mirror of
https://github.com/mozilla/gecko-dev.git
synced 2025-02-26 12:20:56 +00:00
Bug 1564117 - Part 1: Use std::sqrt in fdlibm. r=arai
std::sqrt is guaranteed to have an error less than 0.5 ulp, so there's no need to use fdlibm's slower implementation. Differential Revision: https://phabricator.services.mozilla.com/D37256 --HG-- extra : moz-landing-system : lando
This commit is contained in:
parent
33a8904ee9
commit
eebb17f171
@ -13,5 +13,5 @@ from within the modules/fdlibm directory.
|
||||
|
||||
Current version: [commit b21ccf63f28a3a4692d8a31419e0a725a1b1a800 (2018-02-14T07:59:30Z)].
|
||||
|
||||
patches 01-14 fixes files to be usable within mozilla-central tree.
|
||||
patches 01-18 fixes files to be usable within mozilla-central tree.
|
||||
See https://bugzilla.mozilla.org/show_bug.cgi?id=933257
|
||||
|
@ -105,7 +105,6 @@ download_source s_scalbn.c s_scalbn.cpp
|
||||
|
||||
# These are not not used in Math.* functions, but used internally.
|
||||
download_source e_pow.c e_pow.cpp
|
||||
download_source e_sqrt.c e_sqrt.cpp
|
||||
|
||||
download_source s_nearbyint.c s_nearbyint.cpp
|
||||
download_source s_rint.c s_rint.cpp
|
||||
|
@ -1,7 +1,7 @@
|
||||
diff --git a/modules/fdlibm/src/fdlibm.h b/modules/fdlibm/src/fdlibm.h
|
||||
--- a/modules/fdlibm/src/fdlibm.h
|
||||
+++ b/modules/fdlibm/src/fdlibm.h
|
||||
@@ -12,499 +12,50 @@
|
||||
@@ -12,499 +12,49 @@
|
||||
/*
|
||||
* from: @(#)fdlibm.h 5.1 93/09/24
|
||||
* $FreeBSD$
|
||||
@ -242,7 +242,7 @@ diff --git a/modules/fdlibm/src/fdlibm.h b/modules/fdlibm/src/fdlibm.h
|
||||
-double modf(double, double *); /* fundamentally !__pure2 */
|
||||
|
||||
double pow(double, double);
|
||||
double sqrt(double);
|
||||
-double sqrt(double);
|
||||
+double fabs(double);
|
||||
|
||||
-double ceil(double);
|
||||
|
@ -271,27 +271,6 @@ diff --git a/modules/fdlibm/src/e_sinh.cpp b/modules/fdlibm/src/e_sinh.cpp
|
||||
__ieee754_sinh(double x)
|
||||
{
|
||||
double t,h;
|
||||
diff --git a/modules/fdlibm/src/e_sqrt.cpp b/modules/fdlibm/src/e_sqrt.cpp
|
||||
--- a/modules/fdlibm/src/e_sqrt.cpp
|
||||
+++ b/modules/fdlibm/src/e_sqrt.cpp
|
||||
@@ -81,17 +81,16 @@
|
||||
* sqrt(NaN) = NaN ... with invalid signal for signaling NaN
|
||||
*
|
||||
* Other methods : see the appended file at the end of the program below.
|
||||
*---------------
|
||||
*/
|
||||
|
||||
#include <float.h>
|
||||
|
||||
-#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
static const double one = 1.0, tiny=1.0e-300;
|
||||
|
||||
double
|
||||
__ieee754_sqrt(double x)
|
||||
{
|
||||
double z;
|
||||
diff --git a/modules/fdlibm/src/k_exp.cpp b/modules/fdlibm/src/k_exp.cpp
|
||||
--- a/modules/fdlibm/src/k_exp.cpp
|
||||
+++ b/modules/fdlibm/src/k_exp.cpp
|
||||
|
@ -1,7 +1,7 @@
|
||||
diff --git a/modules/fdlibm/src/math_private.h b/modules/fdlibm/src/math_private.h
|
||||
--- a/modules/fdlibm/src/math_private.h
|
||||
+++ b/modules/fdlibm/src/math_private.h
|
||||
@@ -736,16 +736,51 @@ irintl(long double x)
|
||||
@@ -742,16 +742,50 @@ irintl(long double x)
|
||||
#define __ieee754_j1f j1f
|
||||
#define __ieee754_y0f y0f
|
||||
#define __ieee754_y1f y1f
|
||||
@ -21,7 +21,6 @@ diff --git a/modules/fdlibm/src/math_private.h b/modules/fdlibm/src/math_private
|
||||
+#define log fdlibm::log
|
||||
+#define log10 fdlibm::log10
|
||||
+#define pow fdlibm::pow
|
||||
+#define sqrt fdlibm::sqrt
|
||||
+#define ceil fdlibm::ceil
|
||||
+#define ceilf fdlibm::ceilf
|
||||
+#define fabs fdlibm::fabs
|
||||
|
@ -190,30 +190,6 @@ diff --git a/modules/fdlibm/src/e_sinh.cpp b/modules/fdlibm/src/e_sinh.cpp
|
||||
-#if (LDBL_MANT_DIG == 53)
|
||||
-__weak_reference(sinh, sinhl);
|
||||
-#endif
|
||||
diff --git a/modules/fdlibm/src/e_sqrt.cpp b/modules/fdlibm/src/e_sqrt.cpp
|
||||
--- a/modules/fdlibm/src/e_sqrt.cpp
|
||||
+++ b/modules/fdlibm/src/e_sqrt.cpp
|
||||
@@ -182,20 +182,16 @@ double
|
||||
ix0 = (q>>1)+0x3fe00000;
|
||||
ix1 = q1>>1;
|
||||
if ((q&1)==1) ix1 |= sign;
|
||||
ix0 += (m <<20);
|
||||
INSERT_WORDS(z,ix0,ix1);
|
||||
return z;
|
||||
}
|
||||
|
||||
-#if (LDBL_MANT_DIG == 53)
|
||||
-__weak_reference(sqrt, sqrtl);
|
||||
-#endif
|
||||
-
|
||||
/*
|
||||
Other methods (use floating-point arithmetic)
|
||||
-------------
|
||||
(This is a copy of a drafted paper by Prof W. Kahan
|
||||
and K.C. Ng, written in May, 1986)
|
||||
|
||||
Two algorithms are given here to implement sqrt(x)
|
||||
(IEEE double precision arithmetic) in software.
