Bug 1437351 - Vendor deps for mp4parse v0.10.0. r=kinetik

MozReview-Commit-ID: GXlQVJ0sPfj

--HG--
rename : third_party/rust/num-traits/.cargo-checksum.json => third_party/rust/num-traits-0.1.41/.cargo-checksum.json
rename : third_party/rust/num-traits/Cargo.toml => third_party/rust/num-traits-0.1.41/Cargo.toml
rename : third_party/rust/num-traits/src/bounds.rs => third_party/rust/num-traits-0.1.41/src/bounds.rs
rename : third_party/rust/num-traits/src/cast.rs => third_party/rust/num-traits-0.1.41/src/cast.rs
rename : third_party/rust/num-traits/src/float.rs => third_party/rust/num-traits-0.1.41/src/float.rs
rename : third_party/rust/num-traits/src/identities.rs => third_party/rust/num-traits-0.1.41/src/identities.rs
rename : third_party/rust/num-traits/src/int.rs => third_party/rust/num-traits-0.1.41/src/int.rs
rename : third_party/rust/num-traits/src/lib.rs => third_party/rust/num-traits-0.1.41/src/lib.rs
rename : third_party/rust/num-traits/src/ops/checked.rs => third_party/rust/num-traits-0.1.41/src/ops/checked.rs
rename : third_party/rust/num-traits/src/ops/wrapping.rs => third_party/rust/num-traits-0.1.41/src/ops/wrapping.rs
rename : third_party/rust/num-traits/src/pow.rs => third_party/rust/num-traits-0.1.41/src/pow.rs
rename : third_party/rust/num-traits/src/sign.rs => third_party/rust/num-traits-0.1.41/src/sign.rs
extra : rebase_source : dd540770f739ee41eca8099fa2f8a886f3d4e7c2
This commit is contained in:
Ralph Giles 2018-02-13 17:53:51 -08:00
parent 62e62e57a2
commit ba3445b026
35 changed files with 5045 additions and 58 deletions

View File

@ -0,0 +1 @@
{"files":{"Cargo.toml":"3d24ace42f6604297f16fb6e9a8aecb11644083bcc14eccb5d04002146444cd4","LICENSE-APACHE":"a60eea817514531668d7e00765731449fe14d059d3249e0bc93b36de45f759f2","LICENSE-MIT":"6485b8ed310d3f0340bf1ad1f47645069ce4069dcc6bb46c7d5c6faf41de1fdb","src/bounds.rs":"c744ca32dcb31447abc1132b2ef6f7c102d4ffa3dbc36a24a384520ec8702839","src/cast.rs":"a067d47329c30672ad9764e34a551cd566b5023f17a35673b35dbab6388043d2","src/float.rs":"fd768b5bb403cd5056d3b588074ed5571c40279d6a7da8c4f3c46ac4713f89fd","src/identities.rs":"ed67758e226fb78a14496776533a6d97d9f813294aadc73958e3005fd0e66599","src/int.rs":"b7b42dfa10423308f858216ac63fa52e26c49a7bc8900cd98de210992efc3f5f","src/lib.rs":"75b1b8b714b51f6169be13e8043bc0e9341a5aeb04e61c5446a5ce5cb241e101","src/ops/checked.rs":"bc667779636f81c7eca138c6d57252a6bb6ca4cd1f0ff706a993067044d86f94","src/ops/mod.rs":"668ea4d117bc1fdf7eaf0fe16692fa40dfbdfcbc7a2010237fe395ce0086e02e","src/ops/saturating.rs":"46821d815c90c16b2f6bec0b94b4d7ebdbddf3ea42edc0467de738c56abf6436","src/ops/wrapping.rs":"a444c7eb3366f2ad4c3a9938f1158b1994b9da4bbf9097884b5e8e27a9b581dd","src/pow.rs":"73b611ad8d595ef917871ba859ff0c25efc2382220d30568e5fbb930bf6b4daa","src/sign.rs":"732736f44c3c410f43da98eb3c8887319d94ad2c4883d614a9c353659402b315"},"package":"cacfcab5eb48250ee7d0c7896b51a2c5eec99c1feea5f32025635f5ae4b00070"}

View File

@ -0,0 +1,25 @@
# THIS FILE IS AUTOMATICALLY GENERATED BY CARGO
#
# When uploading crates to the registry Cargo will automatically
# "normalize" Cargo.toml files for maximal compatibility
# with all versions of Cargo and also rewrite `path` dependencies
# to registry (e.g. crates.io) dependencies
#
# If you believe there's an error in this file please file an
# issue against the rust-lang/cargo repository. If you're
# editing this file be aware that the upstream Cargo.toml
# will likely look very different (and much more reasonable)
[package]
name = "num-traits"
version = "0.1.41"
authors = ["The Rust Project Developers"]
description = "Numeric traits for generic mathematics"
homepage = "https://github.com/rust-num/num"
documentation = "http://rust-num.github.io/num"
keywords = ["mathematics", "numerics"]
categories = ["algorithms", "science"]
license = "MIT/Apache-2.0"
repository = "https://github.com/rust-num/num"
[dependencies]

View File

@ -0,0 +1,201 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

View File

@ -0,0 +1,25 @@
Copyright (c) 2014 The Rust Project Developers
Permission is hereby granted, free of charge, to any
person obtaining a copy of this software and associated
documentation files (the "Software"), to deal in the
Software without restriction, including without
limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software
is furnished to do so, subject to the following
conditions:
The above copyright notice and this permission notice
shall be included in all copies or substantial portions
of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

View File

@ -0,0 +1,99 @@
use std::{usize, u8, u16, u32, u64};
use std::{isize, i8, i16, i32, i64};
use std::{f32, f64};
use std::num::Wrapping;
/// Numbers which have upper and lower bounds
pub trait Bounded {
// FIXME (#5527): These should be associated constants
/// returns the smallest finite number this type can represent
fn min_value() -> Self;
/// returns the largest finite number this type can represent
fn max_value() -> Self;
}
macro_rules! bounded_impl {
($t:ty, $min:expr, $max:expr) => {
impl Bounded for $t {
#[inline]
fn min_value() -> $t { $min }
#[inline]
fn max_value() -> $t { $max }
}
}
}
bounded_impl!(usize, usize::MIN, usize::MAX);
bounded_impl!(u8, u8::MIN, u8::MAX);
bounded_impl!(u16, u16::MIN, u16::MAX);
bounded_impl!(u32, u32::MIN, u32::MAX);
bounded_impl!(u64, u64::MIN, u64::MAX);
bounded_impl!(isize, isize::MIN, isize::MAX);
bounded_impl!(i8, i8::MIN, i8::MAX);
bounded_impl!(i16, i16::MIN, i16::MAX);
bounded_impl!(i32, i32::MIN, i32::MAX);
bounded_impl!(i64, i64::MIN, i64::MAX);
impl<T: Bounded> Bounded for Wrapping<T> {
fn min_value() -> Self { Wrapping(T::min_value()) }
fn max_value() -> Self { Wrapping(T::max_value()) }
}
bounded_impl!(f32, f32::MIN, f32::MAX);
macro_rules! for_each_tuple_ {
( $m:ident !! ) => (
$m! { }
);
( $m:ident !! $h:ident, $($t:ident,)* ) => (
$m! { $h $($t)* }
for_each_tuple_! { $m !! $($t,)* }
);
}
macro_rules! for_each_tuple {
( $m:ident ) => (
for_each_tuple_! { $m !! A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, }
);
}
macro_rules! bounded_tuple {
( $($name:ident)* ) => (
impl<$($name: Bounded,)*> Bounded for ($($name,)*) {
#[inline]
fn min_value() -> Self {
($($name::min_value(),)*)
}
#[inline]
fn max_value() -> Self {
($($name::max_value(),)*)
}
}
);
}
for_each_tuple!(bounded_tuple);
bounded_impl!(f64, f64::MIN, f64::MAX);
#[test]
fn wrapping_bounded() {
macro_rules! test_wrapping_bounded {
($($t:ty)+) => {
$(
assert_eq!(Wrapping::<$t>::min_value().0, <$t>::min_value());
assert_eq!(Wrapping::<$t>::max_value().0, <$t>::max_value());
)+
};
}
test_wrapping_bounded!(usize u8 u16 u32 u64 isize i8 i16 i32 i64);
}
#[test]
fn wrapping_is_bounded() {
fn require_bounded<T: Bounded>(_: &T) {}
require_bounded(&Wrapping(42_u32));
require_bounded(&Wrapping(-42));
}

