mirror of
https://github.com/mozilla/gecko-dev.git
synced 2025-02-15 21:36:20 +00:00
Bug 960786: SpiderMonkey should provide an introspection API for memory heap analysis (ubi::Node) r=sfink
This commit is contained in:
parent
6d4f99fdba
commit
d84b1105f4
462
js/public/UbiNode.h
Normal file
462
js/public/UbiNode.h
Normal file
@ -0,0 +1,462 @@
|
||||
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
||||
* vim: set ts=8 sts=4 et sw=4 tw=99:
|
||||
* This Source Code Form is subject to the terms of the Mozilla Public
|
||||
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
||||
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
||||
|
||||
#ifndef js_UbiNode_h
|
||||
#define js_UbiNode_h
|
||||
|
||||
#include "mozilla/Alignment.h"
|
||||
#include "mozilla/Assertions.h"
|
||||
#include "mozilla/Attributes.h"
|
||||
#include "mozilla/Move.h"
|
||||
|
||||
#include "jspubtd.h"
|
||||
|
||||
#include "js/GCAPI.h"
|
||||
#include "js/HashTable.h"
|
||||
#include "js/TypeDecls.h"
|
||||
|
||||
// JS::ubi::Node
|
||||
//
|
||||
// JS::ubi::Node is a pointer-like type designed for internal use by heap
|
||||
// analysis tools. A ubi::Node can refer to:
|
||||
//
|
||||
// - a JS value, like a string or object;
|
||||
// - an internal SpiderMonkey structure, like a shape or a scope chain object
|
||||
// - an instance of some embedding-provided type: in Firefox, an XPCOM
|
||||
// object, or an internal DOM node class instance
|
||||
//
|
||||
// A ubi::Node instance provides metadata about its referent, and can
|
||||
// enumerate its referent's outgoing edges, so you can implement heap analysis
|
||||
// algorithms that walk the graph - finding paths between objects, or
|
||||
// computing heap dominator trees, say - using ubi::Node, while remaining
|
||||
// ignorant of the details of the types you're operating on.
|
||||
//
|
||||
// Of course, when it comes to presenting the results in a developer-facing
|
||||
// tool, you'll need to stop being ignorant of those details, because you have
|
||||
// to discuss the ubi::Nodes' referents with the developer. Here, ubi::Node
|
||||
// can hand you dynamically checked, properly typed pointers to the original
|
||||
// objects via the as<T> method, or generate descriptions of the referent
|
||||
// itself.
|
||||
//
|
||||
// ubi::Node instances are lightweight (two-word) value types. Instances:
|
||||
// - compare equal if and only if they refer to the same object;
|
||||
// - have hash values that respect their equality relation; and
|
||||
// - have serializations that are only equal if the ubi::Nodes are equal.
|
||||
//
|
||||
// A ubi::Node is only valid for as long as its referent is alive; if its
|
||||
// referent goes away, the ubi::Node becomes a dangling pointer. A ubi::Node
|
||||
// that refers to a GC-managed object is not automatically a GC root; if the
|
||||
// GC frees or relocates its referent, the ubi::Node becomes invalid. A
|
||||
// ubi::Node that refers to a reference-counted object does not bump the
|
||||
// reference count.
|
||||
//
|
||||
// ubi::Node values require no supporting data structures, making them
|
||||
// feasible for use in memory-constrained devices --- ideally, the memory
|
||||
// requirements of the algorithm which uses them will be the limiting factor,
|
||||
// not the demands of ubi::Node itself.
|
||||
//
|
||||
// One can construct a ubi::Node value given a pointer to a type that ubi::Node
|
||||
// supports. In the other direction, one can convert a ubi::Node back to a
|
||||
// pointer; these downcasts are checked dynamically. In particular, one can
|
||||
// convert a 'JSRuntime *' to a ubi::Node, yielding a node with an outgoing edge
|
||||
// for every root registered with the runtime; starting from this, one can walk
|
||||
// the entire heap. (Of course, one could also start traversal at any other kind
|
||||
// of type to which one has a pointer.)
|
||||
//
|
||||
//
|
||||
// Extending ubi::Node To Handle Your Embedding's Types
|
||||
//
|
||||
// To add support for a new ubi::Node referent type R, you must define a
|
||||
// specialization of the ubi::Concrete template, ubi::Concrete<R>, which
|
||||
// inherits from ubi::Base. ubi::Node itself uses the specialization for
|
||||
// compile-time information (i.e. the checked conversions between R * and
|
||||
// ubi::Node), and the inheritance for run-time dispatching.
|
||||
//
|
||||
//
|
||||
// ubi::Node Exposes Implementation Details
|
||||
//
|
||||
// In many cases, a JavaScript developer's view of their data differs
|
||||
// substantially from its actual implementation. For example, while the
|
||||
// ECMAScript specification describes objects as maps from property names to
|
||||
// sets of attributes (like ECMAScript's [[Value]]), in practice many objects
|
||||
// have only a pointer to a shape, shared with other similar objects, and
|
||||
// indexed slots that contain the [[Value]] attributes. As another example, a
|
||||
// string produced by concatenating two other strings may sometimes be
|
||||
// represented by a "rope", a structure that points to the two original
|
||||
// strings.
|
||||
//
|
||||
|
||||
// We intend to use ubi::Node to write tools that report memory usage, so it's
|
||||
// important that ubi::Node accurately portray how much memory nodes consume.
|
||||
// Thus, for example, when data that apparently belongs to multiple nodes is
|
||||
// in fact shared in a common structure, ubi::Node's graph uses a separate
|
||||
// node for that shared structure, and presents edges to it from the data's
|
||||
// apparent owners. For example, ubi::Node exposes SpiderMonkey objects'
|
||||
// shapes and base shapes, and exposes rope string and substring structure,
|
||||
// because these optimizations become visible when a tool reports how much
|
||||
// memory a structure consumes.
|
||||
//
|
||||
// However, fine granularity is not a goal. When a particular object is the
|
||||
// exclusive owner of a separate block of memory, ubi::Node may present the
|
||||
// object and its block as a single node, and add their sizes together when
|
||||
// reporting the node's size, as there is no meaningful loss of data in this
|
||||
// case. Thus, for example, a ubi::Node referring to a JavaScript object, when
|
||||
// asked for the object's size in bytes, includes the object's slot and
|
||||
// element arrays' sizes in the total. There is no separate ubi::Node value
|
||||
// representing the slot and element arrays, since they are owned exclusively
|
||||
// by the object.
|
||||
//
|
||||
//
|
||||
// Presenting Analysis Results To JavaScript Developers
|
||||
//
|
||||
// If an analysis provides its results in terms of ubi::Node values, a user
|
||||
// interface presenting those results will generally need to clean them up
|
||||
// before they can be understood by JavaScript developers. For example,
|
||||
// JavaScript developers should not need to understand shapes, only JavaScript
|
||||
// objects. Similarly, they should not need to understand the distinction
|
||||
// between DOM nodes and the JavaScript shadow objects that represent them.
|
||||
//
|
||||
//
|
||||
// Rooting Restrictions
|
||||
//
|
||||
// At present there is no way to root ubi::Node instances, so instances can't be
|
||||
// live across any operation that might GC. Analyses using ubi::Node must either
|
||||
// run to completion and convert their results to some other rootable type, or
|
||||
// save their intermediate state in some rooted structure if they must GC before
|
||||
// they complete. (For algorithms like path-finding and dominator tree
|
||||
// computation, we implement the algorithm avoiding any operation that could
|
||||
// cause a GC --- and use AutoCheckCannotGC to verify this.)
