Bug 1656236 - Vendor euclid update in stylo. r=emilio

Differential Revision: https://phabricator.services.mozilla.com/D85763
This commit is contained in:
Nicolas Silva 2020-08-05 08:38:43 +00:00
parent 4db3a418e0
commit ec72c8ed36
30 changed files with 9 additions and 16106 deletions

27
Cargo.lock generated
View File

@ -1294,15 +1294,6 @@ dependencies = [
"failure",
]
[[package]]
name = "euclid"
version = "0.20.14"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "2bb7ef65b3777a325d1eeefefab5b6d4959da54747e33bd6258e789640f307ad"
dependencies = [
"num-traits",
]
[[package]]
name = "euclid"
version = "0.22.0"
@ -2789,7 +2780,7 @@ version = "0.0.1"
dependencies = [
"app_units",
"cssparser",
"euclid 0.22.0",
"euclid",
"hashglobe",
"selectors",
"servo_arc",
@ -3538,7 +3529,7 @@ dependencies = [
name = "peek-poke"
version = "0.2.0"
dependencies = [
"euclid 0.22.0",
"euclid",
"peek-poke-derive 0.2.1",
]
@ -3702,7 +3693,7 @@ source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "2211e7ccc9b6260779dd9bad59f7b10889d6361974623b9e405afd7e7e764654"
dependencies = [
"binary-space-partition",
"euclid 0.22.0",
"euclid",
"log",
"num-traits",
]
@ -4630,7 +4621,7 @@ dependencies = [
"byteorder",
"cssparser",
"derive_more",
"euclid 0.22.0",
"euclid",
"fallible",
"fxhash",
"hashbrown",
@ -4693,7 +4684,7 @@ dependencies = [
"app_units",
"bitflags",
"cssparser",
"euclid 0.20.14",
"euclid",
"lazy_static",
"malloc_size_of",
"malloc_size_of_derive",
@ -5549,7 +5540,7 @@ dependencies = [
"core-text",
"cstr",
"dwrote",
"euclid 0.22.0",
"euclid",
"freetype",
"fxhash",
"gleam",
@ -5587,7 +5578,7 @@ dependencies = [
"core-graphics",
"crossbeam-channel",
"derive_more",
"euclid 0.22.0",
"euclid",
"malloc_size_of_derive",
"peek-poke 0.2.0",
"serde",
@ -5607,7 +5598,7 @@ dependencies = [
"core-graphics",
"dirs",
"dwrote",
"euclid 0.22.0",
"euclid",
"foreign-types",
"fxhash",
"gleam",
@ -5775,7 +5766,7 @@ name = "wr_malloc_size_of"
version = "0.0.1"
dependencies = [
"app_units",
"euclid 0.22.0",
"euclid",
]
[[package]]

View File

@ -1 +0,0 @@
{"files":{"COPYRIGHT":"ec82b96487e9e778ee610c7ab245162464782cfa1f555c2299333f8dbe5c036a","Cargo.toml":"430f53fbae7381f12155805f713f9b9bb08a9e9ffff3a3f4c887163fb4521e7d","LICENSE-APACHE":"a60eea817514531668d7e00765731449fe14d059d3249e0bc93b36de45f759f2","LICENSE-MIT":"62065228e42caebca7e7d7db1204cbb867033de5982ca4009928915e4095f3a3","README.md":"625bec69c76ce5423fdd05cfe46922b2680ec517f97c5854ce34798d1d8a9541","src/angle.rs":"b4b17c16bd135914a6e2ebad54b9cbb8ea475d5992bcb75c397b7813b6f7b8dd","src/approxeq.rs":"8ad9ab7336e1924b0543eb46f975367f4388a4dda91839b7cda7d21eec8991fb","src/approxord.rs":"f1b11ea7603b3dddb0002c7ded934816f5a8bb108e150028b49595b8e3382ac1","src/box2d.rs":"0f7ef877183e25e6b769fc91a0d814e0992b0e6d1c16df415ebbd364d2fd2cf7","src/box3d.rs":"54d6e59622957e784e611a23da9612671a530c61cd364313024d750f953a7564","src/homogen.rs":"3aa960fae9b817057013183f543cf2adc042f5867ece1ee78607e2c46bdbcfed","src/length.rs":"67ef01cfba3f70143c57afda39c8bf9990f29111a031a238de328753ccc2c8a4","src/lib.rs":"d0f1ddda70d8bf3913d9c2c49949dd21ced500cbc0c09d7d08c0aa1570f63df5","src/macros.rs":"3b475e84d00cceee6c7e96e9f2c97ba15d8dc7f4094efb82c5ed10bd60d86a64","src/nonempty.rs":"be5ac81321390d71447607de01811cc6420bcd48aa5274f7a298a99674621846","src/num.rs":"2478501dbe545a73a8b964f4713987b86df8ff0af3d1aba0571cbd00a4e9cbaa","src/point.rs":"6d07046f27dd7a18ba8db8988de82c67cfcdd1b8895a70730123338574e47d39","src/rect.rs":"1391359581ba891a35f390ec3900f1e34ce1e4dc5608fe27662655d3bf443d45","src/rigid.rs":"a9717aac4d254299dc3a60a2a32c5c5309044136702d96030533f7639adeb467","src/rotation.rs":"6cfc7f74a90236c53fa55b83eae373146f7b37a8c400f8f820ebfdbcca245245","src/scale.rs":"197d2d4ba5f6a4fe8d5f0b2b6684499a66727129ad27474b85b0d1ffecd38f05","src/side_offsets.rs":"11b84a7dc620cdf2f1877c82b534947ae337734b9075d34e61306be7f458d127","src/size.rs":"5d5703b464207ff362da650008972ca67fbbc79f7193d0d2a1c7a7873221c24c","src/transform2d.rs":"6b2ff21021d7aa1628585650cc66f18f1a5a6aff5f335ae1ec4f63616c54b3cf","src/transform3d.rs":"83ac57ab5a077127fa7eba401dae2e67f2c129a05081b5b5ed09a2166fa9703f","src/translation.rs":"7847306a3a081559f2839baff9d622e58c63fdcb3981c5ef410b6a8eb8e13ab8","src/trig.rs":"ab09a8503d04ac1d0d6848d074ac18a22d324184e5bb186bbd4287c977894886","src/vector.rs":"f895e029e273defac88b47fef4fb27f627553fb05b8d173cf8f75e28818cd580"},"package":"2bb7ef65b3777a325d1eeefefab5b6d4959da54747e33bd6258e789640f307ad"}

View File

@ -1,5 +0,0 @@
Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
<LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
option. All files in the project carrying such notice may not be
copied, modified, or distributed except according to those terms.

View File

@ -1,44 +0,0 @@
# THIS FILE IS AUTOMATICALLY GENERATED BY CARGO
#
# When uploading crates to the registry Cargo will automatically
# "normalize" Cargo.toml files for maximal compatibility
# with all versions of Cargo and also rewrite `path` dependencies
# to registry (e.g., crates.io) dependencies
#
# If you believe there's an error in this file please file an
# issue against the rust-lang/cargo repository. If you're
# editing this file be aware that the upstream Cargo.toml
# will likely look very different (and much more reasonable)
[package]
edition = "2018"
name = "euclid"
version = "0.20.14"
authors = ["The Servo Project Developers"]
description = "Geometry primitives"
documentation = "https://docs.rs/euclid/"
keywords = ["matrix", "vector", "linear-algebra", "geometry"]
categories = ["science"]
license = "MIT / Apache-2.0"
repository = "https://github.com/servo/euclid"
[dependencies.mint]
version = "0.5.1"
optional = true
[dependencies.num-traits]
version = "0.2.10"
default-features = false
[dependencies.serde]
version = "1.0"
features = ["serde_derive"]
optional = true
default-features = false
[dev-dependencies.serde_test]
version = "1.0"
[features]
default = ["std"]
libm = ["num-traits/libm"]
std = ["num-traits/std"]
unstable = []

View File

@ -1,201 +0,0 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

View File

@ -1,25 +0,0 @@
Copyright (c) 2012-2013 Mozilla Foundation
Permission is hereby granted, free of charge, to any
person obtaining a copy of this software and associated
documentation files (the "Software"), to deal in the
Software without restriction, including without
limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software
is furnished to do so, subject to the following
conditions:
The above copyright notice and this permission notice
shall be included in all copies or substantial portions
of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

View File

@ -1,8 +0,0 @@
# euclid
This is a small library for geometric types with a focus on 2d graphics and
layout.
* [Documentation](https://docs.rs/euclid/)
* [Release notes](https://github.com/servo/euclid/releases)
* [crates.io](https://crates.io/crates/euclid)

View File

@ -1,316 +0,0 @@
// Copyright 2013 The Servo Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use crate::approxeq::ApproxEq;
use crate::trig::Trig;
use core::cmp::{Eq, PartialEq};
use core::hash::Hash;
use core::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Rem, Sub, SubAssign};
use num_traits::{Float, FloatConst, NumCast, One, Zero};
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
/// An angle in radians
#[derive(Copy, Clone, Default, Debug, PartialEq, Eq, PartialOrd, Hash)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct Angle<T> {
pub radians: T,
}
impl<T> Angle<T> {
#[inline]
pub fn radians(radians: T) -> Self {
Angle { radians }
}
#[inline]
pub fn get(self) -> T {
self.radians
}
}
impl<T> Angle<T>
where
T: Trig,
{
#[inline]
pub fn degrees(deg: T) -> Self {
Angle {
radians: T::degrees_to_radians(deg),
}
}
#[inline]
pub fn to_degrees(self) -> T {
T::radians_to_degrees(self.radians)
}
}
impl<T> Angle<T>
where
T: Rem<Output = T> + Sub<Output = T> + Add<Output = T> + Zero + FloatConst + PartialOrd + Copy,
{
/// Returns this angle in the [0..2*PI[ range.
pub fn positive(&self) -> Self {
let two_pi = T::PI() + T::PI();
let mut a = self.radians % two_pi;
if a < T::zero() {
a = a + two_pi;
}
Angle::radians(a)
}
/// Returns this angle in the ]-PI..PI] range.
pub fn signed(&self) -> Self {
Angle::pi() - (Angle::pi() - *self).positive()
}
}
impl<T> Angle<T>
where
T: Rem<Output = T>
+ Mul<Output = T>
+ Sub<Output = T>
+ Add<Output = T>
+ One
+ FloatConst
+ Copy,
{
/// Returns the shortest signed angle between two angles.
///
/// Takes wrapping and signs into account.
pub fn angle_to(&self, to: Self) -> Self {
let two = T::one() + T::one();
let max = T::PI() * two;
let d = (to.radians - self.radians) % max;
Angle::radians(two * d % max - d)
}
/// Linear interpolation between two angles, using the shortest path.
pub fn lerp(&self, other: Self, t: T) -> Self {
*self + self.angle_to(other) * t
}
}
impl<T> Angle<T>
where
T: Float,
{
/// Returns (sin(self), cos(self)).
pub fn sin_cos(self) -> (T, T) {
self.radians.sin_cos()
}
}
impl<T> Angle<T>
where
T: Zero,
{
pub fn zero() -> Self {
Angle::radians(T::zero())
}
}
impl<T> Angle<T>
where
T: FloatConst + Add<Output = T>,
{
pub fn pi() -> Self {
Angle::radians(T::PI())
}
pub fn two_pi() -> Self {
Angle::radians(T::PI() + T::PI())
}
pub fn frac_pi_2() -> Self {
Angle::radians(T::FRAC_PI_2())
}
pub fn frac_pi_3() -> Self {
Angle::radians(T::FRAC_PI_3())
}
pub fn frac_pi_4() -> Self {
Angle::radians(T::FRAC_PI_4())
}
}
impl<T> Angle<T>
where
T: NumCast + Copy,
{
/// Cast from one numeric representation to another.
#[inline]
pub fn cast<NewT: NumCast>(&self) -> Angle<NewT> {
self.try_cast().unwrap()
}
/// Fallible cast from one numeric representation to another.
pub fn try_cast<NewT: NumCast>(&self) -> Option<Angle<NewT>> {
NumCast::from(self.radians).map(|radians| Angle { radians })
}
// Convenience functions for common casts.
/// Cast angle to `f32`.
#[inline]
pub fn to_f32(&self) -> Angle<f32> {
self.cast()
}
/// Cast angle `f64`.
#[inline]
pub fn to_f64(&self) -> Angle<f64> {
self.cast()
}
}
impl<T: Add<T, Output = T>> Add for Angle<T> {
type Output = Angle<T>;
fn add(self, other: Angle<T>) -> Angle<T> {
Angle::radians(self.radians + other.radians)
}
}
impl<T: AddAssign<T>> AddAssign for Angle<T> {
fn add_assign(&mut self, other: Angle<T>) {
self.radians += other.radians;
}
}
impl<T: Sub<T, Output = T>> Sub<Angle<T>> for Angle<T> {
type Output = Angle<T>;
fn sub(self, other: Angle<T>) -> <Self as Sub>::Output {
Angle::radians(self.radians - other.radians)
}
}
impl<T: SubAssign<T>> SubAssign for Angle<T> {
fn sub_assign(&mut self, other: Angle<T>) {
self.radians -= other.radians;
}
}
impl<T: Div<T, Output = T>> Div<Angle<T>> for Angle<T> {
type Output = T;
#[inline]
fn div(self, other: Angle<T>) -> T {
self.radians / other.radians
}
}
impl<T: Div<T, Output = T>> Div<T> for Angle<T> {
type Output = Angle<T>;
#[inline]
fn div(self, factor: T) -> Angle<T> {
Angle::radians(self.radians / factor)
}
}
impl<T: DivAssign<T>> DivAssign<T> for Angle<T> {
fn div_assign(&mut self, factor: T) {
self.radians /= factor;
}
}
impl<T: Mul<T, Output = T>> Mul<T> for Angle<T> {
type Output = Angle<T>;
#[inline]
fn mul(self, factor: T) -> Angle<T> {
Angle::radians(self.radians * factor)
}
}
impl<T: MulAssign<T>> MulAssign<T> for Angle<T> {
fn mul_assign(&mut self, factor: T) {
self.radians *= factor;
}
}
impl<T: Neg<Output = T>> Neg for Angle<T> {
type Output = Self;
fn neg(self) -> Self {
Angle::radians(-self.radians)
}
}
impl<T: ApproxEq<T>> ApproxEq<T> for Angle<T> {
#[inline]
fn approx_epsilon() -> T {
T::approx_epsilon()
}
#[inline]
fn approx_eq_eps(&self, other: &Angle<T>, approx_epsilon: &T) -> bool {
self.radians.approx_eq_eps(&other.radians, approx_epsilon)
}
}
#[test]
fn wrap_angles() {
use core::f32::consts::{FRAC_PI_2, PI};
assert!(Angle::radians(0.0).positive().approx_eq(&Angle::zero()));
assert!(Angle::radians(FRAC_PI_2)
.positive()
.approx_eq(&Angle::frac_pi_2()));
assert!(Angle::radians(-FRAC_PI_2)
.positive()
.approx_eq(&Angle::radians(3.0 * FRAC_PI_2)));
assert!(Angle::radians(3.0 * FRAC_PI_2)
.positive()
.approx_eq(&Angle::radians(3.0 * FRAC_PI_2)));
assert!(Angle::radians(5.0 * FRAC_PI_2)
.positive()
.approx_eq(&Angle::frac_pi_2()));
assert!(Angle::radians(2.0 * PI)
.positive()
.approx_eq(&Angle::zero()));
assert!(Angle::radians(-2.0 * PI)
.positive()
.approx_eq(&Angle::zero()));
assert!(Angle::radians(PI).positive().approx_eq(&Angle::pi()));
assert!(Angle::radians(-PI).positive().approx_eq(&Angle::pi()));
assert!(Angle::radians(FRAC_PI_2)
.signed()
.approx_eq(&Angle::frac_pi_2()));
assert!(Angle::radians(3.0 * FRAC_PI_2)
.signed()
.approx_eq(&-Angle::frac_pi_2()));
assert!(Angle::radians(5.0 * FRAC_PI_2)
.signed()
.approx_eq(&Angle::frac_pi_2()));
assert!(Angle::radians(2.0 * PI).signed().approx_eq(&Angle::zero()));
assert!(Angle::radians(-2.0 * PI).signed().approx_eq(&Angle::zero()));
assert!(Angle::radians(-PI).signed().approx_eq(&Angle::pi()));
assert!(Angle::radians(PI).signed().approx_eq(&Angle::pi()));
}
#[test]
fn lerp() {
type A = Angle<f32>;
let a = A::radians(1.0);
let b = A::radians(2.0);
assert!(a.lerp(b, 0.25).approx_eq(&Angle::radians(1.25)));
assert!(a.lerp(b, 0.5).approx_eq(&Angle::radians(1.5)));
assert!(a.lerp(b, 0.75).approx_eq(&Angle::radians(1.75)));
assert!(a
.lerp(b + A::two_pi(), 0.75)
.approx_eq(&Angle::radians(1.75)));
assert!(a
.lerp(b - A::two_pi(), 0.75)
.approx_eq(&Angle::radians(1.75)));
assert!(a
.lerp(b + A::two_pi() * 5.0, 0.75)
.approx_eq(&Angle::radians(1.75)));
}

View File

@ -1,42 +0,0 @@
// Copyright 2013 The Servo Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
/// Trait for testing approximate equality
pub trait ApproxEq<Eps> {
/// Default epsilon value
fn approx_epsilon() -> Eps;
/// Returns `true` is this object is approximately equal to the other one, using
/// a provided epsilon value.
fn approx_eq_eps(&self, other: &Self, approx_epsilon: &Eps) -> bool;
/// Returns `true` is this object is approximately equal to the other one, using
/// the `approx_epsilon()` epsilon value.
fn approx_eq(&self, other: &Self) -> bool {
self.approx_eq_eps(other, &Self::approx_epsilon())
}
}
macro_rules! approx_eq {
($ty:ty, $eps:expr) => {
impl ApproxEq<$ty> for $ty {
#[inline]
fn approx_epsilon() -> $ty {
$eps
}
#[inline]
fn approx_eq_eps(&self, other: &$ty, approx_epsilon: &$ty) -> bool {
num_traits::Float::abs(*self - *other) < *approx_epsilon
}
}
};
}
approx_eq!(f32, 1.0e-6);
approx_eq!(f64, 1.0e-6);

View File

@ -1,44 +0,0 @@
// Copyright 2013 The Servo Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Utilities for testing approximate ordering - especially true for
//! floating point types, where NaN's cannot be ordered.
pub fn min<T: PartialOrd>(x: T, y: T) -> T {
if x <= y {
x
} else {
y
}
}
pub fn max<T: PartialOrd>(x: T, y: T) -> T {
if x >= y {
x
} else {
y
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_min() {
assert!(min(0u32, 1u32) == 0u32);
assert!(min(-1.0f32, 0.0f32) == -1.0f32);
}
#[test]
fn test_max() {
assert!(max(0u32, 1u32) == 1u32);
assert!(max(-1.0f32, 0.0f32) == 0.0f32);
}
}

