/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim:set ts=2 sw=2 sts=2 et cindent: */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ /* Each media element for a media file has one thread called the "audio thread". The audio thread writes the decoded audio data to the audio hardware. This is done in a separate thread to ensure that the audio hardware gets a constant stream of data without interruption due to decoding or display. At some point AudioStream will be refactored to have a callback interface where it asks for data and this thread will no longer be needed. The element/state machine also has a TaskQueue which runs in a SharedThreadPool that is shared with all other elements/decoders. The state machine dispatches tasks to this to call into the MediaDecoderReader to request decoded audio or video data. The Reader will callback with decoded sampled when it has them available, and the state machine places the decoded samples into its queues for the consuming threads to pull from. The MediaDecoderReader can choose to decode asynchronously, or synchronously and return requested samples synchronously inside it's Request*Data() functions via callback. Asynchronous decoding is preferred, and should be used for any new readers. Synchronisation of state between the thread is done via a monitor owned by MediaDecoder. The lifetime of the audio thread is controlled by the state machine when it runs on the shared state machine thread. When playback needs to occur the audio thread is created and an event dispatched to run it. The audio thread exits when audio playback is completed or no longer required. A/V synchronisation is handled by the state machine. It examines the audio playback time and compares this to the next frame in the queue of video frames. If it is time to play the video frame it is then displayed, otherwise it schedules the state machine to run again at the time of the next frame. Frame skipping is done in the following ways: 1) The state machine will skip all frames in the video queue whose display time is less than the current audio time. This ensures the correct frame for the current time is always displayed. 2) The decode tasks will stop decoding interframes and read to the next keyframe if it determines that decoding the remaining interframes will cause playback issues. It detects this by: a) If the amount of audio data in the audio queue drops below a threshold whereby audio may start to skip. b) If the video queue drops below a threshold where it will be decoding video data that won't be displayed due to the decode thread dropping the frame immediately. TODO: In future we should only do this when the Reader is decoding synchronously. When hardware accelerated graphics is not available, YCbCr conversion is done on the decode task queue when video frames are decoded. The decode task queue pushes decoded audio and videos frames into two separate queues - one for audio and one for video. These are kept separate to make it easy to constantly feed audio data to the audio hardware while allowing frame skipping of video data. These queues are threadsafe, and neither the decode, audio, or state machine should be able to monopolize them, and cause starvation of the other threads. Both queues are bounded by a maximum size. When this size is reached the decode tasks will no longer request video or audio depending on the queue that has reached the threshold. If both queues are full, no more decode tasks will be dispatched to the decode task queue, so other decoders will have an opportunity to run. During playback the audio thread will be idle (via a Wait() on the monitor) if the audio queue is empty. Otherwise it constantly pops audio data off the queue and plays it with a blocking write to the audio hardware (via AudioStream). */ #if !defined(MediaDecoderStateMachine_h__) #define MediaDecoderStateMachine_h__ #include "mozilla/Attributes.h" #include "mozilla/ReentrantMonitor.h" #include "mozilla/StateMirroring.h" #include "nsAutoPtr.h" #include "nsThreadUtils.h" #include "MediaDecoder.h" #include "MediaDecoderReader.h" #include "MediaDecoderOwner.h" #include "MediaEventSource.h" #include "MediaMetadataManager.h" #include "MediaStatistics.h" #include "MediaTimer.h" #include "ImageContainer.h" #include "SeekJob.h" namespace mozilla { namespace media { class MediaSink; } class AbstractThread; class AudioSegment; class DecodedStream; class MediaDecoderReaderWrapper; class OutputStreamManager; class TaskQueue; extern LazyLogModule gMediaDecoderLog; extern LazyLogModule gMediaSampleLog; enum class MediaEventType : int8_t { PlaybackStarted, PlaybackStopped, PlaybackEnded, SeekStarted, Invalidate, EnterVideoSuspend, ExitVideoSuspend }; /* The state machine class. This manages the decoding and seeking in the MediaDecoderReader on the decode task queue, and A/V sync on the shared state machine thread, and controls the audio "push" thread. All internal state is synchronised via the decoder monitor. State changes are propagated by scheduling the state machine to run another cycle on the shared state machine thread. See MediaDecoder.h for more details. */ class MediaDecoderStateMachine { NS_INLINE_DECL_THREADSAFE_REFCOUNTING(MediaDecoderStateMachine) using TrackSet = MediaDecoderReader::TrackSet; public: typedef MediaDecoderOwner::NextFrameStatus NextFrameStatus; typedef mozilla::layers::ImageContainer::FrameID FrameID; MediaDecoderStateMachine(MediaDecoder* aDecoder, MediaDecoderReader* aReader); nsresult Init(MediaDecoder* aDecoder); // Enumeration for the valid decoding states enum State { DECODER_STATE_DECODING_METADATA, DECODER_STATE_WAIT_FOR_CDM, DECODER_STATE_DORMANT, DECODER_STATE_DECODING_FIRSTFRAME, DECODER_STATE_DECODING, DECODER_STATE_SEEKING, DECODER_STATE_BUFFERING, DECODER_STATE_COMPLETED, DECODER_STATE_SHUTDOWN }; RefPtr RequestDebugInfo(); void AddOutputStream(ProcessedMediaStream* aStream, bool aFinishWhenEnded); // Remove an output stream added with AddOutputStream. void RemoveOutputStream(MediaStream* aStream); // Seeks to the decoder to aTarget asynchronously. RefPtr InvokeSeek(const SeekTarget& aTarget); void DispatchSetPlaybackRate(double aPlaybackRate) { OwnerThread()->DispatchStateChange(NewRunnableMethod( this, &MediaDecoderStateMachine::SetPlaybackRate, aPlaybackRate)); } RefPtr BeginShutdown(); // Set the media fragment end time. aEndTime is in microseconds. void DispatchSetFragmentEndTime(int64_t aEndTime) { RefPtr self = this; nsCOMPtr r = NS_NewRunnableFunction([self, aEndTime] () { self->mFragmentEndTime = aEndTime; }); OwnerThread()->Dispatch(r.forget()); } // Drop reference to mResource. Only called during shutdown dance. void BreakCycles() { MOZ_ASSERT(NS_IsMainThread()); mResource = nullptr; } TimedMetadataEventSource& TimedMetadataEvent() { return mMetadataManager.TimedMetadataEvent(); } MediaEventSource& OnMediaNotSeekable() const; MediaEventSourceExc, nsAutoPtr, MediaDecoderEventVisibility>& MetadataLoadedEvent() { return mMetadataLoadedEvent; } MediaEventSourceExc, MediaDecoderEventVisibility>& FirstFrameLoadedEvent() { return mFirstFrameLoadedEvent; } MediaEventSource& OnPlaybackEvent() { return mOnPlaybackEvent; } MediaEventSource& OnPlaybackErrorEvent() { return mOnPlaybackErrorEvent; } MediaEventSource& OnDecoderDoctorEvent() { return mOnDecoderDoctorEvent; } size_t SizeOfVideoQueue() const; size_t SizeOfAudioQueue() const; private: class StateObject; class DecodeMetadataState; class WaitForCDMState; class DormantState; class DecodingFirstFrameState; class DecodingState; class SeekingState; class AccurateSeekingState; class NextFrameSeekingState; class BufferingState; class CompletedState; class ShutdownState; static const char* ToStateStr(State aState); static const char* ToStr(NextFrameStatus aStatus); const char* ToStateStr(); nsCString GetDebugInfo(); // Functions used by assertions to ensure we're calling things // on the appropriate threads. bool OnTaskQueue() const; // Initialization that needs to happen on the task queue. This is the first // task that gets run on the task queue, and is dispatched from the MDSM // constructor immediately after the task queue is created. void InitializationTask(MediaDecoder* aDecoder); void SetAudioCaptured(bool aCaptured); RefPtr Seek(const SeekTarget& aTarget); RefPtr Shutdown(); RefPtr FinishShutdown(); // Update the playback position. This can result in a timeupdate event // and an invalidate of the frame being dispatched asynchronously if // there is no such event currently queued. // Only called on the decoder thread. Must