/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ // vim:cindent:ts=2:et:sw=2: /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "nsStyleConsts.h" #include "nsCSSColorUtils.h" #include "GeckoProfiler.h" #include "nsExpirationTracker.h" #include "RoundedRect.h" #include "nsClassHashtable.h" #include "nsStyleStruct.h" #include "gfxContext.h" #include "nsCSSRenderingBorders.h" #include "mozilla/gfx/2D.h" #include "gfx2DGlue.h" #include using namespace mozilla; using namespace mozilla::gfx; struct BorderGradientCacheKey : public PLDHashEntryHdr { typedef const BorderGradientCacheKey& KeyType; typedef const BorderGradientCacheKey* KeyTypePointer; enum { ALLOW_MEMMOVE = true }; const uint32_t mColor1; const uint32_t mColor2; const BackendType mBackendType; BorderGradientCacheKey(const Color& aColor1, const Color& aColor2, BackendType aBackendType) : mColor1(aColor1.ToABGR()), mColor2(aColor2.ToABGR()) , mBackendType(aBackendType) { } BorderGradientCacheKey(const BorderGradientCacheKey* aOther) : mColor1(aOther->mColor1), mColor2(aOther->mColor2) , mBackendType(aOther->mBackendType) { } static PLDHashNumber HashKey(const KeyTypePointer aKey) { PLDHashNumber hash = 0; hash = AddToHash(hash, aKey->mColor1); hash = AddToHash(hash, aKey->mColor2); hash = AddToHash(hash, aKey->mBackendType); return hash; } bool KeyEquals(KeyTypePointer aKey) const { return (aKey->mColor1 == mColor1) && (aKey->mColor2 == mColor2) && (aKey->mBackendType == mBackendType); } static KeyTypePointer KeyToPointer(KeyType aKey) { return &aKey; } }; /** * This class is what is cached. It need to be allocated in an object separated * to the cache entry to be able to be tracked by the nsExpirationTracker. * */ struct BorderGradientCacheData { BorderGradientCacheData(GradientStops* aStops, const BorderGradientCacheKey& aKey) : mStops(aStops), mKey(aKey) {} BorderGradientCacheData(const BorderGradientCacheData& aOther) : mStops(aOther.mStops), mKey(aOther.mKey) { } nsExpirationState *GetExpirationState() { return &mExpirationState; } nsExpirationState mExpirationState; RefPtr mStops; BorderGradientCacheKey mKey; }; /** * This class implements a cache with no maximum size, that retains the * gradient stops used to draw border corners. * * The key is formed by the two gradient stops, they're always both located * at an offset of 0.5. So they can generously be reused. The key also includes * the backend type a certain gradient was created for. * * An entry stays in the cache as long as it is used often. * * This code was pretty bluntly stolen and modified from nsCSSRendering. */ class BorderGradientCache MOZ_FINAL : public nsExpirationTracker { public: BorderGradientCache() : nsExpirationTracker(GENERATION_MS) { mTimerPeriod = GENERATION_MS; } virtual void NotifyExpired(BorderGradientCacheData* aObject) { // This will free the gfxPattern. RemoveObject(aObject); mHashEntries.Remove(aObject->mKey); } BorderGradientCacheData* Lookup(const Color& aColor1, const Color& aColor2, BackendType aBackendType) { BorderGradientCacheData* gradient = mHashEntries.Get(BorderGradientCacheKey(aColor1, aColor2, aBackendType)); if (gradient) { MarkUsed(gradient); } return gradient; } // Returns true if we successfully register the gradient in the cache, false // otherwise. bool RegisterEntry(BorderGradientCacheData* aValue) { nsresult rv = AddObject(aValue); if (NS_FAILED(rv)) { // We are OOM, and we cannot track this object. We don't want stall // entries in the hash table (since the expiration tracker is responsible // for removing the cache entries), so we avoid putting that entry in the // table, which is a good things considering we are short on memory // anyway, we probably don't want to retain things. return false; } mHashEntries.Put(aValue->mKey, aValue); return true; } protected: uint32_t mTimerPeriod; static const uint32_t GENERATION_MS = 4000; /** * FIXME use nsTHashtable to avoid duplicating the BorderGradientCacheKey. * This is analogous to the issue for the generic gradient cache: * https://bugzilla.mozilla.org/show_bug.cgi?id=785794 */ nsClassHashtable mHashEntries; }; /** * nsCSSRendering::PaintBorder * nsCSSRendering::PaintOutline * -> DrawBorders * * DrawBorders * -> Ability to use specialized approach? * |- Draw using specialized function * |- separate corners? * |- dashed side mask * | * -> can border be drawn in 1 pass? (e.g., solid border same color all around) * |- DrawBorderSides with all 4 sides * -> more than 1 pass? * |- for each corner * |- clip to DoCornerClipSubPath * |- for each side adjacent to corner * |- clip to DoSideClipSubPath * |- DrawBorderSides with one side * |- for each side * |- DoSideClipWithoutCornersSubPath * |- DrawDashedSide || DrawBorderSides with one side */ static void ComputeBorderCornerDimensions(const gfxRect& aOuterRect, const gfxRect& aInnerRect, const gfxCornerSizes& aRadii, gfxCornerSizes *aDimsResult); // given a side index, get the previous and next side index #define NEXT_SIDE(_s) mozilla::css::Side(((_s) + 1) & 3) #define PREV_SIDE(_s) mozilla::css::Side(((_s) + 3) & 3) // from the given base color and the background color, turn // color into a color for the given border pattern style static gfxRGBA MakeBorderColor(const gfxRGBA& aColor, const gfxRGBA& aBackgroundColor, BorderColorStyle aBorderColorStyle); // Given a line index (an index starting from the outside of the // border going inwards) and an array of line styles, calculate the // color