View File

@ -1,828 +0,0 @@
// Copyright 2013 The Servo Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use super::UnknownUnit;
use crate::approxord::{max, min};
use crate::nonempty::NonEmpty;
use crate::num::*;
use crate::point::{point2, Point2D};
use crate::rect::Rect;
use crate::scale::Scale;
use crate::side_offsets::SideOffsets2D;
use crate::size::Size2D;
use crate::vector::{vec2, Vector2D};
use num_traits::NumCast;
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
use core::borrow::Borrow;
use core::cmp::PartialOrd;
use core::fmt;
use core::hash::{Hash, Hasher};
use core::ops::{Add, Div, DivAssign, Mul, MulAssign, Sub};
/// An axis aligned rectangle represented by its minimum and maximum coordinates.
///
/// That struct is similar to the [`Rect`] struct, but stores rectangle as two corners
/// instead of origin point and size. Such representation has several advantages over
/// [`Rect`] representation:
/// - Several operations are more efficient with `Box2D`, including [`intersection`],
/// [`union`], and point-in-rect.
/// - The representation is more symmetric, since it stores two quantities of the
/// same kind (two points) rather than a point and a dimension (width/height).
/// - The representation is less susceptible to overflow. With [`Rect`], computation
/// of second point can overflow for a large range of values of origin and size.
/// However, with `Box2D`, computation of [`size`] cannot overflow if the coordinates
/// are signed and the resulting size is unsigned.
///
/// A known disadvantage of `Box2D` is that translating the rectangle requires translating
/// both points, whereas translating [`Rect`] only requires translating one point.
///
/// [`Rect`]: struct.Rect.html
/// [`intersection`]: #method.intersection
/// [`union`]: #method.union
/// [`size`]: #method.size
#[repr(C)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(
feature = "serde",
serde(bound(serialize = "T: Serialize", deserialize = "T: Deserialize<'de>"))
)]
pub struct Box2D<T, U> {
pub min: Point2D<T, U>,
pub max: Point2D<T, U>,
}
impl<T: Hash, U> Hash for Box2D<T, U> {
fn hash<H: Hasher>(&self, h: &mut H) {
self.min.hash(h);
self.max.hash(h);
}
}
impl<T: Copy, U> Copy for Box2D<T, U> {}
impl<T: Clone, U> Clone for Box2D<T, U> {
fn clone(&self) -> Self {
Self::new(self.min.clone(), self.max.clone())
}
}
impl<T: PartialEq, U> PartialEq for Box2D<T, U> {
fn eq(&self, other: &Self) -> bool {
self.min.eq(&other.min) && self.max.eq(&other.max)
}
}
impl<T: Eq, U> Eq for Box2D<T, U> {}
impl<T: fmt::Debug, U> fmt::Debug for Box2D<T, U> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_tuple("Box2D")
.field(&self.min)
.field(&self.max)
.finish()
}
}
impl<T: fmt::Display, U> fmt::Display for Box2D<T, U> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "Box2D(")?;
fmt::Display::fmt(&self.min, f)?;
write!(f, ", ")?;
fmt::Display::fmt(&self.max, f)?;
write!(f, ")")
}
}
impl<T, U> Box2D<T, U> {
/// Constructor.
#[inline]
pub const fn new(min: Point2D<T, U>, max: Point2D<T, U>) -> Self {
Box2D { min, max }
}
}
impl<T, U> Box2D<T, U>
where
T: PartialOrd,
{
/// Returns true if the box has a negative area.
///
/// The common interpretation for a negative box is to consider it empty. It can be obtained
/// by calculating the intersection of two boxes that do not intersect.
#[inline]
pub fn is_negative(&self) -> bool {
self.max.x < self.min.x || self.max.y < self.min.y
}
/// Returns true if the size is zero or negative.
#[inline]
pub fn is_empty_or_negative(&self) -> bool {
!(self.max.x > self.min.x && self.max.y > self.min.y)
}
/// Returns `true` if the two boxes intersect.
#[inline]
pub fn intersects(&self, other: &Self) -> bool {
self.min.x < other.max.x
&& self.max.x > other.min.x
&& self.min.y < other.max.y
&& self.max.y > other.min.y
}
/// Returns `true` if this box contains the point. Points are considered
/// in the box if they are on the front, left or top faces, but outside if they
/// are on the back, right or bottom faces.
#[inline]
pub fn contains(&self, p: Point2D<T, U>) -> bool {
self.min.x <= p.x && p.x < self.max.x && self.min.y <= p.y && p.y < self.max.y
}
/// Returns `true` if this box contains the interior of the other box. Always
/// returns `true` if other is empty, and always returns `false` if other is
/// nonempty but this box is empty.
#[inline]
pub fn contains_box(&self, other: &Self) -> bool {
other.is_empty_or_negative()
|| (self.min.x <= other.min.x
&& other.max.x <= self.max.x
&& self.min.y <= other.min.y
&& other.max.y <= self.max.y)
}
}
impl<T, U> Box2D<T, U>
where
T: Copy + PartialOrd,
{
#[inline]
pub fn to_non_empty(&self) -> Option<NonEmpty<Self>> {
if self.is_empty_or_negative() {
return None;
}
Some(NonEmpty(*self))
}
/// Computes the intersection of two boxes.
///
/// The result is a negative box if the boxes do not intersect.
#[inline]
pub fn intersection(&self, other: &Self) -> Self {
Box2D {
min: point2(max(self.min.x, other.min.x), max(self.min.y, other.min.y)),
max: point2(min(self.max.x, other.max.x), min(self.max.y, other.max.y)),
}
}
/// Computes the intersection of two boxes, returning `None` if the boxes do not intersect.
#[inline]
pub fn try_intersection(&self, other: &Self) -> Option<NonEmpty<Self>> {
let intersection = self.intersection(other);
if intersection.is_negative() {
return None;
}
Some(NonEmpty(intersection))
}
#[inline]
pub fn union(&self, other: &Self) -> Self {
Box2D {
min: point2(min(self.min.x, other.min.x), min(self.min.y, other.min.y)),
max: point2(max(self.max.x, other.max.x), max(self.max.y, other.max.y)),
}
}
}
impl<T, U> Box2D<T, U>
where
T: Copy + Add<T, Output = T>,
{
/// Returns the same box, translated by a vector.
#[inline]
pub fn translate(&self, by: Vector2D<T, U>) -> Self {
Box2D {
min: self.min + by,
max: self.max + by,
}
}
}
impl<T, U> Box2D<T, U>
where
T: Copy + Sub<T, Output = T>,
{
#[inline]
pub fn size(&self) -> Size2D<T, U> {
(self.max - self.min).to_size()
}
#[inline]
pub fn width(&self) -> T {
self.max.x - self.min.x
}
#[inline]
pub fn height(&self) -> T {
self.max.y - self.min.y
}
#[inline]
pub fn to_rect(&self) -> Rect<T, U> {
Rect {
origin: self.min,
size: self.size(),
}
}
}
impl<T, U> Box2D<T, U>
where
T: Copy + Add<T, Output = T> + Sub<T, Output = T>,
{
/// Inflates the box by the specified sizes on each side respectively.
#[inline]
#[must_use]
pub fn inflate(&self, width: T, height: T) -> Self {
Box2D {
min: point2(self.min.x - width, self.min.y - height),
max: point2(self.max.x + width, self.max.y + height),
}
}
/// Calculate the size and position of an inner box.
///
/// Subtracts the side offsets from all sides. The horizontal, vertical
/// and applicate offsets must not be larger than the original side length.
pub fn inner_box(&self, offsets: SideOffsets2D<T, U>) -> Self {
Box2D {
min: self.min + vec2(offsets.left, offsets.top),
max: self.max - vec2(offsets.right, offsets.bottom),
}
}
/// Calculate the b and position of an outer box.
///
/// Add the offsets to all sides. The expanded box is returned.
pub fn outer_box(&self, offsets: SideOffsets2D<T, U>) -> Self {
Box2D {
min: self.min - vec2(offsets.left, offsets.top),
max: self.max + vec2(offsets.right, offsets.bottom),
}
}
}
impl<T, U> Box2D<T, U>
where
T: Copy + Zero + PartialOrd,
{
/// Creates a Box2D of the given size, at offset zero.
#[inline]
pub fn from_size(size: Size2D<T, U>) -> Self {
let zero = Point2D::zero();
let point = size.to_vector().to_point();
Box2D::from_points(&[zero, point])
}
/// Returns the smallest box containing all of the provided points.
pub fn from_points<I>(points: I) -> Self
where
I: IntoIterator,
I::Item: Borrow<Point2D<T, U>>,
{
let mut points = points.into_iter();
let (mut min_x, mut min_y) = match points.next() {
Some(first) => first.borrow().to_tuple(),
None => return Box2D::zero(),
};
let (mut max_x, mut max_y) = (min_x, min_y);
for point in points {
let p = point.borrow();
if p.x < min_x {
min_x = p.x
}
if p.x > max_x {
max_x = p.x
}
if p.y < min_y {
min_y = p.y
}
if p.y > max_y {
max_y = p.y
}
}
Box2D {
min: point2(min_x, min_y),
max: point2(max_x, max_y),
}
}
}
impl<T, U> Box2D<T, U>
where
T: Copy + One + Add<Output = T> + Sub<Output = T> + Mul<Output = T>,
{
/// Linearly interpolate between this box and another box.
#[inline]
pub fn lerp(&self, other: Self, t: T) -> Self {
Self::new(self.min.lerp(other.min, t), self.max.lerp(other.max, t))
}
}
impl<T, U> Box2D<T, U>
where
T: Copy + One + Add<Output = T> + Div<Output = T>,
{
pub fn center(&self) -> Point2D<T, U> {
let two = T::one() + T::one();
(self.min + self.max.to_vector()) / two
}
}
impl<T, U> Box2D<T, U>
where
T: Copy + Mul<T, Output = T> + Sub<T, Output = T>,
{
#[inline]
pub fn area(&self) -> T {
let size = self.size();
size.width * size.height
}
}
impl<T, U> Box2D<T, U>
where
T: Zero,
{
/// Constructor, setting all sides to zero.
pub fn zero() -> Self {
Box2D::new(Point2D::zero(), Point2D::zero())
}
}
impl<T, U> Box2D<T, U>
where
T: PartialEq,
{
/// Returns true if the size is zero.
#[inline]
pub fn is_empty(&self) -> bool {
self.min.x == self.max.x || self.min.y == self.max.y
}
}
impl<T: Clone + Mul, U> Mul<T> for Box2D<T, U> {
type Output = Box2D<T::Output, U>;
#[inline]
fn mul(self, scale: T) -> Self::Output {
Box2D::new(self.min * scale.clone(), self.max * scale)
}
}
impl<T: Clone + MulAssign, U> MulAssign<T> for Box2D<T, U> {
#[inline]
fn mul_assign(&mut self, scale: T) {
*self *= Scale::new(scale);
}
}
impl<T: Clone + Div, U> Div<T> for Box2D<T, U> {
type Output = Box2D<T::Output, U>;
#[inline]
fn div(self, scale: T) -> Self::Output {
Box2D::new(self.min / scale.clone(), self.max / scale)
}
}
impl<T: Clone + DivAssign, U> DivAssign<T> for Box2D<T, U> {
#[inline]
fn div_assign(&mut self, scale: T) {
*self /= Scale::new(scale);
}
}
impl<T: Clone + Mul, U1, U2> Mul<Scale<T, U1, U2>> for Box2D<T, U1> {
type Output = Box2D<T::Output, U2>;
#[inline]
fn mul(self, scale: Scale<T, U1, U2>) -> Self::Output {
Box2D::new(self.min * scale.clone(), self.max * scale)
}
}
impl<T: Clone + MulAssign, U> MulAssign<Scale<T, U, U>> for Box2D<T, U> {
#[inline]
fn mul_assign(&mut self, scale: Scale<T, U, U>) {
self.min *= scale.clone();
self.max *= scale;
}
}
impl<T: Clone + Div, U1, U2> Div<Scale<T, U1, U2>> for Box2D<T, U2> {
type Output = Box2D<T::Output, U1>;
#[inline]
fn div(self, scale: Scale<T, U1, U2>) -> Self::Output {
Box2D::new(self.min / scale.clone(), self.max / scale)
}
}
impl<T: Clone + DivAssign, U> DivAssign<Scale<T, U, U>> for Box2D<T, U> {
#[inline]
fn div_assign(&mut self, scale: Scale<T, U, U>) {
self.min /= scale.clone();
self.max /= scale;
}
}
impl<T, U> Box2D<T, U>
where
T: Copy,
{
/// Drop the units, preserving only the numeric value.
#[inline]
pub fn to_untyped(&self) -> Box2D<T, UnknownUnit> {
Box2D::new(self.min.to_untyped(), self.max.to_untyped())
}
/// Tag a unitless value with units.
#[inline]
pub fn from_untyped(c: &Box2D<T, UnknownUnit>) -> Box2D<T, U> {
Box2D::new(Point2D::from_untyped(c.min), Point2D::from_untyped(c.max))
}
/// Cast the unit
#[inline]
pub fn cast_unit<V>(&self) -> Box2D<T, V> {
Box2D::new(self.min.cast_unit(), self.max.cast_unit())
}
#[inline]
pub fn scale<S: Copy>(&self, x: S, y: S) -> Self
where
T: Mul<S, Output = T>,
{
Box2D {
min: point2(self.min.x * x, self.min.y * y),
max: point2(self.max.x * x, self.max.y * y),
}
}
}
impl<T: NumCast + Copy, U> Box2D<T, U> {
/// Cast from one numeric representation to another, preserving the units.
///
/// When casting from floating point to integer coordinates, the decimals are truncated
/// as one would expect from a simple cast, but this behavior does not always make sense
/// geometrically. Consider using round(), round_in or round_out() before casting.
#[inline]
pub fn cast<NewT: NumCast>(&self) -> Box2D<NewT, U> {
Box2D::new(self.min.cast(), self.max.cast())
}
/// Fallible cast from one numeric representation to another, preserving the units.
///
/// When casting from floating point to integer coordinates, the decimals are truncated
/// as one would expect from a simple cast, but this behavior does not always make sense
/// geometrically. Consider using round(), round_in or round_out() before casting.
pub fn try_cast<NewT: NumCast>(&self) -> Option<Box2D<NewT, U>> {
match (self.min.try_cast(), self.max.try_cast()) {
(Some(a), Some(b)) => Some(Box2D::new(a, b)),
_ => None,
}
}
// Convenience functions for common casts
/// Cast into an `f32` box.
#[inline]
pub fn to_f32(&self) -> Box2D<f32, U> {
self.cast()
}
/// Cast into an `f64` box.
#[inline]
pub fn to_f64(&self) -> Box2D<f64, U> {
self.cast()
}
/// Cast into an `usize` box, truncating decimals if any.
///
/// When casting from floating point boxes, it is worth considering whether
/// to `round()`, `round_in()` or `round_out()` before the cast in order to
/// obtain the desired conversion behavior.
#[inline]
pub fn to_usize(&self) -> Box2D<usize, U> {
self.cast()
}
/// Cast into an `u32` box, truncating decimals if any.
///
/// When casting from floating point boxes, it is worth considering whether
/// to `round()`, `round_in()` or `round_out()` before the cast in order to
/// obtain the desired conversion behavior.
#[inline]
pub fn to_u32(&self) -> Box2D<u32, U> {
self.cast()
}
/// Cast into an `i32` box, truncating decimals if any.
///
/// When casting from floating point boxes, it is worth considering whether
/// to `round()`, `round_in()` or `round_out()` before the cast in order to
/// obtain the desired conversion behavior.
#[inline]
pub fn to_i32(&self) -> Box2D<i32, U> {
self.cast()
}
/// Cast into an `i64` box, truncating decimals if any.
///
/// When casting from floating point boxes, it is worth considering whether
/// to `round()`, `round_in()` or `round_out()` before the cast in order to
/// obtain the desired conversion behavior.
#[inline]
pub fn to_i64(&self) -> Box2D<i64, U> {
self.cast()
}
}
impl<T, U> Box2D<T, U>
where
T: Round,
{
/// Return a box with edges rounded to integer coordinates, such that
/// the returned box has the same set of pixel centers as the original
/// one.
/// Values equal to 0.5 round up.
/// Suitable for most places where integral device coordinates
/// are needed, but note that any translation should be applied first to
/// avoid pixel rounding errors.
/// Note that this is *not* rounding to nearest integer if the values are negative.
/// They are always rounding as floor(n + 0.5).
#[must_use]
pub fn round(&self) -> Self {
Box2D::new(self.min.round(), self.max.round())
}
}
impl<T, U> Box2D<T, U>
where
T: Floor + Ceil,
{
/// Return a box with faces/edges rounded to integer coordinates, such that
/// the original box contains the resulting box.
#[must_use]
pub fn round_in(&self) -> Self {
let min = self.min.ceil();
let max = self.max.floor();
Box2D { min, max }
}
/// Return a box with faces/edges rounded to integer coordinates, such that
/// the original box is contained in the resulting box.
#[must_use]
pub fn round_out(&self) -> Self {
let min = self.min.floor();
let max = self.max.ceil();
Box2D { min, max }
}
}
impl<T, U> From<Size2D<T, U>> for Box2D<T, U>
where
T: Copy + Zero + PartialOrd,
{
fn from(b: Size2D<T, U>) -> Self {
Self::from_size(b)
}
}
#[cfg(test)]
mod tests {
use crate::default::Box2D;
use crate::side_offsets::SideOffsets2D;
use crate::{point2, size2, vec2, Point2D};
//use super::*;
#[test]
fn test_size() {
let b = Box2D::new(point2(-10.0, -10.0), point2(10.0, 10.0));
assert_eq!(b.size().width, 20.0);
assert_eq!(b.size().height, 20.0);
}
#[test]
fn test_width_height() {
let b = Box2D::new(point2(-10.0, -10.0), point2(10.0, 10.0));
assert!(b.width() == 20.0);
assert!(b.height() == 20.0);
}
#[test]
fn test_center() {
let b = Box2D::new(point2(-10.0, -10.0), point2(10.0, 10.0));
assert_eq!(b.center(), Point2D::zero());
}
#[test]
fn test_area() {
let b = Box2D::new(point2(-10.0, -10.0), point2(10.0, 10.0));
assert_eq!(b.area(), 400.0);
}
#[test]
fn test_from_points() {
let b = Box2D::from_points(&[point2(50.0, 160.0), point2(100.0, 25.0)]);
assert_eq!(b.min, point2(50.0, 25.0));
assert_eq!(b.max, point2(100.0, 160.0));
}
#[test]
fn test_round_in() {
let b = Box2D::from_points(&[point2(-25.5, -40.4), point2(60.3, 36.5)]).round_in();
assert_eq!(b.min.x, -25.0);
assert_eq!(b.min.y, -40.0);
assert_eq!(b.max.x, 60.0);
assert_eq!(b.max.y, 36.0);
}
#[test]
fn test_round_out() {
let b = Box2D::from_points(&[point2(-25.5, -40.4), point2(60.3, 36.5)]).round_out();
assert_eq!(b.min.x, -26.0);
assert_eq!(b.min.y, -41.0);
assert_eq!(b.max.x, 61.0);
assert_eq!(b.max.y, 37.0);
}
#[test]
fn test_round() {
let b = Box2D::from_points(&[point2(-25.5, -40.4), point2(60.3, 36.5)]).round();
assert_eq!(b.min.x, -26.0);
assert_eq!(b.min.y, -40.0);
assert_eq!(b.max.x, 60.0);
assert_eq!(b.max.y, 37.0);
}
#[test]
fn test_from_size() {
let b = Box2D::from_size(size2(30.0, 40.0));
assert!(b.min == Point2D::zero());
assert!(b.size().width == 30.0);
assert!(b.size().height == 40.0);
}
#[test]
fn test_inner_box() {
let b = Box2D::from_points(&[point2(50.0, 25.0), point2(100.0, 160.0)]);
let b = b.inner_box(SideOffsets2D::new(10.0, 20.0, 5.0, 10.0));
assert_eq!(b.max.x, 80.0);
assert_eq!(b.max.y, 155.0);
assert_eq!(b.min.x, 60.0);
assert_eq!(b.min.y, 35.0);
}
#[test]
fn test_outer_box() {
let b = Box2D::from_points(&[point2(50.0, 25.0), point2(100.0, 160.0)]);
let b = b.outer_box(SideOffsets2D::new(10.0, 20.0, 5.0, 10.0));
assert_eq!(b.max.x, 120.0);
assert_eq!(b.max.y, 165.0);
assert_eq!(b.min.x, 40.0);
assert_eq!(b.min.y, 15.0);
}
#[test]
fn test_translate() {
let size = size2(15.0, 15.0);
let mut center = (size / 2.0).to_vector().to_point();
let b = Box2D::from_size(size);
assert_eq!(b.center(), center);
let translation = vec2(10.0, 2.5);
let b = b.translate(translation);
center += translation;
assert_eq!(b.center(), center);
assert_eq!(b.max.x, 25.0);
assert_eq!(b.max.y, 17.5);
assert_eq!(b.min.x, 10.0);
assert_eq!(b.min.y, 2.5);
}
#[test]
fn test_union() {
let b1 = Box2D::from_points(&[point2(-20.0, -20.0), point2(0.0, 20.0)]);
let b2 = Box2D::from_points(&[point2(0.0, 20.0), point2(20.0, -20.0)]);
let b = b1.union(&b2);
assert_eq!(b.max.x, 20.0);
assert_eq!(b.max.y, 20.0);
assert_eq!(b.min.x, -20.0);
assert_eq!(b.min.y, -20.0);
}
#[test]
fn test_intersects() {
let b1 = Box2D::from_points(&[point2(-15.0, -20.0), point2(10.0, 20.0)]);
let b2 = Box2D::from_points(&[point2(-10.0, 20.0), point2(15.0, -20.0)]);
assert!(b1.intersects(&b2));
}
#[test]
fn test_intersection() {
let b1 = Box2D::from_points(&[point2(-15.0, -20.0), point2(10.0, 20.0)]);
let b2 = Box2D::from_points(&[point2(-10.0, 20.0), point2(15.0, -20.0)]);
let b = b1.intersection(&b2);
assert_eq!(b.max.x, 10.0);
assert_eq!(b.max.y, 20.0);
assert_eq!(b.min.x, -10.0);
assert_eq!(b.min.y, -20.0);
}
#[test]
fn test_try_intersection() {
let b1 = Box2D::from_points(&[point2(-15.0, -20.0), point2(10.0, 20.0)]);
let b2 = Box2D::from_points(&[point2(-10.0, 20.0), point2(15.0, -20.0)]);
assert!(b1.try_intersection(&b2).is_some());
let b1 = Box2D::from_points(&[point2(-15.0, -20.0), point2(-10.0, 20.0)]);
let b2 = Box2D::from_points(&[point2(10.0, 20.0), point2(15.0, -20.0)]);
assert!(b1.try_intersection(&b2).is_none());
}
#[test]
fn test_scale() {
let b = Box2D::from_points(&[point2(-10.0, -10.0), point2(10.0, 10.0)]);
let b = b.scale(0.5, 0.5);
assert_eq!(b.max.x, 5.0);
assert_eq!(b.max.y, 5.0);
assert_eq!(b.min.x, -5.0);
assert_eq!(b.min.y, -5.0);
}
#[test]
fn test_lerp() {
let b1 = Box2D::from_points(&[point2(-20.0, -20.0), point2(-10.0, -10.0)]);
let b2 = Box2D::from_points(&[point2(10.0, 10.0), point2(20.0, 20.0)]);
let b = b1.lerp(b2, 0.5);
assert_eq!(b.center(), Point2D::zero());
assert_eq!(b.size().width, 10.0);
assert_eq!(b.size().height, 10.0);
}
#[test]
fn test_contains() {
let b = Box2D::from_points(&[point2(-20.0, -20.0), point2(20.0, 20.0)]);
assert!(b.contains(point2(-15.3, 10.5)));
}
#[test]
fn test_contains_box() {
let b1 = Box2D::from_points(&[point2(-20.0, -20.0), point2(20.0, 20.0)]);
let b2 = Box2D::from_points(&[point2(-14.3, -16.5), point2(6.7, 17.6)]);
assert!(b1.contains_box(&b2));
}
#[test]
fn test_inflate() {
let b = Box2D::from_points(&[point2(-20.0, -20.0), point2(20.0, 20.0)]);
let b = b.inflate(10.0, 5.0);
assert_eq!(b.size().width, 60.0);
assert_eq!(b.size().height, 50.0);
assert_eq!(b.center(), Point2D::zero());
}
#[test]
fn test_is_empty() {
for i in 0..2 {
let mut coords_neg = [-20.0, -20.0];
let mut coords_pos = [20.0, 20.0];
coords_neg[i] = 0.0;
coords_pos[i] = 0.0;
let b = Box2D::from_points(&[Point2D::from(coords_neg), Point2D::from(coords_pos)]);
assert!(b.is_empty());
}
}
#[test]
fn test_nan_empty_or_negative() {
use std::f32::NAN;
assert!(Box2D { min: point2(NAN, 2.0), max: point2(1.0, 3.0) }.is_empty_or_negative());
assert!(Box2D { min: point2(0.0, NAN), max: point2(1.0, 2.0) }.is_empty_or_negative());
assert!(Box2D { min: point2(1.0, -2.0), max: point2(NAN, 2.0) }.is_empty_or_negative());
assert!(Box2D { min: point2(1.0, -2.0), max: point2(0.0, NAN) }.is_empty_or_negative());
}
}