be called with // the decode monitor held. void UpdatePlaybackPosition(int64_t aTime); bool CanPlayThrough(); MediaStatistics GetStatistics(); bool HasAudio() const { return mInfo.ref().HasAudio(); } bool HasVideo() const { return mInfo.ref().HasVideo(); } const MediaInfo& Info() const { return mInfo.ref(); } // Returns the state machine task queue. TaskQueue* OwnerThread() const { return mTaskQueue; } // Schedules the shared state machine thread to run the state machine. void ScheduleStateMachine(); // Invokes ScheduleStateMachine to run in |aMicroseconds| microseconds, // unless it's already scheduled to run earlier, in which case the // request is discarded. void ScheduleStateMachineIn(int64_t aMicroseconds); bool HaveEnoughDecodedAudio(); bool HaveEnoughDecodedVideo(); // True if shutdown process has begun. bool IsShutdown() const; // Returns true if we're currently playing. The decoder monitor must // be held. bool IsPlaying() const; // Resets all states related to decoding and aborts all pending requests // to the decoders. void ResetDecode(TrackSet aTracks = TrackSet(TrackInfo::kAudioTrack, TrackInfo::kVideoTrack)); protected: virtual ~MediaDecoderStateMachine(); void BufferedRangeUpdated(); void ReaderSuspendedChanged(); // Inserts MediaData* samples into their respective MediaQueues. // aSample must not be null. void PushAudio(MediaData* aSample); void PushVideo(MediaData* aSample); void OnAudioPopped(const RefPtr& aSample); void OnVideoPopped(const RefPtr& aSample); void AudioAudibleChanged(bool aAudible); void VolumeChanged(); void SetPlaybackRate(double aPlaybackRate); void PreservesPitchChanged(); MediaQueue& AudioQueue() { return mAudioQueue; } MediaQueue& VideoQueue() { return mVideoQueue; } // True if we are low in decoded audio/video data. // May not be invoked when mReader->UseBufferingHeuristics() is false. bool HasLowDecodedData(); bool HasLowDecodedAudio(); bool HasLowDecodedVideo(); bool OutOfDecodedAudio(); bool OutOfDecodedVideo() { MOZ_ASSERT(OnTaskQueue()); return IsVideoDecoding() && VideoQueue().GetSize() <= 1; } // Returns true if we're running low on buffered data. bool HasLowBufferedData(); // Returns true if we have less than aUsecs of buffered data available. bool HasLowBufferedData(int64_t aUsecs); void UpdateNextFrameStatus(NextFrameStatus aStatus); // Return the current time, either the audio clock if available (if the media // has audio, and the playback is possible), or a clock for the video. // Called on the state machine thread. // If aTimeStamp is non-null, set *aTimeStamp to the TimeStamp corresponding // to the returned stream time. int64_t GetClock(TimeStamp* aTimeStamp = nullptr) const; void SetStartTime(int64_t aStartTimeUsecs); // Update only the state machine's current playback position (and duration, // if unknown). Does not update the playback position on the decoder or // media element -- use UpdatePlaybackPosition for that. Called on the state // machine thread, caller must hold the decoder lock. void UpdatePlaybackPositionInternal(int64_t aTime); // Update playback position and trigger next update by default time period. // Called on the state machine thread. void UpdatePlaybackPositionPeriodically(); media::MediaSink* CreateAudioSink(); // Always create mediasink which contains an AudioSink or StreamSink inside. already_AddRefed CreateMediaSink(bool aAudioCaptured); // Stops the media sink and shut it down. // The decoder monitor must be held with exactly one lock count. // Called on the state machine thread. void StopMediaSink(); // Create and start the media sink. // The decoder monitor must be held with exactly one lock count. // Called on the state machine thread. void StartMediaSink(); // Notification method invoked when mPlayState changes. void PlayStateChanged(); // Notification method invoked when mIsVisible changes. void VisibilityChanged(); // Sets internal state which causes playback of media to pause. // The decoder monitor must be held. void StopPlayback(); // If the conditions are right, sets internal state which causes playback // of media to begin or resume. // Must be called with the decode monitor held. void MaybeStartPlayback(); // Moves the decoder into the shutdown state, and dispatches an error // event to the media element. This