mirror of
https://github.com/mozilla/gecko-dev.git
synced 2025-01-15 22:44:13 +00:00
Bug 641718 - Convert to using microseconds for internal video timestamps. r=kinetik
This commit is contained in:
parent
814a8fd5a8
commit
de44f0f3fe
@ -1820,7 +1820,7 @@ nsresult nsHTMLMediaElement::InitializeDecoderAsClone(nsMediaDecoder* aOriginal)
|
||||
|
||||
double duration = aOriginal->GetDuration();
|
||||
if (duration >= 0) {
|
||||
decoder->SetDuration(PRInt64(NS_round(duration * 1000)));
|
||||
decoder->SetDuration(duration);
|
||||
decoder->SetSeekable(aOriginal->GetSeekable());
|
||||
}
|
||||
|
||||
|
@ -175,24 +175,24 @@ PRBool MulOverflow(PRInt64 a, PRInt64 b, PRInt64& aResult) {
|
||||
return PR_TRUE;
|
||||
}
|
||||
|
||||
// Converts from number of audio samples to milliseconds, given the specified
|
||||
// Converts from number of audio samples to microseconds, given the specified
|
||||
// audio rate.
|
||||
PRBool SamplesToMs(PRInt64 aSamples, PRUint32 aRate, PRInt64& aOutMs)
|
||||
PRBool SamplesToUsecs(PRInt64 aSamples, PRUint32 aRate, PRInt64& aOutUsecs)
|
||||
{
|
||||
PRInt64 x;
|
||||
if (!MulOverflow(aSamples, 1000, x))
|
||||
if (!MulOverflow(aSamples, USECS_PER_S, x))
|
||||
return PR_FALSE;
|
||||
aOutMs = x / aRate;
|
||||
aOutUsecs = x / aRate;
|
||||
return PR_TRUE;
|
||||
}
|
||||
|
||||
// Converts from milliseconds to number of audio samples, given the specified
|
||||
// Converts from microseconds to number of audio samples, given the specified
|
||||
// audio rate.
|
||||
PRBool MsToSamples(PRInt64 aMs, PRUint32 aRate, PRInt64& aOutSamples)
|
||||
PRBool UsecsToSamples(PRInt64 aUsecs, PRUint32 aRate, PRInt64& aOutSamples)
|
||||
{
|
||||
PRInt64 x;
|
||||
if (!MulOverflow(aMs, aRate, x))
|
||||
if (!MulOverflow(aUsecs, aRate, x))
|
||||
return PR_FALSE;
|
||||
aOutSamples = x / 1000;
|
||||
aOutSamples = x / USECS_PER_S;
|
||||
return PR_TRUE;
|
||||
}
|
||||
|
@ -126,16 +126,22 @@ PRBool AddOverflow(PRInt64 a, PRInt64 b, PRInt64& aResult);
|
||||
// in an integer overflow.
|
||||
PRBool MulOverflow(PRInt64 a, PRInt64 b, PRInt64& aResult);
|
||||
|
||||
// Converts from number of audio samples (aSamples) to milliseconds, given
|
||||
// the specified audio rate (aRate). Stores result in aOutMs. Returns PR_TRUE
|
||||
// Converts from number of audio samples (aSamples) to microseconds, given
|
||||
// the specified audio rate (aRate). Stores result in aOutUsecs. Returns PR_TRUE
|
||||
// if the operation succeeded, or PR_FALSE if there was an integer overflow
|
||||
// while calulating the conversion.
|
||||
PRBool SamplesToMs(PRInt64 aSamples, PRUint32 aRate, PRInt64& aOutMs);
|
||||
PRBool SamplesToUsecs(PRInt64 aSamples, PRUint32 aRate, PRInt64& aOutUsecs);
|
||||
|
||||
// Converts from milliseconds (aMs) to number of audio samples, given the
|
||||
// Converts from microseconds (aUsecs) to number of audio samples, given the
|
||||
// specified audio rate (aRate). Stores the result in aOutSamples. Returns
|
||||
// PR_TRUE if the operation succeeded, or PR_FALSE if there was an integer
|
||||
// overflow while calulating the conversion.
|
||||
PRBool MsToSamples(PRInt64 aMs, PRUint32 aRate, PRInt64& aOutSamples);
|
||||
PRBool UsecsToSamples(PRInt64 aUsecs, PRUint32 aRate, PRInt64& aOutSamples);
|
||||
|
||||
// Number of microseconds per second. 1e6.
|
||||
#define USECS_PER_S 1000000
|
||||
|
||||
// Number of microseconds per millisecond.
|
||||
#define USECS_PER_MS 1000
|
||||
|
||||
#endif
|
||||
|
@ -39,8 +39,8 @@
|
||||
|
||||
#include "nsTArray.h"
|
||||
#include "nsAudioAvailableEventManager.h"
|
||||
#include "VideoUtils.h"
|
||||
|
||||
#define MILLISECONDS_PER_SECOND 1000.0f
|
||||
#define MAX_PENDING_EVENTS 100
|
||||
|
||||
using namespace mozilla;
|
||||
@ -106,7 +106,7 @@ void nsAudioAvailableEventManager::DispatchPendingEvents(PRUint64 aCurrentTime)
|
||||
while (mPendingEvents.Length() > 0) {
|
||||
nsAudioAvailableEventRunner* e =
|
||||
(nsAudioAvailableEventRunner*)mPendingEvents[0].get();
|
||||
if (e->mTime * MILLISECONDS_PER_SECOND > aCurrentTime) {
|
||||
if (e->mTime * USECS_PER_S > aCurrentTime) {
|
||||
break;
|
||||
}
|
||||
nsCOMPtr<nsIRunnable> event = mPendingEvents[0];
|
||||
@ -227,7 +227,7 @@ void nsAudioAvailableEventManager::Drain(PRUint64 aEndTime)
|
||||
(mSignalBufferLength - mSignalBufferPosition) * sizeof(float));
|
||||
|
||||
// Force this last event to go now.
|
||||
float time = (aEndTime / MILLISECONDS_PER_SECOND) -
|
||||
float time = (aEndTime / static_cast<float>(USECS_PER_S)) -
|
||||
(mSignalBufferPosition / mSamplesPerSecond);
|
||||
nsCOMPtr<nsIRunnable> lastEvent =
|
||||
new nsAudioAvailableEventRunner(mDecoder, mSignalBuffer.forget(),
|
||||
|
@ -53,6 +53,7 @@ using namespace mozilla::dom;
|
||||
#include "nsAutoPtr.h"
|
||||
#include "nsAudioStream.h"
|
||||
#include "nsAlgorithm.h"
|
||||
#include "VideoUtils.h"
|
||||
extern "C" {
|
||||
#include "sydneyaudio/sydney_audio.h"
|
||||
}
|
||||
@ -76,7 +77,6 @@ PRLogModuleInfo* gAudioStreamLog = nsnull;
|
||||
#endif
|
||||
|
||||
#define FAKE_BUFFER_SIZE 176400
|
||||
#define MILLISECONDS_PER_SECOND 1000
|
||||
|
||||
class nsAudioStreamLocal : public nsAudioStream
|
||||
{
|
||||
@ -555,7 +555,7 @@ PRInt64 nsAudioStreamLocal::GetPosition()
|
||||
{
|
||||
PRInt64 sampleOffset = GetSampleOffset();
|
||||
if (sampleOffset >= 0) {
|
||||
return ((MILLISECONDS_PER_SECOND * sampleOffset) / mRate / mChannels);
|
||||
return ((USECS_PER_S * sampleOffset) / mRate / mChannels);
|
||||
}
|
||||
return -1;
|
||||
}
|
||||
@ -724,7 +724,7 @@ PRInt64 nsAudioStreamRemote::GetPosition()
|
||||
{
|
||||
PRInt64 sampleOffset = GetSampleOffset();
|
||||
if (sampleOffset >= 0) {
|
||||
return ((MILLISECONDS_PER_SECOND * sampleOffset) / mRate / mChannels);
|
||||
return ((USECS_PER_S * sampleOffset) / mRate / mChannels);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
@ -740,7 +740,7 @@ nsAudioStreamRemote::GetSampleOffset()
|
||||
return 0;
|
||||
|
||||
PRInt64 time = mAudioChild->GetLastKnownSampleOffsetTime();
|
||||
PRInt64 result = offset + (mRate * mChannels * (PR_IntervalNow() - time) / MILLISECONDS_PER_SECOND);
|
||||
PRInt64 result = offset + (mRate * mChannels * (PR_IntervalNow() - time) / USECS_PER_S);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
@ -107,7 +107,7 @@ public:
|
||||
// Resume audio playback
|
||||
virtual void Resume() = 0;
|
||||
|
||||
// Return the position in milliseconds of the sample being played by the
|
||||
// Return the position in microseconds of the sample being played by the
|
||||
// audio hardware.
|
||||
virtual PRInt64 GetPosition() = 0;
|
||||
|
||||
|
@ -83,7 +83,7 @@ double nsBuiltinDecoder::GetDuration()
|
||||
{
|
||||
NS_ASSERTION(NS_IsMainThread(), "Should be on main thread.");
|
||||
if (mDuration >= 0) {
|
||||
return static_cast<double>(mDuration) / 1000.0;
|
||||
return static_cast<double>(mDuration) / static_cast<double>(USECS_PER_S);
|
||||
}
|
||||
return std::numeric_limits<double>::quiet_NaN();
|
||||
}
|
||||
@ -524,7 +524,7 @@ double nsBuiltinDecoder::ComputePlaybackRate(PRPackedBool* aReliable)
|
||||
PRInt64 length = mStream ? mStream->GetLength() : -1;
|
||||
if (mDuration >= 0 && length >= 0) {
|
||||
*aReliable = PR_TRUE;
|
||||
return double(length)*1000.0/mDuration;
|
||||
return length * static_cast<double>(USECS_PER_S) / mDuration;
|
||||
}
|
||||
return mPlaybackStatistics.GetRateAtLastStop(aReliable);
|
||||
}
|
||||
@ -800,15 +800,15 @@ void nsBuiltinDecoder::DurationChanged()
|
||||
UpdatePlaybackRate();
|
||||
|
||||
if (mElement && oldDuration != mDuration) {
|
||||
LOG(PR_LOG_DEBUG, ("%p duration changed to %lldms", this, mDuration));
|
||||
LOG(PR_LOG_DEBUG, ("%p duration changed to %lld", this, mDuration));
|
||||
mElement->DispatchEvent(NS_LITERAL_STRING("durationchange"));
|
||||
}
|
||||
}
|
||||
|
||||
void nsBuiltinDecoder::SetDuration(PRInt64 aDuration)
|
||||
void nsBuiltinDecoder::SetDuration(double aDuration)
|
||||
{
|
||||
NS_ASSERTION(NS_IsMainThread(), "Should be on main thread.");
|
||||
mDuration = aDuration;
|
||||
mDuration = static_cast<PRInt64>(NS_round(aDuration * static_cast<double>(USECS_PER_S)));
|
||||
|
||||
MonitorAutoEnter mon(mMonitor);
|
||||
if (mDecoderStateMachine) {
|
||||
|
@ -250,13 +250,14 @@ public:
|
||||
virtual void Shutdown() = 0;
|
||||
|
||||
// Called from the main thread to get the duration. The decoder monitor
|
||||
// must be obtained before calling this. It is in units of milliseconds.
|
||||
// must be obtained before calling this. It is in units of microseconds.
|
||||
virtual PRInt64 GetDuration() = 0;
|
||||
|
||||
// Called from the main thread to set the duration of the media resource
|
||||
// if it is able to be obtained via HTTP headers. Called from the
|
||||
// state machine thread to set the duration if it is obtained from the
|
||||
// media metadata. The decoder monitor must be obtained before calling this.
|
||||
// aDuration is in microseconds.
|
||||
virtual void SetDuration(PRInt64 aDuration) = 0;
|
||||
|
||||
// Functions used by assertions to ensure we're calling things
|
||||
@ -383,10 +384,10 @@ class nsBuiltinDecoder : public nsMediaDecoder
|
||||
// Call on the main thread only.
|
||||
virtual PRBool IsEnded() const;
|
||||
|
||||
// Set the duration of the media resource in units of milliseconds.
|
||||
// Set the duration of the media resource in units of seconds.
|
||||
// This is called via a channel listener if it can pick up the duration
|
||||
// from a content header. Must be called from the main thread only.
|
||||
virtual void SetDuration(PRInt64 aDuration);
|
||||
virtual void SetDuration(double aDuration);
|
||||
|
||||
// Set a flag indicating whether seeking is supported
|
||||
virtual void SetSeekable(PRBool aSeekable);
|
||||
|
@ -179,8 +179,8 @@ public:
|
||||
// chunk ends.
|
||||
const PRInt64 mOffset;
|
||||
|
||||
PRInt64 mTime; // Start time of samples in ms.
|
||||
const PRInt64 mDuration; // In ms.
