/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim:set ts=2 sw=2 sts=2 et cindent: */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "mozilla/dom/ContentChild.h" #include "mozilla/dom/PAudioChild.h" #include "mozilla/dom/AudioChild.h" #include "nsXULAppAPI.h" using namespace mozilla::dom; #include #include #include "prlog.h" #include "prmem.h" #include "prdtoa.h" #include "nsAutoPtr.h" #include "nsAudioStream.h" #include "nsAlgorithm.h" #include "VideoUtils.h" #include "mozilla/Mutex.h" extern "C" { #include "sydneyaudio/sydney_audio.h" } #include "nsThreadUtils.h" #include "mozilla/Preferences.h" #if defined(MOZ_CUBEB) #include "nsAutoRef.h" #include "cubeb/cubeb.h" #endif using namespace mozilla; #if defined(XP_MACOSX) #define SA_PER_STREAM_VOLUME 1 #endif // Android's audio backend is not available in content processes, so audio must // be remoted to the parent chrome process. #if defined(ANDROID) #define REMOTE_AUDIO 1 #endif #ifdef PR_LOGGING PRLogModuleInfo* gAudioStreamLog = nullptr; #endif static const PRUint32 FAKE_BUFFER_SIZE = 176400; // Number of milliseconds per second. static const PRInt64 MS_PER_S = 1000; class nsNativeAudioStream : public nsAudioStream { public: NS_DECL_ISUPPORTS ~nsNativeAudioStream(); nsNativeAudioStream(); nsresult Init(PRInt32 aNumChannels, PRInt32 aRate, SampleFormat aFormat); void Shutdown(); nsresult Write(const void* aBuf, PRUint32 aFrames); PRUint32 Available(); void SetVolume(double aVolume); void Drain(); void Pause(); void Resume(); PRInt64 GetPosition(); PRInt64 GetPositionInFrames(); bool IsPaused(); PRInt32 GetMinWriteSize(); private: double mVolume; void* mAudioHandle; // True if this audio stream is paused. bool mPaused; // True if this stream has encountered an error. bool mInError; }; #if defined(REMOTE_AUDIO) class nsRemotedAudioStream : public nsAudioStream { public: NS_DECL_ISUPPORTS nsRemotedAudioStream(); ~nsRemotedAudioStream(); nsresult Init(PRInt32 aNumChannels, PRInt32 aRate, SampleFormat aFormat); void Shutdown(); nsresult Write(const void* aBuf, PRUint32 aFrames); PRUint32 Available(); void SetVolume(double aVolume); void Drain(); void Pause(); void Resume(); PRInt64 GetPosition(); PRInt64 GetPositionInFrames(); bool IsPaused(); PRInt32 GetMinWriteSize(); private: nsRefPtr mAudioChild; PRInt32 mBytesPerFrame; // True if this audio stream is paused. bool mPaused; friend class AudioInitEvent; }; class AudioInitEvent : public nsRunnable { public: AudioInitEvent(nsRemotedAudioStream* owner) { mOwner = owner; } NS_IMETHOD Run() { ContentChild * cpc = ContentChild::GetSingleton(); NS_ASSERTION(cpc, "Content Protocol is NULL!"); mOwner->mAudioChild = static_cast(cpc->SendPAudioConstructor(mOwner->mChannels, mOwner->mRate, mOwner->mFormat)); return NS_OK; } nsRefPtr mOwner; }; class AudioWriteEvent : public nsRunnable { public: AudioWriteEvent(AudioChild* aChild, const void* aBuf, PRUint32 aNumberOfFrames, PRUint32 aBytesPerFrame) { mAudioChild = aChild; mBytesPerFrame = aBytesPerFrame; mBuffer.Assign((const char*)aBuf, aNumberOfFrames * aBytesPerFrame); } NS_IMETHOD Run() { if (!mAudioChild->IsIPCOpen()) return NS_OK; mAudioChild->SendWrite(mBuffer, mBuffer.Length() / mBytesPerFrame); return NS_OK; } nsRefPtr mAudioChild; nsCString mBuffer; PRUint32 mBytesPerFrame; }; class AudioSetVolumeEvent : public nsRunnable { public: AudioSetVolumeEvent(AudioChild* aChild, double