|
||||
diff --git a/modules/fdlibm/src/s_asinh.cpp b/modules/fdlibm/src/s_asinh.cpp
|
||||
--- a/modules/fdlibm/src/s_asinh.cpp
|
||||
+++ b/modules/fdlibm/src/s_asinh.cpp
|
||||
|
@ -325,30 +325,6 @@ diff --git a/modules/fdlibm/src/e_sinh.cpp b/modules/fdlibm/src/e_sinh.cpp
|
||||
* 2.
|
||||
* E + E/(E+1)
|
||||
* 0 <= x <= 22 : sinh(x) := --------------, E=expm1(x)
|
||||
diff --git a/modules/fdlibm/src/e_sqrt.cpp b/modules/fdlibm/src/e_sqrt.cpp
|
||||
--- a/modules/fdlibm/src/e_sqrt.cpp
|
||||
+++ b/modules/fdlibm/src/e_sqrt.cpp
|
||||
@@ -6,18 +6,18 @@
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
-#include <sys/cdefs.h>
|
||||
-__FBSDID("$FreeBSD$");
|
||||
+//#include <sys/cdefs.h>
|
||||
+//__FBSDID("$FreeBSD$");
|
||||
|
||||
/* __ieee754_sqrt(x)
|
||||
* Return correctly rounded sqrt.
|
||||
* ------------------------------------------
|
||||
* | Use the hardware sqrt if you have one |
|
||||
* ------------------------------------------
|
||||
* Method:
|
||||
* Bit by bit method using integer arithmetic. (Slow, but portable)
|
||||
diff --git a/modules/fdlibm/src/k_exp.cpp b/modules/fdlibm/src/k_exp.cpp
|
||||
--- a/modules/fdlibm/src/k_exp.cpp
|
||||
+++ b/modules/fdlibm/src/k_exp.cpp
|
||||
|
255
modules/fdlibm/patches/18_use_stdlib_sqrt.patch
Normal file
255
modules/fdlibm/patches/18_use_stdlib_sqrt.patch
Normal file
@ -0,0 +1,255 @@
|
||||
diff --git a/modules/fdlibm/src/e_acos.cpp b/modules/fdlibm/src/e_acos.cpp
|
||||
--- a/modules/fdlibm/src/e_acos.cpp
|
||||
+++ b/modules/fdlibm/src/e_acos.cpp
|
||||
@@ -33,16 +33,17 @@
|
||||
*
|
||||
* Special cases:
|
||||
* if x is NaN, return x itself;
|
||||
* if |x|>1, return NaN with invalid signal.
|
||||
*
|
||||
* Function needed: sqrt
|
||||
*/
|
||||
|
||||
+#include <cmath>
|
||||
#include <float.h>
|
||||
|
||||
#include "math_private.h"
|
||||
|
||||
static const double
|
||||
one= 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
|
||||
pi = 3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */
|
||||
pio2_hi = 1.57079632679489655800e+00; /* 0x3FF921FB, 0x54442D18 */
|
||||
@@ -82,23 +83,23 @@ double
|
||||
p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
|
||||
q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
|
||||
r = p/q;
|
||||
return pio2_hi - (x - (pio2_lo-x*r));
|
||||
} else if (hx<0) { /* x < -0.5 */
|
||||
z = (one+x)*0.5;
|
||||
p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
|
||||
q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
|
||||
- s = sqrt(z);
|
||||
+ s = std::sqrt(z);
|
||||
r = p/q;
|
||||
w = r*s-pio2_lo;
|
||||
return pi - 2.0*(s+w);
|
||||
} else { /* x > 0.5 */
|
||||
z = (one-x)*0.5;
|
||||
- s = sqrt(z);
|
||||
+ s = std::sqrt(z);
|
||||
df = s;
|
||||
SET_LOW_WORD(df,0);
|
||||
c = (z-df*df)/(s+df);
|
||||
p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
|
||||
q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
|
||||
r = p/q;
|
||||
w = r*s+c;
|
||||
return 2.0*(df+w);
|
||||
diff --git a/modules/fdlibm/src/e_acosh.cpp b/modules/fdlibm/src/e_acosh.cpp
|
||||
--- a/modules/fdlibm/src/e_acosh.cpp
|
||||
+++ b/modules/fdlibm/src/e_acosh.cpp
|
||||
@@ -24,16 +24,17 @@
|
||||
* acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else
|
||||
* acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1.
|
||||
*
|
||||
* Special cases:
|
||||
* acosh(x) is NaN with signal if x<1.
|
||||
* acosh(NaN) is NaN without signal.
|
||||
*/
|
||||
|
||||
+#include <cmath>
|
||||
#include <float.h>
|
||||
|
||||
#include "math_private.h"
|
||||
|
||||
static const double
|
||||
one = 1.0,
|
||||
ln2 = 6.93147180559945286227e-01; /* 0x3FE62E42, 0xFEFA39EF */
|
||||
|
||||
@@ -50,14 +51,14 @@ double
|
||||
if(hx >=0x7ff00000) { /* x is inf of NaN */
|
||||
return x+x;
|
||||
} else
|
||||
return __ieee754_log(x)+ln2; /* acosh(huge)=log(2x) */
|
||||
} else if(((hx-0x3ff00000)|lx)==0) {
|
||||
return 0.0; /* acosh(1) = 0 */
|
||||
} else if (hx > 0x40000000) { /* 2**28 > x > 2 */
|
||||
t=x*x;
|
||||
- return __ieee754_log(2.0*x-one/(x+sqrt(t-one)));
|
||||
+ return __ieee754_log(2.0*x-one/(x+std::sqrt(t-one)));
|
||||
} else { /* 1<x<2 */
|
||||
t = x-one;
|
||||
- return log1p(t+sqrt(2.0*t+t*t));
|
||||
+ return log1p(t+std::sqrt(2.0*t+t*t));
|
||||
}
|
||||
}
|
||||
diff --git a/modules/fdlibm/src/e_asin.cpp b/modules/fdlibm/src/e_asin.cpp
|
||||
--- a/modules/fdlibm/src/e_asin.cpp
|
||||
+++ b/modules/fdlibm/src/e_asin.cpp
|
||||
@@ -39,16 +39,17 @@
|
||||
* = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c))
|
||||
*
|
||||
* Special cases:
|
||||
* if x is NaN, return x itself;
|
||||
* if |x|>1, return NaN with invalid signal.