|
||||
PRInt64 mTime; // Start time of samples in usecs.
|
||||
const PRInt64 mDuration; // In usecs.
|
||||
const PRUint32 mSamples;
|
||||
const PRUint32 mChannels;
|
||||
nsAutoArrayPtr<SoundDataValue> mAudioData;
|
||||
@ -241,10 +241,10 @@ public:
|
||||
// Approximate byte offset of the end of the frame in the media.
|
||||
PRInt64 mOffset;
|
||||
|
||||
// Start time of frame in milliseconds.
|
||||
// Start time of frame in microseconds.
|
||||
PRInt64 mTime;
|
||||
|
||||
// End time of frame in milliseconds;
|
||||
// End time of frame in microseconds;
|
||||
PRInt64 mEndTime;
|
||||
|
||||
// Codec specific internal time code. For Ogg based codecs this is the
|
||||
@ -387,7 +387,7 @@ template <class T> class MediaQueue : private nsDeque {
|
||||
mEndOfStream = PR_TRUE;
|
||||
}
|
||||
|
||||
// Returns the approximate number of milliseconds of samples in the queue.
|
||||
// Returns the approximate number of microseconds of samples in the queue.
|
||||
PRInt64 Duration() {
|
||||
MonitorAutoEnter mon(mMonitor);
|
||||
if (GetSize() < 2) {
|
||||
@ -457,9 +457,9 @@ public:
|
||||
// This will not read past aEndOffset. Returns -1 on failure.
|
||||
virtual PRInt64 FindEndTime(PRInt64 aEndOffset);
|
||||
|
||||
// Moves the decode head to aTime milliseconds. aStartTime and aEndTime
|
||||
// denote the start and end times of the media in ms, and aCurrentTime
|
||||
// is the current playback position in ms.
|
||||
// Moves the decode head to aTime microseconds. aStartTime and aEndTime
|
||||
// denote the start and end times of the media in usecs, and aCurrentTime
|
||||
// is the current playback position in microseconds.
|
||||
virtual nsresult Seek(PRInt64 aTime,
|
||||
PRInt64 aStartTime,
|
||||
PRInt64 aEndTime,
|
||||
@ -485,7 +485,7 @@ public:
|
||||
protected:
|
||||
|
||||
// Pumps the decode until we reach frames/samples required to play at
|
||||
// time aTarget (ms).
|
||||
// time aTarget (usecs).
|
||||
nsresult DecodeToTarget(PRInt64 aTarget);
|
||||
|
||||
// Reader decode function. Matches DecodeVideoFrame() and
|
||||
|
@ -68,17 +68,17 @@ extern PRLogModuleInfo* gBuiltinDecoderLog;
|
||||
#define BUFFERING_MIN_RATE 50000
|
||||
#define BUFFERING_RATE(x) ((x)< BUFFERING_MIN_RATE ? BUFFERING_MIN_RATE : (x))
|
||||
|
||||
// If audio queue has less than this many ms of decoded audio, we won't risk
|
||||
// If audio queue has less than this many usecs of decoded audio, we won't risk
|
||||
// trying to decode the video, we'll skip decoding video up to the next
|
||||
// keyframe. We may increase this value for an individual decoder if we
|
||||
// encounter video frames which take a long time to decode.
|
||||
static const PRUint32 LOW_AUDIO_MS = 300;
|
||||
static const PRUint32 LOW_AUDIO_USECS = 300000;
|
||||
|
||||
// If more than this many ms of decoded audio is queued, we'll hold off
|
||||
// If more than this many usecs of decoded audio is queued, we'll hold off
|
||||
// decoding more audio. If we increase the low audio threshold (see
|
||||
// LOW_AUDIO_MS above) we'll also increase this value to ensure it's not
|
||||
// LOW_AUDIO_USECS above) we'll also increase this value to ensure it's not
|
||||
// less than the low audio threshold.
|
||||
const PRInt64 AMPLE_AUDIO_MS = 1000;
|
||||
const PRInt64 AMPLE_AUDIO_USECS = 1000000;
|
||||
|
||||
// Maximum number of bytes we'll allocate and write at once to the audio
|
||||
// hardware when the audio stream contains missing samples and we're
|
||||
@ -98,9 +98,9 @@ static const PRUint32 LOW_VIDEO_FRAMES = 1;
|
||||
static const PRUint32 AMPLE_VIDEO_FRAMES = 10;
|
||||
|
||||
// Arbitrary "frame duration" when playing only audio.
|
||||
static const int AUDIO_DURATION_MS = 40;
|
||||
static const int AUDIO_DURATION_USECS = 40000;
|
||||
|
||||
// If we increase our "low audio threshold" (see LOW_AUDIO_MS above), we
|
||||
// If we increase our "low audio threshold" (see LOW_AUDIO_USECS above), we
|
||||
// use this as a factor in all our calculations. Increasing this will cause
|
||||
// us to be more likely to increase our low audio threshold, and to
|
||||
// increase it by more.
|
||||
@ -110,16 +110,16 @@ static const int THRESHOLD_FACTOR = 2;
|
||||
// ourselves to be running low on undecoded data. We determine how much
|
||||
// undecoded data we have remaining using the reader's GetBuffered()
|
||||
// implementation.
|
||||
static const PRInt64 LOW_DATA_THRESHOLD_MS = 5000;
|
||||
static const PRInt64 LOW_DATA_THRESHOLD_USECS = 5000000;
|
||||
|
||||
// LOW_DATA_THRESHOLD_MS needs to be greater than AMPLE_AUDIO_MS, otherwise
|
||||
// LOW_DATA_THRESHOLD_USECS needs to be greater than AMPLE_AUDIO_USECS, otherwise
|
||||
// the skip-to-keyframe logic can activate when we're running low on data.
|
||||
PR_STATIC_ASSERT(LOW_DATA_THRESHOLD_MS > AMPLE_AUDIO_MS);
|
||||
PR_STATIC_ASSERT(LOW_DATA_THRESHOLD_USECS > AMPLE_AUDIO_USECS);
|
||||
|
||||
// Amount of excess ms of data to add in to the "should we buffer" calculation.
|
||||
static const PRUint32 EXHAUSTED_DATA_MARGIN_MS = 60;
|
||||
// Amount of excess usecs of data to add in to the "should we buffer" calculation.
|
||||
static const PRUint32 EXHAUSTED_DATA_MARGIN_USECS = 60000;
|
||||
|
||||
// If we enter buffering within QUICK_BUFFER_THRESHOLD_MS seconds of starting
|
||||
// If we enter buffering within QUICK_BUFFER_THRESHOLD_USECS seconds of starting
|
||||
// decoding, we'll enter "quick buffering" mode, which exits a lot sooner than
|
||||
// normal buffering mode. This exists so that if the decode-ahead exhausts the
|
||||
// downloaded data while decode/playback is just starting up (for example
|
||||
@ -128,24 +128,24 @@ static const PRUint32 EXHAUSTED_DATA_MARGIN_MS = 60;
|
||||
// for buffering. We may actually be able to playback in this case, so exit
|
||||
// buffering early and try to play. If it turns out we can't play, we'll fall
|
||||
// back to buffering normally.
|
||||
static const PRUint32 QUICK_BUFFER_THRESHOLD_MS = 2000;
|
||||
static const PRUint32 QUICK_BUFFER_THRESHOLD_USECS = 2000000;
|
||||
|
||||
// If we're quick buffering, we'll remain in buffering mode while we have less than
|
||||
// QUICK_BUFFERING_LOW_DATA_MS of decoded data available.
|
||||
static const PRUint32 QUICK_BUFFERING_LOW_DATA_MS = 1000;
|
||||
// QUICK_BUFFERING_LOW_DATA_USECS of decoded data available.
|
||||
static const PRUint32 QUICK_BUFFERING_LOW_DATA_USECS = 1000000;
|
||||
|
||||
// If QUICK_BUFFERING_LOW_DATA_MS is > AMPLE_AUDIO_MS, we won't exit
|
||||
// If QUICK_BUFFERING_LOW_DATA_USECS is > AMPLE_AUDIO_USECS, we won't exit
|
||||
// quick buffering in a timely fashion, as the decode pauses when it
|
||||
// reaches AMPLE_AUDIO_MS decoded data, and thus we'll never reach
|
||||
// QUICK_BUFFERING_LOW_DATA_MS.
|
||||
PR_STATIC_ASSERT(QUICK_BUFFERING_LOW_DATA_MS <= AMPLE_AUDIO_MS);
|
||||
// reaches AMPLE_AUDIO_USECS decoded data, and thus we'll never reach
|
||||
// QUICK_BUFFERING_LOW_DATA_USECS.
|
||||
PR_STATIC_ASSERT(QUICK_BUFFERING_LOW_DATA_USECS <= AMPLE_AUDIO_USECS);
|
||||
|
||||
static TimeDuration MsToDuration(PRInt64 aMs) {
|
||||
return TimeDuration::FromMilliseconds(static_cast<double>(aMs));
|
||||
static TimeDuration UsecsToDuration(PRInt64 aUsecs) {
|
||||
return TimeDuration::FromMilliseconds(static_cast<double>(aUsecs) / USECS_PER_MS);
|
||||
}
|
||||
|
||||
static PRInt64 DurationToMs(TimeDuration aDuration) {
|
||||
return static_cast<PRInt64>(aDuration.ToSeconds() * 1000);
|
||||
static PRInt64 DurationToUsecs(TimeDuration aDuration) {
|
||||
return static_cast<PRInt64>(aDuration.ToSeconds() * USECS_PER_S);
|
||||
}
|
||||
|
||||
class nsAudioMetadataEventRunner : public nsRunnable
|
||||
@ -214,7 +214,7 @@ PRBool nsBuiltinDecoderStateMachine::HasFutureAudio() const {
|
||||
// we've completely decoded all audio (but not finished playing it yet
|
||||
// as per 1).
|
||||
return !mAudioCompleted &&
|
||||
(AudioDecodedMs() > LOW_AUDIO_MS || mReader->mAudioQueue.IsFinished());
|
||||
(AudioDecodedUsecs() > LOW_AUDIO_USECS || mReader->mAudioQueue.IsFinished());
|
||||
}
|
||||
|
||||
PRBool nsBuiltinDecoderStateMachine::HaveNextFrameData() const {
|
||||
@ -252,19 +252,19 @@ void nsBuiltinDecoderStateMachine::DecodeLoop()
|
||||
// no longer be considered to be "pumping video".
|
||||
const unsigned videoPumpThreshold = AMPLE_VIDEO_FRAMES / 2;
|
||||
|
||||
// After the audio decode fills with more than audioPumpThresholdMs ms
|
||||
// After the audio decode fills with more than audioPumpThreshold usecs
|
||||
// of decoded audio, we'll start to check whether the audio or video decode
|
||||
// is falling behind.
|
||||
const unsigned audioPumpThresholdMs = LOW_AUDIO_MS * 2;
|
||||
const unsigned audioPumpThreshold = LOW_AUDIO_USECS * 2;
|
||||
|
||||
// Our local low audio threshold. We may increase this if we're slow to
|
||||
// decode video frames, in order to reduce the chance of audio underruns.
|
||||
PRInt64 lowAudioThreshold = LOW_AUDIO_MS;
|
||||
PRInt64 lowAudioThreshold = LOW_AUDIO_USECS;
|
||||
|
||||
// Our local ample audio threshold. If we increase lowAudioThreshold, we'll
|
||||
// also increase this too appropriately (we don't want lowAudioThreshold to
|
||||
// be greater than ampleAudioThreshold, else we'd stop decoding!).
|
||||
PRInt64 ampleAudioThreshold = AMPLE_AUDIO_MS;
|
||||
PRInt64 ampleAudioThreshold = AMPLE_AUDIO_USECS;
|
||||
|
||||
MediaQueue<VideoData>& videoQueue = mReader->mVideoQueue;
|
||||
MediaQueue<SoundData>& audioQueue = mReader->mAudioQueue;
|
||||
@ -291,7 +291,7 @@ void nsBuiltinDecoderStateMachine::DecodeLoop()
|
||||
// We don't want to consider skipping to the next keyframe if we've
|
||||
// only just started up the decode loop, so wait until we've decoded
|
||||
// some audio data before enabling the keyframe skip logic on audio.