View File

@ -1,901 +0,0 @@
// Copyright 2013 The Servo Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use super::UnknownUnit;
use crate::approxord::{max, min};
use crate::nonempty::NonEmpty;
use crate::num::*;
use crate::point::{point3, Point3D};
use crate::scale::Scale;
use crate::size::Size3D;
use crate::vector::Vector3D;
use num_traits::NumCast;
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
use core::borrow::Borrow;
use core::cmp::PartialOrd;
use core::fmt;
use core::hash::{Hash, Hasher};
use core::ops::{Add, Div, DivAssign, Mul, MulAssign, Sub};
/// An axis aligned 3D box represented by its minimum and maximum coordinates.
#[repr(C)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(
feature = "serde",
serde(bound(serialize = "T: Serialize", deserialize = "T: Deserialize<'de>"))
)]
pub struct Box3D<T, U> {
pub min: Point3D<T, U>,
pub max: Point3D<T, U>,
}
impl<T: Hash, U> Hash for Box3D<T, U> {
fn hash<H: Hasher>(&self, h: &mut H) {
self.min.hash(h);
self.max.hash(h);
}
}
impl<T: Copy, U> Copy for Box3D<T, U> {}
impl<T: Clone, U> Clone for Box3D<T, U> {
fn clone(&self) -> Self {
Self::new(self.min.clone(), self.max.clone())
}
}
impl<T: PartialEq, U> PartialEq for Box3D<T, U> {
fn eq(&self, other: &Self) -> bool {
self.min.eq(&other.min) && self.max.eq(&other.max)
}
}
impl<T: Eq, U> Eq for Box3D<T, U> {}
impl<T: fmt::Debug, U> fmt::Debug for Box3D<T, U> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_tuple("Box3D")
.field(&self.min)
.field(&self.max)
.finish()
}
}
impl<T: fmt::Display, U> fmt::Display for Box3D<T, U> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "Box3D(")?;
fmt::Display::fmt(&self.min, f)?;
write!(f, ", ")?;
fmt::Display::fmt(&self.max, f)?;
write!(f, ")")
}
}
impl<T, U> Box3D<T, U> {
/// Constructor.
#[inline]
pub const fn new(min: Point3D<T, U>, max: Point3D<T, U>) -> Self {
Box3D { min, max }
}
}
impl<T, U> Box3D<T, U>
where
T: PartialOrd,
{
/// Returns true if the box has a negative volume.
///
/// The common interpretation for a negative box is to consider it empty. It can be obtained
/// by calculating the intersection of two boxes that do not intersect.
#[inline]
pub fn is_negative(&self) -> bool {
self.max.x < self.min.x || self.max.y < self.min.y || self.max.z < self.min.z
}
/// Returns true if the size is zero or negative.
#[inline]
pub fn is_empty_or_negative(&self) -> bool {
!(self.max.x > self.min.x && self.max.y > self.min.y && self.max.z > self.min.z)
}
#[inline]
pub fn intersects(&self, other: &Self) -> bool {
self.min.x < other.max.x
&& self.max.x > other.min.x
&& self.min.y < other.max.y
&& self.max.y > other.min.y
&& self.min.z < other.max.z
&& self.max.z > other.min.z
}
/// Returns `true` if this box3d contains the point. Points are considered
/// in the box3d if they are on the front, left or top faces, but outside if they
/// are on the back, right or bottom faces.
#[inline]
pub fn contains(&self, other: Point3D<T, U>) -> bool {
self.min.x <= other.x
&& other.x < self.max.x
&& self.min.y <= other.y
&& other.y < self.max.y
&& self.min.z <= other.z
&& other.z < self.max.z
}
/// Returns `true` if this box3d contains the interior of the other box3d. Always
/// returns `true` if other is empty, and always returns `false` if other is
/// nonempty but this box3d is empty.
#[inline]
pub fn contains_box(&self, other: &Self) -> bool {
other.is_empty_or_negative()
|| (self.min.x <= other.min.x
&& other.max.x <= self.max.x
&& self.min.y <= other.min.y
&& other.max.y <= self.max.y
&& self.min.z <= other.min.z
&& other.max.z <= self.max.z)
}
}
impl<T, U> Box3D<T, U>
where
T: Copy + PartialOrd,
{
#[inline]
pub fn to_non_empty(&self) -> Option<NonEmpty<Self>> {
if self.is_empty_or_negative() {
return None;
}
Some(NonEmpty(*self))
}
#[inline]
pub fn try_intersection(&self, other: &Self) -> Option<NonEmpty<Self>> {
if !self.intersects(other) {
return None;
}
Some(NonEmpty(self.intersection(other)))
}
pub fn intersection(&self, other: &Self) -> Self {
let intersection_min = Point3D::new(
max(self.min.x, other.min.x),
max(self.min.y, other.min.y),
max(self.min.z, other.min.z),
);
let intersection_max = Point3D::new(
min(self.max.x, other.max.x),
min(self.max.y, other.max.y),
min(self.max.z, other.max.z),
);
Box3D::new(intersection_min, intersection_max)
}
/// Returns the smallest box containing both of the provided boxes.
#[inline]
pub fn union(&self, other: &Self) -> Self {
Box3D::new(
Point3D::new(
min(self.min.x, other.min.x),
min(self.min.y, other.min.y),
min(self.min.z, other.min.z),
),
Point3D::new(
max(self.max.x, other.max.x),
max(self.max.y, other.max.y),
max(self.max.z, other.max.z),
),
)
}
}
impl<T, U> Box3D<T, U>
where
T: Copy + Add<T, Output = T>,
{
/// Returns the same box3d, translated by a vector.
#[inline]
#[must_use]
pub fn translate(&self, by: Vector3D<T, U>) -> Self {
Box3D {
min: self.min + by,
max: self.max + by,
}
}
}
impl<T, U> Box3D<T, U>
where
T: Copy + Sub<T, Output = T>,
{
#[inline]
pub fn size(&self) -> Size3D<T, U> {
Size3D::new(
self.max.x - self.min.x,
self.max.y - self.min.y,
self.max.z - self.min.z,
)
}
#[inline]
pub fn width(&self) -> T {
self.max.x - self.min.x
}
#[inline]
pub fn height(&self) -> T {
self.max.y - self.min.y
}
#[inline]
pub fn depth(&self) -> T {
self.max.z - self.min.z
}
}
impl<T, U> Box3D<T, U>
where
T: Copy + Add<T, Output = T> + Sub<T, Output = T>,
{
/// Inflates the box by the specified sizes on each side respectively.
#[inline]
#[must_use]
pub fn inflate(&self, width: T, height: T, depth: T) -> Self {
Box3D::new(
Point3D::new(self.min.x - width, self.min.y - height, self.min.z - depth),
Point3D::new(self.max.x + width, self.max.y + height, self.max.z + depth),
)
}
}
impl<T, U> Box3D<T, U>
where
T: Copy + Zero + PartialOrd,
{
/// Creates a Box3D of the given size, at offset zero.
#[inline]
pub fn from_size(size: Size3D<T, U>) -> Self {
let zero = Point3D::zero();
let point = size.to_vector().to_point();
Box3D::from_points(&[zero, point])
}
/// Returns the smallest box containing all of the provided points.
pub fn from_points<I>(points: I) -> Self
where
I: IntoIterator,
I::Item: Borrow<Point3D<T, U>>,
{
let mut points = points.into_iter();
let (mut min_x, mut min_y, mut min_z) = match points.next() {
Some(first) => first.borrow().to_tuple(),
None => return Box3D::zero(),
};
let (mut max_x, mut max_y, mut max_z) = (min_x, min_y, min_z);
for point in points {
let p = point.borrow();
if p.x < min_x {
min_x = p.x
}
if p.x > max_x {
max_x = p.x
}
if p.y < min_y {
min_y = p.y
}
if p.y > max_y {
max_y = p.y
}
if p.z < min_z {
min_z = p.z
}
if p.z > max_z {
max_z = p.z
}
}
Box3D {
min: point3(min_x, min_y, min_z),
max: point3(max_x, max_y, max_z),
}
}
}
impl<T, U> Box3D<T, U>
where
T: Copy + One + Add<Output = T> + Sub<Output = T> + Mul<Output = T>,
{
/// Linearly interpolate between this box3d and another box3d.
#[inline]
pub fn lerp(&self, other: Self, t: T) -> Self {
Self::new(self.min.lerp(other.min, t), self.max.lerp(other.max, t))
}
}
impl<T, U> Box3D<T, U>
where
T: Copy + One + Add<Output = T> + Div<Output = T>,
{
pub fn center(&self) -> Point3D<T, U> {
let two = T::one() + T::one();
(self.min + self.max.to_vector()) / two
}
}
impl<T, U> Box3D<T, U>
where
T: Copy + Mul<T, Output = T> + Sub<T, Output = T>,
{
#[inline]
pub fn volume(&self) -> T {
let size = self.size();
size.width * size.height * size.depth
}
#[inline]
pub fn xy_area(&self) -> T {
let size = self.size();
size.width * size.height
}
#[inline]
pub fn yz_area(&self) -> T {
let size = self.size();
size.depth * size.height
}
#[inline]
pub fn xz_area(&self) -> T {
let size = self.size();
size.depth * size.width
}
}
impl<T, U> Box3D<T, U>
where
T: Zero,
{
/// Constructor, setting all sides to zero.
pub fn zero() -> Self {
Box3D::new(Point3D::zero(), Point3D::zero())
}
}
impl<T, U> Box3D<T, U>
where
T: PartialEq,
{
/// Returns true if the volume is zero.
#[inline]
pub fn is_empty(&self) -> bool {
self.min.x == self.max.x || self.min.y == self.max.y || self.min.z == self.max.z
}
}
impl<T: Clone + Mul, U> Mul<T> for Box3D<T, U> {
type Output = Box3D<T::Output, U>;
#[inline]
fn mul(self, scale: T) -> Self::Output {
Box3D::new(self.min * scale.clone(), self.max * scale)
}
}
impl<T: Clone + MulAssign, U> MulAssign<T> for Box3D<T, U> {
#[inline]
fn mul_assign(&mut self, scale: T) {
self.min *= scale.clone();
self.max *= scale;
}
}
impl<T: Clone + Div, U> Div<T> for Box3D<T, U> {
type Output = Box3D<T::Output, U>;
#[inline]
fn div(self, scale: T) -> Self::Output {
Box3D::new(self.min / scale.clone(), self.max / scale)
}
}
impl<T: Clone + DivAssign, U> DivAssign<T> for Box3D<T, U> {
#[inline]
fn div_assign(&mut self, scale: T) {
self.min /= scale.clone();
self.max /= scale;
}
}
impl<T: Clone + Mul, U1, U2> Mul<Scale<T, U1, U2>> for Box3D<T, U1> {
type Output = Box3D<T::Output, U2>;
#[inline]
fn mul(self, scale: Scale<T, U1, U2>) -> Self::Output {
Box3D::new(self.min * scale.clone(), self.max * scale)
}
}
impl<T: Clone + MulAssign, U> MulAssign<Scale<T, U, U>> for Box3D<T, U> {
#[inline]
fn mul_assign(&mut self, scale: Scale<T, U, U>) {
self.min *= scale.clone();
self.max *= scale;
}
}
impl<T: Clone + Div, U1, U2> Div<Scale<T, U1, U2>> for Box3D<T, U2> {
type Output = Box3D<T::Output, U1>;
#[inline]
fn div(self, scale: Scale<T, U1, U2>) -> Self::Output {
Box3D::new(self.min / scale.clone(), self.max / scale)
}
}
impl<T: Clone + DivAssign, U> DivAssign<Scale<T, U, U>> for Box3D<T, U> {
#[inline]
fn div_assign(&mut self, scale: Scale<T, U, U>) {
self.min /= scale.clone();
self.max /= scale;
}
}
impl<T, U> Box3D<T, U>
where
T: Copy,
{
/// Drop the units, preserving only the numeric value.
#[inline]
pub fn to_untyped(&self) -> Box3D<T, UnknownUnit> {
Box3D {
min: self.min.to_untyped(),
max: self.max.to_untyped(),
}
}
/// Tag a unitless value with units.
#[inline]
pub fn from_untyped(c: &Box3D<T, UnknownUnit>) -> Box3D<T, U> {
Box3D {
min: Point3D::from_untyped(c.min),
max: Point3D::from_untyped(c.max),
}
}
/// Cast the unit
#[inline]
pub fn cast_unit<V>(&self) -> Box3D<T, V> {
Box3D::new(self.min.cast_unit(), self.max.cast_unit())
}
#[inline]
pub fn scale<S: Copy>(&self, x: S, y: S, z: S) -> Self
where
T: Mul<S, Output = T>,
{
Box3D::new(
Point3D::new(self.min.x * x, self.min.y * y, self.min.z * z),
Point3D::new(self.max.x * x, self.max.y * y, self.max.z * z),
)
}
}
impl<T: NumCast + Copy, U> Box3D<T, U> {
/// Cast from one numeric representation to another, preserving the units.
///
/// When casting from floating point to integer coordinates, the decimals are truncated
/// as one would expect from a simple cast, but this behavior does not always make sense
/// geometrically. Consider using round(), round_in or round_out() before casting.
#[inline]
pub fn cast<NewT: NumCast>(&self) -> Box3D<NewT, U> {
Box3D::new(self.min.cast(), self.max.cast())
}
/// Fallible cast from one numeric representation to another, preserving the units.
///
/// When casting from floating point to integer coordinates, the decimals are truncated
/// as one would expect from a simple cast, but this behavior does not always make sense
/// geometrically. Consider using round(), round_in or round_out() before casting.
pub fn try_cast<NewT: NumCast>(&self) -> Option<Box3D<NewT, U>> {
match (self.min.try_cast(), self.max.try_cast()) {
(Some(a), Some(b)) => Some(Box3D::new(a, b)),
_ => None,
}
}
// Convenience functions for common casts
/// Cast into an `f32` box3d.
#[inline]
pub fn to_f32(&self) -> Box3D<f32, U> {
self.cast()
}
/// Cast into an `f64` box3d.
#[inline]
pub fn to_f64(&self) -> Box3D<f64, U> {
self.cast()
}
/// Cast into an `usize` box3d, truncating decimals if any.
///
/// When casting from floating point cuboids, it is worth considering whether
/// to `round()`, `round_in()` or `round_out()` before the cast in order to
/// obtain the desired conversion behavior.
#[inline]
pub fn to_usize(&self) -> Box3D<usize, U> {
self.cast()
}
/// Cast into an `u32` box3d, truncating decimals if any.
///
/// When casting from floating point cuboids, it is worth considering whether
/// to `round()`, `round_in()` or `round_out()` before the cast in order to
/// obtain the desired conversion behavior.
#[inline]
pub fn to_u32(&self) -> Box3D<u32, U> {
self.cast()
}
/// Cast into an `i32` box3d, truncating decimals if any.
///
/// When casting from floating point cuboids, it is worth considering whether
/// to `round()`, `round_in()` or `round_out()` before the cast in order to
/// obtain the desired conversion behavior.
#[inline]
pub fn to_i32(&self) -> Box3D<i32, U> {
self.cast()
}
/// Cast into an `i64` box3d, truncating decimals if any.
///
/// When casting from floating point cuboids, it is worth considering whether
/// to `round()`, `round_in()` or `round_out()` before the cast in order to
/// obtain the desired conversion behavior.
#[inline]
pub fn to_i64(&self) -> Box3D<i64, U> {
self.cast()
}
}
impl<T, U> Box3D<T, U>
where
T: Round,
{
/// Return a box3d with edges rounded to integer coordinates, such that
/// the returned box3d has the same set of pixel centers as the original
/// one.
/// Values equal to 0.5 round up.
/// Suitable for most places where integral device coordinates
/// are needed, but note that any translation should be applied first to
/// avoid pixel rounding errors.
/// Note that this is *not* rounding to nearest integer if the values are negative.
/// They are always rounding as floor(n + 0.5).
#[must_use]
pub fn round(&self) -> Self {
Box3D::new(self.min.round(), self.max.round())
}
}
impl<T, U> Box3D<T, U>
where
T: Floor + Ceil,
{
/// Return a box3d with faces/edges rounded to integer coordinates, such that
/// the original box3d contains the resulting box3d.
#[must_use]
pub fn round_in(&self) -> Self {
Box3D {
min: self.min.ceil(),
max: self.max.floor(),
}
}
/// Return a box3d with faces/edges rounded to integer coordinates, such that
/// the original box3d is contained in the resulting box3d.
#[must_use]
pub fn round_out(&self) -> Self {
Box3D {
min: self.min.floor(),
max: self.max.ceil(),
}
}
}
impl<T, U> From<Size3D<T, U>> for Box3D<T, U>
where
T: Copy + Zero + PartialOrd,
{
fn from(b: Size3D<T, U>) -> Self {
Self::from_size(b)
}
}
/// Shorthand for `Box3D::new(Point3D::new(x1, y1, z1), Point3D::new(x2, y2, z2))`.
pub fn box3d<T: Copy, U>(
min_x: T,
min_y: T,
min_z: T,
max_x: T,
max_y: T,
max_z: T,
) -> Box3D<T, U> {
Box3D::new(
Point3D::new(min_x, min_y, min_z),
Point3D::new(max_x, max_y, max_z),
)
}
#[cfg(test)]
mod tests {
use crate::default::{Box3D, Point3D};
use crate::{point3, size3, vec3};
#[test]
fn test_new() {
let b = Box3D::new(point3(-1.0, -1.0, -1.0), point3(1.0, 1.0, 1.0));
assert!(b.min.x == -1.0);
assert!(b.min.y == -1.0);
assert!(b.min.z == -1.0);
assert!(b.max.x == 1.0);
assert!(b.max.y == 1.0);
assert!(b.max.z == 1.0);
}
#[test]
fn test_size() {
let b = Box3D::new(point3(-10.0, -10.0, -10.0), point3(10.0, 10.0, 10.0));
assert!(b.size().width == 20.0);
assert!(b.size().height == 20.0);
assert!(b.size().depth == 20.0);
}
#[test]
fn test_width_height_depth() {
let b = Box3D::new(point3(-10.0, -10.0, -10.0), point3(10.0, 10.0, 10.0));
assert!(b.width() == 20.0);
assert!(b.height() == 20.0);
assert!(b.depth() == 20.0);
}
#[test]
fn test_center() {
let b = Box3D::new(point3(-10.0, -10.0, -10.0), point3(10.0, 10.0, 10.0));
assert!(b.center() == Point3D::zero());
}
#[test]
fn test_volume() {
let b = Box3D::new(point3(-10.0, -10.0, -10.0), point3(10.0, 10.0, 10.0));
assert!(b.volume() == 8000.0);
}
#[test]
fn test_area() {
let b = Box3D::new(point3(-10.0, -10.0, -10.0), point3(10.0, 10.0, 10.0));
assert!(b.xy_area() == 400.0);
assert!(b.yz_area() == 400.0);
assert!(b.xz_area() == 400.0);
}
#[test]
fn test_from_points() {
let b = Box3D::from_points(&[point3(50.0, 160.0, 12.5), point3(100.0, 25.0, 200.0)]);
assert!(b.min == point3(50.0, 25.0, 12.5));
assert!(b.max == point3(100.0, 160.0, 200.0));
}
#[test]
fn test_min_max() {
let b = Box3D::from_points(&[point3(50.0, 25.0, 12.5), point3(100.0, 160.0, 200.0)]);
assert!(b.min.x == 50.0);
assert!(b.min.y == 25.0);
assert!(b.min.z == 12.5);
assert!(b.max.x == 100.0);
assert!(b.max.y == 160.0);
assert!(b.max.z == 200.0);
}
#[test]
fn test_round_in() {
let b =
Box3D::from_points(&[point3(-25.5, -40.4, -70.9), point3(60.3, 36.5, 89.8)]).round_in();
assert!(b.min.x == -25.0);
assert!(b.min.y == -40.0);
assert!(b.min.z == -70.0);
assert!(b.max.x == 60.0);
assert!(b.max.y == 36.0);
assert!(b.max.z == 89.0);
}
#[test]
fn test_round_out() {
let b = Box3D::from_points(&[point3(-25.5, -40.4, -70.9), point3(60.3, 36.5, 89.8)])
.round_out();
assert!(b.min.x == -26.0);
assert!(b.min.y == -41.0);
assert!(b.min.z == -71.0);
assert!(b.max.x == 61.0);
assert!(b.max.y == 37.0);
assert!(b.max.z == 90.0);
}
#[test]
fn test_round() {
let b =
Box3D::from_points(&[point3(-25.5, -40.4, -70.9), point3(60.3, 36.5, 89.8)]).round();
assert!(b.min.x == -26.0);
assert!(b.min.y == -40.0);
assert!(b.min.z == -71.0);
assert!(b.max.x == 60.0);
assert!(b.max.y == 37.0);
assert!(b.max.z == 90.0);
}
#[test]
fn test_from_size() {
let b = Box3D::from_size(size3(30.0, 40.0, 50.0));
assert!(b.min == Point3D::zero());
assert!(b.size().width == 30.0);
assert!(b.size().height == 40.0);
assert!(b.size().depth == 50.0);
}
#[test]
fn test_translate() {
let size = size3(15.0, 15.0, 200.0);
let mut center = (size / 2.0).to_vector().to_point();
let b = Box3D::from_size(size);
assert!(b.center() == center);
let translation = vec3(10.0, 2.5, 9.5);
let b = b.translate(translation);
center += translation;
assert!(b.center() == center);
assert!(b.max.x == 25.0);
assert!(b.max.y == 17.5);
assert!(b.max.z == 209.5);
assert!(b.min.x == 10.0);
assert!(b.min.y == 2.5);
assert!(b.min.z == 9.5);
}
#[test]
fn test_union() {
let b1 = Box3D::from_points(&[point3(-20.0, -20.0, -20.0), point3(0.0, 20.0, 20.0)]);
let b2 = Box3D::from_points(&[point3(0.0, 20.0, 20.0), point3(20.0, -20.0, -20.0)]);
let b = b1.union(&b2);
assert!(b.max.x == 20.0);
assert!(b.max.y == 20.0);
assert!(b.max.z == 20.0);
assert!(b.min.x == -20.0);
assert!(b.min.y == -20.0);
assert!(b.min.z == -20.0);
assert!(b.volume() == (40.0 * 40.0 * 40.0));
}
#[test]
fn test_intersects() {
let b1 = Box3D::from_points(&[point3(-15.0, -20.0, -20.0), point3(10.0, 20.0, 20.0)]);
let b2 = Box3D::from_points(&[point3(-10.0, 20.0, 20.0), point3(15.0, -20.0, -20.0)]);
assert!(b1.intersects(&b2));
}
#[test]
fn test_intersection() {
let b1 = Box3D::from_points(&[point3(-15.0, -20.0, -20.0), point3(10.0, 20.0, 20.0)]);
let b2 = Box3D::from_points(&[point3(-10.0, 20.0, 20.0), point3(15.0, -20.0, -20.0)]);
let b = b1.intersection(&b2);
assert!(b.max.x == 10.0);
assert!(b.max.y == 20.0);
assert!(b.max.z == 20.0);
assert!(b.min.x == -10.0);
assert!(b.min.y == -20.0);
assert!(b.min.z == -20.0);
assert!(b.volume() == (20.0 * 40.0 * 40.0));
}
#[test]
fn test_try_intersection() {
let b1 = Box3D::from_points(&[point3(-15.0, -20.0, -20.0), point3(10.0, 20.0, 20.0)]);
let b2 = Box3D::from_points(&[point3(-10.0, 20.0, 20.0), point3(15.0, -20.0, -20.0)]);
assert!(b1.try_intersection(&b2).is_some());
let b1 = Box3D::from_points(&[point3(-15.0, -20.0, -20.0), point3(-10.0, 20.0, 20.0)]);
let b2 = Box3D::from_points(&[point3(10.0, 20.0, 20.0), point3(15.0, -20.0, -20.0)]);
assert!(b1.try_intersection(&b2).is_none());
}
#[test]
fn test_scale() {
let b = Box3D::from_points(&[point3(-10.0, -10.0, -10.0), point3(10.0, 10.0, 10.0)]);
let b = b.scale(0.5, 0.5, 0.5);
assert!(b.max.x == 5.0);
assert!(b.max.y == 5.0);
assert!(b.max.z == 5.0);
assert!(b.min.x == -5.0);
assert!(b.min.y == -5.0);
assert!(b.min.z == -5.0);
}
#[test]
fn test_zero() {
let b = Box3D::<f64>::zero();
assert!(b.max.x == 0.0);
assert!(b.max.y == 0.0);
assert!(b.max.z == 0.0);
assert!(b.min.x == 0.0);
assert!(b.min.y == 0.0);
assert!(b.min.z == 0.0);
}
#[test]
fn test_lerp() {
let b1 = Box3D::from_points(&[point3(-20.0, -20.0, -20.0), point3(-10.0, -10.0, -10.0)]);
let b2 = Box3D::from_points(&[point3(10.0, 10.0, 10.0), point3(20.0, 20.0, 20.0)]);
let b = b1.lerp(b2, 0.5);
assert!(b.center() == Point3D::zero());
assert!(b.size().width == 10.0);
assert!(b.size().height == 10.0);
assert!(b.size().depth == 10.0);
}
#[test]
fn test_contains() {
let b = Box3D::from_points(&[point3(-20.0, -20.0, -20.0), point3(20.0, 20.0, 20.0)]);
assert!(b.contains(point3(-15.3, 10.5, 18.4)));
}
#[test]
fn test_contains_box() {
let b1 = Box3D::from_points(&[point3(-20.0, -20.0, -20.0), point3(20.0, 20.0, 20.0)]);
let b2 = Box3D::from_points(&[point3(-14.3, -16.5, -19.3), point3(6.7, 17.6, 2.5)]);
assert!(b1.contains_box(&b2));
}
#[test]
fn test_inflate() {
let b = Box3D::from_points(&[point3(-20.0, -20.0, -20.0), point3(20.0, 20.0, 20.0)]);
let b = b.inflate(10.0, 5.0, 2.0);
assert!(b.size().width == 60.0);
assert!(b.size().height == 50.0);
assert!(b.size().depth == 44.0);
assert!(b.center() == Point3D::zero());
}
#[test]
fn test_is_empty() {
for i in 0..3 {
let mut coords_neg = [-20.0, -20.0, -20.0];
let mut coords_pos = [20.0, 20.0, 20.0];
coords_neg[i] = 0.0;
coords_pos[i] = 0.0;
let b = Box3D::from_points(&[Point3D::from(coords_neg), Point3D::from(coords_pos)]);
assert!(b.is_empty());
}
}
#[test]
fn test_nan_empty_or_negative() {
use std::f32::NAN;
assert!(Box3D { min: point3(NAN, 2.0, 1.0), max: point3(1.0, 3.0, 5.0) }.is_empty_or_negative());
assert!(Box3D { min: point3(0.0, NAN, 1.0), max: point3(1.0, 2.0, 5.0) }.is_empty_or_negative());
assert!(Box3D { min: point3(1.0, -2.0, NAN), max: point3(3.0, 2.0, 5.0) }.is_empty_or_negative());
assert!(Box3D { min: point3(1.0, -2.0, 1.0), max: point3(NAN, 2.0, 5.0) }.is_empty_or_negative());
assert!(Box3D { min: point3(1.0, -2.0, 1.0), max: point3(0.0, NAN, 5.0) }.is_empty_or_negative());
assert!(Box3D { min: point3(1.0, -2.0, 1.0), max: point3(0.0, 1.0, NAN) }.is_empty_or_negative());
}
}

View File

@ -1,229 +0,0 @@
// Copyright 2018 The Servo Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use crate::point::{Point2D, Point3D};
use crate::vector::{Vector2D, Vector3D};
use crate::num::{One, Zero};
use core::cmp::{Eq, PartialEq};
use core::fmt;
use core::hash::Hash;
use core::marker::PhantomData;
use core::ops::Div;
#[cfg(feature = "serde")]
use serde;
/// Homogeneous vector in 3D space.
#[repr(C)]
pub struct HomogeneousVector<T, U> {
pub x: T,
pub y: T,
pub z: T,
pub w: T,
#[doc(hidden)]
pub _unit: PhantomData<U>,
}
impl<T: Copy, U> Copy for HomogeneousVector<T, U> {}
impl<T: Clone, U> Clone for HomogeneousVector<T, U> {
fn clone(&self) -> Self {
HomogeneousVector {
x: self.x.clone(),
y: self.y.clone(),
z: self.z.clone(),
w: self.w.clone(),
_unit: PhantomData,
}
}
}
#[cfg(feature = "serde")]
impl<'de, T, U> serde::Deserialize<'de> for HomogeneousVector<T, U>
where
T: serde::Deserialize<'de>,
{
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: serde::Deserializer<'de>,
{
let (x, y, z, w) = serde::Deserialize::deserialize(deserializer)?;
Ok(HomogeneousVector {
x,
y,
z,
w,
_unit: PhantomData,
})
}
}
#[cfg(feature = "serde")]
impl<T, U> serde::Serialize for HomogeneousVector<T, U>
where
T: serde::Serialize,
{
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: serde::Serializer,
{
(&self.x, &self.y, &self.z, &self.w).serialize(serializer)
}
}
impl<T, U> Eq for HomogeneousVector<T, U> where T: Eq {}
impl<T, U> PartialEq for HomogeneousVector<T, U>
where
T: PartialEq,
{
fn eq(&self, other: &Self) -> bool {
self.x == other.x && self.y == other.y && self.z == other.z && self.w == other.w
}
}
impl<T, U> Hash for HomogeneousVector<T, U>
where
T: Hash,
{
fn hash<H: core::hash::Hasher>(&self, h: &mut H) {
self.x.hash(h);
self.y.hash(h);
self.z.hash(h);
self.w.hash(h);
}
}
impl<T, U> HomogeneousVector<T, U> {
/// Constructor taking scalar values directly.
#[inline]
pub const fn new(x: T, y: T, z: T, w: T) -> Self {
HomogeneousVector {
x,
y,
z,
w,
_unit: PhantomData,
}
}
}
impl<T: Copy + Div<T, Output = T> + Zero + PartialOrd, U> HomogeneousVector<T, U> {
/// Convert into Cartesian 2D point.
///
/// Returns None if the point is on or behind the W=0 hemisphere.
#[inline]
pub fn to_point2d(&self) -> Option<Point2D<T, U>> {
if self.w > T::zero() {
Some(Point2D::new(self.x / self.w, self.y / self.w))
} else {
None
}
}
/// Convert into Cartesian 3D point.
///
/// Returns None if the point is on or behind the W=0 hemisphere.
#[inline]
pub fn to_point3d(&self) -> Option<Point3D<T, U>> {
if self.w > T::zero() {
Some(Point3D::new(
self.x / self.w,
self.y / self.w,
self.z / self.w,
))
} else {
None
}
}
}
impl<T: Zero, U> From<Vector2D<T, U>> for HomogeneousVector<T, U> {
#[inline]
fn from(v: Vector2D<T, U>) -> Self {
HomogeneousVector::new(v.x, v.y, T::zero(), T::zero())
}
}
impl<T: Zero, U> From<Vector3D<T, U>> for HomogeneousVector<T, U> {
#[inline]
fn from(v: Vector3D<T, U>) -> Self {
HomogeneousVector::new(v.x, v.y, v.z, T::zero())
}
}
impl<T: Zero + One, U> From<Point2D<T, U>> for HomogeneousVector<T, U> {
#[inline]
fn from(p: Point2D<T, U>) -> Self {
HomogeneousVector::new(p.x, p.y, T::zero(), T::one())
}
}
impl<T: One, U> From<Point3D<T, U>> for HomogeneousVector<T, U> {
#[inline]
fn from(p: Point3D<T, U>) -> Self {
HomogeneousVector::new(p.x, p.y, p.z, T::one())
}
}
impl<T: fmt::Debug, U> fmt::Debug for HomogeneousVector<T, U> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_tuple("")
.field(&self.x)
.field(&self.y)
.field(&self.z)
.field(&self.w)
.finish()
}
}
impl<T: fmt::Display, U> fmt::Display for HomogeneousVector<T, U> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "(")?;
fmt::Display::fmt(&self.x, f)?;
write!(f, ",")?;
fmt::Display::fmt(&self.y, f)?;
write!(f, ",")?;
fmt::Display::fmt(&self.z, f)?;
write!(f, ",")?;
fmt::Display::fmt(&self.w, f)?;
write!(f, ")")
}
}
#[cfg(test)]
mod homogeneous {
use super::HomogeneousVector;
use crate::default::{Point2D, Point3D};
#[test]
fn roundtrip() {
assert_eq!(
Some(Point2D::new(1.0, 2.0)),
HomogeneousVector::from(Point2D::new(1.0, 2.0)).to_point2d()
);
assert_eq!(
Some(Point3D::new(1.0, -2.0, 0.1)),
HomogeneousVector::from(Point3D::new(1.0, -2.0, 0.1)).to_point3d()
);
}
#[test]
fn negative() {
assert_eq!(
None,
HomogeneousVector::<f32, ()>::new(1.0, 2.0, 3.0, 0.0).to_point2d()
);
assert_eq!(
None,
HomogeneousVector::<f32, ()>::new(1.0, -2.0, -3.0, -2.0).to_point3d()
);
}
}