|
||||
*
|
||||
*/
|
||||
|
||||
+#include <cmath>
|
||||
#include <float.h>
|
||||
|
||||
#include "math_private.h"
|
||||
|
||||
static const double
|
||||
one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
|
||||
huge = 1.000e+300,
|
||||
pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */
|
||||
@@ -90,17 +91,17 @@ double
|
||||
w = p/q;
|
||||
return x+x*w;
|
||||
}
|
||||
/* 1> |x|>= 0.5 */
|
||||
w = one-fabs(x);
|
||||
t = w*0.5;
|
||||
p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));
|
||||
q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));
|
||||
- s = sqrt(t);
|
||||
+ s = std::sqrt(t);
|
||||
if(ix>=0x3FEF3333) { /* if |x| > 0.975 */
|
||||
w = p/q;
|
||||
t = pio2_hi-(2.0*(s+s*w)-pio2_lo);
|
||||
} else {
|
||||
w = s;
|
||||
SET_LOW_WORD(w,0);
|
||||
c = (t-w*w)/(s+w);
|
||||
r = p/q;
|
||||
diff --git a/modules/fdlibm/src/e_hypot.cpp b/modules/fdlibm/src/e_hypot.cpp
|
||||
--- a/modules/fdlibm/src/e_hypot.cpp
|
||||
+++ b/modules/fdlibm/src/e_hypot.cpp
|
||||
@@ -41,16 +41,17 @@
|
||||
* hypot(x,y) is INF if x or y is +INF or -INF; else
|
||||
* hypot(x,y) is NAN if x or y is NAN.
|
||||
*
|
||||
* Accuracy:
|
||||
* hypot(x,y) returns sqrt(x^2+y^2) with error less
|
||||
* than 1 ulps (units in the last place)
|
||||
*/
|
||||
|
||||
+#include <cmath>
|
||||
#include <float.h>
|
||||
|
||||
#include "math_private.h"
|
||||
|
||||
double
|
||||
__ieee754_hypot(double x, double y)
|
||||
{
|
||||
double a,b,t1,t2,y1,y2,w;
|
||||
@@ -100,26 +101,26 @@ double
|
||||
}
|
||||
}
|
||||
/* medium size a and b */
|
||||
w = a-b;
|
||||
if (w>b) {
|
||||
t1 = 0;
|
||||
SET_HIGH_WORD(t1,ha);
|
||||
t2 = a-t1;
|
||||
- w = sqrt(t1*t1-(b*(-b)-t2*(a+t1)));
|
||||
+ w = std::sqrt(t1*t1-(b*(-b)-t2*(a+t1)));
|
||||
} else {
|
||||
a = a+a;
|
||||
y1 = 0;
|
||||
SET_HIGH_WORD(y1,hb);
|
||||
y2 = b - y1;
|
||||
t1 = 0;
|
||||
SET_HIGH_WORD(t1,ha+0x00100000);
|
||||
t2 = a - t1;
|
||||
- w = sqrt(t1*y1-(w*(-w)-(t1*y2+t2*b)));
|
||||
+ w = std::sqrt(t1*y1-(w*(-w)-(t1*y2+t2*b)));
|
||||
}
|
||||
if(k!=0) {
|
||||
u_int32_t high;
|
||||
t1 = 1.0;
|
||||
GET_HIGH_WORD(high,t1);
|
||||
SET_HIGH_WORD(t1,high+(k<<20));
|
||||
return t1*w;
|
||||
} else return w;
|
||||
diff --git a/modules/fdlibm/src/e_pow.cpp b/modules/fdlibm/src/e_pow.cpp
|
||||
--- a/modules/fdlibm/src/e_pow.cpp
|
||||
+++ b/modules/fdlibm/src/e_pow.cpp
|
||||
@@ -52,16 +52,18 @@
|
||||
*
|
||||
* Constants :
|
||||
* The hexadecimal values are the intended ones for the following
|
||||
* constants. The decimal values may be used, provided that the
|
||||
* compiler will convert from decimal to binary accurately enough
|
||||
* to produce the hexadecimal values shown.
