mirror of
https://github.com/mozilla/gecko-dev.git
synced 2024-11-27 23:02:20 +00:00
Bug 1246851 (Part 1) - Add a new SurfacePipe API for writing to image surfaces in a safe and composable manner. r=njn
This commit is contained in:
parent
0005663935
commit
b1ec50b23f
@ -277,6 +277,8 @@ public:
|
||||
|
||||
protected:
|
||||
friend class nsICODecoder;
|
||||
friend class PalettedSurfaceSink;
|
||||
friend class SurfaceSink;
|
||||
|
||||
virtual ~Decoder();
|
||||
|
||||
|
199
image/SurfacePipe.cpp
Normal file
199
image/SurfacePipe.cpp
Normal file
@ -0,0 +1,199 @@
|
||||
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
||||
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
|
||||
/* This Source Code Form is subject to the terms of the Mozilla Public
|
||||
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
||||
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
||||
|
||||
#include "SurfacePipe.h"
|
||||
|
||||
#include <utility>
|
||||
|
||||
#include "mozilla/ClearOnShutdown.h"
|
||||
#include "mozilla/DebugOnly.h"
|
||||
#include "Decoder.h"
|
||||
|
||||
namespace mozilla {
|
||||
namespace image {
|
||||
|
||||
using namespace gfx;
|
||||
|
||||
using std::min;
|
||||
|
||||
/* static */ UniquePtr<NullSurfaceSink> NullSurfaceSink::sSingleton;
|
||||
|
||||
/* static */ NullSurfaceSink*
|
||||
NullSurfaceSink::Singleton()
|
||||
{
|
||||
if (!sSingleton) {
|
||||
MOZ_ASSERT(NS_IsMainThread());
|
||||
sSingleton = MakeUnique<NullSurfaceSink>();
|
||||
ClearOnShutdown(&sSingleton);
|
||||
|
||||
DebugOnly<nsresult> rv = sSingleton->Configure(NullSurfaceConfig { });
|
||||
MOZ_ASSERT(NS_SUCCEEDED(rv), "Couldn't configure a NullSurfaceSink?");
|
||||
}
|
||||
|
||||
return sSingleton.get();
|
||||
}
|
||||
|
||||
nsresult
|
||||
NullSurfaceSink::Configure(const NullSurfaceConfig& aConfig)
|
||||
{
|
||||
// Note that the choice of uint32_t as the pixel size here is more or less
|
||||
// arbitrary, since you cannot write to a NullSurfaceSink anyway, but uint32_t
|
||||
// is a natural choice since most SurfacePipes will be for BGRA/BGRX surfaces.
|
||||
ConfigureFilter(IntSize(), sizeof(uint32_t));
|
||||
return NS_OK;
|
||||
}
|
||||
|
||||
Maybe<SurfaceInvalidRect>
|
||||
AbstractSurfaceSink::TakeInvalidRect()
|
||||
{
|
||||
if (mInvalidRect.IsEmpty()) {
|
||||
return Nothing();
|
||||
}
|
||||
|
||||
SurfaceInvalidRect invalidRect;
|
||||
invalidRect.mInputSpaceRect = invalidRect.mOutputSpaceRect = mInvalidRect;
|
||||
|
||||
// Forget about the invalid rect we're returning.
|
||||
mInvalidRect = IntRect();
|
||||
|
||||
return Some(invalidRect);
|
||||
}
|
||||
|
||||
uint8_t*
|
||||
AbstractSurfaceSink::DoResetToFirstRow()
|
||||
{
|
||||
mRow = 0;
|
||||
return GetRowPointer();
|
||||
}
|
||||
|
||||
uint8_t*
|
||||
AbstractSurfaceSink::AdvanceRow()
|
||||
{
|
||||
if (mRow >= uint32_t(InputSize().height)) {
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
// If we're vertically flipping the output, we need to flip the invalid rect. Since we're
|
||||
// dealing with an axis-aligned rect, only the y coordinate needs to change.
|
||||
int32_t invalidY = mFlipVertically
|
||||
? InputSize().height - (mRow + 1)
|
||||
: mRow;
|
||||
mInvalidRect.UnionRect(mInvalidRect,
|
||||
IntRect(0, invalidY, InputSize().width, 1));
|
||||
|
||||
mRow = min(uint32_t(InputSize().height), mRow + 1);
|
||||
|
||||
return mRow < uint32_t(InputSize().height) ? GetRowPointer()
|
||||
: nullptr;
|
||||
}
|
||||
|
||||
nsresult
|
||||
SurfaceSink::Configure(const SurfaceConfig& aConfig)
|
||||
{
|
||||
// For non-paletted surfaces, the surface size is just the output size.