View File

@ -1,574 +0,0 @@
// Copyright 2014 The Servo Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! A one-dimensional length, tagged with its units.
use crate::approxeq::ApproxEq;
use crate::num::Zero;
use crate::scale::Scale;
use crate::num::One;
use core::cmp::Ordering;
use core::fmt;
use core::hash::{Hash, Hasher};
use core::marker::PhantomData;
use core::ops::{Add, Div, Mul, Neg, Sub};
use core::ops::{AddAssign, DivAssign, MulAssign, SubAssign};
use num_traits::{NumCast, Saturating};
#[cfg(feature = "serde")]
use serde::{Deserialize, Deserializer, Serialize, Serializer};
/// A one-dimensional distance, with value represented by `T` and unit of measurement `Unit`.
///
/// `T` can be any numeric type, for example a primitive type like `u64` or `f32`.
///
/// `Unit` is not used in the representation of a `Length` value. It is used only at compile time
/// to ensure that a `Length` stored with one unit is converted explicitly before being used in an
/// expression that requires a different unit. It may be a type without values, such as an empty
/// enum.
///
/// You can multiply a `Length` by a `scale::Scale` to convert it from one unit to
/// another. See the [`Scale`] docs for an example.
///
/// [`Scale`]: struct.Scale.html
#[repr(C)]
pub struct Length<T, Unit>(pub T, #[doc(hidden)] pub PhantomData<Unit>);
impl<T: Clone, U> Clone for Length<T, U> {
fn clone(&self) -> Self {
Length(self.0.clone(), PhantomData)
}
}
impl<T: Copy, U> Copy for Length<T, U> {}
#[cfg(feature = "serde")]
impl<'de, T, U> Deserialize<'de> for Length<T, U>
where
T: Deserialize<'de>,
{
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: Deserializer<'de>,
{
Ok(Length(Deserialize::deserialize(deserializer)?, PhantomData))
}
}
#[cfg(feature = "serde")]
impl<T, U> Serialize for Length<T, U>
where
T: Serialize,
{
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
self.0.serialize(serializer)
}
}
impl<T, U> Length<T, U> {
/// Associate a value with a unit of measure.
#[inline]
pub const fn new(x: T) -> Self {
Length(x, PhantomData)
}
}
impl<T: Clone, U> Length<T, U> {
/// Unpack the underlying value from the wrapper, cloning it.
pub fn get(&self) -> T {
self.0.clone()
}
/// Cast the unit
#[inline]
pub fn cast_unit<V>(&self) -> Length<T, V> {
Length::new(self.0.clone())
}
/// Linearly interpolate between this length and another length.
///
/// # Example
///
/// ```rust
/// use euclid::default::Length;
///
/// let from = Length::new(0.0);
/// let to = Length::new(8.0);
///
/// assert_eq!(from.lerp(to, -1.0), Length::new(-8.0));
/// assert_eq!(from.lerp(to, 0.0), Length::new( 0.0));
/// assert_eq!(from.lerp(to, 0.5), Length::new( 4.0));
/// assert_eq!(from.lerp(to, 1.0), Length::new( 8.0));
/// assert_eq!(from.lerp(to, 2.0), Length::new(16.0));
/// ```
#[inline]
pub fn lerp(&self, other: Self, t: T) -> Self
where
T: One + Sub<Output = T> + Mul<Output = T> + Add<Output = T>,
{
let one_t = T::one() - t.clone();
Length::new(one_t * self.0.clone() + t * other.0)
}
}
impl<T: NumCast + Clone, U> Length<T, U> {
/// Cast from one numeric representation to another, preserving the units.
#[inline]
pub fn cast<NewT: NumCast>(&self) -> Length<NewT, U> {
self.try_cast().unwrap()
}
/// Fallible cast from one numeric representation to another, preserving the units.
pub fn try_cast<NewT: NumCast>(&self) -> Option<Length<NewT, U>> {
NumCast::from(self.get()).map(Length::new)
}
}
impl<T: fmt::Debug, U> fmt::Debug for Length<T, U> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
self.0.fmt(f)
}
}
impl<T: fmt::Display, U> fmt::Display for Length<T, U> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
self.0.fmt(f)
}
}
impl<T: Default, U> Default for Length<T, U> {
#[inline]
fn default() -> Self {
Length::new(Default::default())
}
}
impl<T: Hash, U> Hash for Length<T, U> {
fn hash<H: Hasher>(&self, h: &mut H) {
self.0.hash(h);
}
}
// length + length
impl<T: Add, U> Add for Length<T, U> {
type Output = Length<T::Output, U>;
fn add(self, other: Self) -> Self::Output {
Length::new(self.0 + other.0)
}
}
// length += length
impl<T: AddAssign, U> AddAssign for Length<T, U> {
fn add_assign(&mut self, other: Self) {
self.0 += other.0;
}
}
// length - length
impl<T: Sub, U> Sub for Length<T, U> {
type Output = Length<T::Output, U>;
fn sub(self, other: Length<T, U>) -> Self::Output {
Length::new(self.0 - other.0)
}
}
// length -= length
impl<T: SubAssign, U> SubAssign for Length<T, U> {
fn sub_assign(&mut self, other: Self) {
self.0 -= other.0;
}
}
// Saturating length + length and length - length.
impl<T: Saturating, U> Saturating for Length<T, U> {
fn saturating_add(self, other: Self) -> Self {
Length::new(self.0.saturating_add(other.0))
}
fn saturating_sub(self, other: Self) -> Self {
Length::new(self.0.saturating_sub(other.0))
}
}
// length / length
impl<Src, Dst, T: Div> Div<Length<T, Src>> for Length<T, Dst> {
type Output = Scale<T::Output, Src, Dst>;
#[inline]
fn div(self, other: Length<T, Src>) -> Self::Output {
Scale::new(self.0 / other.0)
}
}
// length * scalar
impl<T: Mul, U> Mul<T> for Length<T, U> {
type Output = Length<T::Output, U>;
#[inline]
fn mul(self, scale: T) -> Self::Output {
Length::new(self.0 * scale)
}
}
// length *= scalar
impl<T: Copy + Mul<T, Output = T>, U> MulAssign<T> for Length<T, U> {
#[inline]
fn mul_assign(&mut self, scale: T) {
*self = *self * scale
}
}
// length / scalar
impl<T: Div, U> Div<T> for Length<T, U> {
type Output = Length<T::Output, U>;
#[inline]
fn div(self, scale: T) -> Self::Output {
Length::new(self.0 / scale)
}
}
// length /= scalar
impl<T: Copy + Div<T, Output = T>, U> DivAssign<T> for Length<T, U> {
#[inline]
fn div_assign(&mut self, scale: T) {
*self = *self / scale
}
}
// length * scaleFactor
impl<Src, Dst, T: Mul> Mul<Scale<T, Src, Dst>> for Length<T, Src> {
type Output = Length<T::Output, Dst>;
#[inline]
fn mul(self, scale: Scale<T, Src, Dst>) -> Self::Output {
Length::new(self.0 * scale.0)
}
}
// length / scaleFactor
impl<Src, Dst, T: Div> Div<Scale<T, Src, Dst>> for Length<T, Dst> {
type Output = Length<T::Output, Src>;
#[inline]
fn div(self, scale: Scale<T, Src, Dst>) -> Self::Output {
Length::new(self.0 / scale.0)
}
}
// -length
impl<U, T: Neg> Neg for Length<T, U> {
type Output = Length<T::Output, U>;
#[inline]
fn neg(self) -> Self::Output {
Length::new(-self.0)
}
}
impl<T: PartialEq, U> PartialEq for Length<T, U> {
fn eq(&self, other: &Self) -> bool {
self.0.eq(&other.0)
}
}
impl<T: PartialOrd, U> PartialOrd for Length<T, U> {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
self.0.partial_cmp(&other.0)
}
}
impl<T: Eq, U> Eq for Length<T, U> {}
impl<T: Ord, U> Ord for Length<T, U> {
fn cmp(&self, other: &Self) -> Ordering {
self.0.cmp(&other.0)
}
}
impl<T: Zero, U> Zero for Length<T, U> {
#[inline]
fn zero() -> Self {
Length::new(Zero::zero())
}
}
impl<U, T: ApproxEq<T>> ApproxEq<T> for Length<T, U> {
#[inline]
fn approx_epsilon() -> T {
T::approx_epsilon()
}
#[inline]
fn approx_eq_eps(&self, other: &Length<T, U>, approx_epsilon: &T) -> bool {
self.0.approx_eq_eps(&other.0, approx_epsilon)
}
}
#[cfg(test)]
mod tests {
use super::Length;
use crate::num::Zero;
use crate::scale::Scale;
use core::f32::INFINITY;
use num_traits::Saturating;
enum Inch {}
enum Mm {}
enum Cm {}
enum Second {}
#[cfg(feature = "serde")]
mod serde {
use super::*;
extern crate serde_test;
use self::serde_test::assert_tokens;
use self::serde_test::Token;
#[test]
fn test_length_serde() {
let one_cm: Length<f32, Mm> = Length::new(10.0);
assert_tokens(&one_cm, &[Token::F32(10.0)]);
}
}
#[test]
fn test_clone() {
// A cloned Length is a separate length with the state matching the
// original Length at the point it was cloned.
let mut variable_length: Length<f32, Inch> = Length::new(12.0);
let one_foot = variable_length.clone();
variable_length.0 = 24.0;
assert_eq!(one_foot.get(), 12.0);
assert_eq!(variable_length.get(), 24.0);
}
#[test]
fn test_get_clones_length_value() {
// Calling get returns a clone of the Length's value.
// To test this, we need something clone-able - hence a vector.
let mut length: Length<Vec<i32>, Inch> = Length::new(vec![1, 2, 3]);
let value = length.get();
length.0.push(4);
assert_eq!(value, vec![1, 2, 3]);
assert_eq!(length.get(), vec![1, 2, 3, 4]);
}
#[test]
fn test_add() {
let length1: Length<u8, Mm> = Length::new(250);
let length2: Length<u8, Mm> = Length::new(5);
let result = length1 + length2;
assert_eq!(result.get(), 255);
}
#[test]
fn test_addassign() {
let one_cm: Length<f32, Mm> = Length::new(10.0);
let mut measurement: Length<f32, Mm> = Length::new(5.0);
measurement += one_cm;
assert_eq!(measurement.get(), 15.0);
}
#[test]
fn test_sub() {
let length1: Length<u8, Mm> = Length::new(250);
let length2: Length<u8, Mm> = Length::new(5);
let result = length1 - length2;
assert_eq!(result.get(), 245);
}
#[test]
fn test_subassign() {
let one_cm: Length<f32, Mm> = Length::new(10.0);
let mut measurement: Length<f32, Mm> = Length::new(5.0);
measurement -= one_cm;
assert_eq!(measurement.get(), -5.0);
}
#[test]
fn test_saturating_add() {
let length1: Length<u8, Mm> = Length::new(250);
let length2: Length<u8, Mm> = Length::new(6);
let result = length1.saturating_add(length2);
assert_eq!(result.get(), 255);
}
#[test]
fn test_saturating_sub() {
let length1: Length<u8, Mm> = Length::new(5);
let length2: Length<u8, Mm> = Length::new(10);
let result = length1.saturating_sub(length2);
assert_eq!(result.get(), 0);
}
#[test]
fn test_division_by_length() {
// Division results in a Scale from denominator units
// to numerator units.
let length: Length<f32, Cm> = Length::new(5.0);
let duration: Length<f32, Second> = Length::new(10.0);
let result = length / duration;
let expected: Scale<f32, Second, Cm> = Scale::new(0.5);
assert_eq!(result, expected);
}
#[test]
fn test_multiplication() {
let length_mm: Length<f32, Mm> = Length::new(10.0);
let cm_per_mm: Scale<f32, Mm, Cm> = Scale::new(0.1);
let result = length_mm * cm_per_mm;
let expected: Length<f32, Cm> = Length::new(1.0);
assert_eq!(result, expected);
}
#[test]
fn test_multiplication_with_scalar() {
let length_mm: Length<f32, Mm> = Length::new(10.0);
let result = length_mm * 2.0;
let expected: Length<f32, Mm> = Length::new(20.0);
assert_eq!(result, expected);
}
#[test]
fn test_multiplication_assignment() {
let mut length: Length<f32, Mm> = Length::new(10.0);
length *= 2.0;
let expected: Length<f32, Mm> = Length::new(20.0);
assert_eq!(length, expected);
}
#[test]
fn test_division_by_scalefactor() {
let length: Length<f32, Cm> = Length::new(5.0);
let cm_per_second: Scale<f32, Second, Cm> = Scale::new(10.0);
let result = length / cm_per_second;
let expected: Length<f32, Second> = Length::new(0.5);
assert_eq!(result, expected);
}
#[test]
fn test_division_by_scalar() {
let length: Length<f32, Cm> = Length::new(5.0);
let result = length / 2.0;
let expected: Length<f32, Cm> = Length::new(2.5);
assert_eq!(result, expected);
}
#[test]
fn test_division_assignment() {
let mut length: Length<f32, Mm> = Length::new(10.0);
length /= 2.0;
let expected: Length<f32, Mm> = Length::new(5.0);
assert_eq!(length, expected);
}
#[test]
fn test_negation() {
let length: Length<f32, Cm> = Length::new(5.0);
let result = -length;
let expected: Length<f32, Cm> = Length::new(-5.0);
assert_eq!(result, expected);
}
#[test]
fn test_cast() {
let length_as_i32: Length<i32, Cm> = Length::new(5);
let result: Length<f32, Cm> = length_as_i32.cast();
let length_as_f32: Length<f32, Cm> = Length::new(5.0);
assert_eq!(result, length_as_f32);
}
#[test]
fn test_equality() {
let length_5_point_0: Length<f32, Cm> = Length::new(5.0);
let length_5_point_1: Length<f32, Cm> = Length::new(5.1);
let length_0_point_1: Length<f32, Cm> = Length::new(0.1);
assert!(length_5_point_0 == length_5_point_1 - length_0_point_1);
assert!(length_5_point_0 != length_5_point_1);
}
#[test]
fn test_order() {
let length_5_point_0: Length<f32, Cm> = Length::new(5.0);
let length_5_point_1: Length<f32, Cm> = Length::new(5.1);
let length_0_point_1: Length<f32, Cm> = Length::new(0.1);
assert!(length_5_point_0 < length_5_point_1);
assert!(length_5_point_0 <= length_5_point_1);
assert!(length_5_point_0 <= length_5_point_1 - length_0_point_1);
assert!(length_5_point_1 > length_5_point_0);
assert!(length_5_point_1 >= length_5_point_0);
assert!(length_5_point_0 >= length_5_point_1 - length_0_point_1);
}
#[test]
fn test_zero_add() {
type LengthCm = Length<f32, Cm>;
let length: LengthCm = Length::new(5.0);
let result = length - LengthCm::zero();
assert_eq!(result, length);
}
#[test]
fn test_zero_division() {
type LengthCm = Length<f32, Cm>;
let length: LengthCm = Length::new(5.0);
let length_zero: LengthCm = Length::zero();
let result = length / length_zero;
let expected: Scale<f32, Cm, Cm> = Scale::new(INFINITY);
assert_eq!(result, expected);
}
}

View File

@ -1,117 +0,0 @@
// Copyright 2013 The Servo Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![cfg_attr(not(test), no_std)]
//! A collection of strongly typed math tools for computer graphics with an inclination
//! towards 2d graphics and layout.
//!
//! All types are generic over the scalar type of their component (`f32`, `i32`, etc.),
//! and tagged with a generic Unit parameter which is useful to prevent mixing
//! values from different spaces. For example it should not be legal to translate
//! a screen-space position by a world-space vector and this can be expressed using
//! the generic Unit parameter.
//!
//! This unit system is not mandatory and all structures have an alias
//! with the default unit: `UnknownUnit`.
//! for example ```default::Point2D<T>``` is equivalent to ```Point2D<T, UnknownUnit>```.
//! Client code typically creates a set of aliases for each type and doesn't need
//! to deal with the specifics of typed units further. For example:
//!
//! ```rust
//! use euclid::*;
//! pub struct ScreenSpace;
//! pub type ScreenPoint = Point2D<f32, ScreenSpace>;
//! pub type ScreenSize = Size2D<f32, ScreenSpace>;
//! pub struct WorldSpace;
//! pub type WorldPoint = Point3D<f32, WorldSpace>;
//! pub type ProjectionMatrix = Transform3D<f32, WorldSpace, ScreenSpace>;
//! // etc...
//! ```
//!
//! All euclid types are marked `#[repr(C)]` in order to facilitate exposing them to
//! foreign function interfaces (provided the underlying scalar type is also `repr(C)`).
//!
#![deny(unconditional_recursion)]
pub use crate::angle::Angle;
pub use crate::box2d::Box2D;
pub use crate::homogen::HomogeneousVector;
pub use crate::length::Length;
pub use crate::nonempty::NonEmpty;
pub use crate::point::{point2, point3, Point2D, Point3D};
pub use crate::scale::Scale;
pub use crate::transform2d::Transform2D;
pub use crate::transform3d::Transform3D;
pub use crate::vector::{bvec2, bvec3, BoolVector2D, BoolVector3D};
pub use crate::vector::{vec2, vec3, Vector2D, Vector3D};
pub use crate::box3d::{box3d, Box3D};
pub use crate::rect::{rect, Rect};
pub use crate::rigid::RigidTransform3D;
pub use crate::rotation::{Rotation2D, Rotation3D};
pub use crate::side_offsets::SideOffsets2D;
pub use crate::size::{size2, size3, Size2D, Size3D};
pub use crate::translation::{Translation2D, Translation3D};
pub use crate::trig::Trig;
#[macro_use]
mod macros;
mod angle;
pub mod approxeq;
pub mod approxord;
mod box2d;
mod box3d;
mod homogen;
mod length;
mod nonempty;
pub mod num;
mod point;
mod rect;
mod rigid;
mod rotation;
mod scale;
mod side_offsets;
mod size;
mod transform2d;
mod transform3d;
mod translation;
mod trig;
mod vector;
/// The default unit.
#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct UnknownUnit;
pub mod default {
//! A set of aliases for all types, tagged with the default unknown unit.
use super::UnknownUnit;
pub type Length<T> = super::Length<T, UnknownUnit>;
pub type Point2D<T> = super::Point2D<T, UnknownUnit>;
pub type Point3D<T> = super::Point3D<T, UnknownUnit>;
pub type Vector2D<T> = super::Vector2D<T, UnknownUnit>;
pub type Vector3D<T> = super::Vector3D<T, UnknownUnit>;
pub type HomogeneousVector<T> = super::HomogeneousVector<T, UnknownUnit>;
pub type Size2D<T> = super::Size2D<T, UnknownUnit>;
pub type Size3D<T> = super::Size3D<T, UnknownUnit>;
pub type Rect<T> = super::Rect<T, UnknownUnit>;
pub type Box2D<T> = super::Box2D<T, UnknownUnit>;
pub type Box3D<T> = super::Box3D<T, UnknownUnit>;
pub type SideOffsets2D<T> = super::SideOffsets2D<T, UnknownUnit>;
pub type Transform2D<T> = super::Transform2D<T, UnknownUnit, UnknownUnit>;
pub type Transform3D<T> = super::Transform3D<T, UnknownUnit, UnknownUnit>;
pub type Rotation2D<T> = super::Rotation2D<T, UnknownUnit, UnknownUnit>;
pub type Rotation3D<T> = super::Rotation3D<T, UnknownUnit, UnknownUnit>;
pub type Translation2D<T> = super::Translation2D<T, UnknownUnit, UnknownUnit>;
pub type Translation3D<T> = super::Translation3D<T, UnknownUnit, UnknownUnit>;
pub type Scale<T> = super::Scale<T, UnknownUnit, UnknownUnit>;
pub type RigidTransform3D<T> = super::RigidTransform3D<T, UnknownUnit, UnknownUnit>;
}

View File

@ -1,30 +0,0 @@
// Copyright 2013 The Servo Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
macro_rules! mint_vec {
($name:ident [ $($field:ident),* ] = $std_name:ident) => {
#[cfg(feature = "mint")]
impl<T, U> From<mint::$std_name<T>> for $name<T, U> {
fn from(v: mint::$std_name<T>) -> Self {
$name {
$( $field: v.$field, )*
_unit: PhantomData,
}
}
}
#[cfg(feature = "mint")]
impl<T, U> Into<mint::$std_name<T>> for $name<T, U> {
fn into(self) -> mint::$std_name<T> {
mint::$std_name {
$( $field: self.$field, )*
}
}
}
}
}

View File

@ -1,250 +0,0 @@
use crate::{Box2D, Box3D, Rect, Vector2D, Vector3D};
use core::cmp::PartialEq;
use core::ops::Deref;
use core::ops::{Add, Sub};
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(feature = "serde", serde(transparent))]
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub struct NonEmpty<T>(pub(crate) T);
impl<T> Deref for NonEmpty<T> {
type Target = T;
fn deref(&self) -> &T {
&self.0
}
}
impl<T> NonEmpty<T> {
#[inline]
pub fn get(&self) -> &T {
&self.0
}
}
impl<T, U> NonEmpty<Rect<T, U>>
where
T: Copy + PartialOrd + Add<T, Output = T> + Sub<T, Output = T>,
{
#[inline]
pub fn union(&self, other: &Self) -> Self {
NonEmpty(self.0.to_box2d().union(&other.0.to_box2d()).to_rect())
}
#[inline]
pub fn contains_rect(&self, rect: &Self) -> bool {
self.min_x() <= rect.min_x()
&& rect.max_x() <= self.max_x()
&& self.min_y() <= rect.min_y()
&& rect.max_y() <= self.max_y()
}
#[inline]
pub fn translate(&self, by: Vector2D<T, U>) -> Self {
NonEmpty(self.0.translate(by))
}
}
impl<T, U> NonEmpty<Box2D<T, U>>
where
T: Copy + PartialOrd,
{
#[inline]
pub fn union(&self, other: &Self) -> Self {
NonEmpty(self.0.union(&other.0))
}
/// Returns true if this box contains the interior of the other box.
#[inline]
pub fn contains_box(&self, other: &Self) -> bool {
self.min.x <= other.min.x
&& other.max.x <= self.max.x
&& self.min.y <= other.min.y
&& other.max.y <= self.max.y
}
}
impl<T, U> NonEmpty<Box2D<T, U>>
where
T: Copy + Add<T, Output = T>,
{
#[inline]
pub fn translate(&self, by: Vector2D<T, U>) -> Self {
NonEmpty(self.0.translate(by))
}
}
impl<T, U> NonEmpty<Box3D<T, U>>
where
T: Copy + PartialOrd,
{
#[inline]
pub fn union(&self, other: &Self) -> Self {
NonEmpty(self.0.union(&other.0))
}
/// Returns true if this box contains the interior of the other box.
#[inline]
pub fn contains_box(&self, other: &Self) -> bool {
self.min.x <= other.min.x
&& other.max.x <= self.max.x
&& self.min.y <= other.min.y
&& other.max.y <= self.max.y
&& self.min.z <= other.min.z
&& other.max.z <= self.max.z
}
}
impl<T, U> NonEmpty<Box3D<T, U>>
where
T: Copy + Add<T, Output = T>,
{
#[inline]
pub fn translate(&self, by: Vector3D<T, U>) -> Self {
NonEmpty(self.0.translate(by))
}
}
#[test]
fn empty_nonempty() {
use crate::default;
use crate::point2;
// zero-width
let box1: default::Box2D<i32> = Box2D {
min: point2(-10, 2),
max: point2(-10, 12),
};
// zero-height
let box2: default::Box2D<i32> = Box2D {
min: point2(0, 11),
max: point2(2, 11),
};
// negative width
let box3: default::Box2D<i32> = Box2D {
min: point2(1, 11),
max: point2(0, 12),
};
// negative height
let box4: default::Box2D<i32> = Box2D {
min: point2(0, 11),
max: point2(5, 10),
};
assert!(box1.to_non_empty().is_none());
assert!(box2.to_non_empty().is_none());
assert!(box3.to_non_empty().is_none());
assert!(box4.to_non_empty().is_none());
}
#[test]
fn nonempty_union() {
use crate::default;
use crate::{point2, point3, size2};
let box1: default::Box2D<i32> = Box2D {
min: point2(-10, 2),
max: point2(15, 12),
};
let box2 = Box2D {
min: point2(-2, -5),
max: point2(10, 5),
};
assert_eq!(
box1.union(&box2),
*box1
.to_non_empty()
.unwrap()
.union(&box2.to_non_empty().unwrap())
);
let box3: default::Box3D<i32> = Box3D {
min: point3(1, -10, 2),
max: point3(6, 15, 12),
};
let box4 = Box3D {
min: point3(0, -2, -5),
max: point3(7, 10, 5),
};
assert_eq!(
box3.union(&box4),
*box3
.to_non_empty()
.unwrap()
.union(&box4.to_non_empty().unwrap())
);
let rect1: default::Rect<i32> = Rect {
origin: point2(1, 2),
size: size2(3, 4),
};
let rect2 = Rect {
origin: point2(-1, 5),
size: size2(1, 10),
};
assert_eq!(
rect1.union(&rect2),
*rect1
.to_non_empty()
.unwrap()
.union(&rect2.to_non_empty().unwrap())
);
}
#[test]
fn nonempty_contains() {
use crate::default;
use crate::{point2, point3, size2, vec2, vec3};
let r: NonEmpty<default::Rect<i32>> = Rect {
origin: point2(-20, 15),
size: size2(100, 200),
}
.to_non_empty()
.unwrap();
assert!(r.contains_rect(&r));
assert!(!r.contains_rect(&r.translate(vec2(1, 0))));
assert!(!r.contains_rect(&r.translate(vec2(-1, 0))));
assert!(!r.contains_rect(&r.translate(vec2(0, 1))));
assert!(!r.contains_rect(&r.translate(vec2(0, -1))));
let b: NonEmpty<default::Box2D<i32>> = Box2D {
min: point2(-10, 5),
max: point2(30, 100),
}
.to_non_empty()
.unwrap();
assert!(b.contains_box(&b));
assert!(!b.contains_box(&b.translate(vec2(1, 0))));
assert!(!b.contains_box(&b.translate(vec2(-1, 0))));
assert!(!b.contains_box(&b.translate(vec2(0, 1))));
assert!(!b.contains_box(&b.translate(vec2(0, -1))));
let b: NonEmpty<default::Box3D<i32>> = Box3D {
min: point3(-1, -10, 5),
max: point3(10, 30, 100),
}
.to_non_empty()
.unwrap();
assert!(b.contains_box(&b));
assert!(!b.contains_box(&b.translate(vec3(0, 1, 0))));
assert!(!b.contains_box(&b.translate(vec3(0, -1, 0))));
assert!(!b.contains_box(&b.translate(vec3(0, 0, 1))));
assert!(!b.contains_box(&b.translate(vec3(0, 0, -1))));
assert!(!b.contains_box(&b.translate(vec3(1, 1, 0))));
assert!(!b.contains_box(&b.translate(vec3(1, -1, 0))));
assert!(!b.contains_box(&b.translate(vec3(1, 0, 1))));
assert!(!b.contains_box(&b.translate(vec3(1, 0, -1))));
assert!(!b.contains_box(&b.translate(vec3(-1, 1, 0))));
assert!(!b.contains_box(&b.translate(vec3(-1, -1, 0))));
assert!(!b.contains_box(&b.translate(vec3(-1, 0, 1))));
assert!(!b.contains_box(&b.translate(vec3(-1, 0, -1))));
}

View File

@ -1,127 +0,0 @@
// Copyright 2014 The Servo Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! A one-dimensional length, tagged with its units.
use num_traits;
// Euclid has its own Zero and One traits instead of of using the num_traits equivalents.
// Unfortunately, num_traits::Zero requires Add, which opens a bag of sad things:
// - Most importantly, for Point2D to implement Zero it would need to implement Add<Self> which we
// don't want (we allow "Point + Vector" and "Vector + Vector" semantics and purposefully disallow
// "Point + Point".
// - Some operations that require, say, One and Div (for example Scale::inv) currently return a
// type parameterized over T::Output which is ambiguous with num_traits::One because it inherits
// Mul which also has an Output associated type. To fix it need to complicate type signatures
// by using <T as Trait>::Output which makes the code and documentation harder to read.
//
// On the other hand, euclid::num::Zero/One are automatically implemented for all types that
// implement their num_traits counterpart. Euclid users never need to explicitly use
// euclid::num::Zero/One and can/should only manipulate the num_traits equivalents without risk
// of compatibility issues with euclid.
pub trait Zero {
fn zero() -> Self;
}
impl<T: num_traits::Zero> Zero for T {
fn zero() -> T {
num_traits::Zero::zero()
}
}
pub trait One {
fn one() -> Self;
}
impl<T: num_traits::One> One for T {
fn one() -> T {
num_traits::One::one()
}
}
/// Defines the nearest integer value to the original value.
pub trait Round: Copy {
/// Rounds to the nearest integer value.
///
/// This behavior is preserved for negative values (unlike the basic cast).
#[must_use]
fn round(self) -> Self;
}
/// Defines the biggest integer equal or lower than the original value.
pub trait Floor: Copy {
/// Rounds to the biggest integer equal or lower than the original value.
///
/// This behavior is preserved for negative values (unlike the basic cast).
#[must_use]
fn floor(self) -> Self;
}
/// Defines the smallest integer equal or greater than the original value.
pub trait Ceil: Copy {
/// Rounds to the smallest integer equal or greater than the original value.
///
/// This behavior is preserved for negative values (unlike the basic cast).
#[must_use]
fn ceil(self) -> Self;
}
macro_rules! num_int {
($ty:ty) => {
impl Round for $ty {
#[inline]
fn round(self) -> $ty {
self
}
}
impl Floor for $ty {
#[inline]
fn floor(self) -> $ty {
self
}
}
impl Ceil for $ty {
#[inline]
fn ceil(self) -> $ty {
self
}
}
};
}
macro_rules! num_float {
($ty:ty) => {
impl Round for $ty {
#[inline]
fn round(self) -> $ty {
num_traits::Float::round(self)
}
}
impl Floor for $ty {
#[inline]
fn floor(self) -> $ty {
num_traits::Float::floor(self)
}
}
impl Ceil for $ty {
#[inline]
fn ceil(self) -> $ty {
num_traits::Float::ceil(self)
}
}
};
}
num_int!(i16);
num_int!(u16);
num_int!(i32);
num_int!(u32);
num_int!(i64);
num_int!(u64);
num_int!(isize);
num_int!(usize);
num_float!(f32);
num_float!(f64);

