/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 4 -*- * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "gfxAlphaRecovery.h" #include "gfxImageSurface.h" #include "nsRect.h" #include // This file should only be compiled on x86 and x64 systems. Additionally, // you'll need to compile it with -msse2 if you're using GCC on x86. #if defined(_MSC_VER) && (defined(_M_IX86) || defined(_M_AMD64)) __declspec(align(16)) static uint32_t greenMaski[] = { 0x0000ff00, 0x0000ff00, 0x0000ff00, 0x0000ff00 }; __declspec(align(16)) static uint32_t alphaMaski[] = { 0xff000000, 0xff000000, 0xff000000, 0xff000000 }; #elif defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__)) static uint32_t greenMaski[] __attribute__ ((aligned (16))) = { 0x0000ff00, 0x0000ff00, 0x0000ff00, 0x0000ff00 }; static uint32_t alphaMaski[] __attribute__ ((aligned (16))) = { 0xff000000, 0xff000000, 0xff000000, 0xff000000 }; #elif defined(__SUNPRO_CC) && (defined(__i386) || defined(__x86_64__)) #pragma align 16 (greenMaski, alphaMaski) static uint32_t greenMaski[] = { 0x0000ff00, 0x0000ff00, 0x0000ff00, 0x0000ff00 }; static uint32_t alphaMaski[] = { 0xff000000, 0xff000000, 0xff000000, 0xff000000 }; #endif bool gfxAlphaRecovery::RecoverAlphaSSE2(gfxImageSurface* blackSurf, const gfxImageSurface* whiteSurf) { gfxIntSize size = blackSurf->GetSize(); if (size != whiteSurf->GetSize() || (blackSurf->Format() != gfxImageFormat::ARGB32 && blackSurf->Format() != gfxImageFormat::RGB24) || (whiteSurf->Format() != gfxImageFormat::ARGB32 && whiteSurf->Format() != gfxImageFormat::RGB24)) return false; blackSurf->Flush(); whiteSurf->Flush(); unsigned char* blackData = blackSurf->Data(); unsigned char* whiteData = whiteSurf->Data(); if ((NS_PTR_TO_UINT32(blackData) & 0xf) != (NS_PTR_TO_UINT32(whiteData) & 0xf) || (blackSurf->Stride() - whiteSurf->Stride()) & 0xf) { // Cannot keep these in alignment. return false; } __m128i greenMask = _mm_load_si128((__m128i*)greenMaski); __m128i alphaMask = _mm_load_si128((__m128i*)alphaMaski); for (int32_t i = 0; i < size.height; ++i) { int32_t j = 0; // Loop single pixels until at 4 byte alignment. while (NS_PTR_TO_UINT32(blackData) & 0xf && j < size.width) { *((uint32_t*)blackData) = RecoverPixel(*reinterpret_cast(blackData), *reinterpret_cast(whiteData)); blackData += 4; whiteData += 4; j++; } // This extra loop allows the compiler to do some more clever registry // management and makes it about 5% faster than with only the 4 pixel // at a time loop. for (; j < size.width - 8; j += 8) { __m128i black1 = _mm_load_si128((__m128i*)blackData); __m128i white1 = _mm_load_si128((__m128i*)whiteData); __m128i black2 = _mm_load_si128((__m128i*)(blackData + 16)); __m128i white2 = _mm_load_si128((__m128i*)(whiteData + 16)); // Execute the same instructions as described in RecoverPixel, only // using an SSE2 packed saturated subtract. white1 = _mm_subs_epu8(white1, black1); white2 = _mm_subs_epu8(white2, black2); white1 = _mm_subs_epu8(greenMask, white1); white2 = _mm_subs_epu8(greenMask, white2); // Producing the final black pixel in an XMM register and storing // that is actually faster than doing a masked store since that // does an unaligned storage. We have the black pixel in a register // anyway. black1 = _mm_andnot_si128(alphaMask, black1); black2 = _mm_andnot_si128(alphaMask, black2); white1 = _mm_slli_si128(white1, 2); white2 = _mm_slli_si128(white2, 2); white1 = _mm_and_si128(alphaMask, white1); white2 = _mm_and_si128(alphaMask, white2); black1 = _mm_or_si128(white1, black1); black2 = _mm_or_si128(white2, black2); _mm_store_si128((__m128i*)blackData, black1); _mm_store_si128((__m128i*)(blackData + 16), black2); blackData += 32; whiteData += 32; } for (; j < size.width - 4; j += 4) { __m128i black = _mm_load_si128((__m128i*)blackData); __m128i white = _mm_load_si128((__m128i*)whiteData); white = _mm_subs_epu8(white, black); white = _mm_subs_epu8(greenMask, white); black = _mm_andnot_si128(alphaMask, black); white = _mm_slli_si128(white, 2); white = _mm_and_si128(alphaMask, white); black = _mm_or_si128(white, black); _mm_store_si128((__m128i*)blackData, black); blackData += 16; whiteData += 16; } // Loop single pixels until