/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*- * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #ifndef MOZILLA_GFX_PATHHELPERS_H_ #define MOZILLA_GFX_PATHHELPERS_H_ #include "2D.h" #include "mozilla/Constants.h" namespace mozilla { namespace gfx { template void ArcToBezier(T* aSink, const Point &aOrigin, const Size &aRadius, float aStartAngle, float aEndAngle, bool aAntiClockwise) { Point startPoint(aOrigin.x + cos(aStartAngle) * aRadius.width, aOrigin.y + sin(aStartAngle) * aRadius.height); aSink->LineTo(startPoint); // Clockwise we always sweep from the smaller to the larger angle, ccw // it's vice versa. if (!aAntiClockwise && (aEndAngle < aStartAngle)) { Float correction = Float(ceil((aStartAngle - aEndAngle) / (2.0f * M_PI))); aEndAngle += float(correction * 2.0f * M_PI); } else if (aAntiClockwise && (aStartAngle < aEndAngle)) { Float correction = (Float)ceil((aEndAngle - aStartAngle) / (2.0f * M_PI)); aStartAngle += float(correction * 2.0f * M_PI); } // Sweeping more than 2 * pi is a full circle. if (!aAntiClockwise && (aEndAngle - aStartAngle > 2 * M_PI)) { aEndAngle = float(aStartAngle + 2.0f * M_PI); } else if (aAntiClockwise && (aStartAngle - aEndAngle > 2.0f * M_PI)) { aEndAngle = float(aStartAngle - 2.0f * M_PI); } // Calculate the total arc we're going to sweep. Float arcSweepLeft = fabs(aEndAngle - aStartAngle); Float sweepDirection = aAntiClockwise ? -1.0f : 1.0f; Float currentStartAngle = aStartAngle; while (arcSweepLeft > 0) { // We guarantee here the current point is the start point of the next // curve segment. Float currentEndAngle; if (arcSweepLeft > M_PI / 2.0f) { currentEndAngle = Float(currentStartAngle + M_PI / 2.0f * sweepDirection); } else { currentEndAngle = currentStartAngle + arcSweepLeft * sweepDirection; } Point currentStartPoint(aOrigin.x + cos(currentStartAngle) * aRadius.width, aOrigin.y + sin(currentStartAngle) * aRadius.height); Point currentEndPoint(aOrigin.x + cos(currentEndAngle) * aRadius.width, aOrigin.y + sin(currentEndAngle) * aRadius.height); // Calculate kappa constant for partial curve. The sign of angle in the // tangent will actually ensure this is negative for a counter clockwise // sweep, so changing signs later isn't needed. Float kappaFactor = (4.0f / 3.0f) * tan((currentEndAngle - currentStartAngle) / 4.0f); Float kappaX = kappaFactor * aRadius.width; Float kappaY = kappaFactor * aRadius.height; Point tangentStart(-sin(currentStartAngle), cos(currentStartAngle)); Point cp1 = currentStartPoint; cp1 += Point(tangentStart.x * kappaX, tangentStart.y * kappaY); Point revTangentEnd(sin(currentEndAngle), -cos(currentEndAngle)); Point cp2 = currentEndPoint; cp2 += Point(revTangentEnd.x * kappaX, revTangentEnd.y * kappaY); aSink->BezierTo(cp1, cp2, currentEndPoint); arcSweepLeft -= Float(M_PI / 2.0f); currentStartAngle = currentEndAngle; } } /* This is basically the ArcToBezier with the parameters for drawing a circle * inlined which vastly simplifies it and avoids a bunch of transcedental function * calls which should make it faster. */ template void EllipseToBezier(T* aSink, const Point &aOrigin, const Size &aRadius) { Point startPoint(aOrigin.x + aRadius.width, aOrigin.y); aSink->LineTo(startPoint); // Calculate kappa constant for partial curve. The sign of angle in the // tangent will actually ensure this is negative for a counter clockwise // sweep, so changing signs later isn't needed. Float kappaFactor = (4.0f / 3.0f) * tan((M_PI/2.0f) / 4.0f); Float kappaX = kappaFactor * aRadius.width; Float kappaY = kappaFactor * aRadius.height; Float cosStartAngle = 1; Float sinStartAngle = 0; for (int i = 0; i < 4; i++) { // We guarantee here the current point is the start point of the next // curve segment. Point currentStartPoint(aOrigin.x + cosStartAngle * aRadius.width, aOrigin.y + sinStartAngle * aRadius.height); Point currentEndPoint(aOrigin.x + -sinStartAngle * aRadius.width, aOrigin.y + cosStartAngle * aRadius.height); Point tangentStart(-sinStartAngle, cosStartAngle); Point cp1 = currentStartPoint; cp1 += Point(tangentStart.x * kappaX, tangentStart.y * kappaY); Point revTangentEnd(cosStartAngle, sinStartAngle); Point cp2 = currentEndPoint; cp2 += Point(revTangentEnd.x * kappaX, revTangentEnd.y * kappaY); aSink->BezierTo(cp1, cp2, currentEndPoint); // cos(x+pi/2) == -sin(x) // sin(x+pi/2) == cos(x) Float tmp = cosStartAngle; cosStartAngle = -sinStartAngle; sinStartAngle = tmp; } } /** * Appends a path represending a rounded rectangle to the path being built by * aPathBuilder. * * aRect The rectangle to append. * aCornerRadii Contains the radii of the top-left, top-right, bottom-right * and bottom-left corners, in that order. * aDrawClockwise If set to true, the path will start at the left of the top * left edge and draw clockwise. If set to false the path will * start at the right of the top left edge and draw counter- * clockwise. */ GFX2D_API void AppendRoundedRectToPath(PathBuilder* aPathBuilder, const Rect& aRect, const Size(& aCornerRadii)[4], bool aDrawClockwise = true); /** * Appends a path represending an ellipse to the path being built by * aPathBuilder. * * The ellipse extends aDimensions.width / 2.0 in the horizontal direction * from aCenter, and aDimensions.height / 2.0 in the vertical direction. */ GFX2D_API void AppendEllipseToPath(PathBuilder* aPathBuilder, const Point& aCenter, const Size& aDimensions); static inline bool UserToDevicePixelSnapped(Rect& aRect, const Matrix& aTransform) { Point p1 = aTransform * aRect.TopLeft(); Point p2 = aTransform * aRect.TopRight(); Point p3 = aTransform * aRect.BottomRight(); // Check that the rectangle is axis-aligned. For an axis-aligned rectangle, // two opposite corners define the entire rectangle. So check if // the axis-aligned rectangle with opposite corners p1 and p3 // define an axis-aligned rectangle whose other corners are p2 and p4. // We actually only need to check one of p2 and p4, since an affine // transform maps parallelograms to parallelograms. if (p2 == Point(p1.x, p3.y) || p2 == Point(p3.x, p1.y)) { p1.Round(); p3.Round(); aRect.MoveTo(Point(std::min(p1.x, p3.x), std::min(p1.y, p3.y))); aRect.SizeTo(Size(std::max(p1.x, p3.x) - aRect.X(), std::max(p1.y, p3.y) - aRect.Y())); return true; } return false; } } // namespace gfx } // namespace mozilla #endif /* MOZILLA_GFX_PATHHELPERS_H_ */