that that stripe of the border should be rendered in. static gfxRGBA ComputeColorForLine(uint32_t aLineIndex, const BorderColorStyle* aBorderColorStyle, uint32_t aBorderColorStyleCount, nscolor aBorderColor, nscolor aBackgroundColor); static gfxRGBA ComputeCompositeColorForLine(uint32_t aLineIndex, const nsBorderColors* aBorderColors); // little helper function to check if the array of 4 floats given are // equal to the given value static bool CheckFourFloatsEqual(const gfxFloat *vals, gfxFloat k) { return (vals[0] == k && vals[1] == k && vals[2] == k && vals[3] == k); } static bool IsZeroSize(const gfxSize& sz) { return sz.width == 0.0 || sz.height == 0.0; } static bool AllCornersZeroSize(const gfxCornerSizes& corners) { return IsZeroSize(corners[NS_CORNER_TOP_LEFT]) && IsZeroSize(corners[NS_CORNER_TOP_RIGHT]) && IsZeroSize(corners[NS_CORNER_BOTTOM_RIGHT]) && IsZeroSize(corners[NS_CORNER_BOTTOM_LEFT]); } typedef enum { // Normal solid square corner. Will be rectangular, the size of the // adjacent sides. If the corner has a border radius, the corner // will always be solid, since we don't do dotted/dashed etc. CORNER_NORMAL, // Paint the corner in whatever style is not dotted/dashed of the // adjacent corners. CORNER_SOLID, // Paint the corner as a dot, the size of the bigger of the adjacent // sides. CORNER_DOT } CornerStyle; static BorderGradientCache* gBorderGradientCache = nullptr; nsCSSBorderRenderer::nsCSSBorderRenderer(int32_t aAppUnitsPerPixel, gfxContext* aDestContext, gfxRect& aOuterRect, const uint8_t* aBorderStyles, const gfxFloat* aBorderWidths, gfxCornerSizes& aBorderRadii, const nscolor* aBorderColors, nsBorderColors* const* aCompositeColors, int aSkipSides, nscolor aBackgroundColor) : mContext(aDestContext), mOuterRect(aOuterRect), mBorderStyles(aBorderStyles), mBorderWidths(aBorderWidths), mBorderRadii(aBorderRadii), mBorderColors(aBorderColors), mCompositeColors(aCompositeColors), mAUPP(aAppUnitsPerPixel), mSkipSides(aSkipSides), mBackgroundColor(aBackgroundColor) { if (!mCompositeColors) { static nsBorderColors * const noColors[4] = { nullptr }; mCompositeColors = &noColors[0]; } mInnerRect = mOuterRect; mInnerRect.Deflate( gfxMargin(mBorderStyles[0] != NS_STYLE_BORDER_STYLE_NONE ? mBorderWidths[0] : 0, mBorderStyles[1] != NS_STYLE_BORDER_STYLE_NONE ? mBorderWidths[1] : 0, mBorderStyles[2] != NS_STYLE_BORDER_STYLE_NONE ? mBorderWidths[2] : 0, mBorderStyles[3] != NS_STYLE_BORDER_STYLE_NONE ? mBorderWidths[3] : 0)); ComputeBorderCornerDimensions(mOuterRect, mInnerRect, mBorderRadii, &mBorderCornerDimensions); mOneUnitBorder = CheckFourFloatsEqual(mBorderWidths, 1.0); mNoBorderRadius = AllCornersZeroSize(mBorderRadii); mAvoidStroke = false; } void nsCSSBorderRenderer::Init() { gBorderGradientCache = new BorderGradientCache(); } void nsCSSBorderRenderer::Shutdown() { delete gBorderGradientCache; } /* static */ void nsCSSBorderRenderer::ComputeInnerRadii(const gfxCornerSizes& aRadii, const gfxFloat *aBorderSizes, gfxCornerSizes *aInnerRadiiRet) { gfxCornerSizes& iRadii = *aInnerRadiiRet; iRadii[C_TL].width = std::max(0.0, aRadii[C_TL].width - aBorderSizes[NS_SIDE_LEFT]); iRadii[C_TL].height = std::max(0.0, aRadii[C_TL].height - aBorderSizes[NS_SIDE_TOP]); iRadii[C_TR].width = std::max(0.0, aRadii[C_TR].width - aBorderSizes[NS_SIDE_RIGHT]); iRadii[C_TR].height = std::max(0.0, aRadii[C_TR].height - aBorderSizes[NS_SIDE_TOP]); iRadii[C_BR].width = std::max(0.0, aRadii[C_BR].width - aBorderSizes[NS_SIDE_RIGHT]); iRadii[C_BR].height = std::max(0.0, aRadii[C_BR].height - aBorderSizes[NS_SIDE_BOTTOM]); iRadii[C_BL].width = std::max(0.0, aRadii[C_BL].width - aBorderSizes[NS_SIDE_LEFT]); iRadii[C_BL].height = std::max(0.0, aRadii[C_BL].height - aBorderSizes[NS_SIDE_BOTTOM]); } /* static */ void nsCSSBorderRenderer::ComputeOuterRadii(const gfxCornerSizes& aRadii, const gfxFloat *aBorderSizes, gfxCornerSizes *aOuterRadiiRet) { gfxCornerSizes& oRadii = *aOuterRadiiRet; // default all corners to sharp corners oRadii = gfxCornerSizes(0.0); // round the edges that have radii > 0.0 to start with if (aRadii[C_TL].width > 0.0 && aRadii[C_TL].height > 0.0) { oRadii[C_TL].width = std::max(0.0, aRadii[C_TL].width + aBorderSizes[NS_SIDE_LEFT]); oRadii[C_TL].height = std::max(0.0, aRadii[C_TL].height + aBorderSizes[NS_SIDE_TOP]); } if (aRadii[C_TR].width > 0.0 && aRadii[C_TR].height > 0.0) { oRadii[C_TR].width = std::max(0.0, aRadii[C_TR].width + aBorderSizes[NS_SIDE_RIGHT]); oRadii[C_TR].height = std::max(0.0, aRadii[C_TR].height + aBorderSizes[NS_SIDE_TOP]); } if (aRadii[C_BR].width > 0.0 && aRadii[C_BR].height > 0.0) { oRadii[C_BR].width = std::max(0.0, aRadii[C_BR].width + aBorderSizes[NS_SIDE_RIGHT]); oRadii[C_BR].height = std::max(0.0, aRadii[C_BR].height + aBorderSizes[NS_SIDE_BOTTOM]); } if (aRadii[C_BL].width > 0.0 && aRadii[C_BL].height > 0.0) { oRadii[C_BL].width = std::max(0.0, aRadii[C_BL].width + aBorderSizes[NS_SIDE_LEFT]); oRadii[C_BL].height = std::max(0.0, aRadii[C_BL].height + aBorderSizes[NS_SIDE_BOTTOM]); } } /*static*/ void ComputeBorderCornerDimensions(const gfxRect& aOuterRect, const gfxRect& aInnerRect, const gfxCornerSizes& aRadii, gfxCornerSizes *aDimsRet) { gfxFloat leftWidth = aInnerRect.X() - aOuterRect.X(); gfxFloat topWidth = aInnerRect.Y() - aOuterRect.Y(); gfxFloat rightWidth = aOuterRect.Width() - aInnerRect.Width() - leftWidth; gfxFloat bottomWidth = aOuterRect.Height() - aInnerRect.Height() - topWidth; if (AllCornersZeroSize(aRadii)) { // These will always be in pixel units from CSS (*aDimsRet)[C_TL] = gfxSize(leftWidth, topWidth); (*aDimsRet)[C_TR] = gfxSize(rightWidth, topWidth); (*aDimsRet)[C_BR] = gfxSize(rightWidth, bottomWidth); (*aDimsRet)[C_BL] = gfxSize(leftWidth, bottomWidth); } else { // Always round up to whole pixels for the corners; it's safe to // make the corners bigger than necessary, and this way we ensure // that we avoid seams. (*aDimsRet)[C_TL] = gfxSize(ceil(std::max(leftWidth, aRadii[C_TL].width)), ceil(std::max(topWidth, aRadii[C_TL].height))); (*aDimsRet)[C_TR] = gfxSize(ceil(std::max(rightWidth, aRadii[C_TR].width)), ceil(std::max(topWidth, aRadii[C_TR].height))); (*aDimsRet)[C_BR] = gfxSize(ceil(std::max(rightWidth, aRadii[C_BR].width)), ceil(std::max(bottomWidth, aRadii[C_BR].height))); (*aDimsRet)[C_BL] = gfxSize(ceil(std::max(leftWidth, aRadii[C_BL].width)), ceil(std::max(bottomWidth, aRadii[C_BL].height))); } } bool nsCSSBorderRenderer::AreBorderSideFinalStylesSame(uint8_t aSides) { NS_ASSERTION(aSides != 0 && (aSides & ~SIDE_BITS_ALL) == 0, "AreBorderSidesSame: invalid whichSides!"); /* First check if the specified styles and colors are the same for all sides */ int firstStyle = 0; NS_FOR_CSS_SIDES (i) { if (firstStyle == i) { if (((1 << i) & aSides) == 0) firstStyle++; continue; } if (((1 << i) & aSides) == 0) { continue; } if (mBorderStyles[firstStyle] != mBorderStyles[i] || mBorderColors[firstStyle] != mBorderColors[i] || !nsBorderColors::Equal(mCompositeColors[firstStyle], mCompositeColors[i])) return false; } /* Then if it's one of the two-tone styles and we're not * just comparing the TL or BR sides */ switch (mBorderStyles[firstStyle]) { case NS_STYLE_BORDER_STYLE_GROOVE: case NS_STYLE_BORDER_STYLE_RIDGE: case NS_STYLE_BORDER_STYLE_INSET: case NS_STYLE_BORDER_STYLE_OUTSET: return ((aSides & ~(SIDE_BIT_TOP | SIDE_BIT_LEFT)) == 0 || (aSides & ~(SIDE_BIT_BOTTOM | SIDE_BIT_RIGHT)) == 0); } return true; } bool nsCSSBorderRenderer::IsSolidCornerStyle(uint8_t aStyle, mozilla::css::Corner aCorner) { switch (aStyle) { case NS_STYLE_BORDER_STYLE_DOTTED: case NS_STYLE_BORDER_STYLE_DASHED: case NS_STYLE_BORDER_STYLE_SOLID: return true; case NS_STYLE_BORDER_STYLE_INSET: case NS_STYLE_BORDER_STYLE_OUTSET: return (aCorner == NS_CORNER_TOP_LEFT || aCorner == NS_CORNER_BOTTOM_RIGHT); case NS_STYLE_BORDER_STYLE_GROOVE: case NS_STYLE_BORDER_STYLE_RIDGE: return mOneUnitBorder && (aCorner == NS_CORNER_TOP_LEFT || aCorner == NS_CORNER_BOTTOM_RIGHT); case NS_STYLE_BORDER_STYLE_DOUBLE: return mOneUnitBorder; default: return false; } } BorderColorStyle nsCSSBorderRenderer::BorderColorStyleForSolidCorner(uint8_t aStyle, mozilla::css::Corner aCorner) { // note that this function assumes that the corner is already solid, // as per the earlier function switch (aStyle) { case NS_STYLE_BORDER_STYLE_DOTTED: case NS_STYLE_BORDER_STYLE_DASHED: case NS_STYLE_BORDER_STYLE_SOLID: case NS_STYLE_BORDER_STYLE_DOUBLE: return BorderColorStyleSolid; case NS_STYLE_BORDER_STYLE_INSET: case NS_STYLE_BORDER_STYLE_GROOVE: if (aCorner == NS_CORNER_TOP_LEFT) return BorderColorStyleDark; else if (aCorner == NS_CORNER_BOTTOM_RIGHT) return BorderColorStyleLight; break; case NS_STYLE_BORDER_STYLE_OUTSET: case NS_STYLE_BORDER_STYLE_RIDGE: if (aCorner == NS_CORNER_TOP_LEFT) return BorderColorStyleLight; else if (aCorner == NS_CORNER_BOTTOM_RIGHT) return BorderColorStyleDark; break; } return BorderColorStyleNone; } void nsCSSBorderRenderer::DoCornerSubPath(mozilla::css::Corner aCorner) { gfxPoint offset(0.0, 0.0); if (aCorner == C_TR || aCorner == C_BR) offset.x = mOuterRect.Width() - mBorderCornerDimensions[aCorner].width; if (aCorner == C_BR || aCorner == C_BL) offset.y = mOuterRect.Height() - mBorderCornerDimensions[aCorner].height; mContext->Rectangle(gfxRect(mOuterRect.TopLeft() + offset, mBorderCornerDimensions[aCorner])); } void nsCSSBorderRenderer::DoSideClipWithoutCornersSubPath(mozilla::css::Side aSide) { gfxPoint offset(0.0, 0.0); // The offset from the outside rect to the start of this side's // box. For the top and bottom sides, the height of the box // must be the border height; the x start must take into account // the corner size (which may be bigger than the right or left // side's width). The same applies to the right and left sides. if (aSide == NS_SIDE_TOP) { offset.x = mBorderCornerDimensions[C_TL].width; } else if (aSide == NS_SIDE_RIGHT) { offset.x = mOuterRect.Width() - mBorderWidths[NS_SIDE_RIGHT]; offset.y = mBorderCornerDimensions[C_TR].height; } else if (aSide == NS_SIDE_BOTTOM) { offset.x = mBorderCornerDimensions[C_BL].width; offset.y = mOuterRect.Height() - mBorderWidths[NS_SIDE_BOTTOM]; } else if (aSide == NS_SIDE_LEFT) { offset.y = mBorderCornerDimensions[C_TL].height; } // The sum of the width & height of the corners adjacent to the // side. This relies on the relationship between side indexing and // corner indexing; that is, 0 == SIDE_TOP and 0 == CORNER_TOP_LEFT, // with both proceeding clockwise. gfxSize sideCornerSum = mBorderCornerDimensions[mozilla::css::Corner(aSide)] + mBorderCornerDimensions[mozilla::css::Corner(NEXT_SIDE(aSide))]; gfxRect rect(mOuterRect.TopLeft() + offset, mOuterRect.Size() - sideCornerSum); if (aSide == NS_SIDE_TOP || aSide == NS_SIDE_BOTTOM) rect.height = mBorderWidths[aSide]; else rect.width = mBorderWidths[aSide]; mContext->Rectangle(rect); } // The side border type and the adjacent border types are // examined and one