|
||||
//
|
||||
// If this restriction prevents us from implementing interesting tools, we may
|
||||
// teach the GC how to root ubi::Nodes, fix up hash tables that use them as
|
||||
// keys, etc.
|
||||
|
||||
|
||||
// Forward declarations of SpiderMonkey's ubi::Node reference types.
|
||||
namespace js {
|
||||
class LazyScript;
|
||||
class Shape;
|
||||
class BaseShape;
|
||||
namespace jit {
|
||||
class JitCode;
|
||||
}
|
||||
namespace types {
|
||||
struct TypeObject;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
namespace JS {
|
||||
namespace ubi {
|
||||
|
||||
class Edge;
|
||||
class EdgeRange;
|
||||
|
||||
// The base class implemented by each ubi::Node referent type. Subclasses must
|
||||
// not add data members to this class.
|
||||
class Base {
|
||||
friend class Node;
|
||||
|
||||
// For performance's sake, we'd prefer to avoid a virtual destructor; and
|
||||
// an empty constructor seems consistent with the 'lightweight value type'
|
||||
// visible behavior we're trying to achieve. But if the destructor isn't
|
||||
// virtual, and a subclass overrides it, the subclass's destructor will be
|
||||
// ignored. Is there a way to make the compiler catch that error?
|
||||
|
||||
protected:
|
||||
// Space for the actual pointer. Concrete subclasses should define a
|
||||
// properly typed 'get' member function to access this.
|
||||
void *ptr;
|
||||
|
||||
Base(void *ptr) : ptr(ptr) { }
|
||||
|
||||
public:
|
||||
bool operator==(const Base &rhs) const {
|
||||
// Some compilers will indeed place objects of different types at
|
||||
// the same address, so technically, we should include the vtable
|
||||
// in this comparison. But it seems unlikely to cause problems in
|
||||
// practice.
|
||||
return ptr == rhs.ptr;
|
||||
}
|
||||
bool operator!=(const Base &rhs) const { return !(*this == rhs); }
|
||||
|
||||
// Return a human-readable name for the referent's type. The result should
|
||||
// be statically allocated. (You can use MOZ_UTF16("strings") for this.)
|
||||
//
|
||||
// This must always return Concrete<T>::concreteTypeName; we use that
|
||||
// pointer as a tag for this particular referent type.
|
||||
virtual const jschar *typeName() const = 0;
|
||||
|
||||
// Return the size of this node, in bytes. Include any structures that this
|
||||
// node owns exclusively that are not exposed as their own ubi::Nodes.
|
||||
virtual size_t size() const = 0;
|
||||
|
||||
// Return an EdgeRange that initially contains all the referent's outgoing
|
||||
// edges. The EdgeRange should be freed with 'js_delete'. (You could use
|
||||
// ScopedDJSeletePtr<EdgeRange> to manage it.) On OOM, report an exception
|
||||
// on |cx| and return nullptr.
|
||||
virtual EdgeRange *edges(JSContext *cx) const = 0;
|
||||
|
||||
private:
|
||||
Base(const Base &rhs) MOZ_DELETE;
|
||||
Base &operator=(const Base &rhs) MOZ_DELETE;
|
||||
};
|
||||
|
||||
// A traits template with a specialization for each referent type that
|
||||
// ubi::Node supports. The specialization must be the concrete subclass of
|
||||
// Base that represents a pointer to the referent type. It must also
|
||||
// include the members described here.
|
||||
template<typename Referent>
|
||||
struct Concrete {
|
||||
// The specific jschar array returned by Concrete<T>::typeName.
|
||||
static const jschar concreteTypeName[];
|
||||
|
||||
// Construct an instance of this concrete class in |storage| referring
|
||||
// to |referent|. Implementations typically use a placement 'new'.
|
||||
//
|
||||
// In some cases, |referent| will contain dynamic type information that
|
||||
// identifies it a some more specific subclass of |Referent|. For example,
|
||||
// when |Referent| is |JSObject|, then |referent->getClass()| could tell us
|
||||
// that it's actually a JSFunction. Similarly, if |Referent| is
|
||||
// |nsISupports|, we would like a ubi::Node that knows its final
|
||||
// implementation type.
|
||||
//
|
||||
// So, we delegate the actual construction to this specialization, which
|
||||
// knows Referent's details.
|
||||
static void construct(void *storage, Referent *referent);
|
||||
};
|
||||
|
||||
// A container for a Base instance; all members simply forward to the contained instance.
|
||||
// This container allows us to pass ubi::Node instances by value.
|
||||
class Node {
|
||||
// Storage in which we allocate Base subclasses.
|
||||
mozilla::AlignedStorage2<Base> storage;
|
||||
Base *base() { return storage.addr(); }
|
||||
const Base *base() const { return storage.addr(); }
|
||||
|
||||
template<typename T>
|
||||
void construct(T *ptr) {
|
||||
static_assert(sizeof(Concrete<T>) == sizeof(*base()),
|
||||
"ubi::Base specializations must be the same size as ubi::Base");
|
||||
Concrete<T>::construct(base(), ptr);
|
||||
}
|
||||
|
||||
typedef void (Node::* ConvertibleToBool)();
|
||||
void nonNull() {}
|
||||
|
||||
public:
|
||||
Node() { construct<void>(nullptr); }
|
||||
|
||||
template<typename T>
|
||||
Node(T *ptr) {
|
||||
construct(ptr);
|
||||
}
|
||||
template<typename T>
|
||||
Node &operator=(T *ptr) {
|
||||
construct(ptr);
|
||||
return *this;
|
||||
}
|
||||
|
||||
// We can construct and assign from rooted forms of pointers.
|
||||
template<typename T>
|
||||
Node(const Rooted<T *> &root) {
|
||||
construct(root.get());
|
||||
}
|
||||
template<typename T>
|
||||
Node &operator=(const Rooted<T *> &root) {
|
||||
construct(root.get());
|
||||
return *this;
|
||||
}
|
||||
|
||||
// Constructors accepting SpiderMonkey's other generic-pointer-ish types.
|
||||
Node(JS::Value value);
|
||||
Node(JSGCTraceKind kind, void *ptr);
|
||||
|
||||
// copy construction and copy assignment just use memcpy, since we know
|
||||
// instances contain nothing but a vtable pointer and a data pointer.
|
||||
//
|
||||
// To be completely correct, concrete classes could provide a virtual
|
||||
// 'construct' member function, which we could invoke on rhs to construct an
|
||||
// instance in our storage. But this is good enough; there's no need to jump
|
||||
// through vtables for copying and assignment that are just going to move
|
||||
// two words around. The compiler knows how to optimize memcpy.
