral overflow */
return TRUE;
WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
entropy->ct = -1; /* spectral overflow */
return TRUE;
}
}
}
@ -509,7 +511,7 @@ decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
entropy->restarts_to_go--;
}
if (entropy->ct == -1) return TRUE; /* if error do nothing */
if (entropy->ct == -1) return TRUE; /* if error do nothing */
/* Outer loop handles each block in the MCU */
@ -535,28 +537,28 @@ decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
st += 2; st += sign;
/* Figure F.23: Decoding the magnitude category of v */
if ((m = arith_decode(cinfo, st)) != 0) {
st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
while (arith_decode(cinfo, st)) {
if ((m <<= 1) == 0x8000) {
WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
entropy->ct = -1; /* magnitude overflow */
return TRUE;
}
st += 1;
}
st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
while (arith_decode(cinfo, st)) {
if ((m <<= 1) == 0x8000) {
WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
entropy->ct = -1; /* magnitude overflow */
return TRUE;
}
st += 1;
}
}
/* Section F.1.4.4.1.2: Establish dc_context conditioning category */
if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
entropy->dc_context[ci] = 0; /* zero diff category */
entropy->dc_context[ci] = 0; /* zero diff category */
else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */
entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */
else
entropy->dc_context[ci] = 4 + (sign * 4); /* small diff category */
entropy->dc_context[ci] = 4 + (sign * 4); /* small diff category */
v = m;
/* Figure F.24: Decoding the magnitude bit pattern of v */
st += 14;
while (m >>= 1)
if (arith_decode(cinfo, st)) v |= m;
if (arith_decode(cinfo, st)) v |= m;
v += 1; if (sign) v = -v;
entropy->last_dc_val[ci] += v;
}
@ -570,14 +572,14 @@ decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
/* Figure F.20: Decode_AC_coefficients */
for (k = 1; k <= DCTSIZE2 - 1; k++) {
st = entropy->ac_stats[tbl] + 3 * (k - 1);
if (arith_decode(cinfo, st)) break; /* EOB flag */
if (arith_decode(cinfo, st)) break; /* EOB flag */
while (arith_decode(cinfo, st + 1) == 0) {
st += 3; k++;
if (k > DCTSIZE2 - 1) {
WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
entropy->ct = -1; /* spectral overflow */
return TRUE;
}
st += 3; k++;
if (k > DCTSIZE2 - 1) {
WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
entropy->ct = -1; /* spectral overflow */
return TRUE;
}
}
/* Figure F.21: Decoding nonzero value v */
/* Figure F.22: Decoding the sign of v */
@ -585,25 +587,25 @@ decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
st += 2;
/* Figure F.23: Decoding the magnitude category of v */
if ((m = arith_decode(cinfo, st)) != 0) {
if (arith_decode(cinfo, st)) {
m <<= 1;
st = entropy->ac_stats[tbl] +
(k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
while (arith_decode(cinfo, st)) {
if ((m <<= 1) == 0x8000) {
WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
entropy->ct = -1; /* magnitude overflow */
return TRUE;
}
st += 1;
}
}
if (arith_decode(cinfo, st)) {
m <<= 1;
st = entropy->ac_stats[tbl] +
(k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
while (arith_decode(cinfo, st)) {
if ((m <<= 1) == 0x8000) {
WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
entropy->ct = -1; /* magnitude overflow */
return TRUE;
}
st += 1;
}
}
}
v = m;
/* Figure F.24: Decoding the magnitude bit pattern of v */
st += 14;
while (m >>= 1)
if (arith_decode(cinfo, st)) v |= m;
if (arith_decode(cinfo, st)) v |= m;
v += 1; if (sign) v = -v;
(*block)[jpeg_natural_order[k]] = (JCOEF) v;
}
@ -628,24 +630,24 @@ start_pass (j_decompress_ptr cinfo)
/* Validate progressive scan parameters */
if (cinfo->Ss == 0) {
if (cinfo->Se != 0)
goto bad;
goto bad;
} else {
/* need not check Ss/Se < 0 since they came from unsigned bytes */
if (cinfo->Se < cinfo->Ss || cinfo->Se > DCTSIZE2 - 1)
goto bad;
goto bad;
/* AC scans may have only one component */
if (cinfo->comps_in_scan != 1)
goto bad;
goto bad;
}
if (cinfo->Ah != 0) {
/* Successive approximation refinement scan: must have Al = Ah-1. */
if (cinfo->Ah-1 != cinfo->Al)
goto bad;
goto bad;
}
if (cinfo->Al > 13) { /* need not check for < 0 */
if (cinfo->Al > 13) { /* need not check for < 0 */
bad:
ERREXIT4(cinfo, JERR_BAD_PROGRESSION,
cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al);
cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al);
}
/* Update progression status, and verify that scan order is legal.
* Note that inter-scan inconsistencies are treated as warnings
@ -655,32 +657,32 @@ start_pass (j_decompress_ptr cinfo)
int coefi, cindex = cinfo->cur_comp_info[ci]->component_index;
int *coef_bit_ptr = & cinfo->coef_bits[cindex][0];
if (cinfo->Ss && coef_bit_ptr[0] < 0) /* AC without prior DC scan */
WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0);
WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0);
for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) {
int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi];
if (cinfo->Ah != expected)
WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi);
coef_bit_ptr[coefi] = cinfo->Al;
int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi];
if (cinfo->Ah != expected)
WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi);
coef_bit_ptr[coefi] = cinfo->Al;
}
}
/* Select MCU decoding routine */
if (cinfo->Ah == 0) {
if (cinfo->Ss == 0)
entropy->pub.decode_mcu = decode_mcu_DC_first;
entropy->pub.decode_mcu = decode_mcu_DC_first;
else
entropy->pub.decode_mcu = decode_mcu_AC_first;
entropy->pub.decode_mcu = decode_mcu_AC_first;
} else {
if (cinfo->Ss == 0)
entropy->pub.decode_mcu = decode_mcu_DC_refine;
entropy->pub.decode_mcu = decode_mcu_DC_refine;
else
entropy->pub.decode_mcu = decode_mcu_AC_refine;
entropy->pub.decode_mcu = decode_mcu_AC_refine;
}
} else {
/* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
* This ought to be an error condition, but we make it a warning.
*/
if (cinfo->Ss != 0 || cinfo->Ah != 0 || cinfo->Al != 0 ||
(cinfo->Se < DCTSIZE2 && cinfo->Se != DCTSIZE2 - 1))
(cinfo->Se < DCTSIZE2 && cinfo->Se != DCTSIZE2 - 1))
WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
/* Select MCU decoding routine */
entropy->pub.decode_mcu = decode_mcu;
@ -692,10 +694,10 @@ start_pass (j_decompress_ptr cinfo)
if (! cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
tbl = compptr->dc_tbl_no;
if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
if (entropy->dc_stats[tbl] == NULL)
entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS);
entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS);
MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS);
/* Initialize DC predictions to 0 */
entropy->last_dc_val[ci] = 0;
@ -704,10 +706,10 @@ start_pass (j_decompress_ptr cinfo)
if (! cinfo->progressive_mode || cinfo->Ss) {
tbl = compptr->ac_tbl_no;
if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
if (entropy->ac_stats[tbl] == NULL)
entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS);
entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS);
MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS);
}
}
@ -715,7 +717,7 @@ start_pass (j_decompress_ptr cinfo)
/* Initialize arithmetic decoding variables */
entropy->c = 0;
entropy->a = 0;
entropy->ct = -16; /* force reading 2 initial bytes to fill C */
entropy->ct = -16; /* force reading 2 initial bytes to fill C */
/* Initialize restart counter */
entropy->restarts_to_go = cinfo->restart_interval;
@ -734,7 +736,7 @@ jinit_arith_decoder (j_decompress_ptr cinfo)
entropy = (arith_entropy_ptr)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF(arith_entropy_decoder));
sizeof(arith_entropy_decoder));
cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
entropy->pub.start_pass = start_pass;
@ -752,10 +754,10 @@ jinit_arith_decoder (j_decompress_ptr cinfo)
int *coef_bit_ptr, ci;
cinfo->coef_bits = (int (*)[DCTSIZE2])
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
cinfo->num_components*DCTSIZE2*SIZEOF(int));
cinfo->num_components*DCTSIZE2*sizeof(int));
coef_bit_ptr = & cinfo->coef_bits[0][0];
for (ci = 0; ci < cinfo->num_components; ci++)
for (ci = 0; ci < cinfo->num_components; ci++)
for (i = 0; i < DCTSIZE2; i++)
*coef_bit_ptr++ = -1;
*coef_bit_ptr++ = -1;
}
}

View File

@ -22,9 +22,9 @@
#include "jpeglib.h"
#include "jerror.h"
#ifndef HAVE_STDLIB_H /* <stdlib.h> should declare malloc(),free() */
extern void * malloc JPP((size_t size));
extern void free JPP((void *ptr));
#ifndef HAVE_STDLIB_H /* <stdlib.h> should declare malloc(),free() */
extern void * malloc (size_t size);
extern void free (void *ptr);
#endif
@ -33,13 +33,13 @@ extern void free JPP((void *ptr));
typedef struct {
struct jpeg_destination_mgr pub; /* public fields */
FILE * outfile; /* target stream */
JOCTET * buffer; /* start of buffer */
FILE * outfile; /* target stream */
JOCTET * buffer; /* start of buffer */
} my_destination_mgr;
typedef my_destination_mgr * my_dest_ptr;
#define OUTPUT_BUF_SIZE 4096 /* choose an efficiently fwrite'able size */
#define OUTPUT_BUF_SIZE 4096 /* choose an efficiently fwrite'able size */
#if JPEG_LIB_VERSION >= 80 || defined(MEM_SRCDST_SUPPORTED)
@ -48,10 +48,10 @@ typedef my_destination_mgr * my_dest_ptr;
typedef struct {
struct jpeg_destination_mgr pub; /* public fields */
unsigned char ** outbuffer; /* target buffer */
unsigned char ** outbuffer; /* target buffer */
unsigned long * outsize;
unsigned char * newbuffer; /* newly allocated buffer */
JOCTET * buffer; /* start of buffer */
unsigned char * newbuffer; /* newly allocated buffer */
JOCTET * buffer; /* start of buffer */
size_t bufsize;
} my_mem_destination_mgr;
@ -72,7 +72,7 @@ init_destination (j_compress_ptr cinfo)
/* Allocate the output buffer --- it will be released when done with image */
dest->buffer = (JOCTET *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
OUTPUT_BUF_SIZE * SIZEOF(JOCTET));
OUTPUT_BUF_SIZE * sizeof(JOCTET));
dest->pub.next_output_byte = dest->buffer;
dest->pub.free_in_buffer = OUTPUT_BUF_SIZE;
@ -213,10 +213,10 @@ jpeg_stdio_dest (j_compress_ptr cinfo, FILE * outfile)
* manager serially with the same JPEG object, because their private object
* sizes may be different. Caveat programmer.
*/
if (cinfo->dest == NULL) { /* first time for this JPEG object? */
if (cinfo->dest == NULL) { /* first time for this JPEG object? */
cinfo->dest = (struct jpeg_destination_mgr *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
SIZEOF(my_destination_mgr));
sizeof(my_destination_mgr));
}
dest = (my_dest_ptr) cinfo->dest;
@ -241,20 +241,20 @@ jpeg_stdio_dest (j_compress_ptr cinfo, FILE * outfile)
GLOBAL(void)
jpeg_mem_dest (j_compress_ptr cinfo,
unsigned char ** outbuffer, unsigned long * outsize)
unsigned char ** outbuffer, unsigned long * outsize)
{
my_mem_dest_ptr dest;
if (outbuffer == NULL || outsize == NULL) /* sanity check */
if (outbuffer == NULL || outsize == NULL) /* sanity check */
ERREXIT(cinfo, JERR_BUFFER_SIZE);
/* The destination object is made permanent so that multiple JPEG images
* can be written to the same buffer without re-executing jpeg_mem_dest.
*/
if (cinfo->dest == NULL) { /* first time for this JPEG object? */
if (cinfo->dest == NULL) { /* first time for this JPEG object? */
cinfo->dest = (struct jpeg_destination_mgr *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
SIZEOF(my_mem_destination_mgr));
sizeof(my_mem_destination_mgr));
}
dest = (my_mem_dest_ptr) cinfo->dest;