aVolume) { mAudioChild = aChild; mVolume = aVolume; } NS_IMETHOD Run() { if (!mAudioChild->IsIPCOpen()) return NS_OK; mAudioChild->SendSetVolume(mVolume); return NS_OK; } nsRefPtr mAudioChild; double mVolume; }; class AudioMinWriteSizeEvent : public nsRunnable { public: AudioMinWriteSizeEvent(AudioChild* aChild) { mAudioChild = aChild; } NS_IMETHOD Run() { if (!mAudioChild->IsIPCOpen()) return NS_OK; mAudioChild->SendMinWriteSize(); return NS_OK; } nsRefPtr mAudioChild; }; class AudioDrainEvent : public nsRunnable { public: AudioDrainEvent(AudioChild* aChild) { mAudioChild = aChild; } NS_IMETHOD Run() { if (!mAudioChild->IsIPCOpen()) return NS_OK; mAudioChild->SendDrain(); return NS_OK; } nsRefPtr mAudioChild; }; class AudioPauseEvent : public nsRunnable { public: AudioPauseEvent(AudioChild* aChild, bool pause) { mAudioChild = aChild; mPause = pause; } NS_IMETHOD Run() { if (!mAudioChild->IsIPCOpen()) return NS_OK; if (mPause) mAudioChild->SendPause(); else mAudioChild->SendResume(); return NS_OK; } nsRefPtr mAudioChild; bool mPause; }; class AudioShutdownEvent : public nsRunnable { public: AudioShutdownEvent(AudioChild* aChild) { mAudioChild = aChild; } NS_IMETHOD Run() { if (mAudioChild->IsIPCOpen()) mAudioChild->SendShutdown(); return NS_OK; } nsRefPtr mAudioChild; }; #endif #define PREF_VOLUME_SCALE "media.volume_scale" #define PREF_USE_CUBEB "media.use_cubeb" #define PREF_CUBEB_LATENCY "media.cubeb_latency_ms" static mozilla::Mutex* gAudioPrefsLock = nullptr; static double gVolumeScale; static bool gUseCubeb; static PRUint32 gCubebLatency; static int PrefChanged(const char* aPref, void* aClosure) { if (strcmp(aPref, PREF_VOLUME_SCALE) == 0) { nsAdoptingString value = Preferences::GetString(aPref); mozilla::MutexAutoLock lock(*gAudioPrefsLock); if (value.IsEmpty()) { gVolumeScale = 1.0; } else { NS_ConvertUTF16toUTF8 utf8(value); gVolumeScale = NS_MAX(0, PR_strtod(utf8.get(), nullptr)); } } else if (strcmp(aPref, PREF_USE_CUBEB) == 0) { bool value = Preferences::GetBool(aPref, true); mozilla::MutexAutoLock lock(*gAudioPrefsLock); gUseCubeb = value; } else if (strcmp(aPref, PREF_CUBEB_LATENCY) == 0) { // Arbitrary default stream latency of 100ms. The higher this // value, the longer stream volume changes will take to become // audible. PRUint32 value = Preferences::GetUint(aPref, 100); mozilla::MutexAutoLock lock(*gAudioPrefsLock); gCubebLatency = NS_MIN(NS_MAX(value, 20), 1000); } return 0; } static double GetVolumeScale() { mozilla::MutexAutoLock lock(*gAudioPrefsLock); return gVolumeScale; } #if defined(MOZ_CUBEB) static bool GetUseCubeb() { mozilla::MutexAutoLock lock(*gAudioPrefsLock); return gUseCubeb; } static cubeb* gCubebContext; static cubeb* GetCubebContext() { mozilla::MutexAutoLock lock(*gAudioPrefsLock); if (gCubebContext || cubeb_init(&gCubebContext, "nsAudioStream") == CUBEB_OK) { return gCubebContext; } NS_WARNING("cubeb_init failed"); return nullptr; } static PRUint32 GetCubebLatency() { mozilla::MutexAutoLock lock(*gAudioPrefsLock); return gCubebLatency; } #endif void nsAudioStream::InitLibrary() { #ifdef PR_LOGGING gAudioStreamLog = PR_NewLogModule("nsAudioStream"); #endif gAudioPrefsLock = new mozilla::Mutex("nsAudioStream::gAudioPrefsLock"); PrefChanged(PREF_VOLUME_SCALE, nullptr); Preferences::RegisterCallback(PrefChanged, PREF_VOLUME_SCALE); #if