/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim:set ts=2 sw=2 sts=2 et cindent: */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "mozilla/dom/AnalyserNode.h" #include "mozilla/dom/AnalyserNodeBinding.h" #include "AudioNodeEngine.h" #include "AudioNodeStream.h" #include "mozilla/Mutex.h" #include "kiss_fft/kiss_fftr.h" namespace mozilla { namespace dom { NS_IMPL_ISUPPORTS_INHERITED0(AnalyserNode, AudioNode) class AnalyserNodeEngine : public AudioNodeEngine { class TransferBuffer : public nsRunnable { public: TransferBuffer(AudioNodeStream* aStream, const AudioChunk& aChunk) : mStream(aStream) , mChunk(aChunk) { } NS_IMETHOD Run() { nsRefPtr node; { // No need to keep holding the lock for the whole duration of this // function, since we're holding a strong reference to it, so if // we can obtain the reference, we will hold the node alive in // this function. MutexAutoLock lock(mStream->Engine()->NodeMutex()); node = static_cast(mStream->Engine()->Node()); } if (node) { node->AppendChunk(mChunk); } return NS_OK; } private: nsRefPtr mStream; AudioChunk mChunk; }; public: explicit AnalyserNodeEngine(AnalyserNode* aNode) : AudioNodeEngine(aNode) { MOZ_ASSERT(NS_IsMainThread()); } virtual void ProduceAudioBlock(AudioNodeStream* aStream, const AudioChunk& aInput, AudioChunk* aOutput, bool* aFinished) MOZ_OVERRIDE { *aOutput = aInput; MutexAutoLock lock(NodeMutex()); if (Node() && aInput.mChannelData.Length() > 0) { nsRefPtr transfer = new TransferBuffer(aStream, aInput); NS_DispatchToMainThread(transfer); } } }; AnalyserNode::AnalyserNode(AudioContext* aContext) : AudioNode(aContext, 1, ChannelCountMode::Explicit, ChannelInterpretation::Speakers) , mFFTSize(2048) , mMinDecibels(-100.) , mMaxDecibels(-30.) , mSmoothingTimeConstant(.8) , mWriteIndex(0) { mStream = aContext->Graph()->CreateAudioNodeStream(new AnalyserNodeEngine(this), MediaStreamGraph::INTERNAL_STREAM); AllocateBuffer(); } JSObject* AnalyserNode::WrapObject(JSContext* aCx, JS::Handle aScope) { return AnalyserNodeBinding::Wrap(aCx, aScope, this); } void AnalyserNode::SetFftSize(uint32_t aValue, ErrorResult& aRv) { // Disallow values that are not a power of 2 and outside the [32,2048] range if (aValue < 32 || aValue > 2048 || (aValue & (aValue - 1)) != 0) { aRv.Throw(NS_ERROR_DOM_INDEX_SIZE_ERR); return; } if (mFFTSize != aValue) { mFFTSize = aValue; AllocateBuffer(); } } void AnalyserNode::SetMinDecibels(double aValue, ErrorResult& aRv) { if (aValue >= mMaxDecibels) { aRv.Throw(NS_ERROR_DOM_INDEX_SIZE_ERR); return; } mMinDecibels = aValue; } void AnalyserNode::SetMaxDecibels(double aValue, ErrorResult& aRv) { if (aValue <= mMinDecibels) { aRv.Throw(NS_ERROR_DOM_INDEX_SIZE_ERR); return; } mMaxDecibels = aValue; } void AnalyserNode::SetSmoothingTimeConstant(double aValue, ErrorResult& aRv) { if (aValue < 0 || aValue > 1) { aRv.Throw(NS_ERROR_DOM_INDEX_SIZE_ERR); return; } mSmoothingTimeConstant = aValue; } void AnalyserNode::GetFloatFrequencyData(Float32Array& aArray) { if (!FFTAnalysis()) { // Might fail to allocate memory return; } float* buffer = aArray.Data(); uint32_t length = std::min(aArray.Length(), mOutputBuffer.Length()); for (uint32_t i = 0; i < length; ++i) { buffer[i] = WebAudioUtils::ConvertLinearToDecibels(mOutputBuffer[i], mMinDecibels); } } void AnalyserNode::GetByteFrequencyData(Uint8Array& aArray) { if (!FFTAnalysis()) { // Might fail to allocate memory return; } const double rangeScaleFactor = 1.0 / (mMaxDecibels - mMinDecibels); unsigned char* buffer = aArray.Data(); uint32_t length = std::min(aArray.Length(), mOutputBuffer.Length()); for (uint32_t i = 0; i < length; ++i) { const double decibels = WebAudioUtils::ConvertLinearToDecibels(mOutputBuffer[i], mMinDecibels); // scale down the value to the range of [0, UCHAR_MAX] const double scaled = std::max(0.0, std::min(double(UCHAR_MAX), UCHAR_MAX * (decibels - mMinDecibels) * rangeScaleFactor)); buffer[i] = static_cast(scaled); } } void AnalyserNode::GetByteTimeDomainData(Uint8Array& aArray) { unsigned char* buffer = aArray.Data(); uint32_t length = std::min(aArray.Length(), mBuffer.Length()); for (uint32_t i = 0; i < length; ++i) { const float value = mBuffer[(i + mWriteIndex) % mBuffer.Length()]; // scale the value to the range of [0, UCHAR_MAX] const float scaled = std::max(0.0f, std::min(float(UCHAR_MAX), 128.0f * (value + 1.0f))); buffer[i] = static_cast(scaled); } } bool AnalyserNode::FFTAnalysis() { float* inputBuffer; bool allocated = false; if (mWriteIndex == 0) { inputBuffer = mBuffer.Elements(); } else { inputBuffer = static_cast(moz_malloc(mFFTSize * sizeof(float))); if (!inputBuffer) { return false; } memcpy(inputBuffer, mBuffer.Elements() + mWriteIndex, sizeof(float) * (mFFTSize - mWriteIndex)); memcpy(inputBuffer + mFFTSize - mWriteIndex, mBuffer.Elements(), sizeof(float) * mWriteIndex); allocated = true; } nsAutoArrayPtr outputBuffer(new kiss_fft_cpx[FrequencyBinCount() + 1]); ApplyBlackmanWindow(inputBuffer, mFFTSize); kiss_fftr_cfg fft = kiss_fftr_alloc(mFFTSize, 0, nullptr, nullptr); kiss_fftr(fft, inputBuffer, outputBuffer); free(fft); // Normalize so than an input sine wave at 0dBfs registers as 0dBfs (undo FFT scaling factor). const double magnitudeScale = 1.0 / mFFTSize; for (uint32_t i = 0; i < mOutputBuffer.Length(); ++i) { double scalarMagnitude = sqrt(outputBuffer[i].r * outputBuffer[i].r + outputBuffer[i].i * outputBuffer[i].i) * magnitudeScale; mOutputBuffer[i] = mSmoothingTimeConstant * mOutputBuffer[i] + (1.0 - mSmoothingTimeConstant) * scalarMagnitude; } if (allocated) { moz_free(inputBuffer); } return true; } void AnalyserNode::ApplyBlackmanWindow(float* aBuffer, uint32_t aSize) { double alpha = 0.16; double a0 = 0.5 * (1.0 - alpha); double a1 = 0.5; double a2 = 0.5 * alpha; for (uint32_t i = 0; i < aSize; ++i) { double x = double(i) / aSize; double window = a0 - a1 * cos(2 * M_PI * x) + a2 * cos(4 * M_PI * x); aBuffer[i] *= window; } } bool AnalyserNode::AllocateBuffer() { bool result = true; if (mBuffer.Length() != mFFTSize) { result = mBuffer.SetLength(mFFTSize); if (result) { memset(mBuffer.Elements(), 0, sizeof(float) * mFFTSize); mWriteIndex = 0; result = mOutputBuffer.SetLength(FrequencyBinCount()); if (result) { memset(mOutputBuffer.Elements(), 0, sizeof(float) * FrequencyBinCount()); } } } return result; } void AnalyserNode::AppendChunk(const AudioChunk& aChunk) { const uint32_t bufferSize = mBuffer.Length(); const uint32_t channelCount = aChunk.mChannelData.Length(); const uint32_t chunkCount = aChunk.mDuration; MOZ_ASSERT((bufferSize & (bufferSize - 1)) == 0); // Must be a power of two! MOZ_ASSERT(channelCount > 0); MOZ_ASSERT(chunkCount == WEBAUDIO_BLOCK_SIZE); memcpy(mBuffer.Elements() + mWriteIndex, aChunk.mChannelData[0], sizeof(float) * chunkCount); for (uint32_t i = 1; i < channelCount; ++i) { AudioBlockAddChannelWithScale(static_cast(aChunk.mChannelData[i]), 1.0f, mBuffer.Elements() + mWriteIndex); } if (channelCount > 1) { AudioBlockInPlaceScale(mBuffer.Elements() + mWriteIndex, 1, 1.0f / aChunk.mChannelData.Length()); } mWriteIndex += chunkCount; MOZ_ASSERT(mWriteIndex <= bufferSize); if (mWriteIndex >= bufferSize) { mWriteIndex = 0; } } } }