of the different types of clipping (listed // below) is selected. typedef enum { // clip to the trapezoid formed by the corners of the // inner and outer rectangles for the given side SIDE_CLIP_TRAPEZOID, // clip to the trapezoid formed by the outer rectangle // corners and the center of the region, making sure // that diagonal lines all go directly from the outside // corner to the inside corner, but that they then continue on // to the middle. // // This is needed for correctly clipping rounded borders, // which might extend past the SIDE_CLIP_TRAPEZOID trap. SIDE_CLIP_TRAPEZOID_FULL, // clip to the rectangle formed by the given side; a specific // overlap algorithm is used; see the function for details. // this is currently used for dashing. SIDE_CLIP_RECTANGLE } SideClipType; // Given three points, p0, p1, and midPoint, move p1 further in to the // rectangle (of which aMidPoint is the center) so that it reaches the // closer of the horizontal or vertical lines intersecting the midpoint, // while maintaing the slope of the line. If p0 and p1 are the same, // just move p1 to midPoint (since there's no slope to maintain). // FIXME: Extending only to the midpoint isn't actually sufficient for // boxes with asymmetric radii. static void MaybeMoveToMidPoint(gfxPoint& aP0, gfxPoint& aP1, const gfxPoint& aMidPoint) { gfxPoint ps = aP1 - aP0; if (ps.x == 0.0) { if (ps.y == 0.0) { aP1 = aMidPoint; } else { aP1.y = aMidPoint.y; } } else { if (ps.y == 0.0) { aP1.x = aMidPoint.x; } else { gfxFloat k = std::min((aMidPoint.x - aP0.x) / ps.x, (aMidPoint.y - aP0.y) / ps.y); aP1 = aP0 + ps * k; } } } void nsCSSBorderRenderer::DoSideClipSubPath(mozilla::css::Side aSide) { // the clip proceeds clockwise from the top left corner; // so "start" in each case is the start of the region from that side. // // the final path will be formed like: // s0 ------- e0 // | / // s1 ----- e1 // // that is, the second point will always be on the inside gfxPoint start[2]; gfxPoint end[2]; #define IS_DASHED_OR_DOTTED(_s) ((_s) == NS_STYLE_BORDER_STYLE_DASHED || (_s) == NS_STYLE_BORDER_STYLE_DOTTED) bool isDashed = IS_DASHED_OR_DOTTED(mBorderStyles[aSide]); bool startIsDashed = IS_DASHED_OR_DOTTED(mBorderStyles[PREV_SIDE(aSide)]); bool endIsDashed = IS_DASHED_OR_DOTTED(mBorderStyles[NEXT_SIDE(aSide)]); #undef IS_DASHED_OR_DOTTED SideClipType startType = SIDE_CLIP_TRAPEZOID; SideClipType endType = SIDE_CLIP_TRAPEZOID; if (!IsZeroSize(mBorderRadii[mozilla::css::Corner(aSide)])) startType = SIDE_CLIP_TRAPEZOID_FULL; else if (startIsDashed && isDashed) startType = SIDE_CLIP_RECTANGLE; if (!IsZeroSize(mBorderRadii[mozilla::css::Corner(NEXT_SIDE(aSide))])) endType = SIDE_CLIP_TRAPEZOID_FULL; else if (endIsDashed && isDashed) endType = SIDE_CLIP_RECTANGLE; gfxPoint midPoint = mInnerRect.Center(); start[0] = mOuterRect.CCWCorner(aSide); start[1] = mInnerRect.CCWCorner(aSide); end[0] = mOuterRect.CWCorner(aSide); end[1] = mInnerRect.CWCorner(aSide); if (startType == SIDE_CLIP_TRAPEZOID_FULL) { MaybeMoveToMidPoint(start[0], start[1], midPoint); } else if (startType == SIDE_CLIP_RECTANGLE) { if (aSide == NS_SIDE_TOP || aSide == NS_SIDE_BOTTOM) start[1] = gfxPoint(mOuterRect.CCWCorner(aSide).x, mInnerRect.CCWCorner(aSide).y); else start[1] = gfxPoint(mInnerRect.CCWCorner(aSide).x, mOuterRect.CCWCorner(aSide).y); } if (endType == SIDE_CLIP_TRAPEZOID_FULL) { MaybeMoveToMidPoint(end[0], end[1], midPoint); } else if (endType == SIDE_CLIP_RECTANGLE) { if (aSide == NS_SIDE_TOP || aSide == NS_SIDE_BOTTOM) end[0] = gfxPoint(mInnerRect.CWCorner(aSide).x, mOuterRect.CWCorner(aSide).y); else end[0] = gfxPoint(mOuterRect.CWCorner(aSide).x, mInnerRect.CWCorner(aSide).y); } mContext->MoveTo(start[0]); mContext->LineTo(end[0]); mContext->LineTo(end[1]); mContext->LineTo(start[1]); mContext->ClosePath(); } void nsCSSBorderRenderer::FillSolidBorder(const gfxRect& aOuterRect, const gfxRect& aInnerRect, const gfxCornerSizes& aBorderRadii, const gfxFloat *aBorderSizes, int aSides, const gfxRGBA& aColor) { mContext->SetColor(aColor); // Note that this function is allowed to draw more than just the // requested sides. // If we have a border radius, do full rounded rectangles // and fill, regardless of what sides we're asked to draw. if (!AllCornersZeroSize(aBorderRadii)) { gfxCornerSizes innerRadii; ComputeInnerRadii(aBorderRadii, aBorderSizes, &innerRadii); mContext->NewPath(); // do the outer border mContext->RoundedRectangle(aOuterRect, aBorderRadii, true); // then do the inner border CCW mContext->RoundedRectangle(aInnerRect, innerRadii, false); mContext->Fill(); return; } // If we're asked to draw all sides of an equal-sized border, // stroking is fastest. This is a fairly common path, but partial // sides is probably second in the list -- there are a bunch of // common border styles, such as inset and outset, that are // top-left/bottom-right split. if (aSides == SIDE_BITS_ALL && CheckFourFloatsEqual(aBorderSizes, aBorderSizes[0]) && !mAvoidStroke) { gfxRect r(aOuterRect); r.Deflate(aBorderSizes[0] / 2.0); mContext->SetLineWidth(aBorderSizes[0]); mContext->NewPath(); mContext->Rectangle(r); mContext->Stroke(); return; } // Otherwise, we have unequal sized borders or we're only // drawing some sides; create rectangles for each side // and fill them. gfxRect r[4]; // compute base rects for each side if (aSides & SIDE_BIT_TOP) { r[NS_SIDE_TOP] = gfxRect(aOuterRect.X(), aOuterRect.Y(), aOuterRect.Width(), aBorderSizes[NS_SIDE_TOP]); } if (aSides & SIDE_BIT_BOTTOM) { r[NS_SIDE_BOTTOM] = gfxRect(aOuterRect.X(), aOuterRect.YMost() - aBorderSizes[NS_SIDE_BOTTOM], aOuterRect.Width(), aBorderSizes[NS_SIDE_BOTTOM]); } if (aSides & SIDE_BIT_LEFT) { r[NS_SIDE_LEFT] = gfxRect(aOuterRect.X(), aOuterRect.Y(), aBorderSizes[NS_SIDE_LEFT], aOuterRect.Height()); } if (aSides & SIDE_BIT_RIGHT) { r[NS_SIDE_RIGHT] = gfxRect(aOuterRect.XMost() - aBorderSizes[NS_SIDE_RIGHT], aOuterRect.Y(), aBorderSizes[NS_SIDE_RIGHT], aOuterRect.Height()); } // If two sides meet at a corner that we're rendering, then // make sure that we adjust one of the sides to avoid overlap. // This is especially important in the case of colors with // an alpha channel. if ((aSides & (SIDE_BIT_TOP | SIDE_BIT_LEFT)) == (SIDE_BIT_TOP | SIDE_BIT_LEFT)) { // adjust the left's top down a bit r[NS_SIDE_LEFT].y += aBorderSizes[NS_SIDE_TOP]; r[NS_SIDE_LEFT].height -= aBorderSizes[NS_SIDE_TOP]; } if ((aSides & (SIDE_BIT_TOP | SIDE_BIT_RIGHT)) == (SIDE_BIT_TOP | SIDE_BIT_RIGHT)) { // adjust the top's left a bit r[NS_SIDE_TOP].width -= aBorderSizes[NS_SIDE_RIGHT]; } if ((aSides & (SIDE_BIT_BOTTOM | SIDE_BIT_RIGHT)) == (SIDE_BIT_BOTTOM | SIDE_BIT_RIGHT)) { // adjust the right's bottom a bit r[NS_SIDE_RIGHT].height -= aBorderSizes[NS_SIDE_BOTTOM]; } if ((aSides & (SIDE_BIT_BOTTOM | SIDE_BIT_LEFT)) == (SIDE_BIT_BOTTOM | SIDE_BIT_LEFT)) { // adjust the bottom's left a bit r[NS_SIDE_BOTTOM].x += aBorderSizes[NS_SIDE_LEFT]; r[NS_SIDE_BOTTOM].width -= aBorderSizes[NS_SIDE_LEFT]; } // Filling these one by one is faster than filling them all at once. for (uint32_t i = 0; i < 4; i++) { if (aSides & (1 << i)) { mContext->NewPath(); mContext->Rectangle(r[i], true); mContext->Fill(); } } } gfxRGBA MakeBorderColor(const gfxRGBA& aColor, const gfxRGBA& aBackgroundColor, BorderColorStyle aBorderColorStyle) { nscolor colors[2]; int k = 0; switch (aBorderColorStyle) { case BorderColorStyleNone: return gfxRGBA(0.0, 0.0, 0.0, 0.0); case BorderColorStyleLight: k = 1; /* fall through */ case BorderColorStyleDark: NS_GetSpecial3DColors(colors, aBackgroundColor.Packed(), aColor.Packed()); return gfxRGBA(colors[k]); case BorderColorStyleSolid: default: return aColor; } } gfxRGBA ComputeColorForLine(uint32_t aLineIndex, const BorderColorStyle* aBorderColorStyle, uint32_t aBorderColorStyleCount, nscolor aBorderColor, nscolor aBackgroundColor) { NS_ASSERTION(aLineIndex < aBorderColorStyleCount, "Invalid lineIndex given"); return MakeBorderColor(gfxRGBA(aBorderColor), gfxRGBA(aBackgroundColor), aBorderColorStyle[aLineIndex]); } gfxRGBA ComputeCompositeColorForLine(uint32_t aLineIndex, const nsBorderColors* aBorderColors) { while (aLineIndex-- && aBorderColors->mNext) aBorderColors = aBorderColors->mNext; return gfxRGBA(aBorderColors->mColor); } void nsCSSBorderRenderer::DrawBorderSidesCompositeColors(int aSides, const nsBorderColors *aCompositeColors) { gfxCornerSizes radii = mBorderRadii; // the generic composite colors path; each border is 1px in size gfxRect soRect = mOuterRect; gfxFloat maxBorderWidth = 0; NS_FOR_CSS_SIDES (i) { maxBorderWidth = std::max(maxBorderWidth, mBorderWidths[i]); } gfxFloat fakeBorderSizes[4]; gfxPoint itl = mInnerRect.TopLeft(); gfxPoint ibr = mInnerRect.BottomRight(); for (uint32_t i = 0; i < uint32_t(maxBorderWidth); i++) { gfxRGBA lineColor = ComputeCompositeColorForLine(i, aCompositeColors); gfxRect siRect = soRect; siRect.Deflate(1.0); // now cap the rects to the real mInnerRect gfxPoint tl = siRect.TopLeft(); gfxPoint br = siRect.BottomRight(); tl.x = std::min(tl.x, itl.x); tl.y = std::min(tl.y, itl.y); br.x = std::max(br.x, ibr.x); br.y = std::max(br.y, ibr.y); siRect = gfxRect(tl.x, tl.y, br.x - tl.x , br.y - tl.y); fakeBorderSizes[NS_SIDE_TOP] = siRect.TopLeft().y - soRect.TopLeft().y; fakeBorderSizes[NS_SIDE_RIGHT] = soRect.TopRight().x - siRect.TopRight().x; fakeBorderSizes[NS_SIDE_BOTTOM] = soRect.BottomRight().y - siRect.BottomRight().y; fakeBorderSizes[NS_SIDE_LEFT] = siRect.BottomLeft().x - soRect.BottomLeft().x; FillSolidBorder(soRect, siRect, radii, fakeBorderSizes, aSides, lineColor); soRect = siRect; ComputeInnerRadii(radii, fakeBorderSizes, &radii); } } void nsCSSBorderRenderer::DrawBorderSides(int aSides) { if (aSides == 0 || (aSides & ~SIDE_BITS_ALL) != 0) { NS_WARNING("DrawBorderSides: invalid sides!"); return; } uint8_t borderRenderStyle; nscolor borderRenderColor; const nsBorderColors *compositeColors = nullptr; uint32_t borderColorStyleCount = 0; BorderColorStyle borderColorStyleTopLeft[3], borderColorStyleBottomRight[3]; BorderColorStyle *borderColorStyle = nullptr; NS_FOR_CSS_SIDES (i) { if ((aSides & (1 << i)) == 0) continue; borderRenderStyle = mBorderStyles[i]; borderRenderColor = mBorderColors[i]; compositeColors = mCompositeColors[i]; break; } if (borderRenderStyle == NS_STYLE_BORDER_STYLE_NONE || borderRenderStyle == NS_STYLE_BORDER_STYLE_HIDDEN) return; // -moz-border-colors is a hack; if we have it for a border, then // it's always drawn solid, and each color is given 1px. The last // color is used for the remainder of the border's size. Just // hand off to another function to do all that. if (compositeColors) { DrawBorderSidesCompositeColors(aSides, compositeColors); return; } // We're not doing compositeColors, so we can calculate the // borderColorStyle based on the specified style. The // borderColorStyle array goes from the outer to the inner style. // // If the border width is 1, we need to change the borderRenderStyle // a bit to make sure that we get the right colors -- e.g. 