|
||||
IntSize surfaceSize = aConfig.mOutputSize;
|
||||
|
||||
// Non-paletted surfaces should not have frame rects, so we just pass
|
||||
// AllocateFrame() a frame rect which covers the entire surface.
|
||||
IntRect frameRect(0, 0, surfaceSize.width, surfaceSize.height);
|
||||
|
||||
// Allocate the frame.
|
||||
// XXX(seth): Once every Decoder subclass uses SurfacePipe, we probably want
|
||||
// to allocate the frame directly here and get rid of Decoder::AllocateFrame
|
||||
// altogether.
|
||||
nsresult rv = aConfig.mDecoder->AllocateFrame(aConfig.mFrameNum,
|
||||
surfaceSize,
|
||||
frameRect,
|
||||
aConfig.mFormat);
|
||||
if (NS_FAILED(rv)) {
|
||||
return rv;
|
||||
}
|
||||
|
||||
mImageData = aConfig.mDecoder->mImageData;
|
||||
mImageDataLength = aConfig.mDecoder->mImageDataLength;
|
||||
mFlipVertically = aConfig.mFlipVertically;
|
||||
|
||||
MOZ_ASSERT(mImageData);
|
||||
MOZ_ASSERT(mImageDataLength ==
|
||||
uint32_t(surfaceSize.width * surfaceSize.height * sizeof(uint32_t)));
|
||||
|
||||
ConfigureFilter(surfaceSize, sizeof(uint32_t));
|
||||
return NS_OK;
|
||||
}
|
||||
|
||||
uint8_t*
|
||||
SurfaceSink::GetRowPointer() const
|
||||
{
|
||||
// If we're flipping vertically, reverse the order in which we traverse the
|
||||
// rows.
|
||||
uint32_t row = mFlipVertically
|
||||
? InputSize().height - (mRow + 1)
|
||||
: mRow;
|
||||
|
||||
uint8_t* rowPtr = mImageData + row * InputSize().width * sizeof(uint32_t);
|
||||
|
||||
MOZ_ASSERT(rowPtr >= mImageData);
|
||||
MOZ_ASSERT(rowPtr < mImageData + mImageDataLength);
|
||||
MOZ_ASSERT(rowPtr + InputSize().width * sizeof(uint32_t) <=
|
||||
mImageData + mImageDataLength);
|
||||
|
||||
return rowPtr;
|
||||
}
|
||||
|
||||
|
||||
nsresult
|
||||
PalettedSurfaceSink::Configure(const PalettedSurfaceConfig& aConfig)
|
||||
{
|
||||
// For paletted surfaces, the surface size is the size of the frame rect.
|
||||
IntSize surfaceSize = aConfig.mFrameRect.Size();
|
||||
|
||||
// Allocate the frame.
|
||||
// XXX(seth): Once every Decoder subclass uses SurfacePipe, we probably want
|
||||
// to allocate the frame directly here and get rid of Decoder::AllocateFrame
|
||||
// altogether.
|
||||
nsresult rv = aConfig.mDecoder->AllocateFrame(aConfig.mFrameNum,
|
||||
aConfig.mOutputSize,
|
||||
aConfig.mFrameRect,
|
||||
aConfig.mFormat,
|
||||
aConfig.mPaletteDepth);
|
||||
if (NS_FAILED(rv)) {
|
||||
return rv;
|
||||
}
|
||||
|
||||
mImageData = aConfig.mDecoder->mImageData;
|
||||
mImageDataLength = aConfig.mDecoder->mImageDataLength;
|
||||
mFlipVertically = aConfig.mFlipVertically;
|
||||
mFrameRect = aConfig.mFrameRect;
|
||||
|
||||
MOZ_ASSERT(mImageData);
|
||||
MOZ_ASSERT(mImageDataLength ==
|
||||
uint32_t(mFrameRect.width * mFrameRect.height * sizeof(uint8_t)));
|
||||
|
||||
ConfigureFilter(surfaceSize, sizeof(uint8_t));
|
||||
return NS_OK;
|
||||
}
|
||||
|
||||
uint8_t*
|
||||
PalettedSurfaceSink::GetRowPointer() const
|
||||
{
|
||||
// If we're flipping vertically, reverse the order in which we traverse the
|
||||
// rows.