defined(MOZ_CUBEB) PrefChanged(PREF_USE_CUBEB, nullptr); Preferences::RegisterCallback(PrefChanged, PREF_USE_CUBEB); PrefChanged(PREF_CUBEB_LATENCY, nullptr); Preferences::RegisterCallback(PrefChanged, PREF_CUBEB_LATENCY); #endif } void nsAudioStream::ShutdownLibrary() { Preferences::UnregisterCallback(PrefChanged, PREF_VOLUME_SCALE); #if defined(MOZ_CUBEB) Preferences::UnregisterCallback(PrefChanged, PREF_USE_CUBEB); #endif delete gAudioPrefsLock; gAudioPrefsLock = nullptr; #if defined(MOZ_CUBEB) if (gCubebContext) { cubeb_destroy(gCubebContext); gCubebContext = nullptr; } #endif } nsIThread * nsAudioStream::GetThread() { if (!mAudioPlaybackThread) { NS_NewNamedThread("Audio Stream", getter_AddRefs(mAudioPlaybackThread), nullptr, MEDIA_THREAD_STACK_SIZE); } return mAudioPlaybackThread; } class AsyncShutdownPlaybackThread : public nsRunnable { public: AsyncShutdownPlaybackThread(nsIThread* aThread) : mThread(aThread) {} NS_IMETHODIMP Run() { return mThread->Shutdown(); } private: nsCOMPtr mThread; }; nsAudioStream::~nsAudioStream() { if (mAudioPlaybackThread) { nsCOMPtr event = new AsyncShutdownPlaybackThread(mAudioPlaybackThread); NS_DispatchToMainThread(event); } } nsNativeAudioStream::nsNativeAudioStream() : mVolume(1.0), mAudioHandle(0), mPaused(false), mInError(false) { } nsNativeAudioStream::~nsNativeAudioStream() { Shutdown(); } NS_IMPL_THREADSAFE_ISUPPORTS0(nsNativeAudioStream) nsresult nsNativeAudioStream::Init(PRInt32 aNumChannels, PRInt32 aRate, SampleFormat aFormat) { mRate = aRate; mChannels = aNumChannels; mFormat = aFormat; if (sa_stream_create_pcm(reinterpret_cast(&mAudioHandle), NULL, SA_MODE_WRONLY, SA_PCM_FORMAT_S16_NE, aRate, aNumChannels) != SA_SUCCESS) { mAudioHandle = nullptr; mInError = true; PR_LOG(gAudioStreamLog, PR_LOG_ERROR, ("nsNativeAudioStream: sa_stream_create_pcm error")); return NS_ERROR_FAILURE; } if (sa_stream_open(static_cast(mAudioHandle)) != SA_SUCCESS) { sa_stream_destroy(static_cast(mAudioHandle)); mAudioHandle = nullptr; mInError = true; PR_LOG(gAudioStreamLog, PR_LOG_ERROR, ("nsNativeAudioStream: sa_stream_open error")); return NS_ERROR_FAILURE; } mInError = false; return NS_OK; } void nsNativeAudioStream::Shutdown() { if (!mAudioHandle) return; sa_stream_destroy(static_cast(mAudioHandle)); mAudioHandle = nullptr; mInError = true; } nsresult nsNativeAudioStream::Write(const void* aBuf, PRUint32 aFrames) { NS_ASSERTION(!mPaused, "Don't write audio when paused, you'll block"); if (mInError) return NS_ERROR_FAILURE; PRUint32 samples = aFrames * mChannels; nsAutoArrayPtr s_data(new short[samples]); if (s_data) { double scaled_volume = GetVolumeScale() * mVolume; switch (mFormat) { case FORMAT_U8: { const PRUint8* buf = static_cast(aBuf); PRInt32 volume = PRInt32((1 << 16) * scaled_volume); for (PRUint32 i = 0; i < samples; ++i) { s_data[i] = short(((PRInt32(buf[i]) - 128) * volume) >> 8); } break; } case FORMAT_S16_LE: { const short* buf = static_cast(aBuf); PRInt32 volume = PRInt32((1 << 16) * scaled_volume); for (PRUint32 i = 0; i < samples; ++i) { short s = buf[i]; #if defined(IS_BIG_ENDIAN) s = ((s & 0x00ff) << 8) | ((s & 0xff00) >> 8); #endif s_data[i] = short((PRInt32(s) * volume) >> 16); } break; } case FORMAT_FLOAT32: { const float* buf = static_cast(aBuf); for (PRUint32 i = 0; i < samples; ++i) { float scaled_value = floorf(0.5 + 32768 * buf[i] * scaled_volume); if (buf[i] < 0.0) { s_data[i] = (scaled_value < -32768.0) ? -32768 : short(scaled_value); } else { s_data[i] = (scaled_value > 32767.0) ? 