# This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this # file, You can obtain one at http://mozilla.org/MPL/2.0/. import math # For compatibility with Python 2.6 try: from collections import OrderedDict except ImportError: from simplejson import OrderedDict import simplejson as json else: import json def table_dispatch(kind, table, body): """Call body with table[kind] if it exists. Raise an error otherwise.""" if kind in table: return body(table[kind]) else: raise BaseException, "don't know how to handle a histogram of kind %s" % kind class DefinitionException(BaseException): pass def check_numeric_limits(dmin, dmax, n_buckets): if type(dmin) != int: raise DefinitionException, "minimum is not a number" if type(dmax) != int: raise DefinitionException, "maximum is not a number" if type(n_buckets) != int: raise DefinitionException, "number of buckets is not a number" def linear_buckets(dmin, dmax, n_buckets): check_numeric_limits(dmin, dmax, n_buckets) ret_array = [0] * n_buckets dmin = float(dmin) dmax = float(dmax) for i in range(1, n_buckets): linear_range = (dmin * (n_buckets - 1 - i) + dmax * (i - 1)) / (n_buckets - 2) ret_array[i] = int(linear_range + 0.5) return ret_array def exponential_buckets(dmin, dmax, n_buckets): check_numeric_limits(dmin, dmax, n_buckets) log_max = math.log(dmax); bucket_index = 2; ret_array = [0] * n_buckets current = dmin ret_array[1] = current for bucket_index in range(2, n_buckets): log_current = math.log(current) log_ratio = (log_max - log_current) / (n_buckets - bucket_index) log_next = log_current + log_ratio next_value = int(math.floor(math.exp(log_next) + 0.5)) if next_value > current: current = next_value else: current = current + 1 ret_array[bucket_index] = current return ret_array always_allowed_keys = ['kind', 'description', 'cpp_guard'] class Histogram: """A class for representing a histogram definition.""" def __init__(self, name, definition): """Initialize a histogram named name with the given definition. definition is a dict-like object that must contain at least the keys: - 'kind': The kind of histogram. Must be one of 'boolean', 'flag', 'enumerated', 'linear', or 'exponential'. - 'description': A textual description of the histogram. The key 'cpp_guard' is optional; if present, it denotes a preprocessor symbol that should guard C/C++ definitions associated with the histogram.""" self.verify_attributes(name, definition) self._name = name self._description = definition['description'] self._kind = definition['kind'] self._cpp_guard = definition.get('cpp_guard') self.compute_bucket_parameters(definition) table = { 'boolean': 'BOOLEAN', 'flag': 'FLAG', 'enumerated': 'LINEAR', 'linear': 'LINEAR', 'exponential': 'EXPONENTIAL' } table_dispatch(self.kind(), table, lambda k: self._set_nsITelemetry_kind(k)) def name(self): """Return the name of the histogram.""" return self._name def description(self): """Return the description of the histogram.""" return self._description def kind(self): """Return the kind of the histogram. Will be one of 'boolean', 'flag', 'enumerated', 'linear', or 'exponential'.""" return self._kind def nsITelemetry_kind(self): """Return the nsITelemetry constant corresponding to the kind of the histogram.""" return self._nsITelemetry_kind def _set_nsITelemetry_kind(self, kind): self._nsITelemetry_kind = "nsITelemetry::HISTOGRAM_%s" % kind def low(self): """Return the lower bound of the histogram. May be a string.""" return self._low def high(self): """Return the high bound of the histogram. May be a string.""" return self._high def n_buckets(self): """Return the number of buckets in the histogram. May be a string.""" return self._n_buckets def cpp_guard(self): """Return the preprocessor symbol that should guard C/C++ definitions associated with the histogram. Returns None if no guarding is necessary.""" return self._cpp_guard def ranges(self): """Return an array of lower bounds for each bucket in the histogram.""" table = { 'boolean': linear_buckets, 'flag': linear_buckets, 'enumerated': linear_buckets, 'linear': linear_buckets, 'exponential': exponential_buckets } return table_dispatch(self.kind(), table, lambda p: p(self.low(), self.high(), self.n_buckets())) def compute_bucket_parameters(self, definition): table = { 'boolean': Histogram.boolean_flag_bucket_parameters, 'flag': Histogram.boolean_flag_bucket_parameters, 'enumerated': Histogram.enumerated_bucket_parameters, 'linear': Histogram.linear_bucket_parameters, 'exponential': Histogram.exponential_bucket_parameters } table_dispatch(self.kind(), table, lambda p: self.set_bucket_parameters(*p(definition))) def verify_attributes(self, name, definition): global always_allowed_keys general_keys = always_allowed_keys + ['low', 'high', 'n_buckets'] table = { 'boolean': always_allowed_keys, 'flag': always_allowed_keys, 'enumerated': always_allowed_keys + ['n_values'], 'linear': general_keys, 'exponential': general_keys } table_dispatch(definition['kind'], table, lambda allowed_keys: Histogram.check_keys(name, definition, allowed_keys)) @staticmethod def check_keys(name, definition, allowed_keys): for key in definition.iterkeys(): if key not in allowed_keys: raise KeyError, '%s not permitted for %s' % (key, name) def set_bucket_parameters(self, low, high, n_buckets): def try_to_coerce_to_number(v): try: return eval(v, {}) except: return v self._low = try_to_coerce_to_number(low) self._high = try_to_coerce_to_number(high) self._n_buckets = try_to_coerce_to_number(n_buckets) @staticmethod def boolean_flag_bucket_parameters(definition): return (1, 2, 3) @staticmethod def linear_bucket_parameters(definition): return (definition.get('low', 1), definition['high'], definition['n_buckets']) @staticmethod def enumerated_bucket_parameters(definition): n_values = definition['n_values'] return (1, n_values, "%s+1" % n_values) @staticmethod def exponential_bucket_parameters(definition): return (definition.get('low', 1), definition['high'], definition['n_buckets']) def from_file(filename): """Return an iterator that provides a sequence of Histograms for the histograms defined in filename. """ with open(filename, 'r') as f: histograms = json.load(f, object_pairs_hook=OrderedDict) for (name, definition) in histograms.iteritems(): yield Histogram(name, definition)