/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ /* * Portable safe sprintf code. * * Code based on mozilla/nsprpub/src/io/prprf.c rev 3.7 * * Contributor(s): * Kipp E.B. Hickman (original author) * Frank Yung-Fong Tang * Daniele Nicolodi */ /* * Copied from xpcom/ds/nsTextFormatter.cpp r1.22 * Changed to use nsMemory and Frozen linkage * -- Prasad */ #include #include #include #include #include "prdtoa.h" #include "prlog.h" #include "prprf.h" #include "prmem.h" #include "nsCRTGlue.h" #include "nsTextFormatter.h" #include "nsMemory.h" /* ** Note: on some platforms va_list is defined as an array, ** and requires array notation. */ #ifdef HAVE_VA_COPY #define VARARGS_ASSIGN(foo, bar) VA_COPY(foo,bar) #elif defined(HAVE_VA_LIST_AS_ARRAY) #define VARARGS_ASSIGN(foo, bar) foo[0] = bar[0] #else #define VARARGS_ASSIGN(foo, bar) (foo) = (bar) #endif typedef struct SprintfStateStr SprintfState; struct SprintfStateStr { int (*stuff)(SprintfState *ss, const PRUnichar *sp, uint32_t len); PRUnichar *base; PRUnichar *cur; uint32_t maxlen; void *stuffclosure; }; /* ** Numbered Arguement State */ struct NumArgState{ int type; /* type of the current ap */ va_list ap; /* point to the corresponding position on ap */ }; #define NAS_DEFAULT_NUM 20 /* default number of NumberedArgumentState array */ #define TYPE_INT16 0 #define TYPE_UINT16 1 #define TYPE_INTN 2 #define TYPE_UINTN 3 #define TYPE_INT32 4 #define TYPE_UINT32 5 #define TYPE_INT64 6 #define TYPE_UINT64 7 #define TYPE_STRING 8 #define TYPE_DOUBLE 9 #define TYPE_INTSTR 10 #define TYPE_UNISTRING 11 #define TYPE_UNKNOWN 20 #define _LEFT 0x1 #define _SIGNED 0x2 #define _SPACED 0x4 #define _ZEROS 0x8 #define _NEG 0x10 #define ELEMENTS_OF(array_) (sizeof(array_) / sizeof(array_[0])) /* ** Fill into the buffer using the data in src */ static int fill2(SprintfState *ss, const PRUnichar *src, int srclen, int width, int flags) { PRUnichar space = ' '; int rv; width -= srclen; /* Right adjusting */ if ((width > 0) && ((flags & _LEFT) == 0)) { if (flags & _ZEROS) { space = '0'; } while (--width >= 0) { rv = (*ss->stuff)(ss, &space, 1); if (rv < 0) { return rv; } } } /* Copy out the source data */ rv = (*ss->stuff)(ss, src, srclen); if (rv < 0) { return rv; } /* Left adjusting */ if ((width > 0) && ((flags & _LEFT) != 0)) { while (--width >= 0) { rv = (*ss->stuff)(ss, &space, 1); if (rv < 0) { return rv; } } } return 0; } /* ** Fill a number. The order is: optional-sign zero-filling conversion-digits */ static int fill_n(SprintfState *ss, const PRUnichar *src, int srclen, int width, int prec, int type, int flags) { int zerowidth = 0; int precwidth = 0; int signwidth = 0; int leftspaces = 0; int rightspaces = 0; int cvtwidth; int rv; PRUnichar sign; PRUnichar space = ' '; PRUnichar zero = '0'; if ((type & 1) == 0) { if (flags & _NEG) { sign = '-'; signwidth = 1; } else if (flags & _SIGNED) { sign = '+'; signwidth = 1; } else if (flags & _SPACED) { sign = ' '; signwidth = 1; } } cvtwidth = signwidth + srclen; if (prec > 0) { if (prec > srclen) { /* Need zero filling */ precwidth = prec - srclen; cvtwidth += precwidth; } } if ((flags & _ZEROS) && (prec < 0)) { if (width > cvtwidth) { /* Zero filling */ zerowidth = width - cvtwidth; cvtwidth += zerowidth; } } if (flags & _LEFT) { if (width > cvtwidth) { /* Space filling on the right (i.e. left adjusting) */ rightspaces = width - cvtwidth; } } else { if (width > cvtwidth) { /* Space filling on the left (i.e. right adjusting) */ leftspaces = width - cvtwidth; } } while (--leftspaces >= 0) { rv = (*ss->stuff)(ss, &space, 1); if (rv < 0) { return rv; } } if (signwidth) { rv = (*ss->stuff)(ss, &sign, 1); if (rv < 0) { return rv; } } while (--precwidth >= 0) { rv = (*ss->stuff)(ss, &space, 1); if (rv < 0) { return rv; } } while (--zerowidth >= 0) { rv = (*ss->stuff)(ss, &zero, 1); if (rv < 0) { return rv; } } rv = (*ss->stuff)(ss, src, srclen); if (rv < 0) { return rv; } while (--rightspaces >= 0) { rv = (*ss->stuff)(ss, &space, 1); if (rv < 0) { return rv; } } return 0; } /* ** Convert a long into its printable form */ static int cvt_l(SprintfState *ss, long num, int width, int prec, int radix, int type, int flags, const PRUnichar *hexp) { PRUnichar cvtbuf[100]; PRUnichar *cvt; int digits; /* according to the man page this needs to happen */ if ((prec == 0) && (num == 0)) { return 0; } /* ** Converting decimal is a little tricky. In the unsigned case we ** need to stop when we hit 10 digits. In the signed case, we can ** stop when the number is zero. */ cvt = &cvtbuf[0] + ELEMENTS_OF(cvtbuf); digits = 0; while (num) { int digit = (((unsigned long)num) % radix) & 0xF; *--cvt = hexp[digit]; digits++; num = (long)(((unsigned long)num) / radix); } if (digits == 0) { *--cvt = '0'; digits++; } /* ** Now that we have the number converted without its sign, deal with ** the sign and zero padding. */ return fill_n(ss, cvt, digits, width, prec, type, flags); } /* ** Convert a 64-bit integer into its printable form */ static int cvt_ll(SprintfState *ss, int64_t num, int width, int prec, int radix, int type, int flags, const PRUnichar *hexp) { PRUnichar cvtbuf[100]; PRUnichar *cvt; int digits; int64_t rad; /* according to the man page this needs to happen */ if (prec == 0 && num == 0) { return 0; } /* ** Converting decimal is a little tricky. In the unsigned case we ** need to stop when we hit 10 digits. In the signed case, we can ** stop when the number is zero. */ rad = radix; cvt = &cvtbuf[0] + ELEMENTS_OF(cvtbuf); digits = 0; while (num != 0) { *--cvt = hexp[int32_t(num % rad) & 0xf]; digits++; num /= rad; } if (digits == 0) { *--cvt = '0'; digits++; } /* ** Now that we have the number converted without its sign, deal with ** the sign and zero padding. */ return fill_n(ss, cvt, digits, width, prec, type, flags); } /* ** Convert a double precision floating point number into its printable ** form. */ static int cvt_f(SprintfState *ss, double d, int width, int prec, const PRUnichar type, int flags) { int mode = 2; int decpt; int sign; char buf[256]; char * bufp = buf; int bufsz = 256; char num[256]; char * nump; char * endnum; int numdigits = 0; char exp = 'e'; if (prec == -1) { prec = 6; } else if (prec > 50) { // limit precision to avoid PR_dtoa bug 108335 // and to prevent buffers overflows prec = 50; } switch (type) { case 