|
||||
*/
|
||||
|
||||
+#include <cmath>
|
||||
+
|
||||
#include "math_private.h"
|
||||
|
||||
static const double
|
||||
bp[] = {1.0, 1.5,},
|
||||
dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */
|
||||
dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */
|
||||
zero = 0.0,
|
||||
one = 1.0,
|
||||
@@ -147,17 +149,17 @@ double
|
||||
return (hy<0)?-y: zero;
|
||||
}
|
||||
if(iy==0x3ff00000) { /* y is +-1 */
|
||||
if(hy<0) return one/x; else return x;
|
||||
}
|
||||
if(hy==0x40000000) return x*x; /* y is 2 */
|
||||
if(hy==0x3fe00000) { /* y is 0.5 */
|
||||
if(hx>=0) /* x >= +0 */
|
||||
- return sqrt(x);
|
||||
+ return std::sqrt(x);
|
||||
}
|
||||
}
|
||||
|
||||
ax = fabs(x);
|
||||
/* special value of x */
|
||||
if(lx==0) {
|
||||
if(ix==0x7ff00000||ix==0||ix==0x3ff00000){
|
||||
z = ax; /*x is +-0,+-inf,+-1*/
|
||||
diff --git a/modules/fdlibm/src/s_asinh.cpp b/modules/fdlibm/src/s_asinh.cpp
|
||||
--- a/modules/fdlibm/src/s_asinh.cpp
|
||||
+++ b/modules/fdlibm/src/s_asinh.cpp
|
||||
@@ -19,16 +19,17 @@
|
||||
* asinh(x) = sign(x) * log [ |x| + sqrt(x*x+1) ]
|
||||
* we have
|
||||
* asinh(x) := x if 1+x*x=1,
|
||||
* := sign(x)*(log(x)+ln2)) for large |x|, else
|
||||
* := sign(x)*log(2|x|+1/(|x|+sqrt(x*x+1))) if|x|>2, else
|
||||
* := sign(x)*log1p(|x| + x^2/(1 + sqrt(1+x^2)))
|
||||
*/
|
||||
|
||||
+#include <cmath>
|
||||
#include <float.h>
|
||||
|
||||
#include "math_private.h"
|
||||
|
||||
static const double
|
||||
one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
|
||||
ln2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */
|
||||
huge= 1.00000000000000000000e+300;
|
||||
@@ -43,15 +44,15 @@ asinh(double x)
|
||||
if(ix>=0x7ff00000) return x+x; /* x is inf or NaN */
|
||||
if(ix< 0x3e300000) { /* |x|<2**-28 */
|
||||
if(huge+x>one) return x; /* return x inexact except 0 */
|
||||
}
|
||||
if(ix>0x41b00000) { /* |x| > 2**28 */
|
||||
w = __ieee754_log(fabs(x))+ln2;
|
||||
} else if (ix>0x40000000) { /* 2**28 > |x| > 2.0 */
|
||||
t = fabs(x);
|
||||
- w = __ieee754_log(2.0*t+one/(__ieee754_sqrt(x*x+one)+t));
|
||||
+ w = __ieee754_log(2.0*t+one/(std::sqrt(x*x+one)+t));
|
||||
} else { /* 2.0 > |x| > 2**-28 */
|
||||
t = x*x;
|
||||
- w =log1p(fabs(x)+t/(one+__ieee754_sqrt(one+t)));
|
||||
+ w =log1p(fabs(x)+t/(one+std::sqrt(one+t)));
|
||||
}
|
||||
if(hx>0) return w; else return -w;
|
||||
}
|
@ -38,6 +38,7 @@
|
||||
* Function needed: sqrt
|
||||
*/
|
||||
|
||||
#include <cmath>
|
||||
#include <float.h>
|
||||
|
||||
#include "math_private.h"
|
||||
@ -87,13 +88,13 @@ __ieee754_acos(double x)
|
||||
z = (one+x)*0.5;
|
||||
p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
|
||||
q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
|
||||
s = sqrt(z);
|
||||
s = std::sqrt(z);
|
||||
r = p/q;
|
||||
w = r*s-pio2_lo;
|
||||
return pi - 2.0*(s+w);
|
||||
} else { /* x > 0.5 */
|
||||
z = (one-x)*0.5;
|
||||
s = sqrt(z);
|
||||
s = std::sqrt(z);
|
||||
df = s;
|
||||
SET_LOW_WORD(df,0);
|
||||
c = (z-df*df)/(s+df);
|
||||
|
@ -29,6 +29,7 @@
|
||||
* acosh(NaN) is NaN without signal.
|
||||
*/
|
||||
|
||||
#include <cmath>
|
||||
#include <float.h>
|
||||
|
||||
#include "math_private.h"
|
||||
@ -55,9 +56,9 @@ __ieee754_acosh(double x)
|
||||
return 0.0; /* acosh(1) = 0 */
|
||||
} else if (hx > 0x40000000) { /* 2**28 > x > 2 */
|
||||
t=x*x;
|
||||
return __ieee754_log(2.0*x-one/(x+sqrt(t-one)));
|
||||
return __ieee754_log(2.0*x-one/(x+std::sqrt(t-one)));
|
||||
} else { /* 1<x<2 */
|
||||
t = x-one;
|
||||
return log1p(t+sqrt(2.0*t+t*t));
|
||||
return log1p(t+std::sqrt(2.0*t+t*t));
|
||||
}
|
||||
}
|
||||
|
@ -44,6 +44,7 @@
|
||||
*
|
||||
*/
|
||||
|
||||
#include <cmath>
|
||||
#include <float.h>
|
||||
|
||||
#include "math_private.h"
|
||||
@ -95,7 +96,7 @@ __ieee754_asin(double x)
|
||||
t = w*0.5;
|
||||
p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));
|
||||
q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));
|
||||
s = sqrt(t);
|
||||
s = std::sqrt(t);
|
||||
if(ix>=0x3FEF3333) { /* if |x| > 0.975 */
|
||||
w = p/q;
|
||||
t = pio2_hi-(2.0*(s+s*w)-pio2_lo);
|
||||
|
@ -46,6 +46,7 @@
|
||||
* than 1 ulps (units in the last place)
|
||||
*/
|
||||
|
||||
#include <cmath>
|
||||
#include <float.h>
|
||||
|
||||
#include "math_private.h"
|
||||
@ -105,7 +106,7 @@ __ieee754_hypot(double x, double y)
|
||||
t1 = 0;
|
||||
SET_HIGH_WORD(t1,ha);
|
||||
t2 = a-t1;
|
||||
w = sqrt(t1*t1-(b*(-b)-t2*(a+t1)));
|
||||
w = std::sqrt(t1*t1-(b*(-b)-t2*(a+t1)));
|
||||
} else {
|
||||
a = a+a;
|
||||
y1 = 0;
|
||||
@ -114,7 +115,7 @@ __ieee754_hypot(double x, double y)
|
||||
t1 = 0;
|
||||
SET_HIGH_WORD(t1,ha+0x00100000);
|
||||
t2 = a - t1;
|
||||
w = sqrt(t1*y1-(w*(-w)-(t1*y2+t2*b)));
|
||||
w = std::sqrt(t1*y1-(w*(-w)-(t1*y2+t2*b)));
|
||||
}
|
||||
if(k!=0) {
|
||||
u_int32_t high;
|
||||
|
@ -57,6 +57,8 @@
|
||||
* to produce the hexadecimal values shown.