View File

@ -26,16 +26,16 @@
/* Expanded data source object for stdio input */
typedef struct {
struct jpeg_source_mgr pub; /* public fields */
struct jpeg_source_mgr pub; /* public fields */
FILE * infile; /* source stream */
JOCTET * buffer; /* start of buffer */
boolean start_of_file; /* have we gotten any data yet? */
FILE * infile; /* source stream */
JOCTET * buffer; /* start of buffer */
boolean start_of_file; /* have we gotten any data yet? */
} my_source_mgr;
typedef my_source_mgr * my_src_ptr;
#define INPUT_BUF_SIZE 4096 /* choose an efficiently fread'able size */
#define INPUT_BUF_SIZE 4096 /* choose an efficiently fread'able size */
/*
@ -106,7 +106,7 @@ fill_input_buffer (j_decompress_ptr cinfo)
nbytes = JFREAD(src->infile, src->buffer, INPUT_BUF_SIZE);
if (nbytes <= 0) {
if (src->start_of_file) /* Treat empty input file as fatal error */
if (src->start_of_file) /* Treat empty input file as fatal error */
ERREXIT(cinfo, JERR_INPUT_EMPTY);
WARNMS(cinfo, JWRN_JPEG_EOF);
/* Insert a fake EOI marker */
@ -224,14 +224,14 @@ jpeg_stdio_src (j_decompress_ptr cinfo, FILE * infile)
* This makes it unsafe to use this manager and a different source
* manager serially with the same JPEG object. Caveat programmer.
*/
if (cinfo->src == NULL) { /* first time for this JPEG object? */
if (cinfo->src == NULL) { /* first time for this JPEG object? */
cinfo->src = (struct jpeg_source_mgr *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
SIZEOF(my_source_mgr));
sizeof(my_source_mgr));
src = (my_src_ptr) cinfo->src;
src->buffer = (JOCTET *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
INPUT_BUF_SIZE * SIZEOF(JOCTET));
INPUT_BUF_SIZE * sizeof(JOCTET));
}
src = (my_src_ptr) cinfo->src;
@ -254,21 +254,21 @@ jpeg_stdio_src (j_decompress_ptr cinfo, FILE * infile)
GLOBAL(void)
jpeg_mem_src (j_decompress_ptr cinfo,
unsigned char * inbuffer, unsigned long insize)
unsigned char * inbuffer, unsigned long insize)
{
struct jpeg_source_mgr * src;
if (inbuffer == NULL || insize == 0) /* Treat empty input as fatal error */
if (inbuffer == NULL || insize == 0) /* Treat empty input as fatal error */
ERREXIT(cinfo, JERR_INPUT_EMPTY);
/* The source object is made permanent so that a series of JPEG images
* can be read from the same buffer by calling jpeg_mem_src only before
* the first one.
*/
if (cinfo->src == NULL) { /* first time for this JPEG object? */
if (cinfo->src == NULL) { /* first time for this JPEG object? */
cinfo->src = (struct jpeg_source_mgr *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
SIZEOF(struct jpeg_source_mgr));
sizeof(struct jpeg_source_mgr));
}
src = cinfo->src;