View File

@ -0,0 +1,511 @@
use std::mem::size_of;
use std::num::Wrapping;
use identities::Zero;
use bounds::Bounded;
/// A generic trait for converting a value to a number.
pub trait ToPrimitive {
/// Converts the value of `self` to an `isize`.
#[inline]
fn to_isize(&self) -> Option<isize> {
self.to_i64().and_then(|x| x.to_isize())
}
/// Converts the value of `self` to an `i8`.
#[inline]
fn to_i8(&self) -> Option<i8> {
self.to_i64().and_then(|x| x.to_i8())
}
/// Converts the value of `self` to an `i16`.
#[inline]
fn to_i16(&self) -> Option<i16> {
self.to_i64().and_then(|x| x.to_i16())
}
/// Converts the value of `self` to an `i32`.
#[inline]
fn to_i32(&self) -> Option<i32> {
self.to_i64().and_then(|x| x.to_i32())
}
/// Converts the value of `self` to an `i64`.
fn to_i64(&self) -> Option<i64>;
/// Converts the value of `self` to a `usize`.
#[inline]
fn to_usize(&self) -> Option<usize> {
self.to_u64().and_then(|x| x.to_usize())
}
/// Converts the value of `self` to an `u8`.
#[inline]
fn to_u8(&self) -> Option<u8> {
self.to_u64().and_then(|x| x.to_u8())
}
/// Converts the value of `self` to an `u16`.
#[inline]
fn to_u16(&self) -> Option<u16> {
self.to_u64().and_then(|x| x.to_u16())
}
/// Converts the value of `self` to an `u32`.
#[inline]
fn to_u32(&self) -> Option<u32> {
self.to_u64().and_then(|x| x.to_u32())
}
/// Converts the value of `self` to an `u64`.
#[inline]
fn to_u64(&self) -> Option<u64>;
/// Converts the value of `self` to an `f32`.
#[inline]
fn to_f32(&self) -> Option<f32> {
self.to_f64().and_then(|x| x.to_f32())
}
/// Converts the value of `self` to an `f64`.
#[inline]
fn to_f64(&self) -> Option<f64> {
self.to_i64().and_then(|x| x.to_f64())
}
}
macro_rules! impl_to_primitive_int_to_int {
($SrcT:ty, $DstT:ty, $slf:expr) => (
{
if size_of::<$SrcT>() <= size_of::<$DstT>() {
Some($slf as $DstT)
} else {
let n = $slf as i64;
let min_value: $DstT = Bounded::min_value();
let max_value: $DstT = Bounded::max_value();
if min_value as i64 <= n && n <= max_value as i64 {
Some($slf as $DstT)
} else {
None
}
}
}
)
}
macro_rules! impl_to_primitive_int_to_uint {
($SrcT:ty, $DstT:ty, $slf:expr) => (
{
let zero: $SrcT = Zero::zero();
let max_value: $DstT = Bounded::max_value();
if zero <= $slf && $slf as u64 <= max_value as u64 {
Some($slf as $DstT)
} else {
None
}
}
)
}
macro_rules! impl_to_primitive_int {
($T:ty) => (
impl ToPrimitive for $T {
#[inline]
fn to_isize(&self) -> Option<isize> { impl_to_primitive_int_to_int!($T, isize, *self) }
#[inline]
fn to_i8(&self) -> Option<i8> { impl_to_primitive_int_to_int!($T, i8, *self) }
#[inline]
fn to_i16(&self) -> Option<i16> { impl_to_primitive_int_to_int!($T, i16, *self) }
#[inline]
fn to_i32(&self) -> Option<i32> { impl_to_primitive_int_to_int!($T, i32, *self) }
#[inline]
fn to_i64(&self) -> Option<i64> { impl_to_primitive_int_to_int!($T, i64, *self) }
#[inline]
fn to_usize(&self) -> Option<usize> { impl_to_primitive_int_to_uint!($T, usize, *self) }
#[inline]
fn to_u8(&self) -> Option<u8> { impl_to_primitive_int_to_uint!($T, u8, *self) }
#[inline]
fn to_u16(&self) -> Option<u16> { impl_to_primitive_int_to_uint!($T, u16, *self) }
#[inline]
fn to_u32(&self) -> Option<u32> { impl_to_primitive_int_to_uint!($T, u32, *self) }
#[inline]
fn to_u64(&self) -> Option<u64> { impl_to_primitive_int_to_uint!($T, u64, *self) }
#[inline]
fn to_f32(&self) -> Option<f32> { Some(*self as f32) }
#[inline]
fn to_f64(&self) -> Option<f64> { Some(*self as f64) }
}
)
}
impl_to_primitive_int!(isize);
impl_to_primitive_int!(i8);
impl_to_primitive_int!(i16);
impl_to_primitive_int!(i32);
impl_to_primitive_int!(i64);
macro_rules! impl_to_primitive_uint_to_int {
($DstT:ty, $slf:expr) => (
{
let max_value: $DstT = Bounded::max_value();
if $slf as u64 <= max_value as u64 {
Some($slf as $DstT)
} else {
None
}
}
)
}
macro_rules! impl_to_primitive_uint_to_uint {
($SrcT:ty, $DstT:ty, $slf:expr) => (
{
if size_of::<$SrcT>() <= size_of::<$DstT>() {
Some($slf as $DstT)
} else {
let zero: $SrcT = Zero::zero();
let max_value: $DstT = Bounded::max_value();
if zero <= $slf && $slf as u64 <= max_value as u64 {
Some($slf as $DstT)
} else {
None
}
}
}
)
}
macro_rules! impl_to_primitive_uint {
($T:ty) => (
impl ToPrimitive for $T {
#[inline]
fn to_isize(&self) -> Option<isize> { impl_to_primitive_uint_to_int!(isize, *self) }
#[inline]
fn to_i8(&self) -> Option<i8> { impl_to_primitive_uint_to_int!(i8, *self) }
#[inline]
fn to_i16(&self) -> Option<i16> { impl_to_primitive_uint_to_int!(i16, *self) }
#[inline]
fn to_i32(&self) -> Option<i32> { impl_to_primitive_uint_to_int!(i32, *self) }
#[inline]
fn to_i64(&self) -> Option<i64> { impl_to_primitive_uint_to_int!(i64, *self) }
#[inline]
fn to_usize(&self) -> Option<usize> {
impl_to_primitive_uint_to_uint!($T, usize, *self)
}
#[inline]
fn to_u8(&self) -> Option<u8> { impl_to_primitive_uint_to_uint!($T, u8, *self) }
#[inline]
fn to_u16(&self) -> Option<u16> { impl_to_primitive_uint_to_uint!($T, u16, *self) }
#[inline]
fn to_u32(&self) -> Option<u32> { impl_to_primitive_uint_to_uint!($T, u32, *self) }
#[inline]
fn to_u64(&self) -> Option<u64> { impl_to_primitive_uint_to_uint!($T, u64, *self) }
#[inline]
fn to_f32(&self) -> Option<f32> { Some(*self as f32) }
#[inline]
fn to_f64(&self) -> Option<f64> { Some(*self as f64) }
}
)
}
impl_to_primitive_uint!(usize);
impl_to_primitive_uint!(u8);
impl_to_primitive_uint!(u16);
impl_to_primitive_uint!(u32);
impl_to_primitive_uint!(u64);
macro_rules! impl_to_primitive_float_to_float {
($SrcT:ident, $DstT:ident, $slf:expr) => (
if size_of::<$SrcT>() <= size_of::<$DstT>() {
Some($slf as $DstT)
} else {
// Make sure the value is in range for the cast.
// NaN and +-inf are cast as they are.
let n = $slf as f64;
let max_value: $DstT = ::std::$DstT::MAX;
if !n.is_finite() || (-max_value as f64 <= n && n <= max_value as f64) {
Some($slf as $DstT)
} else {
None
}
}
)
}
macro_rules! impl_to_primitive_float {
($T:ident) => (
impl ToPrimitive for $T {
#[inline]
fn to_isize(&self) -> Option<isize> { Some(*self as isize) }
#[inline]
fn to_i8(&self) -> Option<i8> { Some(*self as i8) }
#[inline]
fn to_i16(&self) -> Option<i16> { Some(*self as i16) }
#[inline]
fn to_i32(&self) -> Option<i32> { Some(*self as i32) }
#[inline]
fn to_i64(&self) -> Option<i64> { Some(*self as i64) }
#[inline]
fn to_usize(&self) -> Option<usize> { Some(*self as usize) }
#[inline]
fn to_u8(&self) -> Option<u8> { Some(*self as u8) }
#[inline]
fn to_u16(&self) -> Option<u16> { Some(*self as u16) }
#[inline]
fn to_u32(&self) -> Option<u32> { Some(*self as u32) }
#[inline]
fn to_u64(&self) -> Option<u64> { Some(*self as u64) }
#[inline]
fn to_f32(&self) -> Option<f32> { impl_to_primitive_float_to_float!($T, f32, *self) }
#[inline]
fn to_f64(&self) -> Option<f64> { impl_to_primitive_float_to_float!($T, f64, *self) }
}
)
}
impl_to_primitive_float!(f32);
impl_to_primitive_float!(f64);
/// A generic trait for converting a number to a value.
pub trait FromPrimitive: Sized {
/// Convert an `isize` to return an optional value of this type. If the
/// value cannot be represented by this value, the `None` is returned.
#[inline]
fn from_isize(n: isize) -> Option<Self> {
FromPrimitive::from_i64(n as i64)
}
/// Convert an `i8` to return an optional value of this type. If the
/// type cannot be represented by this value, the `None` is returned.
#[inline]
fn from_i8(n: i8) -> Option<Self> {
FromPrimitive::from_i64(n as i64)
}
/// Convert an `i16` to return an optional value of this type. If the
/// type cannot be represented by this value, the `None` is returned.
#[inline]
fn from_i16(n: i16) -> Option<Self> {
FromPrimitive::from_i64(n as i64)
}
/// Convert an `i32` to return an optional value of this type. If the
/// type cannot be represented by this value, the `None` is returned.
#[inline]
fn from_i32(n: i32) -> Option<Self> {
FromPrimitive::from_i64(n as i64)
}
/// Convert an `i64` to return an optional value of this type. If the
/// type cannot be represented by this value, the `None` is returned.
fn from_i64(n: i64) -> Option<Self>;
/// Convert a `usize` to return an optional value of this type. If the
/// type cannot be represented by this value, the `None` is returned.
#[inline]
fn from_usize(n: usize) -> Option<Self> {
FromPrimitive::from_u64(n as u64)
}
/// Convert an `u8` to return an optional value of this type. If the
/// type cannot be represented by this value, the `None` is returned.
#[inline]
fn from_u8(n: u8) -> Option<Self> {
FromPrimitive::from_u64(n as u64)
}
/// Convert an `u16` to return an optional value of this type. If the
/// type cannot be represented by this value, the `None` is returned.
#[inline]
fn from_u16(n: u16) -> Option<Self> {
FromPrimitive::from_u64(n as u64)
}
/// Convert an `u32` to return an optional value of this type. If the
/// type cannot be represented by this value, the `None` is returned.
#[inline]
fn from_u32(n: u32) -> Option<Self> {
FromPrimitive::from_u64(n as u64)
}
/// Convert an `u64` to return an optional value of this type. If the
/// type cannot be represented by this value, the `None` is returned.
fn from_u64(n: u64) -> Option<Self>;
/// Convert a `f32` to return an optional value of this type. If the
/// type cannot be represented by this value, the `None` is returned.
#[inline]
fn from_f32(n: f32) -> Option<Self> {
FromPrimitive::from_f64(n as f64)
}
/// Convert a `f64` to return an optional value of this type. If the
/// type cannot be represented by this value, the `None` is returned.
#[inline]
fn from_f64(n: f64) -> Option<Self> {
FromPrimitive::from_i64(n as i64)
}
}
macro_rules! impl_from_primitive {
($T:ty, $to_ty:ident) => (
#[allow(deprecated)]
impl FromPrimitive for $T {
#[inline] fn from_i8(n: i8) -> Option<$T> { n.$to_ty() }
#[inline] fn from_i16(n: i16) -> Option<$T> { n.$to_ty() }
#[inline] fn from_i32(n: i32) -> Option<$T> { n.$to_ty() }
#[inline] fn from_i64(n: i64) -> Option<$T> { n.$to_ty() }
#[inline] fn from_u8(n: u8) -> Option<$T> { n.$to_ty() }
#[inline] fn from_u16(n: u16) -> Option<$T> { n.$to_ty() }
#[inline] fn from_u32(n: u32) -> Option<$T> { n.$to_ty() }
#[inline] fn from_u64(n: u64) -> Option<$T> { n.$to_ty() }
#[inline] fn from_f32(n: f32) -> Option<$T> { n.$to_ty() }
#[inline] fn from_f64(n: f64) -> Option<$T> { n.$to_ty() }
}
)
}
impl_from_primitive!(isize, to_isize);
impl_from_primitive!(i8, to_i8);
impl_from_primitive!(i16, to_i16);
impl_from_primitive!(i32, to_i32);
impl_from_primitive!(i64, to_i64);
impl_from_primitive!(usize, to_usize);
impl_from_primitive!(u8, to_u8);
impl_from_primitive!(u16, to_u16);
impl_from_primitive!(u32, to_u32);
impl_from_primitive!(u64, to_u64);
impl_from_primitive!(f32, to_f32);
impl_from_primitive!(f64, to_f64);
impl<T: ToPrimitive> ToPrimitive for Wrapping<T> {
fn to_i64(&self) -> Option<i64> { self.0.to_i64() }
fn to_u64(&self) -> Option<u64> { self.0.to_u64() }
}
impl<T: FromPrimitive> FromPrimitive for Wrapping<T> {
fn from_u64(n: u64) -> Option<Self> { T::from_u64(n).map(Wrapping) }
fn from_i64(n: i64) -> Option<Self> { T::from_i64(n).map(Wrapping) }
}
/// Cast from one machine scalar to another.
///
/// # Examples
///
/// ```
/// # use num_traits as num;
/// let twenty: f32 = num::cast(0x14).unwrap();
/// assert_eq!(twenty, 20f32);
/// ```
///
#[inline]
pub fn cast<T: NumCast, U: NumCast>(n: T) -> Option<U> {
NumCast::from(n)
}
/// An interface for casting between machine scalars.
pub trait NumCast: Sized + ToPrimitive {
/// Creates a number from another value that can be converted into
/// a primitive via the `ToPrimitive` trait.
fn from<T: ToPrimitive>(n: T) -> Option<Self>;
}
macro_rules! impl_num_cast {
($T:ty, $conv:ident) => (
impl NumCast for $T {
#[inline]
#[allow(deprecated)]
fn from<N: ToPrimitive>(n: N) -> Option<$T> {
// `$conv` could be generated using `concat_idents!`, but that
// macro seems to be broken at the moment
n.$conv()
}
}
)
}
impl_num_cast!(u8, to_u8);
impl_num_cast!(u16, to_u16);
impl_num_cast!(u32, to_u32);
impl_num_cast!(u64, to_u64);
impl_num_cast!(usize, to_usize);
impl_num_cast!(i8, to_i8);
impl_num_cast!(i16, to_i16);
impl_num_cast!(i32, to_i32);
impl_num_cast!(i64, to_i64);
impl_num_cast!(isize, to_isize);
impl_num_cast!(f32, to_f32);
impl_num_cast!(f64, to_f64);
impl<T: NumCast> NumCast for Wrapping<T> {
fn from<U: ToPrimitive>(n: U) -> Option<Self> {
T::from(n).map(Wrapping)
}
}
#[test]
fn to_primitive_float() {
use std::f32;
use std::f64;
let f32_toolarge = 1e39f64;
assert_eq!(f32_toolarge.to_f32(), None);
assert_eq!((f32::MAX as f64).to_f32(), Some(f32::MAX));
assert_eq!((-f32::MAX as f64).to_f32(), Some(-f32::MAX));
assert_eq!(f64::INFINITY.to_f32(), Some(f32::INFINITY));
assert_eq!((f64::NEG_INFINITY).to_f32(), Some(f32::NEG_INFINITY));
assert!((f64::NAN).to_f32().map_or(false, |f| f.is_nan()));
}
#[test]
fn wrapping_to_primitive() {
macro_rules! test_wrapping_to_primitive {
($($t:ty)+) => {
$({
let i: $t = 0;
let w = Wrapping(i);
assert_eq!(i.to_u8(), w.to_u8());
assert_eq!(i.to_u16(), w.to_u16());
assert_eq!(i.to_u32(), w.to_u32());
assert_eq!(i.to_u64(), w.to_u64());
assert_eq!(i.to_usize(), w.to_usize());
assert_eq!(i.to_i8(), w.to_i8());
assert_eq!(i.to_i16(), w.to_i16());
assert_eq!(i.to_i32(), w.to_i32());
assert_eq!(i.to_i64(), w.to_i64());
assert_eq!(i.to_isize(), w.to_isize());
assert_eq!(i.to_f32(), w.to_f32());
assert_eq!(i.to_f64(), w.to_f64());
})+
};
}
test_wrapping_to_primitive!(usize u8 u16 u32 u64 isize i8 i16 i32 i64);
}
#[test]
fn wrapping_is_toprimitive() {
fn require_toprimitive<T: ToPrimitive>(_: &T) {}
require_toprimitive(&Wrapping(42));
}
#[test]
fn wrapping_is_fromprimitive() {
fn require_fromprimitive<T: FromPrimitive>(_: &T) {}
require_fromprimitive(&Wrapping(42));
}
#[test]
fn wrapping_is_numcast() {
fn require_numcast<T: NumCast>(_: &T) {}
require_numcast(&Wrapping(42));
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,148 @@
use std::ops::{Add, Mul};
use std::num::Wrapping;
/// Defines an additive identity element for `Self`.
pub trait Zero: Sized + Add<Self, Output = Self> {
/// Returns the additive identity element of `Self`, `0`.
///
/// # Laws
///
/// ```{.text}
/// a + 0 = a ∀ a ∈ Self
/// 0 + a = a ∀ a ∈ Self
/// ```
///
/// # Purity
///
/// This function should return the same result at all times regardless of
/// external mutable state, for example values stored in TLS or in
/// `static mut`s.
// FIXME (#5527): This should be an associated constant
fn zero() -> Self;
/// Returns `true` if `self` is equal to the additive identity.
#[inline]
fn is_zero(&self) -> bool;
}
macro_rules! zero_impl {
($t:ty, $v:expr) => {
impl Zero for $t {
#[inline]
fn zero() -> $t { $v }
#[inline]
fn is_zero(&self) -> bool { *self == $v }
}
}
}
zero_impl!(usize, 0usize);
zero_impl!(u8, 0u8);
zero_impl!(u16, 0u16);
zero_impl!(u32, 0u32);
zero_impl!(u64, 0u64);
zero_impl!(isize, 0isize);
zero_impl!(i8, 0i8);
zero_impl!(i16, 0i16);
zero_impl!(i32, 0i32);
zero_impl!(i64, 0i64);
zero_impl!(f32, 0.0f32);
zero_impl!(f64, 0.0f64);
impl<T: Zero> Zero for Wrapping<T> where Wrapping<T>: Add<Output=Wrapping<T>> {
fn is_zero(&self) -> bool {
self.0.is_zero()
}
fn zero() -> Self {
Wrapping(T::zero())
}
}
/// Defines a multiplicative identity element for `Self`.
pub trait One: Sized + Mul<Self, Output = Self> {
/// Returns the multiplicative identity element of `Self`, `1`.
///
/// # Laws
///
/// ```{.text}
/// a * 1 = a ∀ a ∈ Self
/// 1 * a = a ∀ a ∈ Self
/// ```
///
/// # Purity
///
/// This function should return the same result at all times regardless of
/// external mutable state, for example values stored in TLS or in
/// `static mut`s.
// FIXME (#5527): This should be an associated constant
fn one() -> Self;
}
macro_rules! one_impl {
($t:ty, $v:expr) => {
impl One for $t {
#[inline]
fn one() -> $t { $v }
}
}
}
one_impl!(usize, 1usize);
one_impl!(u8, 1u8);
one_impl!(u16, 1u16);
one_impl!(u32, 1u32);
one_impl!(u64, 1u64);
one_impl!(isize, 1isize);
one_impl!(i8, 1i8);
one_impl!(i16, 1i16);
one_impl!(i32, 1i32);
one_impl!(i64, 1i64);
one_impl!(f32, 1.0f32);
one_impl!(f64, 1.0f64);
impl<T: One> One for Wrapping<T> where Wrapping<T>: Mul<Output=Wrapping<T>> {
fn one() -> Self {
Wrapping(T::one())
}
}
// Some helper functions provided for backwards compatibility.
/// Returns the additive identity, `0`.
#[inline(always)] pub fn zero<T: Zero>() -> T { Zero::zero() }
/// Returns the multiplicative identity, `1`.
#[inline(always)] pub fn one<T: One>() -> T { One::one() }
#[test]
fn wrapping_identities() {
macro_rules! test_wrapping_identities {
($($t:ty)+) => {
$(
assert_eq!(zero::<$t>(), zero::<Wrapping<$t>>().0);
assert_eq!(one::<$t>(), one::<Wrapping<$t>>().0);
assert_eq!((0 as $t).is_zero(), Wrapping(0 as $t).is_zero());
assert_eq!((1 as $t).is_zero(), Wrapping(1 as $t).is_zero());
)+
};
}
test_wrapping_identities!(isize i8 i16 i32 i64 usize u8 u16 u32 u64);
}
#[test]
fn wrapping_is_zero() {
fn require_zero<T: Zero>(_: &T) {}
require_zero(&Wrapping(42));
}
#[test]
fn wrapping_is_one() {
fn require_one<T: One>(_: &T) {}
require_one(&Wrapping(42));
}