|
||||
if (audioPump && GetDecodedAudioDuration() >= audioPumpThresholdMs) {
|
||||
if (audioPump && GetDecodedAudioDuration() >= audioPumpThreshold) {
|
||||
audioPump = PR_FALSE;
|
||||
}
|
||||
|
||||
@ -330,11 +330,11 @@ void nsBuiltinDecoderStateMachine::DecodeLoop()
|
||||
videoPlaying = mReader->DecodeVideoFrame(skipToNextKeyframe, currentTime);
|
||||
decodeTime = TimeStamp::Now() - start;
|
||||
}
|
||||
if (THRESHOLD_FACTOR * DurationToMs(decodeTime) > lowAudioThreshold &&
|
||||
if (THRESHOLD_FACTOR * DurationToUsecs(decodeTime) > lowAudioThreshold &&
|
||||
!HasLowUndecodedData())
|
||||
{
|
||||
lowAudioThreshold =
|
||||
NS_MIN(THRESHOLD_FACTOR * DurationToMs(decodeTime), AMPLE_AUDIO_MS);
|
||||
NS_MIN(THRESHOLD_FACTOR * DurationToUsecs(decodeTime), AMPLE_AUDIO_USECS);
|
||||
ampleAudioThreshold = NS_MAX(THRESHOLD_FACTOR * lowAudioThreshold,
|
||||
ampleAudioThreshold);
|
||||
LOG(PR_LOG_DEBUG,
|
||||
@ -476,7 +476,7 @@ void nsBuiltinDecoderStateMachine::AudioLoop()
|
||||
// Calculate the number of samples that have been pushed onto the audio
|
||||
// hardware.
|
||||
PRInt64 playedSamples = 0;
|
||||
if (!MsToSamples(audioStartTime, rate, playedSamples)) {
|
||||
if (!UsecsToSamples(audioStartTime, rate, playedSamples)) {
|
||||
NS_WARNING("Int overflow converting playedSamples");
|
||||
break;
|
||||
}
|
||||
@ -488,7 +488,7 @@ void nsBuiltinDecoderStateMachine::AudioLoop()
|
||||
// Calculate the timestamp of the next chunk of audio in numbers of
|
||||
// samples.
|
||||
PRInt64 sampleTime = 0;
|
||||
if (!MsToSamples(s->mTime, rate, sampleTime)) {
|
||||
if (!UsecsToSamples(s->mTime, rate, sampleTime)) {
|
||||
NS_WARNING("Int overflow converting sampleTime");
|
||||
break;
|
||||
}
|
||||
@ -511,18 +511,18 @@ void nsBuiltinDecoderStateMachine::AudioLoop()
|
||||
}
|
||||
{
|
||||
MonitorAutoEnter mon(mDecoder->GetMonitor());
|
||||
PRInt64 playedMs;
|
||||
if (!SamplesToMs(audioDuration, rate, playedMs)) {
|
||||
NS_WARNING("Int overflow calculating playedMs");
|
||||
PRInt64 playedUsecs;
|
||||
if (!SamplesToUsecs(audioDuration, rate, playedUsecs)) {
|
||||
NS_WARNING("Int overflow calculating playedUsecs");
|
||||
break;
|
||||
}
|
||||
if (!AddOverflow(audioStartTime, playedMs, mAudioEndTime)) {
|
||||
if (!AddOverflow(audioStartTime, playedUsecs, mAudioEndTime)) {
|
||||
NS_WARNING("Int overflow calculating audio end time");
|
||||
break;
|
||||
}
|
||||
|
||||
PRInt64 audioAhead = mAudioEndTime - GetMediaTime();
|
||||
if (audioAhead > AMPLE_AUDIO_MS &&
|
||||
if (audioAhead > AMPLE_AUDIO_USECS &&
|
||||
audioDuration - samplesAtLastSleep > minWriteSamples)
|
||||
{
|
||||
samplesAtLastSleep = audioDuration;
|
||||
@ -530,7 +530,7 @@ void nsBuiltinDecoderStateMachine::AudioLoop()
|
||||
// significant amount ahead of the playback position. The decode
|
||||
// thread will be going to sleep, so we won't get any new samples
|
||||
// anyway, so sleep until we need to push to the hardware again.
|
||||
Wait(AMPLE_AUDIO_MS / 2);
|
||||
Wait(AMPLE_AUDIO_USECS / 2);
|
||||
// Kick the decode thread; since above we only do a NotifyAll when
|
||||
// we pop an audio chunk of the queue, the decoder won't wake up if
|
||||
// we've got no more decoded chunks to push to the hardware. We can
|
||||
@ -561,8 +561,8 @@ void nsBuiltinDecoderStateMachine::AudioLoop()
|
||||
mState != DECODER_STATE_SEEKING &&
|
||||
mState != DECODER_STATE_SHUTDOWN)
|
||||
{
|
||||
const PRInt64 DRAIN_BLOCK_MS = 100;
|
||||
Wait(NS_MIN(mAudioEndTime - position, DRAIN_BLOCK_MS));
|
||||
const PRInt64 DRAIN_BLOCK_USECS = 100000;
|
||||
Wait(NS_MIN(mAudioEndTime - position, DRAIN_BLOCK_USECS));
|
||||
oldPosition = position;
|
||||
position = GetMediaTime();
|
||||
}
|
||||
@ -685,7 +685,7 @@ void nsBuiltinDecoderStateMachine::StopPlayback(eStopMode aMode)
|
||||
// audio thread can block in the write, and we deadlock trying to acquire
|
||||
// the audio monitor upon resume playback.
|
||||
if (IsPlaying()) {
|
||||
mPlayDuration += TimeStamp::Now() - mPlayStartTime;
|
||||
mPlayDuration += DurationToUsecs(TimeStamp::Now() - mPlayStartTime);
|
||||
mPlayStartTime = TimeStamp();
|
||||
}
|
||||
if (HasAudio()) {
|
||||
@ -801,7 +801,7 @@ double nsBuiltinDecoderStateMachine::GetCurrentTime() const
|
||||
OnDecodeThread(),
|
||||
"Should be on main, decode, or state machine thread.");
|
||||
|
||||
return static_cast<double>(mCurrentFrameTime) / 1000.0;
|
||||
return static_cast<double>(mCurrentFrameTime) / static_cast<double>(USECS_PER_S);
|
||||
}
|
||||
|
||||
PRInt64 nsBuiltinDecoderStateMachine::GetDuration()
|
||||
@ -895,7 +895,7 @@ void nsBuiltinDecoderStateMachine::Seek(double aTime)
|
||||
"We shouldn't already be seeking");
|
||||
NS_ASSERTION(mState >= DECODER_STATE_DECODING,
|
||||
"We should have loaded metadata");
|
||||
double t = aTime * 1000.0;
|
||||
double t = aTime * static_cast<double>(USECS_PER_S);
|
||||
if (t > PR_INT64_MAX) {
|
||||
// Prevent integer overflow.
|
||||
return;
|
||||
@ -967,10 +967,10 @@ nsBuiltinDecoderStateMachine::StartDecodeThreads()
|
||||
return NS_OK;
|
||||
}
|
||||
|
||||
PRInt64 nsBuiltinDecoderStateMachine::AudioDecodedMs() const
|
||||
PRInt64 nsBuiltinDecoderStateMachine::AudioDecodedUsecs() const
|
||||
{
|
||||
NS_ASSERTION(HasAudio(),
|
||||
"Should only call AudioDecodedMs() when we have audio");
|
||||
"Should only call AudioDecodedUsecs() when we have audio");
|
||||
// The amount of audio we have decoded is the amount of audio data we've
|
||||
// already decoded and pushed to the hardware, plus the amount of audio
|
||||
// data waiting to be pushed to the hardware.
|
||||
@ -978,7 +978,7 @@ PRInt64 nsBuiltinDecoderStateMachine::AudioDecodedMs() const
|
||||
return pushed + mReader->mAudioQueue.Duration();
|
||||
}
|
||||
|
||||
PRBool nsBuiltinDecoderStateMachine::HasLowDecodedData(PRInt64 aAudioMs) const
|
||||
PRBool nsBuiltinDecoderStateMachine::HasLowDecodedData(PRInt64 aAudioUsecs) const
|
||||
{
|
||||
mDecoder->GetMonitor().AssertCurrentThreadIn();
|
||||
// We consider ourselves low on decoded data if we're low on audio,
|
||||
@ -987,7 +987,7 @@ PRBool nsBuiltinDecoderStateMachine::HasLowDecodedData(PRInt64 aAudioMs) const
|
||||
// we've not decoded to the end of the video stream.
|
||||
return ((HasAudio() &&
|
||||
!mReader->mAudioQueue.IsFinished() &&
|
||||
AudioDecodedMs() < aAudioMs)
|
||||
AudioDecodedUsecs() < aAudioUsecs)
|
||||
||
|
||||
(!HasAudio() &&
|
||||
HasVideo() &&
|
||||
@ -997,7 +997,7 @@ PRBool nsBuiltinDecoderStateMachine::HasLowDecodedData(PRInt64 aAudioMs) const
|
||||
|
||||
PRBool nsBuiltinDecoderStateMachine::HasLowUndecodedData() const
|
||||
{
|
||||
return GetUndecodedData() < LOW_DATA_THRESHOLD_MS;
|
||||
return GetUndecodedData() < LOW_DATA_THRESHOLD_USECS;
|
||||
}
|
||||
|
||||
PRInt64 nsBuiltinDecoderStateMachine::GetUndecodedData() const
|
||||
@ -1025,7 +1025,7 @@ PRInt64 nsBuiltinDecoderStateMachine::GetUndecodedData() const
|
||||
NS_ENSURE_SUCCESS(res, 0);
|
||||
|
||||
if (start <= currentTime && end >= currentTime) {
|
||||
return static_cast<PRInt64>((end - currentTime) * 1000);
|
||||
return static_cast<PRInt64>((end - currentTime) * USECS_PER_S);
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
@ -1078,7 +1078,7 @@ nsresult nsBuiltinDecoderStateMachine::Run()
|
||||
!mSeekable || mEndTime != -1,
|
||||
"Active seekable media should have end time");
|
||||
NS_ASSERTION(!mSeekable || GetDuration() != -1, "Seekable media should have duration");
|
||||
LOG(PR_LOG_DEBUG, ("%p Media goes from %lldms to %lldms (duration %lldms) seekable=%d",
|
||||
LOG(PR_LOG_DEBUG, ("%p Media goes from %lld to %lld (duration %lld) seekable=%d",
|
||||
mDecoder, mStartTime, mEndTime, GetDuration(), mSeekable));
|
||||
|
||||
if (mState == DECODER_STATE_SHUTDOWN)
|
||||
@ -1179,7 +1179,7 @@ nsresult nsBuiltinDecoderStateMachine::Run()
|
||||
"Seek target should lie inside the first audio block after seek");
|
||||
PRInt64 startTime = (audio && audio->mTime < seekTime) ? audio->mTime : seekTime;
|
||||
mAudioStartTime = startTime;
|
||||
mPlayDuration = MsToDuration(startTime - mStartTime);
|
||||
mPlayDuration = startTime - mStartTime;
|
||||
if (HasVideo()) {
|
||||
nsAutoPtr<VideoData> video(mReader->mVideoQueue.PeekFront());
|
||||
if (video) {
|
||||
@ -1212,12 +1212,12 @@ nsresult nsBuiltinDecoderStateMachine::Run()
|
||||
|
||||
nsCOMPtr<nsIRunnable> stopEvent;
|
||||
if (GetMediaTime() == mEndTime) {
|
||||
LOG(PR_LOG_DEBUG, ("%p Changed state from SEEKING (to %lldms) to COMPLETED",
|
||||
LOG(PR_LOG_DEBUG, ("%p Changed state from SEEKING (to %lld) to COMPLETED",
|
||||
mDecoder, seekTime));
|
||||
stopEvent = NS_NewRunnableMethod(mDecoder, &nsBuiltinDecoder::SeekingStoppedAtEnd);
|
||||
mState = DECODER_STATE_COMPLETED;
|
||||
} else {
|
||||
LOG(PR_LOG_DEBUG, ("%p Changed state from SEEKING (to %lldms) to DECODING",
|
||||
LOG(PR_LOG_DEBUG, ("%p Changed state from SEEKING (to %lld) to DECODING",
|
||||
mDecoder, seekTime));
|
||||
stopEvent = NS_NewRunnableMethod(mDecoder, &nsBuiltinDecoder::SeekingStopped);
|
||||
StartDecoding();
|
||||
@ -1253,18 +1253,18 @@ nsresult nsBuiltinDecoderStateMachine::Run()
|
||||
PRBool isLiveStream = mDecoder->GetCurrentStream()->GetLength() == -1;
|
||||
if ((isLiveStream || !mDecoder->CanPlayThrough()) &&
|
||||
elapsed < TimeDuration::FromSeconds(BUFFERING_WAIT) &&
|
||||
(mQuickBuffering ? HasLowDecodedData(QUICK_BUFFERING_LOW_DATA_MS)
|
||||
: (GetUndecodedData() < BUFFERING_WAIT * 1000)) &&
|
||||
(mQuickBuffering ? HasLowDecodedData(QUICK_BUFFERING_LOW_DATA_USECS)
|
||||
: (GetUndecodedData() < BUFFERING_WAIT * USECS_PER_S)) &&
|
||||
!stream->IsDataCachedToEndOfStream(mDecoder->mDecoderPosition) &&
|
||||
!stream->IsSuspended())
|
||||
{
|
||||
LOG(PR_LOG_DEBUG,
|
||||
("Buffering: %.3lfs/%ds, timeout in %.3lfs %s",
|
||||
GetUndecodedData() / 1000.0,
|
||||
GetUndecodedData() / static_cast<double>(USECS_PER_S),
|
||||
BUFFERING_WAIT,
|
||||
BUFFERING_WAIT - elapsed.ToSeconds(),
|
||||
(mQuickBuffering ? "(quick exit)" : "")));
|
||||
Wait(1000);
|
||||
Wait(USECS_PER_S);
|
||||
if (mState == DECODER_STATE_SHUTDOWN)
|
||||
continue;
|
||||
} else {
|
||||
@ -1387,7 +1387,7 @@ void nsBuiltinDecoderStateMachine::AdvanceFrame()
|
||||
// audio clock. Just wait and then return, to give the audio clock time
|
||||
// to tick. This should really wait for a specific signal from the audio
|
||||
// thread rather than polling after a sleep. See bug 568431 comment 4.