View File

@ -33,18 +33,15 @@ typedef struct {
/* These variables keep track of the current location of the input side. */
/* cinfo->input_iMCU_row is also used for this. */
JDIMENSION MCU_ctr; /* counts MCUs processed in current row */
int MCU_vert_offset; /* counts MCU rows within iMCU row */
int MCU_rows_per_iMCU_row; /* number of such rows needed */
JDIMENSION MCU_ctr; /* counts MCUs processed in current row */
int MCU_vert_offset; /* counts MCU rows within iMCU row */
int MCU_rows_per_iMCU_row; /* number of such rows needed */
/* The output side's location is represented by cinfo->output_iMCU_row. */
/* In single-pass modes, it's sufficient to buffer just one MCU.
* We allocate a workspace of D_MAX_BLOCKS_IN_MCU coefficient blocks,
* and let the entropy decoder write into that workspace each time.
* (On 80x86, the workspace is FAR even though it's not really very big;
* this is to keep the module interfaces unchanged when a large coefficient
* buffer is necessary.)
* In multi-pass modes, this array points to the current MCU's blocks
* within the virtual arrays; it is used only by the input side.
*/
@ -61,7 +58,7 @@ typedef struct {
#ifdef BLOCK_SMOOTHING_SUPPORTED
/* When doing block smoothing, we latch coefficient Al values here */
int * coef_bits_latch;
#define SAVED_COEFS 6 /* we save coef_bits[0..5] */
#define SAVED_COEFS 6 /* we save coef_bits[0..5] */
#endif
} my_coef_controller;
@ -69,15 +66,15 @@ typedef my_coef_controller * my_coef_ptr;
/* Forward declarations */
METHODDEF(int) decompress_onepass
JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
(j_decompress_ptr cinfo, JSAMPIMAGE output_buf);
#ifdef D_MULTISCAN_FILES_SUPPORTED
METHODDEF(int) decompress_data
JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
(j_decompress_ptr cinfo, JSAMPIMAGE output_buf);
#endif
#ifdef BLOCK_SMOOTHING_SUPPORTED
LOCAL(boolean) smoothing_ok JPP((j_decompress_ptr cinfo));
LOCAL(boolean) smoothing_ok (j_decompress_ptr cinfo);
METHODDEF(int) decompress_smooth_data
JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
(j_decompress_ptr cinfo, JSAMPIMAGE output_buf);
#endif
@ -153,7 +150,7 @@ METHODDEF(int)
decompress_onepass (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
{
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
JDIMENSION MCU_col_num; /* index of current MCU within row */
JDIMENSION MCU_col_num; /* index of current MCU within row */
JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
int blkn, ci, xindex, yindex, yoffset, useful_width;
@ -166,49 +163,49 @@ decompress_onepass (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
yoffset++) {
for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col;
MCU_col_num++) {
MCU_col_num++) {
/* Try to fetch an MCU. Entropy decoder expects buffer to be zeroed. */
jzero_far((void FAR *) coef->MCU_buffer[0],
(size_t) (cinfo->blocks_in_MCU * SIZEOF(JBLOCK)));
jzero_far((void *) coef->MCU_buffer[0],
(size_t) (cinfo->blocks_in_MCU * sizeof(JBLOCK)));
if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
/* Suspension forced; update state counters and exit */
coef->MCU_vert_offset = yoffset;
coef->MCU_ctr = MCU_col_num;
return JPEG_SUSPENDED;
/* Suspension forced; update state counters and exit */
coef->MCU_vert_offset = yoffset;
coef->MCU_ctr = MCU_col_num;
return JPEG_SUSPENDED;
}
/* Determine where data should go in output_buf and do the IDCT thing.
* We skip dummy blocks at the right and bottom edges (but blkn gets
* incremented past them!). Note the inner loop relies on having
* allocated the MCU_buffer[] blocks sequentially.
*/
blkn = 0; /* index of current DCT block within MCU */
blkn = 0; /* index of current DCT block within MCU */
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
compptr = cinfo->cur_comp_info[ci];
/* Don't bother to IDCT an uninteresting component. */
if (! compptr->component_needed) {
blkn += compptr->MCU_blocks;
continue;
}
inverse_DCT = cinfo->idct->inverse_DCT[compptr->component_index];
useful_width = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
: compptr->last_col_width;
output_ptr = output_buf[compptr->component_index] +
yoffset * compptr->_DCT_scaled_size;
start_col = MCU_col_num * compptr->MCU_sample_width;
for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
if (cinfo->input_iMCU_row < last_iMCU_row ||
yoffset+yindex < compptr->last_row_height) {
output_col = start_col;
for (xindex = 0; xindex < useful_width; xindex++) {
(*inverse_DCT) (cinfo, compptr,
(JCOEFPTR) coef->MCU_buffer[blkn+xindex],
output_ptr, output_col);
output_col += compptr->_DCT_scaled_size;
}
}
blkn += compptr->MCU_width;
output_ptr += compptr->_DCT_scaled_size;
}
compptr = cinfo->cur_comp_info[ci];
/* Don't bother to IDCT an uninteresting component. */
if (! compptr->component_needed) {
blkn += compptr->MCU_blocks;
continue;
}
inverse_DCT = cinfo->idct->inverse_DCT[compptr->component_index];
useful_width = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
: compptr->last_col_width;
output_ptr = output_buf[compptr->component_index] +
yoffset * compptr->_DCT_scaled_size;
start_col = MCU_col_num * compptr->MCU_sample_width;
for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
if (cinfo->input_iMCU_row < last_iMCU_row ||
yoffset+yindex < compptr->last_row_height) {
output_col = start_col;
for (xindex = 0; xindex < useful_width; xindex++) {
(*inverse_DCT) (cinfo, compptr,
(JCOEFPTR) coef->MCU_buffer[blkn+xindex],
output_ptr, output_col);
output_col += compptr->_DCT_scaled_size;
}
}
blkn += compptr->MCU_width;
output_ptr += compptr->_DCT_scaled_size;
}
}
}
/* Completed an MCU row, but perhaps not an iMCU row */
@ -233,7 +230,7 @@ decompress_onepass (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
METHODDEF(int)
dummy_consume_data (j_decompress_ptr cinfo)
{
return JPEG_SUSPENDED; /* Always indicate nothing was done */
return JPEG_SUSPENDED; /* Always indicate nothing was done */
}
@ -250,7 +247,7 @@ METHODDEF(int)
consume_data (j_decompress_ptr cinfo)
{
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
JDIMENSION MCU_col_num; /* index of current MCU within row */
JDIMENSION MCU_col_num; /* index of current MCU within row */
int blkn, ci, xindex, yindex, yoffset;
JDIMENSION start_col;
JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
@ -274,25 +271,25 @@ consume_data (j_decompress_ptr cinfo)
for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
yoffset++) {
for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row;
MCU_col_num++) {
MCU_col_num++) {
/* Construct list of pointers to DCT blocks belonging to this MCU */
blkn = 0; /* index of current DCT block within MCU */
blkn = 0; /* index of current DCT block within MCU */
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
compptr = cinfo->cur_comp_info[ci];
start_col = MCU_col_num * compptr->MCU_width;
for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
coef->MCU_buffer[blkn++] = buffer_ptr++;
}
}
compptr = cinfo->cur_comp_info[ci];
start_col = MCU_col_num * compptr->MCU_width;
for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
coef->MCU_buffer[blkn++] = buffer_ptr++;
}
}
}
/* Try to fetch the MCU. */
if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
/* Suspension forced; update state counters and exit */
coef->MCU_vert_offset = yoffset;
coef->MCU_ctr = MCU_col_num;
return JPEG_SUSPENDED;
/* Suspension forced; update state counters and exit */
coef->MCU_vert_offset = yoffset;
coef->MCU_ctr = MCU_col_num;
return JPEG_SUSPENDED;
}
}
/* Completed an MCU row, but perhaps not an iMCU row */
@ -333,8 +330,8 @@ decompress_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
/* Force some input to be done if we are getting ahead of the input. */
while (cinfo->input_scan_number < cinfo->output_scan_number ||
(cinfo->input_scan_number == cinfo->output_scan_number &&
cinfo->input_iMCU_row <= cinfo->output_iMCU_row)) {
(cinfo->input_scan_number == cinfo->output_scan_number &&
cinfo->input_iMCU_row <= cinfo->output_iMCU_row)) {
if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED)
return JPEG_SUSPENDED;
}
@ -365,10 +362,10 @@ decompress_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
buffer_ptr = buffer[block_row];
output_col = 0;
for (block_num = 0; block_num < compptr->width_in_blocks; block_num++) {
(*inverse_DCT) (cinfo, compptr, (JCOEFPTR) buffer_ptr,
output_ptr, output_col);
buffer_ptr++;
output_col += compptr->_DCT_scaled_size;
(*inverse_DCT) (cinfo, compptr, (JCOEFPTR) buffer_ptr,
output_ptr, output_col);
buffer_ptr++;
output_col += compptr->_DCT_scaled_size;
}
output_ptr += compptr->_DCT_scaled_size;
}
@ -425,8 +422,8 @@ smoothing_ok (j_decompress_ptr cinfo)
if (coef->coef_bits_latch == NULL)
coef->coef_bits_latch = (int *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
cinfo->num_components *
(SAVED_COEFS * SIZEOF(int)));
cinfo->num_components *
(SAVED_COEFS * sizeof(int)));
coef_bits_latch = coef->coef_bits_latch;
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
@ -436,11 +433,11 @@ smoothing_ok (j_decompress_ptr cinfo)
return FALSE;
/* Verify DC & first 5 AC quantizers are nonzero to avoid zero-divide. */
if (qtable->quantval[0] == 0 ||
qtable->quantval[Q01_POS] == 0 ||
qtable->quantval[Q10_POS] == 0 ||
qtable->quantval[Q20_POS] == 0 ||
qtable->quantval[Q11_POS] == 0 ||
qtable->quantval[Q02_POS] == 0)
qtable->quantval[Q01_POS] == 0 ||
qtable->quantval[Q10_POS] == 0 ||
qtable->quantval[Q20_POS] == 0 ||
qtable->quantval[Q11_POS] == 0 ||
qtable->quantval[Q02_POS] == 0)
return FALSE;
/* DC values must be at least partly known for all components. */
coef_bits = cinfo->coef_bits[ci];
@ -450,7 +447,7 @@ smoothing_ok (j_decompress_ptr cinfo)
for (coefi = 1; coefi <= 5; coefi++) {
coef_bits_latch[coefi] = coef_bits[coefi];
if (coef_bits[coefi] != 0)
smoothing_useful = TRUE;