32767 : short(scaled_value); } } break; } } if (sa_stream_write(static_cast(mAudioHandle), s_data.get(), samples * sizeof(short)) != SA_SUCCESS) { PR_LOG(gAudioStreamLog, PR_LOG_ERROR, ("nsNativeAudioStream: sa_stream_write error")); mInError = true; return NS_ERROR_FAILURE; } } return NS_OK; } PRUint32 nsNativeAudioStream::Available() { // If the audio backend failed to open, lie and say we'll accept some // data. if (mInError) return FAKE_BUFFER_SIZE; size_t s = 0; if (sa_stream_get_write_size(static_cast(mAudioHandle), &s) != SA_SUCCESS) return 0; return s / mChannels / sizeof(short); } void nsNativeAudioStream::SetVolume(double aVolume) { NS_ASSERTION(aVolume >= 0.0 && aVolume <= 1.0, "Invalid volume"); #if defined(SA_PER_STREAM_VOLUME) if (sa_stream_set_volume_abs(static_cast(mAudioHandle), aVolume) != SA_SUCCESS) { PR_LOG(gAudioStreamLog, PR_LOG_ERROR, ("nsNativeAudioStream: sa_stream_set_volume_abs error")); mInError = true; } #else mVolume = aVolume; #endif } void nsNativeAudioStream::Drain() { NS_ASSERTION(!mPaused, "Don't drain audio when paused, it won't finish!"); if (mInError) return; int r = sa_stream_drain(static_cast(mAudioHandle)); if (r != SA_SUCCESS && r != SA_ERROR_INVALID) { PR_LOG(gAudioStreamLog, PR_LOG_ERROR, ("nsNativeAudioStream: sa_stream_drain error")); mInError = true; } } void nsNativeAudioStream::Pause() { if (mInError) return; mPaused = true; sa_stream_pause(static_cast(mAudioHandle)); } void nsNativeAudioStream::Resume() { if (mInError) return; mPaused = false; sa_stream_resume(static_cast(mAudioHandle)); } PRInt64 nsNativeAudioStream::GetPosition() { PRInt64 position = GetPositionInFrames(); if (position >= 0) { return ((USECS_PER_S * position) / mRate); } return -1; } PRInt64 nsNativeAudioStream::GetPositionInFrames() { if (mInError) { return -1; } sa_position_t positionType = SA_POSITION_WRITE_SOFTWARE; #if defined(XP_WIN) positionType = SA_POSITION_WRITE_HARDWARE; #endif int64_t position = 0; if (sa_stream_get_position(static_cast(mAudioHandle), positionType, &position) == SA_SUCCESS) { return position / mChannels / sizeof(short); } return -1; } bool nsNativeAudioStream::IsPaused() { return mPaused; } PRInt32 nsNativeAudioStream::GetMinWriteSize() { size_t size; int r = sa_stream_get_min_write(static_cast(mAudioHandle), &size); if (r == SA_ERROR_NOT_SUPPORTED) return 1; else if (r != SA_SUCCESS || size > PR_INT32_MAX) return -1; return static_cast(size / mChannels / sizeof(short)); } #if defined(REMOTE_AUDIO) nsRemotedAudioStream::nsRemotedAudioStream() : mAudioChild(nullptr), mBytesPerFrame(0), mPaused(false) {} nsRemotedAudioStream::~nsRemotedAudioStream() { Shutdown(); } NS_IMPL_THREADSAFE_ISUPPORTS0(nsRemotedAudioStream) nsresult nsRemotedAudioStream::Init(PRInt32 aNumChannels, PRInt32 aRate, SampleFormat aFormat) { mRate = aRate; mChannels = aNumChannels; mFormat = aFormat; switch (mFormat) { case FORMAT_U8: { mBytesPerFrame = sizeof(PRUint8) * mChannels; break; } case FORMAT_S16_LE: { mBytesPerFrame = sizeof(short) * mChannels; break; } case FORMAT_FLOAT32: { mBytesPerFrame = sizeof(float) * mChannels; } } nsCOMPtr event = new AudioInitEvent(this); NS_DispatchToMainThread(event, NS_DISPATCH_SYNC); return NS_OK; } void nsRemotedAudioStream::Shutdown() { if (!mAudioChild) return; nsCOMPtr event = new AudioShutdownEvent(mAudioChild); NS_DispatchToMainThread(event); mAudioChild = nullptr; } nsresult