/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- * * The contents of this file are subject to the Netscape Public * License Version 1.1 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of * the License at http://www.mozilla.org/NPL/ * * Software distributed under the License is distributed on an "AS * IS" basis, WITHOUT WARRANTY OF ANY KIND, either express oqr * implied. See the License for the specific language governing * rights and limitations under the License. * * The Original Code is the JavaScript 2 Prototype. * * The Initial Developer of the Original Code is Netscape * Communications Corporation. Portions created by Netscape are * Copyright (C) 1998 Netscape Communications Corporation. All * Rights Reserved. * * Contributor(s): * * Alternatively, the contents of this file may be used under the * terms of the GNU Public License (the "GPL"), in which case the * provisions of the GPL are applicable instead of those above. * If you wish to allow use of your version of this file only * under the terms of the GPL and not to allow others to use your * version of this file under the NPL, indicate your decision by * deleting the provisions above and replace them with the notice * and other provisions required by the GPL. If you do not delete * the provisions above, a recipient may use your version of this * file under either the NPL or the GPL. */ #include "interpreter.h" #include "world.h" #include namespace JavaScript { namespace Interpreter { // operand access macros. #define op1(i) (i->o1()) #define op2(i) (i->o2()) #define op3(i) (i->o3()) #define op4(i) (i->o4()) // mnemonic names for operands. #define dst(i) op1(i) #define src1(i) op2(i) #define src2(i) op3(i) #define ofs(i) (i->getOffset()) #define val3(i) op3(i) #define val4(i) op4(i) using namespace ICG; using namespace JSTypes; // These classes are private to the JS interpreter. /** * */ struct Handler: public gc_base { Handler(Label *catchLabel, Label *finallyLabel) : catchTarget(catchLabel), finallyTarget(finallyLabel) {} Label *catchTarget; Label *finallyTarget; }; typedef std::vector CatchStack; /** * Represents the current function's invocation state. */ struct Activation : public gc_base { JSValues mRegisters; ICodeModule* mICode; CatchStack catchStack; Activation(ICodeModule* iCode, const JSValues& args) : mRegisters(iCode->itsMaxRegister + 1), mICode(iCode) { // copy arg list to initial registers. JSValues::iterator dest = mRegisters.begin(); for (JSValues::const_iterator src = args.begin(), end = args.end(); src != end; ++src, ++dest) { *dest = *src; } } Activation(ICodeModule* iCode, Activation* caller, const RegisterList& list) : mRegisters(iCode->itsMaxRegister + 1), mICode(iCode) { // copy caller's parameter list to initial registers. JSValues::iterator dest = mRegisters.begin(); const JSValues& params = caller->mRegisters; for (RegisterList::const_iterator src = list.begin(), end = list.end(); src != end; ++src, ++dest) { *dest = params[*src]; } } Activation(ICodeModule* iCode, const JSValue arg) : mRegisters(iCode->itsMaxRegister + 1), mICode(iCode) { mRegisters[0] = arg; } Activation(ICodeModule* iCode, const JSValue arg1, const JSValue arg2) : mRegisters(iCode->itsMaxRegister + 1), mICode(iCode) { mRegisters[0] = arg1; mRegisters[1] = arg2; } }; JSValues& Context::getRegisters() { return mActivation->mRegisters; } ICodeModule* Context::getICode() { return mActivation->mICode; } /** * Stores saved state from the *previous* activation, the current * activation is alive and well in