This was done using the following script:
37e3803c7a/processors/chromeutils-import.jsm
MozReview-Commit-ID: 1Nc3XDu0wGl
--HG--
extra : source : 12fc4dee861c812fd2bd032c63ef17af61800c70
extra : intermediate-source : 34c999fa006bffe8705cf50c54708aa21a962e62
extra : histedit_source : b2be2c5e5d226e6c347312456a6ae339c1e634b0
This was done using the following script:
37e3803c7a/processors/chromeutils-import.jsm
MozReview-Commit-ID: 1Nc3XDu0wGl
--HG--
extra : source : 12fc4dee861c812fd2bd032c63ef17af61800c70
This was done using the following script:
37e3803c7a/processors/chromeutils-import.jsm
MozReview-Commit-ID: 1Nc3XDu0wGl
--HG--
extra : rebase_source : c004a023389f1f6bf3d2f3efe93c13d423b23ccd
This patch adjusts tools/fuzzing/ in such a way that the relevant parts can be
reused in the JS engine. Changes in detail include:
* Various JS_STANDALONE checks to exclude parts that cannot be included in
those builds.
* Turn LibFuzzerRegistry and LibFuzzerRunner into generic FuzzerRegistry and
FuzzerRunner classes and use them for AFL as well. Previously, AFL was
piggy-backing on gtests which was kind of an ugly solution anyway (besides
that it can't work in JS). Now more code like registry and harness is
shared between the two and they follow almost the same call paths and entry
points. AFL macros in FuzzingInterface have been rewritten accordingly.
This also required name changes in various places. Furthermore, this unifies
the way, the fuzzing target is selected, using the FUZZER environment
variable rather than LIBFUZZER (using LIBFUZZER in browser builds will give
you a deprecation warning because I know some people are using this already
and need time to switch). Previously, AFL target had to be selected using
GTEST_FILTER, so this is also much better now.
* I had to split up FuzzingInterface* such that the STREAM parts are in a
separate set of files FuzzingInterfaceStream* because they use nsStringStream
which is not allowed to be included into the JS engine even in a full browser
build (error: "Using XPCOM strings is limited to code linked into libxul.").
I also had to pull FuzzingInterface.cpp (the RAW part only) into the header
and make it static because otherwise, would have to make not only separate
files but also separate libraries to statically link to the JS engine, which
seemed overkill for a single small function. The streaming equivalent of the
function is still in a cpp file.
* LibFuzzerRegister functions are now unique by appending the module name to
avoid redefinition errors.
MozReview-Commit-ID: 44zWCdglnHr
--HG--
extra : rebase_source : fe07c557032fd33257eb701190becfaf85ab79d0
This patch adjusts tools/fuzzing/ in such a way that the relevant parts can be
reused in the JS engine. Changes in detail include:
* Various JS_STANDALONE checks to exclude parts that cannot be included in
those builds.
* Turn LibFuzzerRegistry and LibFuzzerRunner into generic FuzzerRegistry and
FuzzerRunner classes and use them for AFL as well. Previously, AFL was
piggy-backing on gtests which was kind of an ugly solution anyway (besides
that it can't work in JS). Now more code like registry and harness is
shared between the two and they follow almost the same call paths and entry
points. AFL macros in FuzzingInterface have been rewritten accordingly.
This also required name changes in various places. Furthermore, this unifies
the way, the fuzzing target is selected, using the FUZZER environment
variable rather than LIBFUZZER (using LIBFUZZER in browser builds will give
you a deprecation warning because I know some people are using this already
and need time to switch). Previously, AFL target had to be selected using
GTEST_FILTER, so this is also much better now.
* I had to split up FuzzingInterface* such that the STREAM parts are in a
separate set of files FuzzingInterfaceStream* because they use nsStringStream
which is not allowed to be included into the JS engine even in a full browser
build (error: "Using XPCOM strings is limited to code linked into libxul.").
I also had to pull FuzzingInterface.cpp (the RAW part only) into the header
and make it static because otherwise, would have to make not only separate
files but also separate libraries to statically link to the JS engine, which
seemed overkill for a single small function. The streaming equivalent of the
function is still in a cpp file.
* LibFuzzerRegister functions are now unique by appending the module name to
avoid redefinition errors.
MozReview-Commit-ID: 44zWCdglnHr
--HG--
rename : tools/fuzzing/libfuzzer/harness/LibFuzzerRunner.cpp => tools/fuzzing/interface/harness/FuzzerRunner.cpp
rename : tools/fuzzing/libfuzzer/harness/LibFuzzerRunner.h => tools/fuzzing/interface/harness/FuzzerRunner.h
rename : tools/fuzzing/libfuzzer/harness/LibFuzzerTestHarness.h => tools/fuzzing/interface/harness/FuzzerTestHarness.h
rename : tools/fuzzing/libfuzzer/harness/moz.build => tools/fuzzing/interface/harness/moz.build
rename : tools/fuzzing/libfuzzer/harness/LibFuzzerRegistry.cpp => tools/fuzzing/registry/FuzzerRegistry.cpp
rename : tools/fuzzing/libfuzzer/harness/LibFuzzerRegistry.h => tools/fuzzing/registry/FuzzerRegistry.h
extra : rebase_source : 7d0511ca0591dbf4d099376011402e063a79ee3b
These are all no-ops because the objects involved are already implementing one of the WebIDL interfaces that pulls in MozImageLoadingContent, and that's all script gets to see.
MozReview-Commit-ID: Io2mLHbv7qM
* changes call to use nsIURIMutator.setSpec()
* Add new NS_MutateURI constructor that takes new Mutator object
* Make nsSimpleNestedURI::Mutate() and nsNestedAboutURI::Mutate() return mutable URIs
* Make the finalizers for nsSimpleNestedURI and nsNestedAboutURI make the returned URIs immutable
MozReview-Commit-ID: 1kcv6zMxnv7
--HG--
extra : rebase_source : 99b13e9dbc8eaaa9615843b05e1539e19b527504
All of these tests have existing fuzzy annotations which cover the
differences in the WR renderings. Therefore we can remove the
fails-if(webrender) annotations and use the existing fuzzy annotations
to treat the tests as passing.
MozReview-Commit-ID: LFWha6gAP2r
--HG--
extra : rebase_source : b26a0d0cd66b6bab273251e6a2de9210417ba798
If we aren't using a downscaler we avoid this bug because the mask is either 100% transparent or 100% opaque, and in the transparent case we just set the whole pixel (32 bits) to 0.
But when we are using a downscaler we just replace the alpha values in the original surface (leaving the color values untouched).
We need to go the full premultiply route because after downscaling the mask we can have any value for alpha instead of just 0 or 255.
This removes an unnecessary level of indirection by replacing all
nsStringGlue.h instances with just nsString.h.
--HG--
extra : rebase_source : 340989240af4018f3ebfd92826ae11b0cb46d019
imgLoader::ValidateEntry would aggressively determine an entry has
expired, even when the request hasn't yet begun. This is because the
expiration time for the entry was not set unless it was for a channel
which supports caching. Now we set the expiration time for all
channels, and if it doesn't support caching, it just expires at the
current time when imgRequest::OnStartRequest is called. Additionally,
imgLoader::ValidateEntry will not consider the expiration time in the
entry until it is non-zero.