|
||||
Wait(AUDIO_DURATION_MS);
|
||||
Wait(AUDIO_DURATION_USECS);
|
||||
return;
|
||||
}
|
||||
|
||||
@ -1396,18 +1396,18 @@ void nsBuiltinDecoderStateMachine::AdvanceFrame()
|
||||
// audio, or don't have audio, use the system clock.
|
||||
PRInt64 clock_time = -1;
|
||||
if (!IsPlaying()) {
|
||||
clock_time = DurationToMs(mPlayDuration) + mStartTime;
|
||||
clock_time = mPlayDuration + mStartTime;
|
||||
} else {
|
||||
PRInt64 audio_time = GetAudioClock();
|
||||
if (HasAudio() && !mAudioCompleted && audio_time != -1) {
|
||||
clock_time = audio_time;
|
||||
// Resync against the audio clock, while we're trusting the
|
||||
// audio clock. This ensures no "drift", particularly on Linux.
|
||||
mPlayDuration = MsToDuration(clock_time - mStartTime);
|
||||
mPlayDuration = clock_time - mStartTime;
|
||||
mPlayStartTime = TimeStamp::Now();
|
||||
} else {
|
||||
// Sound is disabled on this system. Sync to the system clock.
|
||||
clock_time = DurationToMs(TimeStamp::Now() - mPlayStartTime + mPlayDuration);
|
||||
clock_time = DurationToUsecs(TimeStamp::Now() - mPlayStartTime) + mPlayDuration;
|
||||
// Ensure the clock can never go backwards.
|
||||
NS_ASSERTION(mCurrentFrameTime <= clock_time, "Clock should go forwards");
|
||||
clock_time = NS_MAX(mCurrentFrameTime, clock_time) + mStartTime;
|
||||
@ -1416,7 +1416,7 @@ void nsBuiltinDecoderStateMachine::AdvanceFrame()
|
||||
|
||||
// Skip frames up to the frame at the playback position, and figure out
|
||||
// the time remaining until it's time to display the next frame.
|
||||
PRInt64 remainingTime = AUDIO_DURATION_MS;
|
||||
PRInt64 remainingTime = AUDIO_DURATION_USECS;
|
||||
NS_ASSERTION(clock_time >= mStartTime, "Should have positive clock time.");
|
||||
nsAutoPtr<VideoData> currentFrame;
|
||||
if (mReader->mVideoQueue.GetSize() > 0) {
|
||||
@ -1434,8 +1434,8 @@ void nsBuiltinDecoderStateMachine::AdvanceFrame()
|
||||
// present the next frame.
|
||||
if (frame && !currentFrame) {
|
||||
PRInt64 now = IsPlaying()
|
||||
? DurationToMs(TimeStamp::Now() - mPlayStartTime + mPlayDuration)
|
||||
: DurationToMs(mPlayDuration);
|
||||
? (DurationToUsecs(TimeStamp::Now() - mPlayStartTime) + mPlayDuration)
|
||||
: mPlayDuration;
|
||||
remainingTime = frame->mTime - mStartTime - now;
|
||||
}
|
||||
}
|
||||
@ -1445,7 +1445,7 @@ void nsBuiltinDecoderStateMachine::AdvanceFrame()
|
||||
nsMediaStream* stream = mDecoder->GetCurrentStream();
|
||||
if (mState == DECODER_STATE_DECODING &&
|
||||
mDecoder->GetState() == nsBuiltinDecoder::PLAY_STATE_PLAYING &&
|
||||
HasLowDecodedData(remainingTime + EXHAUSTED_DATA_MARGIN_MS) &&
|
||||
HasLowDecodedData(remainingTime + EXHAUSTED_DATA_MARGIN_USECS) &&
|
||||
!stream->IsDataCachedToEndOfStream(mDecoder->mDecoderPosition) &&
|
||||
!stream->IsSuspended() &&
|
||||
(JustExitedQuickBuffering() || HasLowUndecodedData()))
|
||||
@ -1466,8 +1466,8 @@ void nsBuiltinDecoderStateMachine::AdvanceFrame()
|
||||
|
||||
if (currentFrame) {
|
||||
// Decode one frame and display it.
|
||||
TimeStamp presTime = mPlayStartTime - mPlayDuration +
|
||||
MsToDuration(currentFrame->mTime - mStartTime);
|
||||
TimeStamp presTime = mPlayStartTime - UsecsToDuration(mPlayDuration) +
|
||||
UsecsToDuration(currentFrame->mTime - mStartTime);
|
||||
NS_ASSERTION(currentFrame->mTime >= mStartTime, "Should have positive frame time");
|
||||
{
|
||||
nsIntSize display = mInfo.mDisplay;
|
||||
@ -1480,7 +1480,7 @@ void nsBuiltinDecoderStateMachine::AdvanceFrame()
|
||||
}
|
||||
}
|
||||
mDecoder->GetFrameStatistics().NotifyPresentedFrame();
|
||||
PRInt64 now = DurationToMs(TimeStamp::Now() - mPlayStartTime + mPlayDuration);
|
||||
PRInt64 now = DurationToUsecs(TimeStamp::Now() - mPlayStartTime) + mPlayDuration;
|
||||
remainingTime = currentFrame->mEndTime - mStartTime - now;
|
||||
currentFrame = nsnull;
|
||||
}
|
||||
@ -1526,9 +1526,9 @@ void nsBuiltinDecoderStateMachine::AdvanceFrame()
|
||||
}
|
||||
}
|
||||
|
||||
void nsBuiltinDecoderStateMachine::Wait(PRInt64 aMs) {
|
||||
void nsBuiltinDecoderStateMachine::Wait(PRInt64 aUsecs) {
|
||||
mDecoder->GetMonitor().AssertCurrentThreadIn();
|
||||
TimeStamp end = TimeStamp::Now() + MsToDuration(aMs);
|
||||
TimeStamp end = TimeStamp::Now() + UsecsToDuration(aUsecs);
|
||||
TimeStamp now;
|
||||
while ((now = TimeStamp::Now()) < end &&
|
||||
mState != DECODER_STATE_SHUTDOWN &&
|
||||
@ -1538,8 +1538,6 @@ void nsBuiltinDecoderStateMachine::Wait(PRInt64 aMs) {
|
||||
if (ms == 0 || ms > PR_UINT32_MAX) {
|
||||
break;
|
||||
}
|
||||
NS_ASSERTION(ms <= aMs && ms > 0,
|
||||
"nsBuiltinDecoderStateMachine::Wait interval very wrong!");
|
||||
mDecoder->GetMonitor().Wait(PR_MillisecondsToInterval(static_cast<PRUint32>(ms)));
|
||||
}
|
||||
}
|
||||
@ -1571,7 +1569,7 @@ VideoData* nsBuiltinDecoderStateMachine::FindStartTime()
|
||||
// first acutal audio sample we have, we'll inject silence during playback
|
||||
// to ensure the audio starts at the correct time.
|
||||
mAudioStartTime = mStartTime;
|
||||
LOG(PR_LOG_DEBUG, ("%p Media start time is %lldms", mDecoder, mStartTime));
|
||||
LOG(PR_LOG_DEBUG, ("%p Media start time is %lld", mDecoder, mStartTime));
|
||||
return v;
|
||||
}
|
||||
|
||||
@ -1596,7 +1594,7 @@ void nsBuiltinDecoderStateMachine::FindEndTime()
|
||||
mEndTime = endTime;
|
||||
}
|
||||
|
||||
LOG(PR_LOG_DEBUG, ("%p Media end time is %lldms", mDecoder, mEndTime));
|
||||
LOG(PR_LOG_DEBUG, ("%p Media end time is %lld", mDecoder, mEndTime));
|
||||
}
|
||||
|
||||
void nsBuiltinDecoderStateMachine::UpdateReadyState() {
|
||||
@ -1650,7 +1648,7 @@ PRBool nsBuiltinDecoderStateMachine::JustExitedQuickBuffering()
|
||||
{
|
||||
return !mDecodeStartTime.IsNull() &&
|
||||
mQuickBuffering &&
|
||||
(TimeStamp::Now() - mDecodeStartTime) < TimeDuration::FromSeconds(QUICK_BUFFER_THRESHOLD_MS);
|
||||
(TimeStamp::Now() - mDecodeStartTime) < TimeDuration::FromSeconds(QUICK_BUFFER_THRESHOLD_USECS);
|
||||
}
|
||||
|
||||
void nsBuiltinDecoderStateMachine::StartBuffering()
|
||||
@ -1663,7 +1661,7 @@ void nsBuiltinDecoderStateMachine::StartBuffering()
|
||||
// when the download speed is similar to the decode speed.
|
||||
mQuickBuffering =
|
||||
!JustExitedQuickBuffering() &&
|
||||
decodeDuration < TimeDuration::FromMilliseconds(QUICK_BUFFER_THRESHOLD_MS);
|
||||
decodeDuration < UsecsToDuration(QUICK_BUFFER_THRESHOLD_USECS);
|
||||
mBufferingStart = TimeStamp::Now();
|
||||
|
||||
// We need to tell the element that buffering has started.
|
||||
|
@ -249,23 +249,23 @@ public:
|
||||
|
||||
protected:
|
||||
|
||||
// Returns PR_TRUE if we'v got less than aAudioMs ms of decoded and playable
|
||||
// data. The decoder monitor must be held.
|
||||
PRBool HasLowDecodedData(PRInt64 aAudioMs) const;
|
||||
// Returns PR_TRUE if we've got less than aAudioUsecs microseconds of decoded
|
||||
// and playable data. The decoder monitor must be held.
|
||||
PRBool HasLowDecodedData(PRInt64 aAudioUsecs) const;
|
||||
|
||||
// Returns PR_TRUE if we're running low on data which is not yet decoded.
|
||||
// The decoder monitor must be held.
|
||||
PRBool HasLowUndecodedData() const;
|
||||
|
||||
// Returns the number of milliseconds of undecoded data available for
|
||||
// Returns the number of microseconds of undecoded data available for
|
||||
// decoding. The decoder monitor must be held.
|
||||
PRInt64 GetUndecodedData() const;
|
||||
|
||||
// Returns the number of unplayed ms of audio we've got decoded and/or
|
||||
// Returns the number of unplayed usecs of audio we've got decoded and/or
|
||||
// pushed to the hardware waiting to play. This is how much audio we can
|
||||
// play without having to run the audio decoder. The decoder monitor
|
||||
// must be held.
|
||||
PRInt64 AudioDecodedMs() const;
|
||||
PRInt64 AudioDecodedUsecs() const;
|
||||
|
||||
// Returns PR_TRUE when there's decoded audio waiting to play.
|
||||
// The decoder monitor must be held.
|
||||
@ -274,13 +274,13 @@ protected:
|
||||
// Returns PR_TRUE if we recently exited "quick buffering" mode.
|
||||
PRBool JustExitedQuickBuffering();
|
||||
|
||||
// Waits on the decoder Monitor for aMs. If the decoder monitor is awoken
|
||||
// by a Notify() call, we'll continue waiting, unless we've moved into
|
||||
// shutdown state. This enables us to ensure that we wait for a specified
|
||||
// time, and that the myriad of Notify()s we do an the decoder monitor
|
||||
// don't cause the audio thread to be starved. The decoder monitor must
|
||||
// be locked.
|
||||
void Wait(PRInt64 aMs);
|
||||
// Waits on the decoder Monitor for aUsecs microseconds. If the decoder
|
||||
// monitor is awoken by a Notify() call, we'll continue waiting, unless
|
||||
// we've moved into shutdown state. This enables us to ensure that we
|
||||
// wait for a specified time, and that the myriad of Notify()s we do an
|
||||
// the decoder monitor don't cause the audio thread to be starved. The
|
||||
// decoder monitor must be locked.
|
||||
void Wait(PRInt64 aUsecs);
|
||||
|
||||
// Dispatches an asynchronous event to update the media element's ready state.
|
||||
void UpdateReadyState();
|
||||
@ -330,7 +330,8 @@ protected:
|
||||
// hardware. This ensures that the playback position advances smoothly, and
|
||||
// guarantees that we don't try to allocate an impossibly large chunk of
|
||||
// memory in order to play back silence. Called on the audio thread.