|
||||
Node(const Node &rhs) {
|
||||
memcpy(storage.u.mBytes, rhs.storage.u.mBytes, sizeof(storage.u));
|
||||
}
|
||||
|
||||
Node &operator=(const Node &rhs) {
|
||||
memcpy(storage.u.mBytes, rhs.storage.u.mBytes, sizeof(storage.u));
|
||||
return *this;
|
||||
}
|
||||
|
||||
bool operator==(const Node &rhs) const { return *base() == *rhs.base(); }
|
||||
bool operator!=(const Node &rhs) const { return *base() != *rhs.base(); }
|
||||
|
||||
operator ConvertibleToBool() const {
|
||||
return base()->ptr ? &Node::nonNull : 0;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
bool is() const {
|
||||
return base()->typeName() == Concrete<T>::concreteTypeName;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
T *as() const {
|
||||
MOZ_ASSERT(is<T>());
|
||||
return static_cast<T *>(base()->ptr);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
T *asOrNull() const {
|
||||
return is<T>() ? static_cast<T *>(base()->ptr) : nullptr;
|
||||
}
|
||||
|
||||
// If this node refers to something that can be represented as a
|
||||
// JavaScript value that is safe to expose to JavaScript code, return that
|
||||
// value. Otherwise return UndefinedValue(). JSStrings and some (but not
|
||||
// all!) JSObjects can be exposed.
|
||||
JS::Value exposeToJS() const;
|
||||
|
||||
const jschar *typeName() const { return base()->typeName(); }
|
||||
size_t size() const { return base()->size(); }
|
||||
EdgeRange *edges(JSContext *cx) const { return base()->edges(cx); }
|
||||
|
||||
// A hash policy for ubi::Nodes.
|
||||
// This simply uses the stock PointerHasher on the ubi::Node's pointer.
|
||||
// We specialize DefaultHasher below to make this the default.
|
||||
class HashPolicy {
|
||||
typedef js::PointerHasher<void *, mozilla::tl::FloorLog2<sizeof(void *)>::value> PtrHash;
|
||||
|
||||
public:
|
||||
typedef Node Lookup;
|
||||
|
||||
static js::HashNumber hash(const Lookup &l) { return PtrHash::hash(l.base()->ptr); }
|
||||
static bool match(const Node &k, const Lookup &l) { return k == l; }
|
||||
static void rekey(Node &k, const Node &newKey) { k = newKey; }
|
||||
};
|
||||
};
|
||||
|
||||
|
||||
// Edge is the abstract base class representing an outgoing edge of a node.
|
||||
// Edges are owned by EdgeRanges, and need not have assignment operators or copy
|
||||
// constructors.
|
||||
//
|
||||
// Each Edge class should inherit from this base class, overriding as
|
||||
// appropriate.
|
||||
class Edge {
|
||||
protected:
|
||||
Edge() : name(nullptr), referent() { }
|
||||
virtual ~Edge() { }
|
||||
|
||||
public:
|
||||
// This edge's name.
|
||||
//
|
||||
// The storage is owned by this Edge, and will be freed when this Edge is
|
||||
// destructed.
|
||||
//
|
||||
// (In real life we'll want a better representation for names, to avoid
|
||||
// creating tons of strings when the names follow a pattern; and we'll need
|
||||
// to think about lifetimes carefully to ensure traversal stays cheap.)
|
||||
const jschar *name;
|
||||
|
||||
// This edge's referent.
|
||||
Node referent;
|
||||
|
||||
private:
|
||||
Edge(const Edge &) MOZ_DELETE;
|
||||
Edge &operator=(const Edge &) MOZ_DELETE;
|
||||
};
|
||||
|
||||
|
||||
// EdgeRange is an abstract base class for iterating over a node's outgoing
|
||||
// edges. (This is modeled after js::HashTable<K,V>::Range.)
|
||||
//
|
||||
// Concrete instances of this class need not be as lightweight as Node itself,
|
||||
// since they're usually only instantiated while iterating over a particular
|
||||
// object's edges. For example, a dumb implementation for JS Cells might use
|
||||
// JS_TraceChildren to to get the outgoing edges, and then store them in an
|
||||
// array internal to the EdgeRange.
|
||||
class EdgeRange {
|
||||
protected:
|
||||
// The current front edge of this range, or nullptr if this range is empty.
|
||||
Edge *front_;
|
||||
|
||||
EdgeRange() : front_(nullptr) { }
|
||||
|
||||
public:
|
||||
virtual ~EdgeRange() { };
|
||||
|
||||
// True if there are no more edges in this range.
|
||||
bool empty() const { return !front_; }
|
||||
|
||||
// The front edge of this range. This is owned by the EdgeRange, and is
|
||||
// only guaranteed to live until the next call to popFront, or until
|
||||
// the EdgeRange is destructed.
|
||||
const Edge &front() { return *front_; }
|
||||
|
||||
// Remove the front edge from this range. This should only be called if
|
||||
// !empty().
|
||||
virtual void popFront() = 0;
|
||||
|
||||
private:
|
||||
EdgeRange(const EdgeRange &) MOZ_DELETE;
|
||||
EdgeRange &operator=(const EdgeRange &) MOZ_DELETE;
|
||||
};
|
||||
|
||||
|
||||
// Concrete classes for ubi::Node referent types.
|
||||
|
||||
// A reusable ubi::Concrete specialization base class for types supported by
|
||||
// JS_TraceChildren.
|
||||
template<typename Referent>
|
||||
class TracerConcrete : public Base {
|
||||
const jschar *typeName() const MOZ_OVERRIDE { return concreteTypeName; }
|
||||
size_t size() const MOZ_OVERRIDE { return 0; } // not implemented yet; bug 1011300
|
||||
EdgeRange *edges(JSContext *) const MOZ_OVERRIDE;
|
||||
|
||||
TracerConcrete(Referent *ptr) : Base(ptr) { }
|
||||
|
||||
public:
|
||||
static const jschar concreteTypeName[];
|
||||
static void construct(void *storage, Referent *ptr) { new (storage) TracerConcrete(ptr); };
|
||||
};
|
||||
|
||||
template<> struct Concrete<JSObject> : TracerConcrete<JSObject> { };
|
||||
template<> struct Concrete<JSString> : TracerConcrete<JSString> { };
|
||||
template<> struct Concrete<JSScript> : TracerConcrete<JSScript> { };
|
||||
template<> struct Concrete<js::LazyScript> : TracerConcrete<js::LazyScript> { };
|
||||
template<> struct Concrete<js::jit::JitCode> : TracerConcrete<js::jit::JitCode> { };
|
||||
template<> struct Concrete<js::Shape> : TracerConcrete<js::Shape> { };
|
||||
template<> struct Concrete<js::BaseShape> : TracerConcrete<js::BaseShape> { };
|
||||
template<> struct Concrete<js::types::TypeObject> : TracerConcrete<js::types::TypeObject> { };
|
||||
|
||||
// The ubi::Node null pointer. Any attempt to operate on a null ubi::Node asserts.
|
||||
template<>
|
||||
class Concrete<void> : public Base {
|
||||
const jschar *typeName() const MOZ_OVERRIDE;
|
||||
size_t size() const MOZ_OVERRIDE;
|
||||
EdgeRange *edges(JSContext *cx) const MOZ_OVERRIDE;
|
||||
|
||||
Concrete(void *ptr) : Base(ptr) { }
|
||||
|
||||
public:
|
||||
static void construct(void *storage, void *ptr) { new (storage) Concrete(ptr); }
|
||||
static const jschar concreteTypeName[];
|
||||
};
|
||||
|
||||
|
||||
} // namespace ubi
|
||||
} // namespace JS
|
||||
|
||||
namespace js {
|
||||
|
||||
// Make ubi::Node::HashPolicy the default hash policy for ubi::Node.