'f': numdigits = prec; mode = 3; break; case 'E': exp = 'E'; // no break case 'e': numdigits = prec + 1; mode = 2; break; case 'G': exp = 'E'; // no break case 'g': if (prec == 0) { prec = 1; } numdigits = prec; mode = 2; break; default: NS_ERROR("invalid type passed to cvt_f"); } if (PR_dtoa(d, mode, numdigits, &decpt, &sign, &endnum, num, bufsz) == PR_FAILURE) { buf[0] = '\0'; return -1; } numdigits = endnum - num; nump = num; if (sign) { *bufp++ = '-'; } else if (flags & _SIGNED) { *bufp++ = '+'; } if (decpt == 9999) { while ((*bufp++ = *nump++)) { } } else { switch (type) { case 'E': case 'e': *bufp++ = *nump++; if (prec > 0) { *bufp++ = '.'; while (*nump) { *bufp++ = *nump++; prec--; } while (prec-- > 0) { *bufp++ = '0'; } } *bufp++ = exp; PR_snprintf(bufp, bufsz - (bufp - buf), "%+03d", decpt-1); break; case 'f': if (decpt < 1) { *bufp++ = '0'; if (prec > 0) { *bufp++ = '.'; while (decpt++ && prec-- > 0) { *bufp++ = '0'; } while (*nump && prec-- > 0) { *bufp++ = *nump++; } while (prec-- > 0) { *bufp++ = '0'; } } } else { while (*nump && decpt-- > 0) { *bufp++ = *nump++; } while (decpt-- > 0) { *bufp++ = '0'; } if (prec > 0) { *bufp++ = '.'; while (*nump && prec-- > 0) { *bufp++ = *nump++; } while (prec-- > 0) { *bufp++ = '0'; } } } *bufp = '\0'; break; case 'G': case 'g': if ((decpt < -3) || ((decpt - 1) >= prec)) { *bufp++ = *nump++; numdigits--; if (numdigits > 0) { *bufp++ = '.'; while (*nump) { *bufp++ = *nump++; } } *bufp++ = exp; PR_snprintf(bufp, bufsz - (bufp - buf), "%+03d", decpt-1); } else { if (decpt < 1) { *bufp++ = '0'; if (prec > 0) { *bufp++ = '.'; while (decpt++) { *bufp++ = '0'; } while (*nump) { *bufp++ = *nump++; } } } else { while (*nump && decpt-- > 0) { *bufp++ = *nump++; numdigits--; } while (decpt-- > 0) { *bufp++ = '0'; } if (numdigits > 0) { *bufp++ = '.'; while (*nump) { *bufp++ = *nump++; } } } *bufp = '\0'; } } } PRUnichar rbuf[256]; PRUnichar *rbufp = rbuf; bufp = buf; // cast to PRUnichar while ((*rbufp++ = *bufp++)) { } *rbufp = '\0'; return fill2(ss, rbuf, NS_strlen(rbuf), width, flags); } /* ** Convert a string into its printable form. "width" is the output ** width. "prec" is the maximum number of characters of "s" to output, ** where -1 means until NUL. */ static int cvt_S(SprintfState *ss, const PRUnichar *s, int width, int prec, int flags) { int slen; if (prec == 0) { return 0; } /* Limit string length by precision value */ slen = s ? NS_strlen(s) : 6; if (prec > 0) { if (prec < slen) { slen = prec; } } /* and away we go */ NS_NAMED_LITERAL_STRING(nullstr, "(null)"); return fill2(ss, s ? s : nullstr.get(), slen, width, flags); } /* ** Convert a string into its printable form. "width" is the output ** width. "prec" is the maximum number of characters of "s" to output, ** where -1 means until NUL. */ static int cvt_s(SprintfState *ss, const char *s, int width, int prec, int flags) { NS_ConvertUTF8toUTF16 utf16Val(s); return cvt_S(ss, utf16Val.get(), width, prec, flags); } /* ** BuildArgArray stands for Numbered Argument list Sprintf ** for example, ** fmp = "%4$i, %2$d, %3s, %1d"; ** the number must start from 1, and no gap among them */ static struct