locals of the interpreter loop. */ struct Linkage : public Context::Frame, public gc_base { Linkage* mNext; // next linkage in linkage stack. InstructionIterator mReturnPC; Activation* mActivation; // caller's activation. Register mResult; // the desired target register for the return value Linkage(Linkage* linkage, InstructionIterator returnPC, Activation* activation, Register result) : mNext(linkage), mReturnPC(returnPC), mActivation(activation), mResult(result) { } Context::Frame* getNext() { return mNext; } void getState(InstructionIterator& pc, JSValues*& registers, ICodeModule*& iCode) { pc = mReturnPC; registers = &mActivation->mRegisters; iCode = mActivation->mICode; } }; /* void Context::doCall(JSFunction *target, Instruction *pc) { if (target->isNative()) { RegisterList ¶ms = op3(call); JSValues argv(params.size()); JSValues::size_type i = 0; for (RegisterList::const_iterator src = params.begin(), end = params.end(); src != end; ++src, ++i) { argv[i] = (*registers)[*src]; } if (op2(call) != NotARegister) (*registers)[op2(call)] = static_cast(target)->mCode(argv); return pc; } else { mLinkage = new Linkage(mLinkage, ++mPC, mActivation, op1(call)); iCode = target->getICode(); mActivation = new Activation(iCode, mActivation, op3(call)); registers = &mActivation->mRegisters; continue; } } */ JSValue multiply_number(const JSValues& argv) { return argv[0].f64 * argv[1].f64; } JSValue multiply_object(const JSValues& argv) { JSValue num1(argv[0].toNumber()); JSValue num2(argv[1].toNumber()); return JSValue(num1.f64 * num2.f64); } class BinaryOperator { public: typedef enum { Add, Subtract, Multiply, Divide, Remainder, LeftShift, RightShift, LogicalRightShift, BitwiseOr, BitwiseXor, BitwiseAnd, Less, LessEqual, Equal, Identical } BinaryOp; BinaryOperator(const JSType *t1, const JSType *t2, JSFunction *function) : t1(t1), t2(t2), function(function) { } const JSType *t1; const JSType *t2; JSFunction *function; }; typedef std::vector BinaryOperatorList; BinaryOperatorList binaryOperators[15]; class InitBinaryOperators { public: InitBinaryOperators() { binaryOperators[BinaryOperator::Multiply].push_back(new BinaryOperator(&Number_Type, &Number_Type, new JSNativeFunction(multiply_number))); binaryOperators[BinaryOperator::Multiply].push_back(new BinaryOperator(&Any_Type, &Any_Type, new JSNativeFunction(multiply_object))); } } initializer = InitBinaryOperators(); const JSValue findBinaryOverride(JSValue &operand1, JSValue &operand2, BinaryOperator::BinaryOp op) { int32 bestDist1 = JSType::NoRelation; int32 bestDist2 = JSType::NoRelation; BinaryOperatorList::iterator candidate = NULL; for (BinaryOperatorList::iterator i = binaryOperators[op].begin(); i != binaryOperators[op].end(); i++) { int32 dist1 = operand1.getType()->distance((*i)->t1); int32 dist2 = operand2.getType()->distance((*i)->t2); if ((dist1 < bestDist1) && (dist2 < bestDist2)) { bestDist1 = dist1; bestDist2 = dist2; candidate = i; } } ASSERT(candidate); return JSValue((*candidate)->function); } JSValue Context::interpret(ICodeModule* iCode, const JSValues& args) { assert(mActivation == 0); /* recursion == bad */ JSValue rv; mActivation = new Activation(iCode, args); JSValues* registers = &mActivation->mRegisters; mPC = mActivation->mICode->its_iCode->begin(); // stack of all catch/finally handlers available for the current activation // to implement jsr/rts for finally code std::stack subroutineStack; while (true) { try { // tell any listeners about the current execution state. // XXX should only do this