begins shutting down the decoder. // The decoder monitor must be held. This is only called on the // decode thread. void DecodeError(const MediaResult& aError); // Dispatches a LoadedMetadataEvent. // This is threadsafe and can be called on any thread. // The decoder monitor must be held. void EnqueueLoadedMetadataEvent(); void EnqueueFirstFrameLoadedEvent(); // Start a task to decode audio. void RequestAudioData(); // Start a task to decode video. void RequestVideoData(bool aSkipToNextKeyframe, const media::TimeUnit& aCurrentTime); void WaitForData(MediaData::Type aType); bool IsRequestingAudioData() const { return mAudioDataRequest.Exists(); } bool IsRequestingVideoData() const { return mVideoDataRequest.Exists(); } bool IsWaitingAudioData() const { return mAudioWaitRequest.Exists(); } bool IsWaitingVideoData() const { return mVideoWaitRequest.Exists(); } // Returns the "media time". This is the absolute time which the media // playback has reached. i.e. this returns values in the range // [mStartTime, mEndTime], and mStartTime will not be 0 if the media does // not start at 0. Note this is different than the "current playback position", // which is in the range [0,duration]. int64_t GetMediaTime() const { MOZ_ASSERT(OnTaskQueue()); return mCurrentPosition; } // Returns an upper bound on the number of microseconds of audio that is // decoded and playable. This is the sum of the number of usecs of audio which // is decoded and in the reader's audio queue, and the usecs of unplayed audio // which has been pushed to the audio hardware for playback. Note that after // calling this, the audio hardware may play some of the audio pushed to // hardware, so this can only be used as a upper bound. The decoder monitor // must be held when calling this. Called on the decode thread. int64_t GetDecodedAudioDuration(); void FinishDecodeFirstFrame(); // Performs one "cycle" of the state machine. void RunStateMachine(); bool IsStateMachineScheduled() const; // These return true if the respective stream's decode has not yet reached // the end of stream. bool IsAudioDecoding(); bool IsVideoDecoding(); private: // Resolved by the MediaSink to signal that all audio/video outstanding // work is complete and identify which part(a/v) of the sink is shutting down. void OnMediaSinkAudioComplete(); void OnMediaSinkVideoComplete(); // Rejected by the MediaSink to signal errors for audio/video. void OnMediaSinkAudioError(nsresult aResult); void OnMediaSinkVideoError(); void* const mDecoderID; const RefPtr mAbstractMainThread; const RefPtr mFrameStats; const RefPtr mVideoFrameContainer; const dom::AudioChannel mAudioChannel; // Task queue for running the state machine. RefPtr mTaskQueue; // State-watching manager. WatchManager mWatchManager; // True if we've dispatched a task to run the state machine but the task has // yet to run. bool mDispatchedStateMachine; // Used to dispatch another round schedule with specific target time. DelayedScheduler mDelayedScheduler; // Queue of audio frames. This queue is threadsafe, and is accessed from // the audio, decoder, state machine, and main threads. MediaQueue mAudioQueue; // Queue of video frames. This queue is threadsafe, and is accessed from // the decoder, state machine, and main threads. MediaQueue mVideoQueue; UniquePtr mStateObj; media::TimeUnit Duration() const { MOZ_ASSERT(OnTaskQueue()); return mDuration.Ref().ref(); } // Recomputes the canonical duration from various sources. void RecomputeDuration(); // FrameID which increments every time a frame is pushed to our queue. FrameID mCurrentFrameID; // The highest timestamp that our position has reached. Monotonically // increasing. Watchable mObservedDuration; // Returns true if we're logically playing, that is, if the Play() has // been called and Pause() has not or we have not yet reached the end // of media. This is irrespective of the seeking state; if the owner // calls Play() and then Seek(), we still count as logically playing. // The decoder monitor must be held. bool IsLogicallyPlaying() { MOZ_ASSERT(OnTaskQueue()); return mPlayState == MediaDecoder::PLAY_STATE_PLAYING || mNextPlayState == MediaDecoder::PLAY_STATE_PLAYING; } // Media Fragment end time in microseconds. Access controlled by decoder monitor. int64_t