View File

@ -0,0 +1,376 @@
use std::ops::{Not, BitAnd, BitOr, BitXor, Shl, Shr};
use {Num, NumCast};
use bounds::Bounded;
use ops::checked::*;
use ops::saturating::Saturating;
pub trait PrimInt
: Sized
+ Copy
+ Num + NumCast
+ Bounded
+ PartialOrd + Ord + Eq
+ Not<Output=Self>
+ BitAnd<Output=Self>
+ BitOr<Output=Self>
+ BitXor<Output=Self>
+ Shl<usize, Output=Self>
+ Shr<usize, Output=Self>
+ CheckedAdd<Output=Self>
+ CheckedSub<Output=Self>
+ CheckedMul<Output=Self>
+ CheckedDiv<Output=Self>
+ Saturating
{
/// Returns the number of ones in the binary representation of `self`.
///
/// # Examples
///
/// ```
/// use num_traits::PrimInt;
///
/// let n = 0b01001100u8;
///
/// assert_eq!(n.count_ones(), 3);
/// ```
fn count_ones(self) -> u32;
/// Returns the number of zeros in the binary representation of `self`.
///
/// # Examples
///
/// ```
/// use num_traits::PrimInt;
///
/// let n = 0b01001100u8;
///
/// assert_eq!(n.count_zeros(), 5);
/// ```
fn count_zeros(self) -> u32;
/// Returns the number of leading zeros in the binary representation
/// of `self`.
///
/// # Examples
///
/// ```
/// use num_traits::PrimInt;
///
/// let n = 0b0101000u16;
///
/// assert_eq!(n.leading_zeros(), 10);
/// ```
fn leading_zeros(self) -> u32;
/// Returns the number of trailing zeros in the binary representation
/// of `self`.
///
/// # Examples
///
/// ```
/// use num_traits::PrimInt;
///
/// let n = 0b0101000u16;
///
/// assert_eq!(n.trailing_zeros(), 3);
/// ```
fn trailing_zeros(self) -> u32;
/// Shifts the bits to the left by a specified amount amount, `n`, wrapping
/// the truncated bits to the end of the resulting integer.
///
/// # Examples
///
/// ```
/// use num_traits::PrimInt;
///
/// let n = 0x0123456789ABCDEFu64;
/// let m = 0x3456789ABCDEF012u64;
///
/// assert_eq!(n.rotate_left(12), m);
/// ```
fn rotate_left(self, n: u32) -> Self;
/// Shifts the bits to the right by a specified amount amount, `n`, wrapping
/// the truncated bits to the beginning of the resulting integer.
///
/// # Examples
///
/// ```
/// use num_traits::PrimInt;
///
/// let n = 0x0123456789ABCDEFu64;
/// let m = 0xDEF0123456789ABCu64;
///
/// assert_eq!(n.rotate_right(12), m);
/// ```
fn rotate_right(self, n: u32) -> Self;
/// Shifts the bits to the left by a specified amount amount, `n`, filling
/// zeros in the least significant bits.
///
/// This is bitwise equivalent to signed `Shl`.
///
/// # Examples
///
/// ```
/// use num_traits::PrimInt;
///
/// let n = 0x0123456789ABCDEFu64;
/// let m = 0x3456789ABCDEF000u64;
///
/// assert_eq!(n.signed_shl(12), m);
/// ```
fn signed_shl(self, n: u32) -> Self;
/// Shifts the bits to the right by a specified amount amount, `n`, copying
/// the "sign bit" in the most significant bits even for unsigned types.
///
/// This is bitwise equivalent to signed `Shr`.
///
/// # Examples
///
/// ```
/// use num_traits::PrimInt;
///
/// let n = 0xFEDCBA9876543210u64;
/// let m = 0xFFFFEDCBA9876543u64;
///
/// assert_eq!(n.signed_shr(12), m);
/// ```
fn signed_shr(self, n: u32) -> Self;
/// Shifts the bits to the left by a specified amount amount, `n`, filling
/// zeros in the least significant bits.
///
/// This is bitwise equivalent to unsigned `Shl`.
///
/// # Examples
///
/// ```
/// use num_traits::PrimInt;
///
/// let n = 0x0123456789ABCDEFi64;
/// let m = 0x3456789ABCDEF000i64;
///
/// assert_eq!(n.unsigned_shl(12), m);
/// ```
fn unsigned_shl(self, n: u32) -> Self;
/// Shifts the bits to the right by a specified amount amount, `n`, filling
/// zeros in the most significant bits.
///
/// This is bitwise equivalent to unsigned `Shr`.
///
/// # Examples
///
/// ```
/// use num_traits::PrimInt;
///
/// let n = 0xFEDCBA9876543210i64;
/// let m = 0x000FEDCBA9876543i64;
///
/// assert_eq!(n.unsigned_shr(12), m);
/// ```
fn unsigned_shr(self, n: u32) -> Self;
/// Reverses the byte order of the integer.
///
/// # Examples
///
/// ```
/// use num_traits::PrimInt;
///
/// let n = 0x0123456789ABCDEFu64;
/// let m = 0xEFCDAB8967452301u64;
///
/// assert_eq!(n.swap_bytes(), m);
/// ```
fn swap_bytes(self) -> Self;
/// Convert an integer from big endian to the target's endianness.
///
/// On big endian this is a no-op. On little endian the bytes are swapped.
///
/// # Examples
///
/// ```
/// use num_traits::PrimInt;
///
/// let n = 0x0123456789ABCDEFu64;
///
/// if cfg!(target_endian = "big") {
/// assert_eq!(u64::from_be(n), n)
/// } else {
/// assert_eq!(u64::from_be(n), n.swap_bytes())
/// }
/// ```
fn from_be(x: Self) -> Self;
/// Convert an integer from little endian to the target's endianness.
///
/// On little endian this is a no-op. On big endian the bytes are swapped.
///
/// # Examples
///
/// ```
/// use num_traits::PrimInt;
///
/// let n = 0x0123456789ABCDEFu64;
///
/// if cfg!(target_endian = "little") {
/// assert_eq!(u64::from_le(n), n)
/// } else {
/// assert_eq!(u64::from_le(n), n.swap_bytes())
/// }
/// ```
fn from_le(x: Self) -> Self;
/// Convert `self` to big endian from the target's endianness.
///
/// On big endian this is a no-op. On little endian the bytes are swapped.
///
/// # Examples
///
/// ```
/// use num_traits::PrimInt;
///
/// let n = 0x0123456789ABCDEFu64;
///
/// if cfg!(target_endian = "big") {
/// assert_eq!(n.to_be(), n)
/// } else {
/// assert_eq!(n.to_be(), n.swap_bytes())
/// }
/// ```
fn to_be(self) -> Self;
/// Convert `self` to little endian from the target's endianness.
///
/// On little endian this is a no-op. On big endian the bytes are swapped.
///
/// # Examples
///
/// ```
/// use num_traits::PrimInt;
///
/// let n = 0x0123456789ABCDEFu64;
///
/// if cfg!(target_endian = "little") {
/// assert_eq!(n.to_le(), n)
/// } else {
/// assert_eq!(n.to_le(), n.swap_bytes())
/// }
/// ```
fn to_le(self) -> Self;
/// Raises self to the power of `exp`, using exponentiation by squaring.
///
/// # Examples
///
/// ```
/// use num_traits::PrimInt;
///
/// assert_eq!(2i32.pow(4), 16);
/// ```
fn pow(self, exp: u32) -> Self;
}
macro_rules! prim_int_impl {
($T:ty, $S:ty, $U:ty) => (
impl PrimInt for $T {
#[inline]
fn count_ones(self) -> u32 {
<$T>::count_ones(self)
}
#[inline]
fn count_zeros(self) -> u32 {
<$T>::count_zeros(self)
}
#[inline]
fn leading_zeros(self) -> u32 {
<$T>::leading_zeros(self)
}
#[inline]
fn trailing_zeros(self) -> u32 {
<$T>::trailing_zeros(self)
}
#[inline]
fn rotate_left(self, n: u32) -> Self {
<$T>::rotate_left(self, n)
}
#[inline]
fn rotate_right(self, n: u32) -> Self {
<$T>::rotate_right(self, n)
}
#[inline]
fn signed_shl(self, n: u32) -> Self {
((self as $S) << n) as $T
}
#[inline]
fn signed_shr(self, n: u32) -> Self {
((self as $S) >> n) as $T
}
#[inline]
fn unsigned_shl(self, n: u32) -> Self {
((self as $U) << n) as $T
}
#[inline]
fn unsigned_shr(self, n: u32) -> Self {
((self as $U) >> n) as $T
}
#[inline]
fn swap_bytes(self) -> Self {
<$T>::swap_bytes(self)
}
#[inline]
fn from_be(x: Self) -> Self {
<$T>::from_be(x)
}
#[inline]
fn from_le(x: Self) -> Self {
<$T>::from_le(x)
}
#[inline]
fn to_be(self) -> Self {
<$T>::to_be(self)
}
#[inline]
fn to_le(self) -> Self {
<$T>::to_le(self)
}
#[inline]
fn pow(self, exp: u32) -> Self {
<$T>::pow(self, exp)
}
}
)
}
// prim_int_impl!(type, signed, unsigned);
prim_int_impl!(u8, i8, u8);
prim_int_impl!(u16, i16, u16);
prim_int_impl!(u32, i32, u32);
prim_int_impl!(u64, i64, u64);
prim_int_impl!(usize, isize, usize);
prim_int_impl!(i8, i8, u8);
prim_int_impl!(i16, i16, u16);
prim_int_impl!(i32, i32, u32);
prim_int_impl!(i64, i64, u64);
prim_int_impl!(isize, isize, usize);

View File

@ -0,0 +1,437 @@
// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Numeric traits for generic mathematics
#![doc(html_logo_url = "https://rust-num.github.io/num/rust-logo-128x128-blk-v2.png",
html_favicon_url = "https://rust-num.github.io/num/favicon.ico",
html_root_url = "https://rust-num.github.io/num/",
html_playground_url = "http://play.integer32.com/")]
use std::ops::{Add, Sub, Mul, Div, Rem};
use std::ops::{AddAssign, SubAssign, MulAssign, DivAssign, RemAssign};
use std::num::Wrapping;
pub use bounds::Bounded;
pub use float::{Float, FloatConst};
pub use identities::{Zero, One, zero, one};
pub use ops::checked::*;
pub use ops::wrapping::*;
pub use ops::saturating::Saturating;
pub use sign::{Signed, Unsigned, abs, abs_sub, signum};
pub use cast::*;
pub use int::PrimInt;
pub use pow::{pow, checked_pow};
pub mod identities;
pub mod sign;
pub mod ops;
pub mod bounds;
pub mod float;
pub mod cast;
pub mod int;
pub mod pow;
/// The base trait for numeric types, covering `0` and `1` values,
/// comparisons, basic numeric operations, and string conversion.
pub trait Num: PartialEq + Zero + One + NumOps
{
type FromStrRadixErr;
/// Convert from a string and radix <= 36.
///
/// # Examples
///
/// ```rust
/// use num_traits::Num;
///
/// let result = <i32 as Num>::from_str_radix("27", 10);
/// assert_eq!(result, Ok(27));
///
/// let result = <i32 as Num>::from_str_radix("foo", 10);
/// assert!(result.is_err());
/// ```
fn from_str_radix(str: &str, radix: u32) -> Result<Self, Self::FromStrRadixErr>;
}
/// The trait for types implementing basic numeric operations
///
/// This is automatically implemented for types which implement the operators.
pub trait NumOps<Rhs = Self, Output = Self>
: Add<Rhs, Output = Output>
+ Sub<Rhs, Output = Output>
+ Mul<Rhs, Output = Output>
+ Div<Rhs, Output = Output>
+ Rem<Rhs, Output = Output>
{}
impl<T, Rhs, Output> NumOps<Rhs, Output> for T
where T: Add<Rhs, Output = Output>
+ Sub<Rhs, Output = Output>
+ Mul<Rhs, Output = Output>
+ Div<Rhs, Output = Output>
+ Rem<Rhs, Output = Output>
{}
/// The trait for `Num` types which also implement numeric operations taking
/// the second operand by reference.
///
/// This is automatically implemented for types which implement the operators.
pub trait NumRef: Num + for<'r> NumOps<&'r Self> {}
impl<T> NumRef for T where T: Num + for<'r> NumOps<&'r T> {}
/// The trait for references which implement numeric operations, taking the
/// second operand either by value or by reference.
///
/// This is automatically implemented for types which implement the operators.
pub trait RefNum<Base>: NumOps<Base, Base> + for<'r> NumOps<&'r Base, Base> {}
impl<T, Base> RefNum<Base> for T where T: NumOps<Base, Base> + for<'r> NumOps<&'r Base, Base> {}
/// The trait for types implementing numeric assignment operators (like `+=`).
///
/// This is automatically implemented for types which implement the operators.
pub trait NumAssignOps<Rhs = Self>
: AddAssign<Rhs>
+ SubAssign<Rhs>
+ MulAssign<Rhs>
+ DivAssign<Rhs>
+ RemAssign<Rhs>
{}
impl<T, Rhs> NumAssignOps<Rhs> for T
where T: AddAssign<Rhs>
+ SubAssign<Rhs>
+ MulAssign<Rhs>
+ DivAssign<Rhs>
+ RemAssign<Rhs>
{}
/// The trait for `Num` types which also implement assignment operators.
///
/// This is automatically implemented for types which implement the operators.
pub trait NumAssign: Num + NumAssignOps {}
impl<T> NumAssign for T where T: Num + NumAssignOps {}
/// The trait for `NumAssign` types which also implement assignment operations
/// taking the second operand by reference.
///
/// This is automatically implemented for types which implement the operators.
pub trait NumAssignRef: NumAssign + for<'r> NumAssignOps<&'r Self> {}
impl<T> NumAssignRef for T where T: NumAssign + for<'r> NumAssignOps<&'r T> {}
macro_rules! int_trait_impl {
($name:ident for $($t:ty)*) => ($(
impl $name for $t {
type FromStrRadixErr = ::std::num::ParseIntError;
#[inline]
fn from_str_radix(s: &str, radix: u32)
-> Result<Self, ::std::num::ParseIntError>
{
<$t>::from_str_radix(s, radix)
}
}
)*)
}
int_trait_impl!(Num for usize u8 u16 u32 u64 isize i8 i16 i32 i64);
impl<T: Num> Num for Wrapping<T>
where Wrapping<T>:
Add<Output = Wrapping<T>> + Sub<Output = Wrapping<T>>
+ Mul<Output = Wrapping<T>> + Div<Output = Wrapping<T>> + Rem<Output = Wrapping<T>>
{
type FromStrRadixErr = T::FromStrRadixErr;
fn from_str_radix(str: &str, radix: u32) -> Result<Self, Self::FromStrRadixErr> {
T::from_str_radix(str, radix).map(Wrapping)
}
}
#[derive(Debug)]
pub enum FloatErrorKind {
Empty,
Invalid,
}
// FIXME: std::num::ParseFloatError is stable in 1.0, but opaque to us,
// so there's not really any way for us to reuse it.
#[derive(Debug)]
pub struct ParseFloatError {
pub kind: FloatErrorKind,
}
// FIXME: The standard library from_str_radix on floats was deprecated, so we're stuck
// with this implementation ourselves until we want to make a breaking change.
// (would have to drop it from `Num` though)
macro_rules! float_trait_impl {
($name:ident for $($t:ty)*) => ($(
impl $name for $t {
type FromStrRadixErr = ParseFloatError;
fn from_str_radix(src: &str, radix: u32)
-> Result<Self, Self::FromStrRadixErr>
{
use self::FloatErrorKind::*;
use self::ParseFloatError as PFE;
// Special values
match src {
"inf" => return Ok(Float::infinity()),
"-inf" => return Ok(Float::neg_infinity()),
"NaN" => return Ok(Float::nan()),
_ => {},
}
fn slice_shift_char(src: &str) -> Option<(char, &str)> {
src.chars().nth(0).map(|ch| (ch, &src[1..]))
}
let (is_positive, src) = match slice_shift_char(src) {
None => return Err(PFE { kind: Empty }),
Some(('-', "")) => return Err(PFE { kind: Empty }),
Some(('-', src)) => (false, src),
Some((_, _)) => (true, src),
};
// The significand to accumulate
let mut sig = if is_positive { 0.0 } else { -0.0 };
// Necessary to detect overflow
let mut prev_sig = sig;
let mut cs = src.chars().enumerate();
// Exponent prefix and exponent index offset
let mut exp_info = None::<(char, usize)>;
// Parse the integer part of the significand
for (i, c) in cs.by_ref() {
match c.to_digit(radix) {
Some(digit) => {
// shift significand one digit left
sig = sig * (radix as $t);
// add/subtract current digit depending on sign
if is_positive {
sig = sig + ((digit as isize) as $t);
} else {
sig = sig - ((digit as isize) as $t);
}
// Detect overflow by comparing to last value, except
// if we've not seen any non-zero digits.
if prev_sig != 0.0 {
if is_positive && sig <= prev_sig
{ return Ok(Float::infinity()); }
if !is_positive && sig >= prev_sig
{ return Ok(Float::neg_infinity()); }
// Detect overflow by reversing the shift-and-add process
if is_positive && (prev_sig != (sig - digit as $t) / radix as $t)
{ return Ok(Float::infinity()); }
if !is_positive && (prev_sig != (sig + digit as $t) / radix as $t)
{ return Ok(Float::neg_infinity()); }
}
prev_sig = sig;
},
None => match c {
'e' | 'E' | 'p' | 'P' => {
exp_info = Some((c, i + 1));
break; // start of exponent
},
'.' => {
break; // start of fractional part
},
_ => {
return Err(PFE { kind: Invalid });
},
},
}
}
// If we are not yet at the exponent parse the fractional
// part of the significand
if exp_info.is_none() {
let mut power = 1.0;
for (i, c) in cs.by_ref() {
match c.to_digit(radix) {
Some(digit) => {
// Decrease power one order of magnitude
power = power / (radix as $t);
// add/subtract current digit depending on sign
sig = if is_positive {
sig + (digit as $t) * power
} else {
sig - (digit as $t) * power
};
// Detect overflow by comparing to last value
if is_positive && sig < prev_sig
{ return Ok(Float::infinity()); }
if !is_positive && sig > prev_sig
{ return Ok(Float::neg_infinity()); }
prev_sig = sig;
},
None => match c {
'e' | 'E' | 'p' | 'P' => {
exp_info = Some((c, i + 1));
break; // start of exponent
},
_ => {
return Err(PFE { kind: Invalid });
},
},
}
}
}
// Parse and calculate the exponent
let exp = match exp_info {
Some((c, offset)) => {
let base = match c {
'E' | 'e' if radix == 10 => 10.0,
'P' | 'p' if radix == 16 => 2.0,
_ => return Err(PFE { kind: Invalid }),
};
// Parse the exponent as decimal integer
let src = &src[offset..];
let (is_positive, exp) = match slice_shift_char(src) {
Some(('-', src)) => (false, src.parse::<usize>()),
Some(('+', src)) => (true, src.parse::<usize>()),
Some((_, _)) => (true, src.parse::<usize>()),
None => return Err(PFE { kind: Invalid }),
};
match (is_positive, exp) {
(true, Ok(exp)) => base.powi(exp as i32),
(false, Ok(exp)) => 1.0 / base.powi(exp as i32),
(_, Err(_)) => return Err(PFE { kind: Invalid }),
}
},
None => 1.0, // no exponent
};
Ok(sig * exp)
}
}
)*)
}
float_trait_impl!(Num for f32 f64);
/// A value bounded by a minimum and a maximum
///
/// If input is less than min then this returns min.
/// If input is greater than max then this returns max.
/// Otherwise this returns input.
#[inline]
pub fn clamp<T: PartialOrd>(input: T, min: T, max: T) -> T {
debug_assert!(min <= max, "min must be less than or equal to max");
if input < min {
min
} else if input > max {
max
} else {
input
}
}
#[test]
fn clamp_test() {
// Int test
assert_eq!(1, clamp(1, -1, 2));
assert_eq!(-1, clamp(-2, -1, 2));
assert_eq!(2, clamp(3, -1, 2));
// Float test
assert_eq!(1.0, clamp(1.0, -1.0, 2.0));
assert_eq!(-1.0, clamp(-2.0, -1.0, 2.0));
assert_eq!(2.0, clamp(3.0, -1.0, 2.0));
}
#[test]
fn from_str_radix_unwrap() {
// The Result error must impl Debug to allow unwrap()
let i: i32 = Num::from_str_radix("0", 10).unwrap();
assert_eq!(i, 0);
let f: f32 = Num::from_str_radix("0.0", 10).unwrap();
assert_eq!(f, 0.0);
}
#[test]
fn wrapping_is_num() {
fn require_num<T: Num>(_: &T) {}
require_num(&Wrapping(42_u32));
require_num(&Wrapping(-42));
}
#[test]
fn wrapping_from_str_radix() {
macro_rules! test_wrapping_from_str_radix {
($($t:ty)+) => {
$(
for &(s, r) in &[("42", 10), ("42", 2), ("-13.0", 10), ("foo", 10)] {
let w = Wrapping::<$t>::from_str_radix(s, r).map(|w| w.0);
assert_eq!(w, <$t as Num>::from_str_radix(s, r));
}
)+
};
}
test_wrapping_from_str_radix!(usize u8 u16 u32 u64 isize i8 i16 i32 i64);
}
#[test]
fn check_num_ops() {
fn compute<T: Num + Copy>(x: T, y: T) -> T {
x * y / y % y + y - y
}
assert_eq!(compute(1, 2), 1)
}
#[test]
fn check_numref_ops() {
fn compute<T: NumRef>(x: T, y: &T) -> T {
x * y / y % y + y - y
}
assert_eq!(compute(1, &2), 1)
}
#[test]
fn check_refnum_ops() {
fn compute<T: Copy>(x: &T, y: T) -> T
where for<'a> &'a T: RefNum<T>
{
&(&(&(&(x * y) / y) % y) + y) - y
}
assert_eq!(compute(&1, 2), 1)
}
#[test]
fn check_refref_ops() {
fn compute<T>(x: &T, y: &T) -> T
where for<'a> &'a T: RefNum<T>
{
&(&(&(&(x * y) / y) % y) + y) - y
}
assert_eq!(compute(&1, &2), 1)
}
#[test]
fn check_numassign_ops() {
fn compute<T: NumAssign + Copy>(mut x: T, y: T) -> T {
x *= y;
x /= y;
x %= y;
x += y;
x -= y;
x
}
assert_eq!(compute(1, 2), 1)
}
// TODO test `NumAssignRef`, but even the standard numeric types don't
// implement this yet. (see rust pr41336)