|
||||
template<> struct DefaultHasher<JS::ubi::Node> : JS::ubi::Node::HashPolicy { };
|
||||
|
||||
} // namespace js
|
||||
|
||||
#endif // js_UbiNode_h
|
208
js/public/UbiNodeTraverse.h
Normal file
208
js/public/UbiNodeTraverse.h
Normal file
@ -0,0 +1,208 @@
|
||||
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
||||
* vim: set ts=8 sts=4 et sw=4 tw=99:
|
||||
* This Source Code Form is subject to the terms of the Mozilla Public
|
||||
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
||||
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
||||
|
||||
#ifndef js_UbiNodeTraverse_h
|
||||
#define js_UbiNodeTraverse_h
|
||||
|
||||
#include "js/UbiNode.h"
|
||||
#include "js/Utility.h"
|
||||
#include "js/Vector.h"
|
||||
|
||||
namespace JS {
|
||||
namespace ubi {
|
||||
|
||||
// A breadth-first traversal template for graphs of ubi::Nodes.
|
||||
//
|
||||
// No GC may occur while an instance of this template is live.
|
||||
//
|
||||
// The provided Handler type should have two members:
|
||||
//
|
||||
// typename NodeData;
|
||||
//
|
||||
// The value type of |BreadthFirst<Handler>::visited|, the HashMap of
|
||||
// ubi::Nodes that have been visited so far. Since the algorithm needs a
|
||||
// hash table like this for its own use anyway, it is simple to let
|
||||
// Handler store its own metadata about each node in the same table.
|
||||
//
|
||||
// For example, if you want to find a shortest path to each node from any
|
||||
// traversal starting point, your |NodeData| type could record the first
|
||||
// edge to reach each node, and the node from which it originates. Then,
|
||||
// when the traversal is complete, you can walk backwards from any node
|
||||
// to some starting point, and the path recorded will be a shortest path.
|
||||
//
|
||||
// This type must have a default constructor. If this type owns any other
|
||||
// resources, move constructors and assignment operators are probably a
|
||||
// good idea, too.
|
||||
//
|
||||
// bool operator() (BreadthFirst &traversal,
|
||||
// Node origin, const Edge &edge,
|
||||
// Handler::NodeData *referentData, bool first);
|
||||
//
|
||||
// The visitor function, called to report that we have traversed
|
||||
// |edge| from |origin|. This is called once for each edge we traverse.
|
||||
// As this is a breadth-first search, any prior calls to the visitor function
|
||||
// were for origin nodes not further from the start nodes than |origin|.
|
||||
//
|
||||
// |traversal| is this traversal object, passed along for convenience.
|
||||
//
|
||||
// |referentData| is a pointer to the value of the entry in
|
||||
// |traversal.visited| for |edge.referent|; the visitor function can
|
||||
// store whatever metadata it likes about |edge.referent| there.
|
||||
//
|
||||
// |first| is true if this is the first time we have visited an edge
|
||||
// leading to |edge.referent|. This could be stored in NodeData, but
|
||||
// the algorithm knows whether it has just created the entry in
|
||||
// |traversal.visited|, so it passes it along for convenience.
|
||||
//
|
||||
// The visitor function may call |traversal.stop()| if it doesn't want
|
||||
// to visit any more nodes.
|
||||
//
|
||||
// The visitor function may consult |traversal.visited| for information
|
||||
// about other nodes, but it should not add or remove entries.
|
||||
//
|
||||
// The visitor function should return true on success, or false if an
|
||||
// error occurs. A false return value terminates the traversal
|
||||
// immediately, and causes BreadthFirst<Handler>::traverse to return
|
||||
// false.
|
||||
template<typename Handler>
|
||||
struct BreadthFirst {
|
||||
|
||||
// Construct a breadth-first traversal object that reports the nodes it
|
||||
// reaches to |handler|. The traversal object reports OOM on |cx|, and
|
||||
// asserts that no GC happens in |cx|'s runtime during its lifetime.
|
||||
//
|
||||
// We do nothing with noGC, other than require it to exist, with a lifetime
|
||||
// that encloses our own.
|
||||
BreadthFirst(JSContext *cx, Handler &handler, const JS::AutoCheckCannotGC &noGC)
|
||||
: cx(cx), visited(cx), handler(handler), pending(cx),
|
||||
traversalBegun(false), stopRequested(false)
|
||||
{ }
|
||||
|
||||
// Initialize this traversal object. Return false on OOM.
|
||||
bool init() { return visited.init(); }
|
||||
|
||||
// Add |node| as a starting point for the traversal. You may add
|
||||
// as many starting points as you like. Return false on OOM.
|
||||
bool addStart(Node node) { return pending.append(node); }
|
||||
|
||||
// Traverse the graph in breadth-first order, starting at the given
|
||||
// start nodes, applying |handler::operator()| for each edge traversed
|
||||
// as described above.
|
||||
//
|
||||
// This should be called only once per instance of this class.
|
||||
//
|
||||
// Return false on OOM or error return from |handler::operator()|.
|
||||
bool traverse()
|
||||
{
|
||||
MOZ_ASSERT(!traversalBegun);
|
||||
traversalBegun = true;
|
||||
|
||||
// While there are pending nodes, visit them, until we've found a path to the target.
|
||||
while (!pending.empty()) {
|
||||
Node origin = pending.front();
|
||||
pending.popFront();
|
||||
|
||||
// Get a range containing all origin's outgoing edges.
|
||||
js::ScopedJSDeletePtr<EdgeRange> range(origin.edges(cx));
|
||||
if (!range)
|
||||
return false;
|
||||
|
||||
// Traverse each edge.
|
||||
for (; !range->empty(); range->popFront()) {
|
||||
MOZ_ASSERT(!stopRequested);
|
||||
|
||||
const Edge &edge = range->front();
|
||||
typename NodeMap::AddPtr a = visited.lookupForAdd(edge.referent);
|
||||
bool first = !a;
|
||||
|
||||
if (first) {
|
||||
// This is the first time we've reached |edge.referent|.
|
||||
// Create an entry for it in |visited|, and arrange to
|
||||
// traverse its outgoing edges later.
|
||||
if (!visited.add(a, edge.referent, typename Handler::NodeData()) ||
|
||||
!pending.append(edge.referent)) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
MOZ_ASSERT(a);
|
||||
|
||||
// Report this edge to the visitor function.
|
||||
if (!handler(*this, origin, edge, &a->value(), first))
|
||||
return false;
|
||||
|
||||
if (stopRequested)
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// Stop traversal, and return true from |traverse| without visiting any
|
||||
// more nodes. Only |handler::operator()| should call this function; it
|
||||
// may do so to stop the traversal early, without returning false and
|
||||
// then making |traverse|'s caller disambiguate that result from a real
|
||||
// error.
|
||||
void stop() { stopRequested = true; }
|
||||
|
||||
// The context with which we were constructed.
|
||||
JSContext *cx;
|
||||
|
||||
// A map associating each node N that we have reached with a
|
||||
// Handler::NodeData, for |handler|'s use. This is public, so that
|
||||
// |handler| can access it to see the traversal thus far.
|
||||
typedef js::HashMap<Node, typename Handler::NodeData> NodeMap;
|
||||
NodeMap visited;
|
||||
|
||||
private:
|
||||
// Our handler object.
|
||||
Handler &handler;
|
||||
|
||||
// A queue template. Appending and popping the front are constant time.