File diff suppressed because it is too large Load Diff

View File

@ -1,908 +0,0 @@
// Copyright 2013 The Servo Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use super::UnknownUnit;
use crate::box2d::Box2D;
use crate::nonempty::NonEmpty;
use crate::num::*;
use crate::point::Point2D;
use crate::scale::Scale;
use crate::side_offsets::SideOffsets2D;
use crate::size::Size2D;
use crate::vector::Vector2D;
use num_traits::NumCast;
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
use core::borrow::Borrow;
use core::cmp::PartialOrd;
use core::fmt;
use core::hash::{Hash, Hasher};
use core::ops::{Add, Div, DivAssign, Mul, MulAssign, Range, Sub};
/// A 2d Rectangle optionally tagged with a unit.
#[repr(C)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(
feature = "serde",
serde(bound(serialize = "T: Serialize", deserialize = "T: Deserialize<'de>"))
)]
pub struct Rect<T, U> {
pub origin: Point2D<T, U>,
pub size: Size2D<T, U>,
}
impl<T: Hash, U> Hash for Rect<T, U> {
fn hash<H: Hasher>(&self, h: &mut H) {
self.origin.hash(h);
self.size.hash(h);
}
}
impl<T: Copy, U> Copy for Rect<T, U> {}
impl<T: Clone, U> Clone for Rect<T, U> {
fn clone(&self) -> Self {
Self::new(self.origin.clone(), self.size.clone())
}
}
impl<T: PartialEq, U> PartialEq for Rect<T, U> {
fn eq(&self, other: &Self) -> bool {
self.origin.eq(&other.origin) && self.size.eq(&other.size)
}
}
impl<T: Eq, U> Eq for Rect<T, U> {}
impl<T: fmt::Debug, U> fmt::Debug for Rect<T, U> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "Rect(")?;
fmt::Debug::fmt(&self.size, f)?;
write!(f, " at ")?;
fmt::Debug::fmt(&self.origin, f)?;
write!(f, ")")
}
}
impl<T: fmt::Display, U> fmt::Display for Rect<T, U> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "Rect(")?;
fmt::Display::fmt(&self.size, f)?;
write!(f, " at ")?;
fmt::Display::fmt(&self.origin, f)?;
write!(f, ")")
}
}
impl<T: Default, U> Default for Rect<T, U> {
fn default() -> Self {
Rect::new(Default::default(), Default::default())
}
}
impl<T, U> Rect<T, U> {
/// Constructor.
#[inline]
pub const fn new(origin: Point2D<T, U>, size: Size2D<T, U>) -> Self {
Rect { origin, size }
}
}
impl<T, U> Rect<T, U>
where
T: Zero,
{
/// Constructor, setting all sides to zero.
#[inline]
pub fn zero() -> Self {
Rect::new(Point2D::origin(), Size2D::zero())
}
/// Creates a rect of the given size, at offset zero.
#[inline]
pub fn from_size(size: Size2D<T, U>) -> Self {
Rect {
origin: Point2D::zero(),
size,
}
}
}
impl<T, U> Rect<T, U>
where
T: Copy + Add<T, Output = T>,
{
#[inline]
pub fn min(&self) -> Point2D<T, U> {
self.origin
}
#[inline]
pub fn max(&self) -> Point2D<T, U> {
self.origin + self.size
}
#[inline]
pub fn max_x(&self) -> T {
self.origin.x + self.size.width
}
#[inline]
pub fn min_x(&self) -> T {
self.origin.x
}
#[inline]
pub fn max_y(&self) -> T {
self.origin.y + self.size.height
}
#[inline]
pub fn min_y(&self) -> T {
self.origin.y
}
#[inline]
pub fn width(&self) -> T {
self.size.width
}
#[inline]
pub fn height(&self) -> T {
self.size.height
}
#[inline]
pub fn x_range(&self) -> Range<T> {
self.min_x()..self.max_x()
}
#[inline]
pub fn y_range(&self) -> Range<T> {
self.min_y()..self.max_y()
}
/// Returns the same rectangle, translated by a vector.
#[inline]
#[must_use]
pub fn translate(&self, by: Vector2D<T, U>) -> Self {
Self::new(self.origin + by, self.size)
}
#[inline]
pub fn to_box2d(&self) -> Box2D<T, U> {
Box2D {
min: self.min(),
max: self.max(),
}
}
}
impl<T, U> Rect<T, U>
where
T: Copy + PartialOrd + Add<T, Output = T>,
{
/// Returns true if this rectangle contains the point. Points are considered
/// in the rectangle if they are on the left or top edge, but outside if they
/// are on the right or bottom edge.
#[inline]
pub fn contains(&self, p: Point2D<T, U>) -> bool {
self.to_box2d().contains(p)
}
#[inline]
pub fn intersects(&self, other: &Self) -> bool {
self.to_box2d().intersects(&other.to_box2d())
}
}
impl<T, U> Rect<T, U>
where
T: Copy + PartialOrd + Add<T, Output = T> + Sub<T, Output = T>,
{
#[inline]
pub fn intersection(&self, other: &Self) -> Option<Self> {
let box2d = self.to_box2d().intersection(&other.to_box2d());
if box2d.is_empty_or_negative() {
return None;
}
Some(box2d.to_rect())
}
}
impl<T, U> Rect<T, U>
where
T: Copy + Add<T, Output = T> + Sub<T, Output = T>,
{
#[inline]
#[must_use]
pub fn inflate(&self, width: T, height: T) -> Self {
Rect::new(
Point2D::new(self.origin.x - width, self.origin.y - height),
Size2D::new(
self.size.width + width + width,
self.size.height + height + height,
),
)
}
}
impl<T, U> Rect<T, U>
where
T: Copy + Zero + PartialOrd + Add<T, Output = T>,
{
/// Returns true if this rectangle contains the interior of rect. Always
/// returns true if rect is empty, and always returns false if rect is
/// nonempty but this rectangle is empty.
#[inline]
pub fn contains_rect(&self, rect: &Self) -> bool {
rect.is_empty_or_negative()
|| (self.min_x() <= rect.min_x()
&& rect.max_x() <= self.max_x()
&& self.min_y() <= rect.min_y()
&& rect.max_y() <= self.max_y())
}
}
impl<T, U> Rect<T, U>
where
T: Copy + Zero + PartialOrd + Add<T, Output = T> + Sub<T, Output = T>,
{
/// Calculate the size and position of an inner rectangle.
///
/// Subtracts the side offsets from all sides. The horizontal and vertical
/// offsets must not be larger than the original side length.
/// This method assumes y oriented downward.
pub fn inner_rect(&self, offsets: SideOffsets2D<T, U>) -> Self {
let rect = Rect::new(
Point2D::new(self.origin.x + offsets.left, self.origin.y + offsets.top),
Size2D::new(
self.size.width - offsets.horizontal(),
self.size.height - offsets.vertical(),
),
);
debug_assert!(rect.size.width >= Zero::zero());
debug_assert!(rect.size.height >= Zero::zero());
rect
}
}
impl<T, U> Rect<T, U>
where
T: Copy + Add<T, Output = T> + Sub<T, Output = T>,
{
/// Calculate the size and position of an outer rectangle.
///
/// Add the offsets to all sides. The expanded rectangle is returned.
/// This method assumes y oriented downward.
pub fn outer_rect(&self, offsets: SideOffsets2D<T, U>) -> Self {
Rect::new(
Point2D::new(self.origin.x - offsets.left, self.origin.y - offsets.top),
Size2D::new(
self.size.width + offsets.horizontal(),
self.size.height + offsets.vertical(),
),
)
}
}
impl<T, U> Rect<T, U>
where
T: Copy + Zero + PartialOrd + Sub<T, Output = T>,
{
/// Returns the smallest rectangle defined by the top/bottom/left/right-most
/// points provided as parameter.
///
/// Note: This function has a behavior that can be surprising because
/// the right-most and bottom-most points are exactly on the edge
/// of the rectangle while the `contains` function is has exclusive
/// semantic on these edges. This means that the right-most and bottom-most
/// points provided to `from_points` will count as not contained by the rect.
/// This behavior may change in the future.
pub fn from_points<I>(points: I) -> Self
where
I: IntoIterator,
I::Item: Borrow<Point2D<T, U>>,
{
Box2D::from_points(points).to_rect()
}
}
impl<T, U> Rect<T, U>
where
T: Copy + One + Add<Output = T> + Sub<Output = T> + Mul<Output = T>,
{
/// Linearly interpolate between this rectangle and another rectangle.
#[inline]
pub fn lerp(&self, other: Self, t: T) -> Self {
Self::new(
self.origin.lerp(other.origin, t),
self.size.lerp(other.size, t),
)
}
}
impl<T, U> Rect<T, U>
where
T: Copy + One + Add<Output = T> + Div<Output = T>,
{
pub fn center(&self) -> Point2D<T, U> {
let two = T::one() + T::one();
self.origin + self.size.to_vector() / two
}
}
impl<T, U> Rect<T, U>
where
T: Copy + PartialOrd + Add<T, Output = T> + Sub<T, Output = T> + Zero,
{
#[inline]
pub fn union(&self, other: &Self) -> Self {
if self.size == Zero::zero() {
return *other;
}
if other.size == Zero::zero() {
return *self;
}
self.to_box2d().union(&other.to_box2d()).to_rect()
}
}
impl<T, U> Rect<T, U> {
#[inline]
pub fn scale<S: Copy>(&self, x: S, y: S) -> Self
where
T: Copy + Mul<S, Output = T>,
{
Rect::new(
Point2D::new(self.origin.x * x, self.origin.y * y),
Size2D::new(self.size.width * x, self.size.height * y),
)
}
}
impl<T: Copy + Mul<T, Output = T>, U> Rect<T, U> {
#[inline]
pub fn area(&self) -> T {
self.size.area()
}
}
impl<T: Zero + PartialEq, U> Rect<T, U> {
/// Returns true if the size is zero, regardless of the origin's value.
pub fn is_empty(&self) -> bool {
self.size.width == Zero::zero() || self.size.height == Zero::zero()
}
}
impl<T: Zero + PartialOrd, U> Rect<T, U> {
#[inline]
pub fn is_empty_or_negative(&self) -> bool {
self.size.is_empty_or_negative()
}
}
impl<T: Copy + Zero + PartialOrd, U> Rect<T, U> {
#[inline]
pub fn to_non_empty(&self) -> Option<NonEmpty<Self>> {
if self.is_empty_or_negative() {
return None;
}
Some(NonEmpty(*self))
}
}
impl<T: Clone + Mul, U> Mul<T> for Rect<T, U> {
type Output = Rect<T::Output, U>;
#[inline]
fn mul(self, scale: T) -> Self::Output {
Rect::new(self.origin * scale.clone(), self.size * scale)
}
}
impl<T: Clone + MulAssign, U> MulAssign<T> for Rect<T, U> {
#[inline]
fn mul_assign(&mut self, scale: T) {
*self *= Scale::new(scale);
}
}
impl<T: Clone + Div, U> Div<T> for Rect<T, U> {
type Output = Rect<T::Output, U>;
#[inline]
fn div(self, scale: T) -> Self::Output {
Rect::new(self.origin / scale.clone(), self.size / scale)
}
}
impl<T: Clone + DivAssign, U> DivAssign<T> for Rect<T, U> {
#[inline]
fn div_assign(&mut self, scale: T) {
*self /= Scale::new(scale);
}
}
impl<T: Clone + Mul, U1, U2> Mul<Scale<T, U1, U2>> for Rect<T, U1> {
type Output = Rect<T::Output, U2>;
#[inline]
fn mul(self, scale: Scale<T, U1, U2>) -> Self::Output {
Rect::new(self.origin * scale.clone(), self.size * scale)
}
}
impl<T: Clone + MulAssign, U> MulAssign<Scale<T, U, U>> for Rect<T, U> {
#[inline]
fn mul_assign(&mut self, scale: Scale<T, U, U>) {
self.origin *= scale.clone();
self.size *= scale;
}
}
impl<T: Clone + Div, U1, U2> Div<Scale<T, U1, U2>> for Rect<T, U2> {
type Output = Rect<T::Output, U1>;
#[inline]
fn div(self, scale: Scale<T, U1, U2>) -> Self::Output {
Rect::new(self.origin / scale.clone(), self.size / scale)
}
}
impl<T: Clone + DivAssign, U> DivAssign<Scale<T, U, U>> for Rect<T, U> {
#[inline]
fn div_assign(&mut self, scale: Scale<T, U, U>) {
self.origin /= scale.clone();
self.size /= scale;
}
}
impl<T: Copy, U> Rect<T, U> {
/// Drop the units, preserving only the numeric value.
#[inline]
pub fn to_untyped(&self) -> Rect<T, UnknownUnit> {
Rect::new(self.origin.to_untyped(), self.size.to_untyped())
}
/// Tag a unitless value with units.
#[inline]
pub fn from_untyped(r: &Rect<T, UnknownUnit>) -> Rect<T, U> {
Rect::new(
Point2D::from_untyped(r.origin),
Size2D::from_untyped(r.size),
)
}
/// Cast the unit
#[inline]
pub fn cast_unit<V>(&self) -> Rect<T, V> {
Rect::new(self.origin.cast_unit(), self.size.cast_unit())
}
}
impl<T: NumCast + Copy, U> Rect<T, U> {
/// Cast from one numeric representation to another, preserving the units.
///
/// When casting from floating point to integer coordinates, the decimals are truncated
/// as one would expect from a simple cast, but this behavior does not always make sense
/// geometrically. Consider using round(), round_in or round_out() before casting.
#[inline]
pub fn cast<NewT: NumCast>(&self) -> Rect<NewT, U> {
Rect::new(self.origin.cast(), self.size.cast())
}
/// Fallible cast from one numeric representation to another, preserving the units.
///
/// When casting from floating point to integer coordinates, the decimals are truncated
/// as one would expect from a simple cast, but this behavior does not always make sense
/// geometrically. Consider using round(), round_in or round_out() before casting.
pub fn try_cast<NewT: NumCast>(&self) -> Option<Rect<NewT, U>> {
match (self.origin.try_cast(), self.size.try_cast()) {
(Some(origin), Some(size)) => Some(Rect::new(origin, size)),
_ => None,
}
}
// Convenience functions for common casts
/// Cast into an `f32` rectangle.
#[inline]
pub fn to_f32(&self) -> Rect<f32, U> {
self.cast()
}
/// Cast into an `f64` rectangle.
#[inline]
pub fn to_f64(&self) -> Rect<f64, U> {
self.cast()
}
/// Cast into an `usize` rectangle, truncating decimals if any.
///
/// When casting from floating point rectangles, it is worth considering whether
/// to `round()`, `round_in()` or `round_out()` before the cast in order to
/// obtain the desired conversion behavior.
#[inline]
pub fn to_usize(&self) -> Rect<usize, U> {
self.cast()
}
/// Cast into an `u32` rectangle, truncating decimals if any.
///
/// When casting from floating point rectangles, it is worth considering whether
/// to `round()`, `round_in()` or `round_out()` before the cast in order to
/// obtain the desired conversion behavior.
#[inline]
pub fn to_u32(&self) -> Rect<u32, U> {
self.cast()
}
/// Cast into an `u64` rectangle, truncating decimals if any.
///
/// When casting from floating point rectangles, it is worth considering whether
/// to `round()`, `round_in()` or `round_out()` before the cast in order to
/// obtain the desired conversion behavior.
#[inline]
pub fn to_u64(&self) -> Rect<u64, U> {
self.cast()
}
/// Cast into an `i32` rectangle, truncating decimals if any.
///
/// When casting from floating point rectangles, it is worth considering whether
/// to `round()`, `round_in()` or `round_out()` before the cast in order to
/// obtain the desired conversion behavior.
#[inline]
pub fn to_i32(&self) -> Rect<i32, U> {
self.cast()
}
/// Cast into an `i64` rectangle, truncating decimals if any.
///
/// When casting from floating point rectangles, it is worth considering whether
/// to `round()`, `round_in()` or `round_out()` before the cast in order to
/// obtain the desired conversion behavior.
#[inline]
pub fn to_i64(&self) -> Rect<i64, U> {
self.cast()
}
}
impl<T: Floor + Ceil + Round + Add<T, Output = T> + Sub<T, Output = T>, U> Rect<T, U> {
/// Return a rectangle with edges rounded to integer coordinates, such that
/// the returned rectangle has the same set of pixel centers as the original
/// one.
/// Edges at offset 0.5 round up.
/// Suitable for most places where integral device coordinates
/// are needed, but note that any translation should be applied first to
/// avoid pixel rounding errors.
/// Note that this is *not* rounding to nearest integer if the values are negative.
/// They are always rounding as floor(n + 0.5).
///
/// # Usage notes
/// Note, that when using with floating-point `T` types that method can significantly
/// loose precision for large values, so if you need to call this method very often it
/// is better to use [`Box2D`].
///
/// [`Box2D`]: struct.Box2D.html
#[must_use]
pub fn round(&self) -> Self {
self.to_box2d().round().to_rect()
}
/// Return a rectangle with edges rounded to integer coordinates, such that
/// the original rectangle contains the resulting rectangle.
///
/// # Usage notes
/// Note, that when using with floating-point `T` types that method can significantly
/// loose precision for large values, so if you need to call this method very often it
/// is better to use [`Box2D`].
///
/// [`Box2D`]: struct.Box2D.html
#[must_use]
pub fn round_in(&self) -> Self {
self.to_box2d().round_in().to_rect()
}
/// Return a rectangle with edges rounded to integer coordinates, such that
/// the original rectangle is contained in the resulting rectangle.
///
/// # Usage notes
/// Note, that when using with floating-point `T` types that method can significantly
/// loose precision for large values, so if you need to call this method very often it
/// is better to use [`Box2D`].
///
/// [`Box2D`]: struct.Box2D.html
#[must_use]
pub fn round_out(&self) -> Self {
self.to_box2d().round_out().to_rect()
}
}
impl<T, U> From<Size2D<T, U>> for Rect<T, U>
where
T: Zero,
{
fn from(size: Size2D<T, U>) -> Self {
Self::from_size(size)
}
}
/// Shorthand for `Rect::new(Point2D::new(x, y), Size2D::new(w, h))`.
pub const fn rect<T, U>(x: T, y: T, w: T, h: T) -> Rect<T, U> {
Rect::new(Point2D::new(x, y), Size2D::new(w, h))
}
#[cfg(test)]
mod tests {
use crate::default::{Point2D, Rect, Size2D};
use crate::side_offsets::SideOffsets2D;
use crate::{point2, rect, size2, vec2};
#[test]
fn test_translate() {
let p = Rect::new(Point2D::new(0u32, 0u32), Size2D::new(50u32, 40u32));
let pp = p.translate(vec2(10, 15));
assert!(pp.size.width == 50);
assert!(pp.size.height == 40);
assert!(pp.origin.x == 10);
assert!(pp.origin.y == 15);
let r = Rect::new(Point2D::new(-10, -5), Size2D::new(50, 40));
let rr = r.translate(vec2(0, -10));
assert!(rr.size.width == 50);
assert!(rr.size.height == 40);
assert!(rr.origin.x == -10);
assert!(rr.origin.y == -15);
}
#[test]
fn test_union() {
let p = Rect::new(Point2D::new(0, 0), Size2D::new(50, 40));
let q = Rect::new(Point2D::new(20, 20), Size2D::new(5, 5));
let r = Rect::new(Point2D::new(-15, -30), Size2D::new(200, 15));
let s = Rect::new(Point2D::new(20, -15), Size2D::new(250, 200));
let pq = p.union(&q);
assert!(pq.origin == Point2D::new(0, 0));
assert!(pq.size == Size2D::new(50, 40));
let pr = p.union(&r);
assert!(pr.origin == Point2D::new(-15, -30));
assert!(pr.size == Size2D::new(200, 70));
let ps = p.union(&s);
assert!(ps.origin == Point2D::new(0, -15));
assert!(ps.size == Size2D::new(270, 200));
}
#[test]
fn test_intersection() {
let p = Rect::new(Point2D::new(0, 0), Size2D::new(10, 20));
let q = Rect::new(Point2D::new(5, 15), Size2D::new(10, 10));
let r = Rect::new(Point2D::new(-5, -5), Size2D::new(8, 8));
let pq = p.intersection(&q);
assert!(pq.is_some());
let pq = pq.unwrap();
assert!(pq.origin == Point2D::new(5, 15));
assert!(pq.size == Size2D::new(5, 5));
let pr = p.intersection(&r);
assert!(pr.is_some());
let pr = pr.unwrap();
assert!(pr.origin == Point2D::new(0, 0));
assert!(pr.size == Size2D::new(3, 3));
let qr = q.intersection(&r);
assert!(qr.is_none());
}
#[test]
fn test_intersection_overflow() {
// test some scenarios where the intersection can overflow but
// the min_x() and max_x() don't. Gecko currently fails these cases
let p = Rect::new(Point2D::new(-2147483648, -2147483648), Size2D::new(0, 0));
let q = Rect::new(
Point2D::new(2136893440, 2136893440),
Size2D::new(279552, 279552),
);
let r = Rect::new(Point2D::new(-2147483648, -2147483648), Size2D::new(1, 1));
assert!(p.is_empty());
let pq = p.intersection(&q);
assert!(pq.is_none());
let qr = q.intersection(&r);
assert!(qr.is_none());
}
#[test]
fn test_contains() {
let r = Rect::new(Point2D::new(-20, 15), Size2D::new(100, 200));
assert!(r.contains(Point2D::new(0, 50)));
assert!(r.contains(Point2D::new(-10, 200)));
// The `contains` method is inclusive of the top/left edges, but not the
// bottom/right edges.
assert!(r.contains(Point2D::new(-20, 15)));
assert!(!r.contains(Point2D::new(80, 15)));
assert!(!r.contains(Point2D::new(80, 215)));
assert!(!r.contains(Point2D::new(-20, 215)));
// Points beyond the top-left corner.
assert!(!r.contains(Point2D::new(-25, 15)));
assert!(!r.contains(Point2D::new(-15, 10)));
// Points beyond the top-right corner.
assert!(!r.contains(Point2D::new(85, 20)));
assert!(!r.contains(Point2D::new(75, 10)));
// Points beyond the bottom-right corner.
assert!(!r.contains(Point2D::new(85, 210)));
assert!(!r.contains(Point2D::new(75, 220)));
// Points beyond the bottom-left corner.
assert!(!r.contains(Point2D::new(-25, 210)));
assert!(!r.contains(Point2D::new(-15, 220)));
let r = Rect::new(Point2D::new(-20.0, 15.0), Size2D::new(100.0, 200.0));
assert!(r.contains_rect(&r));
assert!(!r.contains_rect(&r.translate(vec2(0.1, 0.0))));
assert!(!r.contains_rect(&r.translate(vec2(-0.1, 0.0))));
assert!(!r.contains_rect(&r.translate(vec2(0.0, 0.1))));
assert!(!r.contains_rect(&r.translate(vec2(0.0, -0.1))));
// Empty rectangles are always considered as contained in other rectangles,
// even if their origin is not.
let p = Point2D::new(1.0, 1.0);
assert!(!r.contains(p));
assert!(r.contains_rect(&Rect::new(p, Size2D::zero())));
}
#[test]
fn test_scale() {
let p = Rect::new(Point2D::new(0u32, 0u32), Size2D::new(50u32, 40u32));
let pp = p.scale(10, 15);
assert!(pp.size.width == 500);
assert!(pp.size.height == 600);
assert!(pp.origin.x == 0);
assert!(pp.origin.y == 0);
let r = Rect::new(Point2D::new(-10, -5), Size2D::new(50, 40));
let rr = r.scale(1, 20);
assert!(rr.size.width == 50);
assert!(rr.size.height == 800);
assert!(rr.origin.x == -10);
assert!(rr.origin.y == -100);
}
#[test]
fn test_inflate() {
let p = Rect::new(Point2D::new(0, 0), Size2D::new(10, 10));
let pp = p.inflate(10, 20);
assert!(pp.size.width == 30);
assert!(pp.size.height == 50);
assert!(pp.origin.x == -10);
assert!(pp.origin.y == -20);
let r = Rect::new(Point2D::new(0, 0), Size2D::new(10, 20));
let rr = r.inflate(-2, -5);
assert!(rr.size.width == 6);
assert!(rr.size.height == 10);
assert!(rr.origin.x == 2);
assert!(rr.origin.y == 5);
}
#[test]
fn test_inner_outer_rect() {
let inner_rect = Rect::new(point2(20, 40), size2(80, 100));
let offsets = SideOffsets2D::new(20, 10, 10, 10);
let outer_rect = inner_rect.outer_rect(offsets);
assert_eq!(outer_rect.origin.x, 10);
assert_eq!(outer_rect.origin.y, 20);
assert_eq!(outer_rect.size.width, 100);
assert_eq!(outer_rect.size.height, 130);
assert_eq!(outer_rect.inner_rect(offsets), inner_rect);
}
#[test]
fn test_min_max_x_y() {
let p = Rect::new(Point2D::new(0u32, 0u32), Size2D::new(50u32, 40u32));
assert!(p.max_y() == 40);
assert!(p.min_y() == 0);
assert!(p.max_x() == 50);
assert!(p.min_x() == 0);
let r = Rect::new(Point2D::new(-10, -5), Size2D::new(50, 40));
assert!(r.max_y() == 35);
assert!(r.min_y() == -5);
assert!(r.max_x() == 40);
assert!(r.min_x() == -10);
}
#[test]
fn test_width_height() {
let r = Rect::new(Point2D::new(-10, -5), Size2D::new(50, 40));
assert!(r.width() == 50);
assert!(r.height() == 40);
}
#[test]
fn test_is_empty() {
assert!(Rect::new(Point2D::new(0u32, 0u32), Size2D::new(0u32, 0u32)).is_empty());
assert!(Rect::new(Point2D::new(0u32, 0u32), Size2D::new(10u32, 0u32)).is_empty());
assert!(Rect::new(Point2D::new(0u32, 0u32), Size2D::new(0u32, 10u32)).is_empty());
assert!(!Rect::new(Point2D::new(0u32, 0u32), Size2D::new(1u32, 1u32)).is_empty());
assert!(Rect::new(Point2D::new(10u32, 10u32), Size2D::new(0u32, 0u32)).is_empty());
assert!(Rect::new(Point2D::new(10u32, 10u32), Size2D::new(10u32, 0u32)).is_empty());
assert!(Rect::new(Point2D::new(10u32, 10u32), Size2D::new(0u32, 10u32)).is_empty());
assert!(!Rect::new(Point2D::new(10u32, 10u32), Size2D::new(1u32, 1u32)).is_empty());
}
#[test]
fn test_round() {
let mut x = -2.0;
let mut y = -2.0;
let mut w = -2.0;
let mut h = -2.0;
while x < 2.0 {
while y < 2.0 {
while w < 2.0 {
while h < 2.0 {
let rect = Rect::new(Point2D::new(x, y), Size2D::new(w, h));
assert!(rect.contains_rect(&rect.round_in()));
assert!(rect.round_in().inflate(1.0, 1.0).contains_rect(&rect));
assert!(rect.round_out().contains_rect(&rect));
assert!(rect.inflate(1.0, 1.0).contains_rect(&rect.round_out()));
assert!(rect.inflate(1.0, 1.0).contains_rect(&rect.round()));
assert!(rect.round().inflate(1.0, 1.0).contains_rect(&rect));
h += 0.1;
}
w += 0.1;
}
y += 0.1;
}
x += 0.1
}
}
#[test]
fn test_center() {
let r: Rect<i32> = rect(-2, 5, 4, 10);
assert_eq!(r.center(), point2(0, 10));
let r: Rect<f32> = rect(1.0, 2.0, 3.0, 4.0);
assert_eq!(r.center(), point2(2.5, 4.0));
}
#[test]
fn test_nan() {
let r1: Rect<f32> = rect(-2.0, 5.0, 4.0, std::f32::NAN);
let r2: Rect<f32> = rect(std::f32::NAN, -1.0, 3.0, 10.0);
assert_eq!(r1.intersection(&r2), None);
}
}