nsRemotedAudioStream::Write(const void* aBuf, PRUint32 aFrames) { if (!mAudioChild) return NS_ERROR_FAILURE; nsCOMPtr event = new AudioWriteEvent(mAudioChild, aBuf, aFrames, mBytesPerFrame); NS_DispatchToMainThread(event); mAudioChild->WaitForWrite(); return NS_OK; } PRUint32 nsRemotedAudioStream::Available() { return FAKE_BUFFER_SIZE; } PRInt32 nsRemotedAudioStream::GetMinWriteSize() { if (!mAudioChild) return -1; nsCOMPtr event = new AudioMinWriteSizeEvent(mAudioChild); NS_DispatchToMainThread(event); return mAudioChild->WaitForMinWriteSize(); } void nsRemotedAudioStream::SetVolume(double aVolume) { if (!mAudioChild) return; nsCOMPtr event = new AudioSetVolumeEvent(mAudioChild, aVolume); NS_DispatchToMainThread(event); } void nsRemotedAudioStream::Drain() { if (!mAudioChild) return; nsCOMPtr event = new AudioDrainEvent(mAudioChild); NS_DispatchToMainThread(event); mAudioChild->WaitForDrain(); } void nsRemotedAudioStream::Pause() { mPaused = true; if (!mAudioChild) return; nsCOMPtr event = new AudioPauseEvent(mAudioChild, true); NS_DispatchToMainThread(event); } void nsRemotedAudioStream::Resume() { mPaused = false; if (!mAudioChild) return; nsCOMPtr event = new AudioPauseEvent(mAudioChild, false); NS_DispatchToMainThread(event); } PRInt64 nsRemotedAudioStream::GetPosition() { PRInt64 position = GetPositionInFrames(); if (position >= 0) { return ((USECS_PER_S * position) / mRate); } return 0; } PRInt64 nsRemotedAudioStream::GetPositionInFrames() { if(!mAudioChild) return 0; PRInt64 position = mAudioChild->GetLastKnownPosition(); if (position == -1) return 0; PRInt64 time = mAudioChild->GetLastKnownPositionTimestamp(); PRInt64 dt = PR_IntervalToMilliseconds(PR_IntervalNow() - time); return position + (mRate * dt / MS_PER_S); } bool nsRemotedAudioStream::IsPaused() { return mPaused; } #endif #if defined(MOZ_CUBEB) template <> class nsAutoRefTraits : public nsPointerRefTraits { public: static void Release(cubeb_stream* aStream) { cubeb_stream_destroy(aStream); } }; class nsCircularByteBuffer { public: nsCircularByteBuffer() : mBuffer(nullptr), mCapacity(0), mStart(0), mCount(0) {} // Set the capacity of the buffer in bytes. Must be called before any // call to append or pop elements. void SetCapacity(PRUint32 aCapacity) { NS_ABORT_IF_FALSE(!mBuffer, "Buffer allocated."); mCapacity = aCapacity; mBuffer = new PRUint8[mCapacity]; } PRUint32 Length() { return mCount; } PRUint32 Capacity() { return mCapacity; } PRUint32 Available() { return Capacity() - Length(); } // Append aLength bytes from aSrc to the buffer. Caller must check that // sufficient space is available. void AppendElements(const PRUint8* aSrc, PRUint32 aLength) { NS_ABORT_IF_FALSE(mBuffer && mCapacity, "Buffer not initialized."); NS_ABORT_IF_FALSE(aLength <= Available(), "Buffer full."); PRUint32 end = (mStart + mCount) % mCapacity; PRUint32 toCopy = NS_MIN(mCapacity - end, aLength); memcpy(&mBuffer[end], aSrc, toCopy); memcpy(&mBuffer[0], aSrc + toCopy, aLength - toCopy); mCount += aLength; } // Remove aSize bytes from the buffer. Caller must check returned size in // aSize{1,2} before using the pointer returned in aData{1,2}. Caller // must not specify an aSize larger than Length(). void PopElements(PRUint32 aSize, void** aData1, PRUint32* aSize1, void** aData2, PRUint32* aSize2) { NS_ABORT_IF_FALSE(mBuffer && mCapacity, "Buffer not initialized."); NS_ABORT_IF_FALSE(aSize <= Length(), "Request too large."); *aData1 = &mBuffer[mStart]; *aSize1 = NS_MIN(mCapacity - mStart, aSize); *aData2 = &mBuffer[0]; *aSize2 = aSize - *aSize1; mCount -= *aSize1 + *aSize2; mStart += *aSize1 + *aSize2; mStart %= mCapacity; } private: nsAutoArrayPtr mBuffer; PRUint32 mCapacity; PRUint32 mStart; PRUint32 mCount; }; class nsBufferedAudioStream : public nsAudioStream { public: NS_DECL_ISUPPORTS nsBufferedAudioStream(); ~nsBufferedAudioStream(); nsresult Init(PRInt32 aNumChannels, PRInt32 aRate, SampleFormat aFormat); void Shutdown(); nsresult Write(const void* aBuf, PRUint32 aFrames); PRUint32 Available(); void SetVolume(double aVolume); void Drain(); void Pause(); void Resume(); PRInt64 GetPosition(); PRInt64 GetPositionInFrames(); bool IsPaused(); PRInt32 GetMinWriteSize(); private: static long DataCallback_S(cubeb_stream*, void* aThis, void* aBuffer, long aFrames) { return static_cast(aThis)->DataCallback(aBuffer, aFrames); } static void StateCallback_S(cubeb_stream*, void* aThis, cubeb_state aState) { static_cast(aThis)->StateCallback(aState); } long DataCallback(void* aBuffer, long aFrames); void StateCallback(cubeb_state aState); // Shared implementation of underflow adjusted position calculation. // Caller must own the monitor. PRInt64 GetPositionInFramesUnlocked(); // The monitor is held to protect all access to member variables. Write() // waits while mBuffer is full; DataCallback() notifies as it consumes // data from mBuffer. Drain() waits while mState is DRAINING; // StateCallback() notifies when mState is DRAINED. Monitor mMonitor; // Sum of silent frames written when DataCallback requests more frames // than are available in mBuffer. PRUint64 mLostFrames; // Temporary audio buffer. Filled by Write() and consumed by // DataCallback(). Once mBuffer is full, Write() blocks until sufficient // space becomes available in mBuffer. mBuffer is sized in bytes, not // frames. nsCircularByteBuffer mBuffer; // Software volume level. Applied during the servicing of DataCallback(). double mVolume; // Owning reference to a cubeb_stream. cubeb_stream_destroy is called by // nsAutoRef's destructor. nsAutoRef mCubebStream; PRUint32 mBytesPerFrame; enum StreamState { INITIALIZED, // Initialized, playback has not begun. STARTED, // Started by a call to Write() (iff INITIALIZED) or Resume(). STOPPED, // Stopped by a call to Pause(). DRAINING, // Drain requested. DataCallback will indicate end of stream // once the remaining contents of mBuffer are requested by // cubeb, after which StateCallback will indicate drain // completion. DRAINED, // StateCallback has indicated that the drain is complete. ERRORED // Stream disabled due to an internal error. }; StreamState mState; }; #endif nsAudioStream* nsAudioStream::AllocateStream() { #if defined(REMOTE_AUDIO) if (XRE_GetProcessType() == GeckoProcessType_Content) { return new nsRemotedAudioStream(); } #endif #if defined(MOZ_CUBEB) if (GetUseCubeb()) { return new nsBufferedAudioStream(); } #endif return new nsNativeAudioStream(); } #if defined(MOZ_CUBEB) nsBufferedAudioStream::nsBufferedAudioStream() : mMonitor("nsBufferedAudioStream"), mLostFrames(0), mVolume(1.0), mBytesPerFrame(0), mState(INITIALIZED) { } nsBufferedAudioStream::~nsBufferedAudioStream() { Shutdown(); } NS_IMPL_THREADSAFE_ISUPPORTS0(nsBufferedAudioStream) nsresult nsBufferedAudioStream::Init(PRInt32 aNumChannels, PRInt32 aRate, SampleFormat