|
||||
// Wasted space is never more than some recent actual population plus the
|
||||
// current population.
|
||||
template <typename T>
|
||||
class Queue {
|
||||
js::Vector<T, 0> head, tail;
|
||||
size_t frontIndex;
|
||||
public:
|
||||
Queue(JSContext *cx) : head(cx), tail(cx), frontIndex(0) { }
|
||||
bool empty() { return frontIndex >= head.length(); }
|
||||
T &front() {
|
||||
MOZ_ASSERT(!empty());
|
||||
return head[frontIndex];
|
||||
}
|
||||
void popFront() {
|
||||
MOZ_ASSERT(!empty());
|
||||
frontIndex++;
|
||||
if (frontIndex >= head.length()) {
|
||||
head.clearAndFree();
|
||||
head.swap(tail);
|
||||
frontIndex = 0;
|
||||
}
|
||||
}
|
||||
bool append(const T &elt) {
|
||||
return frontIndex == 0 ? head.append(elt) : tail.append(elt);
|
||||
}
|
||||
};
|
||||
|
||||
// A queue of nodes that we have reached, but whose outgoing edges we
|
||||
// have not yet traversed. Nodes reachable in fewer edges are enqueued
|
||||
// earlier.
|
||||
Queue<Node> pending;
|
||||
|
||||
// True if our traverse function has been called.
|
||||
bool traversalBegun;
|
||||
|
||||
// True if we've been asked to stop the traversal.
|
||||
bool stopRequested;
|
||||
};
|
||||
|
||||
} // namespace ubi
|
||||
} // namespace JS
|
||||
|
||||
#endif // js_UbiNodeTraverse.h
|
@ -6,6 +6,9 @@
|
||||
|
||||
#include "builtin/TestingFunctions.h"
|
||||
|
||||
#include "mozilla/Move.h"
|
||||
#include "mozilla/Scoped.h"
|
||||
|
||||
#include "jsapi.h"
|
||||
#include "jscntxt.h"
|
||||
#include "jsfriendapi.h"
|
||||
@ -18,7 +21,11 @@
|
||||
|
||||
#include "jit/AsmJS.h"
|
||||
#include "jit/AsmJSLink.h"
|
||||
#include "js/HashTable.h"
|
||||
#include "js/StructuredClone.h"
|
||||
#include "js/UbiNode.h"
|
||||
#include "js/UbiNodeTraverse.h"
|
||||
#include "js/Vector.h"
|
||||
#include "vm/ForkJoin.h"
|
||||
#include "vm/GlobalObject.h"
|
||||
#include "vm/Interpreter.h"
|
||||
@ -33,6 +40,8 @@ using namespace js;
|
||||
using namespace JS;
|
||||
|
||||
using mozilla::ArrayLength;
|
||||
using mozilla::Move;
|
||||
using mozilla::ScopedFreePtr;
|
||||
|
||||
// If fuzzingSafe is set, remove functionality that could cause problems with
|
||||
// fuzzers. Set this via the environment variable MOZ_FUZZING_SAFE.
|
||||
@ -1651,6 +1660,214 @@ ReportLargeAllocationFailure(JSContext *cx, unsigned argc, jsval *vp)
|
||||
return true;
|
||||
}
|
||||
|
||||
namespace heaptools {
|
||||
|
||||
// An edge to a node from its predecessor in a path through the graph.
|
||||
class BackEdge {
|
||||
// The node from which this edge starts.
|
||||
JS::ubi::Node predecessor_;
|
||||
|
||||
// The name of this edge. We own this storage.
|
||||
ScopedFreePtr<jschar> name_;
|
||||
|
||||
public:
|
||||
BackEdge() : name_(nullptr) { }
|
||||
// Construct an initialized back edge. Take ownership of |name|.
|
||||
BackEdge(JS::ubi::Node predecessor, jschar *name)
|
||||
: predecessor_(predecessor), name_(name) { }
|
||||
BackEdge(BackEdge &&rhs) : predecessor_(rhs.predecessor_), name_(rhs.name_.forget()) { }
|
||||
BackEdge &operator=(BackEdge &&rhs) {
|
||||
MOZ_ASSERT(&rhs != this);
|
||||
this->~BackEdge();
|
||||
new(this) BackEdge(Move(rhs));
|
||||
return *this;
|
||||
}
|
||||
|
||||
jschar *forgetName() { return name_.forget(); }
|
||||
JS::ubi::Node predecessor() const { return predecessor_; }
|
||||
|
||||
private:
|
||||
// No copy constructor or copying assignment.
|
||||
BackEdge(const BackEdge &) MOZ_DELETE;
|
||||
BackEdge &operator=(const BackEdge &) MOZ_DELETE;
|
||||
};
|
||||
|
||||
// A path-finding handler class for use with JS::ubi::BreadthFirst.
|
||||
struct FindPathHandler {
|
||||
typedef BackEdge NodeData;
|
||||
typedef JS::ubi::BreadthFirst<FindPathHandler> Traversal;
|
||||
|
||||
FindPathHandler(JS::ubi::Node start, JS::ubi::Node target,
|
||||
AutoValueVector &nodes, Vector<ScopedFreePtr<jschar> > &edges)
|
||||
: start(start), target(target), foundPath(false),
|
||||
nodes(nodes), edges(edges) { }
|
||||
|
||||
bool
|
||||
operator()(Traversal &traversal, JS::ubi::Node origin, const JS::ubi::Edge &edge,
|
||||
BackEdge *backEdge, bool first)
|
||||
{
|
||||
// We take care of each node the first time we visit it, so there's
|
||||
// nothing to be done on subsequent visits.
|
||||
if (!first)
|
||||
return true;
|
||||
|
||||
// Record how we reached this node. This is the last edge on a
|
||||
// shortest path to this node.
|
||||
jschar *edgeName = js_strdup(traversal.cx, edge.name);
|
||||
if (!edgeName)
|
||||
return false;
|
||||
*backEdge = mozilla::Move(BackEdge(origin, edgeName));
|
||||
|
||||
// Have we reached our final target node?
|
||||
if (edge.referent == target) {
|
||||
// Record the path that got us here, which must be a shortest path.
|
||||
if (!recordPath(traversal))
|
||||
return false;
|
||||
foundPath = true;
|
||||
traversal.stop();
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// We've found a path to our target. Walk the backlinks to produce the
|
||||
// (reversed) path, saving the path in |nodes| and |edges|. |nodes| is
|
||||
// rooted, so it can hold the path's nodes as we leave the scope of
|
||||
// the AutoCheckCannotGC.
|
||||
bool recordPath(Traversal &traversal) {
|
||||
JS::ubi::Node here = target;
|
||||
|
||||
do {
|
||||
Traversal::NodeMap::Ptr p = traversal.visited.lookup(here);
|
||||
MOZ_ASSERT(p);
|
||||
JS::ubi::Node predecessor = p->value().predecessor();
|
||||
if (!nodes.append(predecessor.exposeToJS()) ||
|
||||
!edges.append(p->value().forgetName()))
|
||||
return false;
|
||||
here = predecessor;
|
||||
} while (here != start);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// The node we're starting from.
|
||||
JS::ubi::Node start;
|
||||
|
||||
// The node we're looking for.
|
||||
JS::ubi::Node target;
|
||||
|
||||
// True if we found a path to target, false if we didn't.