smoothing_useful = TRUE;
}
coef_bits_latch += SAVED_COEFS;
}
@ -489,7 +486,7 @@ decompress_smooth_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
/* Force some input to be done if we are getting ahead of the input. */
while (cinfo->input_scan_number <= cinfo->output_scan_number &&
! cinfo->inputctl->eoi_reached) {
! cinfo->inputctl->eoi_reached) {
if (cinfo->input_scan_number == cinfo->output_scan_number) {
/* If input is working on current scan, we ordinarily want it to
* have completed the current row. But if input scan is DC,
@ -498,7 +495,7 @@ decompress_smooth_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
*/
JDIMENSION delta = (cinfo->Ss == 0) ? 1 : 0;
if (cinfo->input_iMCU_row > cinfo->output_iMCU_row+delta)
break;
break;
}
if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED)
return JPEG_SUSPENDED;
@ -526,15 +523,15 @@ decompress_smooth_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
if (cinfo->output_iMCU_row > 0) {
access_rows += compptr->v_samp_factor; /* prior iMCU row too */
buffer = (*cinfo->mem->access_virt_barray)
((j_common_ptr) cinfo, coef->whole_image[ci],
(cinfo->output_iMCU_row - 1) * compptr->v_samp_factor,
(JDIMENSION) access_rows, FALSE);
buffer += compptr->v_samp_factor; /* point to current iMCU row */
((j_common_ptr) cinfo, coef->whole_image[ci],
(cinfo->output_iMCU_row - 1) * compptr->v_samp_factor,
(JDIMENSION) access_rows, FALSE);
buffer += compptr->v_samp_factor; /* point to current iMCU row */
first_row = FALSE;
} else {
buffer = (*cinfo->mem->access_virt_barray)
((j_common_ptr) cinfo, coef->whole_image[ci],
(JDIMENSION) 0, (JDIMENSION) access_rows, FALSE);
((j_common_ptr) cinfo, coef->whole_image[ci],
(JDIMENSION) 0, (JDIMENSION) access_rows, FALSE);
first_row = TRUE;
}
/* Fetch component-dependent info */
@ -552,13 +549,13 @@ decompress_smooth_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
for (block_row = 0; block_row < block_rows; block_row++) {
buffer_ptr = buffer[block_row];
if (first_row && block_row == 0)
prev_block_row = buffer_ptr;
prev_block_row = buffer_ptr;
else
prev_block_row = buffer[block_row-1];
prev_block_row = buffer[block_row-1];
if (last_row && block_row == block_rows-1)
next_block_row = buffer_ptr;
next_block_row = buffer_ptr;
else
next_block_row = buffer[block_row+1];
next_block_row = buffer[block_row+1];
/* We fetch the surrounding DC values using a sliding-register approach.
* Initialize all nine here so as to do the right thing on narrow pics.
*/
@ -568,102 +565,102 @@ decompress_smooth_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
output_col = 0;
last_block_column = compptr->width_in_blocks - 1;
for (block_num = 0; block_num <= last_block_column; block_num++) {
/* Fetch current DCT block into workspace so we can modify it. */
jcopy_block_row(buffer_ptr, (JBLOCKROW) workspace, (JDIMENSION) 1);
/* Update DC values */
if (block_num < last_block_column) {
DC3 = (int) prev_block_row[1][0];
DC6 = (int) buffer_ptr[1][0];
DC9 = (int) next_block_row[1][0];
}
/* Compute coefficient estimates per K.8.
* An estimate is applied only if coefficient is still zero,
* and is not known to be fully accurate.
*/
/* AC01 */
if ((Al=coef_bits[1]) != 0 && workspace[1] == 0) {
num = 36 * Q00 * (DC4 - DC6);
if (num >= 0) {
pred = (int) (((Q01<<7) + num) / (Q01<<8));
if (Al > 0 && pred >= (1<<Al))
pred = (1<<Al)-1;
} else {
pred = (int) (((Q01<<7) - num) / (Q01<<8));
if (Al > 0 && pred >= (1<<Al))
pred = (1<<Al)-1;
pred = -pred;
}
workspace[1] = (JCOEF) pred;
}
/* AC10 */
if ((Al=coef_bits[2]) != 0 && workspace[8] == 0) {
num = 36 * Q00 * (DC2 - DC8);
if (num >= 0) {
pred = (int) (((Q10<<7) + num) / (Q10<<8));
if (Al > 0 && pred >= (1<<Al))
pred = (1<<Al)-1;
} else {
pred = (int) (((Q10<<7) - num) / (Q10<<8));
if (Al > 0 && pred >= (1<<Al))
pred = (1<<Al)-1;
pred = -pred;
}
workspace[8] = (JCOEF) pred;
}
/* AC20 */
if ((Al=coef_bits[3]) != 0 && workspace[16] == 0) {
num = 9 * Q00 * (DC2 + DC8 - 2*DC5);
if (num >= 0) {
pred = (int) (((Q20<<7) + num) / (Q20<<8));
if (Al > 0 && pred >= (1<<Al))
pred = (1<<Al)-1;
} else {
pred = (int) (((Q20<<7) - num) / (Q20<<8));
if (Al > 0 && pred >= (1<<Al))
pred = (1<<Al)-1;
pred = -pred;
}
workspace[16] = (JCOEF) pred;
}
/* AC11 */
if ((Al=coef_bits[4]) != 0 && workspace[9] == 0) {
num = 5 * Q00 * (DC1 - DC3 - DC7 + DC9);
if (num >= 0) {
pred = (int) (((Q11<<7) + num) / (Q11<<8));
if (Al > 0 && pred >= (1<<Al))
pred = (1<<Al)-1;
} else {
pred = (int) (((Q11<<7) - num) / (Q11<<8));
if (Al > 0 && pred >= (1<<Al))
pred = (1<<Al)-1;
pred = -pred;
}
workspace[9] = (JCOEF) pred;
}
/* AC02 */
if ((Al=coef_bits[5]) != 0 && workspace[2] == 0) {
num = 9 * Q00 * (DC4 + DC6 - 2*DC5);
if (num >= 0) {
pred = (int) (((Q02<<7) + num) / (Q02<<8));
if (Al > 0 && pred >= (1<<Al))
pred = (1<<Al)-1;
} else {
pred = (int) (((Q02<<7) - num) / (Q02<<8));
if (Al > 0 && pred >= (1<<Al))
pred = (1<<Al)-1;
pred = -pred;
}
workspace[2] = (JCOEF) pred;
}
/* OK, do the IDCT */
(*inverse_DCT) (cinfo, compptr, (JCOEFPTR) workspace,
output_ptr, output_col);
/* Advance for next column */
DC1 = DC2; DC2 = DC3;
DC4 = DC5; DC5 = DC6;
DC7 = DC8; DC8 = DC9;
buffer_ptr++, prev_block_row++, next_block_row++;
output_col += compptr->_DCT_scaled_size;
/* Fetch current DCT block into workspace so we can modify it. */
jcopy_block_row(buffer_ptr, (JBLOCKROW) workspace, (JDIMENSION) 1);
/* Update DC values */
if (block_num < last_block_column) {
DC3 = (int) prev_block_row[1][0];
DC6 = (int) buffer_ptr[1][0];
DC9 = (int) next_block_row[1][0];
}
/* Compute coefficient estimates per K.8.
* An estimate is applied only if coefficient is still zero,
* and is not known to be fully accurate.
*/
/* AC01 */
if ((Al=coef_bits[1]) != 0 && workspace[1] == 0) {
num = 36 * Q00 * (DC4 - DC6);
if (num >= 0) {
pred = (int) (((Q01<<7) + num) / (Q01<<8));
if (Al > 0 && pred >= (1<<Al))
pred = (1<<Al)-1;
} else {
pred = (int) (((Q01<<7) - num) / (Q01<<8));
if (Al > 0 && pred >= (1<<Al))
pred = (1<<Al)-1;
pred = -pred;
}
workspace[1] = (JCOEF) pred;
}
/* AC10 */
if ((Al=coef_bits[2]) != 0 && workspace[8] == 0) {
num = 36 * Q00 * (DC2 - DC8);
if (num >= 0) {
pred = (int) (((Q10<<7) + num) / (Q10<<8));
if (Al > 0 && pred >= (1<<Al))
pred = (1<<Al)-1;
} else {
pred = (int) (((Q10<<7) - num) / (Q10<<8));
if (Al > 0 && pred >= (1<<Al))
pred = (1<<Al)-1;
pred = -pred;
}
workspace[8] = (JCOEF) pred;
}
/* AC20 */
if ((Al=coef_bits[3]) != 0 && workspace[16] == 0) {
num = 9 * Q00 * (DC2 + DC8 - 2*DC5);
if (num >= 0) {
pred = (int) (((Q20<<7) + num) / (Q20<<8));
if (Al > 0 && pred >= (1<<Al))
pred = (1<<Al)-1;
} else {
pred = (int) (((Q20<<7) - num) / (Q20<<8));
if (Al > 0 && pred >= (1<<Al))
pred = (1<<Al)-1;
pred = -pred;
}
workspace[16] = (JCOEF) pred;
}
/* AC11 */
if ((Al=coef_bits[4]) != 0 && workspace[9] == 0) {
num = 5 * Q00 * (DC1 - DC3 - DC7 + DC9);
if (num >= 0) {
pred = (int) (((Q11<<7) + num) / (Q11<<8));
if (Al > 0 && pred >= (1<<Al))
pred = (1<<Al)-1;
} else {
pred = (int) (((Q11<<7) - num) / (Q11<<8));
if (Al > 0 && pred >= (1<<Al))
pred = (1<<Al)-1;
pred = -pred;
}
workspace[9] = (JCOEF) pred;
}
/* AC02 */
if ((Al=coef_bits[5]) != 0 && workspace[2] == 0) {
num = 9 * Q00 * (DC4 + DC6 - 2*DC5);
if (num >= 0) {
pred = (int) (((Q02<<7) + num) / (Q02<<8));
if (Al > 0 && pred >= (1<<Al))
pred = (1<<Al)-1;
} else {
pred = (int) (((Q02<<7) - num) / (Q02<<8));
if (Al > 0 && pred >= (1<<Al))
pred = (1<<Al)-1;
pred = -pred;
}
workspace[2] = (JCOEF) pred;
}
/* OK, do the IDCT */
(*inverse_DCT) (cinfo, compptr, (JCOEFPTR) workspace,
output_ptr, output_col);
/* Advance for next column */
DC1 = DC2; DC2 = DC3;
DC4 = DC5; DC5 = DC6;
DC7 = DC8; DC8 = DC9;
buffer_ptr++, prev_block_row++, next_block_row++;
output_col += compptr->_DCT_scaled_size;
}
output_ptr += compptr->_DCT_scaled_size;
}
@ -688,7 +685,7 @@ jinit_d_coef_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
coef = (my_coef_ptr)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF(my_coef_controller));
sizeof(my_coef_controller));
cinfo->coef = (struct jpeg_d_coef_controller *) coef;
coef->pub.start_input_pass = start_input_pass;
coef->pub.start_output_pass = start_output_pass;
@ -706,20 +703,20 @@ jinit_d_coef_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
jpeg_component_info *compptr;
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
ci++, compptr++) {
access_rows = compptr->v_samp_factor;
#ifdef BLOCK_SMOOTHING_SUPPORTED
/* If block smoothing could be used, need a bigger window */
if (cinfo->progressive_mode)
access_rows *= 3;
access_rows *= 3;
#endif
coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
((j_common_ptr) cinfo, JPOOL_IMAGE, TRUE,
(JDIMENSION) jround_up((long) compptr->width_in_blocks,
(long) compptr->h_samp_factor),
(JDIMENSION) jround_up((long) compptr->height_in_blocks,
(long) compptr->v_samp_factor),
(JDIMENSION) access_rows);
((j_common_ptr) cinfo, JPOOL_IMAGE, TRUE,
(JDIMENSION) jround_up((long) compptr->width_in_blocks,
(long) compptr->h_samp_factor),
(JDIMENSION) jround_up((long) compptr->height_in_blocks,
(long) compptr->v_samp_factor),
(JDIMENSION) access_rows);
}
coef->pub.consume_data = consume_data;
coef->pub.decompress_data = decompress_data;
@ -734,7 +731,7 @@ jinit_d_coef_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
buffer = (JBLOCKROW)
(*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
D_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
D_MAX_BLOCKS_IN_MCU * sizeof(JBLOCK));
for (i = 0; i < D_MAX_BLOCKS_IN_MCU; i++) {
coef->MCU_buffer[i] = buffer + i;
}
@ -746,5 +743,5 @@ jinit_d_coef_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
/* Allocate the workspace buffer */
coef->workspace = (JCOEF *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF(JCOEF) * DCTSIZE2);
sizeof(JCOEF) * DCTSIZE2);
}