aFormat) { cubeb* cubebContext = GetCubebContext(); if (!cubebContext || aNumChannels < 0 || aRate < 0) { return NS_ERROR_FAILURE; } mRate = aRate; mChannels = aNumChannels; mFormat = aFormat; cubeb_stream_params params; params.rate = aRate; params.channels = aNumChannels; switch (aFormat) { case FORMAT_S16_LE: params.format = CUBEB_SAMPLE_S16LE; mBytesPerFrame = sizeof(short) * aNumChannels; break; case FORMAT_FLOAT32: params.format = CUBEB_SAMPLE_FLOAT32LE; mBytesPerFrame = sizeof(float) * aNumChannels; break; default: return NS_ERROR_FAILURE; } { cubeb_stream* stream; if (cubeb_stream_init(cubebContext, &stream, "nsBufferedAudioStream", params, GetCubebLatency(), DataCallback_S, StateCallback_S, this) == CUBEB_OK) { mCubebStream.own(stream); } } if (!mCubebStream) { return NS_ERROR_FAILURE; } // Size mBuffer for one second of audio. This value is arbitrary, and was // selected based on the observed behaviour of the existing nsAudioStream // implementations. PRUint32 bufferLimit = aRate * mBytesPerFrame; NS_ABORT_IF_FALSE(bufferLimit % mBytesPerFrame == 0, "Must buffer complete frames"); mBuffer.SetCapacity(bufferLimit); return NS_OK; } void nsBufferedAudioStream::Shutdown() { if (mState == STARTED) { Pause(); } if (mCubebStream) { mCubebStream.reset(); } } nsresult nsBufferedAudioStream::Write(const void* aBuf, PRUint32 aFrames) { MonitorAutoLock mon(mMonitor); if (!mCubebStream || mState == ERRORED) { return NS_ERROR_FAILURE; } NS_ASSERTION(mState == INITIALIZED || mState == STARTED, "Stream write in unexpected state."); const PRUint8* src = static_cast(aBuf); PRUint32 bytesToCopy = aFrames * mBytesPerFrame; while (bytesToCopy > 0) { PRUint32 available = NS_MIN(bytesToCopy, mBuffer.Available()); NS_ABORT_IF_FALSE(available % mBytesPerFrame == 0, "Must copy complete frames."); mBuffer.AppendElements(src, available); src += available; bytesToCopy -= available; if (mState != STARTED) { int r; { MonitorAutoUnlock mon(mMonitor); r = cubeb_stream_start(mCubebStream); } mState = r == CUBEB_OK ? STARTED : ERRORED; } if (mState != STARTED) { return NS_ERROR_FAILURE; } if (bytesToCopy > 0) { mon.Wait(); } } return NS_OK; } PRUint32 nsBufferedAudioStream::Available() { MonitorAutoLock mon(mMonitor); NS_ABORT_IF_FALSE(mBuffer.Length() % mBytesPerFrame == 0, "Buffer invariant violated."); return mBuffer.Available() / mBytesPerFrame; } PRInt32 nsBufferedAudioStream::GetMinWriteSize() { return 1; } void nsBufferedAudioStream::SetVolume(double aVolume) { MonitorAutoLock mon(mMonitor); NS_ABORT_IF_FALSE(aVolume >= 0.0 && aVolume <= 1.0, "Invalid volume"); mVolume = aVolume; } void nsBufferedAudioStream::Drain() { MonitorAutoLock mon(mMonitor); if (mState != STARTED) { return; } mState = DRAINING; while (mState == DRAINING) { mon.Wait(); } } void nsBufferedAudioStream::Pause() { MonitorAutoLock mon(mMonitor); if (!mCubebStream || mState != STARTED) { return; } int r; { MonitorAutoUnlock mon(mMonitor); r = cubeb_stream_stop(mCubebStream); } if (mState != ERRORED && r == CUBEB_OK) { mState = STOPPED; } } void nsBufferedAudioStream::Resume() { MonitorAutoLock mon(mMonitor); if (!mCubebStream || mState != STOPPED) { return; } int r; { MonitorAutoUnlock mon(mMonitor); r = cubeb_stream_start(mCubebStream); } if (mState != ERRORED && r == CUBEB_OK) { mState = STARTED; } } PRInt64 nsBufferedAudioStream::GetPosition() { MonitorAutoLock mon(mMonitor); PRInt64 