if we're single stepping/tracing. if (mListeners.size()) broadcast(EV_STEP); Instruction* instruction = *mPC; switch (instruction->op()) { case CALL: { Call* call = static_cast(instruction); JSFunction *target = (*registers)[op2(call)].function; if (target->isNative()) { RegisterList ¶ms = op3(call); JSValues argv(params.size()); JSValues::size_type i = 0; for (RegisterList::const_iterator src = params.begin(), end = params.end(); src != end; ++src, ++i) { argv[i] = (*registers)[*src]; } if (op2(call) != NotARegister) (*registers)[op2(call)] = static_cast(target)->mCode(argv); break; } else { mLinkage = new Linkage(mLinkage, ++mPC, mActivation, op1(call)); mActivation = new Activation(target->getICode(), mActivation, op3(call)); registers = &mActivation->mRegisters; mPC = mActivation->mICode->its_iCode->begin(); continue; } } case RETURN_VOID: { JSValue result; Linkage *linkage = mLinkage; if (!linkage) { // let the garbage collector free activations. mActivation = 0; return result; } mLinkage = linkage->mNext; mActivation = linkage->mActivation; registers = &mActivation->mRegisters; (*registers)[linkage->mResult] = result; mPC = linkage->mReturnPC; } continue; case RETURN: { Return* ret = static_cast(instruction); JSValue result; if (op1(ret) != NotARegister) result = (*registers)[op1(ret)]; Linkage* linkage = mLinkage; if (!linkage) { // let the garbage collector free activations. mActivation = 0; return result; } mLinkage = linkage->mNext; mActivation = linkage->mActivation; registers = &mActivation->mRegisters; (*registers)[linkage->mResult] = result; mPC = linkage->mReturnPC; } continue; case MOVE: { Move* mov = static_cast(instruction); (*registers)[dst(mov)] = (*registers)[src1(mov)]; } break; case LOAD_NAME: { LoadName* ln = static_cast(instruction); (*registers)[dst(ln)] = mGlobal->getVariable(*src1(ln)); } break; case SAVE_NAME: { SaveName* sn = static_cast(instruction); mGlobal->setVariable(*dst(sn), (*registers)[src1(sn)]); } break; case NEW_OBJECT: { NewObject* no = static_cast(instruction); (*registers)[dst(no)] = JSValue(new JSObject()); } break; case NEW_ARRAY: { NewArray* na = static_cast(instruction); (*registers)[dst(na)] = JSValue(new JSArray()); } break; case GET_PROP: { GetProp* gp = static_cast(instruction); JSValue& value = (*registers)[src1(gp)]; if (value.tag == JSValue::object_tag) { JSObject* object = value.object; (*registers)[dst(gp)] = object->getProperty(*src2(gp)); } } break; case SET_PROP: { SetProp* sp = static_cast(instruction); JSValue& value = (*registers)[dst(sp)]; if (value.tag == JSValue::object_tag) { JSObject* object = value.object; object->setProperty(*src1(sp), (*registers)[src2(sp)]); } } break; /* In 1.5, there is no 'array' type really, the index operation turns into a get_property call like this, only we need to be using JSString throughout. case GET_ELEMENT: { GetElement* ge = static_cast(instruction); JSValue& base = (*registers)[src1(ge)]; JSValue index = (*registers)[src2(ge)].toString(); if (base.tag == JSValue::object_tag) { JSObject* object = base.object; (*registers)[dst(ge)] = object->getProperty(*index.string); } } break; */ case GET_ELEMENT: { GetElement* ge = static_cast(instruction); JSValue& value = (*registers)[src1(ge)]; if (value.tag == JSValue::array_tag) { JSArray* array = value.array; (*registers)[dst(ge)] = (*array)[(*registers)[src2(ge)]]; } } break; case SET_ELEMENT: { SetElement* se = static_cast(instruction); JSValue& value = (*registers)[dst(se)]; if (value.tag == JSValue::array_tag) { JSArray* array = value.array; (*array)[(*registers)[src1(se)]] = (*registers)[src2(se)]; } } break; case LOAD_IMMEDIATE: { LoadImmediate* li = static_cast(instruction); (*registers)[dst(li)] = JSValue(src1(li)); } break; case LOAD_STRING: { LoadString* ls = static_cast(instruction); (*registers)[dst(ls)] = JSValue(src1(ls)); } break; case LOAD_VALUE: { LoadValue* lv = static_cast(instruction); (*registers)[dst(lv)] = src1(lv); } break; case BRANCH: { GenericBranch* bra = static_cast(instruction); mPC = mActivation->mICode->its_iCode->begin() + ofs(bra); continue; } break; /* case BRANCH_LT: { GenericBranch* bc = static_cast(instruction); if ((*registers)[src1(bc)].i32 < 0) { mPC = mActivation->mICode->its_iCode->begin() + ofs(bc); continue; } } break; case BRANCH_LE: { GenericBranch* bc = static_cast(instruction); if ((*registers)[src1(bc)].i32 <= 0) { mPC = mActivation->mICode->its_iCode->begin() + ofs(bc); continue; } } break; case BRANCH_EQ: { GenericBranch* bc = static_cast(instruction); if ((*registers)[src1(bc)].i32 == 0) { mPC = mActivation->mICode->its_iCode->begin() + ofs(bc); continue; } } break; case BRANCH_NE: { GenericBranch* bc = static_cast(instruction); if ((*registers)[src1(bc)].i32 != 0) { mPC = mActivation->mICode->its_iCode->begin() + ofs(bc); continue; } } break; case BRANCH_GE: { GenericBranch* bc = static_cast(instruction); if ((*registers)[src1(bc)].i32 >= 0) { mPC = begin_pc + ofs(bc); continue; } } break; case BRANCH_GT: { GenericBranch* bc = static_cast(instruction); if ((*registers)[src1(bc)].i32 > 0) { mPC = begin_pc + ofs(bc); continue; } } break; */ case BRANCH_TRUE: { GenericBranch* bc = static_cast(instruction); ASSERT((*registers)[src1(bc)].isBoolean()); if ((*registers)[src1(bc)].boolean) { mPC = mActivation->mICode->its_iCode->begin() + ofs(bc); continue; } } break; case BRANCH_FALSE: { GenericBranch* bc = static_cast(instruction); ASSERT((*registers)[src1(bc)].isBoolean()); if (!(*registers)[src1(bc)].boolean) { mPC = mActivation->mICode->its_iCode->begin() + ofs(bc); continue; } } break; case SHIFTLEFT: { Arithmetic* shl = static_cast(instruction); JSValue& dest = (*registers)[dst(shl)]; JSValue& r1 = (*registers)[src1(shl)]; JSValue& r2 = (*registers)[src2(shl)]; JSValue num1(r1.toInt32()); JSValue num2(r2.toUInt32()); dest = num1.i32 << (num2.u32 & 0x1F); } break; case SHIFTRIGHT: { Arithmetic* shr = static_cast(instruction); JSValue& dest = (*registers)[dst(shr)]; JSValue& r1 = (*registers)[src1(shr)]; JSValue& r2 = (*registers)[src2(shr)]; JSValue num1(r1.toInt32()); JSValue num2(r2.toUInt32()); dest = num1.i32 >> (num2.u32 & 0x1F); } break; case USHIFTRIGHT: { Arithmetic* ushr = static_cast(instruction); JSValue& dest = (*registers)[dst(ushr)]; JSValue& r1 = (*registers)[src1(ushr)]; JSValue& r2 = (*registers)[src2(ushr)]; JSValue num1(r1.toUInt32()); JSValue num2(r2.toUInt32()); dest = num1.u32 >> (num2.u32 & 0x1F); } break; case AND: { Arithmetic* shr = static_cast(instruction); JSValue& dest = (*registers)[dst(shr)]; JSValue& r1 = (*registers)[src1(shr)]; JSValue& r2 = (*registers)[src2(shr)]; JSValue num1(r1.toInt32()); JSValue num2(r2.toInt32()); dest = num1.i32 & num2.i32; } break; case OR: { Arithmetic* shr = static_cast(instruction); JSValue& dest = (*registers)[dst(shr)]; JSValue& r1 = (*registers)[src1(shr)]; JSValue& r2 = (*registers)[src2(shr)]; JSValue num1(r1.toInt32()); JSValue num2(r2.toInt32()); dest = num1.i32 | num2.i32; } break; case XOR: { Arithmetic* shr = static_cast(instruction); JSValue& dest = (*registers)[dst(shr)]; JSValue& r1 = (*registers)[src1(shr)]; JSValue& r2 = (*registers)[src2(shr)]; JSValue num1(r1.toInt32()); JSValue num2(r2.toInt32()); dest = num1.i32 ^ num2.i32; } break; case ADD: { // could get clever here with Functional forms. Arithmetic* add = static_cast(instruction); JSValue& dest = (*registers)[dst(add)]; JSValue& r1 = (*registers)[src1(add)]; JSValue& r2 = (*registers)[src2(add)]; if (r1.isString() || r2.isString()) { dest = r1.toString(); JSString& str1 = *dest.string; JSString& str2 = *r2.toString().string; str1 += str2; } else { JSValue num1(r1.toNumber()); JSValue num2(r2.toNumber()); dest = num1.f64 + num2.f64; } } break; case SUBTRACT: { Arithmetic* sub = static_cast(instruction); JSValue& dest = (*registers)[dst(sub)]; JSValue& r1 = (*registers)[src1(sub)]; JSValue& r2 = (*registers)[src2(sub)]; JSValue num1(r1.toNumber()); JSValue num2(r2.toNumber()); dest = num1.f64 - num2.f64; } break; case MULTIPLY: { Arithmetic* mul = static_cast(instruction); JSValue& dest = (*registers)[dst(mul)]; JSValue& r1 = (*registers)[src1(mul)]; JSValue& r2 = (*registers)[src2(mul)]; const JSValue ovr = findBinaryOverride(r1, r2, BinaryOperator::Multiply); if (ovr.isFunction()) { JSFunction *target = ovr.function; if (target->isNative()) { JSValues argv(2); argv[0] = r1; argv[1] = r2; dest = static_cast(target)->mCode(argv); break; } else { mLinkage = new Linkage(mLinkage, ++mPC, mActivation, dst(mul)); mActivation = new Activation(target->getICode(), r1, r2); registers = &mActivation->mRegisters; mPC = mActivation->mICode->its_iCode->begin(); continue; } } else { JSValue num1(r1.toNumber()); JSValue num2(r2.toNumber()); dest = num1.f64 * num2.f64; } } break; case DIVIDE: { Arithmetic* div = static_cast(instruction); JSValue& dest = (*registers)[dst(div)]; JSValue& r1 = (*registers)[src1(div)]; JSValue& r2 = (*registers)[src2(div)]; JSValue num1(r1.toNumber()); JSValue num2(r2.toNumber()); dest = num1.f64 / num2.f64; } break; case REMAINDER: { Arithmetic* rem = static_cast(instruction); JSValue& dest = (*registers)[dst(rem)]; JSValue& r1 = (*registers)[src1(rem)]; JSValue& r2 = (*registers)[src2(rem)]; JSValue num1(r1.toNumber()); JSValue num2(r2.toNumber()); dest = fmod(num1.f64, num2.f64); } break; case PROP_XCR: { PropXcr *px = static_cast(instruction); JSValue& dest = (*registers)[dst(px)]; JSValue& base = (*registers)[src1(px)]; JSObject *object = base.object; JSValue r = object->getProperty(*src2(px)).toNumber(); dest = r; r.f64 += val4(px); object->setProperty(*src2(px), r); } break; case NAME_XCR: { NameXcr *nx = static_cast(instruction); JSValue& dest = (*registers)[dst(nx)]; JSValue r = mGlobal->getVariable(*src1(nx)).toNumber(); dest = r; r.f64 += val3(nx); mGlobal->setVariable(*src1(nx), r); } break; case COMPARE_LT: case COMPARE_LE: case COMPARE_EQ: case COMPARE_NE: case COMPARE_GT: case COMPARE_GE: { Arithmetic* cmp = static_cast(instruction); JSValue& dest = (*registers)[dst(cmp)]; JSValue lv = (*registers)[src1(cmp)].toPrimitive(JSValue::Number); JSValue rv = (*registers)[src2(cmp)].toPrimitive(JSValue::Number); if (lv.isString() && rv.isString()) { // XXX FIXME urgh, call w_strcmp ??? on a JSString ??? } else { lv = lv.toNumber(); rv = rv.toNumber(); if (lv.isNaN() || rv.isNaN()) dest = JSValue(); else { // FIXME, does this do the right thing for +/- infinity? switch (instruction->op()) { case COMPARE_LT: dest = JSValue(lv.f64 < rv.f64); break; case COMPARE_LE: dest = JSValue(lv.f64 <= rv.f64); break; case COMPARE_EQ: dest = JSValue(lv.f64 == rv.f64); break; case COMPARE_NE: dest = JSValue(lv.f64 != rv.f64); break; case COMPARE_GT: dest = JSValue(lv.f64 > rv.f64); break; case COMPARE_GE: dest = JSValue(lv.f64 >= rv.f64); break; } // float64 diff = lv.f64 - rv.f64; // dest = JSValue( (int32) (diff == 0.0 ? 