|
||||
*/
|
||||
|
||||
#include <cmath>
|
||||
|
||||
#include "math_private.h"
|
||||
|
||||
static const double
|
||||
@ -152,7 +154,7 @@ __ieee754_pow(double x, double y)
|
||||
if(hy==0x40000000) return x*x; /* y is 2 */
|
||||
if(hy==0x3fe00000) { /* y is 0.5 */
|
||||
if(hx>=0) /* x >= +0 */
|
||||
return sqrt(x);
|
||||
return std::sqrt(x);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -1,446 +0,0 @@
|
||||
|
||||
/* @(#)e_sqrt.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
//#include <sys/cdefs.h>
|
||||
//__FBSDID("$FreeBSD$");
|
||||
|
||||
/* __ieee754_sqrt(x)
|
||||
* Return correctly rounded sqrt.
|
||||
* ------------------------------------------
|
||||
* | Use the hardware sqrt if you have one |
|
||||
* ------------------------------------------
|
||||
* Method:
|
||||
* Bit by bit method using integer arithmetic. (Slow, but portable)
|
||||
* 1. Normalization
|
||||
* Scale x to y in [1,4) with even powers of 2:
|
||||
* find an integer k such that 1 <= (y=x*2^(2k)) < 4, then
|
||||
* sqrt(x) = 2^k * sqrt(y)
|
||||
* 2. Bit by bit computation
|
||||
* Let q = sqrt(y) truncated to i bit after binary point (q = 1),
|
||||
* i 0
|
||||
* i+1 2
|
||||
* s = 2*q , and y = 2 * ( y - q ). (1)
|
||||
* i i i i
|
||||
*
|
||||
* To compute q from q , one checks whether
|
||||
* i+1 i
|
||||
*
|
||||
* -(i+1) 2
|
||||
* (q + 2 ) <= y. (2)
|
||||
* i
|
||||
* -(i+1)
|
||||
* If (2) is false, then q = q ; otherwise q = q + 2 .
|
||||
* i+1 i i+1 i
|
||||
*
|
||||
* With some algebric manipulation, it is not difficult to see
|
||||
* that (2) is equivalent to
|
||||
* -(i+1)
|
||||
* s + 2 <= y (3)
|
||||
* i i
|
||||
*
|
||||
* The advantage of (3) is that s and y can be computed by
|
||||
* i i
|
||||
* the following recurrence formula:
|
||||
* if (3) is false
|
||||
*
|
||||
* s = s , y = y ; (4)
|
||||
* i+1 i i+1 i
|
||||
*
|
||||
* otherwise,
|
||||
* -i -(i+1)
|
||||
* s = s + 2 , y = y - s - 2 (5)
|
||||
* i+1 i i+1 i i
|
||||
*
|
||||
* One may easily use induction to prove (4) and (5).
|
||||
* Note. Since the left hand side of (3) contain only i+2 bits,
|
||||
* it does not necessary to do a full (53-bit) comparison
|
||||
* in (3).
|
||||
* 3. Final rounding
|
||||
* After generating the 53 bits result, we compute one more bit.
|
||||
* Together with the remainder, we can decide whether the
|
||||
* result is exact, bigger than 1/2ulp, or less than 1/2ulp
|
||||
* (it will never equal to 1/2ulp).
|
||||
* The rounding mode can be detected by checking whether
|
||||
* huge + tiny is equal to huge, and whether huge - tiny is
|
||||
* equal to huge for some floating point number "huge" and "tiny".
|
||||
*
|
||||
* Special cases:
|
||||
* sqrt(+-0) = +-0 ... exact
|
||||
* sqrt(inf) = inf
|
||||
* sqrt(-ve) = NaN ... with invalid signal
|
||||
* sqrt(NaN) = NaN ... with invalid signal for signaling NaN
|
||||
*
|
||||
* Other methods : see the appended file at the end of the program below.
