/* -*- Mode: javascript; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim: set ts=2 et sw=2 tw=80: */ /***** BEGIN LICENSE BLOCK ***** * Version: MPL 1.1/GPL 2.0/LGPL 2.1 * * The contents of this file are subject to the Mozilla Public License Version * 1.1 (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * Software distributed under the License is distributed on an "AS IS" basis, * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License * for the specific language governing rights and limitations under the * License. * * The Original Code is Tilt: A WebGL-based 3D visualization of a webpage. * * The Initial Developer of the Original Code is * Mozilla Foundation. * Portions created by the Initial Developer are Copyright (C) 2011 * the Initial Developer. All Rights Reserved. * * Contributor(s): * Victor Porof (original author) * * Alternatively, the contents of this file may be used under the terms of * either the GNU General Public License Version 2 or later (the "GPL"), or * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), * in which case the provisions of the GPL or the LGPL are applicable instead * of those above. If you wish to allow use of your version of this file only * under the terms of either the GPL or the LGPL, and not to allow others to * use your version of this file under the terms of the MPL, indicate your * decision by deleting the provisions above and replace them with the notice * and other provisions required by the LGPL or the GPL. If you do not delete * the provisions above, a recipient may use your version of this file under * the terms of any one of the MPL, the GPL or the LGPL. * ***** END LICENSE BLOCK *****/ /*global self*/ "use strict"; /** * This worker handles picking, given a set of vertices and a ray (calculates * the intersection points and offers back information about the closest hit). * * Used in the TiltVisualization.Presenter object. */ self.onmessage = function TWP_onMessage(event) { let data = event.data; let thickness = data.thickness; let vertices = data.vertices; let ray = data.ray; let intersection = null; let hit = []; // calculates the squared distance between two points function dsq(p1, p2) { let xd = p2[0] - p1[0]; let yd = p2[1] - p1[1]; let zd = p2[2] - p1[2]; return xd * xd + yd * yd + zd * zd; } // check each stack face in the visualization mesh for intersections with // the mouse ray (using a ray picking algorithm) for (let i = 0, len = vertices.length; i < len; i += 36) { // the front quad let v0f = [vertices[i], vertices[i + 1], vertices[i + 2]]; let v1f = [vertices[i + 3], vertices[i + 4], vertices[i + 5]]; let v2f = [vertices[i + 6], vertices[i + 7], vertices[i + 8]]; let v3f = [vertices[i + 9], vertices[i + 10], vertices[i + 11]]; // the back quad let v0b = [v0f[0], v0f[1], v0f[2] - thickness]; let v1b = [v1f[0], v1f[1], v1f[2] - thickness]; let v2b = [v2f[0], v2f[1], v2f[2] - thickness]; let v3b = [v3f[0], v3f[1], v3f[2] - thickness]; // don't do anything with degenerate quads if (!v0f[0] && !v1f[0] && !v2f[0] && !v3f[0]) { continue; } // for each triangle in the stack box, check for the intersections if (self.intersect(v0f, v1f, v2f, ray, hit) || // front left self.intersect(v0f, v2f, v3f, ray, hit) || // front right self.intersect(v0b, v1b, v1f, ray, hit) || // left back self.intersect(v0b, v1f, v0f, ray, hit) || // left front self.intersect(v3f, v2b, v3b, ray, hit) || // right back self.intersect(v3f, v2f, v2b, ray, hit) || // right front self.intersect(v0b, v0f, v3f, ray, hit) || // top left self.intersect(v0b, v3f, v3b, ray, hit) || // top right self.intersect(v1f, v1b, v2b, ray, hit) || // bottom left self.intersect(v1f, v2b, v2f, ray, hit)) { // bottom right // calculate the distance between the intersection hit point and camera let d = dsq(hit, ray.origin); // we're picking the closest stack in the mesh from the camera if (intersection === null || d < intersection.distance) { intersection = { // each mesh stack is composed of 12 vertices, so there's information // about a node once in 12 * 3 = 36 iterations (to avoid duplication) index: i / 36, distance: d }; } } } self.postMessage(intersection); close(); }; /** * Utility function for finding intersections between a ray and a triangle. */ self.intersect = (function() { // creates a new instance of a vector function create() { return new Float32Array(3); } // performs a vector addition function add(aVec, aVec2, aDest) { aDest[0] = aVec[0] + aVec2[0]; aDest[1] = aVec[1] + aVec2[1]; aDest[2] = aVec[2] + aVec2[2]; return aDest; } // performs a vector subtraction function subtract(aVec, aVec2, aDest) { aDest[0] = aVec[0] - aVec2[0]; aDest[1] = aVec[1] - aVec2[1]; aDest[2] = aVec[2] - aVec2[2]; return aDest; } // performs a vector scaling function scale(aVec, aVal, aDest) { aDest[0] = aVec[0] * aVal; aDest[1] = aVec[1] * aVal; aDest[2] = aVec[2] * aVal; return aDest; } // generates the cross product of two vectors function cross(aVec, aVec2, aDest) { let x = aVec[0]; let y = aVec[1]; let z = aVec[2]; let x2 = aVec2[0]; let y2 = aVec2[1]; let z2 = aVec2[2]; aDest[0] = y * z2 - z * y2; aDest[1] = z * x2 - x * z2; aDest[2] = x * y2 - y * x2; return aDest; } // calculates the dot product of two vectors function dot(aVec, aVec2) { return aVec[0] * aVec2[0] + aVec[1] * aVec2[1] + aVec[2] * aVec2[2]; } let edge1 = create(); let edge2 = create(); let pvec = create(); let tvec = create(); let qvec = create(); let lvec = create(); // checks for ray-triangle intersections using the Fast Minimum-Storage // (simplified) algorithm by Tomas Moller and Ben Trumbore return function intersect(aVert0, aVert1, aVert2, aRay, aDest) { let dir = aRay.direction; let orig = aRay.origin; // find vectors for two edges sharing vert0 subtract(aVert1, aVert0, edge1); subtract(aVert2, aVert0, edge2); // begin calculating determinant - also used to calculate the U parameter cross(dir, edge2, pvec); // if determinant is near zero, ray lines in plane of triangle let inv_det = 1 / dot(edge1, pvec); // calculate distance from vert0 to ray origin subtract(orig, aVert0, tvec); // calculate U parameter and test bounds let u = dot(tvec, pvec) * inv_det; if (u < 0 || u > 1) { return false; } // prepare to test V parameter cross(tvec, edge1, qvec); // calculate V parameter and test bounds let v = dot(dir, qvec) * inv_det; if (v < 0 || u + v > 1) { return false; } // calculate T, ray intersects triangle let t = dot(edge2, qvec) * inv_det; scale(dir, t, lvec); add(orig, lvec, aDest); return true; }; }());