0 : (diff > 0.0 ? 1 : -1))); } } } break; case TEST: { Test* tst = static_cast(instruction); (*registers)[dst(tst)] = (*registers)[src1(tst)].toBoolean(); } break; case NEGATE: { Negate* neg = static_cast(instruction); (*registers)[dst(neg)] = JSValue(-(*registers)[src1(neg)].toNumber().f64); } break; case POSATE: { Posate* pos = static_cast(instruction); (*registers)[dst(pos)] = (*registers)[src1(pos)].toNumber(); } break; case BITNOT: { Bitnot* bn = static_cast(instruction); (*registers)[dst(bn)] = JSValue(~(*registers)[src1(bn)].toInt32().i32); } break; /* case NOT: { Not* nt = static_cast(instruction); (*registers)[dst(nt)] = JSValue(int32(!(*registers)[src1(nt)].i32)); } break; */ case THROW: { Throw* thrw = static_cast(instruction); throw new JSException((*registers)[op1(thrw)]); } case TRYIN: { // push the catch handler address onto the try stack Tryin* tri = static_cast(instruction); mActivation->catchStack.push_back(new Handler(op1(tri), op2(tri))); } break; case TRYOUT: { Handler *h = mActivation->catchStack.back(); mActivation->catchStack.pop_back(); delete h; } break; case JSR: { subroutineStack.push(++mPC); Jsr* jsr = static_cast(instruction); uint32 offset = ofs(jsr); mPC = mActivation->mICode->its_iCode->begin() + offset; continue; } case RTS: { ASSERT(!subroutineStack.empty()); mPC = subroutineStack.top(); subroutineStack.pop(); continue; } case WITHIN: { Within* within = static_cast(instruction); JSValue& value = (*registers)[op1(within)]; assert(value.tag == JSValue::object_tag); mGlobal = new JSScope(mGlobal, value.object); } break; case WITHOUT: { // Without* without = static_cast(instruction); mGlobal = mGlobal->getParent(); } break; default: NOT_REACHED("bad opcode"); break; } // increment the program counter. ++mPC; } catch (JSException x) { if (mLinkage) { if (mActivation->catchStack.empty()) { Linkage *pLinkage = mLinkage; for (; pLinkage != NULL; pLinkage = pLinkage->mNext) { if (!pLinkage->mActivation->catchStack.empty()) { mActivation = pLinkage->mActivation; Handler *h = mActivation->catchStack.back(); registers = &mActivation->mRegisters; if (h->catchTarget) { mPC = mActivation->mICode->its_iCode->begin() + h->catchTarget->mOffset; } else { ASSERT(h->finallyTarget); mPC = mActivation->mICode->its_iCode->begin() + h->finallyTarget->mOffset; } mLinkage = pLinkage; break; } } if (pLinkage) continue; } else { Handler *h = mActivation->catchStack.back(); if (h->catchTarget) { mPC = mActivation->mICode->its_iCode->begin() + h->catchTarget->mOffset; } else { ASSERT(h->finallyTarget); mPC = mActivation->mICode->its_iCode->begin() + h->finallyTarget->mOffset; } continue; } } rv = x.value; } } return rv; } /* interpret */ void Context::addListener(Listener* listener) { mListeners.push_back(listener); } void Context::removeListener(Listener* listener) { ListenerIterator e = mListeners.end(); ListenerIterator l = std::find(mListeners.begin(), e, listener); if (l != e) mListeners.erase(l); } void Context::broadcast(Event event) { for (ListenerIterator i = mListeners.begin(), e = mListeners.end(); i != e; ++i) { Listener* listener = *i; listener->listen(this, event); } } Context::Frame* Context::getFrames() { return mLinkage; } } /* namespace Interpreter */ } /* namespace JavaScript */