View File

@ -1,285 +0,0 @@
//! All matrix multiplication in this module is in row-vector notation,
//! i.e. a vector `v` is transformed with `v * T`, and if you want to apply `T1`
//! before `T2` you use `T1 * T2`
use crate::approxeq::ApproxEq;
use crate::trig::Trig;
use crate::{Rotation3D, Transform3D, UnknownUnit, Vector3D};
use num_traits::Float;
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
/// A rigid transformation. All lengths are preserved under such a transformation.
///
///
/// Internally, this is a rotation and a translation, with the rotation
/// applied first (i.e. `Rotation * Translation`, in row-vector notation)
///
/// This can be more efficient to use over full matrices, especially if you
/// have to deal with the decomposed quantities often.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[repr(C)]
pub struct RigidTransform3D<T, Src, Dst> {
pub rotation: Rotation3D<T, Src, Dst>,
pub translation: Vector3D<T, Dst>,
}
impl<T, Src, Dst> RigidTransform3D<T, Src, Dst> {
/// Construct a new rigid transformation, where the `rotation` applies first
#[inline]
pub const fn new(rotation: Rotation3D<T, Src, Dst>, translation: Vector3D<T, Dst>) -> Self {
Self {
rotation,
translation,
}
}
}
impl<T: Copy, Src, Dst> RigidTransform3D<T, Src, Dst> {
pub fn cast_unit<Src2, Dst2>(&self) -> RigidTransform3D<T, Src2, Dst2> {
RigidTransform3D {
rotation: self.rotation.cast_unit(),
translation: self.translation.cast_unit(),
}
}
}
impl<T: Float + ApproxEq<T>, Src, Dst> RigidTransform3D<T, Src, Dst> {
/// Construct an identity transform
#[inline]
pub fn identity() -> Self {
Self {
rotation: Rotation3D::identity(),
translation: Vector3D::zero(),
}
}
/// Construct a new rigid transformation, where the `translation` applies first
#[inline]
pub fn new_from_reversed(
translation: Vector3D<T, Src>,
rotation: Rotation3D<T, Src, Dst>,
) -> Self {
// T * R
// = (R * R^-1) * T * R
// = R * (R^-1 * T * R)
// = R * T'
//
// T' = (R^-1 * T * R) is also a translation matrix
// It is equivalent to the translation matrix obtained by rotating the
// translation by R
let translation = rotation.transform_vector3d(translation);
Self {
rotation,
translation,
}
}
#[inline]
pub fn from_rotation(rotation: Rotation3D<T, Src, Dst>) -> Self {
Self {
rotation,
translation: Vector3D::zero(),
}
}
#[inline]
pub fn from_translation(translation: Vector3D<T, Dst>) -> Self {
Self {
translation,
rotation: Rotation3D::identity(),
}
}
/// Decompose this into a translation and an rotation to be applied in the opposite order
///
/// i.e., the translation is applied _first_
#[inline]
pub fn decompose_reversed(&self) -> (Vector3D<T, Src>, Rotation3D<T, Src, Dst>) {
// self = R * T
// = R * T * (R^-1 * R)
// = (R * T * R^-1) * R)
// = T' * R
//
// T' = (R^ * T * R^-1) is T rotated by R^-1
let translation = self.rotation.inverse().transform_vector3d(self.translation);
(translation, self.rotation)
}
/// Returns the multiplication of the two transforms such that
/// other's transformation applies after self's transformation.
///
/// i.e., this produces `self * other` in row-vector notation
#[inline]
pub fn post_transform<Dst2>(
&self,
other: &RigidTransform3D<T, Dst, Dst2>,
) -> RigidTransform3D<T, Src, Dst2> {
// self = R1 * T1
// other = R2 * T2
// result = R1 * T1 * R2 * T2
// = R1 * (R2 * R2^-1) * T1 * R2 * T2
// = (R1 * R2) * (R2^-1 * T1 * R2) * T2
// = R' * T' * T2
// = R' * T''
//
// (R2^-1 * T2 * R2^) = T' = T2 rotated by R2
// R1 * R2 = R'
// T' * T2 = T'' = vector addition of translations T2 and T'
let t_prime = other.rotation.transform_vector3d(self.translation);
let r_prime = self.rotation.post_rotate(&other.rotation);
let t_prime2 = t_prime + other.translation;
RigidTransform3D {
rotation: r_prime,
translation: t_prime2,
}
}
/// Returns the multiplication of the two transforms such that
/// self's transformation applies after other's transformation.
///
/// i.e., this produces `other * self` in row-vector notation
#[inline]
pub fn pre_transform<Src2>(
&self,
other: &RigidTransform3D<T, Src2, Src>,
) -> RigidTransform3D<T, Src2, Dst> {
other.post_transform(&self)
}
/// Inverts the transformation
#[inline]
pub fn inverse(&self) -> RigidTransform3D<T, Dst, Src> {
// result = (self)^-1
// = (R * T)^-1
// = T^-1 * R^-1
// = (R^-1 * R) * T^-1 * R^-1
// = R^-1 * (R * T^-1 * R^-1)
// = R' * T'
//
// T' = (R * T^-1 * R^-1) = (-T) rotated by R^-1
// R' = R^-1
//
// An easier way of writing this is to use new_from_reversed() with R^-1 and T^-1
RigidTransform3D::new_from_reversed(-self.translation, self.rotation.inverse())
}
pub fn to_transform(&self) -> Transform3D<T, Src, Dst>
where
T: Trig,
{
self.translation
.to_transform()
.pre_transform(&self.rotation.to_transform())
}
/// Drop the units, preserving only the numeric value.
#[inline]
pub fn to_untyped(&self) -> RigidTransform3D<T, UnknownUnit, UnknownUnit> {
RigidTransform3D {
rotation: self.rotation.to_untyped(),
translation: self.translation.to_untyped(),
}
}
/// Tag a unitless value with units.
#[inline]
pub fn from_untyped(transform: &RigidTransform3D<T, UnknownUnit, UnknownUnit>) -> Self {
RigidTransform3D {
rotation: Rotation3D::from_untyped(&transform.rotation),
translation: Vector3D::from_untyped(transform.translation),
}
}
}
impl<T: Float + ApproxEq<T>, Src, Dst> From<Rotation3D<T, Src, Dst>>
for RigidTransform3D<T, Src, Dst>
{
fn from(rot: Rotation3D<T, Src, Dst>) -> Self {
Self::from_rotation(rot)
}
}
impl<T: Float + ApproxEq<T>, Src, Dst> From<Vector3D<T, Dst>> for RigidTransform3D<T, Src, Dst> {
fn from(t: Vector3D<T, Dst>) -> Self {
Self::from_translation(t)
}
}
#[cfg(test)]
mod test {
use super::RigidTransform3D;
use crate::default::{Rotation3D, Transform3D, Vector3D};
#[test]
fn test_rigid_construction() {
let translation = Vector3D::new(12.1, 17.8, -5.5);
let rotation = Rotation3D::unit_quaternion(0.5, -7.8, 2.2, 4.3);
let rigid = RigidTransform3D::new(rotation, translation);
assert!(rigid.to_transform().approx_eq(
&translation
.to_transform()
.pre_transform(&rotation.to_transform())
));
let rigid = RigidTransform3D::new_from_reversed(translation, rotation);
assert!(rigid.to_transform().approx_eq(
&translation
.to_transform()
.post_transform(&rotation.to_transform())
));
}
#[test]
fn test_rigid_decomposition() {
let translation = Vector3D::new(12.1, 17.8, -5.5);
let rotation = Rotation3D::unit_quaternion(0.5, -7.8, 2.2, 4.3);
let rigid = RigidTransform3D::new(rotation, translation);
let (t2, r2) = rigid.decompose_reversed();
assert!(rigid
.to_transform()
.approx_eq(&t2.to_transform().post_transform(&r2.to_transform())));
}
#[test]
fn test_rigid_inverse() {
let translation = Vector3D::new(12.1, 17.8, -5.5);
let rotation = Rotation3D::unit_quaternion(0.5, -7.8, 2.2, 4.3);
let rigid = RigidTransform3D::new(rotation, translation);
let inverse = rigid.inverse();
assert!(rigid
.post_transform(&inverse)
.to_transform()
.approx_eq(&Transform3D::identity()));
assert!(inverse
.to_transform()
.approx_eq(&rigid.to_transform().inverse().unwrap()));
}
#[test]
fn test_rigid_multiply() {
let translation = Vector3D::new(12.1, 17.8, -5.5);
let rotation = Rotation3D::unit_quaternion(0.5, -7.8, 2.2, 4.3);
let translation2 = Vector3D::new(9.3, -3.9, 1.1);
let rotation2 = Rotation3D::unit_quaternion(0.1, 0.2, 0.3, -0.4);
let rigid = RigidTransform3D::new(rotation, translation);
let rigid2 = RigidTransform3D::new(rotation2, translation2);
assert!(rigid
.post_transform(&rigid2)
.to_transform()
.approx_eq(&rigid.to_transform().post_transform(&rigid2.to_transform())));
assert!(rigid
.pre_transform(&rigid2)
.to_transform()
.approx_eq(&rigid.to_transform().pre_transform(&rigid2.to_transform())));
}
}

File diff suppressed because it is too large Load Diff

View File

@ -1,399 +0,0 @@
// Copyright 2014 The Servo Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! A type-checked scaling factor between units.
use crate::num::One;
use crate::{Point2D, Rect, Size2D, Vector2D};
use core::cmp::Ordering;
use core::fmt;
use core::hash::{Hash, Hasher};
use core::marker::PhantomData;
use core::ops::{Add, Div, Mul, Neg, Sub};
use num_traits::NumCast;
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
/// A scaling factor between two different units of measurement.
///
/// This is effectively a type-safe float, intended to be used in combination with other types like
/// `length::Length` to enforce conversion between systems of measurement at compile time.
///
/// `Src` and `Dst` represent the units before and after multiplying a value by a `Scale`. They
/// may be types without values, such as empty enums. For example:
///
/// ```rust
/// use euclid::Scale;
/// use euclid::Length;
/// enum Mm {};
/// enum Inch {};
///
/// let mm_per_inch: Scale<f32, Inch, Mm> = Scale::new(25.4);
///
/// let one_foot: Length<f32, Inch> = Length::new(12.0);
/// let one_foot_in_mm: Length<f32, Mm> = one_foot * mm_per_inch;
/// ```
#[repr(C)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(
feature = "serde",
serde(bound(
serialize = "T: serde::Serialize",
deserialize = "T: serde::Deserialize<'de>"
))
)]
pub struct Scale<T, Src, Dst>(pub T, #[doc(hidden)] pub PhantomData<(Src, Dst)>);
impl<T, Src, Dst> Scale<T, Src, Dst> {
#[inline]
pub const fn new(x: T) -> Self {
Scale(x, PhantomData)
}
/// Returns the given point transformed by this scale.
///
/// # Example
///
/// ```rust
/// use euclid::{Scale, point2};
/// enum Mm {};
/// enum Cm {};
///
/// let to_mm: Scale<i32, Cm, Mm> = Scale::new(10);
///
/// assert_eq!(to_mm.transform_point(point2(42, -42)), point2(420, -420));
/// ```
#[inline]
pub fn transform_point(&self, point: Point2D<T, Src>) -> Point2D<T::Output, Dst>
where
T: Clone + Mul,
{
Point2D::new(point.x * self.get(), point.y * self.get())
}
/// Returns the given vector transformed by this scale.
///
/// # Example
///
/// ```rust
/// use euclid::{Scale, vec2};
/// enum Mm {};
/// enum Cm {};
///
/// let to_mm: Scale<i32, Cm, Mm> = Scale::new(10);
///
/// assert_eq!(to_mm.transform_vector(vec2(42, -42)), vec2(420, -420));
/// ```
#[inline]
pub fn transform_vector(&self, vec: Vector2D<T, Src>) -> Vector2D<T::Output, Dst>
where
T: Clone + Mul,
{
Vector2D::new(vec.x * self.get(), vec.y * self.get())
}
/// Returns the given vector transformed by this scale.
///
/// # Example
///
/// ```rust
/// use euclid::{Scale, size2};
/// enum Mm {};
/// enum Cm {};
///
/// let to_mm: Scale<i32, Cm, Mm> = Scale::new(10);
///
/// assert_eq!(to_mm.transform_size(size2(42, -42)), size2(420, -420));
/// ```
#[inline]
pub fn transform_size(&self, size: Size2D<T, Src>) -> Size2D<T::Output, Dst>
where
T: Clone + Mul,
{
Size2D::new(size.width * self.get(), size.height * self.get())
}
/// Returns the given rect transformed by this scale.
///
/// # Example
///
/// ```rust
/// use euclid::{Scale, rect};
/// enum Mm {};
/// enum Cm {};
///
/// let to_mm: Scale<i32, Cm, Mm> = Scale::new(10);
///
/// assert_eq!(to_mm.transform_rect(&rect(1, 2, 42, -42)), rect(10, 20, 420, -420));
/// ```
#[inline]
pub fn transform_rect(&self, rect: &Rect<T, Src>) -> Rect<T::Output, Dst>
where
T: Copy + Mul,
{
Rect::new(
self.transform_point(rect.origin),
self.transform_size(rect.size),
)
}
/// Returns the inverse of this scale.
#[inline]
pub fn inverse(&self) -> Scale<T::Output, Dst, Src>
where
T: Clone + Neg,
{
Scale::new(-self.get())
}
/// Returns `true` if this scale has no effect.
///
/// # Example
///
/// ```rust
/// use euclid::Scale;
/// use euclid::num::One;
/// enum Mm {};
/// enum Cm {};
///
/// let cm_per_mm: Scale<f32, Mm, Cm> = Scale::new(0.1);
/// let mm_per_mm: Scale<f32, Mm, Mm> = Scale::new(1.0);
///
/// assert_eq!(cm_per_mm.is_identity(), false);
/// assert_eq!(mm_per_mm.is_identity(), true);
/// assert_eq!(mm_per_mm, Scale::one());
/// ```
#[inline]
pub fn is_identity(&self) -> bool
where
T: PartialEq + One,
{
self.0 == T::one()
}
}
impl<T: Clone, Src, Dst> Scale<T, Src, Dst> {
#[inline]
pub fn get(&self) -> T {
self.0.clone()
}
/// The inverse Scale (1.0 / self).
///
/// # Example
///
/// ```rust
/// use euclid::Scale;
/// enum Mm {};
/// enum Cm {};
///
/// let cm_per_mm: Scale<f32, Cm, Mm> = Scale::new(0.1);
///
/// assert_eq!(cm_per_mm.inv(), Scale::new(10.0));
/// ```
pub fn inv(&self) -> Scale<T::Output, Dst, Src>
where
T: One + Div,
{
let one: T = One::one();
Scale::new(one / self.0.clone())
}
}
impl<T: NumCast + Clone, Src, Dst> Scale<T, Src, Dst> {
/// Cast from one numeric representation to another, preserving the units.
///
/// # Panics
///
/// If the source value cannot be represented by the target type `NewT`, then
/// method panics. Use `try_cast` if that must be case.
///
/// # Example
///
/// ```rust
/// use euclid::Scale;
/// enum Mm {};
/// enum Cm {};
///
/// let to_mm: Scale<i32, Cm, Mm> = Scale::new(10);
///
/// assert_eq!(to_mm.cast::<f32>(), Scale::new(10.0));
/// ```
/// That conversion will panic, because `i32` not enough to store such big numbers:
/// ```rust,should_panic
/// use euclid::Scale;
/// enum Mm {};// millimeter = 10^-2 meters
/// enum Em {};// exameter = 10^18 meters
///
/// // Panics
/// let to_em: Scale<i32, Mm, Em> = Scale::new(10e20).cast();
/// ```
#[inline]
pub fn cast<NewT: NumCast>(&self) -> Scale<NewT, Src, Dst> {
self.try_cast().unwrap()
}
/// Fallible cast from one numeric representation to another, preserving the units.
/// If the source value cannot be represented by the target type `NewT`, then `None`
/// is returned.
///
/// # Example
///
/// ```rust
/// use euclid::Scale;
/// enum Mm {};
/// enum Cm {};
/// enum Em {};// Exameter = 10^18 meters
///
/// let to_mm: Scale<i32, Cm, Mm> = Scale::new(10);
/// let to_em: Scale<f32, Mm, Em> = Scale::new(10e20);
///
/// assert_eq!(to_mm.try_cast::<f32>(), Some(Scale::new(10.0)));
/// // Integer to small to store that number
/// assert_eq!(to_em.try_cast::<i32>(), None);
/// ```
pub fn try_cast<NewT: NumCast>(&self) -> Option<Scale<NewT, Src, Dst>> {
NumCast::from(self.get()).map(Scale::new)
}
}
impl<Src, Dst> Scale<f32, Src, Dst> {
/// Identity scaling, could be used to safely transit from one space to another.
pub const ONE: Self = Scale(1.0, PhantomData);
}
// scale0 * scale1
// (A,B) * (B,C) = (A,C)
impl<T: Mul, A, B, C> Mul<Scale<T, B, C>> for Scale<T, A, B> {
type Output = Scale<T::Output, A, C>;
#[inline]
fn mul(self, other: Scale<T, B, C>) -> Self::Output {
Scale::new(self.0 * other.0)
}
}
// scale0 + scale1
impl<T: Add, Src, Dst> Add for Scale<T, Src, Dst> {
type Output = Scale<T::Output, Src, Dst>;
#[inline]
fn add(self, other: Scale<T, Src, Dst>) -> Self::Output {
Scale::new(self.0 + other.0)
}
}
// scale0 - scale1
impl<T: Sub, Src, Dst> Sub for Scale<T, Src, Dst> {
type Output = Scale<T::Output, Src, Dst>;
#[inline]
fn sub(self, other: Scale<T, Src, Dst>) -> Self::Output {
Scale::new(self.0 - other.0)
}
}
// FIXME: Switch to `derive(PartialEq, Clone)` after this Rust issue is fixed:
// https://github.com/rust-lang/rust/issues/26925
impl<T: PartialEq, Src, Dst> PartialEq for Scale<T, Src, Dst> {
fn eq(&self, other: &Scale<T, Src, Dst>) -> bool {
self.0 == other.0
}
}
impl<T: Eq, Src, Dst> Eq for Scale<T, Src, Dst> {}
impl<T: PartialOrd, Src, Dst> PartialOrd for Scale<T, Src, Dst> {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
self.0.partial_cmp(&other.0)
}
}
impl<T: Ord, Src, Dst> Ord for Scale<T, Src, Dst> {
fn cmp(&self, other: &Self) -> Ordering {
self.0.cmp(&other.0)
}
}
impl<T: Clone, Src, Dst> Clone for Scale<T, Src, Dst> {
fn clone(&self) -> Scale<T, Src, Dst> {
Scale::new(self.get())
}
}
impl<T: Copy, Src, Dst> Copy for Scale<T, Src, Dst> {}
impl<T: fmt::Debug, Src, Dst> fmt::Debug for Scale<T, Src, Dst> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
self.0.fmt(f)
}
}
impl<T: fmt::Display, Src, Dst> fmt::Display for Scale<T, Src, Dst> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
self.0.fmt(f)
}
}
impl<T: Default, Src, Dst> Default for Scale<T, Src, Dst> {
fn default() -> Self {
Self::new(T::default())
}
}
impl<T: Hash, Src, Dst> Hash for Scale<T, Src, Dst> {
fn hash<H: Hasher>(&self, state: &mut H) {
self.0.hash(state)
}
}
impl<T: One, Src, Dst> One for Scale<T, Src, Dst> {
#[inline]
fn one() -> Self {
Scale::new(T::one())
}
}
#[cfg(test)]
mod tests {
use super::Scale;
enum Inch {}
enum Cm {}
enum Mm {}
#[test]
fn test_scale() {
let mm_per_inch: Scale<f32, Inch, Mm> = Scale::new(25.4);
let cm_per_mm: Scale<f32, Mm, Cm> = Scale::new(0.1);
let mm_per_cm: Scale<f32, Cm, Mm> = cm_per_mm.inv();
assert_eq!(mm_per_cm.get(), 10.0);
let one: Scale<f32, Mm, Mm> = cm_per_mm * mm_per_cm;
assert_eq!(one.get(), 1.0);
let one: Scale<f32, Cm, Cm> = mm_per_cm * cm_per_mm;
assert_eq!(one.get(), 1.0);
let cm_per_inch: Scale<f32, Inch, Cm> = mm_per_inch * cm_per_mm;
// mm cm cm
// ---- x ---- = ----
// inch mm inch
assert_eq!(cm_per_inch, Scale::new(2.54));
let a: Scale<isize, Inch, Inch> = Scale::new(2);
let b: Scale<isize, Inch, Inch> = Scale::new(3);
assert_ne!(a, b);
assert_eq!(a, a.clone());
assert_eq!(a.clone() + b.clone(), Scale::new(5));
assert_eq!(a - b, Scale::new(-1));
}
}

View File

@ -1,438 +0,0 @@
// Copyright 2013 The Servo Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! A group of side offsets, which correspond to top/left/bottom/right for borders, padding,
//! and margins in CSS.
use crate::length::Length;
use crate::num::Zero;
use crate::scale::Scale;
use crate::Vector2D;
use core::cmp::{Eq, PartialEq};
use core::fmt;
use core::hash::Hash;
use core::marker::PhantomData;
use core::ops::{Add, Div, DivAssign, Mul, MulAssign, Neg};
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
/// A group of 2D side offsets, which correspond to top/right/bottom/left for borders, padding,
/// and margins in CSS, optionally tagged with a unit.
#[repr(C)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(
feature = "serde",
serde(bound(serialize = "T: Serialize", deserialize = "T: Deserialize<'de>"))
)]
pub struct SideOffsets2D<T, U> {
pub top: T,
pub right: T,
pub bottom: T,
pub left: T,
#[doc(hidden)]
pub _unit: PhantomData<U>,
}
impl<T: Copy, U> Copy for SideOffsets2D<T, U> {}
impl<T: Clone, U> Clone for SideOffsets2D<T, U> {
fn clone(&self) -> Self {
SideOffsets2D {
top: self.top.clone(),
right: self.right.clone(),
bottom: self.bottom.clone(),
left: self.left.clone(),
_unit: PhantomData,
}
}
}
impl<T, U> Eq for SideOffsets2D<T, U> where T: Eq {}
impl<T, U> PartialEq for SideOffsets2D<T, U>
where
T: PartialEq,
{
fn eq(&self, other: &Self) -> bool {
self.top == other.top
&& self.right == other.right
&& self.bottom == other.bottom
&& self.left == other.left
}
}
impl<T, U> Hash for SideOffsets2D<T, U>
where
T: Hash,
{
fn hash<H: core::hash::Hasher>(&self, h: &mut H) {
self.top.hash(h);
self.right.hash(h);
self.bottom.hash(h);
self.left.hash(h);
}
}
impl<T: fmt::Debug, U> fmt::Debug for SideOffsets2D<T, U> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(
f,
"({:?},{:?},{:?},{:?})",
self.top, self.right, self.bottom, self.left
)
}
}
impl<T: Default, U> Default for SideOffsets2D<T, U> {
fn default() -> Self {
SideOffsets2D {
top: Default::default(),
right: Default::default(),
bottom: Default::default(),
left: Default::default(),
_unit: PhantomData,
}
}
}
impl<T, U> SideOffsets2D<T, U> {
/// Constructor taking a scalar for each side.
///
/// Sides are specified in top-right-bottom-left order following
/// CSS's convention.
pub const fn new(top: T, right: T, bottom: T, left: T) -> Self {
SideOffsets2D {
top,
right,
bottom,
left,
_unit: PhantomData,
}
}
/// Constructor taking a typed Length for each side.
///
/// Sides are specified in top-right-bottom-left order following
/// CSS's convention.
pub fn from_lengths(
top: Length<T, U>,
right: Length<T, U>,
bottom: Length<T, U>,
left: Length<T, U>,
) -> Self {
SideOffsets2D::new(top.0, right.0, bottom.0, left.0)
}
/// Construct side offsets from min and a max vector offsets.
///
/// The outer rect of the resulting side offsets is equivalent to translating
/// a rectangle's upper-left corner with the min vector and translating the
/// bottom-right corner with the max vector.
pub fn from_vectors_outer(min: Vector2D<T, U>, max: Vector2D<T, U>) -> Self
where
T: Neg<Output = T>,
{
SideOffsets2D {
left: -min.x,
top: -min.y,
right: max.x,
bottom: max.y,
_unit: PhantomData,
}
}
/// Construct side offsets from min and a max vector offsets.
///
/// The inner rect of the resulting side offsets is equivalent to translating
/// a rectangle's upper-left corner with the min vector and translating the
/// bottom-right corner with the max vector.
pub fn from_vectors_inner(min: Vector2D<T, U>, max: Vector2D<T, U>) -> Self
where
T: Neg<Output = T>,
{
SideOffsets2D {
left: min.x,
top: min.y,
right: -max.x,
bottom: -max.y,
_unit: PhantomData,
}
}
/// Returns `true` if all side offsets are zero.
pub fn is_zero(&self) -> bool
where
T: Zero + PartialEq,
{
let zero = T::zero();
self.top == zero && self.right == zero && self.bottom == zero && self.left == zero
}
}
impl<T: Copy, U> SideOffsets2D<T, U> {
/// Constructor setting the same value to all sides, taking a scalar value directly.
pub fn new_all_same(all: T) -> Self {
SideOffsets2D::new(all, all, all, all)
}
/// Constructor setting the same value to all sides, taking a typed Length.
pub fn from_length_all_same(all: Length<T, U>) -> Self {
SideOffsets2D::new_all_same(all.0)
}
}
impl<T, U> SideOffsets2D<T, U>
where
T: Add<T, Output = T> + Copy,
{
pub fn horizontal(&self) -> T {
self.left + self.right
}
pub fn vertical(&self) -> T {
self.top + self.bottom
}
}
impl<T, U> Add for SideOffsets2D<T, U>
where
T: Add<T, Output = T>,
{
type Output = Self;
fn add(self, other: Self) -> Self {
SideOffsets2D::new(
self.top + other.top,
self.right + other.right,
self.bottom + other.bottom,
self.left + other.left,
)
}
}
impl<T: Zero, U> SideOffsets2D<T, U> {
/// Constructor, setting all sides to zero.
pub fn zero() -> Self {
SideOffsets2D::new(Zero::zero(), Zero::zero(), Zero::zero(), Zero::zero())
}
}
impl<T: Clone + Mul, U> Mul<T> for SideOffsets2D<T, U> {
type Output = SideOffsets2D<T::Output, U>;
#[inline]
fn mul(self, scale: T) -> Self::Output {
SideOffsets2D::new(
self.top * scale.clone(),
self.right * scale.clone(),
self.bottom * scale.clone(),
self.left * scale,
)
}
}
impl<T: Clone + MulAssign, U> MulAssign<T> for SideOffsets2D<T, U> {
#[inline]
fn mul_assign(&mut self, other: T) {
self.top *= other.clone();
self.right *= other.clone();
self.bottom *= other.clone();
self.left *= other;
}
}
impl<T: Clone + Mul, U1, U2> Mul<Scale<T, U1, U2>> for SideOffsets2D<T, U1> {
type Output = SideOffsets2D<T::Output, U2>;
#[inline]
fn mul(self, scale: Scale<T, U1, U2>) -> Self::Output {
SideOffsets2D::new(
self.top * scale.0.clone(),
self.right * scale.0.clone(),
self.bottom * scale.0.clone(),
self.left * scale.0,
)
}
}
impl<T: Clone + MulAssign, U> MulAssign<Scale<T, U, U>> for SideOffsets2D<T, U> {
#[inline]
fn mul_assign(&mut self, other: Scale<T, U, U>) {
*self *= other.0;
}
}
impl<T: Clone + Div, U> Div<T> for SideOffsets2D<T, U> {
type Output = SideOffsets2D<T::Output, U>;
#[inline]
fn div(self, scale: T) -> Self::Output {
SideOffsets2D::new(
self.top / scale.clone(),
self.right / scale.clone(),
self.bottom / scale.clone(),
self.left / scale,
)
}
}
impl<T: Clone + DivAssign, U> DivAssign<T> for SideOffsets2D<T, U> {
#[inline]
fn div_assign(&mut self, other: T) {
self.top /= other.clone();
self.right /= other.clone();
self.bottom /= other.clone();
self.left /= other;
}
}
impl<T: Clone + Div, U1, U2> Div<Scale<T, U1, U2>> for SideOffsets2D<T, U2> {
type Output = SideOffsets2D<T::Output, U1>;
#[inline]
fn div(self, scale: Scale<T, U1, U2>) -> Self::Output {
SideOffsets2D::new(
self.top / scale.0.clone(),
self.right / scale.0.clone(),
self.bottom / scale.0.clone(),
self.left / scale.0,
)
}
}
impl<T: Clone + DivAssign, U> DivAssign<Scale<T, U, U>> for SideOffsets2D<T, U> {
fn div_assign(&mut self, other: Scale<T, U, U>) {
*self /= other.0;
}
}
#[test]
fn from_vectors() {
use crate::{point2, vec2};
type Box2D = crate::default::Box2D<i32>;
let b = Box2D {
min: point2(10, 10),
max: point2(20, 20),
};
let outer = b.outer_box(SideOffsets2D::from_vectors_outer(vec2(-1, -2), vec2(3, 4)));
let inner = b.inner_box(SideOffsets2D::from_vectors_inner(vec2(1, 2), vec2(-3, -4)));
assert_eq!(
outer,
Box2D {
min: point2(9, 8),
max: point2(23, 24)
}
);
assert_eq!(
inner,
Box2D {
min: point2(11, 12),
max: point2(17, 16)
}
);
}
#[test]
fn test_is_zero() {
let s1: SideOffsets2D<f32, ()> = SideOffsets2D::new_all_same(0.0);
assert!(s1.is_zero());
let s2: SideOffsets2D<f32, ()> = SideOffsets2D::new(1.0, 2.0, 3.0, 4.0);
assert!(!s2.is_zero());
}
#[cfg(test)]
mod ops {
use crate::Scale;
pub enum Mm {}
pub enum Cm {}
type SideOffsets2D<T> = crate::default::SideOffsets2D<T>;
type SideOffsets2DMm<T> = crate::SideOffsets2D<T, Mm>;
type SideOffsets2DCm<T> = crate::SideOffsets2D<T, Cm>;
#[test]
fn test_mul_scalar() {
let s = SideOffsets2D::new(1.0, 2.0, 3.0, 4.0);
let result = s * 3.0;
assert_eq!(result, SideOffsets2D::new(3.0, 6.0, 9.0, 12.0));
}
#[test]
fn test_mul_assign_scalar() {
let mut s = SideOffsets2D::new(1.0, 2.0, 3.0, 4.0);
s *= 2.0;
assert_eq!(s, SideOffsets2D::new(2.0, 4.0, 6.0, 8.0));
}
#[test]
fn test_mul_scale() {
let s = SideOffsets2DMm::new(0.0, 1.0, 3.0, 2.0);
let cm_per_mm: Scale<f32, Mm, Cm> = Scale::new(0.1);
let result = s * cm_per_mm;
assert_eq!(result, SideOffsets2DCm::new(0.0, 0.1, 0.3, 0.2));
}
#[test]
fn test_mul_assign_scale() {
let mut s = SideOffsets2DMm::new(2.0, 4.0, 6.0, 8.0);
let scale: Scale<f32, Mm, Mm> = Scale::new(0.1);
s *= scale;
assert_eq!(s, SideOffsets2DMm::new(0.2, 0.4, 0.6, 0.8));
}
#[test]
fn test_div_scalar() {
let s = SideOffsets2D::new(10.0, 20.0, 30.0, 40.0);
let result = s / 10.0;
assert_eq!(result, SideOffsets2D::new(1.0, 2.0, 3.0, 4.0));
}
#[test]
fn test_div_assign_scalar() {
let mut s = SideOffsets2D::new(10.0, 20.0, 30.0, 40.0);
s /= 10.0;
assert_eq!(s, SideOffsets2D::new(1.0, 2.0, 3.0, 4.0));
}
#[test]
fn test_div_scale() {
let s = SideOffsets2DCm::new(0.1, 0.2, 0.3, 0.4);
let cm_per_mm: Scale<f32, Mm, Cm> = Scale::new(0.1);
let result = s / cm_per_mm;
assert_eq!(result, SideOffsets2DMm::new(1.0, 2.0, 3.0, 4.0));
}
#[test]
fn test_div_assign_scale() {
let mut s = SideOffsets2DMm::new(0.1, 0.2, 0.3, 0.4);
let scale: Scale<f32, Mm, Mm> = Scale::new(0.1);
s /= scale;
assert_eq!(s, SideOffsets2DMm::new(1.0, 2.0, 3.0, 4.0));
}
}