|
||||
*---------------
|
||||
*/
|
||||
|
||||
#include <float.h>
|
||||
|
||||
#include "math_private.h"
|
||||
|
||||
static const double one = 1.0, tiny=1.0e-300;
|
||||
|
||||
double
|
||||
__ieee754_sqrt(double x)
|
||||
{
|
||||
double z;
|
||||
int32_t sign = (int)0x80000000;
|
||||
int32_t ix0,s0,q,m,t,i;
|
||||
u_int32_t r,t1,s1,ix1,q1;
|
||||
|
||||
EXTRACT_WORDS(ix0,ix1,x);
|
||||
|
||||
/* take care of Inf and NaN */
|
||||
if((ix0&0x7ff00000)==0x7ff00000) {
|
||||
return x*x+x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf
|
||||
sqrt(-inf)=sNaN */
|
||||
}
|
||||
/* take care of zero */
|
||||
if(ix0<=0) {
|
||||
if(((ix0&(~sign))|ix1)==0) return x;/* sqrt(+-0) = +-0 */
|
||||
else if(ix0<0)
|
||||
return (x-x)/(x-x); /* sqrt(-ve) = sNaN */
|
||||
}
|
||||
/* normalize x */
|
||||
m = (ix0>>20);
|
||||
if(m==0) { /* subnormal x */
|
||||
while(ix0==0) {
|
||||
m -= 21;
|
||||
ix0 |= (ix1>>11); ix1 <<= 21;
|
||||
}
|
||||
for(i=0;(ix0&0x00100000)==0;i++) ix0<<=1;
|
||||
m -= i-1;
|
||||
ix0 |= (ix1>>(32-i));
|
||||
ix1 <<= i;
|
||||
}
|
||||
m -= 1023; /* unbias exponent */
|
||||
ix0 = (ix0&0x000fffff)|0x00100000;
|
||||
if(m&1){ /* odd m, double x to make it even */
|
||||
ix0 += ix0 + ((ix1&sign)>>31);
|
||||
ix1 += ix1;
|
||||
}
|
||||
m >>= 1; /* m = [m/2] */
|
||||
|
||||
/* generate sqrt(x) bit by bit */
|
||||
ix0 += ix0 + ((ix1&sign)>>31);
|
||||
ix1 += ix1;
|
||||
q = q1 = s0 = s1 = 0; /* [q,q1] = sqrt(x) */
|
||||
r = 0x00200000; /* r = moving bit from right to left */
|
||||
|
||||
while(r!=0) {
|
||||
t = s0+r;
|
||||
if(t<=ix0) {
|
||||
s0 = t+r;
|
||||
ix0 -= t;
|
||||
q += r;
|
||||
}
|
||||
ix0 += ix0 + ((ix1&sign)>>31);
|
||||
ix1 += ix1;
|
||||
r>>=1;
|
||||
}
|
||||
|
||||
r = sign;
|
||||
while(r!=0) {
|
||||
t1 = s1+r;
|
||||
t = s0;
|
||||
if((t<ix0)||((t==ix0)&&(t1<=ix1))) {
|
||||
s1 = t1+r;
|
||||
if(((t1&sign)==sign)&&(s1&sign)==0) s0 += 1;
|
||||
ix0 -= t;
|
||||
if (ix1 < t1) ix0 -= 1;
|
||||
ix1 -= t1;
|
||||
q1 += r;
|
||||
}
|
||||
ix0 += ix0 + ((ix1&sign)>>31);
|
||||
ix1 += ix1;
|
||||
r>>=1;
|
||||
}
|
||||
|
||||
/* use floating add to find out rounding direction */
|
||||
if((ix0|ix1)!=0) {
|
||||
z = one-tiny; /* trigger inexact flag */
|
||||
if (z>=one) {
|
||||
z = one+tiny;
|
||||
if (q1==(u_int32_t)0xffffffff) { q1=0; q += 1;}
|
||||
else if (z>one) {
|
||||
if (q1==(u_int32_t)0xfffffffe) q+=1;
|
||||
q1+=2;
|
||||
} else
|
||||
q1 += (q1&1);
|
||||
}
|
||||
}
|
||||
ix0 = (q>>1)+0x3fe00000;
|
||||
ix1 = q1>>1;
|
||||
if ((q&1)==1) ix1 |= sign;
|
||||
ix0 += (m <<20);
|
||||
INSERT_WORDS(z,ix0,ix1);
|
||||
return z;
|
||||
}
|
||||
|
||||
/*
|
||||
Other methods (use floating-point arithmetic)
|
||||
-------------
|
||||
(This is a copy of a drafted paper by Prof W. Kahan
|
||||
and K.C. Ng, written in May, 1986)
|
||||
|
||||
Two algorithms are given here to implement sqrt(x)
|
||||
(IEEE double precision arithmetic) in software.
|
||||
Both supply sqrt(x) correctly rounded. The first algorithm (in
|
||||
Section A) uses newton iterations and involves four divisions.
|
||||
The second one uses reciproot iterations to avoid division, but
|
||||
requires more multiplications. Both algorithms need the ability
|
||||
to chop results of arithmetic operations instead of round them,
|
||||
and the INEXACT flag to indicate when an arithmetic operation
|
||||
is executed exactly with no roundoff error, all part of the
|
||||
standard (IEEE 754-1985). The ability to perform shift, add,
|
||||
subtract and logical AND operations upon 32-bit words is needed
|
||||
too, though not part of the standard.
|
||||
|
||||
A. sqrt(x) by Newton Iteration
|
||||
|
||||
(1) Initial approximation
|
||||
|
||||
Let x0 and x1 be the leading and the trailing 32-bit words of
|
||||
a floating point number x (in IEEE double format) respectively
|
||||
|
||||
1 11 52 ...widths
|
||||
------------------------------------------------------
|
||||
x: |s| e | f |
|
||||
------------------------------------------------------
|
||||
msb lsb msb lsb ...order
|
||||
|
||||
|
||||
------------------------ ------------------------
|
||||
x0: |s| e | f1 | x1: | f2 |
|
||||
------------------------ ------------------------
|
||||
|
||||
By performing shifts and subtracts on x0 and x1 (both regarded
|
||||
as integers), we obtain an 8-bit approximation of sqrt(x) as
|
||||
follows.
|
||||
|
||||
k := (x0>>1) + 0x1ff80000;
|
||||
y0 := k - T1[31&(k>>15)]. ... y ~ sqrt(x) to 8 bits
|
||||
Here k is a 32-bit integer and T1[] is an integer array containing
|
||||
correction terms. Now magically the floating value of y (y's
|
||||
leading 32-bit word is y0, the value of its trailing word is 0)
|
||||
approximates sqrt(x) to almost 8-bit.
|
||||
|
||||
Value of T1:
|
||||
static int T1[32]= {
|
||||
0, 1024, 3062, 5746, 9193, 13348, 18162, 23592,
|
||||
29598, 36145, 43202, 50740, 58733, 67158, 75992, 85215,
|
||||
83599, 71378, 60428, 50647, 41945, 34246, 27478, 21581,
|
||||
16499, 12183, 8588, 5674, 3403, 1742, 661, 130,};
|
||||
|
||||
(2) Iterative refinement
|
||||
|
||||
Apply Heron's rule three times to y, we have y approximates
|
||||
sqrt(x) to within 1 ulp (Unit in the Last Place):
|
||||
|
||||
y := (y+x/y)/2 ... almost 17 sig. bits
|
||||
y := (y+x/y)/2 ... almost 35 sig. bits
|
||||
y := y-(y-x/y)/2 ... within 1 ulp
|
||||
|
||||
|
||||
Remark 1.