View File

@ -0,0 +1,92 @@
use std::ops::{Add, Sub, Mul, Div};
/// Performs addition that returns `None` instead of wrapping around on
/// overflow.
pub trait CheckedAdd: Sized + Add<Self, Output=Self> {
/// Adds two numbers, checking for overflow. If overflow happens, `None` is
/// returned.
fn checked_add(&self, v: &Self) -> Option<Self>;
}
macro_rules! checked_impl {
($trait_name:ident, $method:ident, $t:ty) => {
impl $trait_name for $t {
#[inline]
fn $method(&self, v: &$t) -> Option<$t> {
<$t>::$method(*self, *v)
}
}
}
}
checked_impl!(CheckedAdd, checked_add, u8);
checked_impl!(CheckedAdd, checked_add, u16);
checked_impl!(CheckedAdd, checked_add, u32);
checked_impl!(CheckedAdd, checked_add, u64);
checked_impl!(CheckedAdd, checked_add, usize);
checked_impl!(CheckedAdd, checked_add, i8);
checked_impl!(CheckedAdd, checked_add, i16);
checked_impl!(CheckedAdd, checked_add, i32);
checked_impl!(CheckedAdd, checked_add, i64);
checked_impl!(CheckedAdd, checked_add, isize);
/// Performs subtraction that returns `None` instead of wrapping around on underflow.
pub trait CheckedSub: Sized + Sub<Self, Output=Self> {
/// Subtracts two numbers, checking for underflow. If underflow happens,
/// `None` is returned.
fn checked_sub(&self, v: &Self) -> Option<Self>;
}
checked_impl!(CheckedSub, checked_sub, u8);
checked_impl!(CheckedSub, checked_sub, u16);
checked_impl!(CheckedSub, checked_sub, u32);
checked_impl!(CheckedSub, checked_sub, u64);
checked_impl!(CheckedSub, checked_sub, usize);
checked_impl!(CheckedSub, checked_sub, i8);
checked_impl!(CheckedSub, checked_sub, i16);
checked_impl!(CheckedSub, checked_sub, i32);
checked_impl!(CheckedSub, checked_sub, i64);
checked_impl!(CheckedSub, checked_sub, isize);
/// Performs multiplication that returns `None` instead of wrapping around on underflow or
/// overflow.
pub trait CheckedMul: Sized + Mul<Self, Output=Self> {
/// Multiplies two numbers, checking for underflow or overflow. If underflow
/// or overflow happens, `None` is returned.
fn checked_mul(&self, v: &Self) -> Option<Self>;
}
checked_impl!(CheckedMul, checked_mul, u8);
checked_impl!(CheckedMul, checked_mul, u16);
checked_impl!(CheckedMul, checked_mul, u32);
checked_impl!(CheckedMul, checked_mul, u64);
checked_impl!(CheckedMul, checked_mul, usize);
checked_impl!(CheckedMul, checked_mul, i8);
checked_impl!(CheckedMul, checked_mul, i16);
checked_impl!(CheckedMul, checked_mul, i32);
checked_impl!(CheckedMul, checked_mul, i64);
checked_impl!(CheckedMul, checked_mul, isize);
/// Performs division that returns `None` instead of panicking on division by zero and instead of
/// wrapping around on underflow and overflow.
pub trait CheckedDiv: Sized + Div<Self, Output=Self> {
/// Divides two numbers, checking for underflow, overflow and division by
/// zero. If any of that happens, `None` is returned.
fn checked_div(&self, v: &Self) -> Option<Self>;
}
checked_impl!(CheckedDiv, checked_div, u8);
checked_impl!(CheckedDiv, checked_div, u16);
checked_impl!(CheckedDiv, checked_div, u32);
checked_impl!(CheckedDiv, checked_div, u64);
checked_impl!(CheckedDiv, checked_div, usize);
checked_impl!(CheckedDiv, checked_div, i8);
checked_impl!(CheckedDiv, checked_div, i16);
checked_impl!(CheckedDiv, checked_div, i32);
checked_impl!(CheckedDiv, checked_div, i64);
checked_impl!(CheckedDiv, checked_div, isize);

View File

@ -0,0 +1,3 @@
pub mod saturating;
pub mod checked;
pub mod wrapping;

View File

@ -0,0 +1,28 @@
/// Saturating math operations
pub trait Saturating {
/// Saturating addition operator.
/// Returns a+b, saturating at the numeric bounds instead of overflowing.
fn saturating_add(self, v: Self) -> Self;
/// Saturating subtraction operator.
/// Returns a-b, saturating at the numeric bounds instead of overflowing.
fn saturating_sub(self, v: Self) -> Self;
}
macro_rules! saturating_impl {
($trait_name:ident for $($t:ty)*) => {$(
impl $trait_name for $t {
#[inline]
fn saturating_add(self, v: Self) -> Self {
Self::saturating_add(self, v)
}
#[inline]
fn saturating_sub(self, v: Self) -> Self {
Self::saturating_sub(self, v)
}
}
)*}
}
saturating_impl!(Saturating for isize usize i8 u8 i16 u16 i32 u32 i64 u64);

View File

@ -0,0 +1,127 @@
use std::ops::{Add, Sub, Mul};
use std::num::Wrapping;
macro_rules! wrapping_impl {
($trait_name:ident, $method:ident, $t:ty) => {
impl $trait_name for $t {
#[inline]
fn $method(&self, v: &Self) -> Self {
<$t>::$method(*self, *v)
}
}
};
($trait_name:ident, $method:ident, $t:ty, $rhs:ty) => {
impl $trait_name<$rhs> for $t {
#[inline]
fn $method(&self, v: &$rhs) -> Self {
<$t>::$method(*self, *v)
}
}
}
}
/// Performs addition that wraps around on overflow.
pub trait WrappingAdd: Sized + Add<Self, Output=Self> {
/// Wrapping (modular) addition. Computes `self + other`, wrapping around at the boundary of
/// the type.
fn wrapping_add(&self, v: &Self) -> Self;
}
wrapping_impl!(WrappingAdd, wrapping_add, u8);
wrapping_impl!(WrappingAdd, wrapping_add, u16);
wrapping_impl!(WrappingAdd, wrapping_add, u32);
wrapping_impl!(WrappingAdd, wrapping_add, u64);
wrapping_impl!(WrappingAdd, wrapping_add, usize);
wrapping_impl!(WrappingAdd, wrapping_add, i8);
wrapping_impl!(WrappingAdd, wrapping_add, i16);
wrapping_impl!(WrappingAdd, wrapping_add, i32);
wrapping_impl!(WrappingAdd, wrapping_add, i64);
wrapping_impl!(WrappingAdd, wrapping_add, isize);
/// Performs subtraction that wraps around on overflow.
pub trait WrappingSub: Sized + Sub<Self, Output=Self> {
/// Wrapping (modular) subtraction. Computes `self - other`, wrapping around at the boundary
/// of the type.
fn wrapping_sub(&self, v: &Self) -> Self;
}
wrapping_impl!(WrappingSub, wrapping_sub, u8);
wrapping_impl!(WrappingSub, wrapping_sub, u16);
wrapping_impl!(WrappingSub, wrapping_sub, u32);
wrapping_impl!(WrappingSub, wrapping_sub, u64);
wrapping_impl!(WrappingSub, wrapping_sub, usize);
wrapping_impl!(WrappingSub, wrapping_sub, i8);
wrapping_impl!(WrappingSub, wrapping_sub, i16);
wrapping_impl!(WrappingSub, wrapping_sub, i32);
wrapping_impl!(WrappingSub, wrapping_sub, i64);
wrapping_impl!(WrappingSub, wrapping_sub, isize);
/// Performs multiplication that wraps around on overflow.
pub trait WrappingMul: Sized + Mul<Self, Output=Self> {
/// Wrapping (modular) multiplication. Computes `self * other`, wrapping around at the boundary
/// of the type.
fn wrapping_mul(&self, v: &Self) -> Self;
}
wrapping_impl!(WrappingMul, wrapping_mul, u8);
wrapping_impl!(WrappingMul, wrapping_mul, u16);
wrapping_impl!(WrappingMul, wrapping_mul, u32);
wrapping_impl!(WrappingMul, wrapping_mul, u64);
wrapping_impl!(WrappingMul, wrapping_mul, usize);
wrapping_impl!(WrappingMul, wrapping_mul, i8);
wrapping_impl!(WrappingMul, wrapping_mul, i16);
wrapping_impl!(WrappingMul, wrapping_mul, i32);
wrapping_impl!(WrappingMul, wrapping_mul, i64);
wrapping_impl!(WrappingMul, wrapping_mul, isize);
// Well this is a bit funny, but all the more appropriate.
impl<T: WrappingAdd> WrappingAdd for Wrapping<T> where Wrapping<T>: Add<Output = Wrapping<T>> {
fn wrapping_add(&self, v: &Self) -> Self {
Wrapping(self.0.wrapping_add(&v.0))
}
}
impl<T: WrappingSub> WrappingSub for Wrapping<T> where Wrapping<T>: Sub<Output = Wrapping<T>> {
fn wrapping_sub(&self, v: &Self) -> Self {
Wrapping(self.0.wrapping_sub(&v.0))
}
}
impl<T: WrappingMul> WrappingMul for Wrapping<T> where Wrapping<T>: Mul<Output = Wrapping<T>> {
fn wrapping_mul(&self, v: &Self) -> Self {
Wrapping(self.0.wrapping_mul(&v.0))
}
}
#[test]
fn test_wrapping_traits() {
fn wrapping_add<T: WrappingAdd>(a: T, b: T) -> T { a.wrapping_add(&b) }
fn wrapping_sub<T: WrappingSub>(a: T, b: T) -> T { a.wrapping_sub(&b) }
fn wrapping_mul<T: WrappingMul>(a: T, b: T) -> T { a.wrapping_mul(&b) }
assert_eq!(wrapping_add(255, 1), 0u8);
assert_eq!(wrapping_sub(0, 1), 255u8);
assert_eq!(wrapping_mul(255, 2), 254u8);
assert_eq!(wrapping_add(255, 1), (Wrapping(255u8) + Wrapping(1u8)).0);
assert_eq!(wrapping_sub(0, 1), (Wrapping(0u8) - Wrapping(1u8)).0);
assert_eq!(wrapping_mul(255, 2), (Wrapping(255u8) * Wrapping(2u8)).0);
}
#[test]
fn wrapping_is_wrappingadd() {
fn require_wrappingadd<T: WrappingAdd>(_: &T) {}
require_wrappingadd(&Wrapping(42));
}
#[test]
fn wrapping_is_wrappingsub() {
fn require_wrappingsub<T: WrappingSub>(_: &T) {}
require_wrappingsub(&Wrapping(42));
}
#[test]
fn wrapping_is_wrappingmul() {
fn require_wrappingmul<T: WrappingMul>(_: &T) {}
require_wrappingmul(&Wrapping(42));
}

