/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*- * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #ifndef MOZILLA_GFX_PATHHELPERS_H_ #define MOZILLA_GFX_PATHHELPERS_H_ #include "2D.h" #include "UserData.h" #include namespace mozilla { namespace gfx { // Kappa constant for 90-degree angle const Float kKappaFactor = 0.55191497064665766025f; // Calculate kappa constant for partial curve. The sign of angle in the // tangent will actually ensure this is negative for a counter clockwise // sweep, so changing signs later isn't needed. inline Float ComputeKappaFactor(Float aAngle) { return (4.0f / 3.0f) * tanf(aAngle / 4.0f); } /** * Draws a partial arc <= 90 degrees given exact start and end points. * Assumes that it is continuing from an already specified start point. */ template inline void PartialArcToBezier(T* aSink, const Point& aStartOffset, const Point& aEndOffset, const Matrix& aTransform, Float aKappaFactor = kKappaFactor) { Point cp1 = aStartOffset + Point(-aStartOffset.y, aStartOffset.x) * aKappaFactor; Point cp2 = aEndOffset + Point(aEndOffset.y, -aEndOffset.x) * aKappaFactor; aSink->BezierTo(aTransform * cp1, aTransform * cp2, aTransform * aEndOffset); } /** * Draws an acute arc (<= 90 degrees) given exact start and end points. * Specialized version avoiding kappa calculation. */ template inline void AcuteArcToBezier(T* aSink, const Point& aOrigin, const Size& aRadius, const Point& aStartPoint, const Point& aEndPoint, Float aKappaFactor = kKappaFactor) { aSink->LineTo(aStartPoint); if (!aRadius.IsEmpty()) { Float kappaX = aKappaFactor * aRadius.width / aRadius.height; Float kappaY = aKappaFactor * aRadius.height / aRadius.width; Point startOffset = aStartPoint - aOrigin; Point endOffset = aEndPoint - aOrigin; aSink->BezierTo(aStartPoint + Point(-startOffset.y * kappaX, startOffset.x * kappaY), aEndPoint + Point(endOffset.y * kappaX, -endOffset.x * kappaY), aEndPoint); } else if (aEndPoint != aStartPoint) { aSink->LineTo(aEndPoint); } } /** * Draws an acute arc (<= 90 degrees) given exact start and end points. */ template inline void AcuteArcToBezier(T* aSink, const Point& aOrigin, const Size& aRadius, const Point& aStartPoint, const Point& aEndPoint, Float aStartAngle, Float aEndAngle) { AcuteArcToBezier(aSink, aOrigin, aRadius, aStartPoint, aEndPoint, ComputeKappaFactor(aEndAngle - aStartAngle)); } template void ArcToBezier(T* aSink, const Point &aOrigin, const Size &aRadius, float aStartAngle, float aEndAngle, bool aAntiClockwise, float aRotation = 0.0f) { Float sweepDirection = aAntiClockwise ? -1.0f : 1.0f; // Calculate the total arc we're going to sweep. Float arcSweepLeft = (aEndAngle - aStartAngle) * sweepDirection; // Clockwise we always sweep from the smaller to the larger angle, ccw // it's vice versa. if (arcSweepLeft < 0) { // Rerverse sweep is modulo'd into range rather than clamped. arcSweepLeft = Float(2.0f * M_PI) + fmodf(arcSweepLeft, Float(2.0f * M_PI)); // Recalculate the start angle to land closer to end angle. aStartAngle = aEndAngle - arcSweepLeft * sweepDirection; } else if (arcSweepLeft > Float(2.0f * M_PI)) { // Sweeping more than 2 * pi is a full circle. arcSweepLeft = Float(2.0f * M_PI); } Float currentStartAngle = aStartAngle; Point currentStartOffset(cosf(aStartAngle), sinf(aStartAngle)); Matrix transform = Matrix::Scaling(aRadius.width, aRadius.height); if (aRotation != 0.0f) { transform *= Matrix::Rotation(aRotation); } transform.PostTranslate(aOrigin); aSink->LineTo(transform * currentStartOffset); while (arcSweepLeft > 0) { Float currentEndAngle = currentStartAngle + std::min(arcSweepLeft, Float(M_PI / 2.0f)) * sweepDirection; Point currentEndOffset(cosf(currentEndAngle), sinf(currentEndAngle)); PartialArcToBezier(aSink, currentStartOffset, currentEndOffset, transform, ComputeKappaFactor(currentEndAngle - currentStartAngle)); // We guarantee here the current point is the start point of the next // curve segment. arcSweepLeft -= Float(M_PI / 2.0f); currentStartAngle = currentEndAngle; currentStartOffset = currentEndOffset; } } /* This is basically the ArcToBezier with the parameters for drawing a circle * inlined which vastly simplifies it and avoids a bunch of transcedental function * calls which should make it faster. */ template void EllipseToBezier(T* aSink, const Point &aOrigin, const Size &aRadius) { Matrix transform(aRadius.width, 0, 0, aRadius.height, aOrigin.x, aOrigin.y); Point currentStartOffset(1, 0); aSink->LineTo(transform * currentStartOffset); for (int i = 0; i < 4; i++) { // cos(x+pi/2) == -sin(x) // sin(x+pi/2) == cos(x) Point currentEndOffset(-currentStartOffset.y, currentStartOffset.x); PartialArcToBezier(aSink, currentStartOffset, currentEndOffset, transform); // We guarantee here the current point is the start point of the next // curve segment. currentStartOffset = currentEndOffset; } } /** * Appends a path represending a rectangle to the path being built by * aPathBuilder. * * aRect The rectangle to append. * aDrawClockwise If set to true, the path will start at the left of the top * left edge and draw clockwise. If set to false the path will * start at the right of the top left edge and draw counter- * clockwise. */ GFX2D_API void AppendRectToPath(PathBuilder* aPathBuilder, const Rect& aRect, bool aDrawClockwise = true); inline already_AddRefed MakePathForRect(const DrawTarget& aDrawTarget, const Rect& aRect, bool aDrawClockwise = true) { RefPtr builder = aDrawTarget.CreatePathBuilder(); AppendRectToPath(builder, aRect, aDrawClockwise); return builder->Finish(); } struct RectCornerRadii { Size radii[RectCorner::Count]; RectCornerRadii() {} explicit RectCornerRadii(Float radius) { for (int i = 0; i < RectCorner::Count; i++) { radii[i].SizeTo(radius, radius); } } explicit RectCornerRadii(Float radiusX, Float radiusY) { for (int i = 0; i < RectCorner::Count; i++) { radii[i].SizeTo(radiusX, radiusY); } } RectCornerRadii(Float tl, Float tr, Float br, Float bl) { radii[RectCorner::TopLeft].SizeTo(tl, tl); radii[RectCorner::TopRight].SizeTo(tr, tr); radii[RectCorner::BottomRight].SizeTo(br, br); radii[RectCorner::BottomLeft].SizeTo(bl, bl); } RectCornerRadii(const Size& tl, const Size& tr, const Size& br, const Size& bl) { radii[RectCorner::TopLeft] = tl; radii[RectCorner::TopRight] = tr; radii[RectCorner::BottomRight] = br; radii[RectCorner::BottomLeft] = bl; } const Size& operator[](size_t aCorner) const { return radii[aCorner]; } Size& operator[](size_t aCorner) { return radii[aCorner]; } bool operator==(const RectCornerRadii& aOther) const { for (size_t i = 0; i < RectCorner::Count; i++) { if (radii[i] != aOther.radii[i]) return false; } return true; } void Scale(Float aXScale, Float aYScale) { for (int i = 0; i < RectCorner::Count; i++) { radii[i].Scale(aXScale, aYScale); } } const Size TopLeft() const { return radii[RectCorner::TopLeft]; } Size& TopLeft() { return radii[RectCorner::TopLeft]; } const Size TopRight() const { return radii[RectCorner::TopRight]; } Size& TopRight() { return radii[RectCorner::TopRight]; } const Size BottomRight() const { return radii[RectCorner::BottomRight]; } Size& BottomRight() { return radii[RectCorner::BottomRight]; } const Size BottomLeft() const { return radii[RectCorner::BottomLeft]; } Size& BottomLeft() { return radii[RectCorner::BottomLeft]; } }; /** * Appends a path represending a rounded rectangle to the path being built by * aPathBuilder. * * aRect The rectangle to append. * aCornerRadii Contains the radii of the top-left, top-right, bottom-right * and bottom-left corners, in that order. * aDrawClockwise If set to true, the path will start at the left of the top * left edge and draw clockwise. If set to false the path will * start at the right of the top left edge and draw counter- * clockwise. */ GFX2D_API void AppendRoundedRectToPath(PathBuilder* aPathBuilder, const Rect& aRect, const RectCornerRadii& aRadii, bool aDrawClockwise = true); inline already_AddRefed MakePathForRoundedRect(const DrawTarget& aDrawTarget, const Rect& aRect, const RectCornerRadii& aRadii, bool aDrawClockwise = true) { RefPtr builder = aDrawTarget.CreatePathBuilder(); AppendRoundedRectToPath(builder, aRect, aRadii, aDrawClockwise); return builder->Finish(); } /** * Appends a path represending an ellipse to the path being built by * aPathBuilder. * * The ellipse extends aDimensions.width / 2.0 in the horizontal direction * from aCenter, and aDimensions.height / 2.0 in the vertical direction. */ GFX2D_API void AppendEllipseToPath(PathBuilder* aPathBuilder, const Point& aCenter, const Size& aDimensions); inline already_AddRefed MakePathForEllipse(const DrawTarget& aDrawTarget, const Point& aCenter, const Size& aDimensions) { RefPtr builder = aDrawTarget.CreatePathBuilder(); AppendEllipseToPath(builder, aCenter, aDimensions); return builder->Finish(); } /** * If aDrawTarget's transform only contains a translation, and if this line is * a horizontal or vertical line, this function