we're done. while (j < size.width) { *((uint32_t*)blackData) = RecoverPixel(*reinterpret_cast(blackData), *reinterpret_cast(whiteData)); blackData += 4; whiteData += 4; j++; } blackData += blackSurf->Stride() - j * 4; whiteData += whiteSurf->Stride() - j * 4; } blackSurf->MarkDirty(); return true; } static int32_t ByteAlignment(int32_t aAlignToLog2, int32_t aX, int32_t aY=0, int32_t aStride=1) { return (aX + aStride * aY) & ((1 << aAlignToLog2) - 1); } /*static*/ nsIntRect gfxAlphaRecovery::AlignRectForSubimageRecovery(const nsIntRect& aRect, gfxImageSurface* aSurface) { NS_ASSERTION(gfxImageFormat::ARGB32 == aSurface->Format(), "Thebes grew support for non-ARGB32 COLOR_ALPHA?"); static const int32_t kByteAlignLog2 = GoodAlignmentLog2(); static const int32_t bpp = 4; static const int32_t pixPerAlign = (1 << kByteAlignLog2) / bpp; // // We're going to create a subimage of the surface with size // for alpha recovery, and want a SIMD fast-path. The // rect /needs/ to be redrawn, but it might not be // properly aligned for SIMD. So we want to find a rect that's a superset of what needs to be redrawn but is // properly aligned. Proper alignment is // // BPP * (x' + y' * sw) \cong 0 (mod ALIGN) // BPP * w' \cong BPP * sw (mod ALIGN) // // (We assume the pixel at surface <0,0> is already ALIGN'd.) // That rect (obviously) has to fit within the surface bounds, and // we should also minimize the extra pixels redrawn only for // alignment's sake. So we also want // // minimize // 0 <= x' <= x // 0 <= y' <= y // w <= w' <= sw // h <= h' <= sh // // This is a messy integer non-linear programming problem, except // ... we can assume that ALIGN/BPP is a very small constant. So, // brute force is viable. The algorithm below will find a // solution if one exists, but isn't guaranteed to find the // minimum solution. (For SSE2, ALIGN/BPP = 4, so it'll do at // most 64 iterations below). In what's likely the common case, // an already-aligned rectangle, it only needs 1 iteration. // // Is this alignment worth doing? Recovering alpha will take work // proportional to w*h (assuming alpha recovery computation isn't // memory bound). This analysis can lead to O(w+h) extra work // (with small constants). In exchange, we expect to shave off a // ALIGN/BPP constant by using SIMD-ized alpha recovery. So as // w*h diverges from w+h, the win factor approaches ALIGN/BPP. We // only really care about the w*h >> w+h case anyway; others // should be fast enough even with the overhead. (Unless the cost // of repainting the expanded rect is high, but in that case // SIMD-ized alpha recovery won't make a difference so this code // shouldn't be called.) // gfxIntSize surfaceSize = aSurface->GetSize(); const int32_t stride = bpp * surfaceSize.width; if (stride != aSurface->Stride()) { NS_WARNING("Unexpected stride, falling back on slow alpha recovery"); return aRect; } const int32_t x = aRect.x, y = aRect.y, w = aRect.width, h = aRect.height; const int32_t r = x + w; const int32_t sw = surfaceSize.width; const int32_t strideAlign = ByteAlignment(kByteAlignLog2, stride); // The outer two loops below keep the rightmost (|r| above) and // bottommost pixels in |aRect| fixed wrt , to ensure that we // return only a superset of the original rect. These loops // search for an aligned top-left pixel by trying to expand // left and up by pixels, respectively. // // Then if a properly-aligned top-left pixel is found, the // innermost loop tries to find an aligned stride by moving the // rightmost pixel rightward by dr. int32_t dx, dy, dr; for (dy = 0; (dy < pixPerAlign) && (y - dy >= 0); ++dy) { for (dx = 0; (dx < pixPerAlign) && (x - dx >= 0); ++dx) { if (0 != ByteAlignment(kByteAlignLog2, bpp * (x - dx), y - dy, stride)) { continue; } for (dr = 0; (dr < pixPerAlign) && (r + dr <= sw); ++dr) { if (strideAlign == ByteAlignment(kByteAlignLog2, bpp * (w + dr + dx))) { goto FOUND_SOLUTION; } } } } // Didn't find a solution. return aRect; FOUND_SOLUTION: nsIntRect solution = nsIntRect(x - dx, y - dy, w + dr + dx, h + dy); NS_ABORT_IF_FALSE(nsIntRect(0, 0, sw, surfaceSize.height).Contains(solution), "'Solution' extends outside surface bounds!"); return solution; }