mFragmentEndTime; // The media sink resource. Used on the state machine thread. RefPtr mMediaSink; const RefPtr mReader; // The end time of the last audio frame that's been pushed onto the media sink // in microseconds. This will approximately be the end time // of the audio stream, unless another frame is pushed to the hardware. int64_t AudioEndTime() const; // The end time of the last rendered video frame that's been sent to // compositor. int64_t VideoEndTime() const; // The end time of the last decoded audio frame. This signifies the end of // decoded audio data. Used to check if we are low in decoded data. int64_t mDecodedAudioEndTime; // The end time of the last decoded video frame. Used to check if we are low // on decoded video data. int64_t mDecodedVideoEndTime; // Playback rate. 1.0 : normal speed, 0.5 : two times slower. double mPlaybackRate; // If we've got more than this number of decoded video frames waiting in // the video queue, we will not decode any more video frames until some have // been consumed by the play state machine thread. // Must hold monitor. uint32_t GetAmpleVideoFrames() const; // Low audio threshold. If we've decoded less than this much audio we // consider our audio decode "behind", and we may skip video decoding // in order to allow our audio decoding to catch up. We favour audio // decoding over video. We increase this threshold if we're slow to // decode video frames, in order to reduce the chance of audio underruns. // Note that we don't ever reset this threshold, it only ever grows as // we detect that the decode can't keep up with rendering. int64_t mLowAudioThresholdUsecs; // Our "ample" audio threshold. Once we've this much audio decoded, we // pause decoding. If we increase mLowAudioThresholdUsecs, we'll also // increase this too appropriately (we don't want mLowAudioThresholdUsecs // to be greater than ampleAudioThreshold, else we'd stop decoding!). // Note that we don't ever reset this threshold, it only ever grows as // we detect that the decode can't keep up with rendering. int64_t mAmpleAudioThresholdUsecs; // At the start of decoding we want to "preroll" the decode until we've // got a few frames decoded before we consider whether decode is falling // behind. Otherwise our "we're falling behind" logic will trigger // unnecessarily if we start playing as soon as the first sample is // decoded. These two fields store how many video frames and audio // samples we must consume before are considered to be finished prerolling. uint32_t AudioPrerollUsecs() const { MOZ_ASSERT(OnTaskQueue()); return mAmpleAudioThresholdUsecs / 2; } uint32_t VideoPrerollFrames() const { MOZ_ASSERT(OnTaskQueue()); return GetAmpleVideoFrames() / 2; } // Only one of a given pair of ({Audio,Video}DataPromise, WaitForDataPromise) // should exist at any given moment. using MediaDataPromise = MediaDecoderReader::MediaDataPromise; using WaitForDataPromise = MediaDecoderReader::WaitForDataPromise; MozPromiseRequestHolder mAudioDataRequest; MozPromiseRequestHolder mVideoDataRequest; MozPromiseRequestHolder mAudioWaitRequest; MozPromiseRequestHolder mVideoWaitRequest; const char* AudioRequestStatus() const; const char* VideoRequestStatus() const; void OnSuspendTimerResolved(); void OnSuspendTimerRejected(); // True if we shouldn't play our audio (but still write it to any capturing // streams). When this is true, the audio thread will never start again after // it has stopped. bool mAudioCaptured; // True if all audio frames are already rendered. bool mAudioCompleted = false; // True if all video frames are already rendered. bool mVideoCompleted = false; // True if we should not decode/preroll unnecessary samples, unless we're // played. "Prerolling" in this context refers to when we decode and // buffer decoded samples in advance of when they're needed for playback. // This flag is set for preload=metadata media, and means we won't // decode more than the first video frame and first block of audio samples // for that media when we startup, or after a seek. When Play() is called, // we reset this flag, as we assume the user is playing the media, so // prerolling is appropriate then. This flag is used to reduce the overhead // of prerolling samples for media elements that may not play, both // memory and CPU