frames = GetPositionInFramesUnlocked(); if (frames >= 0) { return USECS_PER_S * frames / mRate; } return -1; } // This function is miscompiled by PGO with MSVC 2010. See bug 768333. #ifdef _MSC_VER #pragma optimize("", off) #endif PRInt64 nsBufferedAudioStream::GetPositionInFrames() { MonitorAutoLock mon(mMonitor); return GetPositionInFramesUnlocked(); } #ifdef _MSC_VER #pragma optimize("", on) #endif PRInt64 nsBufferedAudioStream::GetPositionInFramesUnlocked() { mMonitor.AssertCurrentThreadOwns(); if (!mCubebStream || mState == ERRORED) { return -1; } uint64_t position = 0; { MonitorAutoUnlock mon(mMonitor); if (cubeb_stream_get_position(mCubebStream, &position) != CUBEB_OK) { return -1; } } // Adjust the reported position by the number of silent frames written // during stream underruns. PRUint64 adjustedPosition = 0; if (position >= mLostFrames) { adjustedPosition = position - mLostFrames; } return NS_MIN(adjustedPosition, PR_INT64_MAX); } bool nsBufferedAudioStream::IsPaused() { MonitorAutoLock mon(mMonitor); return mState == STOPPED; } long nsBufferedAudioStream::DataCallback(void* aBuffer, long aFrames) { MonitorAutoLock mon(mMonitor); PRUint32 bytesWanted = aFrames * mBytesPerFrame; // Adjust bytesWanted to fit what is available in mBuffer. PRUint32 available = NS_MIN(bytesWanted, mBuffer.Length()); NS_ABORT_IF_FALSE(available % mBytesPerFrame == 0, "Must copy complete frames"); if (available > 0) { // Copy each sample from mBuffer to aBuffer, adjusting the volume during the copy. double scaled_volume = GetVolumeScale() * mVolume; // Fetch input pointers from the ring buffer. void* input[2]; PRUint32 input_size[2]; mBuffer.PopElements(available, &input[0], &input_size[0], &input[1], &input_size[1]); PRUint8* output = reinterpret_cast(aBuffer); for (int i = 0; i < 2; ++i) { // Fast path for unity volume case. if (scaled_volume == 1.0) { memcpy(output, input[i], input_size[i]); output += input_size[i]; } else { // Adjust volume as each sample is copied out. switch (mFormat) { case FORMAT_S16_LE: { PRInt32 volume = PRInt32(1 << 16) * scaled_volume; const short* src = static_cast(input[i]); short* dst = reinterpret_cast(output); for (PRUint32 j = 0; j < input_size[i] / (mBytesPerFrame / mChannels); ++j) { dst[j] = short((PRInt32(src[j]) * volume) >> 16); } output += input_size[i]; break; } case FORMAT_FLOAT32: { const float* src = static_cast(input[i]); float* dst = reinterpret_cast(output); for (PRUint32 j = 0; j < input_size[i] / (mBytesPerFrame / mChannels); ++j) { dst[j] = src[j] * scaled_volume; } output += input_size[i]; break; } default: return -1; } } } NS_ABORT_IF_FALSE(mBuffer.Length() % mBytesPerFrame == 0, "Must copy complete frames"); // Notify any blocked Write() call that more space is available in mBuffer. mon.NotifyAll(); // Calculate remaining bytes requested by caller. If the stream is not // draining an underrun has occurred, so fill the remaining buffer with // silence. bytesWanted -= available; } if (mState != DRAINING) { memset(static_cast(aBuffer) + available, 0, bytesWanted); mLostFrames += bytesWanted / mBytesPerFrame; bytesWanted = 0; } return aFrames - (bytesWanted / mBytesPerFrame); } void nsBufferedAudioStream::StateCallback(cubeb_state aState) { MonitorAutoLock mon(mMonitor); if (aState == CUBEB_STATE_DRAINED) { mState = DRAINED; } else if (aState == CUBEB_STATE_ERROR) { mState = ERRORED; } mon.NotifyAll(); } #endif