|
||||
uint32_t row = mFlipVertically
|
||||
? InputSize().height - (mRow + 1)
|
||||
: mRow;
|
||||
|
||||
uint8_t* rowPtr = mImageData + row * InputSize().width * sizeof(uint8_t);
|
||||
|
||||
MOZ_ASSERT(rowPtr >= mImageData);
|
||||
MOZ_ASSERT(rowPtr < mImageData + mImageDataLength);
|
||||
MOZ_ASSERT(rowPtr + InputSize().width * sizeof(uint8_t) <=
|
||||
mImageData + mImageDataLength);
|
||||
|
||||
return rowPtr;
|
||||
}
|
||||
|
||||
} // namespace image
|
||||
} // namespace mozilla
|
570
image/SurfacePipe.h
Normal file
570
image/SurfacePipe.h
Normal file
@ -0,0 +1,570 @@
|
||||
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
||||
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
|
||||
/* This Source Code Form is subject to the terms of the Mozilla Public
|
||||
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
||||
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
||||
|
||||
/**
|
||||
* A SurfacePipe is a pipeline that consists of a series of SurfaceFilters
|
||||
* terminating in a SurfaceSink. Each SurfaceFilter transforms the image data in
|
||||
* some way before the SurfaceSink ultimately writes it to the surface. This
|
||||
* design allows for each transformation to be tested independently, for the
|
||||
* transformations to be combined as needed to meet the needs of different
|
||||
* situations, and for all image decoders to share the same code for these
|
||||
* transformations.
|
||||
*
|
||||
* Writing to the SurfacePipe is done using lambdas that act as generator
|
||||
* functions. Because the SurfacePipe machinery controls where the writes take
|
||||
* place, a bug in an image decoder cannot cause a buffer overflow of the
|
||||
* underlying surface. In particular, when using WritePixels() a buffer overflow
|
||||
* is impossible as long as the SurfacePipe code is correct.
|
||||
*/
|
||||
|
||||
#ifndef mozilla_image_SurfacePipe_h
|
||||
#define mozilla_image_SurfacePipe_h
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
#include "mozilla/Maybe.h"
|
||||
#include "mozilla/Move.h"
|
||||
#include "mozilla/UniquePtr.h"
|
||||
#include "mozilla/unused.h"
|
||||
#include "mozilla/Variant.h"
|
||||
#include "mozilla/gfx/2D.h"
|
||||
|
||||
namespace mozilla {
|
||||
namespace image {
|
||||
|
||||
class Decoder;
|
||||
|
||||
/**
|
||||
* An invalid rect for a surface. Results are given both in the space of the
|
||||
* input image (i.e., before any SurfaceFilters are applied) and in the space
|
||||
* of the output surface (after all SurfaceFilters).
|
||||
*/
|
||||
struct SurfaceInvalidRect
|
||||
{
|
||||
gfx::IntRect mInputSpaceRect; /// The invalid rect in pre-SurfacePipe space.
|
||||
gfx::IntRect mOutputSpaceRect; /// The invalid rect in post-SurfacePipe space.
|
||||
};
|
||||
|
||||
/**
|
||||
* An enum used to allow the lambdas passed to WritePixels() and WriteRows() to
|
||||
* communicate their state to the caller.
|
||||
*/
|
||||
enum class WriteState : uint8_t
|
||||
{
|
||||
NEED_MORE_DATA, /// The lambda ran out of data.
|
||||
|
||||
FINISHED, /// The lambda is done writing to the surface; future writes
|
||||
/// will fail.
|
||||
|
||||
ERROR /// The lambda encountered an error. The caller may recover
|
||||
/// if possible and continue to write. (This never indicates
|
||||
/// an error in the SurfacePipe machinery itself; it's only
|
||||
/// generated by the lambdas.)
|
||||
};
|
||||
|
||||
/**
|
||||
* A template alias used to make the return value of WritePixels() lambdas
|
||||
* (which may return either a pixel value or a WriteState) easier to specify.
|
||||
* WriteRows() doesn't need such a template alias since WriteRows() lambdas
|
||||
* don't return a pixel value.
|
||||
*/
|
||||
template <typename PixelType>
|
||||
using NextPixel = Variant<PixelType, WriteState>;
|
||||
|
||||
/**
|
||||
* SurfaceFilter is the abstract superclass of SurfacePipe pipeline stages.
|
||||
* It implements the the code that actually writes to the surface -
|
||||
* WritePixels() and WriteRows() - which are non-virtual for efficiency.
|
||||
*
|
||||
* SurfaceFilter's API is nonpublic; only SurfacePipe and other SurfaceFilters
|
||||
* should use it. Non-SurfacePipe code should use the methods on SurfacePipe.