File diff suppressed because it is too large Load Diff

View File

@ -1,827 +0,0 @@
// Copyright 2013 The Servo Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![cfg_attr(feature = "cargo-clippy", allow(just_underscores_and_digits))]
use super::{UnknownUnit, Angle};
#[cfg(feature = "mint")]
use mint;
use crate::num::{One, Zero};
use crate::point::{Point2D, point2};
use crate::vector::{Vector2D, vec2};
use crate::rect::Rect;
use crate::transform3d::Transform3D;
use core::ops::{Add, Mul, Div, Sub};
use core::marker::PhantomData;
use core::cmp::{Eq, PartialEq};
use core::hash::{Hash};
use crate::approxeq::ApproxEq;
use crate::trig::Trig;
use core::fmt;
use num_traits::NumCast;
#[cfg(feature = "serde")]
use serde;
/// A 2d transform stored as a 3 by 2 matrix in row-major order in memory.
///
/// Transforms can be parametrized over the source and destination units, to describe a
/// transformation from a space to another.
/// For example, `Transform2D<f32, WorldSpace, ScreenSpace>::transform_point4d`
/// takes a `Point2D<f32, WorldSpace>` and returns a `Point2D<f32, ScreenSpace>`.
///
/// Transforms expose a set of convenience methods for pre- and post-transformations.
/// A pre-transformation corresponds to adding an operation that is applied before
/// the rest of the transformation, while a post-transformation adds an operation
/// that is applied after.
///
/// These transforms are for working with _row vectors_, so the matrix math for transforming
/// a vector is `v * T`. If your library is using column vectors, use `row_major` functions when you
/// are asked for `column_major` representations and vice versa.
#[repr(C)]
pub struct Transform2D<T, Src, Dst> {
pub m11: T, pub m12: T,
pub m21: T, pub m22: T,
pub m31: T, pub m32: T,
#[doc(hidden)]
pub _unit: PhantomData<(Src, Dst)>,
}
impl<T: Copy, Src, Dst> Copy for Transform2D<T, Src, Dst> {}
impl<T: Clone, Src, Dst> Clone for Transform2D<T, Src, Dst> {
fn clone(&self) -> Self {
Transform2D {
m11: self.m11.clone(),
m12: self.m12.clone(),
m21: self.m21.clone(),
m22: self.m22.clone(),
m31: self.m31.clone(),
m32: self.m32.clone(),
_unit: PhantomData,
}
}
}
#[cfg(feature = "serde")]
impl<'de, T, Src, Dst> serde::Deserialize<'de> for Transform2D<T, Src, Dst>
where T: serde::Deserialize<'de>
{
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where D: serde::Deserializer<'de>
{
let (
m11, m12,
m21, m22,
m31, m32,
) = serde::Deserialize::deserialize(deserializer)?;
Ok(Transform2D {
m11, m12,
m21, m22,
m31, m32,
_unit: PhantomData
})
}
}
#[cfg(feature = "serde")]
impl<T, Src, Dst> serde::Serialize for Transform2D<T, Src, Dst>
where T: serde::Serialize
{
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where S: serde::Serializer
{
(
&self.m11, &self.m12,
&self.m21, &self.m22,
&self.m31, &self.m32,
).serialize(serializer)
}
}
impl<T, Src, Dst> Eq for Transform2D<T, Src, Dst> where T: Eq {}
impl<T, Src, Dst> PartialEq for Transform2D<T, Src, Dst>
where T: PartialEq
{
fn eq(&self, other: &Self) -> bool {
self.m11 == other.m11 &&
self.m12 == other.m12 &&
self.m21 == other.m21 &&
self.m22 == other.m22 &&
self.m31 == other.m31 &&
self.m32 == other.m32
}
}
impl<T, Src, Dst> Hash for Transform2D<T, Src, Dst>
where T: Hash
{
fn hash<H: core::hash::Hasher>(&self, h: &mut H) {
self.m11.hash(h);
self.m12.hash(h);
self.m21.hash(h);
self.m22.hash(h);
self.m31.hash(h);
self.m32.hash(h);
}
}
impl<T, Src, Dst> Transform2D<T, Src, Dst> {
/// Create a transform specifying its matrix elements in row-major order.
///
/// Beware: This library is written with the assumption that row vectors
/// are being used. If your matrices use column vectors (i.e. transforming a vector
/// is `T * v`), then please use `column_major`
pub const fn row_major(m11: T, m12: T, m21: T, m22: T, m31: T, m32: T) -> Self {
Transform2D {
m11, m12,
m21, m22,
m31, m32,
_unit: PhantomData,
}
}
/// Create a transform specifying its matrix elements in column-major order.
///
/// Beware: This library is written with the assumption that row vectors
/// are being used. If your matrices use column vectors (i.e. transforming a vector
/// is `T * v`), then please use `row_major`
pub const fn column_major(m11: T, m21: T, m31: T, m12: T, m22: T, m32: T) -> Self {
Transform2D {
m11, m12,
m21, m22,
m31, m32,
_unit: PhantomData,
}
}
/// Returns true is this transform is approximately equal to the other one, using
/// T's default epsilon value.
///
/// The same as [`ApproxEq::approx_eq()`] but available without importing trait.
///
/// [`ApproxEq::approx_eq()`]: ./approxeq/trait.ApproxEq.html#method.approx_eq
#[inline]
pub fn approx_eq(&self, other: &Self) -> bool
where T : ApproxEq<T> {
<Self as ApproxEq<T>>::approx_eq(&self, &other)
}
/// Returns true is this transform is approximately equal to the other one, using
/// a provided epsilon value.
///
/// The same as [`ApproxEq::approx_eq_eps()`] but available without importing trait.
///
/// [`ApproxEq::approx_eq_eps()`]: ./approxeq/trait.ApproxEq.html#method.approx_eq_eps
#[inline]
pub fn approx_eq_eps(&self, other: &Self, eps: &T) -> bool
where T : ApproxEq<T> {
<Self as ApproxEq<T>>::approx_eq_eps(&self, &other, &eps)
}
}
impl<T: Copy, Src, Dst> Transform2D<T, Src, Dst> {
/// Returns an array containing this transform's terms in row-major order (the order
/// in which the transform is actually laid out in memory).
///
/// Beware: This library is written with the assumption that row vectors
/// are being used. If your matrices use column vectors (i.e. transforming a vector
/// is `T * v`), then please use `to_column_major_array`
#[inline]
pub fn to_row_major_array(&self) -> [T; 6] {
[
self.m11, self.m12,
self.m21, self.m22,
self.m31, self.m32
]
}
/// Returns an array containing this transform's terms in column-major order.
///
/// Beware: This library is written with the assumption that row vectors
/// are being used. If your matrices use column vectors (i.e. transforming a vector
/// is `T * v`), then please use `to_row_major_array`
#[inline]
pub fn to_column_major_array(&self) -> [T; 6] {
[
self.m11, self.m21, self.m31,
self.m12, self.m22, self.m32
]
}
/// Returns an array containing this transform's 3 rows in (in row-major order)
/// as arrays.
///
/// This is a convenience method to interface with other libraries like glium.
///
/// Beware: This library is written with the assumption that row vectors
/// are being used. If your matrices use column vectors (i.e. transforming a vector
/// is `T * v`), this will return column major arrays.
#[inline]
pub fn to_row_arrays(&self) -> [[T; 2]; 3] {
[
[self.m11, self.m12],
[self.m21, self.m22],
[self.m31, self.m32],
]
}
/// Creates a transform from an array of 6 elements in row-major order.
///
/// Beware: This library is written with the assumption that row vectors
/// are being used. If your matrices use column vectors (i.e. transforming a vector
/// is `T * v`), please provide a column major array.
#[inline]
pub fn from_row_major_array(array: [T; 6]) -> Self {
Self::row_major(
array[0], array[1],
array[2], array[3],
array[4], array[5],
)
}
/// Creates a transform from 3 rows of 2 elements (row-major order).
///
/// Beware: This library is written with the assumption that row vectors
/// are being used. If your matrices use column vectors (i.e. transforming a vector
/// is `T * v`), please provide a column major array.
#[inline]
pub fn from_row_arrays(array: [[T; 2]; 3]) -> Self {
Self::row_major(
array[0][0], array[0][1],
array[1][0], array[1][1],
array[2][0], array[2][1],
)
}
/// Drop the units, preserving only the numeric value.
#[inline]
pub fn to_untyped(&self) -> Transform2D<T, UnknownUnit, UnknownUnit> {
Transform2D::row_major(
self.m11, self.m12,
self.m21, self.m22,
self.m31, self.m32
)
}
/// Tag a unitless value with units.
#[inline]
pub fn from_untyped(p: &Transform2D<T, UnknownUnit, UnknownUnit>) -> Self {
Transform2D::row_major(
p.m11, p.m12,
p.m21, p.m22,
p.m31, p.m32
)
}
/// Returns the same transform with a different source unit.
#[inline]
pub fn with_source<NewSrc>(&self) -> Transform2D<T, NewSrc, Dst> {
Transform2D::row_major(
self.m11, self.m12,
self.m21, self.m22,
self.m31, self.m32,
)
}
/// Returns the same transform with a different destination unit.
#[inline]
pub fn with_destination<NewDst>(&self) -> Transform2D<T, Src, NewDst> {
Transform2D::row_major(
self.m11, self.m12,
self.m21, self.m22,
self.m31, self.m32,
)
}
/// Create a 3D transform from the current transform
pub fn to_3d(&self) -> Transform3D<T, Src, Dst>
where
T: Zero + One,
{
Transform3D::row_major_2d(self.m11, self.m12, self.m21, self.m22, self.m31, self.m32)
}
}
impl<T: NumCast + Copy, Src, Dst> Transform2D<T, Src, Dst> {
/// Cast from one numeric representation to another, preserving the units.
#[inline]
pub fn cast<NewT: NumCast>(&self) -> Transform2D<NewT, Src, Dst> {
self.try_cast().unwrap()
}
/// Fallible cast from one numeric representation to another, preserving the units.
pub fn try_cast<NewT: NumCast>(&self) -> Option<Transform2D<NewT, Src, Dst>> {
match (NumCast::from(self.m11), NumCast::from(self.m12),
NumCast::from(self.m21), NumCast::from(self.m22),
NumCast::from(self.m31), NumCast::from(self.m32)) {
(Some(m11), Some(m12),
Some(m21), Some(m22),
Some(m31), Some(m32)) => {
Some(Transform2D::row_major(
m11, m12,
m21, m22,
m31, m32
))
},
_ => None
}
}
}
impl<T, Src, Dst> Transform2D<T, Src, Dst>
where
T: Zero + One,
{
/// Create an identity matrix:
///
/// ```text
/// 1 0
/// 0 1
/// 0 0
/// ```
#[inline]
pub fn identity() -> Self {
Self::create_translation(T::zero(), T::zero())
}
/// Intentional not public, because it checks for exact equivalence
/// while most consumers will probably want some sort of approximate
/// equivalence to deal with floating-point errors.
fn is_identity(&self) -> bool
where
T: PartialEq,
{
*self == Self::identity()
}
}
/// Methods for combining generic transformations
impl<T, Src, Dst> Transform2D<T, Src, Dst>
where
T: Copy + Add<Output = T> + Mul<Output = T>,
{
/// Returns the multiplication of the two matrices such that mat's transformation
/// applies after self's transformation.
///
/// Assuming row vectors, this is equivalent to self * mat
#[must_use]
pub fn post_transform<NewDst>(&self, mat: &Transform2D<T, Dst, NewDst>) -> Transform2D<T, Src, NewDst> {
Transform2D::row_major(
self.m11 * mat.m11 + self.m12 * mat.m21,
self.m11 * mat.m12 + self.m12 * mat.m22,
self.m21 * mat.m11 + self.m22 * mat.m21,
self.m21 * mat.m12 + self.m22 * mat.m22,
self.m31 * mat.m11 + self.m32 * mat.m21 + mat.m31,
self.m31 * mat.m12 + self.m32 * mat.m22 + mat.m32,
)
}
/// Returns the multiplication of the two matrices such that mat's transformation
/// applies before self's transformation.
///
/// Assuming row vectors, this is equivalent to mat * self
#[inline]
#[must_use]
pub fn pre_transform<NewSrc>(&self, mat: &Transform2D<T, NewSrc, Src>) -> Transform2D<T, NewSrc, Dst> {
mat.post_transform(self)
}
}
/// Methods for creating and combining translation transformations
impl<T, Src, Dst> Transform2D<T, Src, Dst>
where
T: Zero + One,
{
/// Create a 2d translation transform:
///
/// ```text
/// 1 0
/// 0 1
/// x y
/// ```
#[inline]
pub fn create_translation(x: T, y: T) -> Self {
let _0 = || T::zero();
let _1 = || T::one();
Self::row_major(
_1(), _0(),
_0(), _1(),
x, y,
)
}
/// Applies a translation after self's transformation and returns the resulting transform.
#[inline]
#[must_use]
pub fn post_translate(&self, v: Vector2D<T, Dst>) -> Self
where
T: Copy + Add<Output = T> + Mul<Output = T>,
{
self.post_transform(&Transform2D::create_translation(v.x, v.y))
}
/// Applies a translation before self's transformation and returns the resulting transform.
#[inline]
#[must_use]
pub fn pre_translate(&self, v: Vector2D<T, Src>) -> Self
where
T: Copy + Add<Output = T> + Mul<Output = T>,
{
self.pre_transform(&Transform2D::create_translation(v.x, v.y))
}
}
/// Methods for creating and combining rotation transformations
impl<T, Src, Dst> Transform2D<T, Src, Dst>
where
T: Copy + Add<Output = T> + Sub<Output = T> + Mul<Output = T> + Zero + Trig,
{
/// Returns a rotation transform.
#[inline]
pub fn create_rotation(theta: Angle<T>) -> Self {
let _0 = Zero::zero();
let cos = theta.get().cos();
let sin = theta.get().sin();
Transform2D::row_major(
cos, _0 - sin,
sin, cos,
_0, _0
)
}
/// Applies a rotation after self's transformation and returns the resulting transform.
#[inline]
#[must_use]
pub fn post_rotate(&self, theta: Angle<T>) -> Self {
self.post_transform(&Transform2D::create_rotation(theta))
}
/// Applies a rotation before self's transformation and returns the resulting transform.
#[inline]
#[must_use]
pub fn pre_rotate(&self, theta: Angle<T>) -> Self {
self.pre_transform(&Transform2D::create_rotation(theta))
}
}
/// Methods for creating and combining scale transformations
impl<T, Src, Dst> Transform2D<T, Src, Dst> {
/// Create a 2d scale transform:
///
/// ```text
/// x 0
/// 0 y
/// 0 0
/// ```
#[inline]
pub fn create_scale(x: T, y: T) -> Self
where
T: Zero,
{
let _0 = || Zero::zero();
Self::row_major(
x, _0(),
_0(), y,
_0(), _0(),
)
}
/// Applies a scale after self's transformation and returns the resulting transform.
#[inline]
#[must_use]
pub fn post_scale(&self, x: T, y: T) -> Self
where
T: Copy + Add<Output = T> + Mul<Output = T> + Zero,
{
self.post_transform(&Transform2D::create_scale(x, y))
}
/// Applies a scale before self's transformation and returns the resulting transform.
#[inline]
#[must_use]
pub fn pre_scale(&self, x: T, y: T) -> Self
where
T: Copy + Mul<Output = T>,
{
Transform2D::row_major(
self.m11 * x, self.m12 * x,
self.m21 * y, self.m22 * y,
self.m31, self.m32
)
}
}
/// Methods for apply transformations to objects
impl<T, Src, Dst> Transform2D<T, Src, Dst>
where
T: Copy + Add<Output = T> + Mul<Output = T>,
{
/// Returns the given point transformed by this transform.
///
/// Assuming row vectors, this is equivalent to `p * self`
#[inline]
#[must_use]
pub fn transform_point(&self, point: Point2D<T, Src>) -> Point2D<T, Dst> {
Point2D::new(
point.x * self.m11 + point.y * self.m21 + self.m31,
point.x * self.m12 + point.y * self.m22 + self.m32
)
}
/// Returns the given vector transformed by this matrix.
///
/// Assuming row vectors, this is equivalent to `v * self`
#[inline]
#[must_use]
pub fn transform_vector(&self, vec: Vector2D<T, Src>) -> Vector2D<T, Dst> {
vec2(vec.x * self.m11 + vec.y * self.m21,
vec.x * self.m12 + vec.y * self.m22)
}
/// Returns a rectangle that encompasses the result of transforming the given rectangle by this
/// transform.
#[inline]
#[must_use]
pub fn transform_rect(&self, rect: &Rect<T, Src>) -> Rect<T, Dst>
where
T: Sub<Output = T> + Zero + PartialOrd,
{
let min = rect.min();
let max = rect.max();
Rect::from_points(&[
self.transform_point(min),
self.transform_point(max),
self.transform_point(point2(max.x, min.y)),
self.transform_point(point2(min.x, max.y)),
])
}
}
impl<T, Src, Dst> Transform2D<T, Src, Dst>
where
T: Copy + Sub<Output = T> + Mul<Output = T> + Div<Output = T> + PartialEq + Zero + One,
{
/// Computes and returns the determinant of this transform.
pub fn determinant(&self) -> T {
self.m11 * self.m22 - self.m12 * self.m21
}
/// Returns whether it is possible to compute the inverse transform.
#[inline]
pub fn is_invertible(&self) -> bool {
self.determinant() != Zero::zero()
}
/// Returns the inverse transform if possible.
#[must_use]
pub fn inverse(&self) -> Option<Transform2D<T, Dst, Src>> {
let det = self.determinant();
let _0: T = Zero::zero();
let _1: T = One::one();
if det == _0 {
return None;
}
let inv_det = _1 / det;
Some(Transform2D::row_major(
inv_det * self.m22,
inv_det * (_0 - self.m12),
inv_det * (_0 - self.m21),
inv_det * self.m11,
inv_det * (self.m21 * self.m32 - self.m22 * self.m31),
inv_det * (self.m31 * self.m12 - self.m11 * self.m32),
))
}
}
impl <T, Src, Dst> Default for Transform2D<T, Src, Dst>
where T: Zero + One
{
/// Returns the [identity transform](#method.identity).
fn default() -> Self {
Self::identity()
}
}
impl<T: ApproxEq<T>, Src, Dst> ApproxEq<T> for Transform2D<T, Src, Dst> {
#[inline]
fn approx_epsilon() -> T { T::approx_epsilon() }
/// Returns true is this transform is approximately equal to the other one, using
/// a provided epsilon value.
fn approx_eq_eps(&self, other: &Self, eps: &T) -> bool {
self.m11.approx_eq_eps(&other.m11, eps) && self.m12.approx_eq_eps(&other.m12, eps) &&
self.m21.approx_eq_eps(&other.m21, eps) && self.m22.approx_eq_eps(&other.m22, eps) &&
self.m31.approx_eq_eps(&other.m31, eps) && self.m32.approx_eq_eps(&other.m32, eps)
}
}
impl<T, Src, Dst> fmt::Debug for Transform2D<T, Src, Dst>
where T: Copy + fmt::Debug +
PartialEq +
One + Zero {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
if self.is_identity() {
write!(f, "[I]")
} else {
self.to_row_major_array().fmt(f)
}
}
}
#[cfg(feature = "mint")]
impl<T, Src, Dst> From<mint::RowMatrix3x2<T>> for Transform2D<T, Src, Dst> {
fn from(m: mint::RowMatrix3x2<T>) -> Self {
Transform2D {
m11: m.x.x, m12: m.x.y,
m21: m.y.x, m22: m.y.y,
m31: m.z.x, m32: m.z.y,
_unit: PhantomData,
}
}
}
#[cfg(feature = "mint")]
impl<T, Src, Dst> Into<mint::RowMatrix3x2<T>> for Transform2D<T, Src, Dst> {
fn into(self) -> mint::RowMatrix3x2<T> {
mint::RowMatrix3x2 {
x: mint::Vector2 { x: self.m11, y: self.m12 },
y: mint::Vector2 { x: self.m21, y: self.m22 },
z: mint::Vector2 { x: self.m31, y: self.m32 },
}
}
}
#[cfg(test)]
mod test {
use super::*;
use crate::default;
use crate::approxeq::ApproxEq;
#[cfg(feature = "mint")]
use mint;
use core::f32::consts::FRAC_PI_2;
type Mat = default::Transform2D<f32>;
fn rad(v: f32) -> Angle<f32> { Angle::radians(v) }
#[test]
pub fn test_translation() {
let t1 = Mat::create_translation(1.0, 2.0);
let t2 = Mat::identity().pre_translate(vec2(1.0, 2.0));
let t3 = Mat::identity().post_translate(vec2(1.0, 2.0));
assert_eq!(t1, t2);
assert_eq!(t1, t3);
assert_eq!(t1.transform_point(Point2D::new(1.0, 1.0)), Point2D::new(2.0, 3.0));
assert_eq!(t1.post_transform(&t1), Mat::create_translation(2.0, 4.0));
}
#[test]
pub fn test_rotation() {
let r1 = Mat::create_rotation(rad(FRAC_PI_2));
let r2 = Mat::identity().pre_rotate(rad(FRAC_PI_2));
let r3 = Mat::identity().post_rotate(rad(FRAC_PI_2));
assert_eq!(r1, r2);
assert_eq!(r1, r3);
assert!(r1.transform_point(Point2D::new(1.0, 2.0)).approx_eq(&Point2D::new(2.0, -1.0)));
assert!(r1.post_transform(&r1).approx_eq(&Mat::create_rotation(rad(FRAC_PI_2*2.0))));
}
#[test]
pub fn test_scale() {
let s1 = Mat::create_scale(2.0, 3.0);
let s2 = Mat::identity().pre_scale(2.0, 3.0);
let s3 = Mat::identity().post_scale(2.0, 3.0);
assert_eq!(s1, s2);
assert_eq!(s1, s3);
assert!(s1.transform_point(Point2D::new(2.0, 2.0)).approx_eq(&Point2D::new(4.0, 6.0)));
}
#[test]
pub fn test_pre_post_scale() {
let m = Mat::create_rotation(rad(FRAC_PI_2)).post_translate(vec2(6.0, 7.0));
let s = Mat::create_scale(2.0, 3.0);
assert_eq!(m.post_transform(&s), m.post_scale(2.0, 3.0));
assert_eq!(m.pre_transform(&s), m.pre_scale(2.0, 3.0));
}
#[test]
fn test_column_major() {
assert_eq!(
Mat::row_major(
1.0, 2.0,
3.0, 4.0,
5.0, 6.0
),
Mat::column_major(
1.0, 3.0, 5.0,
2.0, 4.0, 6.0,
)
);
}
#[test]
pub fn test_inverse_simple() {
let m1 = Mat::identity();
let m2 = m1.inverse().unwrap();
assert!(m1.approx_eq(&m2));
}
#[test]
pub fn test_inverse_scale() {
let m1 = Mat::create_scale(1.5, 0.3);
let m2 = m1.inverse().unwrap();
assert!(m1.pre_transform(&m2).approx_eq(&Mat::identity()));
}
#[test]
pub fn test_inverse_translate() {
let m1 = Mat::create_translation(-132.0, 0.3);
let m2 = m1.inverse().unwrap();
assert!(m1.pre_transform(&m2).approx_eq(&Mat::identity()));
}
#[test]
fn test_inverse_none() {
assert!(Mat::create_scale(2.0, 0.0).inverse().is_none());
assert!(Mat::create_scale(2.0, 2.0).inverse().is_some());
}
#[test]
pub fn test_pre_post() {
let m1 = default::Transform2D::identity().post_scale(1.0, 2.0).post_translate(vec2(1.0, 2.0));
let m2 = default::Transform2D::identity().pre_translate(vec2(1.0, 2.0)).pre_scale(1.0, 2.0);
assert!(m1.approx_eq(&m2));
let r = Mat::create_rotation(rad(FRAC_PI_2));
let t = Mat::create_translation(2.0, 3.0);
let a = Point2D::new(1.0, 1.0);
assert!(r.post_transform(&t).transform_point(a).approx_eq(&Point2D::new(3.0, 2.0)));
assert!(t.post_transform(&r).transform_point(a).approx_eq(&Point2D::new(4.0, -3.0)));
assert!(t.post_transform(&r).transform_point(a).approx_eq(&r.transform_point(t.transform_point(a))));
assert!(r.pre_transform(&t).transform_point(a).approx_eq(&Point2D::new(4.0, -3.0)));
assert!(t.pre_transform(&r).transform_point(a).approx_eq(&Point2D::new(3.0, 2.0)));
assert!(t.pre_transform(&r).transform_point(a).approx_eq(&t.transform_point(r.transform_point(a))));
}
#[test]
fn test_size_of() {
use core::mem::size_of;
assert_eq!(size_of::<default::Transform2D<f32>>(), 6*size_of::<f32>());
assert_eq!(size_of::<default::Transform2D<f64>>(), 6*size_of::<f64>());
}
#[test]
pub fn test_is_identity() {
let m1 = default::Transform2D::identity();
assert!(m1.is_identity());
let m2 = m1.post_translate(vec2(0.1, 0.0));
assert!(!m2.is_identity());
}
#[test]
pub fn test_transform_vector() {
// Translation does not apply to vectors.
let m1 = Mat::create_translation(1.0, 1.0);
let v1 = vec2(10.0, -10.0);
assert_eq!(v1, m1.transform_vector(v1));
}
#[cfg(feature = "mint")]
#[test]
pub fn test_mint() {
let m1 = Mat::create_rotation(rad(FRAC_PI_2));
let mm: mint::RowMatrix3x2<_> = m1.into();
let m2 = Mat::from(mm);
assert_eq!(m1, m2);
}
}