View File

@ -0,0 +1,73 @@
use std::ops::Mul;
use {One, CheckedMul};
/// Raises a value to the power of exp, using exponentiation by squaring.
///
/// # Example
///
/// ```rust
/// use num_traits::pow;
///
/// assert_eq!(pow(2i8, 4), 16);
/// assert_eq!(pow(6u8, 3), 216);
/// ```
#[inline]
pub fn pow<T: Clone + One + Mul<T, Output = T>>(mut base: T, mut exp: usize) -> T {
if exp == 0 { return T::one() }
while exp & 1 == 0 {
base = base.clone() * base;
exp >>= 1;
}
if exp == 1 { return base }
let mut acc = base.clone();
while exp > 1 {
exp >>= 1;
base = base.clone() * base;
if exp & 1 == 1 {
acc = acc * base.clone();
}
}
acc
}
/// Raises a value to the power of exp, returning `None` if an overflow occurred.
///
/// Otherwise same as the `pow` function.
///
/// # Example
///
/// ```rust
/// use num_traits::checked_pow;
///
/// assert_eq!(checked_pow(2i8, 4), Some(16));
/// assert_eq!(checked_pow(7i8, 8), None);
/// assert_eq!(checked_pow(7u32, 8), Some(5_764_801));
/// ```
#[inline]
pub fn checked_pow<T: Clone + One + CheckedMul>(mut base: T, mut exp: usize) -> Option<T> {
if exp == 0 { return Some(T::one()) }
macro_rules! optry {
( $ expr : expr ) => {
if let Some(val) = $expr { val } else { return None }
}
}
while exp & 1 == 0 {
base = optry!(base.checked_mul(&base));
exp >>= 1;
}
if exp == 1 { return Some(base) }
let mut acc = base.clone();
while exp > 1 {
exp >>= 1;
base = optry!(base.checked_mul(&base));
if exp & 1 == 1 {
acc = optry!(acc.checked_mul(&base));
}
}
Some(acc)
}

View File

@ -0,0 +1,204 @@
use std::ops::Neg;
use std::{f32, f64};
use std::num::Wrapping;
use Num;
/// Useful functions for signed numbers (i.e. numbers that can be negative).
pub trait Signed: Sized + Num + Neg<Output = Self> {
/// Computes the absolute value.
///
/// For `f32` and `f64`, `NaN` will be returned if the number is `NaN`.
///
/// For signed integers, `::MIN` will be returned if the number is `::MIN`.
fn abs(&self) -> Self;
/// The positive difference of two numbers.
///
/// Returns `zero` if the number is less than or equal to `other`, otherwise the difference
/// between `self` and `other` is returned.
fn abs_sub(&self, other: &Self) -> Self;
/// Returns the sign of the number.
///
/// For `f32` and `f64`:
///
/// * `1.0` if the number is positive, `+0.0` or `INFINITY`
/// * `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
/// * `NaN` if the number is `NaN`
///
/// For signed integers:
///
/// * `0` if the number is zero
/// * `1` if the number is positive
/// * `-1` if the number is negative
fn signum(&self) -> Self;
/// Returns true if the number is positive and false if the number is zero or negative.
fn is_positive(&self) -> bool;
/// Returns true if the number is negative and false if the number is zero or positive.
fn is_negative(&self) -> bool;
}
macro_rules! signed_impl {
($($t:ty)*) => ($(
impl Signed for $t {
#[inline]
fn abs(&self) -> $t {
if self.is_negative() { -*self } else { *self }
}
#[inline]
fn abs_sub(&self, other: &$t) -> $t {
if *self <= *other { 0 } else { *self - *other }
}
#[inline]
fn signum(&self) -> $t {
match *self {
n if n > 0 => 1,
0 => 0,
_ => -1,
}
}
#[inline]
fn is_positive(&self) -> bool { *self > 0 }
#[inline]
fn is_negative(&self) -> bool { *self < 0 }
}
)*)
}
signed_impl!(isize i8 i16 i32 i64);
impl<T: Signed> Signed for Wrapping<T> where Wrapping<T>: Num + Neg<Output=Wrapping<T>>
{
#[inline]
fn abs(&self) -> Self {
Wrapping(self.0.abs())
}
#[inline]
fn abs_sub(&self, other: &Self) -> Self {
Wrapping(self.0.abs_sub(&other.0))
}
#[inline]
fn signum(&self) -> Self {
Wrapping(self.0.signum())
}
#[inline]
fn is_positive(&self) -> bool { self.0.is_positive() }
#[inline]
fn is_negative(&self) -> bool { self.0.is_negative() }
}
macro_rules! signed_float_impl {
($t:ty, $nan:expr, $inf:expr, $neg_inf:expr) => {
impl Signed for $t {
/// Computes the absolute value. Returns `NAN` if the number is `NAN`.
#[inline]
fn abs(&self) -> $t {
<$t>::abs(*self)
}
/// The positive difference of two numbers. Returns `0.0` if the number is
/// less than or equal to `other`, otherwise the difference between`self`
/// and `other` is returned.
#[inline]
#[allow(deprecated)]
fn abs_sub(&self, other: &$t) -> $t {
<$t>::abs_sub(*self, *other)
}
/// # Returns
///
/// - `1.0` if the number is positive, `+0.0` or `INFINITY`
/// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
/// - `NAN` if the number is NaN
#[inline]
fn signum(&self) -> $t {
<$t>::signum(*self)
}
/// Returns `true` if the number is positive, including `+0.0` and `INFINITY`
#[inline]
fn is_positive(&self) -> bool { *self > 0.0 || (1.0 / *self) == $inf }
/// Returns `true` if the number is negative, including `-0.0` and `NEG_INFINITY`
#[inline]
fn is_negative(&self) -> bool { *self < 0.0 || (1.0 / *self) == $neg_inf }
}
}
}
signed_float_impl!(f32, f32::NAN, f32::INFINITY, f32::NEG_INFINITY);
signed_float_impl!(f64, f64::NAN, f64::INFINITY, f64::NEG_INFINITY);
/// Computes the absolute value.
///
/// For `f32` and `f64`, `NaN` will be returned if the number is `NaN`
///
/// For signed integers, `::MIN` will be returned if the number is `::MIN`.
#[inline(always)]
pub fn abs<T: Signed>(value: T) -> T {
value.abs()
}
/// The positive difference of two numbers.
///
/// Returns zero if `x` is less than or equal to `y`, otherwise the difference
/// between `x` and `y` is returned.
#[inline(always)]
pub fn abs_sub<T: Signed>(x: T, y: T) -> T {
x.abs_sub(&y)
}
/// Returns the sign of the number.
///
/// For `f32` and `f64`:
///
/// * `1.0` if the number is positive, `+0.0` or `INFINITY`
/// * `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
/// * `NaN` if the number is `NaN`
///
/// For signed integers:
///
/// * `0` if the number is zero
/// * `1` if the number is positive
/// * `-1` if the number is negative
#[inline(always)] pub fn signum<T: Signed>(value: T) -> T { value.signum() }
/// A trait for values which cannot be negative
pub trait Unsigned: Num {}
macro_rules! empty_trait_impl {
($name:ident for $($t:ty)*) => ($(
impl $name for $t {}
)*)
}
empty_trait_impl!(Unsigned for usize u8 u16 u32 u64);
impl<T: Unsigned> Unsigned for Wrapping<T> where Wrapping<T>: Num {}
#[test]
fn unsigned_wrapping_is_unsigned() {
fn require_unsigned<T: Unsigned>(_: &T) {}
require_unsigned(&Wrapping(42_u32));
}
/*
// Commenting this out since it doesn't compile on Rust 1.8,
// because on this version Wrapping doesn't implement Neg and therefore can't
// implement Signed.
#[test]
fn signed_wrapping_is_signed() {
fn require_signed<T: Signed>(_: &T) {}
require_signed(&Wrapping(-42));
}
*/

View File

@ -1 +1 @@
{"files":{"Cargo.toml":"3d24ace42f6604297f16fb6e9a8aecb11644083bcc14eccb5d04002146444cd4","LICENSE-APACHE":"a60eea817514531668d7e00765731449fe14d059d3249e0bc93b36de45f759f2","LICENSE-MIT":"6485b8ed310d3f0340bf1ad1f47645069ce4069dcc6bb46c7d5c6faf41de1fdb","src/bounds.rs":"c744ca32dcb31447abc1132b2ef6f7c102d4ffa3dbc36a24a384520ec8702839","src/cast.rs":"a067d47329c30672ad9764e34a551cd566b5023f17a35673b35dbab6388043d2","src/float.rs":"fd768b5bb403cd5056d3b588074ed5571c40279d6a7da8c4f3c46ac4713f89fd","src/identities.rs":"ed67758e226fb78a14496776533a6d97d9f813294aadc73958e3005fd0e66599","src/int.rs":"b7b42dfa10423308f858216ac63fa52e26c49a7bc8900cd98de210992efc3f5f","src/lib.rs":"75b1b8b714b51f6169be13e8043bc0e9341a5aeb04e61c5446a5ce5cb241e101","src/ops/checked.rs":"bc667779636f81c7eca138c6d57252a6bb6ca4cd1f0ff706a993067044d86f94","src/ops/mod.rs":"668ea4d117bc1fdf7eaf0fe16692fa40dfbdfcbc7a2010237fe395ce0086e02e","src/ops/saturating.rs":"46821d815c90c16b2f6bec0b94b4d7ebdbddf3ea42edc0467de738c56abf6436","src/ops/wrapping.rs":"a444c7eb3366f2ad4c3a9938f1158b1994b9da4bbf9097884b5e8e27a9b581dd","src/pow.rs":"73b611ad8d595ef917871ba859ff0c25efc2382220d30568e5fbb930bf6b4daa","src/sign.rs":"732736f44c3c410f43da98eb3c8887319d94ad2c4883d614a9c353659402b315"},"package":"cacfcab5eb48250ee7d0c7896b51a2c5eec99c1feea5f32025635f5ae4b00070"}
{"files":{".travis.yml":"f2329e77821e13e0b77cc97e624d76f6ccd92c929c1334cf6ac7888b01c5a481","Cargo.toml":"d6798dc92f8b83a8811446ae2e47c51564eb2b49162051b61a1eeec8bbed0da6","LICENSE-APACHE":"a60eea817514531668d7e00765731449fe14d059d3249e0bc93b36de45f759f2","LICENSE-MIT":"6485b8ed310d3f0340bf1ad1f47645069ce4069dcc6bb46c7d5c6faf41de1fdb","README.md":"fc9a4b3719a828c9128e957ee7b9e2f795cc92a7cc50c1dda50e14126e0b4a77","RELEASES.md":"86c3e6703e6948bfc23c165a8b121930b8da4ffc7c38ab49d7a9e27b1655090e","bors.toml":"1c81ede536a37edd30fe4e622ff0531b25372403ac9475a5d6c50f14156565a2","ci/rustup.sh":"723d546a1ffefcdd5d4db9fb26dbf4128954e3991aff32932284cdc67fa5c85e","ci/test_full.sh":"c64b1d6f96baad0ea3bceb6842e7a706c4b414c99fddca55c2c30c81ae63d33a","src/bounds.rs":"d75e65f4f0e1337be06d2753ca06c23f099beb91d15215ac3230e9d441fcf4d0","src/cast.rs":"c06d1fd279b78386795384885a12742f9f31c95f364761acf0ed110184dc6bbc","src/float.rs":"841a2614519aac9f54b87e84a542df49346aa27254bd226b2dabe7966304fd0f","src/identities.rs":"f5389cf96b0d7ef55bd688961a58c4d7c0f3bd3bd48fe771948534e6bc05f29c","src/int.rs":"d6c51c943198a3aa071bfeb748101b2ce806fdef1ed6c26ef8f28f1e5a810f47","src/lib.rs":"29e4583f84b13ce2c0a6e5bbf4932183a19878e3cbab2387896b9e11c7729d5d","src/ops/checked.rs":"b2fc7ce21bca9c237f29149a553156a80d5ef94100c55128e05b946a575634c4","src/ops/mod.rs":"668ea4d117bc1fdf7eaf0fe16692fa40dfbdfcbc7a2010237fe395ce0086e02e","src/ops/saturating.rs":"46821d815c90c16b2f6bec0b94b4d7ebdbddf3ea42edc0467de738c56abf6436","src/ops/wrapping.rs":"5b274e7fc77d11ba37bb2fc98dabbbb8910f83b14d2505f775bd5a2e19445f6b","src/pow.rs":"4cedc57fc1446f436f729a68c1c4de797d316e4c1c341dead8f6ea0801c9f1ac","src/real.rs":"5e9436436593ed9c005078b9fe33477714490f959cae66ae2ae610da3eceb5f6","src/sign.rs":"f86aa7e9720698807455eabaf5f77b9fe68432fbb1a9291faf73b0c9f648d540"},"package":"e7de20f146db9d920c45ee8ed8f71681fd9ade71909b48c3acbd766aa504cf10"}

19
third_party/rust/num-traits/.travis.yml vendored Normal file
View File

@ -0,0 +1,19 @@
language: rust
rust:
- 1.8.0
- stable
- beta
- nightly
sudo: false
script:
- cargo build --verbose
- ./ci/test_full.sh
notifications:
email:
on_success: never
branches:
only:
- master
- next
- staging
- trying

View File

@ -12,14 +12,19 @@
[package]
name = "num-traits"
version = "0.1.41"
version = "0.2.0"
authors = ["The Rust Project Developers"]
description = "Numeric traits for generic mathematics"
homepage = "https://github.com/rust-num/num"
documentation = "http://rust-num.github.io/num"
homepage = "https://github.com/rust-num/num-traits"
documentation = "https://docs.rs/num-traits"
readme = "README.md"
keywords = ["mathematics", "numerics"]
categories = ["algorithms", "science"]
license = "MIT/Apache-2.0"
repository = "https://github.com/rust-num/num"
repository = "https://github.com/rust-num/num-traits"
[dependencies]
[features]
default = ["std"]
std = []

44
third_party/rust/num-traits/README.md vendored Normal file
View File

@ -0,0 +1,44 @@
# num-traits
[![crate](https://img.shields.io/crates/v/num-traits.svg)](https://crates.io/crates/num-traits)
[![documentation](https://docs.rs/num-traits/badge.svg)](https://docs.rs/num-traits)
![minimum rustc 1.8](https://img.shields.io/badge/rustc-1.8+-red.svg)
[![Travis status](https://travis-ci.org/rust-num/num-traits.svg?branch=master)](https://travis-ci.org/rust-num/num-traits)
Numeric traits for generic mathematics in Rust.
## Usage
Add this to your `Cargo.toml`:
```toml
[dependencies]
num-traits = "0.2"
```
and this to your crate root:
```rust
extern crate num_traits;
```
## Features
This crate can be used without the standard library (`#![no_std]`) by disabling
the default `std` feature. Use this in `Cargo.toml`:
```toml
[dependencies.num-traits]
version = "0.2"
default-features = false
```
The `Float` and `Real` traits are only available when `std` is enabled.
## Releases
Release notes are available in [RELEASES.md](RELEASES.md).
## Compatibility
The `num-traits` crate is tested for rustc 1.8 and greater.