|
||||
*
|
||||
* To implement a SurfaceFilter, it's necessary to subclass SurfaceFilter and
|
||||
* implement, at a minimum, the pure virtual methods. It's also necessary to
|
||||
* define a Config struct with a Filter typedef member that identifies the
|
||||
* matching SurfaceFilter class, and a Configure() template method. See an
|
||||
* existing SurfaceFilter subclass, such as RemoveFrameRectFilter, for an
|
||||
* example of how the Configure() method must be implemented. It takes a list of
|
||||
* Config structs, passes the tail of the list to the next filter in the chain's
|
||||
* Configure() method, and then uses the head of the list to configure itself. A
|
||||
* SurfaceFilter's Configure() method must also call
|
||||
* SurfaceFilter::ConfigureFilter() to provide WritePixels() and WriteRows()
|
||||
* with the information they need to do their jobs.
|
||||
*/
|
||||
class SurfaceFilter
|
||||
{
|
||||
public:
|
||||
SurfaceFilter()
|
||||
: mRowPointer(nullptr)
|
||||
, mCol(0)
|
||||
, mPixelSize(0)
|
||||
{ }
|
||||
|
||||
virtual ~SurfaceFilter() { }
|
||||
|
||||
/**
|
||||
* Reset this surface to the first row. It's legal for this filter to throw
|
||||
* away any previously written data at this point, as all rows must be written
|
||||
* to on every pass.
|
||||
*
|
||||
* @return a pointer to the buffer for the first row.
|
||||
*/
|
||||
uint8_t* ResetToFirstRow()
|
||||
{
|
||||
mCol = 0;
|
||||
mRowPointer = DoResetToFirstRow();
|
||||
return mRowPointer;
|
||||
}
|
||||
|
||||
/// @return a pointer to the buffer for the current row.
|
||||
uint8_t* CurrentRowPointer() const { return mRowPointer; }
|
||||
|
||||
/// @return true if we've finished writing to the surface.
|
||||
bool IsSurfaceFinished() const { return mRowPointer == nullptr; }
|
||||
|
||||
/// @return the input size this filter expects.
|
||||
gfx::IntSize InputSize() const { return mInputSize; }
|
||||
|
||||
/**
|
||||
* Write pixels to the surface one at a time by repeatedly calling a lambda
|
||||
* that yields pixels. WritePixels() should be preferred over WriteRows()
|
||||
* whenever using it will not introduce additional copies or other performance
|
||||
* penalties, because it is completely memory safe.
|
||||
*
|
||||
* Writing continues until every pixel in the surface has been written to
|
||||
* (i.e., IsSurfaceFinished() returns true) or the lambda returns a WriteState
|
||||
* which WritePixels() will return to the caller.
|
||||
*
|
||||
* The template parameter PixelType must be uint8_t (for paletted surfaces) or
|
||||
* uint32_t (for BGRA/BGRX surfaces) and must be in agreement with the pixel
|
||||
* size passed to ConfigureFilter().
|
||||
*
|
||||
* XXX(seth): We'll remove all support for paletted surfaces in bug 1247520,
|
||||
* which means we can remove the PixelType template parameter from this
|
||||
* method.
|
||||
*
|
||||
* @param aFunc A lambda that functions as a generator, yielding the next
|
||||
* pixel in the surface each time it's called. The lambda must
|
||||
* return a NextPixel<PixelType> value.
|
||||
*
|
||||
* @return A WriteState value indicating the lambda generator's state.
|
||||
* WritePixels() itself will return WriteState::FINISHED if writing
|
||||
* has finished, regardless of the lambda's internal state.
|
||||
*/
|
||||
template <typename PixelType, typename Func>
|
||||
WriteState WritePixels(Func aFunc)
|
||||
{
|
||||
MOZ_ASSERT(mPixelSize == 1 || mPixelSize == 4);
|
||||
MOZ_ASSERT_IF(mPixelSize == 1, sizeof(PixelType) == sizeof(uint8_t));
|
||||
MOZ_ASSERT_IF(mPixelSize == 4, sizeof(PixelType) == sizeof(uint32_t));
|
||||
|
||||
while (!IsSurfaceFinished()) {
|
||||
PixelType* rowPtr = reinterpret_cast<PixelType*>(mRowPointer);
|
||||
|
||||
for (; mCol < mInputSize.width; ++mCol) {
|
||||
NextPixel<PixelType> result = aFunc();
|
||||
if (result.template is<PixelType>()) {
|
||||
rowPtr[mCol] = result.template as<PixelType>();
|
||||
continue;
|
||||
}
|
||||
|
||||
switch (result.template as<WriteState>()) {
|
||||
case WriteState::NEED_MORE_DATA:
|
||||
return WriteState::NEED_MORE_DATA;
|
||||
|
||||
case WriteState::FINISHED:
|
||||
// Make sure that IsSurfaceFinished() returns true so the caller
|
||||
// can't write anything else to the pipeline.
