The bulk of this commit was generated with a script, executed at the top
level of a typical source code checkout. The only non-machine-generated
part was modifying MFBT's moz.build to reflect the new naming.
CLOSED TREE makes big refactorings like this a piece of cake.
# The main substitution.
find . -name '*.cpp' -o -name '*.cc' -o -name '*.h' -o -name '*.mm' -o -name '*.idl'| \
xargs perl -p -i -e '
s/nsRefPtr\.h/RefPtr\.h/g; # handle includes
s/nsRefPtr ?</RefPtr</g; # handle declarations and variables
'
# Handle a special friend declaration in gfx/layers/AtomicRefCountedWithFinalize.h.
perl -p -i -e 's/::nsRefPtr;/::RefPtr;/' gfx/layers/AtomicRefCountedWithFinalize.h
# Handle nsRefPtr.h itself, a couple places that define constructors
# from nsRefPtr, and code generators specially. We do this here, rather
# than indiscriminantly s/nsRefPtr/RefPtr/, because that would rename
# things like nsRefPtrHashtable.
perl -p -i -e 's/nsRefPtr/RefPtr/g' \
mfbt/nsRefPtr.h \
xpcom/glue/nsCOMPtr.h \
xpcom/base/OwningNonNull.h \
ipc/ipdl/ipdl/lower.py \
ipc/ipdl/ipdl/builtin.py \
dom/bindings/Codegen.py \
python/lldbutils/lldbutils/utils.py
# In our indiscriminate substitution above, we renamed
# nsRefPtrGetterAddRefs, the class behind getter_AddRefs. Fix that up.
find . -name '*.cpp' -o -name '*.h' -o -name '*.idl' | \
xargs perl -p -i -e 's/nsRefPtrGetterAddRefs/RefPtrGetterAddRefs/g'
if [ -d .git ]; then
git mv mfbt/nsRefPtr.h mfbt/RefPtr.h
else
hg mv mfbt/nsRefPtr.h mfbt/RefPtr.h
fi
--HG--
rename : mfbt/nsRefPtr.h => mfbt/RefPtr.h
DONTBUILD because it only changes comments.
This will hopefully prevent confusion like that in bug 1215903.
--HG--
extra : rebase_source : f0a601d77b5f42b4fbe090693234f934e3becc42
The index section of a MAR archive file contains several fixed-length fields
and also variable-length names for each file in the archive, terminated by a
null byte. Since that makes the length of the index variable, the length of the
entire index is also provided in the file.
When libmar opens a file, it allocates a buffer with the length given in the
file and reads the index from the file into that buffer.
mar_consume_index() then parses the entire index from that copy,
trying to make sure it doesn't read past the buffer it was given.
The length of the buffer is given to mar_consume_index()
by providing it a pointer to one byte past the end of the buffer.
However, mar_consume_index() treats this pointer as pointing *to* the end.
Therefore, it is possible for a malformed MAR file (one where the stated length
is less than the real length) to trigger a read of one byte beyond the
allocated memory.
Fix this by failing the parse when we reach the buffer end pointer minus one,
instead of when we reach that address itself.
--HG--
extra : amend_source : 3001a5bc08e790251759418e014bbd7153b66d8a