41
third_party/rust/num-traits/RELEASES.md vendored Normal file
View File

@ -0,0 +1,41 @@
# Release 0.2.0
- **breaking change**: There is now a `std` feature, enabled by default, along
with the implication that building *without* this feature makes this a
`#[no_std]` crate.
- The `Float` and `Real` traits are only available when `std` is enabled.
- Otherwise, the API is unchanged, and num-traits 0.1.43 now re-exports its
items from num-traits 0.2 for compatibility (the [semver-trick]).
**Contributors**: @cuviper, @termoshtt, @vks
[semver-trick]: https://github.com/dtolnay/semver-trick
# Release 0.1.43
- All items are now re-exported from num-traits 0.2 for compatibility.
# Release 0.1.42
- [num-traits now has its own source repository][num-356] at [rust-num/num-traits][home].
- [`ParseFloatError` now implements `Display`][22].
- [The new `AsPrimitive` trait][17] implements generic casting with the `as` operator.
- [The new `CheckedShl` and `CheckedShr` traits][21] implement generic
support for the `checked_shl` and `checked_shr` methods on primitive integers.
- [The new `Real` trait][23] offers a subset of `Float` functionality that may be applicable to more
types, with a blanket implementation for all existing `T: Float` types.
Thanks to @cuviper, @Enet4, @fabianschuiki, @svartalf, and @yoanlcq for their contributions!
[home]: https://github.com/rust-num/num-traits
[num-356]: https://github.com/rust-num/num/pull/356
[17]: https://github.com/rust-num/num-traits/pull/17
[21]: https://github.com/rust-num/num-traits/pull/21
[22]: https://github.com/rust-num/num-traits/pull/22
[23]: https://github.com/rust-num/num-traits/pull/23
# Prior releases
No prior release notes were kept. Thanks all the same to the many
contributors that have made this crate what it is!

3
third_party/rust/num-traits/bors.toml vendored Normal file
View File

@ -0,0 +1,3 @@
status = [
"continuous-integration/travis-ci/push",
]

12
third_party/rust/num-traits/ci/rustup.sh vendored Executable file
View File

@ -0,0 +1,12 @@
#!/bin/sh
# Use rustup to locally run the same suite of tests as .travis.yml.
# (You should first install/update 1.8.0, stable, beta, and nightly.)
set -ex
export TRAVIS_RUST_VERSION
for TRAVIS_RUST_VERSION in 1.8.0 stable beta nightly; do
run="rustup run $TRAVIS_RUST_VERSION"
$run cargo build --verbose
$run $PWD/ci/test_full.sh
done

13
third_party/rust/num-traits/ci/test_full.sh vendored Executable file
View File

@ -0,0 +1,13 @@
#!/bin/bash
set -ex
echo Testing num-traits on rustc ${TRAVIS_RUST_VERSION}
# num-traits should build and test everywhere.
cargo build --verbose
cargo test --verbose
# test `no_std`
cargo build --verbose --no-default-features
cargo test --verbose --no-default-features

View File

@ -1,7 +1,7 @@
use std::{usize, u8, u16, u32, u64};
use std::{isize, i8, i16, i32, i64};
use std::{f32, f64};
use std::num::Wrapping;
use core::{usize, u8, u16, u32, u64};
use core::{isize, i8, i16, i32, i64};
use core::{f32, f64};
use core::num::Wrapping;
/// Numbers which have upper and lower bounds
pub trait Bounded {

View File

@ -1,5 +1,6 @@
use std::mem::size_of;
use std::num::Wrapping;
use core::f64;
use core::mem::size_of;
use core::num::Wrapping;
use identities::Zero;
use bounds::Bounded;
@ -226,8 +227,10 @@ macro_rules! impl_to_primitive_float_to_float {
// Make sure the value is in range for the cast.
// NaN and +-inf are cast as they are.
let n = $slf as f64;
let max_value: $DstT = ::std::$DstT::MAX;
if !n.is_finite() || (-max_value as f64 <= n && n <= max_value as f64) {
let max_value: $DstT = ::core::$DstT::MAX;
if n != n || n == f64::INFINITY || n == f64::NEG_INFINITY
|| (-max_value as f64 <= n && n <= max_value as f64)
{
Some($slf as $DstT)
} else {
None
@ -452,10 +455,78 @@ impl<T: NumCast> NumCast for Wrapping<T> {
}
}
/// A generic interface for casting between machine scalars with the
/// `as` operator, which admits narrowing and precision loss.
/// Implementers of this trait AsPrimitive should behave like a primitive
/// numeric type (e.g. a newtype around another primitive), and the
/// intended conversion must never fail.
///
/// # Examples
///
/// ```
/// # use num_traits::AsPrimitive;
/// let three: i32 = (3.14159265f32).as_();
/// assert_eq!(three, 3);
/// ```
///
/// # Safety
///
/// Currently, some uses of the `as` operator are not entirely safe.
/// In particular, it is undefined behavior if:
///
/// - A truncated floating point value cannot fit in the target integer
/// type ([#10184](https://github.com/rust-lang/rust/issues/10184));
///
/// ```ignore
/// # use num_traits::AsPrimitive;
/// let x: u8 = (1.04E+17).as_(); // UB
/// ```
///
/// - Or a floating point value does not fit in another floating
/// point type ([#15536](https://github.com/rust-lang/rust/issues/15536)).
///
/// ```ignore
/// # use num_traits::AsPrimitive;
/// let x: f32 = (1e300f64).as_(); // UB
/// ```
///
pub trait AsPrimitive<T>: 'static + Copy
where
T: 'static + Copy
{
/// Convert a value to another, using the `as` operator.
fn as_(self) -> T;
}
macro_rules! impl_as_primitive {
($T: ty => $( $U: ty ),* ) => {
$(
impl AsPrimitive<$U> for $T {
#[inline] fn as_(self) -> $U { self as $U }
}
)*
};
}
impl_as_primitive!(u8 => char, u8, i8, u16, i16, u32, i32, u64, isize, usize, i64, f32, f64);
impl_as_primitive!(i8 => u8, i8, u16, i16, u32, i32, u64, isize, usize, i64, f32, f64);
impl_as_primitive!(u16 => u8, i8, u16, i16, u32, i32, u64, isize, usize, i64, f32, f64);
impl_as_primitive!(i16 => u8, i8, u16, i16, u32, i32, u64, isize, usize, i64, f32, f64);
impl_as_primitive!(u32 => u8, i8, u16, i16, u32, i32, u64, isize, usize, i64, f32, f64);
impl_as_primitive!(i32 => u8, i8, u16, i16, u32, i32, u64, isize, usize, i64, f32, f64);
impl_as_primitive!(u64 => u8, i8, u16, i16, u32, i32, u64, isize, usize, i64, f32, f64);
impl_as_primitive!(i64 => u8, i8, u16, i16, u32, i32, u64, isize, usize, i64, f32, f64);
impl_as_primitive!(usize => u8, i8, u16, i16, u32, i32, u64, isize, usize, i64, f32, f64);
impl_as_primitive!(isize => u8, i8, u16, i16, u32, i32, u64, isize, usize, i64, f32, f64);
impl_as_primitive!(f32 => u8, i8, u16, i16, u32, i32, u64, isize, usize, i64, f32, f64);
impl_as_primitive!(f64 => u8, i8, u16, i16, u32, i32, u64, isize, usize, i64, f32, f64);
impl_as_primitive!(char => char, u8, i8, u16, i16, u32, i32, u64, isize, usize, i64);
impl_as_primitive!(bool => u8, i8, u16, i16, u32, i32, u64, isize, usize, i64);
#[test]
fn to_primitive_float() {
use std::f32;
use std::f64;
use core::f32;
use core::f64;
let f32_toolarge = 1e39f64;
assert_eq!(f32_toolarge.to_f32(), None);
@ -509,3 +580,15 @@ fn wrapping_is_numcast() {
fn require_numcast<T: NumCast>(_: &T) {}
require_numcast(&Wrapping(42));
}
#[test]
fn as_primitive() {
let x: f32 = (1.625f64).as_();
assert_eq!(x, 1.625f32);
let x: f32 = (3.14159265358979323846f64).as_();
assert_eq!(x, 3.1415927f32);
let x: u8 = (768i16).as_();
assert_eq!(x, 0);
}

View File

@ -1,15 +1,24 @@
#[cfg(feature = "std")]
use std::mem;
#[cfg(feature = "std")]
use std::ops::Neg;
#[cfg(feature = "std")]
use std::num::FpCategory;
// Used for default implementation of `epsilon`
#[cfg(feature = "std")]
use std::f32;
#[cfg(feature = "std")]
use {Num, NumCast};
// FIXME: these doctests aren't actually helpful, because they're using and
// testing the inherent methods directly, not going through `Float`.
/// Generic trait for floating point numbers
///
/// This trait is only available with the `std` feature.
#[cfg(feature = "std")]
pub trait Float
: Num
+ Copy
@ -923,6 +932,7 @@ pub trait Float
fn integer_decode(self) -> (u64, i16, i8);
}
#[cfg(feature = "std")]
macro_rules! float_impl {
($T:ident $decode:ident) => (
impl Float for $T {
@ -1219,6 +1229,7 @@ macro_rules! float_impl {
)
}
#[cfg(feature = "std")]
fn integer_decode_f32(f: f32) -> (u64, i16, i8) {
let bits: u32 = unsafe { mem::transmute(f) };
let sign: i8 = if bits >> 31 == 0 {
@ -1237,6 +1248,7 @@ fn integer_decode_f32(f: f32) -> (u64, i16, i8) {
(mantissa as u64, exponent, sign)
}
#[cfg(feature = "std")]
fn integer_decode_f64(f: f64) -> (u64, i16, i8) {
let bits: u64 = unsafe { mem::transmute(f) };
let sign: i8 = if bits >> 63 == 0 {
@ -1255,7 +1267,9 @@ fn integer_decode_f64(f: f64) -> (u64, i16, i8) {
(mantissa, exponent, sign)
}
#[cfg(feature = "std")]
float_impl!(f32 integer_decode_f32);
#[cfg(feature = "std")]
float_impl!(f64 integer_decode_f64);
macro_rules! float_const_impl {
@ -1272,7 +1286,7 @@ macro_rules! float_const_impl {
$(
#[inline]
fn $constant() -> Self {
::std::$T::consts::$constant
::core::$T::consts::$constant
}
)+
}
@ -1314,13 +1328,13 @@ float_const_impl! {
SQRT_2,
}
#[cfg(test)]
#[cfg(all(test, feature = "std"))]
mod tests {
use Float;
#[test]
fn convert_deg_rad() {
use std::f64::consts;
use core::f64::consts;
const DEG_RAD_PAIRS: [(f64, f64); 7] = [
(0.0, 0.),

View File

@ -1,5 +1,5 @@
use std::ops::{Add, Mul};
use std::num::Wrapping;
use core::ops::{Add, Mul};
use core::num::Wrapping;
/// Defines an additive identity element for `Self`.
pub trait Zero: Sized + Add<Self, Output = Self> {

View File

@ -1,4 +1,4 @@
use std::ops::{Not, BitAnd, BitOr, BitXor, Shl, Shr};
use core::ops::{Not, BitAnd, BitOr, BitXor, Shl, Shr};
use {Num, NumCast};
use bounds::Bounded;

View File

@ -9,23 +9,35 @@
// except according to those terms.
//! Numeric traits for generic mathematics
#![doc(html_logo_url = "https://rust-num.github.io/num/rust-logo-128x128-blk-v2.png",
html_favicon_url = "https://rust-num.github.io/num/favicon.ico",
html_root_url = "https://rust-num.github.io/num/",
html_playground_url = "http://play.integer32.com/")]
//!
//! ## Compatibility
//!
//! The `num-traits` crate is tested for rustc 1.8 and greater.
use std::ops::{Add, Sub, Mul, Div, Rem};
use std::ops::{AddAssign, SubAssign, MulAssign, DivAssign, RemAssign};
use std::num::Wrapping;
#![doc(html_root_url = "https://docs.rs/num-traits/0.2")]
#![deny(unconditional_recursion)]
#![cfg_attr(not(feature = "std"), no_std)]
#[cfg(feature = "std")]
extern crate core;
use core::ops::{Add, Sub, Mul, Div, Rem};
use core::ops::{AddAssign, SubAssign, MulAssign, DivAssign, RemAssign};
use core::num::Wrapping;
use core::fmt;
pub use bounds::Bounded;
pub use float::{Float, FloatConst};
#[cfg(feature = "std")]
pub use float::Float;
pub use float::FloatConst;
// pub use real::Real; // NOTE: Don't do this, it breaks `use num_traits::*;`.
pub use identities::{Zero, One, zero, one};
pub use ops::checked::*;
pub use ops::wrapping::*;
pub use ops::checked::{CheckedAdd, CheckedSub, CheckedMul, CheckedDiv, CheckedShl, CheckedShr};
pub use ops::wrapping::{WrappingAdd, WrappingMul, WrappingSub};
pub use ops::saturating::Saturating;
pub use sign::{Signed, Unsigned, abs, abs_sub, signum};
pub use cast::*;
pub use cast::{AsPrimitive, FromPrimitive, ToPrimitive, NumCast, cast};
pub use int::PrimInt;
pub use pow::{pow, checked_pow};
@ -34,6 +46,8 @@ pub mod sign;
pub mod ops;
pub mod bounds;
pub mod float;
#[cfg(feature = "std")]
pub mod real;
pub mod cast;
pub mod int;
pub mod pow;
@ -129,10 +143,10 @@ impl<T> NumAssignRef for T where T: NumAssign + for<'r> NumAssignOps<&'r T> {}
macro_rules! int_trait_impl {
($name:ident for $($t:ty)*) => ($(
impl $name for $t {
type FromStrRadixErr = ::std::num::ParseIntError;
type FromStrRadixErr = ::core::num::ParseIntError;
#[inline]
fn from_str_radix(s: &str, radix: u32)
-> Result<Self, ::std::num::ParseIntError>
-> Result<Self, ::core::num::ParseIntError>
{
<$t>::from_str_radix(s, radix)
}
@ -158,18 +172,29 @@ pub enum FloatErrorKind {
Empty,
Invalid,
}
// FIXME: std::num::ParseFloatError is stable in 1.0, but opaque to us,
// FIXME: core::num::ParseFloatError is stable in 1.0, but opaque to us,
// so there's not really any way for us to reuse it.
#[derive(Debug)]
pub struct ParseFloatError {
pub kind: FloatErrorKind,
}
impl fmt::Display for ParseFloatError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let description = match self.kind {
FloatErrorKind::Empty => "cannot parse float from empty string",
FloatErrorKind::Invalid => "invalid float literal",
};
description.fmt(f)
}
}
// FIXME: The standard library from_str_radix on floats was deprecated, so we're stuck
// with this implementation ourselves until we want to make a breaking change.
// (would have to drop it from `Num` though)
macro_rules! float_trait_impl {
($name:ident for $($t:ty)*) => ($(
($name:ident for $($t:ident)*) => ($(
impl $name for $t {
type FromStrRadixErr = ParseFloatError;
@ -181,9 +206,9 @@ macro_rules! float_trait_impl {
// Special values
match src {
"inf" => return Ok(Float::infinity()),
"-inf" => return Ok(Float::neg_infinity()),
"NaN" => return Ok(Float::nan()),
"inf" => return Ok(core::$t::INFINITY),
"-inf" => return Ok(core::$t::NEG_INFINITY),
"NaN" => return Ok(core::$t::NAN),
_ => {},
}
@ -224,15 +249,15 @@ macro_rules! float_trait_impl {
// if we've not seen any non-zero digits.
if prev_sig != 0.0 {
if is_positive && sig <= prev_sig
{ return Ok(Float::infinity()); }
{ return Ok(core::$t::INFINITY); }
if !is_positive && sig >= prev_sig
{ return Ok(Float::neg_infinity()); }
{ return Ok(core::$t::NEG_INFINITY); }
// Detect overflow by reversing the shift-and-add process
if is_positive && (prev_sig != (sig - digit as $t) / radix as $t)
{ return Ok(Float::infinity()); }
{ return Ok(core::$t::INFINITY); }
if !is_positive && (prev_sig != (sig + digit as $t) / radix as $t)
{ return Ok(Float::neg_infinity()); }
{ return Ok(core::$t::NEG_INFINITY); }
}
prev_sig = sig;
},
@ -268,9 +293,9 @@ macro_rules! float_trait_impl {
};
// Detect overflow by comparing to last value
if is_positive && sig < prev_sig
{ return Ok(Float::infinity()); }
{ return Ok(core::$t::INFINITY); }
if !is_positive && sig > prev_sig
{ return Ok(Float::neg_infinity()); }
{ return Ok(core::$t::NEG_INFINITY); }
prev_sig = sig;
},
None => match c {
@ -304,9 +329,15 @@ macro_rules! float_trait_impl {
None => return Err(PFE { kind: Invalid }),
};
#[cfg(feature = "std")]
fn pow(base: $t, exp: usize) -> $t {
Float::powi(base, exp as i32)
}
// otherwise uses the generic `pow` from the root
match (is_positive, exp) {
(true, Ok(exp)) => base.powi(exp as i32),
(false, Ok(exp)) => 1.0 / base.powi(exp as i32),
(true, Ok(exp)) => pow(base, exp),
(false, Ok(exp)) => 1.0 / pow(base, exp),
(_, Err(_)) => return Err(PFE { kind: Invalid }),
}
},