|
||||
mRowPointer = nullptr;
|
||||
mCol = 0;
|
||||
return WriteState::FINISHED;
|
||||
|
||||
case WriteState::ERROR:
|
||||
// Note that we don't need to record this anywhere, because this
|
||||
// indicates an error in aFunc, and there's nothing wrong with our
|
||||
// machinery. The caller can recover as needed and continue writing to
|
||||
// the row.
|
||||
return WriteState::ERROR;
|
||||
}
|
||||
}
|
||||
|
||||
// We've finished the row.
|
||||
mRowPointer = AdvanceRow();
|
||||
mCol = 0;
|
||||
}
|
||||
|
||||
// We've finished the entire surface.
|
||||
return WriteState::FINISHED;
|
||||
}
|
||||
|
||||
/**
|
||||
* Write rows to the surface one at a time by repeatedly calling a lambda
|
||||
* that yields rows. Because WriteRows() is not completely memory safe,
|
||||
* WritePixels() should be preferred whenever it can be used without
|
||||
* introducing additional copies or other performance penalties.
|
||||
*
|
||||
* Writing continues until every row in the surface has been written to (i.e.,
|
||||
* IsSurfaceFinished() returns true) or the lambda returns a WriteState which
|
||||
* WriteRows() will return to the caller.
|
||||
*
|
||||
* The template parameter PixelType must be uint8_t (for paletted surfaces) or
|
||||
* uint32_t (for BGRA/BGRX surfaces) and must be in agreement with the pixel
|
||||
* size passed to ConfigureFilter().
|
||||
*
|
||||
* XXX(seth): We'll remove all support for paletted surfaces in bug 1247520,
|
||||
* which means we can remove the PixelType template parameter from this
|
||||
* method.
|
||||
*
|
||||
* @param aFunc A lambda that functions as a generator, yielding the next
|
||||
* row in the surface each time it's called. The lambda must
|
||||
* return a Maybe<WriteState> value; if Some(), the return value
|
||||
* indicates a WriteState to return to the caller, while
|
||||
* Nothing() indicates that the lambda can generate more rows.
|
||||
*
|
||||
* @return A WriteState value indicating the lambda generator's state.
|
||||
* WriteRows() itself will return WriteState::FINISHED if writing
|
||||
* has finished, regardless of the lambda's internal state.
|
||||
*/
|
||||
template <typename PixelType, typename Func>
|
||||
WriteState WriteRows(Func aFunc)
|
||||
{
|
||||
MOZ_ASSERT(mPixelSize == 1 || mPixelSize == 4);
|
||||
MOZ_ASSERT_IF(mPixelSize == 1, sizeof(PixelType) == sizeof(uint8_t));
|
||||
MOZ_ASSERT_IF(mPixelSize == 4, sizeof(PixelType) == sizeof(uint32_t));
|
||||
|
||||
if (IsSurfaceFinished()) {
|
||||
return WriteState::FINISHED; // Already done.
|
||||
}
|
||||
|
||||
while (true) {
|
||||
PixelType* rowPtr = reinterpret_cast<PixelType*>(mRowPointer);
|
||||
|
||||
Maybe<WriteState> result = aFunc(rowPtr, mInputSize.width);
|
||||
if (result != Some(WriteState::ERROR)) {
|
||||
mCol = 0;
|
||||
mRowPointer = AdvanceRow(); // We've finished the row.
|
||||
}
|
||||
|
||||
if (IsSurfaceFinished()) {
|
||||
break;
|
||||
}
|
||||
|
||||
if (result == Some(WriteState::FINISHED)) {
|
||||
// Make sure that IsSurfaceFinished() returns true so the caller can't
|
||||
// write anything else to the pipeline.
|
||||
mRowPointer = nullptr;
|
||||
mCol = 0;
|
||||
}
|
||||
|
||||
if (result) {
|
||||
return *result;
|
||||
}
|
||||
}
|
||||
|
||||
// We've finished the entire surface.
|
||||
return WriteState::FINISHED;
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
// Methods Subclasses Should Override
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
/// @return true if this SurfaceFilter can be used with paletted surfaces.
|
||||
virtual bool IsValidPalettedPipe() const { return false; }
|
||||
|
||||
/**
|
||||
* Called by WritePixels() and WriteRows() to advance this filter to the next
|
||||
* row.
|
||||
*
|
||||
* @return a pointer to the buffer for the next row, or nullptr to indicate
|
||||
* that we've finished the entire surface.