383
media/libjpeg/jdcol565.c Normal file
View File

@ -0,0 +1,383 @@
/*
* jdcol565.c
*
* This file was part of the Independent JPEG Group's software:
* Copyright (C) 1991-1997, Thomas G. Lane.
* Modifications:
* Copyright (C) 2013, Linaro Limited.
* Copyright (C) 2014, D. R. Commander.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains output colorspace conversion routines.
*/
/* This file is included by jdcolor.c */
INLINE
LOCAL(void)
ycc_rgb565_convert_internal (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION input_row,
JSAMPARRAY output_buf, int num_rows)
{
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
register int y, cb, cr;
register JSAMPROW outptr;
register JSAMPROW inptr0, inptr1, inptr2;
register JDIMENSION col;
JDIMENSION num_cols = cinfo->output_width;
/* copy these pointers into registers if possible */
register JSAMPLE * range_limit = cinfo->sample_range_limit;
register int * Crrtab = cconvert->Cr_r_tab;
register int * Cbbtab = cconvert->Cb_b_tab;
register INT32 * Crgtab = cconvert->Cr_g_tab;
register INT32 * Cbgtab = cconvert->Cb_g_tab;
SHIFT_TEMPS
while (--num_rows >= 0) {
INT32 rgb;
unsigned int r, g, b;
inptr0 = input_buf[0][input_row];
inptr1 = input_buf[1][input_row];
inptr2 = input_buf[2][input_row];
input_row++;
outptr = *output_buf++;
if (PACK_NEED_ALIGNMENT(outptr)) {
y = GETJSAMPLE(*inptr0++);
cb = GETJSAMPLE(*inptr1++);
cr = GETJSAMPLE(*inptr2++);
r = range_limit[y + Crrtab[cr]];
g = range_limit[y + ((int)RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr],
SCALEBITS))];
b = range_limit[y + Cbbtab[cb]];
rgb = PACK_SHORT_565(r, g, b);
*(INT16*)outptr = rgb;
outptr += 2;
num_cols--;
}
for (col = 0; col < (num_cols >> 1); col++) {
y = GETJSAMPLE(*inptr0++);
cb = GETJSAMPLE(*inptr1++);
cr = GETJSAMPLE(*inptr2++);
r = range_limit[y + Crrtab[cr]];
g = range_limit[y + ((int)RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr],
SCALEBITS))];
b = range_limit[y + Cbbtab[cb]];
rgb = PACK_SHORT_565(r, g, b);
y = GETJSAMPLE(*inptr0++);
cb = GETJSAMPLE(*inptr1++);
cr = GETJSAMPLE(*inptr2++);
r = range_limit[y + Crrtab[cr]];
g = range_limit[y + ((int)RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr],
SCALEBITS))];
b = range_limit[y + Cbbtab[cb]];
rgb = PACK_TWO_PIXELS(rgb, PACK_SHORT_565(r, g, b));
WRITE_TWO_ALIGNED_PIXELS(outptr, rgb);
outptr += 4;
}
if (num_cols & 1) {
y = GETJSAMPLE(*inptr0);
cb = GETJSAMPLE(*inptr1);
cr = GETJSAMPLE(*inptr2);
r = range_limit[y + Crrtab[cr]];
g = range_limit[y + ((int)RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr],
SCALEBITS))];
b = range_limit[y + Cbbtab[cb]];
rgb = PACK_SHORT_565(r, g, b);
*(INT16*)outptr = rgb;
}
}
}
INLINE
LOCAL(void)
ycc_rgb565D_convert_internal (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION input_row,
JSAMPARRAY output_buf, int num_rows)
{
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
register int y, cb, cr;
register JSAMPROW outptr;
register JSAMPROW inptr0, inptr1, inptr2;
register JDIMENSION col;
JDIMENSION num_cols = cinfo->output_width;
/* copy these pointers into registers if possible */
register JSAMPLE * range_limit = cinfo->sample_range_limit;
register int * Crrtab = cconvert->Cr_r_tab;
register int * Cbbtab = cconvert->Cb_b_tab;
register INT32 * Crgtab = cconvert->Cr_g_tab;
register INT32 * Cbgtab = cconvert->Cb_g_tab;
INT32 d0 = dither_matrix[cinfo->output_scanline & DITHER_MASK];
SHIFT_TEMPS
while (--num_rows >= 0) {
INT32 rgb;
unsigned int r, g, b;
inptr0 = input_buf[0][input_row];
inptr1 = input_buf[1][input_row];
inptr2 = input_buf[2][input_row];
input_row++;
outptr = *output_buf++;
if (PACK_NEED_ALIGNMENT(outptr)) {
y = GETJSAMPLE(*inptr0++);
cb = GETJSAMPLE(*inptr1++);
cr = GETJSAMPLE(*inptr2++);
r = range_limit[DITHER_565_R(y + Crrtab[cr], d0)];
g = range_limit[DITHER_565_G(y +
((int)RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr],
SCALEBITS)), d0)];
b = range_limit[DITHER_565_B(y + Cbbtab[cb], d0)];
rgb = PACK_SHORT_565(r, g, b);
*(INT16*)outptr = rgb;
outptr += 2;
num_cols--;
}
for (col = 0; col < (num_cols >> 1); col++) {
y = GETJSAMPLE(*inptr0++);
cb = GETJSAMPLE(*inptr1++);
cr = GETJSAMPLE(*inptr2++);
r = range_limit[DITHER_565_R(y + Crrtab[cr], d0)];
g = range_limit[DITHER_565_G(y +
((int)RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr],
SCALEBITS)), d0)];
b = range_limit[DITHER_565_B(y + Cbbtab[cb], d0)];
d0 = DITHER_ROTATE(d0);
rgb = PACK_SHORT_565(r, g, b);
y = GETJSAMPLE(*inptr0++);
cb = GETJSAMPLE(*inptr1++);
cr = GETJSAMPLE(*inptr2++);
r = range_limit[DITHER_565_R(y + Crrtab[cr], d0)];
g = range_limit[DITHER_565_G(y +
((int)RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr],
SCALEBITS)), d0)];
b = range_limit[DITHER_565_B(y + Cbbtab[cb], d0)];
d0 = DITHER_ROTATE(d0);
rgb = PACK_TWO_PIXELS(rgb, PACK_SHORT_565(r, g, b));
WRITE_TWO_ALIGNED_PIXELS(outptr, rgb);
outptr += 4;
}
if (num_cols & 1) {
y = GETJSAMPLE(*inptr0);
cb = GETJSAMPLE(*inptr1);
cr = GETJSAMPLE(*inptr2);
r = range_limit[DITHER_565_R(y + Crrtab[cr], d0)];
g = range_limit[DITHER_565_G(y +
((int)RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr],
SCALEBITS)), d0)];
b = range_limit[DITHER_565_B(y + Cbbtab[cb], d0)];
rgb = PACK_SHORT_565(r, g, b);
*(INT16*)outptr = rgb;
}
}
}
INLINE
LOCAL(void)
rgb_rgb565_convert_internal (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION input_row,
JSAMPARRAY output_buf, int num_rows)
{
register JSAMPROW outptr;
register JSAMPROW inptr0, inptr1, inptr2;
register JDIMENSION col;
JDIMENSION num_cols = cinfo->output_width;
SHIFT_TEMPS
while (--num_rows >= 0) {
INT32 rgb;
unsigned int r, g, b;
inptr0 = input_buf[0][input_row];
inptr1 = input_buf[1][input_row];
inptr2 = input_buf[2][input_row];
input_row++;
outptr = *output_buf++;
if (PACK_NEED_ALIGNMENT(outptr)) {
r = GETJSAMPLE(*inptr0++);
g = GETJSAMPLE(*inptr1++);
b = GETJSAMPLE(*inptr2++);
rgb = PACK_SHORT_565(r, g, b);
*(INT16*)outptr = rgb;
outptr += 2;
num_cols--;
}
for (col = 0; col < (num_cols >> 1); col++) {
r = GETJSAMPLE(*inptr0++);
g = GETJSAMPLE(*inptr1++);
b = GETJSAMPLE(*inptr2++);
rgb = PACK_SHORT_565(r, g, b);
r = GETJSAMPLE(*inptr0++);
g = GETJSAMPLE(*inptr1++);
b = GETJSAMPLE(*inptr2++);
rgb = PACK_TWO_PIXELS(rgb, PACK_SHORT_565(r, g, b));
WRITE_TWO_ALIGNED_PIXELS(outptr, rgb);
outptr += 4;
}
if (num_cols & 1) {
r = GETJSAMPLE(*inptr0);
g = GETJSAMPLE(*inptr1);
b = GETJSAMPLE(*inptr2);
rgb = PACK_SHORT_565(r, g, b);
*(INT16*)outptr = rgb;
}
}
}
INLINE
LOCAL(void)
rgb_rgb565D_convert_internal (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION input_row,
JSAMPARRAY output_buf, int num_rows)
{
register JSAMPROW outptr;
register JSAMPROW inptr0, inptr1, inptr2;
register JDIMENSION col;
register JSAMPLE * range_limit = cinfo->sample_range_limit;
JDIMENSION num_cols = cinfo->output_width;
INT32 d0 = dither_matrix[cinfo->output_scanline & DITHER_MASK];
SHIFT_TEMPS
while (--num_rows >= 0) {
INT32 rgb;
unsigned int r, g, b;
inptr0 = input_buf[0][input_row];
inptr1 = input_buf[1][input_row];
inptr2 = input_buf[2][input_row];
input_row++;
outptr = *output_buf++;
if (PACK_NEED_ALIGNMENT(outptr)) {
r = range_limit[DITHER_565_R(GETJSAMPLE(*inptr0++), d0)];
g = range_limit[DITHER_565_G(GETJSAMPLE(*inptr1++), d0)];
b = range_limit[DITHER_565_B(GETJSAMPLE(*inptr2++), d0)];
rgb = PACK_SHORT_565(r, g, b);
*(INT16*)outptr = rgb;
outptr += 2;
num_cols--;
}
for (col = 0; col < (num_cols >> 1); col++) {
r = range_limit[DITHER_565_R(GETJSAMPLE(*inptr0++), d0)];
g = range_limit[DITHER_565_G(GETJSAMPLE(*inptr1++), d0)];
b = range_limit[DITHER_565_B(GETJSAMPLE(*inptr2++), d0)];
d0 = DITHER_ROTATE(d0);
rgb = PACK_SHORT_565(r, g, b);
r = range_limit[DITHER_565_R(GETJSAMPLE(*inptr0++), d0)];
g = range_limit[DITHER_565_G(GETJSAMPLE(*inptr1++), d0)];
b = range_limit[DITHER_565_B(GETJSAMPLE(*inptr2++), d0)];
d0 = DITHER_ROTATE(d0);
rgb = PACK_TWO_PIXELS(rgb, PACK_SHORT_565(r, g, b));
WRITE_TWO_ALIGNED_PIXELS(outptr, rgb);
outptr += 4;
}
if (num_cols & 1) {
r = range_limit[DITHER_565_R(GETJSAMPLE(*inptr0), d0)];
g = range_limit[DITHER_565_G(GETJSAMPLE(*inptr1), d0)];
b = range_limit[DITHER_565_B(GETJSAMPLE(*inptr2), d0)];
rgb = PACK_SHORT_565(r, g, b);
*(INT16*)outptr = rgb;
}
}
}
INLINE
LOCAL(void)
gray_rgb565_convert_internal (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION input_row,
JSAMPARRAY output_buf, int num_rows)
{
register JSAMPROW inptr, outptr;
register JDIMENSION col;
JDIMENSION num_cols = cinfo->output_width;
while (--num_rows >= 0) {
INT32 rgb;
unsigned int g;
inptr = input_buf[0][input_row++];
outptr = *output_buf++;
if (PACK_NEED_ALIGNMENT(outptr)) {
g = *inptr++;
rgb = PACK_SHORT_565(g, g, g);
*(INT16*)outptr = rgb;
outptr += 2;
num_cols--;
}
for (col = 0; col < (num_cols >> 1); col++) {
g = *inptr++;
rgb = PACK_SHORT_565(g, g, g);
g = *inptr++;
rgb = PACK_TWO_PIXELS(rgb, PACK_SHORT_565(g, g, g));
WRITE_TWO_ALIGNED_PIXELS(outptr, rgb);
outptr += 4;
}
if (num_cols & 1) {
g = *inptr;
rgb = PACK_SHORT_565(g, g, g);
*(INT16*)outptr = rgb;
}
}
}
INLINE
LOCAL(void)
gray_rgb565D_convert_internal (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION input_row,
JSAMPARRAY output_buf, int num_rows)
{
register JSAMPROW inptr, outptr;
register JDIMENSION col;
register JSAMPLE * range_limit = cinfo->sample_range_limit;
JDIMENSION num_cols = cinfo->output_width;
INT32 d0 = dither_matrix[cinfo->output_scanline & DITHER_MASK];
while (--num_rows >= 0) {
INT32 rgb;
unsigned int g;
inptr = input_buf[0][input_row++];
outptr = *output_buf++;
if (PACK_NEED_ALIGNMENT(outptr)) {
g = *inptr++;
g = range_limit[DITHER_565_R(g, d0)];
rgb = PACK_SHORT_565(g, g, g);
*(INT16*)outptr = rgb;
outptr += 2;
num_cols--;
}
for (col = 0; col < (num_cols >> 1); col++) {
g = *inptr++;
g = range_limit[DITHER_565_R(g, d0)];
rgb = PACK_SHORT_565(g, g, g);
d0 = DITHER_ROTATE(d0);
g = *inptr++;
g = range_limit[DITHER_565_R(g, d0)];
rgb = PACK_TWO_PIXELS(rgb, PACK_SHORT_565(g, g, g));
d0 = DITHER_ROTATE(d0);
WRITE_TWO_ALIGNED_PIXELS(outptr, rgb);
outptr += 4;
}
if (num_cols & 1) {
g = *inptr;
g = range_limit[DITHER_565_R(g, d0)];
rgb = PACK_SHORT_565(g, g, g);
*(INT16*)outptr = rgb;
}
}
}