|
||||
bool foundPath;
|
||||
|
||||
// The nodes and edges of the path --- should we find one. The path is
|
||||
// stored in reverse order, because that's how it's easiest for us to
|
||||
// construct it:
|
||||
// - edges[i] is the name of the edge from nodes[i] to nodes[i-1].
|
||||
// - edges[0] is the name of the edge from nodes[0] to the target.
|
||||
// - The last node, nodes[n-1], is the start node.
|
||||
AutoValueVector &nodes;
|
||||
Vector<ScopedFreePtr<jschar> > &edges;
|
||||
};
|
||||
|
||||
} // namespace heaptools
|
||||
|
||||
static bool
|
||||
FindPath(JSContext *cx, unsigned argc, jsval *vp)
|
||||
{
|
||||
CallArgs args = CallArgsFromVp(argc, vp);
|
||||
if (argc < 2) {
|
||||
JS_ReportErrorNumber(cx, js_GetErrorMessage, NULL, JSMSG_MORE_ARGS_NEEDED,
|
||||
"findPath", "1", "");
|
||||
return false;
|
||||
}
|
||||
|
||||
// We don't ToString non-objects given as 'start' or 'target'. We can't
|
||||
// see edges to non-string primitive values, and it doesn't make much
|
||||
// sense to ask for paths to or from a freshly allocated string, so
|
||||
// if a non-string primitive appears here it's probably a mistake.
|
||||
if (!args[0].isObject() && !args[0].isString()) {
|
||||
js_ReportValueErrorFlags(cx, JSREPORT_ERROR, JSMSG_UNEXPECTED_TYPE,
|
||||
JSDVG_SEARCH_STACK, args[0], JS::NullPtr(),
|
||||
"neither an object nor a string", NULL);
|
||||
return false;
|
||||
}
|
||||
|
||||
if (!args[1].isObject() && !args[1].isString()) {
|
||||
js_ReportValueErrorFlags(cx, JSREPORT_ERROR, JSMSG_UNEXPECTED_TYPE,
|
||||
JSDVG_SEARCH_STACK, args[0], JS::NullPtr(),
|
||||
"neither an object nor a string", NULL);
|
||||
return false;
|
||||
}
|
||||
|
||||
AutoValueVector nodes(cx);
|
||||
Vector<ScopedFreePtr<jschar> > edges(cx);
|
||||
|
||||
{
|
||||
// We can't tolerate the GC moving things around while we're searching
|
||||
// the heap. Check that nothing we do causes a GC.
|
||||
JS::AutoCheckCannotGC autoCannotGC;
|
||||
|
||||
JS::ubi::Node start(args[0]), target(args[1]);
|
||||
|
||||
heaptools::FindPathHandler handler(start, target, nodes, edges);
|
||||
heaptools::FindPathHandler::Traversal traversal(cx, handler, autoCannotGC);
|
||||
if (!traversal.init() || !traversal.addStart(start))
|
||||
return false;
|
||||
|
||||
if (!traversal.traverse())
|
||||
return false;
|
||||
|
||||
if (!handler.foundPath) {
|
||||
// We didn't find any paths from the start to the target.
|
||||
args.rval().setUndefined();
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
// |nodes| and |edges| contain the path from |start| to |target|, reversed.
|
||||
// Construct a JavaScript array describing the path from the start to the
|
||||
// target. Each element has the form:
|
||||
//
|
||||
// { node: <object or string>, edge: <string describing outgoing edge from node> }
|
||||
//
|
||||
// or, if the node is some internal thing, that isn't a proper
|
||||
// JavaScript value:
|
||||
//
|
||||
// { node: undefined, edge: <string> }
|
||||
size_t length = nodes.length();
|
||||
RootedObject result(cx, NewDenseAllocatedArray(cx, length));
|
||||
if (!result)
|
||||
return false;
|
||||
result->ensureDenseInitializedLength(cx, 0, length);
|
||||
|
||||
// Walk |nodes| and |edges| in the stored order, and construct the result
|
||||
// array in start-to-target order.
|
||||
for (size_t i = 0; i < length; i++) {
|
||||
// Build an object describing the node and edge.
|
||||
RootedObject obj(cx, NewBuiltinClassInstance<JSObject>(cx));
|
||||
if (!obj)
|
||||
return false;
|
||||
|
||||
if (!JS_DefineProperty(cx, obj, "node", nodes[i],
|
||||
JSPROP_ENUMERATE, nullptr, nullptr))
|
||||
return false;
|
||||
|
||||
RootedString edge(cx, js_NewString<CanGC>(cx, edges[i].get(), js_strlen(edges[i])));
|
||||
if (!edge)
|
||||
return false;
|
||||
edges[i].forget();
|
||||
RootedValue edgeString(cx, StringValue(edge));
|
||||
if (!JS_DefineProperty(cx, obj, "edge", edgeString,
|
||||
JSPROP_ENUMERATE, nullptr, nullptr))
|
||||
return false;
|
||||
|
||||
result->setDenseElement(length - i - 1, ObjectValue(*obj));
|
||||
}
|
||||
|
||||
args.rval().setObject(*result);
|
||||
return true;
|
||||
}
|
||||
|
||||
static const JSFunctionSpecWithHelp TestingFunctions[] = {
|
||||
JS_FN_HELP("gc", ::GC, 0, 0,
|
||||
"gc([obj] | 'compartment')",
|
||||
@ -1931,6 +2148,19 @@ static const JSFunctionSpecWithHelp TestingFunctions[] = {
|
||||
" then return undefined. In Gecko, this sends a memory pressure notification, which\n"
|
||||
" can free up some memory."),
|
||||
|
||||
JS_FN_HELP("findPath", FindPath, 2, 0,
|
||||
"findPath(start, target)",
|
||||
" Return an array describing one of the shortest paths of GC heap edges from\n"
|
||||
" |start| to |target|, or |undefined| if |target| is unreachable from |start|.\n"
|
||||
" Each element of the array is either of the form:\n"
|
||||
" { node: <object or string>, edge: <string describing edge from node> }\n"
|
||||
" if the node is a JavaScript object or value; or of the form:\n"
|
||||
" { type: <string describing node>, edge: <string describing edge> }\n"
|
||||
" if the node is some internal thing that is not a proper JavaScript value\n"
|
||||
" (like a shape or a scope chain element). The destination of the i'th array\n"
|
||||
" element's edge is the node of the i+1'th array element; the destination of\n"
|
||||
" the last array element is implicitly |target|.\n"),
|
||||
|
||||
#ifdef DEBUG
|
||||
JS_FN_HELP("dumpObject", DumpObject, 1, 0,
|
||||
"dumpObject()",
|
||||
|
44
js/src/jit-test/tests/heap-analysis/findPath.js
Normal file
44
js/src/jit-test/tests/heap-analysis/findPath.js
Normal file
@ -0,0 +1,44 @@
|
||||
load(libdir + "match.js")
|
||||
|
||||
// At the moment, findPath just returns the names as provided by ubi::Node,
|
||||
// which just uses JS_TraceChildren for now. However, we have various plans
|
||||
// to improve the quality of ubi::Node's metadata, to improve the precision
|
||||
// and clarity of the results here.