|
||||
*/
|
||||
virtual uint8_t* AdvanceRow() = 0;
|
||||
|
||||
/**
|
||||
* @return a SurfaceInvalidRect representing the region of the surface that
|
||||
* has been written to since the last time TakeInvalidRect() was
|
||||
* called, or Nothing() if the region is empty (i.e. nothing has been
|
||||
* written).
|
||||
*/
|
||||
virtual Maybe<SurfaceInvalidRect> TakeInvalidRect() = 0;
|
||||
|
||||
protected:
|
||||
|
||||
/**
|
||||
* Called by ResetToFirstRow() to actually perform the reset. It's legal to
|
||||
* throw away any previously written data at this point, as all rows must be
|
||||
* written to on every pass.
|
||||
*/
|
||||
virtual uint8_t* DoResetToFirstRow() = 0;
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
// Methods For Internal Use By Subclasses
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
/**
|
||||
* Called by subclasses' Configure() methods to initialize the configuration
|
||||
* of this filter. After the filter is configured, calls ResetToFirstRow().
|
||||
*
|
||||
* @param aInputSize The input size of this filter, in pixels. The previous
|
||||
* filter in the chain will expect to write into rows
|
||||
* |aInputSize.width| pixels wide.
|
||||
* @param aPixelSize How large, in bytes, each pixel in the surface is. This
|
||||
* should be either 1 for paletted images or 4 for BGRA/BGRX
|
||||
* images.
|
||||
*/
|
||||
void ConfigureFilter(gfx::IntSize aInputSize, uint8_t aPixelSize)
|
||||
{
|
||||
mInputSize = aInputSize;
|
||||
mPixelSize = aPixelSize;
|
||||
|
||||
ResetToFirstRow();
|
||||
}
|
||||
|
||||
private:
|
||||
gfx::IntSize mInputSize; /// The size of the input this filter expects.
|
||||
uint8_t* mRowPointer; /// Pointer to the current row or null if finished.
|
||||
int32_t mCol; /// The current column we're writing to. (0-indexed)
|
||||
uint8_t mPixelSize; /// How large each pixel in the surface is, in bytes.
|
||||
};
|
||||
|
||||
class NullSurfaceSink;
|
||||
|
||||
/// A trivial configuration struct for NullSurfaceSink.
|
||||
struct NullSurfaceConfig
|
||||
{
|
||||
using Filter = NullSurfaceSink;
|
||||
};
|
||||
|
||||
/**
|
||||
* NullSurfaceSink is a trivial SurfaceFilter implementation that behaves as if
|
||||
* it were a zero-size SurfaceSink. It's used as the default filter chain for an
|
||||
* uninitialized SurfacePipe.
|
||||
*
|
||||
* To avoid unnecessary allocations when creating SurfacePipe objects,
|
||||
* NullSurfaceSink is a singleton. (This implies that the implementation must be
|
||||
* stateless.)
|
||||
*/
|
||||
class NullSurfaceSink final : public SurfaceFilter
|
||||
{
|
||||
public:
|
||||
/// Returns the singleton instance of NullSurfaceSink.
|
||||
static NullSurfaceSink* Singleton();
|
||||
|
||||
virtual ~NullSurfaceSink() { }
|
||||
|
||||
nsresult Configure(const NullSurfaceConfig& aConfig);
|
||||
|
||||
Maybe<SurfaceInvalidRect> TakeInvalidRect() override { return Nothing(); }
|
||||
uint8_t* AdvanceRow() override { return nullptr; }
|
||||
|
||||
protected:
|
||||
uint8_t* DoResetToFirstRow() override { return nullptr; }
|
||||
|
||||
private:
|
||||
static UniquePtr<NullSurfaceSink> sSingleton; /// The singleton instance.
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* SurfacePipe is the public API that decoders should use to interact with a
|
||||
* SurfaceFilter pipeline.
|
||||
*/
|
||||
class SurfacePipe
|
||||
{
|
||||
public:
|
||||
/// Initialize global state used by all SurfacePipes.
|
||||
static void Initialize() { NullSurfaceSink::Singleton(); }
|
||||
|
||||
SurfacePipe()
|
||||
: mHead(NullSurfaceSink::Singleton())
|
||||
{ }
|
||||
|
||||
SurfacePipe(SurfacePipe&& aOther)
|
||||
: mHead(Move(aOther.mHead))
|
||||
{ }
|
||||
|
||||
~SurfacePipe()
|
||||
{
|
||||
// Ensure that we don't free the NullSurfaceSink singleton.