View File

@ -58,8 +58,8 @@ ycc_rgb_convert_internal (j_decompress_ptr cinfo,
/* Range-limiting is essential due to noise introduced by DCT losses. */
outptr[RGB_RED] = range_limit[y + Crrtab[cr]];
outptr[RGB_GREEN] = range_limit[y +
((int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr],
SCALEBITS))];
((int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr],
SCALEBITS))];
outptr[RGB_BLUE] = range_limit[y + Cbbtab[cb]];
/* Set unused byte to 0xFF so it can be interpreted as an opaque */
/* alpha channel value */

View File

@ -6,7 +6,8 @@
* Modified 2011 by Guido Vollbeding.
* libjpeg-turbo Modifications:
* Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
* Copyright (C) 2009, 2011-2012, D. R. Commander.
* Copyright (C) 2009, 2011-2012, 2014, D. R. Commander.
* Copyright (C) 2013, Linaro Limited.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains output colorspace conversion routines.
@ -16,7 +17,7 @@
#include "jinclude.h"
#include "jpeglib.h"
#include "jsimd.h"
#include "config.h"
#include "jconfigint.h"
/* Private subobject */
@ -25,13 +26,13 @@ typedef struct {
struct jpeg_color_deconverter pub; /* public fields */
/* Private state for YCC->RGB conversion */
int * Cr_r_tab; /* => table for Cr to R conversion */
int * Cb_b_tab; /* => table for Cb to B conversion */
INT32 * Cr_g_tab; /* => table for Cr to G conversion */
INT32 * Cb_g_tab; /* => table for Cb to G conversion */
int * Cr_r_tab; /* => table for Cr to R conversion */
int * Cb_b_tab; /* => table for Cb to B conversion */
INT32 * Cr_g_tab; /* => table for Cr to G conversion */
INT32 * Cb_g_tab; /* => table for Cb to G conversion */
/* Private state for RGB->Y conversion */
INT32 * rgb_y_tab; /* => table for RGB to Y conversion */
INT32 * rgb_y_tab; /* => table for RGB to Y conversion */
} my_color_deconverter;
typedef my_color_deconverter * my_cconvert_ptr;
@ -45,11 +46,11 @@ typedef my_color_deconverter * my_cconvert_ptr;
* normalized to the range 0..MAXJSAMPLE rather than -0.5 .. 0.5.
* The conversion equations to be implemented are therefore
*
* R = Y + 1.40200 * Cr
* G = Y - 0.34414 * Cb - 0.71414 * Cr
* B = Y + 1.77200 * Cb
* R = Y + 1.40200 * Cr
* G = Y - 0.34414 * Cb - 0.71414 * Cr
* B = Y + 1.77200 * Cb
*
* Y = 0.29900 * R + 0.58700 * G + 0.11400 * B
* Y = 0.29900 * R + 0.58700 * G + 0.11400 * B
*
* where Cb and Cr represent the incoming values less CENTERJSAMPLE.
* (These numbers are derived from TIFF 6.0 section 21, dated 3-June-92.)
@ -71,9 +72,9 @@ typedef my_color_deconverter * my_cconvert_ptr;
* together before rounding.
*/
#define SCALEBITS 16 /* speediest right-shift on some machines */
#define ONE_HALF ((INT32) 1 << (SCALEBITS-1))
#define FIX(x) ((INT32) ((x) * (1L<<SCALEBITS) + 0.5))
#define SCALEBITS 16 /* speediest right-shift on some machines */
#define ONE_HALF ((INT32) 1 << (SCALEBITS-1))
#define FIX(x) ((INT32) ((x) * (1L<<SCALEBITS) + 0.5))
/* We allocate one big table for RGB->Y conversion and divide it up into
* three parts, instead of doing three alloc_small requests. This lets us
@ -82,10 +83,10 @@ typedef my_color_deconverter * my_cconvert_ptr;
* anyway).
*/
#define R_Y_OFF 0 /* offset to R => Y section */
#define G_Y_OFF (1*(MAXJSAMPLE+1)) /* offset to G => Y section */
#define B_Y_OFF (2*(MAXJSAMPLE+1)) /* etc. */
#define TABLE_SIZE (3*(MAXJSAMPLE+1))
#define R_Y_OFF 0 /* offset to R => Y section */
#define G_Y_OFF (1*(MAXJSAMPLE+1)) /* offset to G => Y section */
#define B_Y_OFF (2*(MAXJSAMPLE+1)) /* etc. */
#define TABLE_SIZE (3*(MAXJSAMPLE+1))
/* Include inline routines for colorspace extensions */
@ -215,26 +216,26 @@ build_ycc_rgb_table (j_decompress_ptr cinfo)
cconvert->Cr_r_tab = (int *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
(MAXJSAMPLE+1) * SIZEOF(int));
(MAXJSAMPLE+1) * sizeof(int));
cconvert->Cb_b_tab = (int *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
(MAXJSAMPLE+1) * SIZEOF(int));
(MAXJSAMPLE+1) * sizeof(int));
cconvert->Cr_g_tab = (INT32 *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
(MAXJSAMPLE+1) * SIZEOF(INT32));
(MAXJSAMPLE+1) * sizeof(INT32));
cconvert->Cb_g_tab = (INT32 *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
(MAXJSAMPLE+1) * SIZEOF(INT32));
(MAXJSAMPLE+1) * sizeof(INT32));
for (i = 0, x = -CENTERJSAMPLE; i <= MAXJSAMPLE; i++, x++) {
/* i is the actual input pixel value, in the range 0..MAXJSAMPLE */
/* The Cb or Cr value we are thinking of is x = i - CENTERJSAMPLE */
/* Cr=>R value is nearest int to 1.40200 * x */
cconvert->Cr_r_tab[i] = (int)
RIGHT_SHIFT(FIX(1.40200) * x + ONE_HALF, SCALEBITS);
RIGHT_SHIFT(FIX(1.40200) * x + ONE_HALF, SCALEBITS);
/* Cb=>B value is nearest int to 1.77200 * x */
cconvert->Cb_b_tab[i] = (int)
RIGHT_SHIFT(FIX(1.77200) * x + ONE_HALF, SCALEBITS);
RIGHT_SHIFT(FIX(1.77200) * x + ONE_HALF, SCALEBITS);
/* Cr=>G value is scaled-up -0.71414 * x */
cconvert->Cr_g_tab[i] = (- FIX(0.71414)) * x;
/* Cb=>G value is scaled-up -0.34414 * x */
@ -250,8 +251,8 @@ build_ycc_rgb_table (j_decompress_ptr cinfo)
METHODDEF(void)
ycc_rgb_convert (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION input_row,
JSAMPARRAY output_buf, int num_rows)
JSAMPIMAGE input_buf, JDIMENSION input_row,
JSAMPARRAY output_buf, int num_rows)
{
switch (cinfo->out_color_space) {
case JCS_EXT_RGB:
@ -307,7 +308,7 @@ build_rgb_y_table (j_decompress_ptr cinfo)
/* Allocate and fill in the conversion tables. */
cconvert->rgb_y_tab = rgb_y_tab = (INT32 *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
(TABLE_SIZE * SIZEOF(INT32)));
(TABLE_SIZE * sizeof(INT32)));
for (i = 0; i <= MAXJSAMPLE; i++) {
rgb_y_tab[i+R_Y_OFF] = FIX(0.29900) * i;
@ -323,8 +324,8 @@ build_rgb_y_table (j_decompress_ptr cinfo)
METHODDEF(void)
rgb_gray_convert (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION input_row,
JSAMPARRAY output_buf, int num_rows)
JSAMPIMAGE input_buf, JDIMENSION input_row,
JSAMPARRAY output_buf, int num_rows)
{
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
register int r, g, b;
@ -346,8 +347,8 @@ rgb_gray_convert (j_decompress_ptr cinfo,
b = GETJSAMPLE(inptr2[col]);
/* Y */
outptr[col] = (JSAMPLE)
((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF])
>> SCALEBITS);
((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF])
>> SCALEBITS);
}
}
}
@ -360,8 +361,8 @@ rgb_gray_convert (j_decompress_ptr cinfo,
METHODDEF(void)
null_convert (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION input_row,
JSAMPARRAY output_buf, int num_rows)
JSAMPIMAGE input_buf, JDIMENSION input_row,
JSAMPARRAY output_buf, int num_rows)
{
register JSAMPROW inptr, outptr;
register JDIMENSION count;
@ -374,8 +375,8 @@ null_convert (j_decompress_ptr cinfo,
inptr = input_buf[ci][input_row];
outptr = output_buf[0] + ci;
for (count = num_cols; count > 0; count--) {
*outptr = *inptr++; /* needn't bother with GETJSAMPLE() here */
outptr += num_components;
*outptr = *inptr++; /* needn't bother with GETJSAMPLE() here */
outptr += num_components;
}
}
input_row++;
@ -392,11 +393,11 @@ null_convert (j_decompress_ptr cinfo,
METHODDEF(void)
grayscale_convert (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION input_row,
JSAMPARRAY output_buf, int num_rows)
JSAMPIMAGE input_buf, JDIMENSION input_row,
JSAMPARRAY output_buf, int num_rows)
{
jcopy_sample_rows(input_buf[0], (int) input_row, output_buf, 0,
num_rows, cinfo->output_width);
num_rows, cinfo->output_width);
}
@ -406,8 +407,8 @@ grayscale_convert (j_decompress_ptr cinfo,
METHODDEF(void)
gray_rgb_convert (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION input_row,
JSAMPARRAY output_buf, int num_rows)
JSAMPIMAGE input_buf, JDIMENSION input_row,
JSAMPARRAY output_buf, int num_rows)
{
switch (cinfo->out_color_space) {
case JCS_EXT_RGB:
@ -452,8 +453,8 @@ gray_rgb_convert (j_decompress_ptr cinfo,
METHODDEF(void)
rgb_rgb_convert (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION input_row,
JSAMPARRAY output_buf, int num_rows)
JSAMPIMAGE input_buf, JDIMENSION input_row,
JSAMPARRAY output_buf, int num_rows)
{
switch (cinfo->out_color_space) {
case JCS_EXT_RGB:
@ -501,8 +502,8 @@ rgb_rgb_convert (j_decompress_ptr cinfo,
METHODDEF(void)
ycck_cmyk_convert (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION input_row,
JSAMPARRAY output_buf, int num_rows)
JSAMPIMAGE input_buf, JDIMENSION input_row,
JSAMPARRAY output_buf, int num_rows)
{
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
register int y, cb, cr;
@ -530,19 +531,177 @@ ycck_cmyk_convert (j_decompress_ptr cinfo,
cb = GETJSAMPLE(inptr1[col]);
cr = GETJSAMPLE(inptr2[col]);
/* Range-limiting is essential due to noise introduced by DCT losses. */
outptr[0] = range_limit[MAXJSAMPLE - (y + Crrtab[cr])]; /* red */
outptr[1] = range_limit[MAXJSAMPLE - (y + /* green */
((int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr],
SCALEBITS)))];
outptr[2] = range_limit[MAXJSAMPLE - (y + Cbbtab[cb])]; /* blue */
outptr[0] = range_limit[MAXJSAMPLE - (y + Crrtab[cr])]; /* red */
outptr[1] = range_limit[MAXJSAMPLE - (y + /* green */
((int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr],
SCALEBITS)))];
outptr[2] = range_limit[MAXJSAMPLE - (y + Cbbtab[cb])]; /* blue */
/* K passes through unchanged */
outptr[3] = inptr3[col]; /* don't need GETJSAMPLE here */
outptr[3] = inptr3[col]; /* don't need GETJSAMPLE here */
outptr += 4;
}
}
}
/*
* RGB565 conversion
*/
#define PACK_SHORT_565_LE(r, g, b) ((((r) << 8) & 0xF800) | \
(((g) << 3) & 0x7E0) | ((b) >> 3))
#define PACK_SHORT_565_BE(r, g, b) (((r) & 0xF8) | ((g) >> 5) | \
(((g) << 11) & 0xE000) | \
(((b) << 5) & 0x1F00))
#define PACK_TWO_PIXELS_LE(l, r) ((r << 16) | l)
#define PACK_TWO_PIXELS_BE(l, r) ((l << 16) | r)
#define PACK_NEED_ALIGNMENT(ptr) (((size_t)(ptr)) & 3)
#define WRITE_TWO_ALIGNED_PIXELS(addr, pixels) ((*(int *)(addr)) = pixels)
#define DITHER_565_R(r, dither) ((r) + ((dither) & 0xFF))
#define DITHER_565_G(g, dither) ((g) + (((dither) & 0xFF) >> 1))
#define DITHER_565_B(b, dither) ((b) + ((dither) & 0xFF))
/* Declarations for ordered dithering
*
* We use a 4x4 ordered dither array packed into 32 bits. This array is
* sufficent for dithering RGB888 to RGB565.
*/
#define DITHER_MASK 0x3
#define DITHER_ROTATE(x) (((x) << 24) | (((x) >> 8) & 0x00FFFFFF))
static const INT32 dither_matrix[4] = {
0x0008020A,
0x0C040E06,
0x030B0109,
0x0F070D05
};
static INLINE boolean is_big_endian(void)
{
int test_value = 1;
if(*(char *)&test_value != 1)
return TRUE;
return FALSE;
}
/* Include inline routines for RGB565 conversion */
#define PACK_SHORT_565 PACK_SHORT_565_LE
#define PACK_TWO_PIXELS PACK_TWO_PIXELS_LE
#define ycc_rgb565_convert_internal ycc_rgb565_convert_le
#define ycc_rgb565D_convert_internal ycc_rgb565D_convert_le
#define rgb_rgb565_convert_internal rgb_rgb565_convert_le
#define rgb_rgb565D_convert_internal rgb_rgb565D_convert_le
#define gray_rgb565_convert_internal gray_rgb565_convert_le
#define gray_rgb565D_convert_internal gray_rgb565D_convert_le
#include "jdcol565.c"
#undef PACK_SHORT_565
#undef PACK_TWO_PIXELS
#undef ycc_rgb565_convert_internal
#undef ycc_rgb565D_convert_internal
#undef rgb_rgb565_convert_internal
#undef rgb_rgb565D_convert_internal
#undef gray_rgb565_convert_internal
#undef gray_rgb565D_convert_internal
#define PACK_SHORT_565 PACK_SHORT_565_BE
#define PACK_TWO_PIXELS PACK_TWO_PIXELS_BE
#define ycc_rgb565_convert_internal ycc_rgb565_convert_be
#define ycc_rgb565D_convert_internal ycc_rgb565D_convert_be
#define rgb_rgb565_convert_internal rgb_rgb565_convert_be
#define rgb_rgb565D_convert_internal rgb_rgb565D_convert_be
#define gray_rgb565_convert_internal gray_rgb565_convert_be
#define gray_rgb565D_convert_internal gray_rgb565D_convert_be
#include "jdcol565.c"
#undef PACK_SHORT_565
#undef PACK_TWO_PIXELS
#undef ycc_rgb565_convert_internal
#undef ycc_rgb565D_convert_internal
#undef rgb_rgb565_convert_internal
#undef rgb_rgb565D_convert_internal
#undef gray_rgb565_convert_internal
#undef gray_rgb565D_convert_internal
METHODDEF(void)
ycc_rgb565_convert (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION input_row,
JSAMPARRAY output_buf, int num_rows)
{
if (is_big_endian())
ycc_rgb565_convert_be(cinfo, input_buf, input_row, output_buf, num_rows);
else
ycc_rgb565_convert_le(cinfo, input_buf, input_row, output_buf, num_rows);
}
METHODDEF(void)
ycc_rgb565D_convert (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION input_row,
JSAMPARRAY output_buf, int num_rows)
{
if (is_big_endian())
ycc_rgb565D_convert_be(cinfo, input_buf, input_row, output_buf, num_rows);
else
ycc_rgb565D_convert_le(cinfo, input_buf, input_row, output_buf, num_rows);
}
METHODDEF(void)
rgb_rgb565_convert (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION input_row,
JSAMPARRAY output_buf, int num_rows)
{
if (is_big_endian())
rgb_rgb565_convert_be(cinfo, input_buf, input_row, output_buf, num_rows);
else
rgb_rgb565_convert_le(cinfo, input_buf, input_row, output_buf, num_rows);
}
METHODDEF(void)
rgb_rgb565D_convert (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION input_row,
JSAMPARRAY output_buf, int num_rows)
{
if (is_big_endian())
rgb_rgb565D_convert_be(cinfo, input_buf, input_row, output_buf, num_rows);
else
rgb_rgb565D_convert_le(cinfo, input_buf, input_row, output_buf, num_rows);
}
METHODDEF(void)
gray_rgb565_convert (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION input_row,
JSAMPARRAY output_buf, int num_rows)
{
if (is_big_endian())
gray_rgb565_convert_be(cinfo, input_buf, input_row, output_buf, num_rows);
else
gray_rgb565_convert_le(cinfo, input_buf, input_row, output_buf, num_rows);
}
METHODDEF(void)
gray_rgb565D_convert (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION input_row,
JSAMPARRAY output_buf, int num_rows)
{
if (is_big_endian())
gray_rgb565D_convert_be(cinfo, input_buf, input_row, output_buf, num_rows);
else
gray_rgb565D_convert_le(cinfo, input_buf, input_row, output_buf, num_rows);
}
/*
* Empty method for start_pass.
*/
@ -566,7 +725,7 @@ jinit_color_deconverter (j_decompress_ptr cinfo)
cconvert = (my_cconvert_ptr)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF(my_color_deconverter));
sizeof(my_color_deconverter));
cinfo->cconvert = (struct jpeg_color_deconverter *) cconvert;
cconvert->pub.start_pass = start_pass_dcolor;
@ -589,7 +748,7 @@ jinit_color_deconverter (j_decompress_ptr cinfo)
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
break;
default: /* JCS_UNKNOWN can be anything */
default: /* JCS_UNKNOWN can be anything */
if (cinfo->num_components < 1)
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
break;
@ -604,11 +763,11 @@ jinit_color_deconverter (j_decompress_ptr cinfo)
case JCS_GRAYSCALE:
cinfo->out_color_components = 1;
if (cinfo->jpeg_color_space == JCS_GRAYSCALE ||
cinfo->jpeg_color_space == JCS_YCbCr) {
cinfo->jpeg_color_space == JCS_YCbCr) {
cconvert->pub.color_convert = grayscale_convert;
/* For color->grayscale conversion, only the Y (0) component is needed */
for (ci = 1; ci < cinfo->num_components; ci++)
cinfo->comp_info[ci].component_needed = FALSE;
cinfo->comp_info[ci].component_needed = FALSE;
} else if (cinfo->jpeg_color_space == JCS_RGB) {
cconvert->pub.color_convert = rgb_gray_convert;
build_rgb_y_table(cinfo);
@ -649,6 +808,36 @@ jinit_color_deconverter (j_decompress_ptr cinfo)
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
break;
case JCS_RGB565:
cinfo->out_color_components = 3;
if (cinfo->dither_mode == JDITHER_NONE) {
if (cinfo->jpeg_color_space == JCS_YCbCr) {
if (jsimd_can_ycc_rgb565())
cconvert->pub.color_convert = jsimd_ycc_rgb565_convert;
else {
cconvert->pub.color_convert = ycc_rgb565_convert;
build_ycc_rgb_table(cinfo);
}
} else if (cinfo->jpeg_color_space == JCS_GRAYSCALE) {
cconvert->pub.color_convert = gray_rgb565_convert;
} else if (cinfo->jpeg_color_space == JCS_RGB) {
cconvert->pub.color_convert = rgb_rgb565_convert;
} else
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
} else {
/* only ordered dithering is supported */
if (cinfo->jpeg_color_space == JCS_YCbCr) {
cconvert->pub.color_convert = ycc_rgb565D_convert;
build_ycc_rgb_table(cinfo);
} else if (cinfo->jpeg_color_space == JCS_GRAYSCALE) {
cconvert->pub.color_convert = gray_rgb565D_convert;
} else if (cinfo->jpeg_color_space == JCS_RGB) {
cconvert->pub.color_convert = rgb_rgb565D_convert;
} else
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
}
break;
case JCS_CMYK:
cinfo->out_color_components = 4;
if (cinfo->jpeg_color_space == JCS_YCCK) {
@ -665,7 +854,7 @@ jinit_color_deconverter (j_decompress_ptr cinfo)
if (cinfo->out_color_space == cinfo->jpeg_color_space) {
cinfo->out_color_components = cinfo->num_components;
cconvert->pub.color_convert = null_convert;
} else /* unsupported non-null conversion */
} else /* unsupported non-null conversion */
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
break;
}