|
||||
Another way to improve y to within 1 ulp is:
|
||||
|
||||
y := (y+x/y) ... almost 17 sig. bits to 2*sqrt(x)
|
||||
y := y - 0x00100006 ... almost 18 sig. bits to sqrt(x)
|
||||
|
||||
2
|
||||
(x-y )*y
|
||||
y := y + 2* ---------- ...within 1 ulp
|
||||
2
|
||||
3y + x
|
||||
|
||||
|
||||
This formula has one division fewer than the one above; however,
|
||||
it requires more multiplications and additions. Also x must be
|
||||
scaled in advance to avoid spurious overflow in evaluating the
|
||||
expression 3y*y+x. Hence it is not recommended uless division
|
||||
is slow. If division is very slow, then one should use the
|
||||
reciproot algorithm given in section B.
|
||||
|
||||
(3) Final adjustment
|
||||
|
||||
By twiddling y's last bit it is possible to force y to be
|
||||
correctly rounded according to the prevailing rounding mode
|
||||
as follows. Let r and i be copies of the rounding mode and
|
||||
inexact flag before entering the square root program. Also we
|
||||
use the expression y+-ulp for the next representable floating
|
||||
numbers (up and down) of y. Note that y+-ulp = either fixed
|
||||
point y+-1, or multiply y by nextafter(1,+-inf) in chopped
|
||||
mode.
|
||||
|
||||
I := FALSE; ... reset INEXACT flag I
|
||||
R := RZ; ... set rounding mode to round-toward-zero
|
||||
z := x/y; ... chopped quotient, possibly inexact
|
||||
If(not I) then { ... if the quotient is exact
|
||||
if(z=y) {
|
||||
I := i; ... restore inexact flag
|
||||
R := r; ... restore rounded mode
|
||||
return sqrt(x):=y.
|
||||
} else {
|
||||
z := z - ulp; ... special rounding
|
||||
}
|
||||
}
|
||||
i := TRUE; ... sqrt(x) is inexact
|
||||
If (r=RN) then z=z+ulp ... rounded-to-nearest
|
||||
If (r=RP) then { ... round-toward-+inf
|
||||
y = y+ulp; z=z+ulp;
|
||||
}
|
||||
y := y+z; ... chopped sum
|
||||
y0:=y0-0x00100000; ... y := y/2 is correctly rounded.
|
||||
I := i; ... restore inexact flag
|
||||
R := r; ... restore rounded mode
|
||||
return sqrt(x):=y.
|
||||
|
||||
(4) Special cases
|
||||
|
||||
Square root of +inf, +-0, or NaN is itself;
|
||||
Square root of a negative number is NaN with invalid signal.
|
||||
|
||||
|
||||
B. sqrt(x) by Reciproot Iteration
|
||||
|
||||
(1) Initial approximation
|
||||
|
||||
Let x0 and x1 be the leading and the trailing 32-bit words of
|
||||
a floating point number x (in IEEE double format) respectively
|
||||
(see section A). By performing shifs and subtracts on x0 and y0,
|
||||
we obtain a 7.8-bit approximation of 1/sqrt(x) as follows.
|
||||
|
||||
k := 0x5fe80000 - (x0>>1);
|
||||
y0:= k - T2[63&(k>>14)]. ... y ~ 1/sqrt(x) to 7.8 bits
|
||||
|
||||
Here k is a 32-bit integer and T2[] is an integer array
|
||||
containing correction terms. Now magically the floating
|
||||
value of y (y's leading 32-bit word is y0, the value of
|
||||
its trailing word y1 is set to zero) approximates 1/sqrt(x)
|
||||
to almost 7.8-bit.
|
||||
|
||||
Value of T2:
|
||||
static int T2[64]= {
|
||||
0x1500, 0x2ef8, 0x4d67, 0x6b02, 0x87be, 0xa395, 0xbe7a, 0xd866,
|
||||
0xf14a, 0x1091b,0x11fcd,0x13552,0x14999,0x15c98,0x16e34,0x17e5f,
|
||||
0x18d03,0x19a01,0x1a545,0x1ae8a,0x1b5c4,0x1bb01,0x1bfde,0x1c28d,
|
||||
0x1c2de,0x1c0db,0x1ba73,0x1b11c,0x1a4b5,0x1953d,0x18266,0x16be0,
|
||||
0x1683e,0x179d8,0x18a4d,0x19992,0x1a789,0x1b445,0x1bf61,0x1c989,
|
||||
0x1d16d,0x1d77b,0x1dddf,0x1e2ad,0x1e5bf,0x1e6e8,0x1e654,0x1e3cd,
|
||||
0x1df2a,0x1d635,0x1cb16,0x1be2c,0x1ae4e,0x19bde,0x1868e,0x16e2e,
|
||||
0x1527f,0x1334a,0x11051,0xe951, 0xbe01, 0x8e0d, 0x5924, 0x1edd,};
|
||||
|
||||
(2) Iterative refinement
|
||||
|
||||
Apply Reciproot iteration three times to y and multiply the
|
||||
result by x to get an approximation z that matches sqrt(x)
|
||||
to about 1 ulp. To be exact, we will have
|
||||
-1ulp < sqrt(x)-z<1.0625ulp.
|
||||
|
||||
... set rounding mode to Round-to-nearest
|
||||
y := y*(1.5-0.5*x*y*y) ... almost 15 sig. bits to 1/sqrt(x)
|
||||
y := y*((1.5-2^-30)+0.5*x*y*y)... about 29 sig. bits to 1/sqrt(x)
|
||||
... special arrangement for better accuracy
|
||||
z := x*y ... 29 bits to sqrt(x), with z*y<1
|
||||
z := z + 0.5*z*(1-z*y) ... about 1 ulp to sqrt(x)
|
||||
|
||||
Remark 2. The constant 1.5-2^-30 is chosen to bias the error so that
|
||||
(a) the term z*y in the final iteration is always less than 1;
|
||||
(b) the error in the final result is biased upward so that
|
||||
-1 ulp < sqrt(x) - z < 1.0625 ulp
|
||||
instead of |sqrt(x)-z|<1.03125ulp.