|
||||
if (mHead.get() == NullSurfaceSink::Singleton()) {
|
||||
Unused << mHead.release();
|
||||
}
|
||||
}
|
||||
|
||||
SurfacePipe& operator=(SurfacePipe&& aOther)
|
||||
{
|
||||
MOZ_ASSERT(this != &aOther);
|
||||
|
||||
// Ensure that we don't free the NullSurfaceSink singleton.
|
||||
if (mHead.get() == NullSurfaceSink::Singleton()) {
|
||||
Unused << mHead.release();
|
||||
}
|
||||
|
||||
mHead = Move(aOther.mHead);
|
||||
return *this;
|
||||
}
|
||||
|
||||
/// Begins a new pass, seeking to the first row of the surface.
|
||||
void ResetToFirstRow() { mHead->ResetToFirstRow(); }
|
||||
|
||||
/**
|
||||
* Write pixels to the surface one at a time by repeatedly calling a lambda
|
||||
* that yields pixels. WritePixels() should be preferred over WriteRows()
|
||||
* whenever using it will not introduce additional copies or other performance
|
||||
* penalties, because it is completely memory safe.
|
||||
*
|
||||
* @see SurfaceFilter::WritePixels() for the canonical documentation.
|
||||
*/
|
||||
template <typename PixelType, typename Func>
|
||||
WriteState WritePixels(Func aFunc)
|
||||
{
|
||||
return mHead->WritePixels<PixelType>(Forward<Func>(aFunc));
|
||||
}
|
||||
|
||||
/**
|
||||
* Write rows to the surface one at a time by repeatedly calling a lambda
|
||||
* that yields rows. Because WriteRows() is not completely memory safe,
|
||||
* WritePixels() should be preferred whenever it can be used without
|
||||
* introducing additional copies or other performance penalties.
|
||||
*
|
||||
* @see SurfaceFilter::WriteRows() for the canonical documentation.
|
||||
*/
|
||||
template <typename PixelType, typename Func>
|
||||
WriteState WriteRows(Func aFunc)
|
||||
{
|
||||
return mHead->WriteRows<PixelType>(Forward<Func>(aFunc));
|
||||
}
|
||||
|
||||
/// @return true if we've finished writing to the surface.
|
||||
bool IsSurfaceFinished() const { return mHead->IsSurfaceFinished(); }
|
||||
|
||||
/// @see SurfaceFilter::TakeInvalidRect() for the canonical documentation.
|
||||
Maybe<SurfaceInvalidRect> TakeInvalidRect() const
|
||||
{
|
||||
return mHead->TakeInvalidRect();
|
||||
}
|
||||
|
||||
private:
|
||||
friend class SurfacePipeFactory;
|
||||
friend class TestSurfacePipeFactory;
|
||||
|
||||
explicit SurfacePipe(UniquePtr<SurfaceFilter>&& aHead)
|
||||
: mHead(Move(aHead))
|
||||
{ }
|
||||
|
||||
SurfacePipe(const SurfacePipe&) = delete;
|
||||
SurfacePipe& operator=(const SurfacePipe&) = delete;
|
||||
|
||||
UniquePtr<SurfaceFilter> mHead; /// The first filter in the chain.
|
||||
};
|
||||
|
||||
/**
|
||||
* AbstractSurfaceSink contains shared implementation for both SurfaceSink and
|
||||
* PalettedSurfaceSink.
|
||||
*/
|
||||
class AbstractSurfaceSink : public SurfaceFilter
|
||||
{
|
||||
public:
|
||||
AbstractSurfaceSink()
|
||||
: mImageData(nullptr)
|
||||
, mImageDataLength(0)
|
||||
, mRow(0)
|
||||
, mFlipVertically(false)
|
||||
{ }
|
||||
|
||||
Maybe<SurfaceInvalidRect> TakeInvalidRect() override final;
|
||||
uint8_t* AdvanceRow() override final;
|
||||
|
||||
protected:
|
||||
uint8_t* DoResetToFirstRow() override final;
|
||||
virtual uint8_t* GetRowPointer() const = 0;
|
||||
|
||||
gfx::IntRect mInvalidRect; /// The region of the surface that has been written
|
||||
/// to since the last call to TakeInvalidRect().
|
||||
uint8_t* mImageData; /// A pointer to the beginning of the surface data.
|
||||
uint32_t mImageDataLength; /// The length of the surface data.
|
||||
uint32_t mRow; /// The row to which we're writing. (0-indexed)
|
||||
bool mFlipVertically; /// If true, write the rows from top to bottom.
|
||||
};
|
||||
|
||||
class SurfaceSink;
|
||||
|
||||
/// A configuration struct for SurfaceSink.