View File

@ -1,14 +1,16 @@
/*
* jdct.h
*
* This file was part of the Independent JPEG Group's software:
* Copyright (C) 1994-1996, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* It was modified by The libjpeg-turbo Project to include only code relevant
* to libjpeg-turbo.
* For conditions of distribution and use, see the accompanying README file.
*
* This include file contains common declarations for the forward and
* inverse DCT modules. These declarations are private to the DCT managers
* (jcdctmgr.c, jddctmgr.c) and the individual DCT algorithms.
* The individual DCT algorithms are kept in separate files to ease
* The individual DCT algorithms are kept in separate files to ease
* machine-dependent tuning (e.g., assembly coding).
*/
@ -29,7 +31,7 @@
#if BITS_IN_JSAMPLE == 8
#ifndef WITH_SIMD
typedef int DCTELEM; /* 16 or 32 bits is fine */
typedef int DCTELEM; /* 16 or 32 bits is fine */
typedef unsigned int UDCTELEM;
typedef unsigned long long UDCTELEM2;
#else
@ -38,8 +40,7 @@ typedef unsigned short UDCTELEM;
typedef unsigned int UDCTELEM2;
#endif
#else
typedef INT32 DCTELEM; /* must have 32 bits */
typedef UINT32 UDCTELEM;
typedef INT32 DCTELEM; /* must have 32 bits */
typedef unsigned long long UDCTELEM2;
#endif
@ -64,10 +65,10 @@ typedef unsigned long long UDCTELEM2;
typedef MULTIPLIER ISLOW_MULT_TYPE; /* short or int, whichever is faster */
#if BITS_IN_JSAMPLE == 8
typedef MULTIPLIER IFAST_MULT_TYPE; /* 16 bits is OK, use short if faster */
#define IFAST_SCALE_BITS 2 /* fractional bits in scale factors */
#define IFAST_SCALE_BITS 2 /* fractional bits in scale factors */
#else
typedef INT32 IFAST_MULT_TYPE; /* need 32 bits for scaled quantizers */
#define IFAST_SCALE_BITS 13 /* fractional bits in scale factors */
typedef INT32 IFAST_MULT_TYPE; /* need 32 bits for scaled quantizers */
#define IFAST_SCALE_BITS 13 /* fractional bits in scale factors */
#endif
typedef FAST_FLOAT FLOAT_MULT_TYPE; /* preferred floating type */
@ -86,92 +87,66 @@ typedef FAST_FLOAT FLOAT_MULT_TYPE; /* preferred floating type */
#define RANGE_MASK (MAXJSAMPLE * 4 + 3) /* 2 bits wider than legal samples */
/* Short forms of external names for systems with brain-damaged linkers. */
#ifdef NEED_SHORT_EXTERNAL_NAMES
#define jpeg_fdct_islow jFDislow
#define jpeg_fdct_ifast jFDifast
#define jpeg_fdct_float jFDfloat
#define jpeg_idct_islow jRDislow
#define jpeg_idct_ifast jRDifast
#define jpeg_idct_float jRDfloat
#define jpeg_idct_7x7 jRD7x7
#define jpeg_idct_6x6 jRD6x6
#define jpeg_idct_5x5 jRD5x5
#define jpeg_idct_4x4 jRD4x4
#define jpeg_idct_3x3 jRD3x3
#define jpeg_idct_2x2 jRD2x2
#define jpeg_idct_1x1 jRD1x1
#define jpeg_idct_9x9 jRD9x9
#define jpeg_idct_10x10 jRD10x10
#define jpeg_idct_11x11 jRD11x11
#define jpeg_idct_12x12 jRD12x12
#define jpeg_idct_13x13 jRD13x13
#define jpeg_idct_14x14 jRD14x14
#define jpeg_idct_15x15 jRD15x15
#define jpeg_idct_16x16 jRD16x16
#endif /* NEED_SHORT_EXTERNAL_NAMES */
/* Extern declarations for the forward and inverse DCT routines. */
EXTERN(void) jpeg_fdct_islow JPP((DCTELEM * data));
EXTERN(void) jpeg_fdct_ifast JPP((DCTELEM * data));
EXTERN(void) jpeg_fdct_float JPP((FAST_FLOAT * data));
EXTERN(void) jpeg_fdct_islow (DCTELEM * data);
EXTERN(void) jpeg_fdct_ifast (DCTELEM * data);
EXTERN(void) jpeg_fdct_float (FAST_FLOAT * data);
EXTERN(void) jpeg_idct_islow
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
(j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col);
EXTERN(void) jpeg_idct_ifast
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
(j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col);
EXTERN(void) jpeg_idct_float
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
(j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col);
EXTERN(void) jpeg_idct_7x7
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
(j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col);
EXTERN(void) jpeg_idct_6x6
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
(j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col);
EXTERN(void) jpeg_idct_5x5
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
(j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col);
EXTERN(void) jpeg_idct_4x4
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
(j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col);
EXTERN(void) jpeg_idct_3x3
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
(j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col);
EXTERN(void) jpeg_idct_2x2
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
(j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col);
EXTERN(void) jpeg_idct_1x1
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
(j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col);
EXTERN(void) jpeg_idct_9x9
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
(j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col);
EXTERN(void) jpeg_idct_10x10
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
(j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col);
EXTERN(void) jpeg_idct_11x11
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
(j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col);
EXTERN(void) jpeg_idct_12x12
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
(j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col);
EXTERN(void) jpeg_idct_13x13
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
(j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col);
EXTERN(void) jpeg_idct_14x14
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
(j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col);
EXTERN(void) jpeg_idct_15x15
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
(j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col);
EXTERN(void) jpeg_idct_16x16
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
(j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col);
/*
@ -184,7 +159,7 @@ EXTERN(void) jpeg_idct_16x16
* and may differ from one module to the next.
*/
#define ONE ((INT32) 1)
#define ONE ((INT32) 1)
#define CONST_SCALE (ONE << CONST_BITS)
/* Convert a positive real constant to an integer scaled by CONST_SCALE.
@ -192,7 +167,7 @@ EXTERN(void) jpeg_idct_16x16
* thus causing a lot of useless floating-point operations at run time.
*/
#define FIX(x) ((INT32) ((x) * CONST_SCALE + 0.5))
#define FIX(x) ((INT32) ((x) * CONST_SCALE + 0.5))
/* Descale and correctly round an INT32 value that's scaled by N bits.
* We assume RIGHT_SHIFT rounds towards minus infinity, so adding
@ -210,23 +185,23 @@ EXTERN(void) jpeg_idct_16x16
* correct combination of casts.
*/
#ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */
#ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */
#define MULTIPLY16C16(var,const) (((INT16) (var)) * ((INT16) (const)))
#endif
#ifdef SHORTxLCONST_32 /* known to work with Microsoft C 6.0 */
#ifdef SHORTxLCONST_32 /* known to work with Microsoft C 6.0 */
#define MULTIPLY16C16(var,const) (((INT16) (var)) * ((INT32) (const)))
#endif
#ifndef MULTIPLY16C16 /* default definition */
#ifndef MULTIPLY16C16 /* default definition */
#define MULTIPLY16C16(var,const) ((var) * (const))
#endif
/* Same except both inputs are variables. */
#ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */
#ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */
#define MULTIPLY16V16(var1,var2) (((INT16) (var1)) * ((INT16) (var2)))
#endif
#ifndef MULTIPLY16V16 /* default definition */
#ifndef MULTIPLY16V16 /* default definition */
#define MULTIPLY16V16(var1,var2) ((var1) * (var2))
#endif