|
||||
PRUint32 PlaySilence(PRUint32 aSamples, PRUint32 aChannels,
|
||||
PRUint32 PlaySilence(PRUint32 aSamples,
|
||||
PRUint32 aChannels,
|
||||
PRUint64 aSampleOffset);
|
||||
|
||||
// Pops an audio chunk from the front of the audio queue, and pushes its
|
||||
@ -388,9 +389,9 @@ protected:
|
||||
return mStartTime + mCurrentFrameTime;
|
||||
}
|
||||
|
||||
// Returns an upper bound on the number of milliseconds of audio that is
|
||||
// decoded and playable. This is the sum of the number of ms of audio which
|
||||
// is decoded and in the reader's audio queue, and the ms of unplayed audio
|
||||
// Returns an upper bound on the number of microseconds of audio that is
|
||||
// decoded and playable. This is the sum of the number of usecs of audio which
|
||||
// is decoded and in the reader's audio queue, and the usecs of unplayed audio
|
||||
// which has been pushed to the audio hardware for playback. Note that after
|
||||
// calling this, the audio hardware may play some of the audio pushed to
|
||||
// hardware, so this can only be used as a upper bound. The decoder monitor
|
||||
@ -426,25 +427,25 @@ protected:
|
||||
// playback position is therefore |Now() - mPlayStartTime +
|
||||
// mPlayDuration|, which must be adjusted by mStartTime if used with media
|
||||
// timestamps. Accessed only via the state machine thread.
|
||||
TimeDuration mPlayDuration;
|
||||
PRInt64 mPlayDuration;
|
||||
|
||||
// Time that buffering started. Used for buffering timeout and only
|
||||
// accessed on the state machine thread. This is null while we're not
|
||||
// buffering.
|
||||
TimeStamp mBufferingStart;
|
||||
|
||||
// Start time of the media, in milliseconds. This is the presentation
|
||||
// Start time of the media, in microseconds. This is the presentation
|
||||
// time of the first sample decoded from the media, and is used to calculate
|
||||
// duration and as a bounds for seeking. Accessed on state machine and
|
||||
// main thread. Access controlled by decoder monitor.
|
||||
PRInt64 mStartTime;
|
||||
|
||||
// Time of the last page in the media, in milliseconds. This is the
|
||||
// Time of the last page in the media, in microseconds. This is the
|
||||
// end time of the last sample in the media. Accessed on state
|
||||
// machine and main thread. Access controlled by decoder monitor.
|
||||
PRInt64 mEndTime;
|
||||
|
||||
// Position to seek to in milliseconds when the seek state transition occurs.
|
||||
// Position to seek to in microseconds when the seek state transition occurs.
|
||||
// The decoder monitor lock must be obtained before reading or writing
|
||||
// this value. Accessed on main and state machine thread.
|
||||
PRInt64 mSeekTime;
|
||||
@ -459,24 +460,25 @@ protected:
|
||||
// in the play state machine's destructor.
|
||||
nsAutoPtr<nsBuiltinDecoderReader> mReader;
|
||||
|
||||
// The time of the current frame in milliseconds. This is referenced from
|
||||
// The time of the current frame in microseconds. This is referenced from
|
||||
// 0 which is the initial playback position. Set by the state machine
|
||||
// thread, and read-only from the main thread to get the current
|
||||
// time value. Synchronised via decoder monitor.
|
||||
PRInt64 mCurrentFrameTime;
|
||||
|
||||
// The presentation time of the first audio sample that was played. We can
|
||||
// add this to the audio stream position to determine the current audio time.
|
||||
// Accessed on audio and state machine thread. Synchronized by decoder monitor.
|
||||
// The presentation time of the first audio sample that was played in
|
||||
// microseconds. We can add this to the audio stream position to determine
|
||||
// the current audio time. Accessed on audio and state machine thread.
|
||||
// Synchronized by decoder monitor.
|
||||
PRInt64 mAudioStartTime;
|
||||
|
||||
// The end time of the last audio sample that's been pushed onto the audio
|
||||
// hardware. This will approximately be the end time of the audio stream,
|
||||
// unless another sample is pushed to the hardware.
|
||||
// hardware in microseconds. This will approximately be the end time of the
|
||||
// audio stream, unless another sample is pushed to the hardware.
|
||||
PRInt64 mAudioEndTime;
|
||||
|
||||
// The presentation end time of the last video frame which has been displayed.
|
||||
// Accessed from the state machine thread.
|
||||
// The presentation end time of the last video frame which has been displayed
|
||||
// in microseconds. Accessed from the state machine thread.
|
||||
PRInt64 mVideoFrameEndTime;
|
||||
|
||||
// Volume of playback. 0.0 = muted. 1.0 = full volume. Read/Written
|
||||
|
@ -740,7 +740,7 @@ static PRInt32 GetMaxBlocks()
|
||||
// to the pref are applied.
|
||||
// Cache size is in KB
|
||||
PRInt32 cacheSize = nsContentUtils::GetIntPref("media.cache_size", 500*1024);
|
||||
PRInt64 maxBlocks = PRInt64(cacheSize)*1024/nsMediaCache::BLOCK_SIZE;
|
||||
PRInt64 maxBlocks = static_cast<PRInt64>(cacheSize)*1024/nsMediaCache::BLOCK_SIZE;
|
||||
maxBlocks = PR_MAX(maxBlocks, 1);
|
||||
return PRInt32(PR_MIN(maxBlocks, PR_INT32_MAX));
|
||||
}
|
||||
@ -1032,7 +1032,7 @@ nsMediaCache::PredictNextUse(TimeStamp aNow, PRInt32 aBlock)
|
||||
case PLAYED_BLOCK:
|
||||
// This block should be managed in LRU mode, and we should impose
|
||||
// a "replay delay" to reflect the likelihood of replay happening
|
||||
NS_ASSERTION(PRInt64(bo->mStreamBlock)*BLOCK_SIZE <
|
||||
NS_ASSERTION(static_cast<PRInt64>(bo->mStreamBlock)*BLOCK_SIZE <
|
||||
bo->mStream->mStreamOffset,
|
||||
"Played block after the current stream position?");
|
||||
prediction = aNow - bo->mLastUseTime +
|
||||
@ -1040,7 +1040,7 @@ nsMediaCache::PredictNextUse(TimeStamp aNow, PRInt32 aBlock)
|
||||
break;
|
||||
case READAHEAD_BLOCK: {
|
||||
PRInt64 bytesAhead =
|
||||
PRInt64(bo->mStreamBlock)*BLOCK_SIZE - bo->mStream->mStreamOffset;
|
||||
static_cast<PRInt64>(bo->mStreamBlock)*BLOCK_SIZE - bo->mStream->mStreamOffset;
|
||||
NS_ASSERTION(bytesAhead >= 0,
|
||||
"Readahead block before the current stream position?");
|
||||
PRInt64 millisecondsAhead =
|
||||
|
@ -282,10 +282,10 @@ public:
|
||||
// Return the frame decode/paint related statistics.
|
||||
FrameStatistics& GetFrameStatistics() { return mFrameStats; }
|
||||
|
||||
// Set the duration of the media resource in units of milliseconds.
|
||||
// Set the duration of the media resource in units of seconds.
|
||||
// This is called via a channel listener if it can pick up the duration
|
||||
// from a content header. Must be called from the main thread only.
|
||||
virtual void SetDuration(PRInt64 aDuration) = 0;
|
||||
virtual void SetDuration(double aDuration) = 0;
|
||||
|
||||
// Set a flag indicating whether seeking is supported
|
||||
virtual void SetSeekable(PRBool aSeekable) = 0;
|
||||
|
@ -221,7 +221,7 @@ nsMediaChannelStream::OnStartRequest(nsIRequest* aRequest)
|
||||
if (NS_SUCCEEDED(rv)) {
|
||||
double duration = durationText.ToDouble(&ec);
|
||||
if (ec == NS_OK && duration >= 0) {
|
||||
mDecoder->SetDuration(PRInt64(NS_round(duration*1000)));
|
||||
mDecoder->SetDuration(duration);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -107,7 +107,7 @@ public:
|
||||
*aReliable = seconds >= 1.0;
|
||||
if (seconds <= 0.0)
|
||||
return 0.0;
|
||||
return double(mAccumulatedBytes)/seconds;
|
||||
return static_cast<double>(mAccumulatedBytes)/seconds;
|
||||
}
|
||||
double GetRate(TimeStamp aNow, PRPackedBool* aReliable) {
|
||||
TimeDuration time = mAccumulatedTime;
|
||||
@ -118,7 +118,7 @@ public:
|
||||
*aReliable = seconds >= 3.0;
|
||||
if (seconds <= 0.0)
|
||||
return 0.0;
|
||||
return double(mAccumulatedBytes)/seconds;
|
||||
return static_cast<double>(mAccumulatedBytes)/seconds;
|
||||
}
|
||||
private:
|
||||
PRInt64 mAccumulatedBytes;
|
||||
|
@ -126,7 +126,6 @@ nsTheoraState::nsTheoraState(ogg_page* aBosPage) :
|
||||
nsOggCodecState(aBosPage),
|
||||
mSetup(0),
|
||||
mCtx(0),
|
||||
mFrameDuration(0),
|
||||
mPixelAspectRatio(0)
|
||||
{
|
||||
MOZ_COUNT_CTOR(nsTheoraState);
|
||||
@ -146,22 +145,9 @@ PRBool nsTheoraState::Init() {
|
||||
if (!mActive)
|
||||
return PR_FALSE;
|
||||
|
||||
PRInt64 n = mInfo.fps_numerator;
|
||||
PRInt64 d = mInfo.fps_denominator;
|
||||
PRInt64 n = mInfo.aspect_numerator;
|
||||
PRInt64 d = mInfo.aspect_denominator;
|
||||
|
||||
PRInt64 f;
|
||||
if (!MulOverflow(1000, d, f)) {
|
||||
return mActive = PR_FALSE;
|
||||
}
|
||||
f /= n;
|
||||
if (f > PR_UINT32_MAX) {
|
||||
return mActive = PR_FALSE;
|
||||
}
|
||||
mFrameDuration = static_cast<PRUint32>(f);
|
||||
|
||||
n = mInfo.aspect_numerator;
|
||||
|
||||
d = mInfo.aspect_denominator;
|
||||
mPixelAspectRatio = (n == 0 || d == 0) ?
|
||||
1.0f : static_cast<float>(n) / static_cast<float>(d);
|
||||
|
||||
@ -244,7 +230,7 @@ PRInt64 nsTheoraState::Time(th_info* aInfo, PRInt64 aGranulepos)
|
||||
PRInt64 frameno = iframe + pframe - TH_VERSION_CHECK(aInfo, 3, 2, 1);
|
||||
if (!AddOverflow(frameno, 1, t))
|
||||
return -1;
|
||||
if (!MulOverflow(t, 1000, t))
|
||||
if (!MulOverflow(t, USECS_PER_S, t))
|
||||
return -1;
|
||||
if (!MulOverflow(t, aInfo->fps_denominator, t))
|
||||
return -1;
|
||||
@ -257,7 +243,7 @@ PRInt64 nsTheoraState::StartTime(PRInt64 granulepos) {
|
||||
}
|
||||
PRInt64 t = 0;
|
||||
PRInt64 frameno = th_granule_frame(mCtx, granulepos);
|
||||
if (!MulOverflow(frameno, 1000, t))
|
||||
if (!MulOverflow(frameno, USECS_PER_S, t))
|
||||
return -1;
|
||||
if (!MulOverflow(t, mInfo.fps_denominator, t))
|
||||
return -1;
|
||||
@ -267,25 +253,22 @@ PRInt64 nsTheoraState::StartTime(PRInt64 granulepos) {
|
||||
PRInt64
|
||||
nsTheoraState::MaxKeyframeOffset()
|
||||
{
|
||||
// Determine the maximum time in milliseconds by which a key frame could
|
||||
// Determine the maximum time in microseconds by which a key frame could
|
||||
// offset for the theora bitstream. Theora granulepos encode time as:
|
||||
// ((key_frame_number << granule_shift) + frame_offset).
|
||||
// Therefore the maximum possible time by which any frame could be offset
|
||||
// from a keyframe is the duration of (1 << granule_shift) - 1) frames.
|
||||
PRInt64 frameDuration;
|
||||
PRInt64 keyframeDiff;
|
||||
|
||||
PRInt64 shift = mInfo.keyframe_granule_shift;
|
||||
|
||||
|
||||
// Max number of frames keyframe could possibly be offset.
|
||||
keyframeDiff = (1 << shift) - 1;
|
||||
PRInt64 keyframeDiff = (1 << mInfo.keyframe_granule_shift) - 1;
|
||||
|
||||
// Length of frame in ms.
|
||||
// Length of frame in usecs.
|
||||
PRInt64 d = 0; // d will be 0 if multiplication overflows.