overhead. bool mMinimizePreroll; // Stores presentation info required for playback. Maybe mInfo; nsAutoPtr mMetadataTags; mozilla::MediaMetadataManager mMetadataManager; // True if we are back from DECODER_STATE_DORMANT state and // LoadedMetadataEvent was already sent. bool mSentLoadedMetadataEvent; // True if we've decoded first frames (thus having the start time) and // notified the FirstFrameLoaded event. Note we can't initiate seek until the // start time is known which happens when the first frames are decoded or we // are playing an MSE stream (the start time is always assumed 0). bool mSentFirstFrameLoadedEvent; // True if video decoding is suspended. bool mVideoDecodeSuspended; // True if the media is seekable (i.e. supports random access). bool mMediaSeekable = true; // True if the media is seekable only in buffered ranges. bool mMediaSeekableOnlyInBufferedRanges = false; // Track enabling video decode suspension via timer DelayedScheduler mVideoDecodeSuspendTimer; // Data about MediaStreams that are being fed by the decoder. const RefPtr mOutputStreamManager; // Media data resource from the decoder. RefPtr mResource; // Track the complete & error for audio/video separately MozPromiseRequestHolder mMediaSinkAudioPromise; MozPromiseRequestHolder mMediaSinkVideoPromise; MediaEventListener mAudioQueueListener; MediaEventListener mVideoQueueListener; MediaEventListener mAudibleListener; MediaEventListener mOnMediaNotSeekable; MediaEventProducerExc, nsAutoPtr, MediaDecoderEventVisibility> mMetadataLoadedEvent; MediaEventProducerExc, MediaDecoderEventVisibility> mFirstFrameLoadedEvent; MediaEventProducer mOnPlaybackEvent; MediaEventProducer mOnPlaybackErrorEvent; MediaEventProducer mOnDecoderDoctorEvent; void OnCDMProxyReady(RefPtr aProxy); void OnCDMProxyNotReady(); RefPtr mCDMProxy; MozPromiseRequestHolder mCDMProxyPromise; private: // The buffered range. Mirrored from the decoder thread. Mirror mBuffered; // The duration according to the demuxer's current estimate, mirrored from the main thread. Mirror mEstimatedDuration; // The duration explicitly set by JS, mirrored from the main thread. Mirror> mExplicitDuration; // The current play state and next play state, mirrored from the main thread. Mirror mPlayState; Mirror mNextPlayState; // Volume of playback. 0.0 = muted. 1.0 = full volume. Mirror mVolume; // Pitch preservation for the playback rate. Mirror mPreservesPitch; // True if the media is same-origin with the element. Data can only be // passed to MediaStreams when this is true. Mirror mSameOriginMedia; // An identifier for the principal of the media. Used to track when // main-thread induced principal changes get reflected on MSG thread. Mirror mMediaPrincipalHandle; // Estimate of the current playback rate (bytes/second). Mirror mPlaybackBytesPerSecond; // True if mPlaybackBytesPerSecond is a reliable estimate. Mirror mPlaybackRateReliable; // Current decoding position in the stream. Mirror mDecoderPosition; // IsVisible, mirrored from the media decoder. Mirror mIsVisible; // Duration of the media. This is guaranteed to be non-null after we finish // decoding the first frame. Canonical mDuration; // Whether we're currently in or transitioning to shutdown state. Canonical mIsShutdown; // The status of our next frame. Mirrored on the main thread and used to // compute ready state. Canonical mNextFrameStatus; // The time of the current frame in microseconds, corresponding to the "current // playback position" in HTML5. This is referenced from 0, which is the initial // playback position. Canonical mCurrentPosition; // Current playback position in the stream in bytes. Canonical mPlaybackOffset; // Used to distinguish whether the audio is producing sound. Canonical mIsAudioDataAudible; public: AbstractCanonical* CanonicalBuffered() const; AbstractCanonical* CanonicalDuration() { return &mDuration; } AbstractCanonical* CanonicalIsShutdown() { return &mIsShutdown; } AbstractCanonical* CanonicalNextFrameStatus() { return &mNextFrameStatus; } AbstractCanonical* CanonicalCurrentPosition() { return &mCurrentPosition; } AbstractCanonical* CanonicalPlaybackOffset() { return &mPlaybackOffset; } AbstractCanonical* CanonicalIsAudioDataAudible() { return &mIsAudioDataAudible; } }; } // namespace mozilla #endif