View File

@ -1,4 +1,4 @@
use std::ops::{Add, Sub, Mul, Div};
use core::ops::{Add, Sub, Mul, Div, Shl, Shr};
/// Performs addition that returns `None` instead of wrapping around on
/// overflow.
@ -90,3 +90,73 @@ checked_impl!(CheckedDiv, checked_div, i32);
checked_impl!(CheckedDiv, checked_div, i64);
checked_impl!(CheckedDiv, checked_div, isize);
/// Performs a left shift that returns `None` on overflow.
pub trait CheckedShl: Sized + Shl<u32, Output=Self> {
/// Shifts a number to the left, checking for overflow. If overflow happens,
/// `None` is returned.
///
/// ```
/// use num_traits::CheckedShl;
///
/// let x: u16 = 0x0001;
///
/// assert_eq!(CheckedShl::checked_shl(&x, 0), Some(0x0001));
/// assert_eq!(CheckedShl::checked_shl(&x, 1), Some(0x0002));
/// assert_eq!(CheckedShl::checked_shl(&x, 15), Some(0x8000));
/// assert_eq!(CheckedShl::checked_shl(&x, 16), None);
/// ```
fn checked_shl(&self, rhs: u32) -> Option<Self>;
}
macro_rules! checked_shift_impl {
($trait_name:ident, $method:ident, $t:ty) => {
impl $trait_name for $t {
#[inline]
fn $method(&self, rhs: u32) -> Option<$t> {
<$t>::$method(*self, rhs)
}
}
}
}
checked_shift_impl!(CheckedShl, checked_shl, u8);
checked_shift_impl!(CheckedShl, checked_shl, u16);
checked_shift_impl!(CheckedShl, checked_shl, u32);
checked_shift_impl!(CheckedShl, checked_shl, u64);
checked_shift_impl!(CheckedShl, checked_shl, usize);
checked_shift_impl!(CheckedShl, checked_shl, i8);
checked_shift_impl!(CheckedShl, checked_shl, i16);
checked_shift_impl!(CheckedShl, checked_shl, i32);
checked_shift_impl!(CheckedShl, checked_shl, i64);
checked_shift_impl!(CheckedShl, checked_shl, isize);
/// Performs a right shift that returns `None` on overflow.
pub trait CheckedShr: Sized + Shr<u32, Output=Self> {
/// Shifts a number to the left, checking for overflow. If overflow happens,
/// `None` is returned.
///
/// ```
/// use num_traits::CheckedShr;
///
/// let x: u16 = 0x8000;
///
/// assert_eq!(CheckedShr::checked_shr(&x, 0), Some(0x8000));
/// assert_eq!(CheckedShr::checked_shr(&x, 1), Some(0x4000));
/// assert_eq!(CheckedShr::checked_shr(&x, 15), Some(0x0001));
/// assert_eq!(CheckedShr::checked_shr(&x, 16), None);
/// ```
fn checked_shr(&self, rhs: u32) -> Option<Self>;
}
checked_shift_impl!(CheckedShr, checked_shr, u8);
checked_shift_impl!(CheckedShr, checked_shr, u16);
checked_shift_impl!(CheckedShr, checked_shr, u32);
checked_shift_impl!(CheckedShr, checked_shr, u64);
checked_shift_impl!(CheckedShr, checked_shr, usize);
checked_shift_impl!(CheckedShr, checked_shr, i8);
checked_shift_impl!(CheckedShr, checked_shr, i16);
checked_shift_impl!(CheckedShr, checked_shr, i32);
checked_shift_impl!(CheckedShr, checked_shr, i64);
checked_shift_impl!(CheckedShr, checked_shr, isize);

View File

@ -1,5 +1,5 @@
use std::ops::{Add, Sub, Mul};
use std::num::Wrapping;
use core::ops::{Add, Sub, Mul};
use core::num::Wrapping;
macro_rules! wrapping_impl {
($trait_name:ident, $method:ident, $t:ty) => {

View File

@ -1,4 +1,4 @@
use std::ops::Mul;
use core::ops::Mul;
use {One, CheckedMul};
/// Raises a value to the power of exp, using exponentiation by squaring.