|
||||
MulOverflow(1000, mInfo.fps_denominator, d);
|
||||
MulOverflow(USECS_PER_S, mInfo.fps_denominator, d);
|
||||
frameDuration = d / mInfo.fps_numerator;
|
||||
|
||||
// Total time in ms keyframe can be offset from any given frame.
|
||||
// Total time in usecs keyframe can be offset from any given frame.
|
||||
return frameDuration * keyframeDiff;
|
||||
}
|
||||
|
||||
@ -390,7 +373,7 @@ PRInt64 nsVorbisState::Time(vorbis_info* aInfo, PRInt64 aGranulepos)
|
||||
return -1;
|
||||
}
|
||||
PRInt64 t = 0;
|
||||
MulOverflow(1000, aGranulepos, t);
|
||||
MulOverflow(USECS_PER_S, aGranulepos, t);
|
||||
return t / aInfo->rate;
|
||||
}
|
||||
|
||||
@ -522,7 +505,7 @@ PRBool nsSkeletonState::DecodeIndex(ogg_packet* aPacket)
|
||||
// Extract the start time.
|
||||
n = LEInt64(p + INDEX_FIRST_NUMER_OFFSET);
|
||||
PRInt64 t;
|
||||
if (!MulOverflow(n, 1000, t)) {
|
||||
if (!MulOverflow(n, USECS_PER_S, t)) {
|
||||
return (mActive = PR_FALSE);
|
||||
} else {
|
||||
startTime = t / timeDenom;
|
||||
@ -530,7 +513,7 @@ PRBool nsSkeletonState::DecodeIndex(ogg_packet* aPacket)
|
||||
|
||||
// Extract the end time.
|
||||
n = LEInt64(p + INDEX_LAST_NUMER_OFFSET);
|
||||
if (!MulOverflow(n, 1000, t)) {
|
||||
if (!MulOverflow(n, USECS_PER_S, t)) {
|
||||
return (mActive = PR_FALSE);
|
||||
} else {
|
||||
endTime = t / timeDenom;
|
||||
@ -590,11 +573,11 @@ PRBool nsSkeletonState::DecodeIndex(ogg_packet* aPacket)
|
||||
{
|
||||
return (mActive = PR_FALSE);
|
||||
}
|
||||
PRInt64 timeMs = 0;
|
||||
if (!MulOverflow(time, 1000, timeMs))
|
||||
PRInt64 timeUsecs = 0;
|
||||
if (!MulOverflow(time, USECS_PER_S, timeUsecs))
|
||||
return mActive = PR_FALSE;
|
||||
timeMs /= timeDenom;
|
||||
keyPoints->Add(offset, timeMs);
|
||||
timeUsecs /= timeDenom;
|
||||
keyPoints->Add(offset, timeUsecs);
|
||||
numKeyPointsRead++;
|
||||
}
|
||||
|
||||
@ -713,7 +696,7 @@ PRBool nsSkeletonState::DecodeHeader(ogg_packet* aPacket)
|
||||
// presentation time exists in all versions.
|
||||
PRInt64 n = LEInt64(aPacket->packet + SKELETON_PRESENTATION_TIME_NUMERATOR_OFFSET);
|
||||
PRInt64 d = LEInt64(aPacket->packet + SKELETON_PRESENTATION_TIME_DENOMINATOR_OFFSET);
|
||||
mPresentationTime = d == 0 ? 0 : (static_cast<float>(n) / static_cast<float>(d)) * 1000;
|
||||
mPresentationTime = d == 0 ? 0 : (static_cast<float>(n) / static_cast<float>(d)) * USECS_PER_S;
|
||||
|
||||
mVersion = SKELETON_VERSION(verMajor, verMinor);
|
||||
if (mVersion < SKELETON_VERSION(4,0) ||
|
||||
|
@ -183,7 +183,7 @@ public:
|
||||
virtual PRInt64 StartTime(PRInt64 granulepos);
|
||||
virtual PRBool Init();
|
||||
|
||||
// Returns the maximum number of milliseconds which a keyframe can be offset
|
||||
// Returns the maximum number of microseconds which a keyframe can be offset
|
||||
// from any given interframe.
|
||||
PRInt64 MaxKeyframeOffset();
|
||||
|
||||
@ -195,9 +195,6 @@ public:
|
||||
th_setup_info *mSetup;
|
||||
th_dec_ctx* mCtx;
|
||||
|
||||
// Frame duration in ms.
|
||||
PRUint32 mFrameDuration;
|
||||
|
||||
float mPixelAspectRatio;
|
||||
};
|
||||
|
||||
@ -233,7 +230,7 @@ public:
|
||||
// Offset from start of segment/link-in-the-chain in bytes.
|
||||
PRInt64 mOffset;
|
||||
|
||||
// Presentation time in ms.
|
||||
// Presentation time in usecs.
|
||||
PRInt64 mTime;
|
||||
|
||||
PRBool IsNull() {
|
||||
@ -320,10 +317,10 @@ private:
|
||||
return mKeyPoints.Length();
|
||||
}
|
||||
|
||||
// Presentation time of the first sample in this stream in ms.
|
||||
// Presentation time of the first sample in this stream in usecs.
|
||||
const PRInt64 mStartTime;
|
||||
|
||||
// End time of the last sample in this stream in ms.
|
||||
// End time of the last sample in this stream in usecs.
|
||||
const PRInt64 mEndTime;
|
||||
|
||||
private:
|
||||
|
@ -68,15 +68,15 @@ extern PRLogModuleInfo* gBuiltinDecoderLog;
|
||||
// position, we'll just decode forwards rather than performing a bisection
|
||||
// search. If we have Theora video we use the maximum keyframe interval as
|
||||
// this value, rather than SEEK_DECODE_MARGIN. This makes small seeks faster.
|
||||
#define SEEK_DECODE_MARGIN 2000
|
||||
#define SEEK_DECODE_MARGIN 2000000
|
||||
|
||||
// The number of milliseconds of "fuzz" we use in a bisection search over
|
||||
// The number of microseconds of "fuzz" we use in a bisection search over
|
||||
// HTTP. When we're seeking with fuzz, we'll stop the search if a bisection
|
||||
// lands between the seek target and SEEK_FUZZ_MS milliseconds before the
|
||||
// lands between the seek target and SEEK_FUZZ_USECS microseconds before the
|
||||
// seek target. This is becaue it's usually quicker to just keep downloading
|
||||
// from an exisiting connection than to do another bisection inside that
|
||||
// small range, which would open a new HTTP connetion.
|
||||
#define SEEK_FUZZ_MS 500
|
||||
#define SEEK_FUZZ_USECS 500000
|
||||
|
||||
enum PageSyncResult {
|
||||
PAGE_SYNC_ERROR = 1,
|
||||
@ -390,8 +390,7 @@ nsresult nsOggReader::DecodeVorbis(nsTArray<nsAutoPtr<SoundData> >& aChunks,
|
||||
}
|
||||
|
||||
PRInt64 duration = mVorbisState->Time((PRInt64)samples);
|
||||
PRInt64 startTime = (mVorbisGranulepos != -1) ?
|
||||
mVorbisState->Time(mVorbisGranulepos) : -1;
|
||||
PRInt64 startTime = mVorbisState->Time(mVorbisGranulepos);
|
||||
SoundData* s = new SoundData(mPageOffset,
|
||||
startTime,
|
||||
duration,
|
||||
@ -544,9 +543,8 @@ nsresult nsOggReader::DecodeTheora(nsTArray<nsAutoPtr<VideoData> >& aFrames,
|
||||
if (ret != 0 && ret != TH_DUPFRAME) {
|
||||
return NS_ERROR_FAILURE;
|
||||
}
|
||||
PRInt64 time = (aPacket->granulepos != -1)
|
||||
? mTheoraState->StartTime(aPacket->granulepos) : -1;
|
||||
PRInt64 endTime = time != -1 ? time + mTheoraState->mFrameDuration : -1;
|
||||
PRInt64 time = mTheoraState->StartTime(aPacket->granulepos);
|
||||
PRInt64 endTime = mTheoraState->Time(aPacket->granulepos);
|
||||
if (ret == TH_DUPFRAME) {
|
||||
VideoData* v = VideoData::CreateDuplicate(mPageOffset,
|
||||
time,
|
||||
@ -699,7 +697,7 @@ PRBool nsOggReader::DecodeVideoFrame(PRBool &aKeyframeSkip,
|
||||
th_granule_frame(mTheoraState->mCtx, granulepos) + 1,
|
||||
"Granulepos calculation is incorrect!");
|
||||
frames[i]->mTime = mTheoraState->StartTime(granulepos);
|
||||
frames[i]->mEndTime = frames[i]->mTime + mTheoraState->mFrameDuration;
|
||||
frames[i]->mEndTime = mTheoraState->Time(granulepos);
|
||||
NS_ASSERTION(frames[i]->mEndTime >= frames[i]->mTime, "Frame must start before it ends.");
|
||||
frames[i]->mTimecode = granulepos;
|
||||
succGranulepos = granulepos;
|
||||
@ -1246,7 +1244,7 @@ nsresult nsOggReader::SeekInBufferedRange(PRInt64 aTarget,
|
||||
aStartTime,
|
||||
aEndTime,
|
||||
PR_FALSE);
|
||||
res = SeekBisection(keyframeTime, k, SEEK_FUZZ_MS);
|
||||
res = SeekBisection(keyframeTime, k, SEEK_FUZZ_USECS);
|
||||
NS_ASSERTION(mTheoraGranulepos == -1, "SeekBisection must reset Theora decode");
|
||||
NS_ASSERTION(mVorbisGranulepos == -1, "SeekBisection must reset Vorbis decode");
|
||||
}
|
||||
@ -1272,7 +1270,7 @@ nsresult nsOggReader::SeekInUnbuffered(PRInt64 aTarget,
|
||||
LOG(PR_LOG_DEBUG, ("%p Seeking in unbuffered data to %lldms using bisection search", mDecoder, aTarget));
|
||||
|
||||
// If we've got an active Theora bitstream, determine the maximum possible
|
||||
// time in ms which a keyframe could be before a given interframe. We
|
||||
// time in usecs which a keyframe could be before a given interframe. We
|
||||
// subtract this from our seek target, seek to the new target, and then
|
||||
// will decode forward to the original seek target. We should encounter a
|
||||
// keyframe in that interval. This prevents us from needing to run two
|
||||
@ -1291,7 +1289,7 @@ nsresult nsOggReader::SeekInUnbuffered(PRInt64 aTarget,
|
||||
// Minimize the bisection search space using the known timestamps from the
|
||||
// buffered ranges.
|
||||
SeekRange k = SelectSeekRange(aRanges, seekTarget, aStartTime, aEndTime, PR_FALSE);
|
||||
nsresult res = SeekBisection(seekTarget, k, SEEK_FUZZ_MS);
|
||||
nsresult res = SeekBisection(seekTarget, k, SEEK_FUZZ_USECS);
|
||||
NS_ASSERTION(mTheoraGranulepos == -1, "SeekBisection must reset Theora decode");
|
||||
NS_ASSERTION(mVorbisGranulepos == -1, "SeekBisection must reset Vorbis decode");
|
||||
return res;
|
||||
@ -1775,9 +1773,8 @@ nsresult nsOggReader::GetBuffered(nsTimeRanges* aBuffered, PRInt64 aStartTime)
|
||||
// find an end time.
|
||||
PRInt64 endTime = FindEndTime(startOffset, endOffset, PR_TRUE, &state);
|
||||
if (endTime != -1) {
|
||||
endTime -= aStartTime;
|
||||
aBuffered->Add(static_cast<double>(startTime) / 1000.0,
|
||||
static_cast<double>(endTime) / 1000.0);
|
||||
aBuffered->Add(startTime / static_cast<double>(USECS_PER_S),
|
||||
(endTime - aStartTime) / static_cast<double>(USECS_PER_S));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -104,8 +104,8 @@ private:
|
||||
|
||||
// Returns PR_TRUE if we should decode up to the seek target rather than
|
||||
// seeking to the target using a bisection search or index-assisted seek.
|
||||
// We should do this if the seek target (aTarget, in ms), lies not too far
|
||||
// ahead of the current playback position (aCurrentTime, in ms).
|
||||
// We should do this if the seek target (aTarget, in usecs), lies not too far
|
||||
// ahead of the current playback position (aCurrentTime, in usecs).
|
||||
PRBool CanDecodeToTarget(PRInt64 aTarget,
|
||||
PRInt64 aCurrentTime);
|
||||
|
||||
@ -152,10 +152,10 @@ private:
|
||||
}
|
||||
|
||||
PRInt64 mOffsetStart, mOffsetEnd; // in bytes.
|
||||
PRInt64 mTimeStart, mTimeEnd; // in ms.
|
||||
PRInt64 mTimeStart, mTimeEnd; // in usecs.