'ridge' // with a 1px border needs to look like solid, not like 'outset'. if (mOneUnitBorder && (borderRenderStyle == NS_STYLE_BORDER_STYLE_RIDGE || borderRenderStyle == NS_STYLE_BORDER_STYLE_GROOVE || borderRenderStyle == NS_STYLE_BORDER_STYLE_DOUBLE)) borderRenderStyle = NS_STYLE_BORDER_STYLE_SOLID; switch (borderRenderStyle) { case NS_STYLE_BORDER_STYLE_SOLID: case NS_STYLE_BORDER_STYLE_DASHED: case NS_STYLE_BORDER_STYLE_DOTTED: borderColorStyleTopLeft[0] = BorderColorStyleSolid; borderColorStyleBottomRight[0] = BorderColorStyleSolid; borderColorStyleCount = 1; break; case NS_STYLE_BORDER_STYLE_GROOVE: borderColorStyleTopLeft[0] = BorderColorStyleDark; borderColorStyleTopLeft[1] = BorderColorStyleLight; borderColorStyleBottomRight[0] = BorderColorStyleLight; borderColorStyleBottomRight[1] = BorderColorStyleDark; borderColorStyleCount = 2; break; case NS_STYLE_BORDER_STYLE_RIDGE: borderColorStyleTopLeft[0] = BorderColorStyleLight; borderColorStyleTopLeft[1] = BorderColorStyleDark; borderColorStyleBottomRight[0] = BorderColorStyleDark; borderColorStyleBottomRight[1] = BorderColorStyleLight; borderColorStyleCount = 2; break; case NS_STYLE_BORDER_STYLE_DOUBLE: borderColorStyleTopLeft[0] = BorderColorStyleSolid; borderColorStyleTopLeft[1] = BorderColorStyleNone; borderColorStyleTopLeft[2] = BorderColorStyleSolid; borderColorStyleBottomRight[0] = BorderColorStyleSolid; borderColorStyleBottomRight[1] = BorderColorStyleNone; borderColorStyleBottomRight[2] = BorderColorStyleSolid; borderColorStyleCount = 3; break; case NS_STYLE_BORDER_STYLE_INSET: borderColorStyleTopLeft[0] = BorderColorStyleDark; borderColorStyleBottomRight[0] = BorderColorStyleLight; borderColorStyleCount = 1; break; case NS_STYLE_BORDER_STYLE_OUTSET: borderColorStyleTopLeft[0] = BorderColorStyleLight; borderColorStyleBottomRight[0] = BorderColorStyleDark; borderColorStyleCount = 1; break; default: NS_NOTREACHED("Unhandled border style!!"); break; } // The only way to get to here is by having a // borderColorStyleCount < 1 or > 3; this should never happen, // since -moz-border-colors doesn't get handled here. NS_ASSERTION(borderColorStyleCount > 0 && borderColorStyleCount < 4, "Non-border-colors case with borderColorStyleCount < 1 or > 3; what happened?"); // The caller should never give us anything with a mix // of TL/BR if the border style would require a // TL/BR split. if (aSides & (SIDE_BIT_BOTTOM | SIDE_BIT_RIGHT)) borderColorStyle = borderColorStyleBottomRight; else borderColorStyle = borderColorStyleTopLeft; // Distribute the border across the available space. gfxFloat borderWidths[3][4]; if (borderColorStyleCount == 1) { NS_FOR_CSS_SIDES (i) { borderWidths[0][i] = mBorderWidths[i]; } } else if (borderColorStyleCount == 2) { // with 2 color styles, any extra pixel goes to the outside NS_FOR_CSS_SIDES (i) { borderWidths[0][i] = int32_t(mBorderWidths[i]) / 2 + int32_t(mBorderWidths[i]) % 2; borderWidths[1][i] = int32_t(mBorderWidths[i]) / 2; } } else if (borderColorStyleCount == 3) { // with 3 color styles, any extra pixel (or lack of extra pixel) // goes to the middle NS_FOR_CSS_SIDES (i) { if (mBorderWidths[i] == 1.0) { borderWidths[0][i] = 1.0; borderWidths[1][i] = borderWidths[2][i] = 0.0; } else { int32_t rest = int32_t(mBorderWidths[i]) % 3; borderWidths[0][i] = borderWidths[2][i] = borderWidths[1][i] = (int32_t(mBorderWidths[i]) - rest) / 3; if (rest == 1) { borderWidths[1][i] += 1.0; } else if (rest == 2) { borderWidths[0][i] += 1.0; borderWidths[2][i] += 1.0; } } } } // make a copy that we can modify gfxCornerSizes radii = mBorderRadii; gfxRect soRect(mOuterRect); gfxRect siRect(mOuterRect); for (unsigned int i = 0; i < borderColorStyleCount; i++) { // walk siRect inwards at the start of the loop to get the // correct inner rect. siRect.Deflate(gfxMargin(borderWidths[i][0], borderWidths[i][1], borderWidths[i][2], borderWidths[i][3])); if (borderColorStyle[i] != BorderColorStyleNone) { gfxRGBA color = ComputeColorForLine(i, borderColorStyle, borderColorStyleCount, borderRenderColor, mBackgroundColor); FillSolidBorder(soRect, siRect, radii, borderWidths[i], aSides, color); } ComputeInnerRadii(radii, borderWidths[i], &radii); // And now soRect is the same as siRect, for the next line in. soRect = siRect; } } void nsCSSBorderRenderer::DrawDashedSide(mozilla::css::Side aSide) { gfxFloat dashWidth; gfxFloat dash[2]; uint8_t style = mBorderStyles[aSide]; gfxFloat borderWidth = mBorderWidths[aSide]; nscolor borderColor = mBorderColors[aSide]; if (borderWidth == 0.0) return; if (style == NS_STYLE_BORDER_STYLE_NONE || style == NS_STYLE_BORDER_STYLE_HIDDEN) return; if (style == NS_STYLE_BORDER_STYLE_DASHED) { dashWidth = gfxFloat(borderWidth * DOT_LENGTH * DASH_LENGTH); dash[0] = dashWidth; dash[1] = dashWidth; mContext->SetLineCap(gfxContext::LINE_CAP_BUTT); } else if (style == NS_STYLE_BORDER_STYLE_DOTTED) { dashWidth = gfxFloat(borderWidth * DOT_LENGTH); if (borderWidth > 2.0) { dash[0] = 0.0; dash[1] = dashWidth * 2.0; mContext->SetLineCap(gfxContext::LINE_CAP_ROUND); } else { dash[0] = dashWidth; dash[1] = dashWidth; } } else { SF("DrawDashedSide: style: %d!!