NumArgState* BuildArgArray(const PRUnichar *fmt, va_list ap, int * rv, struct NumArgState * nasArray) { int number = 0, cn = 0, i; const PRUnichar* p; PRUnichar c; struct NumArgState* nas; /* ** first pass: ** detemine how many legal % I have got, then allocate space */ p = fmt; *rv = 0; i = 0; while ((c = *p++) != 0) { if (c != '%') { continue; } /* skip %% case */ if ((c = *p++) == '%') { continue; } while( c != 0 ){ if (c > '9' || c < '0') { /* numbered argument csae */ if (c == '$') { if (i > 0) { *rv = -1; return NULL; } number++; break; } else { /* non-numbered argument case */ if (number > 0) { *rv = -1; return NULL; } i = 1; break; } } c = *p++; } } if (number == 0) { return NULL; } if (number > NAS_DEFAULT_NUM) { nas = (struct NumArgState*)nsMemory::Alloc(number * sizeof(struct NumArgState)); if (!nas) { *rv = -1; return NULL; } } else { nas = nasArray; } for (i = 0; i < number; i++) { nas[i].type = TYPE_UNKNOWN; } /* ** second pass: ** set nas[].type */ p = fmt; while ((c = *p++) != 0) { if (c != '%') { continue; } c = *p++; if (c == '%') { continue; } cn = 0; /* should imporve error check later */ while (c && c != '$') { cn = cn*10 + c - '0'; c = *p++; } if (!c || cn < 1 || cn > number) { *rv = -1; break; } /* nas[cn] starts from 0, and make sure nas[cn].type is not assigned */ cn--; if (nas[cn].type != TYPE_UNKNOWN) { continue; } c = *p++; /* width */ if (c == '*') { /* not supported feature, for the argument is not numbered */ *rv = -1; break; } else { while ((c >= '0') && (c <= '9')) { c = *p++; } } /* precision */ if (c == '.') { c = *p++; if (c == '*') { /* not supported feature, for the argument is not numbered */ *rv = -1; break; } else { while ((c >= '0') && (c <= '9')) { c = *p++; } } } /* size */ nas[cn].type = TYPE_INTN; if (c == 'h') { nas[cn].type = TYPE_INT16; c = *p++; } else if (c == 'L') { /* XXX not quite sure here */ nas[cn].type = TYPE_INT64; c = *p++; } else if (c == 'l') { nas[cn].type = TYPE_INT32; c = *p++; if (c == 'l') { nas[cn].type = TYPE_INT64; c = *p++; } } /* format */ switch (c) { case 'd': case 'c': case 'i': case 'o': case 'u': case 'x': case 'X': break; case 'e': case 'f': case 'g': nas[cn].type = TYPE_DOUBLE; break; case 'p': /* XXX should use cpp */ if (sizeof(void *) == sizeof(int32_t)) { nas[cn].type = TYPE_UINT32; } else if (sizeof(void *) == sizeof(int64_t)) { nas[cn].type = TYPE_UINT64; } else if (sizeof(void *) == sizeof(int)) { nas[cn].type = TYPE_UINTN; } else { nas[cn].type = TYPE_UNKNOWN; } break; case 'C': /* XXX not supported I suppose */ PR_ASSERT(0); nas[cn].type = TYPE_UNKNOWN; break; case 'S': nas[cn].type = TYPE_UNISTRING; break; case 's': nas[cn].type = TYPE_STRING; break; case 'n': nas[cn].type = TYPE_INTSTR; break; default: PR_ASSERT(0); nas[cn].type = TYPE_UNKNOWN; break; } /* get a legal para. */ if (nas[cn].type == TYPE_UNKNOWN) { *rv = -1; break; } } /* ** third pass ** fill the nas[cn].ap */ if (*rv < 0) { if( nas != nasArray ) { PR_DELETE(nas); } return NULL; } cn = 0; while (cn < number) { if (nas[cn].type == TYPE_UNKNOWN) { cn++; continue; } VARARGS_ASSIGN(nas[cn].ap, ap); switch (nas[cn].type) { case TYPE_INT16: case TYPE_UINT16: case