I kept all the existing PL_DHashTableAdd() calls fallible, in order to be
conservative, except for the ones in nsAtomTable.cpp which already were
followed immediately by an abort on failure.
--HG--
extra : rebase_source : eeba14d732077ef2e412f4caca852de6b6b85f55
Because it's no longer needed now that entry storage isn't allocated there.
(The other possible causes of failures are much less interesting and simply
crashing is a reasonable thing to do for them.)
This also makes PL_DNewHashTable() infallible.
--HG--
extra : rebase_source : 848cc9bbdfe434525857183b8370d309f3acbf49
It feels safer to use a function with a new name, rather than just changing the
behaviour of the existing function.
For most of these cases the PL_DHashTableLookup() result was checked with
PL_DHASH_ENTRY_IS_{FREE,BUSY} so the conversion was easy. A few of them
preceded that check with a useless null check, but the intent of these was
still easy to determine.
I'll do the trickier ones in subsequent patches.
--HG--
extra : rebase_source : ab37a7a30be563861ded8631771181aacf054fd4
Currently the setting of PLDHashTable::ops is very haphazard.
- PLDHashTable has no constructor, so it's not auto-nulled, so lots of places
null it themselves.
- In the fallible PLDHashTable::Init() function, if the entry storage
allocation fails we'll be left with a table that has |ops| set -- indicating
it's been initialized -- but has null entry storage. I'm not certain this can
cause problems but it feels unsafe, and some (but not all) callers of Init()
null it on failure.
- PLDHashTable does not null |ops| in Finish(), so some (but not all) callers
do this themselves.
This patch makes things simpler.
- It adds a constructor that zeroes |ops|.
- It modifies Init() so that it only sets |ops| once success is ensured.
- It zeroes |ops| in Finish().
- Finally, it removes all the now-unnecessary |ops| nulling done by the users
of PLDHashTable.
--HG--
extra : rebase_source : bb34979c218d152562a2f9c7e5215256c111cc5b
This patch adds another implementation of BaseTimeDuration's ValueCalculator
template parameter that is careful to preserve Forever/-Forever values when
performing arithmetic.
It also defines a typedef for a specialization of BaseTimeDuration that uses
this new ValueCalculator definition.
This patch builds on the templatization from the previous patch to move
arithmetic on the mValue member of BaseTimeDuration to the ValueCalculator
template parameter.
This patch prepares the way for having a separate StickyTimeDuration class
by factoring TimeDuration into a templated base class: BaseTimeDuration.
BaseTimeDuration takes a templated parameter, ValueCalculator, which is a helper
object that defines how various arithmetic operations are performed on its
mValue member (an int64_t count of ticks).
This patch does not actually define or use the ValueCalculator parameter yet but
simply performs the renaming and templatization.
With regards to the templatization, arithmetic operators are defined to take
objects with the same ValueCalculator template parameter (so that we don't, for
example, apply non-safe arithmetic to a StickyTimeDuration).
However, comparison operators are defined to also operate on objects with
a different ValueCalculator template parameter since comparison should be
independent of the type of arithmetic used.
Likewise, the constructor and assignment operator are defined to operate on
objects with a different ValueCalculator template parameter so that objects can
be converted from TimeDuration to StickyTimeDuration and vice-versa.
The constructor is marked as explicit, however, so that we don't silently
convert a StickyTimeDuration to a TimeDuration and unwittingly apply
non-safe arithmetic to a StickyTimeDuration.
TimeDuration is defined as a specialization of BaseTimeDuration that uses
TimeDurationValueCalculator as its ValueCalculator type.
TimeDurationValueCalculator is filled-in in a subsequent patch.
Now that the implementation of a number of TimeDuration methods have been
delegated to a separate TimeDurationPlatformUtils class, it is easier to add
consistent handling to the parameters passed to and from those methods.
This patch adds checks when converting between TimeDurations and doubles so that
Forever (represented by a tick count of INT64_MAX) is paired with
PositiveInfinity, and INT64_MIN is paired with NegativeInfinity.
In order to have different templated versions of TimeDuration we first split out
the platform-specific code so that this code doesn't need to concern itself with
templates (and because putting template code in .cpp files is messy).