File diff suppressed because it is too large Load Diff

View File

@ -1,824 +0,0 @@
// Copyright 2018 The Servo Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use crate::num::*;
use crate::UnknownUnit;
use crate::{point2, point3, vec2, vec3, Box2D, Box3D, Rect, Size2D};
use crate::{Point2D, Point3D, Transform2D, Transform3D, Vector2D, Vector3D};
use core::cmp::{Eq, PartialEq};
use core::fmt;
use core::hash::Hash;
use core::marker::PhantomData;
use core::ops::{Add, AddAssign, Neg, Sub, SubAssign};
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
/// A 2d transformation from a space to another that can only express translations.
///
/// The main benefit of this type over a Vector2D is the ability to cast
/// between a source and a destination spaces.
///
/// Example:
///
/// ```
/// use euclid::{Translation2D, Point2D, point2};
/// struct ParentSpace;
/// struct ChildSpace;
/// type ScrollOffset = Translation2D<i32, ParentSpace, ChildSpace>;
/// type ParentPoint = Point2D<i32, ParentSpace>;
/// type ChildPoint = Point2D<i32, ChildSpace>;
///
/// let scrolling = ScrollOffset::new(0, 100);
/// let p1: ParentPoint = point2(0, 0);
/// let p2: ChildPoint = scrolling.transform_point(p1);
/// ```
///
#[repr(C)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(
feature = "serde",
serde(bound(
serialize = "T: serde::Serialize",
deserialize = "T: serde::Deserialize<'de>"
))
)]
pub struct Translation2D<T, Src, Dst> {
pub x: T,
pub y: T,
#[doc(hidden)]
pub _unit: PhantomData<(Src, Dst)>,
}
impl<T: Copy, Src, Dst> Copy for Translation2D<T, Src, Dst> {}
impl<T: Clone, Src, Dst> Clone for Translation2D<T, Src, Dst> {
fn clone(&self) -> Self {
Translation2D {
x: self.x.clone(),
y: self.y.clone(),
_unit: PhantomData,
}
}
}
impl<T, Src, Dst> Eq for Translation2D<T, Src, Dst> where T: Eq {}
impl<T, Src, Dst> PartialEq for Translation2D<T, Src, Dst>
where
T: PartialEq,
{
fn eq(&self, other: &Self) -> bool {
self.x == other.x && self.y == other.y
}
}
impl<T, Src, Dst> Hash for Translation2D<T, Src, Dst>
where
T: Hash,
{
fn hash<H: core::hash::Hasher>(&self, h: &mut H) {
self.x.hash(h);
self.y.hash(h);
}
}
impl<T, Src, Dst> Translation2D<T, Src, Dst> {
#[inline]
pub const fn new(x: T, y: T) -> Self {
Translation2D {
x,
y,
_unit: PhantomData,
}
}
/// Creates no-op translation (both `x` and `y` is `zero()`).
#[inline]
pub fn identity() -> Self
where
T: Zero,
{
Self::new(T::zero(), T::zero())
}
/// Check if translation does nothing (both x and y is `zero()`).
///
/// ```rust
/// use euclid::default::Translation2D;
///
/// assert_eq!(Translation2D::<f32>::identity().is_identity(), true);
/// assert_eq!(Translation2D::new(0, 0).is_identity(), true);
/// assert_eq!(Translation2D::new(1, 0).is_identity(), false);
/// assert_eq!(Translation2D::new(0, 1).is_identity(), false);
/// ```
#[inline]
pub fn is_identity(&self) -> bool
where
T: Zero + PartialEq,
{
let _0 = T::zero();
self.x == _0 && self.y == _0
}
/// No-op, just cast the unit.
#[inline]
pub fn transform_size(&self, s: Size2D<T, Src>) -> Size2D<T, Dst> {
Size2D::new(s.width, s.height)
}
}
impl<T: Copy, Src, Dst> Translation2D<T, Src, Dst> {
/// Cast into a 2D vector.
#[inline]
pub fn to_vector(&self) -> Vector2D<T, Src> {
vec2(self.x, self.y)
}
/// Cast into an array with x and y.
#[inline]
pub fn to_array(&self) -> [T; 2] {
[self.x, self.y]
}
/// Cast into a tuple with x and y.
#[inline]
pub fn to_tuple(&self) -> (T, T) {
(self.x, self.y)
}
/// Drop the units, preserving only the numeric value.
#[inline]
pub fn to_untyped(&self) -> Translation2D<T, UnknownUnit, UnknownUnit> {
Translation2D {
x: self.x,
y: self.y,
_unit: PhantomData,
}
}
/// Tag a unitless value with units.
#[inline]
pub fn from_untyped(t: &Translation2D<T, UnknownUnit, UnknownUnit>) -> Self {
Translation2D {
x: t.x,
y: t.y,
_unit: PhantomData,
}
}
/// Returns the matrix representation of this translation.
#[inline]
pub fn to_transform(&self) -> Transform2D<T, Src, Dst>
where
T: Zero + One,
{
(*self).into()
}
/// Translate a point and cast its unit.
#[inline]
pub fn transform_point(&self, p: Point2D<T, Src>) -> Point2D<T::Output, Dst>
where
T: Add,
{
point2(p.x + self.x, p.y + self.y)
}
/// Translate a rectangle and cast its unit.
#[inline]
pub fn transform_rect(&self, r: &Rect<T, Src>) -> Rect<T::Output, Dst>
where
T: Add<Output = T>,
{
Rect {
origin: self.transform_point(r.origin),
size: self.transform_size(r.size),
}
}
/// Translate a 2D box and cast its unit.
#[inline]
pub fn transform_box(&self, r: &Box2D<T, Src>) -> Box2D<T::Output, Dst>
where
T: Add,
{
Box2D {
min: self.transform_point(r.min),
max: self.transform_point(r.max),
}
}
/// Return the inverse transformation.
#[inline]
pub fn inverse(&self) -> Translation2D<T::Output, Dst, Src>
where
T: Neg,
{
Translation2D::new(-self.x, -self.y)
}
}
impl<T: Add, Src, Dst1, Dst2> Add<Translation2D<T, Dst1, Dst2>> for Translation2D<T, Src, Dst1> {
type Output = Translation2D<T::Output, Src, Dst2>;
fn add(self, other: Translation2D<T, Dst1, Dst2>) -> Self::Output {
Translation2D::new(self.x + other.x, self.y + other.y)
}
}
impl<T: AddAssign, Src, Dst> AddAssign<Translation2D<T, Dst, Dst>> for Translation2D<T, Src, Dst> {
fn add_assign(&mut self, other: Translation2D<T, Dst, Dst>) {
self.x += other.x;
self.y += other.y;
}
}
impl<T: Sub, Src, Dst1, Dst2> Sub<Translation2D<T, Dst1, Dst2>> for Translation2D<T, Src, Dst2> {
type Output = Translation2D<T::Output, Src, Dst1>;
fn sub(self, other: Translation2D<T, Dst1, Dst2>) -> Self::Output {
Translation2D::new(self.x - other.x, self.y - other.y)
}
}
impl<T: SubAssign, Src, Dst> SubAssign<Translation2D<T, Dst, Dst>> for Translation2D<T, Src, Dst> {
fn sub_assign(&mut self, other: Translation2D<T, Dst, Dst>) {
self.x -= other.x;
self.y -= other.y;
}
}
impl<T, Src, Dst> From<Vector2D<T, Src>> for Translation2D<T, Src, Dst> {
fn from(v: Vector2D<T, Src>) -> Self {
Translation2D::new(v.x, v.y)
}
}
impl<T, Src, Dst> Into<Vector2D<T, Src>> for Translation2D<T, Src, Dst> {
fn into(self) -> Vector2D<T, Src> {
vec2(self.x, self.y)
}
}
impl<T, Src, Dst> Into<Transform2D<T, Src, Dst>> for Translation2D<T, Src, Dst>
where
T: Zero + One,
{
fn into(self) -> Transform2D<T, Src, Dst> {
Transform2D::create_translation(self.x, self.y)
}
}
impl<T, Src, Dst> Default for Translation2D<T, Src, Dst>
where
T: Zero,
{
fn default() -> Self {
Self::identity()
}
}
impl<T: fmt::Debug, Src, Dst> fmt::Debug for Translation2D<T, Src, Dst> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "Translation({:?},{:?})", self.x, self.y)
}
}
impl<T: fmt::Display, Src, Dst> fmt::Display for Translation2D<T, Src, Dst> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "({},{})", self.x, self.y)
}
}
/// A 3d transformation from a space to another that can only express translations.
///
/// The main benefit of this type over a Vector3D is the ability to cast
/// between a source and a destination spaces.
#[repr(C)]
pub struct Translation3D<T, Src, Dst> {
pub x: T,
pub y: T,
pub z: T,
#[doc(hidden)]
pub _unit: PhantomData<(Src, Dst)>,
}
impl<T: Copy, Src, Dst> Copy for Translation3D<T, Src, Dst> {}
impl<T: Clone, Src, Dst> Clone for Translation3D<T, Src, Dst> {
fn clone(&self) -> Self {
Translation3D {
x: self.x.clone(),
y: self.y.clone(),
z: self.z.clone(),
_unit: PhantomData,
}
}
}
#[cfg(feature = "serde")]
impl<'de, T, Src, Dst> serde::Deserialize<'de> for Translation3D<T, Src, Dst>
where
T: serde::Deserialize<'de>,
{
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: serde::Deserializer<'de>,
{
let (x, y, z) = serde::Deserialize::deserialize(deserializer)?;
Ok(Translation3D {
x,
y,
z,
_unit: PhantomData,
})
}
}
#[cfg(feature = "serde")]
impl<T, Src, Dst> serde::Serialize for Translation3D<T, Src, Dst>
where
T: serde::Serialize,
{
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: serde::Serializer,
{
(&self.x, &self.y, &self.z).serialize(serializer)
}
}
impl<T, Src, Dst> Eq for Translation3D<T, Src, Dst> where T: Eq {}
impl<T, Src, Dst> PartialEq for Translation3D<T, Src, Dst>
where
T: PartialEq,
{
fn eq(&self, other: &Self) -> bool {
self.x == other.x && self.y == other.y && self.z == other.z
}
}
impl<T, Src, Dst> Hash for Translation3D<T, Src, Dst>
where
T: Hash,
{
fn hash<H: core::hash::Hasher>(&self, h: &mut H) {
self.x.hash(h);
self.y.hash(h);
self.z.hash(h);
}
}
impl<T, Src, Dst> Translation3D<T, Src, Dst> {
#[inline]
pub const fn new(x: T, y: T, z: T) -> Self {
Translation3D {
x,
y,
z,
_unit: PhantomData,
}
}
/// Creates no-op translation (`x`, `y` and `z` is `zero()`).
#[inline]
pub fn identity() -> Self
where
T: Zero,
{
Translation3D::new(T::zero(), T::zero(), T::zero())
}
/// Check if translation does nothing (`x`, `y` and `z` is `zero()`).
///
/// ```rust
/// use euclid::default::Translation3D;
///
/// assert_eq!(Translation3D::<f32>::identity().is_identity(), true);
/// assert_eq!(Translation3D::new(0, 0, 0).is_identity(), true);
/// assert_eq!(Translation3D::new(1, 0, 0).is_identity(), false);
/// assert_eq!(Translation3D::new(0, 1, 0).is_identity(), false);
/// assert_eq!(Translation3D::new(0, 0, 1).is_identity(), false);
/// ```
#[inline]
pub fn is_identity(&self) -> bool
where
T: Zero + PartialEq,
{
let _0 = T::zero();
self.x == _0 && self.y == _0 && self.z == _0
}
/// No-op, just cast the unit.
#[inline]
pub fn transform_size(self, s: Size2D<T, Src>) -> Size2D<T, Dst> {
Size2D::new(s.width, s.height)
}
}
impl<T: Copy, Src, Dst> Translation3D<T, Src, Dst> {
/// Cast into a 3D vector.
#[inline]
pub fn to_vector(&self) -> Vector3D<T, Src> {
vec3(self.x, self.y, self.z)
}
/// Cast into an array with x, y and z.
#[inline]
pub fn to_array(&self) -> [T; 3] {
[self.x, self.y, self.z]
}
/// Cast into a tuple with x, y and z.
#[inline]
pub fn to_tuple(&self) -> (T, T, T) {
(self.x, self.y, self.z)
}
/// Drop the units, preserving only the numeric value.
#[inline]
pub fn to_untyped(&self) -> Translation3D<T, UnknownUnit, UnknownUnit> {
Translation3D {
x: self.x,
y: self.y,
z: self.z,
_unit: PhantomData,
}
}
/// Tag a unitless value with units.
#[inline]
pub fn from_untyped(t: &Translation3D<T, UnknownUnit, UnknownUnit>) -> Self {
Translation3D {
x: t.x,
y: t.y,
z: t.z,
_unit: PhantomData,
}
}
/// Returns the matrix representation of this translation.
#[inline]
pub fn to_transform(&self) -> Transform3D<T, Src, Dst>
where
T: Zero + One,
{
(*self).into()
}
/// Translate a point and cast its unit.
#[inline]
pub fn transform_point3d(&self, p: &Point3D<T, Src>) -> Point3D<T::Output, Dst>
where
T: Add,
{
point3(p.x + self.x, p.y + self.y, p.z + self.z)
}
/// Translate a point and cast its unit.
#[inline]
pub fn transform_point2d(&self, p: &Point2D<T, Src>) -> Point2D<T::Output, Dst>
where
T: Add,
{
point2(p.x + self.x, p.y + self.y)
}
/// Translate a 2D box and cast its unit.
#[inline]
pub fn transform_box2d(&self, b: &Box2D<T, Src>) -> Box2D<T::Output, Dst>
where
T: Add,
{
Box2D {
min: self.transform_point2d(&b.min),
max: self.transform_point2d(&b.max),
}
}
/// Translate a 3D box and cast its unit.
#[inline]
pub fn transform_box3d(&self, b: &Box3D<T, Src>) -> Box3D<T::Output, Dst>
where
T: Add,
{
Box3D {
min: self.transform_point3d(&b.min),
max: self.transform_point3d(&b.max),
}
}
/// Translate a rectangle and cast its unit.
#[inline]
pub fn transform_rect(&self, r: &Rect<T, Src>) -> Rect<T, Dst>
where
T: Add<Output = T>,
{
Rect {
origin: self.transform_point2d(&r.origin),
size: self.transform_size(r.size),
}
}
/// Return the inverse transformation.
#[inline]
pub fn inverse(&self) -> Translation3D<T::Output, Dst, Src>
where
T: Neg,
{
Translation3D::new(-self.x, -self.y, -self.z)
}
}
impl<T: Add, Src, Dst1, Dst2> Add<Translation3D<T, Dst1, Dst2>> for Translation3D<T, Src, Dst1> {
type Output = Translation3D<T::Output, Src, Dst2>;
fn add(self, other: Translation3D<T, Dst1, Dst2>) -> Self::Output {
Translation3D::new(self.x + other.x, self.y + other.y, self.z + other.z)
}
}
impl<T: AddAssign, Src, Dst> AddAssign<Translation3D<T, Dst, Dst>> for Translation3D<T, Src, Dst> {
fn add_assign(&mut self, other: Translation3D<T, Dst, Dst>) {
self.x += other.x;
self.y += other.y;
self.z += other.z;
}
}
impl<T: Sub, Src, Dst1, Dst2> Sub<Translation3D<T, Dst1, Dst2>> for Translation3D<T, Src, Dst2> {
type Output = Translation3D<T::Output, Src, Dst1>;
fn sub(self, other: Translation3D<T, Dst1, Dst2>) -> Self::Output {
Translation3D::new(self.x - other.x, self.y - other.y, self.z - other.z)
}
}
impl<T: SubAssign, Src, Dst> SubAssign<Translation3D<T, Dst, Dst>> for Translation3D<T, Src, Dst> {
fn sub_assign(&mut self, other: Translation3D<T, Dst, Dst>) {
self.x -= other.x;
self.y -= other.y;
self.z -= other.z;
}
}
impl<T, Src, Dst> From<Vector3D<T, Src>> for Translation3D<T, Src, Dst> {
fn from(v: Vector3D<T, Src>) -> Self {
Translation3D::new(v.x, v.y, v.z)
}
}
impl<T, Src, Dst> Into<Vector3D<T, Src>> for Translation3D<T, Src, Dst> {
fn into(self) -> Vector3D<T, Src> {
vec3(self.x, self.y, self.z)
}
}
impl<T, Src, Dst> Into<Transform3D<T, Src, Dst>> for Translation3D<T, Src, Dst>
where
T: Zero + One,
{
fn into(self) -> Transform3D<T, Src, Dst> {
Transform3D::create_translation(self.x, self.y, self.z)
}
}
impl<T, Src, Dst> Default for Translation3D<T, Src, Dst>
where
T: Zero,
{
fn default() -> Self {
Self::identity()
}
}
impl<T: fmt::Debug, Src, Dst> fmt::Debug for Translation3D<T, Src, Dst> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "Translation({:?},{:?},{:?})", self.x, self.y, self.z)
}
}
impl<T: fmt::Display, Src, Dst> fmt::Display for Translation3D<T, Src, Dst> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "({},{},{})", self.x, self.y, self.z)
}
}
#[cfg(test)]
mod _2d {
#[test]
fn simple() {
use crate::{rect, Rect, Translation2D};
struct A;
struct B;
type Translation = Translation2D<i32, A, B>;
type SrcRect = Rect<i32, A>;
type DstRect = Rect<i32, B>;
let tx = Translation::new(10, -10);
let r1: SrcRect = rect(10, 20, 30, 40);
let r2: DstRect = tx.transform_rect(&r1);
assert_eq!(r2, rect(20, 10, 30, 40));
let inv_tx = tx.inverse();
assert_eq!(inv_tx.transform_rect(&r2), r1);
assert!((tx + inv_tx).is_identity());
}
/// Operation tests
mod ops {
use crate::default::Translation2D;
#[test]
fn test_add() {
let t1 = Translation2D::new(1.0, 2.0);
let t2 = Translation2D::new(3.0, 4.0);
assert_eq!(t1 + t2, Translation2D::new(4.0, 6.0));
let t1 = Translation2D::new(1.0, 2.0);
let t2 = Translation2D::new(0.0, 0.0);
assert_eq!(t1 + t2, Translation2D::new(1.0, 2.0));
let t1 = Translation2D::new(1.0, 2.0);
let t2 = Translation2D::new(-3.0, -4.0);
assert_eq!(t1 + t2, Translation2D::new(-2.0, -2.0));
let t1 = Translation2D::new(0.0, 0.0);
let t2 = Translation2D::new(0.0, 0.0);
assert_eq!(t1 + t2, Translation2D::new(0.0, 0.0));
}
#[test]
pub fn test_add_assign() {
let mut t = Translation2D::new(1.0, 2.0);
t += Translation2D::new(3.0, 4.0);
assert_eq!(t, Translation2D::new(4.0, 6.0));
let mut t = Translation2D::new(1.0, 2.0);
t += Translation2D::new(0.0, 0.0);
assert_eq!(t, Translation2D::new(1.0, 2.0));
let mut t = Translation2D::new(1.0, 2.0);
t += Translation2D::new(-3.0, -4.0);
assert_eq!(t, Translation2D::new(-2.0, -2.0));
let mut t = Translation2D::new(0.0, 0.0);
t += Translation2D::new(0.0, 0.0);
assert_eq!(t, Translation2D::new(0.0, 0.0));
}
#[test]
pub fn test_sub() {
let t1 = Translation2D::new(1.0, 2.0);
let t2 = Translation2D::new(3.0, 4.0);
assert_eq!(t1 - t2, Translation2D::new(-2.0, -2.0));
let t1 = Translation2D::new(1.0, 2.0);
let t2 = Translation2D::new(0.0, 0.0);
assert_eq!(t1 - t2, Translation2D::new(1.0, 2.0));
let t1 = Translation2D::new(1.0, 2.0);
let t2 = Translation2D::new(-3.0, -4.0);
assert_eq!(t1 - t2, Translation2D::new(4.0, 6.0));
let t1 = Translation2D::new(0.0, 0.0);
let t2 = Translation2D::new(0.0, 0.0);
assert_eq!(t1 - t2, Translation2D::new(0.0, 0.0));
}
#[test]
pub fn test_sub_assign() {
let mut t = Translation2D::new(1.0, 2.0);
t -= Translation2D::new(3.0, 4.0);
assert_eq!(t, Translation2D::new(-2.0, -2.0));
let mut t = Translation2D::new(1.0, 2.0);
t -= Translation2D::new(0.0, 0.0);
assert_eq!(t, Translation2D::new(1.0, 2.0));
let mut t = Translation2D::new(1.0, 2.0);
t -= Translation2D::new(-3.0, -4.0);
assert_eq!(t, Translation2D::new(4.0, 6.0));
let mut t = Translation2D::new(0.0, 0.0);
t -= Translation2D::new(0.0, 0.0);
assert_eq!(t, Translation2D::new(0.0, 0.0));
}
}
}
#[cfg(test)]
mod _3d {
#[test]
fn simple() {
use crate::{point3, Point3D, Translation3D};
struct A;
struct B;
type Translation = Translation3D<i32, A, B>;
type SrcPoint = Point3D<i32, A>;
type DstPoint = Point3D<i32, B>;
let tx = Translation::new(10, -10, 100);
let p1: SrcPoint = point3(10, 20, 30);
let p2: DstPoint = tx.transform_point3d(&p1);
assert_eq!(p2, point3(20, 10, 130));
let inv_tx = tx.inverse();
assert_eq!(inv_tx.transform_point3d(&p2), p1);
assert!((tx + inv_tx).is_identity());
}
/// Operation tests
mod ops {
use crate::default::Translation3D;
#[test]
pub fn test_add() {
let t1 = Translation3D::new(1.0, 2.0, 3.0);
let t2 = Translation3D::new(4.0, 5.0, 6.0);
assert_eq!(t1 + t2, Translation3D::new(5.0, 7.0, 9.0));
let t1 = Translation3D::new(1.0, 2.0, 3.0);
let t2 = Translation3D::new(0.0, 0.0, 0.0);
assert_eq!(t1 + t2, Translation3D::new(1.0, 2.0, 3.0));
let t1 = Translation3D::new(1.0, 2.0, 3.0);
let t2 = Translation3D::new(-4.0, -5.0, -6.0);
assert_eq!(t1 + t2, Translation3D::new(-3.0, -3.0, -3.0));
let t1 = Translation3D::new(0.0, 0.0, 0.0);
let t2 = Translation3D::new(0.0, 0.0, 0.0);
assert_eq!(t1 + t2, Translation3D::new(0.0, 0.0, 0.0));
}
#[test]
pub fn test_add_assign() {
let mut t = Translation3D::new(1.0, 2.0, 3.0);
t += Translation3D::new(4.0, 5.0, 6.0);
assert_eq!(t, Translation3D::new(5.0, 7.0, 9.0));
let mut t = Translation3D::new(1.0, 2.0, 3.0);
t += Translation3D::new(0.0, 0.0, 0.0);
assert_eq!(t, Translation3D::new(1.0, 2.0, 3.0));
let mut t = Translation3D::new(1.0, 2.0, 3.0);
t += Translation3D::new(-4.0, -5.0, -6.0);
assert_eq!(t, Translation3D::new(-3.0, -3.0, -3.0));
let mut t = Translation3D::new(0.0, 0.0, 0.0);
t += Translation3D::new(0.0, 0.0, 0.0);
assert_eq!(t, Translation3D::new(0.0, 0.0, 0.0));
}
#[test]
pub fn test_sub() {
let t1 = Translation3D::new(1.0, 2.0, 3.0);
let t2 = Translation3D::new(4.0, 5.0, 6.0);
assert_eq!(t1 - t2, Translation3D::new(-3.0, -3.0, -3.0));
let t1 = Translation3D::new(1.0, 2.0, 3.0);
let t2 = Translation3D::new(0.0, 0.0, 0.0);
assert_eq!(t1 - t2, Translation3D::new(1.0, 2.0, 3.0));
let t1 = Translation3D::new(1.0, 2.0, 3.0);
let t2 = Translation3D::new(-4.0, -5.0, -6.0);
assert_eq!(t1 - t2, Translation3D::new(5.0, 7.0, 9.0));
let t1 = Translation3D::new(0.0, 0.0, 0.0);
let t2 = Translation3D::new(0.0, 0.0, 0.0);
assert_eq!(t1 - t2, Translation3D::new(0.0, 0.0, 0.0));
}
#[test]
pub fn test_sub_assign() {
let mut t = Translation3D::new(1.0, 2.0, 3.0);
t -= Translation3D::new(4.0, 5.0, 6.0);
assert_eq!(t, Translation3D::new(-3.0, -3.0, -3.0));
let mut t = Translation3D::new(1.0, 2.0, 3.0);
t -= Translation3D::new(0.0, 0.0, 0.0);
assert_eq!(t, Translation3D::new(1.0, 2.0, 3.0));
let mut t = Translation3D::new(1.0, 2.0, 3.0);
t -= Translation3D::new(-4.0, -5.0, -6.0);
assert_eq!(t, Translation3D::new(5.0, 7.0, 9.0));
let mut t = Translation3D::new(0.0, 0.0, 0.0);
t -= Translation3D::new(0.0, 0.0, 0.0);
assert_eq!(t, Translation3D::new(0.0, 0.0, 0.0));
}
}
}

View File

@ -1,80 +0,0 @@
// Copyright 2013 The Servo Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
/// Trait for basic trigonometry functions, so they can be used on generic numeric types
pub trait Trig {
fn sin(self) -> Self;
fn cos(self) -> Self;
fn tan(self) -> Self;
fn fast_atan2(y: Self, x: Self) -> Self;
fn degrees_to_radians(deg: Self) -> Self;
fn radians_to_degrees(rad: Self) -> Self;
}
macro_rules! trig {
($ty:ident) => {
impl Trig for $ty {
#[inline]
fn sin(self) -> $ty {
num_traits::Float::sin(self)
}
#[inline]
fn cos(self) -> $ty {
num_traits::Float::cos(self)
}
#[inline]
fn tan(self) -> $ty {
num_traits::Float::tan(self)
}
/// A slightly faster approximation of `atan2`.
///
/// Note that it does not deal with the case where both x and y are 0.
#[inline]
fn fast_atan2(y: $ty, x: $ty) -> $ty {
// This macro is used with f32 and f64 and clippy warns about the extra
// precision with f32.
#![cfg_attr(feature = "cargo-clippy", allow(excessive_precision))]
// See https://math.stackexchange.com/questions/1098487/atan2-faster-approximation#1105038
use core::$ty::consts;
let x_abs = num_traits::Float::abs(x);
let y_abs = num_traits::Float::abs(y);
let a = x_abs.min(y_abs) / x_abs.max(y_abs);
let s = a * a;
let mut result =
((-0.046_496_474_9 * s + 0.159_314_22) * s - 0.327_622_764) * s * a + a;
if y_abs > x_abs {
result = consts::FRAC_PI_2 - result;
}
if x < 0.0 {
result = consts::PI - result
}
if y < 0.0 {
result = -result
}
result
}
#[inline]
fn degrees_to_radians(deg: Self) -> Self {
deg.to_radians()
}
#[inline]
fn radians_to_degrees(rad: Self) -> Self {
rad.to_degrees()
}
}
};
}
trig!(f32);
trig!(f64);

File diff suppressed because it is too large Load Diff