TYPE_INTN: case TYPE_UINTN: (void)va_arg(ap, int); break; case TYPE_INT32: (void)va_arg(ap, int32_t); break; case TYPE_UINT32: (void)va_arg(ap, uint32_t); break; case TYPE_INT64: (void)va_arg(ap, int64_t); break; case TYPE_UINT64: (void)va_arg(ap, uint64_t); break; case TYPE_STRING: (void)va_arg(ap, char*); break; case TYPE_INTSTR: (void)va_arg(ap, int*); break; case TYPE_DOUBLE: (void)va_arg(ap, double); break; case TYPE_UNISTRING: (void)va_arg(ap, PRUnichar*); break; default: if( nas != nasArray ) { PR_DELETE( nas ); } *rv = -1; return NULL; } cn++; } return nas; } /* ** The workhorse sprintf code. */ static int dosprintf(SprintfState *ss, const PRUnichar *fmt, va_list ap) { PRUnichar c; int flags, width, prec, radix, type; union { PRUnichar ch; int i; long l; int64_t ll; double d; const char *s; const PRUnichar *S; int *ip; } u; PRUnichar space = ' '; nsAutoString hex; hex.AssignLiteral("0123456789abcdef"); nsAutoString HEX; HEX.AssignLiteral("0123456789ABCDEF"); const PRUnichar *hexp; int rv, i; struct NumArgState* nas = NULL; struct NumArgState nasArray[NAS_DEFAULT_NUM]; /* ** build an argument array, IF the fmt is numbered argument ** list style, to contain the Numbered Argument list pointers */ nas = BuildArgArray (fmt, ap, &rv, nasArray); if (rv < 0) { /* the fmt contains error Numbered Argument format, jliu@netscape.com */ PR_ASSERT(0); return rv; } while ((c = *fmt++) != 0) { if (c != '%') { rv = (*ss->stuff)(ss, fmt - 1, 1); if (rv < 0) { return rv; } continue; } /* ** Gobble up the % format string. Hopefully we have handled all ** of the strange cases! */ flags = 0; c = *fmt++; if (c == '%') { /* quoting a % with %% */ rv = (*ss->stuff)(ss, fmt - 1, 1); if (rv < 0) { return rv; } continue; } if (nas != NULL) { /* the fmt contains the Numbered Arguments feature */ i = 0; /* should imporve error check later */ while (c && c != '$') { i = (i * 10) + (c - '0'); c = *fmt++; } if (nas[i-1].type == TYPE_UNKNOWN) { if (nas && (nas != nasArray)) { PR_DELETE(nas); } return -1; } VARARGS_ASSIGN(ap, nas[i-1].ap); c = *fmt++; } /* * Examine optional flags. Note that we do not implement the * '#' flag of sprintf(). The ANSI C spec. of the '#' flag is * somewhat ambiguous and not ideal, which is perhaps why * the various sprintf() implementations are inconsistent * on this feature. */ while ((c == '-') || (c == '+') || (c == ' ') || (c == '0')) { if (c == '-') flags |= _LEFT; if (c == '+') flags |= _SIGNED; if (c == ' ') flags |= _SPACED; if (c == '0') flags |= _ZEROS; c = *fmt++; } if (flags & _SIGNED) flags &= ~_SPACED; if (flags & _LEFT) flags &= ~_ZEROS; /* width */ if (c == '*') { c = *fmt++; width = va_arg(ap, int); } else { width = 0; while ((c >= '0') && (c <= '9')) { width = (width * 10) + (c - '0'); c = *fmt++; } } /* precision */ prec = -1; if (c == '.') { c = *fmt++; if (c == '*') { c = *fmt++; prec = va_arg(ap, int); } else { prec = 0; while ((c >= '0') && (c <= '9')) { prec = (prec * 10) + (c - '0'); c = *fmt++; } } } /* size */ type = TYPE_INTN; if (c == 'h') { type = TYPE_INT16; c = *fmt++; } else if (c == 'L') { /* XXX not quite sure here */ type = TYPE_INT64; c = *fmt++; } else if (c == 