\n", style); NS_ERROR("DrawDashedSide called with style other than DASHED or DOTTED; someone's not playing nice"); return; } SF("dash: %f %f\n", dash[0], dash[1]); mContext->SetDash(dash, 2, 0.0); gfxPoint start = mOuterRect.CCWCorner(aSide); gfxPoint end = mOuterRect.CWCorner(aSide); if (aSide == NS_SIDE_TOP) { start.x += mBorderCornerDimensions[C_TL].width; end.x -= mBorderCornerDimensions[C_TR].width; start.y += borderWidth / 2.0; end.y += borderWidth / 2.0; } else if (aSide == NS_SIDE_RIGHT) { start.x -= borderWidth / 2.0; end.x -= borderWidth / 2.0; start.y += mBorderCornerDimensions[C_TR].height; end.y -= mBorderCornerDimensions[C_BR].height; } else if (aSide == NS_SIDE_BOTTOM) { start.x -= mBorderCornerDimensions[C_BR].width; end.x += mBorderCornerDimensions[C_BL].width; start.y -= borderWidth / 2.0; end.y -= borderWidth / 2.0; } else if (aSide == NS_SIDE_LEFT) { start.x += borderWidth / 2.0; end.x += borderWidth / 2.0; start.y -= mBorderCornerDimensions[C_BL].height; end.y += mBorderCornerDimensions[C_TL].height; } mContext->NewPath(); mContext->MoveTo(start); mContext->LineTo(end); mContext->SetLineWidth(borderWidth); mContext->SetColor(gfxRGBA(borderColor)); //mContext->SetColor(gfxRGBA(1.0, 0.0, 0.0, 1.0)); mContext->Stroke(); } void nsCSSBorderRenderer::SetupStrokeStyle(mozilla::css::Side aSide) { mContext->SetColor(gfxRGBA(mBorderColors[aSide])); mContext->SetLineWidth(mBorderWidths[aSide]); } bool nsCSSBorderRenderer::AllBordersSameWidth() { if (mBorderWidths[0] == mBorderWidths[1] && mBorderWidths[0] == mBorderWidths[2] && mBorderWidths[0] == mBorderWidths[3]) { return true; } return false; } bool nsCSSBorderRenderer::AllBordersSolid(bool *aHasCompositeColors) { *aHasCompositeColors = false; NS_FOR_CSS_SIDES(i) { if (mCompositeColors[i] != nullptr) { *aHasCompositeColors = true; } if (mBorderStyles[i] == NS_STYLE_BORDER_STYLE_SOLID || mBorderStyles[i] == NS_STYLE_BORDER_STYLE_NONE || mBorderStyles[i] == NS_STYLE_BORDER_STYLE_HIDDEN) { continue; } return false; } return true; } bool IsVisible(int aStyle) { if (aStyle != NS_STYLE_BORDER_STYLE_NONE && aStyle != NS_STYLE_BORDER_STYLE_HIDDEN) { return true; } return false; } already_AddRefed nsCSSBorderRenderer::CreateCornerGradient(mozilla::css::Corner aCorner, const gfxRGBA &aFirstColor, const gfxRGBA &aSecondColor) { typedef struct { gfxFloat a, b; } twoFloats; const twoFloats gradientCoeff[4] = { { -1, +1 }, { -1, -1 }, { +1, -1 }, { +1, +1 } }; // Sides which form the 'width' and 'height' for the calculation of the angle // for our gradient. const int cornerWidth[4] = { 3, 1, 1, 3 }; const int cornerHeight[4] = { 0, 0, 2, 2 }; gfxPoint cornerOrigin = mOuterRect.AtCorner(aCorner); gfxPoint pat1, pat2; pat1.x = cornerOrigin.x + mBorderWidths[cornerHeight[aCorner]] * gradientCoeff[aCorner].a; pat1.y = cornerOrigin.y + mBorderWidths[cornerWidth[aCorner]] * gradientCoeff[aCorner].b; pat2.x = cornerOrigin.x - mBorderWidths[cornerHeight[aCorner]] * gradientCoeff[aCorner].a; pat2.y = cornerOrigin.y - mBorderWidths[cornerWidth[aCorner]] * gradientCoeff[aCorner].b; float gradientOffset; if (mContext->IsCairo() && (mContext->OriginalSurface()->GetType() == gfxSurfaceTypeD2D || mContext->OriginalSurface()->GetType() == gfxSurfaceTypeQuartz)) { // On quarz this doesn't do exactly the right thing, but it does do what // most other browsers do and doing the 'right' thing seems to be // hard with the quartz cairo backend. gradientOffset = 0; } else { // When cairo/Azure does the gradient drawing this gives us pretty nice behavior! gradientOffset = 0.25 / sqrt(pow(mBorderWidths[cornerHeight[aCorner]], 2) + pow(mBorderWidths[cornerHeight[aCorner]], 2)); } nsRefPtr pattern = new gfxPattern(pat1.x, pat1.y, pat2.x, pat2.y); pattern->AddColorStop(0.5 - gradientOffset, gfxRGBA(aFirstColor)); pattern->AddColorStop(0.5 + gradientOffset, gfxRGBA(aSecondColor)); return pattern.forget(); } TemporaryRef nsCSSBorderRenderer::CreateCornerGradient(mozilla::css::Corner aCorner, const gfxRGBA &aFirstColor, const gfxRGBA &aSecondColor, DrawTarget *aDT, Point &aPoint1, Point &aPoint2) { typedef struct { gfxFloat a, b; } twoFloats; const twoFloats gradientCoeff[4] = { { -1, +1 }, { -1, -1 }, { +1, -1 }, { +1, +1 } }; // Sides which form the 'width' and 'height' for the calculation of the angle // for our gradient. const int cornerWidth[4] = { 3, 1, 1, 3 }; const int cornerHeight[4] = { 0, 0, 2, 2 }; gfxPoint cornerOrigin = mOuterRect.AtCorner(aCorner); gfxPoint pat1, pat2; pat1.x = cornerOrigin.x + mBorderWidths[cornerHeight[aCorner]] * gradientCoeff[aCorner].a; pat1.y = cornerOrigin.y + mBorderWidths[cornerWidth[aCorner]] * gradientCoeff[aCorner].b; pat2.x = cornerOrigin.x - mBorderWidths[cornerHeight[aCorner]] * gradientCoeff[aCorner].a; pat2.y = cornerOrigin.y - mBorderWidths[cornerWidth[aCorner]] * gradientCoeff[aCorner].b; aPoint1 = Point(pat1.x, pat1.y); aPoint2 = Point(pat2.x, pat2.y); Color firstColor = ToColor(aFirstColor); Color secondColor = ToColor(aSecondColor); BorderGradientCacheData *data = gBorderGradientCache->Lookup(firstColor, secondColor, aDT->GetType()); if (!data) { // Having two corners, both with reversed color stops is pretty common // for certain border types. Let's optimize it! data = gBorderGradientCache->Lookup(secondColor, firstColor, aDT->GetType()); if (data) { Point tmp = aPoint1; aPoint1 = aPoint2; aPoint2 = tmp; } } RefPtr stops; if (data) { stops = data->mStops; } else { GradientStop rawStops[2]; // This is only guaranteed to give correct (and in some cases more correct) // rendering with the Direct2D Azure and Quartz Cairo backends. For other // cairo backends it could create un-antialiased border corner