|
||||
|
||||
var o = { w: { x: { y: { z: {} } } } };
|
||||
Match.Pattern([{node: {}, edge: "w"},
|
||||
{node: {}, edge: "x"},
|
||||
{node: {}, edge: "y"},
|
||||
{node: {}, edge: "z"}])
|
||||
.assert(findPath(o, o.w.x.y.z));
|
||||
print(uneval(findPath(o, o.w.x.y.z)));
|
||||
|
||||
var a = [ , o ];
|
||||
Match.Pattern([{node: {}, edge: "objectElements[1]"}])
|
||||
.assert(findPath(a, o));
|
||||
print(uneval(findPath(a, o)));
|
||||
|
||||
function C() {}
|
||||
C.prototype.obj = {};
|
||||
var c = new C;
|
||||
Match.Pattern([{node: {}, edge: "type"},
|
||||
{node: Match.Pattern.ANY, edge: "type_proto"},
|
||||
{node: { constructor: Match.Pattern.ANY }, edge: "obj"}])
|
||||
.assert(findPath(c, c.obj));
|
||||
print(uneval(findPath(c, c.obj)));
|
||||
|
||||
function f(x) { return function g(y) { return x+y; }; }
|
||||
var o = {}
|
||||
var gc = f(o);
|
||||
Match.Pattern([{node: gc, edge: "fun_callscope"},
|
||||
{node: Match.Pattern.ANY, edge: "x"}])
|
||||
.assert(findPath(gc, o));
|
||||
print(uneval(findPath(gc, o)));
|
||||
|
||||
Match.Pattern([{node: {}, edge: "shape"},
|
||||
{node: Match.Pattern.ANY, edge: "base"},
|
||||
{node: Match.Pattern.ANY, edge: "parent"},
|
||||
{node: {}, edge: "o"}])
|
||||
.assert(findPath(o, o));
|
||||
print(findPath(o, o).map((e) => e.edge).toString());
|
||||
|
@ -34,6 +34,7 @@
|
||||
#include "js/StructuredClone.h"
|
||||
#include "js/TracingAPI.h"
|
||||
#include "js/TypeDecls.h"
|
||||
#include "js/UbiNode.h"
|
||||
#include "js/Utility.h"
|
||||
#include "js/Value.h"
|
||||
#include "js/Vector.h"
|
||||
|
@ -86,6 +86,8 @@ EXPORTS.js += [
|
||||
'../public/StructuredClone.h',
|
||||
'../public/TracingAPI.h',
|
||||
'../public/TypeDecls.h',
|
||||
'../public/UbiNode.h',
|
||||
'../public/UbiNodeTraverse.h',
|
||||
'../public/Utility.h',
|
||||
'../public/Value.h',
|
||||
'../public/Vector.h',
|
||||
@ -191,6 +193,7 @@ UNIFIED_SOURCES += [
|
||||
'vm/StructuredClone.cpp',
|
||||
'vm/ThreadPool.cpp',
|
||||
'vm/TypedArrayObject.cpp',
|
||||
'vm/UbiNode.cpp',
|
||||
'vm/Unicode.cpp',
|
||||
'vm/Value.cpp',
|
||||
'vm/WeakMapPtr.cpp',
|
||||
|
@ -83,6 +83,10 @@ var Match =
|
||||
return (x !== null) && (typeof x === "object");
|
||||
}
|
||||
|
||||
function isFunction(x) {
|
||||
return typeof x === "function";
|
||||
}
|
||||
|
||||
function isArrayLike(x) {
|
||||
return isObject(x) && ("length" in x);
|
||||
}
|
||||
@ -134,6 +138,15 @@ var Match =
|
||||
return true;
|
||||
}
|
||||
|
||||
function matchFunction(act, exp) {
|
||||
if (!isFunction(act))
|
||||
throw new MatchError("expected function, got " + quote(act));
|
||||
|
||||
if (act !== exp)
|
||||
throw new MatchError("expected function: " + exp +
|
||||
"\nbut got different function: " + act);
|
||||
}
|
||||
|
||||
function matchArray(act, exp) {
|
||||
if (!isObject(act) || !("length" in act))
|
||||
throw new MatchError("expected array-like object, got " + quote(act));
|
||||
@ -166,6 +179,9 @@ var Match =
|
||||
if (isArrayLike(exp))
|
||||
return matchArray(act, exp);
|
||||
|
||||
if (isFunction(exp))
|
||||
return matchFunction(act, exp);
|
||||
|
||||
return matchObject(act, exp);
|
||||
}
|
||||
|
||||
|
226
js/src/vm/UbiNode.cpp
Normal file
226
js/src/vm/UbiNode.cpp
Normal file
@ -0,0 +1,226 @@
|
||||
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
||||
* vim: set ts=8 sts=4 et sw=4 tw=99:
|
||||
* This Source Code Form is subject to the terms of the Mozilla Public
|
||||
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
||||
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
||||
|
||||
#include "js/UbiNode.h"
|
||||
|
||||
#include "mozilla/Assertions.h"
|
||||
#include "mozilla/Attributes.h"
|
||||
#include "mozilla/Scoped.h"
|
||||
|
||||
#include "jscntxt.h"
|
||||
|
||||
#include "js/TracingAPI.h"
|
||||
#include "js/TypeDecls.h"
|
||||
#include "js/Utility.h"
|
||||
#include "js/Vector.h"
|
||||
#include "vm/ScopeObject.h"
|
||||
|
||||
#include "jsobjinlines.h"
|
||||
|
||||
using JS::Value;
|
||||
using JS::ubi::Concrete;
|
||||
using JS::ubi::Edge;
|
||||
using JS::ubi::EdgeRange;
|
||||
using JS::ubi::Node;
|
||||
using JS::ubi::TracerConcrete;
|
||||
|
||||
// All operations on null ubi::Nodes assert.
|
||||
const jschar *Concrete<void>::typeName() const { MOZ_ASSUME_UNREACHABLE("null ubi::Node"); }
|
||||
size_t Concrete<void>::size() const { MOZ_ASSUME_UNREACHABLE("null ubi::Node"); }
|
||||
EdgeRange *Concrete<void>::edges(JSContext *) const { MOZ_ASSUME_UNREACHABLE("null ubi::Node"); }
|
||||
|
||||
|
||||
Node::Node(JSGCTraceKind kind, void *ptr)
|
||||
{
|
||||
switch (kind) {
|
||||
case JSTRACE_OBJECT: construct(static_cast<JSObject *>(ptr)); break;
|
||||
case JSTRACE_STRING: construct(static_cast<JSString *>(ptr)); break;
|
||||
case JSTRACE_SCRIPT: construct(static_cast<JSScript *>(ptr)); break;
|
||||
case JSTRACE_LAZY_SCRIPT: construct(static_cast<js::LazyScript *>(ptr)); break;
|
||||
case JSTRACE_JITCODE: construct(static_cast<js::jit::JitCode *>(ptr)); break;
|
||||
case JSTRACE_SHAPE: construct(static_cast<js::Shape *>(ptr)); break;
|
||||
case JSTRACE_BASE_SHAPE: construct(static_cast<js::BaseShape *>(ptr)); break;
|
||||
case JSTRACE_TYPE_OBJECT: construct(static_cast<js::types::TypeObject *>(ptr)); break;
|
||||
|
||||
default:
|
||||
MOZ_ASSUME_UNREACHABLE("bad JSGCTraceKind passed to JS::ubi::Node::Node");
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
Node::Node(Value value)
|
||||
{
|
||||
if (value.isObject())
|
||||
construct(&value.toObject());
|
||||
else if (value.isString())
|
||||
construct(value.toString());
|
||||
else
|
||||
construct<void>(nullptr);
|
||||
}
|
||||
|
||||
Value
|
||||
Node::exposeToJS() const
|
||||
{
|
||||
Value v;
|
||||
|
||||
if (is<JSObject>()) {
|
||||
JSObject &obj = *as<JSObject>();
|
||||
if (obj.is<js::ScopeObject>()) {
|
||||
v.setUndefined();
|
||||
} else if (obj.is<JSFunction>() && IsInternalFunctionObject(&obj)) {
|
||||
v.setUndefined();
|
||||
} else {
|
||||
v.setObject(obj);
|
||||
}
|
||||
} else if (is<JSString>()) {
|
||||
v.setString(as<JSString>());
|
||||
} else {
|
||||
v.setUndefined();
|
||||
}
|
||||
|
||||
return v;
|
||||
}
|
||||
|
||||
// A dumb Edge concrete class. All but the most essential members have the
|
||||
// default behavior.