|
||||
struct SurfaceConfig
|
||||
{
|
||||
using Filter = SurfaceSink;
|
||||
Decoder* mDecoder; /// Which Decoder to use to allocate the surface.
|
||||
uint32_t mFrameNum; /// Which frame of animation this surface is for.
|
||||
gfx::IntSize mOutputSize; /// The size of the surface.
|
||||
gfx::SurfaceFormat mFormat; /// The surface format (BGRA or BGRX).
|
||||
bool mFlipVertically; /// If true, write the rows from bottom to top.
|
||||
};
|
||||
|
||||
/**
|
||||
* A sink for normal (i.e., non-paletted) surfaces. It handles the allocation of
|
||||
* the surface and protects against buffer overflow. This sink should be used
|
||||
* for all non-animated images and for the first frame of animated images.
|
||||
*
|
||||
* Sinks must always be at the end of the SurfaceFilter chain.
|
||||
*/
|
||||
class SurfaceSink final : public AbstractSurfaceSink
|
||||
{
|
||||
public:
|
||||
nsresult Configure(const SurfaceConfig& aConfig);
|
||||
|
||||
protected:
|
||||
uint8_t* GetRowPointer() const override;
|
||||
};
|
||||
|
||||
class PalettedSurfaceSink;
|
||||
|
||||
struct PalettedSurfaceConfig
|
||||
{
|
||||
using Filter = PalettedSurfaceSink;
|
||||
Decoder* mDecoder; /// Which Decoder to use to allocate the surface.
|
||||
uint32_t mFrameNum; /// Which frame of animation this surface is for.
|
||||
gfx::IntSize mOutputSize; /// The logical size of the surface.
|
||||
gfx::IntRect mFrameRect; /// The surface subrect which contains data.
|
||||
gfx::SurfaceFormat mFormat; /// The surface format (BGRA or BGRX).
|
||||
uint8_t mPaletteDepth; /// The palette depth of this surface.
|
||||
bool mFlipVertically; /// If true, write the rows from bottom to top.
|
||||
};
|
||||
|
||||
/**
|
||||
* A sink for paletted surfaces. It handles the allocation of the surface and
|
||||
* protects against buffer overflow. This sink can be used for frames of
|
||||
* animated images except the first.
|
||||
*
|
||||
* Sinks must always be at the end of the SurfaceFilter chain.
|
||||
*
|
||||
* XXX(seth): We'll remove all support for paletted surfaces in bug 1247520,
|
||||
* which means we can remove PalettedSurfaceSink entirely.
|
||||
*/
|
||||
class PalettedSurfaceSink final : public AbstractSurfaceSink
|
||||
{
|
||||
public:
|
||||
bool IsValidPalettedPipe() const override { return true; }
|
||||
|
||||
nsresult Configure(const PalettedSurfaceConfig& aConfig);
|
||||
|
||||
protected:
|
||||
uint8_t* GetRowPointer() const override;
|
||||
|
||||
private:
|
||||
/**
|
||||
* The surface subrect which contains data. Note that the surface size we
|
||||
* actually allocate is the size of the frame rect, not the logical size of
|
||||
* the surface.
|
||||
*/
|
||||
gfx::IntRect mFrameRect;
|
||||
};
|
||||
|
||||
} // namespace image
|
||||
} // namespace mozilla
|
||||
|
||||
#endif // mozilla_image_SurfacePipe_h
|
@ -13,6 +13,7 @@
|
||||
#include "ImageFactory.h"
|
||||
#include "ShutdownTracker.h"
|
||||
#include "SurfaceCache.h"
|
||||
#include "SurfacePipe.h"
|
||||
|
||||
#include "gfxPrefs.h"
|
||||
#include "imgLoader.h"
|
||||
@ -94,6 +95,7 @@ mozilla::image::InitModule()
|
||||
mozilla::image::ImageFactory::Initialize();
|
||||
mozilla::image::DecodePool::Initialize();
|
||||
mozilla::image::SurfaceCache::Initialize();
|
||||
mozilla::image::SurfacePipe::Initialize();
|
||||
imgLoader::GlobalInit();
|
||||
sInitialized = true;
|
||||
return NS_OK;
|
||||
|
@ -72,6 +72,7 @@ UNIFIED_SOURCES += [
|
||||
'ShutdownTracker.cpp',
|
||||
'SourceBuffer.cpp',
|
||||
'SurfaceCache.cpp',
|
||||
'SurfacePipe.cpp',
|
||||
'SVGDocumentWrapper.cpp',
|
||||
'VectorImage.cpp',
|
||||
]
|
||||
|
Loading…
Reference in New Issue
Block a user