926
third_party/rust/num-traits/src/real.rs vendored Normal file
View File

@ -0,0 +1,926 @@
use std::ops::Neg;
use {Num, NumCast, Float};
// NOTE: These doctests have the same issue as those in src/float.rs.
// They're testing the inherent methods directly, and not those of `Real`.
/// A trait for real number types that do not necessarily have
/// floating-point-specific characteristics such as NaN and infinity.
///
/// See [this Wikipedia article](https://en.wikipedia.org/wiki/Real_data_type)
/// for a list of data types that could meaningfully implement this trait.
///
/// This trait is only available with the `std` feature.
pub trait Real
: Num
+ Copy
+ NumCast
+ PartialOrd
+ Neg<Output = Self>
{
/// Returns the smallest finite value that this type can represent.
///
/// ```
/// use num_traits::real::Real;
/// use std::f64;
///
/// let x: f64 = Real::min_value();
///
/// assert_eq!(x, f64::MIN);
/// ```
fn min_value() -> Self;
/// Returns the smallest positive, normalized value that this type can represent.
///
/// ```
/// use num_traits::real::Real;
/// use std::f64;
///
/// let x: f64 = Real::min_positive_value();
///
/// assert_eq!(x, f64::MIN_POSITIVE);
/// ```
fn min_positive_value() -> Self;
/// Returns epsilon, a small positive value.
///
/// ```
/// use num_traits::real::Real;
/// use std::f64;
///
/// let x: f64 = Real::epsilon();
///
/// assert_eq!(x, f64::EPSILON);
/// ```
///
/// # Panics
///
/// The default implementation will panic if `f32::EPSILON` cannot
/// be cast to `Self`.
fn epsilon() -> Self;
/// Returns the largest finite value that this type can represent.
///
/// ```
/// use num_traits::real::Real;
/// use std::f64;
///
/// let x: f64 = Real::max_value();
/// assert_eq!(x, f64::MAX);
/// ```
fn max_value() -> Self;
/// Returns the largest integer less than or equal to a number.
///
/// ```
/// use num_traits::real::Real;
///
/// let f = 3.99;
/// let g = 3.0;
///
/// assert_eq!(f.floor(), 3.0);
/// assert_eq!(g.floor(), 3.0);
/// ```
fn floor(self) -> Self;
/// Returns the smallest integer greater than or equal to a number.
///
/// ```
/// use num_traits::real::Real;
///
/// let f = 3.01;
/// let g = 4.0;
///
/// assert_eq!(f.ceil(), 4.0);
/// assert_eq!(g.ceil(), 4.0);
/// ```
fn ceil(self) -> Self;
/// Returns the nearest integer to a number. Round half-way cases away from
/// `0.0`.
///
/// ```
/// use num_traits::real::Real;
///
/// let f = 3.3;
/// let g = -3.3;
///
/// assert_eq!(f.round(), 3.0);
/// assert_eq!(g.round(), -3.0);
/// ```
fn round(self) -> Self;
/// Return the integer part of a number.
///
/// ```
/// use num_traits::real::Real;
///
/// let f = 3.3;
/// let g = -3.7;
///
/// assert_eq!(f.trunc(), 3.0);
/// assert_eq!(g.trunc(), -3.0);
/// ```
fn trunc(self) -> Self;
/// Returns the fractional part of a number.
///
/// ```
/// use num_traits::real::Real;
///
/// let x = 3.5;
/// let y = -3.5;
/// let abs_difference_x = (x.fract() - 0.5).abs();
/// let abs_difference_y = (y.fract() - (-0.5)).abs();
///
/// assert!(abs_difference_x < 1e-10);
/// assert!(abs_difference_y < 1e-10);
/// ```
fn fract(self) -> Self;
/// Computes the absolute value of `self`. Returns `Float::nan()` if the
/// number is `Float::nan()`.
///
/// ```
/// use num_traits::real::Real;
/// use std::f64;
///
/// let x = 3.5;
/// let y = -3.5;
///
/// let abs_difference_x = (x.abs() - x).abs();
/// let abs_difference_y = (y.abs() - (-y)).abs();
///
/// assert!(abs_difference_x < 1e-10);
/// assert!(abs_difference_y < 1e-10);
///
/// assert!(::num_traits::Float::is_nan(f64::NAN.abs()));
/// ```
fn abs(self) -> Self;
/// Returns a number that represents the sign of `self`.
///
/// - `1.0` if the number is positive, `+0.0` or `Float::infinity()`
/// - `-1.0` if the number is negative, `-0.0` or `Float::neg_infinity()`
/// - `Float::nan()` if the number is `Float::nan()`
///
/// ```
/// use num_traits::real::Real;
/// use std::f64;
///
/// let f = 3.5;
///
/// assert_eq!(f.signum(), 1.0);
/// assert_eq!(f64::NEG_INFINITY.signum(), -1.0);
///
/// assert!(f64::NAN.signum().is_nan());
/// ```
fn signum(self) -> Self;
/// Returns `true` if `self` is positive, including `+0.0`,
/// `Float::infinity()`, and with newer versions of Rust `f64::NAN`.
///
/// ```
/// use num_traits::real::Real;
/// use std::f64;
///
/// let neg_nan: f64 = -f64::NAN;
///
/// let f = 7.0;
/// let g = -7.0;
///
/// assert!(f.is_sign_positive());
/// assert!(!g.is_sign_positive());
/// assert!(!neg_nan.is_sign_positive());
/// ```
fn is_sign_positive(self) -> bool;
/// Returns `true` if `self` is negative, including `-0.0`,
/// `Float::neg_infinity()`, and with newer versions of Rust `-f64::NAN`.
///
/// ```
/// use num_traits::real::Real;
/// use std::f64;
///
/// let nan: f64 = f64::NAN;
///
/// let f = 7.0;
/// let g = -7.0;
///
/// assert!(!f.is_sign_negative());
/// assert!(g.is_sign_negative());
/// assert!(!nan.is_sign_negative());
/// ```
fn is_sign_negative(self) -> bool;
/// Fused multiply-add. Computes `(self * a) + b` with only one rounding
/// error. This produces a more accurate result with better performance than
/// a separate multiplication operation followed by an add.
///
/// ```
/// use num_traits::real::Real;
///
/// let m = 10.0;
/// let x = 4.0;
/// let b = 60.0;
///
/// // 100.0
/// let abs_difference = (m.mul_add(x, b) - (m*x + b)).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
fn mul_add(self, a: Self, b: Self) -> Self;
/// Take the reciprocal (inverse) of a number, `1/x`.
///
/// ```
/// use num_traits::real::Real;
///
/// let x = 2.0;
/// let abs_difference = (x.recip() - (1.0/x)).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
fn recip(self) -> Self;
/// Raise a number to an integer power.
///
/// Using this function is generally faster than using `powf`
///
/// ```
/// use num_traits::real::Real;
///
/// let x = 2.0;
/// let abs_difference = (x.powi(2) - x*x).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
fn powi(self, n: i32) -> Self;
/// Raise a number to a real number power.
///
/// ```
/// use num_traits::real::Real;
///
/// let x = 2.0;
/// let abs_difference = (x.powf(2.0) - x*x).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
fn powf(self, n: Self) -> Self;
/// Take the square root of a number.
///
/// Returns NaN if `self` is a negative floating-point number.
///
/// # Panics
///
/// If the implementing type doesn't support NaN, this method should panic if `self < 0`.
///
/// ```
/// use num_traits::real::Real;
///
/// let positive = 4.0;
/// let negative = -4.0;
///
/// let abs_difference = (positive.sqrt() - 2.0).abs();
///
/// assert!(abs_difference < 1e-10);
/// assert!(::num_traits::Float::is_nan(negative.sqrt()));
/// ```
fn sqrt(self) -> Self;
/// Returns `e^(self)`, (the exponential function).
///
/// ```
/// use num_traits::real::Real;
///
/// let one = 1.0;
/// // e^1
/// let e = one.exp();
///
/// // ln(e) - 1 == 0
/// let abs_difference = (e.ln() - 1.0).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
fn exp(self) -> Self;
/// Returns `2^(self)`.
///
/// ```
/// use num_traits::real::Real;
///
/// let f = 2.0;
///
/// // 2^2 - 4 == 0
/// let abs_difference = (f.exp2() - 4.0).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
fn exp2(self) -> Self;
/// Returns the natural logarithm of the number.
///
/// # Panics
///
/// If `self <= 0` and this type does not support a NaN representation, this function should panic.
///
/// ```
/// use num_traits::real::Real;
///
/// let one = 1.0;
/// // e^1
/// let e = one.exp();
///
/// // ln(e) - 1 == 0
/// let abs_difference = (e.ln() - 1.0).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
fn ln(self) -> Self;
/// Returns the logarithm of the number with respect to an arbitrary base.
///
/// # Panics
///
/// If `self <= 0` and this type does not support a NaN representation, this function should panic.
///
/// ```
/// use num_traits::real::Real;
///
/// let ten = 10.0;
/// let two = 2.0;
///
/// // log10(10) - 1 == 0
/// let abs_difference_10 = (ten.log(10.0) - 1.0).abs();
///
/// // log2(2) - 1 == 0
/// let abs_difference_2 = (two.log(2.0) - 1.0).abs();
///
/// assert!(abs_difference_10 < 1e-10);
/// assert!(abs_difference_2 < 1e-10);
/// ```
fn log(self, base: Self) -> Self;
/// Returns the base 2 logarithm of the number.
///
/// # Panics
///
/// If `self <= 0` and this type does not support a NaN representation, this function should panic.
///
/// ```
/// use num_traits::real::Real;
///
/// let two = 2.0;
///
/// // log2(2) - 1 == 0
/// let abs_difference = (two.log2() - 1.0).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
fn log2(self) -> Self;
/// Returns the base 10 logarithm of the number.
///
/// # Panics
///
/// If `self <= 0` and this type does not support a NaN representation, this function should panic.
///
///
/// ```
/// use num_traits::real::Real;
///
/// let ten = 10.0;
///
/// // log10(10) - 1 == 0
/// let abs_difference = (ten.log10() - 1.0).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
fn log10(self) -> Self;
/// Converts radians to degrees.
///
/// ```
/// use std::f64::consts;
///
/// let angle = consts::PI;
///
/// let abs_difference = (angle.to_degrees() - 180.0).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
fn to_degrees(self) -> Self;
/// Converts degrees to radians.
///
/// ```
/// use std::f64::consts;
///
/// let angle = 180.0_f64;
///
/// let abs_difference = (angle.to_radians() - consts::PI).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
fn to_radians(self) -> Self;
/// Returns the maximum of the two numbers.
///
/// ```
/// use num_traits::real::Real;
///
/// let x = 1.0;
/// let y = 2.0;
///
/// assert_eq!(x.max(y), y);
/// ```
fn max(self, other: Self) -> Self;
/// Returns the minimum of the two numbers.
///
/// ```
/// use num_traits::real::Real;
///
/// let x = 1.0;
/// let y = 2.0;
///
/// assert_eq!(x.min(y), x);
/// ```
fn min(self, other: Self) -> Self;
/// The positive difference of two numbers.
///
/// * If `self <= other`: `0:0`
/// * Else: `self - other`
///
/// ```
/// use num_traits::real::Real;
///
/// let x = 3.0;
/// let y = -3.0;
///
/// let abs_difference_x = (x.abs_sub(1.0) - 2.0).abs();
/// let abs_difference_y = (y.abs_sub(1.0) - 0.0).abs();
///
/// assert!(abs_difference_x < 1e-10);
/// assert!(abs_difference_y < 1e-10);
/// ```
fn abs_sub(self, other: Self) -> Self;
/// Take the cubic root of a number.
///
/// ```
/// use num_traits::real::Real;
///
/// let x = 8.0;
///
/// // x^(1/3) - 2 == 0
/// let abs_difference = (x.cbrt() - 2.0).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
fn cbrt(self) -> Self;
/// Calculate the length of the hypotenuse of a right-angle triangle given
/// legs of length `x` and `y`.
///
/// ```
/// use num_traits::real::Real;
///
/// let x = 2.0;
/// let y = 3.0;
///
/// // sqrt(x^2 + y^2)
/// let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
fn hypot(self, other: Self) -> Self;
/// Computes the sine of a number (in radians).
///
/// ```
/// use num_traits::real::Real;
/// use std::f64;
///
/// let x = f64::consts::PI/2.0;
///
/// let abs_difference = (x.sin() - 1.0).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
fn sin(self) -> Self;
/// Computes the cosine of a number (in radians).
///
/// ```
/// use num_traits::real::Real;
/// use std::f64;
///
/// let x = 2.0*f64::consts::PI;
///
/// let abs_difference = (x.cos() - 1.0).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
fn cos(self) -> Self;
/// Computes the tangent of a number (in radians).
///
/// ```
/// use num_traits::real::Real;
/// use std::f64;
///
/// let x = f64::consts::PI/4.0;
/// let abs_difference = (x.tan() - 1.0).abs();
///
/// assert!(abs_difference < 1e-14);
/// ```
fn tan(self) -> Self;
/// Computes the arcsine of a number. Return value is in radians in
/// the range [-pi/2, pi/2] or NaN if the number is outside the range
/// [-1, 1].
///
/// # Panics
///
/// If this type does not support a NaN representation, this function should panic
/// if the number is outside the range [-1, 1].
///
/// ```
/// use num_traits::real::Real;
/// use std::f64;
///
/// let f = f64::consts::PI / 2.0;
///
/// // asin(sin(pi/2))
/// let abs_difference = (f.sin().asin() - f64::consts::PI / 2.0).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
fn asin(self) -> Self;
/// Computes the arccosine of a number. Return value is in radians in
/// the range [0, pi] or NaN if the number is outside the range
/// [-1, 1].
///
/// # Panics
///
/// If this type does not support a NaN representation, this function should panic
/// if the number is outside the range [-1, 1].
///
/// ```
/// use num_traits::real::Real;
/// use std::f64;
///
/// let f = f64::consts::PI / 4.0;
///
/// // acos(cos(pi/4))
/// let abs_difference = (f.cos().acos() - f64::consts::PI / 4.0).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
fn acos(self) -> Self;
/// Computes the arctangent of a number. Return value is in radians in the
/// range [-pi/2, pi/2];
///
/// ```
/// use num_traits::real::Real;
///
/// let f = 1.0;
///
/// // atan(tan(1))
/// let abs_difference = (f.tan().atan() - 1.0).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
fn atan(self) -> Self;
/// Computes the four quadrant arctangent of `self` (`y`) and `other` (`x`).
///
/// * `x = 0`, `y = 0`: `0`
/// * `x >= 0`: `arctan(y/x)` -> `[-pi/2, pi/2]`
/// * `y >= 0`: `arctan(y/x) + pi` -> `(pi/2, pi]`
/// * `y < 0`: `arctan(y/x) - pi` -> `(-pi, -pi/2)`
///
/// ```
/// use num_traits::real::Real;
/// use std::f64;
///
/// let pi = f64::consts::PI;
/// // All angles from horizontal right (+x)
/// // 45 deg counter-clockwise
/// let x1 = 3.0;
/// let y1 = -3.0;
///
/// // 135 deg clockwise
/// let x2 = -3.0;
/// let y2 = 3.0;
///
/// let abs_difference_1 = (y1.atan2(x1) - (-pi/4.0)).abs();
/// let abs_difference_2 = (y2.atan2(x2) - 3.0*pi/4.0).abs();
///
/// assert!(abs_difference_1 < 1e-10);
/// assert!(abs_difference_2 < 1e-10);
/// ```
fn atan2(self, other: Self) -> Self;
/// Simultaneously computes the sine and cosine of the number, `x`. Returns
/// `(sin(x), cos(x))`.
///
/// ```
/// use num_traits::real::Real;
/// use std::f64;
///
/// let x = f64::consts::PI/4.0;
/// let f = x.sin_cos();
///
/// let abs_difference_0 = (f.0 - x.sin()).abs();
/// let abs_difference_1 = (f.1 - x.cos()).abs();
///
/// assert!(abs_difference_0 < 1e-10);
/// assert!(abs_difference_0 < 1e-10);
/// ```
fn sin_cos(self) -> (Self, Self);
/// Returns `e^(self) - 1` in a way that is accurate even if the
/// number is close to zero.
///
/// ```
/// use num_traits::real::Real;
///
/// let x = 7.0;
///
/// // e^(ln(7)) - 1
/// let abs_difference = (x.ln().exp_m1() - 6.0).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
fn exp_m1(self) -> Self;
/// Returns `ln(1+n)` (natural logarithm) more accurately than if
/// the operations were performed separately.
///
/// # Panics
///
/// If this type does not support a NaN representation, this function should panic
/// if `self-1 <= 0`.
///
/// ```
/// use num_traits::real::Real;
/// use std::f64;
///
/// let x = f64::consts::E - 1.0;
///
/// // ln(1 + (e - 1)) == ln(e) == 1
/// let abs_difference = (x.ln_1p() - 1.0).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
fn ln_1p(self) -> Self;
/// Hyperbolic sine function.
///
/// ```
/// use num_traits::real::Real;
/// use std::f64;
///
/// let e = f64::consts::E;
/// let x = 1.0;
///
/// let f = x.sinh();
/// // Solving sinh() at 1 gives `(e^2-1)/(2e)`
/// let g = (e*e - 1.0)/(2.0*e);
/// let abs_difference = (f - g).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
fn sinh(self) -> Self;
/// Hyperbolic cosine function.
///
/// ```
/// use num_traits::real::Real;
/// use std::f64;
///
/// let e = f64::consts::E;
/// let x = 1.0;
/// let f = x.cosh();
/// // Solving cosh() at 1 gives this result
/// let g = (e*e + 1.0)/(2.0*e);
/// let abs_difference = (f - g).abs();
///
/// // Same result
/// assert!(abs_difference < 1.0e-10);
/// ```
fn cosh(self) -> Self;
/// Hyperbolic tangent function.
///
/// ```
/// use num_traits::real::Real;
/// use std::f64;
///
/// let e = f64::consts::E;
/// let x = 1.0;
///
/// let f = x.tanh();
/// // Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))`
/// let g = (1.0 - e.powi(-2))/(1.0 + e.powi(-2));
/// let abs_difference = (f - g).abs();
///
/// assert!(abs_difference < 1.0e-10);
/// ```
fn tanh(self) -> Self;
/// Inverse hyperbolic sine function.
///
/// ```
/// use num_traits::real::Real;
///
/// let x = 1.0;
/// let f = x.sinh().asinh();
///
/// let abs_difference = (f - x).abs();
///
/// assert!(abs_difference < 1.0e-10);
/// ```
fn asinh(self) -> Self;
/// Inverse hyperbolic cosine function.
///
/// ```
/// use num_traits::real::Real;
///
/// let x = 1.0;
/// let f = x.cosh().acosh();
///
/// let abs_difference = (f - x).abs();
///
/// assert!(abs_difference < 1.0e-10);
/// ```
fn acosh(self) -> Self;
/// Inverse hyperbolic tangent function.
///
/// ```
/// use num_traits::real::Real;
/// use std::f64;
///
/// let e = f64::consts::E;
/// let f = e.tanh().atanh();
///
/// let abs_difference = (f - e).abs();
///
/// assert!(abs_difference < 1.0e-10);
/// ```
fn atanh(self) -> Self;
}
impl<T: Float> Real for T {
fn min_value() -> Self {
Self::min_value()
}
fn min_positive_value() -> Self {
Self::min_positive_value()
}
fn epsilon() -> Self {
Self::epsilon()
}
fn max_value() -> Self {
Self::max_value()
}
fn floor(self) -> Self {
self.floor()
}
fn ceil(self) -> Self {
self.ceil()
}
fn round(self) -> Self {
self.round()
}
fn trunc(self) -> Self {
self.trunc()
}
fn fract(self) -> Self {
self.fract()
}
fn abs(self) -> Self {
self.abs()
}
fn signum(self) -> Self {
self.signum()
}
fn is_sign_positive(self) -> bool {
self.is_sign_positive()
}
fn is_sign_negative(self) -> bool {
self.is_sign_negative()
}
fn mul_add(self, a: Self, b: Self) -> Self {
self.mul_add(a, b)
}
fn recip(self) -> Self {
self.recip()
}
fn powi(self, n: i32) -> Self {
self.powi(n)
}
fn powf(self, n: Self) -> Self {
self.powf(n)
}
fn sqrt(self) -> Self {
self.sqrt()
}
fn exp(self) -> Self {
self.exp()
}
fn exp2(self) -> Self {
self.exp2()
}
fn ln(self) -> Self {
self.ln()
}
fn log(self, base: Self) -> Self {
self.log(base)
}
fn log2(self) -> Self {
self.log2()
}
fn log10(self) -> Self {
self.log10()
}
fn to_degrees(self) -> Self {
self.to_degrees()
}
fn to_radians(self) -> Self {
self.to_radians()
}
fn max(self, other: Self) -> Self {
self.max(other)
}
fn min(self, other: Self) -> Self {
self.min(other)
}
fn abs_sub(self, other: Self) -> Self {
self.abs_sub(other)
}
fn cbrt(self) -> Self {
self.cbrt()
}
fn hypot(self, other: Self) -> Self {
self.hypot(other)
}
fn sin(self) -> Self {
self.sin()
}
fn cos(self) -> Self {
self.cos()
}
fn tan(self) -> Self {
self.tan()
}
fn asin(self) -> Self {
self.asin()
}
fn acos(self) -> Self {
self.acos()
}
fn atan(self) -> Self {
self.atan()
}
fn atan2(self, other: Self) -> Self {
self.atan2(other)
}
fn sin_cos(self) -> (Self, Self) {
self.sin_cos()
}
fn exp_m1(self) -> Self {
self.exp_m1()
}
fn ln_1p(self) -> Self {
self.ln_1p()
}
fn sinh(self) -> Self {
self.sinh()
}
fn cosh(self) -> Self {
self.cosh()
}
fn tanh(self) -> Self {
self.tanh()
}
fn asinh(self) -> Self {
self.asinh()
}
fn acosh(self) -> Self {
self.acosh()
}
fn atanh(self) -> Self {
self.atanh()
}
}

View File

@ -1,6 +1,6 @@
use std::ops::Neg;
use std::{f32, f64};
use std::num::Wrapping;
use core::ops::Neg;
use core::{f32, f64};
use core::num::Wrapping;
use Num;
@ -103,17 +103,30 @@ macro_rules! signed_float_impl {
impl Signed for $t {
/// Computes the absolute value. Returns `NAN` if the number is `NAN`.
#[inline]
#[cfg(feature = "std")]
fn abs(&self) -> $t {
<$t>::abs(*self)
(*self).abs()
}
/// Computes the absolute value. Returns `NAN` if the number is `NAN`.
#[inline]
#[cfg(not(feature = "std"))]
fn abs(&self) -> $t {
if self.is_positive() {
*self
} else if self.is_negative() {
-*self
} else {
$nan
}
}
/// The positive difference of two numbers. Returns `0.0` if the number is
/// less than or equal to `other`, otherwise the difference between`self`
/// and `other` is returned.
#[inline]
#[allow(deprecated)]
fn abs_sub(&self, other: &$t) -> $t {
<$t>::abs_sub(*self, *other)
if *self <= *other { 0. } else { *self - *other }
}
/// # Returns
@ -122,8 +135,27 @@ macro_rules! signed_float_impl {
/// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
/// - `NAN` if the number is NaN
#[inline]
#[cfg(feature = "std")]
fn signum(&self) -> $t {
<$t>::signum(*self)
use Float;
Float::signum(*self)
}
/// # Returns
///
/// - `1.0` if the number is positive, `+0.0` or `INFINITY`
/// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
/// - `NAN` if the number is NaN
#[inline]
#[cfg(not(feature = "std"))]
fn signum(&self) -> $t {
if self.is_positive() {
1.0
} else if self.is_negative() {
-1.0
} else {
$nan
}
}
/// Returns `true` if the number is positive, including `+0.0` and `INFINITY`