|
||||
class SimpleEdge : public Edge {
|
||||
SimpleEdge(SimpleEdge &) MOZ_DELETE;
|
||||
SimpleEdge &operator=(const SimpleEdge &) MOZ_DELETE;
|
||||
|
||||
public:
|
||||
SimpleEdge() : Edge() { }
|
||||
|
||||
// Construct an initialized SimpleEdge, taking ownership of |name|.
|
||||
SimpleEdge(jschar *name, const Node &referent) {
|
||||
this->name = name;
|
||||
this->referent = referent;
|
||||
}
|
||||
~SimpleEdge() {
|
||||
js_free(const_cast<jschar *>(name));
|
||||
}
|
||||
|
||||
// Move construction and assignment.
|
||||
SimpleEdge(SimpleEdge &&rhs) {
|
||||
name = rhs.name;
|
||||
referent = rhs.referent;
|
||||
|
||||
rhs.name = nullptr;
|
||||
}
|
||||
SimpleEdge &operator=(SimpleEdge &&rhs) {
|
||||
MOZ_ASSERT(&rhs != this);
|
||||
this->~SimpleEdge();
|
||||
new(this) SimpleEdge(mozilla::Move(rhs));
|
||||
return *this;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
typedef mozilla::Vector<SimpleEdge, 8, js::TempAllocPolicy> SimpleEdgeVector;
|
||||
|
||||
|
||||
// A JSTracer subclass that adds a SimpleEdge to a Vector for each edge on
|
||||
// which it is invoked.
|
||||
class SimpleEdgeVectorTracer : public JSTracer {
|
||||
// The vector to which we add SimpleEdges.
|
||||
SimpleEdgeVector *vec;
|
||||
|
||||
static void staticCallback(JSTracer *trc, void **thingp, JSGCTraceKind kind) {
|
||||
static_cast<SimpleEdgeVectorTracer *>(trc)->callback(thingp, kind);
|
||||
}
|
||||
|
||||
void callback(void **thingp, JSGCTraceKind kind) {
|
||||
if (!okay)
|
||||
return;
|
||||
|
||||
// Ask the tracer to compute an edge name for us.
|
||||
char buffer[1024];
|
||||
const char *name = getTracingEdgeName(buffer, sizeof(buffer));
|
||||
|
||||
// Convert the name to jschars.
|
||||
jschar *jsname = js_pod_malloc<jschar>(strlen(name) + 1);
|
||||
if (!jsname) {
|
||||
okay = false;
|
||||
return;
|
||||
}
|
||||
|
||||
size_t i;
|
||||
for (i = 0; name[i]; i++)
|
||||
jsname[i] = name[i];
|
||||
jsname[i] = '\0';
|
||||
|
||||
// The simplest code is correct! The temporary SimpleEdge takes
|
||||
// ownership of name; if the append succeeds, the vector element
|
||||
// then takes ownership; if the append fails, then the temporary
|
||||
// retains it, and its destructor will free it.
|
||||
if (!vec->append(mozilla::Move(SimpleEdge(jsname, Node(kind, *thingp))))) {
|
||||
okay = false;
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
public:
|
||||
// True if no errors (OOM, say) have yet occurred.
|
||||
bool okay;
|
||||
|
||||
SimpleEdgeVectorTracer(JSContext *cx, SimpleEdgeVector *vec)
|
||||
: JSTracer(JS_GetRuntime(cx), staticCallback), vec(vec), okay(true) {
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
// An EdgeRange concrete class that simply holds a vector of SimpleEdges,
|
||||
// populated by the init method.
|
||||
class SimpleEdgeRange : public EdgeRange {
|
||||
SimpleEdgeVector edges;
|
||||
size_t i;
|
||||
|
||||
void settle() {
|
||||
front_ = i < edges.length() ? &edges[i] : nullptr;
|
||||
}
|
||||
|
||||
public:
|
||||
SimpleEdgeRange(JSContext *cx) : edges(cx), i(0) { }
|
||||
|
||||
bool init(JSContext *cx, void *thing, JSGCTraceKind kind) {
|
||||
SimpleEdgeVectorTracer tracer(cx, &edges);
|
||||
JS_TraceChildren(&tracer, thing, kind);
|
||||
settle();
|
||||
return tracer.okay;
|
||||
}
|
||||
|
||||
void popFront() MOZ_OVERRIDE { i++; settle(); }
|
||||
};
|
||||
|
||||
|
||||
template<typename Referent>
|
||||
EdgeRange *
|
||||
TracerConcrete<Referent>::edges(JSContext *cx) const {
|
||||
js::ScopedJSDeletePtr<SimpleEdgeRange> r(js_new<SimpleEdgeRange>(cx));
|
||||
if (!r)
|
||||
return nullptr;
|
||||
|
||||
if (!r->init(cx, ptr, ::js::gc::MapTypeToTraceKind<Referent>::kind))
|
||||
return nullptr;
|
||||
|
||||
return r.forget();
|
||||
}
|
||||
|
||||
template<> const jschar TracerConcrete<JSObject>::concreteTypeName[] =
|
||||
MOZ_UTF16("JSObject");
|
||||
template<> const jschar TracerConcrete<JSString>::concreteTypeName[] =
|
||||
MOZ_UTF16("JSString");
|
||||
template<> const jschar TracerConcrete<JSScript>::concreteTypeName[] =
|
||||
MOZ_UTF16("JSScript");
|
||||
template<> const jschar TracerConcrete<js::LazyScript>::concreteTypeName[] =
|
||||
MOZ_UTF16("js::LazyScript");
|
||||
template<> const jschar TracerConcrete<js::jit::JitCode>::concreteTypeName[] =
|
||||
MOZ_UTF16("js::jit::JitCode");
|
||||
template<> const jschar TracerConcrete<js::Shape>::concreteTypeName[] =
|
||||
MOZ_UTF16("js::Shape");
|
||||
template<> const jschar TracerConcrete<js::BaseShape>::concreteTypeName[] =
|
||||
MOZ_UTF16("js::BaseShape");
|
||||
template<> const jschar TracerConcrete<js::types::TypeObject>::concreteTypeName[] =
|
||||
MOZ_UTF16("js::types::TypeObject");
|
Loading…
x
Reference in New Issue
Block a user