|
||||
|
||||
(3) Final adjustment
|
||||
|
||||
By twiddling y's last bit it is possible to force y to be
|
||||
correctly rounded according to the prevailing rounding mode
|
||||
as follows. Let r and i be copies of the rounding mode and
|
||||
inexact flag before entering the square root program. Also we
|
||||
use the expression y+-ulp for the next representable floating
|
||||
numbers (up and down) of y. Note that y+-ulp = either fixed
|
||||
point y+-1, or multiply y by nextafter(1,+-inf) in chopped
|
||||
mode.
|
||||
|
||||
R := RZ; ... set rounding mode to round-toward-zero
|
||||
switch(r) {
|
||||
case RN: ... round-to-nearest
|
||||
if(x<= z*(z-ulp)...chopped) z = z - ulp; else
|
||||
if(x<= z*(z+ulp)...chopped) z = z; else z = z+ulp;
|
||||
break;
|
||||
case RZ:case RM: ... round-to-zero or round-to--inf
|
||||
R:=RP; ... reset rounding mod to round-to-+inf
|
||||
if(x<z*z ... rounded up) z = z - ulp; else
|
||||
if(x>=(z+ulp)*(z+ulp) ...rounded up) z = z+ulp;
|
||||
break;
|
||||
case RP: ... round-to-+inf
|
||||
if(x>(z+ulp)*(z+ulp)...chopped) z = z+2*ulp; else
|
||||
if(x>z*z ...chopped) z = z+ulp;
|
||||
break;
|
||||
}
|
||||
|
||||
Remark 3. The above comparisons can be done in fixed point. For
|
||||
example, to compare x and w=z*z chopped, it suffices to compare
|
||||
x1 and w1 (the trailing parts of x and w), regarding them as
|
||||
two's complement integers.
|
||||
|
||||
...Is z an exact square root?
|
||||
To determine whether z is an exact square root of x, let z1 be the
|
||||
trailing part of z, and also let x0 and x1 be the leading and
|
||||
trailing parts of x.
|
||||
|
||||
If ((z1&0x03ffffff)!=0) ... not exact if trailing 26 bits of z!=0
|
||||
I := 1; ... Raise Inexact flag: z is not exact
|
||||
else {
|
||||
j := 1 - [(x0>>20)&1] ... j = logb(x) mod 2
|
||||
k := z1 >> 26; ... get z's 25-th and 26-th
|
||||
fraction bits
|
||||
I := i or (k&j) or ((k&(j+j+1))!=(x1&3));
|
||||
}
|
||||
R:= r ... restore rounded mode
|
||||
return sqrt(x):=z.
|
||||
|
||||
If multiplication is cheaper then the foregoing red tape, the
|
||||
Inexact flag can be evaluated by
|
||||
|
||||
I := i;
|
||||
I := (z*z!=x) or I.
|
||||
|
||||
Note that z*z can overwrite I; this value must be sensed if it is
|
||||
True.
|
||||
|
||||
Remark 4. If z*z = x exactly, then bit 25 to bit 0 of z1 must be
|
||||
zero.
|
||||
|
||||
--------------------
|
||||
z1: | f2 |
|
||||
--------------------
|
||||
bit 31 bit 0
|
||||
|
||||
Further more, bit 27 and 26 of z1, bit 0 and 1 of x1, and the odd
|
||||
or even of logb(x) have the following relations:
|
||||
|
||||
-------------------------------------------------
|
||||
bit 27,26 of z1 bit 1,0 of x1 logb(x)
|
||||
-------------------------------------------------
|
||||
00 00 odd and even
|
||||
01 01 even
|
||||
10 10 odd
|
||||
10 00 even
|
||||
11 01 even
|
||||
-------------------------------------------------
|
||||
|
||||
(4) Special cases (see (4) of Section A).
|
||||
|
||||
*/
|
||||
|
@ -33,7 +33,6 @@ double log(double);
|
||||
double log10(double);
|
||||
|
||||
double pow(double, double);
|
||||
double sqrt(double);
|
||||
double fabs(double);
|
||||
|
||||
double floor(double);
|
||||
|
@ -771,7 +771,6 @@ irintl(long double x)
|
||||
#define log fdlibm::log
|
||||
#define log10 fdlibm::log10
|
||||
#define pow fdlibm::pow
|
||||
#define sqrt fdlibm::sqrt
|
||||
#define ceil fdlibm::ceil
|
||||
#define ceilf fdlibm::ceilf
|
||||
#define fabs fdlibm::fabs
|
||||
|
@ -46,7 +46,6 @@ SOURCES += [
|
||||
'e_log2.cpp',
|
||||
'e_pow.cpp',
|
||||
'e_sinh.cpp',
|
||||
'e_sqrt.cpp',
|
||||
'k_exp.cpp',
|
||||
's_asinh.cpp',
|
||||
's_atan.cpp',
|
||||
|
@ -24,6 +24,7 @@
|
||||
* := sign(x)*log1p(|x| + x^2/(1 + sqrt(1+x^2)))
|
||||
*/
|
||||
|
||||
#include <cmath>
|
||||
#include <float.h>
|
||||
|
||||
#include "math_private.h"
|
||||
@ -48,10 +49,10 @@ asinh(double x)
|
||||
w = __ieee754_log(fabs(x))+ln2;
|
||||
} else if (ix>0x40000000) { /* 2**28 > |x| > 2.0 */
|
||||
t = fabs(x);
|
||||
w = __ieee754_log(2.0*t+one/(__ieee754_sqrt(x*x+one)+t));
|
||||
w = __ieee754_log(2.0*t+one/(std::sqrt(x*x+one)+t));
|
||||
} else { /* 2.0 > |x| > 2**-28 */
|
||||
t = x*x;
|
||||
w =log1p(fabs(x)+t/(one+__ieee754_sqrt(one+t)));
|
||||
w =log1p(fabs(x)+t/(one+std::sqrt(one+t)));
|
||||
}
|
||||
if(hx>0) return w; else return -w;
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user