'l') { type = TYPE_INT32; c = *fmt++; if (c == 'l') { type = TYPE_INT64; c = *fmt++; } } /* format */ hexp = hex.get(); switch (c) { case 'd': case 'i': /* decimal/integer */ radix = 10; goto fetch_and_convert; case 'o': /* octal */ radix = 8; type |= 1; goto fetch_and_convert; case 'u': /* unsigned decimal */ radix = 10; type |= 1; goto fetch_and_convert; case 'x': /* unsigned hex */ radix = 16; type |= 1; goto fetch_and_convert; case 'X': /* unsigned HEX */ radix = 16; hexp = HEX.get(); type |= 1; goto fetch_and_convert; fetch_and_convert: switch (type) { case TYPE_INT16: u.l = va_arg(ap, int); if (u.l < 0) { u.l = -u.l; flags |= _NEG; } goto do_long; case TYPE_UINT16: u.l = va_arg(ap, int) & 0xffff; goto do_long; case TYPE_INTN: u.l = va_arg(ap, int); if (u.l < 0) { u.l = -u.l; flags |= _NEG; } goto do_long; case TYPE_UINTN: u.l = (long)va_arg(ap, unsigned int); goto do_long; case TYPE_INT32: u.l = va_arg(ap, int32_t); if (u.l < 0) { u.l = -u.l; flags |= _NEG; } goto do_long; case TYPE_UINT32: u.l = (long)va_arg(ap, uint32_t); do_long: rv = cvt_l(ss, u.l, width, prec, radix, type, flags, hexp); if (rv < 0) { return rv; } break; case TYPE_INT64: u.ll = va_arg(ap, int64_t); if (u.ll < 0) { u.ll = -u.ll; flags |= _NEG; } goto do_longlong; case TYPE_UINT64: u.ll = va_arg(ap, uint64_t); do_longlong: rv = cvt_ll(ss, u.ll, width, prec, radix, type, flags, hexp); if (rv < 0) { return rv; } break; } break; case 'e': case 'E': case 'f': case 'g': case 'G': u.d = va_arg(ap, double); rv = cvt_f(ss, u.d, width, prec, c, flags); if (rv < 0) { return rv; } break; case 'c': u.ch = va_arg(ap, int); if ((flags & _LEFT) == 0) { while (width-- > 1) { rv = (*ss->stuff)(ss, &space, 1); if (rv < 0) { return rv; } } } rv = (*ss->stuff)(ss, &u.ch, 1); if (rv < 0) { return rv; } if (flags & _LEFT) { while (width-- > 1) { rv = (*ss->stuff)(ss, &space, 1); if (rv < 0) { return rv; } } } break; case 'p': if (sizeof(void *) == sizeof(int32_t)) { type = TYPE_UINT32; } else if (sizeof(void *) == sizeof(int64_t)) { type = TYPE_UINT64; } else if (sizeof(void *) == sizeof(int)) { type = TYPE_UINTN; } else { PR_ASSERT(0); break; } radix = 16; goto fetch_and_convert; #if 0 case 'C': /* XXX not supported I suppose */ PR_ASSERT(0); break; #endif case 'S': u.S = va_arg(ap, const PRUnichar*); rv = cvt_S(ss, u.S, width, prec, flags); if (rv < 0) { return rv; } break; case 's': u.s = va_arg(ap, const char*); rv = cvt_s(ss, u.s, width, prec, flags); if (rv < 0) { return rv; } break; case 'n': u.ip = va_arg(ap, int*); if (u.ip) { *u.ip = ss->cur - ss->base; } break; default: /* Not a % token after all... skip it */ #if 0 PR_ASSERT(0); #endif PRUnichar perct = '%'; rv = (*ss->stuff)(ss, &perct, 1); if (rv < 0) { return rv; } rv = (*ss->stuff)(ss, fmt - 1, 1); if (rv < 0) { return rv; } } } /* Stuff trailing NUL */ PRUnichar null = '\0'; rv = (*ss->stuff)(ss, &null, 1); if( nas && ( nas != nasArray ) ){ PR_DELETE( nas ); } return rv; } /************************************************************************/ static int StringStuff(SprintfState* ss, const PRUnichar* sp, uint32_t len) { if (*sp == '\0') return 0; ptrdiff_t off = ss->cur - ss->base; nsAString* str = static_cast(ss->stuffclosure); str->Append(sp, len); ss->base = str->BeginWriting(); ss->cur = ss->base + off; return 0; } /* ** Stuff routine that automatically grows the malloc'd output buffer ** before it overflows. */ static int GrowStuff(SprintfState *ss, const PRUnichar *sp, uint32_t len) { ptrdiff_t off; PRUnichar *newbase; uint32_t newlen; off = ss->cur - ss->base; if (off + len >= ss->maxlen) { /* Grow the buffer */ newlen = ss->maxlen + ((len > 32) ? len : 32); if (ss->base) { newbase = (PRUnichar*) nsMemory::Realloc(ss->base, newlen*sizeof(PRUnichar)); } else { newbase = (PRUnichar*) nsMemory::Alloc(newlen*sizeof(PRUnichar)); } if (!newbase) { /* Ran out of memory */ return -1; } ss->base = newbase; ss->maxlen = newlen; ss->cur = ss->base + off; } /* Copy data */ while (len) { --len; *ss->cur++ = *sp++; } PR_ASSERT((uint32_t)(ss->cur - ss->base) <= ss->maxlen); return 0; } /* ** sprintf into a malloc'd buffer */ PRUnichar * nsTextFormatter::smprintf(const PRUnichar *fmt, ...) { va_list ap; PRUnichar *rv; va_start(ap, fmt); rv = nsTextFormatter::vsmprintf(fmt, ap); va_end(ap); return rv; } uint32_t nsTextFormatter::ssprintf(nsAString& out, const PRUnichar* fmt, ...) { va_list ap; uint32_t rv; va_start(ap, fmt); rv = nsTextFormatter::vssprintf(out, fmt, ap); va_end(ap); return rv; } uint32_t nsTextFormatter::vssprintf(nsAString& out, const PRUnichar* fmt, va_list ap) { SprintfState ss; ss.stuff = StringStuff; ss.base = 0; ss.cur = 0; ss.maxlen = 0; ss.stuffclosure = &out; out.Truncate(); int n = dosprintf(&ss, fmt, ap); return n ? n - 1 : n; } PRUnichar * nsTextFormatter::vsmprintf(const PRUnichar *fmt, va_list ap) { SprintfState ss; int rv; ss.stuff = GrowStuff; ss.base = 0; ss.cur = 0; ss.maxlen = 0; rv = dosprintf(&ss, fmt, ap); if (rv < 0) { if (ss.base) { PR_DELETE(ss.base); } return 0; } return ss.base; } /* ** Stuff routine that discards overflow data */ static int LimitStuff(SprintfState *ss, const PRUnichar *sp, uint32_t len) { uint32_t limit = ss->maxlen - (ss->cur - ss->base); if (len > limit) { len = limit; } while (len) { --len; *ss->cur++ = *sp++; } return 0; } /* ** sprintf into a fixed size buffer. Make sure there is a NUL at the end ** when finished. */ uint32_t nsTextFormatter::snprintf(PRUnichar *out, uint32_t outlen, const PRUnichar *fmt, ...) { va_list ap; uint32_t rv; PR_ASSERT((int32_t)outlen > 0); if ((int32_t)outlen <= 0) { return 0; } va_start(ap, fmt); rv = nsTextFormatter::vsnprintf(out, outlen, fmt, ap); va_end(ap); return rv; } uint32_t nsTextFormatter::vsnprintf(PRUnichar *out, uint32_t outlen,const PRUnichar *fmt, va_list ap) { SprintfState ss; uint32_t n; PR_ASSERT((int32_t)outlen > 0); if ((int32_t)outlen <= 0) { return 0; } ss.stuff = LimitStuff; ss.base = out; ss.cur = out; ss.maxlen = outlen; (void) dosprintf(&ss, fmt, ap); /* If we added chars, and we didn't append a null, do it now. */ if( (ss.cur != ss.base) && (*(ss.cur - 1) != '\0') ) *(--ss.cur) = '\0'; n = ss.cur - ss.base; return n ? n - 1 : n; } /* * Free memory allocated, for the caller, by smprintf */ void nsTextFormatter::smprintf_free(PRUnichar *mem) { nsMemory::Free(mem); }