View File

@ -7,6 +7,7 @@
* libjpeg-turbo Modifications:
* Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
* Copyright (C) 2010, D. R. Commander.
* Copyright (C) 2013, MIPS Technologies, Inc., California
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains the inverse-DCT management logic.
@ -22,7 +23,7 @@
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#include "jdct.h" /* Private declarations for DCT subsystem */
#include "jdct.h" /* Private declarations for DCT subsystem */
#include "jsimddct.h"
#include "jpegcomp.h"
@ -47,7 +48,7 @@
/* Private subobject for this module */
typedef struct {
struct jpeg_inverse_dct pub; /* public fields */
struct jpeg_inverse_dct pub; /* public fields */
/* This array contains the IDCT method code that each multiplier table
* is currently set up for, or -1 if it's not yet set up.
@ -108,104 +109,114 @@ start_pass (j_decompress_ptr cinfo)
#ifdef IDCT_SCALING_SUPPORTED
case 1:
method_ptr = jpeg_idct_1x1;
method = JDCT_ISLOW; /* jidctred uses islow-style table */
method = JDCT_ISLOW; /* jidctred uses islow-style table */
break;
case 2:
if (jsimd_can_idct_2x2())
method_ptr = jsimd_idct_2x2;
else
method_ptr = jpeg_idct_2x2;
method = JDCT_ISLOW; /* jidctred uses islow-style table */
method = JDCT_ISLOW; /* jidctred uses islow-style table */
break;
case 3:
method_ptr = jpeg_idct_3x3;
method = JDCT_ISLOW; /* jidctint uses islow-style table */
method = JDCT_ISLOW; /* jidctint uses islow-style table */
break;
case 4:
if (jsimd_can_idct_4x4())
method_ptr = jsimd_idct_4x4;
else
method_ptr = jpeg_idct_4x4;
method = JDCT_ISLOW; /* jidctred uses islow-style table */
method = JDCT_ISLOW; /* jidctred uses islow-style table */
break;
case 5:
method_ptr = jpeg_idct_5x5;
method = JDCT_ISLOW; /* jidctint uses islow-style table */
method = JDCT_ISLOW; /* jidctint uses islow-style table */
break;
case 6:
#if defined(__mips__)
if (jsimd_can_idct_6x6())
method_ptr = jsimd_idct_6x6;
else
#endif
method_ptr = jpeg_idct_6x6;
method = JDCT_ISLOW; /* jidctint uses islow-style table */
method = JDCT_ISLOW; /* jidctint uses islow-style table */
break;
case 7:
method_ptr = jpeg_idct_7x7;
method = JDCT_ISLOW; /* jidctint uses islow-style table */
method = JDCT_ISLOW; /* jidctint uses islow-style table */
break;
#endif
case DCTSIZE:
switch (cinfo->dct_method) {
#ifdef DCT_ISLOW_SUPPORTED
case JDCT_ISLOW:
if (jsimd_can_idct_islow())
method_ptr = jsimd_idct_islow;
else
method_ptr = jpeg_idct_islow;
method = JDCT_ISLOW;
break;
if (jsimd_can_idct_islow())
method_ptr = jsimd_idct_islow;
else
method_ptr = jpeg_idct_islow;
method = JDCT_ISLOW;
break;
#endif
#ifdef DCT_IFAST_SUPPORTED
case JDCT_IFAST:
if (jsimd_can_idct_ifast())
method_ptr = jsimd_idct_ifast;
else
method_ptr = jpeg_idct_ifast;
method = JDCT_IFAST;
break;
if (jsimd_can_idct_ifast())
method_ptr = jsimd_idct_ifast;
else
method_ptr = jpeg_idct_ifast;
method = JDCT_IFAST;
break;
#endif
#ifdef DCT_FLOAT_SUPPORTED
case JDCT_FLOAT:
if (jsimd_can_idct_float())
method_ptr = jsimd_idct_float;
else
method_ptr = jpeg_idct_float;
method = JDCT_FLOAT;
break;
if (jsimd_can_idct_float())
method_ptr = jsimd_idct_float;
else
method_ptr = jpeg_idct_float;
method = JDCT_FLOAT;
break;
#endif
default:
ERREXIT(cinfo, JERR_NOT_COMPILED);
break;
ERREXIT(cinfo, JERR_NOT_COMPILED);
break;
}
break;
case 9:
method_ptr = jpeg_idct_9x9;
method = JDCT_ISLOW; /* jidctint uses islow-style table */
method = JDCT_ISLOW; /* jidctint uses islow-style table */
break;
case 10:
method_ptr = jpeg_idct_10x10;
method = JDCT_ISLOW; /* jidctint uses islow-style table */
method = JDCT_ISLOW; /* jidctint uses islow-style table */
break;
case 11:
method_ptr = jpeg_idct_11x11;
method = JDCT_ISLOW; /* jidctint uses islow-style table */
method = JDCT_ISLOW; /* jidctint uses islow-style table */
break;
case 12:
#if defined(__mips__)
if (jsimd_can_idct_12x12())
method_ptr = jsimd_idct_12x12;
else
#endif
method_ptr = jpeg_idct_12x12;
method = JDCT_ISLOW; /* jidctint uses islow-style table */
method = JDCT_ISLOW; /* jidctint uses islow-style table */
break;
case 13:
method_ptr = jpeg_idct_13x13;
method = JDCT_ISLOW; /* jidctint uses islow-style table */
method = JDCT_ISLOW; /* jidctint uses islow-style table */
break;
case 14:
method_ptr = jpeg_idct_14x14;
method = JDCT_ISLOW; /* jidctint uses islow-style table */
method = JDCT_ISLOW; /* jidctint uses islow-style table */
break;
case 15:
method_ptr = jpeg_idct_15x15;
method = JDCT_ISLOW; /* jidctint uses islow-style table */
method = JDCT_ISLOW; /* jidctint uses islow-style table */
break;
case 16:
method_ptr = jpeg_idct_16x16;
method = JDCT_ISLOW; /* jidctint uses islow-style table */
method = JDCT_ISLOW; /* jidctint uses islow-style table */
break;
default:
ERREXIT1(cinfo, JERR_BAD_DCTSIZE, compptr->_DCT_scaled_size);
@ -222,81 +233,81 @@ start_pass (j_decompress_ptr cinfo)
if (! compptr->component_needed || idct->cur_method[ci] == method)
continue;
qtbl = compptr->quant_table;
if (qtbl == NULL) /* happens if no data yet for component */
if (qtbl == NULL) /* happens if no data yet for component */
continue;
idct->cur_method[ci] = method;
switch (method) {
#ifdef PROVIDE_ISLOW_TABLES
case JDCT_ISLOW:
{
/* For LL&M IDCT method, multipliers are equal to raw quantization
* coefficients, but are stored as ints to ensure access efficiency.
*/
ISLOW_MULT_TYPE * ismtbl = (ISLOW_MULT_TYPE *) compptr->dct_table;
for (i = 0; i < DCTSIZE2; i++) {
ismtbl[i] = (ISLOW_MULT_TYPE) qtbl->quantval[i];
}
/* For LL&M IDCT method, multipliers are equal to raw quantization
* coefficients, but are stored as ints to ensure access efficiency.
*/
ISLOW_MULT_TYPE * ismtbl = (ISLOW_MULT_TYPE *) compptr->dct_table;
for (i = 0; i < DCTSIZE2; i++) {
ismtbl[i] = (ISLOW_MULT_TYPE) qtbl->quantval[i];
}
}
break;
#endif
#ifdef DCT_IFAST_SUPPORTED
case JDCT_IFAST:
{
/* For AA&N IDCT method, multipliers are equal to quantization
* coefficients scaled by scalefactor[row]*scalefactor[col], where
* scalefactor[0] = 1
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
* For integer operation, the multiplier table is to be scaled by
* IFAST_SCALE_BITS.
*/
IFAST_MULT_TYPE * ifmtbl = (IFAST_MULT_TYPE *) compptr->dct_table;
/* For AA&N IDCT method, multipliers are equal to quantization
* coefficients scaled by scalefactor[row]*scalefactor[col], where
* scalefactor[0] = 1
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
* For integer operation, the multiplier table is to be scaled by
* IFAST_SCALE_BITS.
*/
IFAST_MULT_TYPE * ifmtbl = (IFAST_MULT_TYPE *) compptr->dct_table;
#define CONST_BITS 14
static const INT16 aanscales[DCTSIZE2] = {
/* precomputed values scaled up by 14 bits */
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
};
SHIFT_TEMPS
static const INT16 aanscales[DCTSIZE2] = {
/* precomputed values scaled up by 14 bits */
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
};
SHIFT_TEMPS
for (i = 0; i < DCTSIZE2; i++) {
ifmtbl[i] = (IFAST_MULT_TYPE)
DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i],
(INT32) aanscales[i]),
CONST_BITS-IFAST_SCALE_BITS);
}
for (i = 0; i < DCTSIZE2; i++) {
ifmtbl[i] = (IFAST_MULT_TYPE)
DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i],
(INT32) aanscales[i]),
CONST_BITS-IFAST_SCALE_BITS);
}
}
break;
#endif
#ifdef DCT_FLOAT_SUPPORTED
case JDCT_FLOAT:
{
/* For float AA&N IDCT method, multipliers are equal to quantization
* coefficients scaled by scalefactor[row]*scalefactor[col], where
* scalefactor[0] = 1
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
*/
FLOAT_MULT_TYPE * fmtbl = (FLOAT_MULT_TYPE *) compptr->dct_table;
int row, col;
static const double aanscalefactor[DCTSIZE] = {
1.0, 1.387039845, 1.306562965, 1.175875602,
1.0, 0.785694958, 0.541196100, 0.275899379
};
/* For float AA&N IDCT method, multipliers are equal to quantization
* coefficients scaled by scalefactor[row]*scalefactor[col], where
* scalefactor[0] = 1
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
*/
FLOAT_MULT_TYPE * fmtbl = (FLOAT_MULT_TYPE *) compptr->dct_table;
int row, col;
static const double aanscalefactor[DCTSIZE] = {
1.0, 1.387039845, 1.306562965, 1.175875602,
1.0, 0.785694958, 0.541196100, 0.275899379
};
i = 0;
for (row = 0; row < DCTSIZE; row++) {
for (col = 0; col < DCTSIZE; col++) {
fmtbl[i] = (FLOAT_MULT_TYPE)
((double) qtbl->quantval[i] *
aanscalefactor[row] * aanscalefactor[col]);
i++;
}
}
i = 0;
for (row = 0; row < DCTSIZE; row++) {
for (col = 0; col < DCTSIZE; col++) {
fmtbl[i] = (FLOAT_MULT_TYPE)
((double) qtbl->quantval[i] *
aanscalefactor[row] * aanscalefactor[col]);
i++;
}
}
}
break;
#endif
@ -321,7 +332,7 @@ jinit_inverse_dct (j_decompress_ptr cinfo)
idct = (my_idct_ptr)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF(my_idct_controller));
sizeof(my_idct_controller));
cinfo->idct = (struct jpeg_inverse_dct *) idct;
idct->pub.start_pass = start_pass;
@ -330,8 +341,8 @@ jinit_inverse_dct (j_decompress_ptr cinfo)
/* Allocate and pre-zero a multiplier table for each component */
compptr->dct_table =
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF(multiplier_table));
MEMZERO(compptr->dct_table, SIZEOF(multiplier_table));
sizeof(multiplier_table));
MEMZERO(compptr->dct_table, sizeof(multiplier_table));
/* Mark multiplier table not yet set up for any method */
idct->cur_method[ci] = -1;
}

Some files were not shown because too many files have changed in this diff Show More