|
||||
};
|
||||
|
||||
// Seeks to aTarget ms in the buffered range aRange using bisection search,
|
||||
// Seeks to aTarget usecs in the buffered range aRange using bisection search,
|
||||
// or to the keyframe prior to aTarget if we have video. aStartTime must be
|
||||
// the presentation time at the start of media, and aEndTime the time at
|
||||
// end of media. aRanges must be the time/byte ranges buffered in the media
|
||||
@ -166,7 +166,7 @@ private:
|
||||
const nsTArray<SeekRange>& aRanges,
|
||||
const SeekRange& aRange);
|
||||
|
||||
// Seeks to before aTarget ms in media using bisection search. If the media
|
||||
// Seeks to before aTarget usecs in media using bisection search. If the media
|
||||
// has video, this will seek to before the keyframe required to render the
|
||||
// media at aTarget. Will use aRanges in order to narrow the bisection
|
||||
// search space. aStartTime must be the presentation time at the start of
|
||||
@ -208,11 +208,11 @@ private:
|
||||
PRBool ReadOggPacket(nsOggCodecState* aCodecState, ogg_packet* aPacket);
|
||||
|
||||
// Performs a seek bisection to move the media stream's read cursor to the
|
||||
// last ogg page boundary which has end time before aTarget ms on both the
|
||||
// last ogg page boundary which has end time before aTarget usecs on both the
|
||||
// Theora and Vorbis bitstreams. Limits its search to data inside aRange;
|
||||
// i.e. it will only read inside of the aRange's start and end offsets.
|
||||
// aFuzz is the number of ms of leniency we'll allow; we'll terminate the
|
||||
// seek when we land in the range (aTime - aFuzz, aTime) ms.
|
||||
// aFuzz is the number of usecs of leniency we'll allow; we'll terminate the
|
||||
// seek when we land in the range (aTime - aFuzz, aTime) usecs.
|
||||
nsresult SeekBisection(PRInt64 aTarget,
|
||||
const SeekRange& aRange,
|
||||
PRUint32 aFuzz);
|
||||
@ -228,7 +228,7 @@ private:
|
||||
nsresult GetSeekRanges(nsTArray<SeekRange>& aRanges);
|
||||
|
||||
// Returns the range in which you should perform a seek bisection if
|
||||
// you wish to seek to aTarget ms, given the known (buffered) byte ranges
|
||||
// you wish to seek to aTarget usecs, given the known (buffered) byte ranges
|
||||
// in aRanges. If aExact is PR_TRUE, we only return an exact copy of a
|
||||
// range in which aTarget lies, or a null range if aTarget isn't contained
|
||||
// in any of the (buffered) ranges. Otherwise, when aExact is PR_FALSE,
|
||||
|
@ -129,7 +129,7 @@ nsresult nsRawReader::ReadMetadata(nsVideoInfo* aInfo)
|
||||
if (length != -1) {
|
||||
mozilla::MonitorAutoExit autoExitMonitor(mMonitor);
|
||||
mozilla::MonitorAutoEnter autoMonitor(mDecoder->GetMonitor());
|
||||
mDecoder->GetStateMachine()->SetDuration(1000 *
|
||||
mDecoder->GetStateMachine()->SetDuration(USECS_PER_S *
|
||||
(length - sizeof(nsRawVideoHeader)) /
|
||||
(mFrameSize * mFrameRate));
|
||||
}
|
||||
@ -184,7 +184,7 @@ PRBool nsRawReader::DecodeVideoFrame(PRBool &aKeyframeSkip,
|
||||
if (!mFrameSize)
|
||||
return PR_FALSE; // Metadata read failed. We should refuse to play.
|
||||
|
||||
PRInt64 currentFrameTime = 1000 * mCurrentFrame / mFrameRate;
|
||||
PRInt64 currentFrameTime = USECS_PER_S * mCurrentFrame / mFrameRate;
|
||||
PRUint32 length = mFrameSize - sizeof(nsRawPacketHeader);
|
||||
|
||||
nsAutoPtr<PRUint8> buffer(new PRUint8[length]);
|
||||
@ -212,7 +212,7 @@ PRBool nsRawReader::DecodeVideoFrame(PRBool &aKeyframeSkip,
|
||||
break;
|
||||
|
||||
mCurrentFrame++;
|
||||
currentFrameTime += 1000.0 / mFrameRate;
|
||||
currentFrameTime += static_cast<double>(USECS_PER_S) / mFrameRate;
|
||||
}
|
||||
|
||||
VideoData::YCbCrBuffer b;
|
||||
@ -237,7 +237,7 @@ PRBool nsRawReader::DecodeVideoFrame(PRBool &aKeyframeSkip,
|
||||
mDecoder->GetImageContainer(),
|
||||
-1,
|
||||
currentFrameTime,
|
||||
currentFrameTime + (1000 / mFrameRate),
|
||||
currentFrameTime + (USECS_PER_S / mFrameRate),
|
||||
b,
|
||||
1, // In raw video every frame is a keyframe
|
||||
-1);
|
||||
@ -247,7 +247,7 @@ PRBool nsRawReader::DecodeVideoFrame(PRBool &aKeyframeSkip,
|
||||
mVideoQueue.Push(v);
|
||||
mCurrentFrame++;
|
||||
decoded++;
|
||||
currentFrameTime += 1000 / mFrameRate;
|
||||
currentFrameTime += USECS_PER_S / mFrameRate;
|
||||
|
||||
return PR_TRUE;
|
||||
}
|
||||
@ -264,7 +264,7 @@ nsresult nsRawReader::Seek(PRInt64 aTime, PRInt64 aStartTime, PRInt64 aEndTime,
|
||||
PRUint32 frame = mCurrentFrame;
|
||||
if (aTime >= UINT_MAX)
|
||||
return NS_ERROR_FAILURE;
|
||||
mCurrentFrame = aTime * mFrameRate / 1000;
|
||||
mCurrentFrame = aTime * mFrameRate / USECS_PER_S;
|
||||
|
||||
PRUint32 offset;
|
||||
if (!MulOverflow32(mCurrentFrame, mFrameSize, offset))
|
||||
|
@ -13,7 +13,7 @@
|
||||
function on_metadataloaded() {
|
||||
var v = document.getElementById('v');
|
||||
var d = Math.round(v.duration*1000);
|
||||
ok(d == 3999, "Checking duration: " + d);
|
||||
ok(d == 4000, "Checking duration: " + d);
|
||||
SimpleTest.finish();
|
||||
}
|
||||
|
||||
|
@ -171,9 +171,8 @@ nsresult nsWaveReader::ReadMetadata(nsVideoInfo* aInfo)
|
||||
MonitorAutoExit exitReaderMon(mMonitor);
|
||||
MonitorAutoEnter decoderMon(mDecoder->GetMonitor());
|
||||
|
||||
float d = floorf(BytesToTime(GetDataLength() * 1000));
|
||||
NS_ASSERTION(d <= PR_INT64_MAX, "Duration overflow");
|
||||
mDecoder->GetStateMachine()->SetDuration(static_cast<PRInt64>(d));
|
||||
mDecoder->GetStateMachine()->SetDuration(
|
||||
static_cast<PRInt64>(BytesToTime(GetDataLength()) * USECS_PER_S));
|
||||
|
||||
return NS_OK;
|
||||
}
|
||||
@ -229,16 +228,18 @@ PRBool nsWaveReader::DecodeAudioData()
|
||||
}
|
||||
}
|
||||
|
||||
float posTime = BytesToTime(pos);
|
||||
float readSizeTime = BytesToTime(readSize);
|
||||
NS_ASSERTION(posTime <= PR_INT64_MAX / 1000, "posTime overflow");
|
||||
NS_ASSERTION(readSizeTime <= PR_INT64_MAX / 1000, "readSizeTime overflow");
|
||||
double posTime = BytesToTime(pos);
|
||||
double readSizeTime = BytesToTime(readSize);
|
||||
NS_ASSERTION(posTime <= PR_INT64_MAX / USECS_PER_S, "posTime overflow");
|
||||
NS_ASSERTION(readSizeTime <= PR_INT64_MAX / USECS_PER_S, "readSizeTime overflow");
|
||||
NS_ASSERTION(samples < PR_INT32_MAX, "samples overflow");
|
||||
|
||||
mAudioQueue.Push(new SoundData(pos, static_cast<PRInt64>(posTime * 1000),
|
||||
static_cast<PRInt64>(readSizeTime * 1000),
|
||||
mAudioQueue.Push(new SoundData(pos,
|
||||
static_cast<PRInt64>(posTime * USECS_PER_S),
|
||||
static_cast<PRInt64>(readSizeTime * USECS_PER_S),
|
||||
static_cast<PRInt32>(samples),
|
||||
sampleBuffer.forget(), mChannels));
|
||||
sampleBuffer.forget(),
|
||||
mChannels));
|
||||
|
||||
return PR_TRUE;
|
||||
}
|
||||
@ -258,15 +259,15 @@ nsresult nsWaveReader::Seek(PRInt64 aTarget, PRInt64 aStartTime, PRInt64 aEndTim
|
||||
MonitorAutoEnter mon(mMonitor);
|
||||
NS_ASSERTION(mDecoder->OnStateMachineThread(),
|
||||
"Should be on state machine thread.");
|
||||
LOG(PR_LOG_DEBUG, ("%p About to seek to %lldms", mDecoder, aTarget));
|
||||
LOG(PR_LOG_DEBUG, ("%p About to seek to %lld", mDecoder, aTarget));
|
||||
if (NS_FAILED(ResetDecode())) {
|
||||
return NS_ERROR_FAILURE;
|
||||
}
|
||||
float d = BytesToTime(GetDataLength());
|
||||
NS_ASSERTION(d < PR_INT64_MAX / 1000, "Duration overflow");
|
||||
PRInt64 duration = static_cast<PRInt64>(d) * 1000;
|
||||
PRInt64 seekTime = NS_MIN(aTarget, duration);
|
||||
PRInt64 position = RoundDownToSample(static_cast<PRInt64>(TimeToBytes(seekTime) / 1000.f));
|
||||
double d = BytesToTime(GetDataLength());
|
||||
NS_ASSERTION(d < PR_INT64_MAX / USECS_PER_S, "Duration overflow");
|
||||
PRInt64 duration = static_cast<PRInt64>(d * USECS_PER_S);
|
||||
double seekTime = NS_MIN(aTarget, duration) / static_cast<double>(USECS_PER_S);
|
||||
PRInt64 position = RoundDownToSample(static_cast<PRInt64>(TimeToBytes(seekTime)));
|
||||
NS_ASSERTION(PR_INT64_MAX - mWavePCMOffset > position, "Integer overflow during wave seek");
|
||||
position += mWavePCMOffset;
|
||||
return mDecoder->GetCurrentStream()->Seek(nsISeekableStream::NS_SEEK_SET, position);
|
||||
@ -281,8 +282,8 @@ nsresult nsWaveReader::GetBuffered(nsTimeRanges* aBuffered, PRInt64 aStartTime)
|
||||
NS_ASSERTION(startOffset >= mWavePCMOffset, "Integer underflow in GetBuffered");
|
||||
NS_ASSERTION(endOffset >= mWavePCMOffset, "Integer underflow in GetBuffered");
|
||||
|
||||
aBuffered->Add(floorf(BytesToTime(startOffset - mWavePCMOffset) * 1000.f) / 1000.0,
|
||||
floorf(BytesToTime(endOffset - mWavePCMOffset) * 1000.f) / 1000.0);
|
||||
aBuffered->Add(BytesToTime(startOffset - mWavePCMOffset),
|
||||
BytesToTime(endOffset - mWavePCMOffset));
|
||||
startOffset = mDecoder->GetCurrentStream()->GetNextCachedData(endOffset);
|
||||
}
|
||||
return NS_OK;
|
||||
@ -508,7 +509,7 @@ nsWaveReader::FindDataOffset()
|
||||
return PR_TRUE;
|
||||
}
|
||||
|
||||
float
|
||||
double
|
||||
nsWaveReader::BytesToTime(PRInt64 aBytes) const
|
||||
{
|
||||
NS_ABORT_IF_FALSE(aBytes >= 0, "Must be >= 0");
|
||||
@ -516,7 +517,7 @@ nsWaveReader::BytesToTime(PRInt64 aBytes) const
|
||||
}
|
||||
|
||||
PRInt64
|
||||
nsWaveReader::TimeToBytes(float aTime) const
|
||||
nsWaveReader::TimeToBytes(double aTime) const
|
||||
{
|
||||
NS_ABORT_IF_FALSE(aTime >= 0.0f, "Must be >= 0");
|
||||
return RoundDownToSample(PRInt64(aTime * mSampleRate * mSampleSize));
|
||||
|
@ -76,13 +76,13 @@ private:
|
||||
|
||||
// Returns the number of seconds that aBytes represents based on the
|
||||
// current audio parameters. e.g. 176400 bytes is 1 second at 16-bit
|
||||
// stereo 44.1kHz. The time is rounded to the nearest millisecond.