will snap the line's vertices * to align with the device pixel grid so that stroking the line with a one * pixel wide stroke will result in a crisp line that is not antialiased over * two pixels across its width. * * @return Returns true if this function snaps aRect's vertices, else returns * false. */ GFX2D_API bool SnapLineToDevicePixelsForStroking(Point& aP1, Point& aP2, const DrawTarget& aDrawTarget, Float aLineWidth); /** * This function paints each edge of aRect separately, snapping the edges using * SnapLineToDevicePixelsForStroking. Stroking the edges as separate paths * helps ensure not only that the stroke spans a single row of device pixels if * possible, but also that the ends of stroke dashes start and end on device * pixels too. */ GFX2D_API void StrokeSnappedEdgesOfRect(const Rect& aRect, DrawTarget& aDrawTarget, const ColorPattern& aColor, const StrokeOptions& aStrokeOptions); /** * Return the margin, in device space, by which a stroke can extend beyond the * rendered shape. * @param aStrokeOptions The stroke options that the stroke is drawn with. * @param aTransform The user space to device space transform. * @return The stroke margin. */ GFX2D_API Margin MaxStrokeExtents(const StrokeOptions& aStrokeOptions, const Matrix& aTransform); extern UserDataKey sDisablePixelSnapping; /** * If aDrawTarget's transform only contains a translation or, if * aAllowScaleOr90DegreeRotate is true, and/or a scale/90 degree rotation, this * function will convert aRect to device space and snap it to device pixels. * This function returns true if aRect is modified, otherwise it returns false. * * Note that the snapping is such that filling the rect using a DrawTarget * which has the identity matrix as its transform will result in crisp edges. * (That is, aRect will have integer values, aligning its edges between pixel * boundaries.) If on the other hand you stroking the rect with an odd valued * stroke width then the edges of the stroke will be antialiased (assuming an * AntialiasMode that does antialiasing). * * Empty snaps are those which result in a rectangle of 0 area. If they are * disallowed, an axis is left unsnapped if the rounding process results in a * length of 0. */ inline bool UserToDevicePixelSnapped(Rect& aRect, const DrawTarget& aDrawTarget, bool aAllowScaleOr90DegreeRotate = false, bool aAllowEmptySnaps = true) { if (aDrawTarget.GetUserData(&sDisablePixelSnapping)) { return false; } Matrix mat = aDrawTarget.GetTransform(); const Float epsilon = 0.0000001f; #define WITHIN_E(a,b) (fabs((a)-(b)) < epsilon) if (!aAllowScaleOr90DegreeRotate && (!WITHIN_E(mat._11, 1.f) || !WITHIN_E(mat._22, 1.f) || !WITHIN_E(mat._12, 0.f) || !WITHIN_E(mat._21, 0.f))) { // We have non-translation, but only translation is allowed. return false; } #undef WITHIN_E Point p1 = mat * aRect.TopLeft(); Point p2 = mat * aRect.TopRight(); Point p3 = mat * aRect.BottomRight(); // Check that the rectangle is axis-aligned. For an axis-aligned rectangle, // two opposite corners define the entire rectangle. So check if // the axis-aligned rectangle with opposite corners p1 and p3 // define an axis-aligned rectangle whose other corners are p2 and p4. // We actually only need to check one of p2 and p4, since an affine // transform maps parallelograms to parallelograms. if (p2 == Point(p1.x, p3.y) || p2 == Point(p3.x, p1.y)) { Point p1r = p1; Point p3r = p3; p1r.Round(); p3r.Round(); if (aAllowEmptySnaps || p1r.x != p3r.x) { p1.x = p1r.x; p3.x = p3r.x; } if (aAllowEmptySnaps || p1r.y != p3r.y) { p1.y = p1r.y; p3.y = p3r.y; } aRect.MoveTo(Point(std::min(p1.x, p3.x), std::min(p1.y, p3.y))); aRect.SizeTo(Size(std::max(p1.x, p3.x) - aRect.X(), std::max(p1.y, p3.y) - aRect.Y())); return true; } return false; } /** * This function has the same behavior as UserToDevicePixelSnapped except that * aRect is not transformed to device space. */ inline bool MaybeSnapToDevicePixels(Rect& aRect, const DrawTarget& aDrawTarget, bool aAllowScaleOr90DegreeRotate = false, bool aAllowEmptySnaps = true) { if (UserToDevicePixelSnapped(aRect, aDrawTarget, aAllowScaleOr90DegreeRotate, aAllowEmptySnaps)) { // Since UserToDevicePixelSnapped returned true we know there is no // rotation/skew in 'mat', so we can just use TransformBounds() here. Matrix mat = aDrawTarget.GetTransform(); mat.Invert(); aRect = mat.TransformBounds(aRect); return true; } return false; } } // namespace gfx } // namespace mozilla #endif /* MOZILLA_GFX_PATHHELPERS_H_ */