|
||||
float BytesToTime(PRInt64 aBytes) const;
|
||||
// stereo 44.1kHz. The time is rounded to the nearest microsecond.
|
||||
double BytesToTime(PRInt64 aBytes) const;
|
||||
|
||||
// Returns the number of bytes that aTime represents based on the current
|
||||
// audio parameters. e.g. 1 second is 176400 bytes at 16-bit stereo
|
||||
// 44.1kHz.
|
||||
PRInt64 TimeToBytes(float aTime) const;
|
||||
PRInt64 TimeToBytes(double aTime) const;
|
||||
|
||||
// Rounds aBytes down to the nearest complete sample. Assumes beginning
|
||||
// of byte range is already sample aligned by caller.
|
||||
|
@ -44,7 +44,6 @@
|
||||
using mozilla::MonitorAutoEnter;
|
||||
|
||||
static const double NS_PER_S = 1e9;
|
||||
static const double MS_PER_S = 1e3;
|
||||
|
||||
static PRUint32
|
||||
VIntLength(unsigned char aFirstByte, PRUint32* aMask)
|
||||
|
@ -65,14 +65,13 @@ extern PRLogModuleInfo* gBuiltinDecoderLog;
|
||||
#define SEEK_LOG(type, msg)
|
||||
#endif
|
||||
|
||||
static const unsigned NS_PER_MS = 1000000;
|
||||
static const unsigned NS_PER_USEC = 1000;
|
||||
static const double NS_PER_S = 1e9;
|
||||
static const double MS_PER_S = 1e3;
|
||||
|
||||
// If a seek request is within SEEK_DECODE_MARGIN milliseconds of the
|
||||
// If a seek request is within SEEK_DECODE_MARGIN microseconds of the
|
||||
// current time, decode ahead from the current frame rather than performing
|
||||
// a full seek.
|
||||
static const int SEEK_DECODE_MARGIN = 250;
|
||||
static const int SEEK_DECODE_MARGIN = 250000;
|
||||
|
||||
NS_SPECIALIZE_TEMPLATE
|
||||
class nsAutoRefTraits<NesteggPacketHolder> : public nsPointerRefTraits<NesteggPacketHolder>
|
||||
@ -136,7 +135,7 @@ nsWebMReader::nsWebMReader(nsBuiltinDecoder* aDecoder)
|
||||
mChannels(0),
|
||||
mVideoTrack(0),
|
||||
mAudioTrack(0),
|
||||
mAudioStartMs(-1),
|
||||
mAudioStartUsec(-1),
|
||||
mAudioSamples(0),
|
||||
mHasVideo(PR_FALSE),
|
||||
mHasAudio(PR_FALSE)
|
||||
@ -184,7 +183,7 @@ nsresult nsWebMReader::Init(nsBuiltinDecoderReader* aCloneDonor)
|
||||
nsresult nsWebMReader::ResetDecode()
|
||||
{
|
||||
mAudioSamples = 0;
|
||||
mAudioStartMs = -1;
|
||||
mAudioStartUsec = -1;
|
||||
nsresult res = NS_OK;
|
||||
if (NS_FAILED(nsBuiltinDecoderReader::ResetDecode())) {
|
||||
res = NS_ERROR_FAILURE;
|
||||
@ -229,7 +228,7 @@ nsresult nsWebMReader::ReadMetadata(nsVideoInfo* aInfo)
|
||||
if (r == 0) {
|
||||
MonitorAutoExit exitReaderMon(mMonitor);
|
||||
MonitorAutoEnter decoderMon(mDecoder->GetMonitor());
|
||||
mDecoder->GetStateMachine()->SetDuration(duration / NS_PER_MS);
|
||||
mDecoder->GetStateMachine()->SetDuration(duration / NS_PER_USEC);
|
||||
}
|
||||
|
||||
unsigned int ntracks = 0;
|
||||
@ -435,23 +434,23 @@ PRBool nsWebMReader::DecodeAudioPacket(nestegg_packet* aPacket, PRInt64 aOffset)
|
||||
}
|
||||
|
||||
const PRUint32 rate = mVorbisDsp.vi->rate;
|
||||
PRUint64 tstamp_ms = tstamp / NS_PER_MS;
|
||||
if (mAudioStartMs == -1) {
|
||||
PRUint64 tstamp_usecs = tstamp / NS_PER_USEC;
|
||||
if (mAudioStartUsec == -1) {
|
||||
// This is the first audio chunk. Assume the start time of our decode
|
||||
// is the start of this chunk.
|
||||
mAudioStartMs = tstamp_ms;
|
||||
mAudioStartUsec = tstamp_usecs;
|
||||
}
|
||||
// If there's a gap between the start of this sound chunk and the end of
|
||||
// the previous sound chunk, we need to increment the packet count so that
|
||||
// the vorbis decode doesn't use data from before the gap to help decode
|
||||
// from after the gap.
|
||||
PRInt64 tstamp_samples = 0;
|
||||
if (!MsToSamples(tstamp_ms, rate, tstamp_samples)) {
|
||||
if (!UsecsToSamples(tstamp_usecs, rate, tstamp_samples)) {
|
||||
NS_WARNING("Int overflow converting WebM timestamp to samples");
|
||||
return PR_FALSE;
|
||||
}
|
||||
PRInt64 decoded_samples = 0;
|
||||
if (!MsToSamples(mAudioStartMs, rate, decoded_samples)) {
|
||||
if (!UsecsToSamples(mAudioStartUsec, rate, decoded_samples)) {
|
||||
NS_WARNING("Int overflow converting WebM start time to samples");
|
||||
return PR_FALSE;
|
||||
}
|
||||
@ -461,13 +460,13 @@ PRBool nsWebMReader::DecodeAudioPacket(nestegg_packet* aPacket, PRInt64 aOffset)
|
||||
}
|
||||
if (tstamp_samples > decoded_samples) {
|
||||
#ifdef DEBUG
|
||||
PRInt64 ms = 0;
|
||||
LOG(PR_LOG_DEBUG, ("WebMReader detected gap of %lldms, %lld samples, in audio stream\n",
|
||||
SamplesToMs(tstamp_samples - decoded_samples, rate, ms) ? ms: -1,
|
||||
PRInt64 usecs = 0;
|
||||
LOG(PR_LOG_DEBUG, ("WebMReader detected gap of %lld, %lld samples, in audio stream\n",
|
||||
SamplesToUsecs(tstamp_samples - decoded_samples, rate, usecs) ? usecs: -1,
|
||||
tstamp_samples - decoded_samples));
|
||||
#endif
|
||||
mPacketCount++;
|
||||
mAudioStartMs = tstamp_ms;
|
||||
mAudioStartUsec = tstamp_usecs;
|
||||
mAudioSamples = 0;
|
||||
}
|
||||
|
||||
@ -503,17 +502,17 @@ PRBool nsWebMReader::DecodeAudioPacket(nestegg_packet* aPacket, PRInt64 aOffset)
|
||||
}
|
||||
|
||||
PRInt64 duration = 0;
|
||||
if (!SamplesToMs(samples, rate, duration)) {
|
||||
if (!SamplesToUsecs(samples, rate, duration)) {
|
||||
NS_WARNING("Int overflow converting WebM audio duration");
|
||||
return PR_FALSE;
|
||||
}
|
||||
PRInt64 total_duration = 0;
|
||||
if (!SamplesToMs(total_samples, rate, total_duration)) {
|
||||
if (!SamplesToUsecs(total_samples, rate, total_duration)) {
|
||||
NS_WARNING("Int overflow converting WebM audio total_duration");
|
||||
return PR_FALSE;
|
||||
}
|
||||
|
||||
PRInt64 time = tstamp_ms + total_duration;
|
||||
PRInt64 time = tstamp_usecs + total_duration;
|
||||
total_samples += samples;
|
||||
SoundData* s = new SoundData(aOffset,
|
||||
time,
|
||||
@ -668,11 +667,11 @@ PRBool nsWebMReader::DecodeVideoFrame(PRBool &aKeyframeSkip,
|
||||
if (endTime == -1) {
|
||||
return PR_FALSE;
|
||||
}
|
||||
next_tstamp = endTime * NS_PER_MS;
|
||||
next_tstamp = endTime * NS_PER_USEC;
|
||||
}
|
||||
}
|
||||
|
||||
PRInt64 tstamp_ms = tstamp / NS_PER_MS;
|
||||
PRInt64 tstamp_usecs = tstamp / NS_PER_USEC;
|
||||
for (PRUint32 i = 0; i < count; ++i) {
|
||||
unsigned char* data;
|
||||
size_t length;
|
||||
@ -685,7 +684,7 @@ PRBool nsWebMReader::DecodeVideoFrame(PRBool &aKeyframeSkip,
|
||||
memset(&si, 0, sizeof(si));
|
||||
si.sz = sizeof(si);
|
||||
vpx_codec_peek_stream_info(&vpx_codec_vp8_dx_algo, data, length, &si);
|
||||
if (aKeyframeSkip && (!si.is_kf || tstamp_ms < aTimeThreshold)) {
|
||||
if (aKeyframeSkip && (!si.is_kf || tstamp_usecs < aTimeThreshold)) {
|
||||
// Skipping to next keyframe...
|
||||
parsed++; // Assume 1 frame per chunk.
|
||||
continue;
|
||||
@ -702,7 +701,7 @@ PRBool nsWebMReader::DecodeVideoFrame(PRBool &aKeyframeSkip,
|
||||
// If the timestamp of the video frame is less than
|
||||
// the time threshold required then it is not added
|
||||
// to the video queue and won't be displayed.
|
||||
if (tstamp_ms < aTimeThreshold) {
|
||||
if (tstamp_usecs < aTimeThreshold) {
|
||||
parsed++; // Assume 1 frame per chunk.
|
||||
continue;
|
||||
}
|
||||
@ -733,8 +732,8 @@ PRBool nsWebMReader::DecodeVideoFrame(PRBool &aKeyframeSkip,
|
||||
VideoData *v = VideoData::Create(mInfo,
|
||||
mDecoder->GetImageContainer(),
|
||||
holder->mOffset,
|
||||
tstamp_ms,
|
||||
next_tstamp / NS_PER_MS,
|
||||
tstamp_usecs,
|
||||
next_tstamp / NS_PER_USEC,
|
||||
b,
|
||||
si.is_kf,
|
||||
-1);
|
||||
@ -774,7 +773,7 @@ nsresult nsWebMReader::Seek(PRInt64 aTarget, PRInt64 aStartTime, PRInt64 aEndTim
|
||||
return NS_ERROR_FAILURE;
|
||||
}
|
||||
PRUint32 trackToSeek = mHasVideo ? mVideoTrack : mAudioTrack;
|
||||
int r = nestegg_track_seek(mContext, trackToSeek, aTarget * NS_PER_MS);
|
||||
int r = nestegg_track_seek(mContext, trackToSeek, aTarget * NS_PER_USEC);
|
||||
if (r != 0) {
|
||||
return NS_ERROR_FAILURE;
|
||||
}
|
||||
@ -803,7 +802,7 @@ nsresult nsWebMReader::GetBuffered(nsTimeRanges* aBuffered, PRInt64 aStartTime)
|
||||
nsresult res = stream->GetCachedRanges(ranges);
|
||||
NS_ENSURE_SUCCESS(res, res);
|
||||
|
||||
PRInt64 startTimeOffsetNS = aStartTime * NS_PER_MS;
|
||||
PRInt64 startTimeOffsetNS = aStartTime * NS_PER_USEC;
|
||||
for (PRUint32 index = 0; index < ranges.Length(); index++) {
|
||||
mBufferedState->CalculateBufferedForRange(aBuffered,
|
||||
ranges[index].mStart,
|
||||
|
@ -192,8 +192,8 @@ private:
|
||||
|
||||
// Returns PR_TRUE if we should decode up to the seek target rather than
|
||||
// seeking to the target using an index-assisted seek. We should do this
|
||||
// if the seek target (aTarget, in ms), lies not too far ahead of the
|
||||
// current playback position (aCurrentTime, in ms).
|
||||
// if the seek target (aTarget, in usecs), lies not too far ahead of the
|
||||
// current playback position (aCurrentTime, in usecs).
|
||||
PRBool CanDecodeToTarget(PRInt64 aTarget, PRInt64 aCurrentTime);
|
||||
|
||||
private:
|
||||
@ -221,8 +221,8 @@ private:
|
||||
PRUint32 mVideoTrack;
|
||||
PRUint32 mAudioTrack;
|
||||
|
||||
// Time in ms of the start of the first audio sample we've decoded.
|
||||
PRInt64 mAudioStartMs;
|
||||
// Time in microseconds of the start of the first audio sample we've decoded.
|
||||
PRInt64 mAudioStartUsec;
|
||||
|
||||
// Number of samples we've decoded since decoding began at mAudioStartMs.
|
||||
PRUint64 mAudioSamples;
|
||||
|
Loading…
x
Reference in New Issue
Block a user