transitions // since that at least used to be pixman's behaviour for hard stops. rawStops[0].color = firstColor; rawStops[0].offset = 0.5; rawStops[1].color = secondColor; rawStops[1].offset = 0.5; stops = aDT->CreateGradientStops(rawStops, 2); data = new BorderGradientCacheData(stops, BorderGradientCacheKey(firstColor, secondColor, aDT->GetType())); if (!gBorderGradientCache->RegisterEntry(data)) { delete data; } } return stops; } typedef struct { gfxFloat a, b; } twoFloats; void nsCSSBorderRenderer::DrawSingleWidthSolidBorder() { // Easy enough to deal with. mContext->SetLineWidth(1); gfxRect rect = mOuterRect; rect.Deflate(0.5); const twoFloats cornerAdjusts[4] = { { +0.5, 0 }, { 0, +0.5 }, { -0.5, 0 }, { 0, -0.5 } }; NS_FOR_CSS_SIDES(side) { gfxPoint firstCorner = rect.CCWCorner(side); firstCorner.x += cornerAdjusts[side].a; firstCorner.y += cornerAdjusts[side].b; gfxPoint secondCorner = rect.CWCorner(side); secondCorner.x += cornerAdjusts[side].a; secondCorner.y += cornerAdjusts[side].b; mContext->SetColor(gfxRGBA(mBorderColors[side])); mContext->NewPath(); mContext->MoveTo(firstCorner); mContext->LineTo(secondCorner); mContext->Stroke(); } } void nsCSSBorderRenderer::DrawNoCompositeColorSolidBorder() { const gfxFloat alpha = 0.55191497064665766025; const twoFloats cornerMults[4] = { { -1, 0 }, { 0, -1 }, { +1, 0 }, { 0, +1 } }; const twoFloats centerAdjusts[4] = { { 0, +0.5 }, { -0.5, 0 }, { 0, -0.5 }, { +0.5, 0 } }; gfxPoint pc, pci, p0, p1, p2, p3, pd, p3i; gfxCornerSizes innerRadii; ComputeInnerRadii(mBorderRadii, mBorderWidths, &innerRadii); gfxRect strokeRect = mOuterRect; strokeRect.Deflate(gfxMargin(mBorderWidths[0] / 2.0, mBorderWidths[1] / 2.0, mBorderWidths[2] / 2.0, mBorderWidths[3] / 2.0)); NS_FOR_CSS_CORNERS(i) { // the corner index -- either 1 2 3 0 (cw) or 0 3 2 1 (ccw) mozilla::css::Corner c = mozilla::css::Corner((i+1) % 4); mozilla::css::Corner prevCorner = mozilla::css::Corner(i); // i+2 and i+3 respectively. These are used to index into the corner // multiplier table, and were deduced by calculating out the long form // of each corner and finding a pattern in the signs and values. int i1 = (i+1) % 4; int i2 = (i+2) % 4; int i3 = (i+3) % 4; pc = mOuterRect.AtCorner(c); pci = mInnerRect.AtCorner(c); mContext->SetLineWidth(mBorderWidths[i]); nscolor firstColor, secondColor; if (IsVisible(mBorderStyles[i]) && IsVisible(mBorderStyles[i1])) { firstColor = mBorderColors[i]; secondColor = mBorderColors[i1]; } else if (IsVisible(mBorderStyles[i])) { firstColor = mBorderColors[i]; secondColor = mBorderColors[i]; } else { firstColor = mBorderColors[i1]; secondColor = mBorderColors[i1]; } mContext->NewPath(); gfxPoint strokeStart, strokeEnd; strokeStart.x = mOuterRect.AtCorner(prevCorner).x + mBorderCornerDimensions[prevCorner].width * cornerMults[i2].a; strokeStart.y = mOuterRect.AtCorner(prevCorner).y + mBorderCornerDimensions[prevCorner].height * cornerMults[i2].b; strokeEnd.x = pc.x + mBorderCornerDimensions[c].width * cornerMults[i].a; strokeEnd.y = pc.y + mBorderCornerDimensions[c].height * cornerMults[i].b; strokeStart.x += centerAdjusts[i].a * mBorderWidths[i]; strokeStart.y += centerAdjusts[i].b * mBorderWidths[i]; strokeEnd.x += centerAdjusts[i].a * mBorderWidths[i]; strokeEnd.y += centerAdjusts[i].b * mBorderWidths[i]; mContext->MoveTo(strokeStart); mContext->LineTo(strokeEnd); mContext->SetColor(gfxRGBA(mBorderColors[i])); mContext->Stroke(); if (firstColor != secondColor) { nsRefPtr pattern = CreateCornerGradient(c, firstColor, secondColor); mContext->SetPattern(pattern); } else { mContext->SetColor(firstColor); } if (mBorderRadii[c].width > 0 && mBorderRadii[c].height > 0) { p0.x = pc.x + cornerMults[i].a * mBorderRadii[c].width; p0.y = pc.y + cornerMults[i].b * mBorderRadii[c].height; p3.x = pc.x + cornerMults[i3].a * mBorderRadii[c].width; p3.y = pc.y + cornerMults[i3].b * mBorderRadii[c].height; p1.x = p0.x + alpha * cornerMults[i2].a * mBorderRadii[c].width; p1.y = p0.y + alpha * cornerMults[i2].b * mBorderRadii[c].height; p2.x = p3.x - alpha * cornerMults[i3].a * mBorderRadii[c].width; p2.y = p3.y - alpha * cornerMults[i3].b * mBorderRadii[c].height; mContext->NewPath(); gfxPoint cornerStart; cornerStart.x = pc.x + cornerMults[i].a * mBorderCornerDimensions[c].width; cornerStart.y = pc.y + cornerMults[i].b * mBorderCornerDimensions[c].height; mContext->MoveTo(cornerStart); mContext->LineTo(p0); mContext->CurveTo(p1, p2, p3); gfxPoint outerCornerEnd; outerCornerEnd.x = pc.x + cornerMults[i3].a * mBorderCornerDimensions[c].width; outerCornerEnd.y = pc.y + cornerMults[i3].b * mBorderCornerDimensions[c].height; mContext->LineTo(outerCornerEnd); p0.x = pci.x + cornerMults[i].a * innerRadii[c].width; p0.y = pci.y + cornerMults[i].b * innerRadii[c].height; p3i.x = pci.x + cornerMults[i3].a * innerRadii[c].width; p3i.y = pci.y + cornerMults[i3].b * innerRadii[c].height; p1.x = p0.x + alpha * cornerMults[i2].a * innerRadii[c].width; p1.y = p0.y + alpha * cornerMults[i2].b * innerRadii[c].height; p2.x = p3i.x - alpha * cornerMults[i3].a * innerRadii[c].width; p2.y = p3i.y - alpha * cornerMults[i3].b * innerRadii[c].height; mContext->LineTo(p3i); mContext->CurveTo(p2, p1, p0); mContext->ClosePath(); mContext->Fill(); } else { gfxPoint c1, c2, c3, c4; c1.x = pc.x + cornerMults[i].a * mBorderCornerDimensions[c].width; c1.y = pc.y + cornerMults[i].b * mBorderCornerDimensions[c].height; c2 = pc; c3.x = pc.x + cornerMults[i3].a * mBorderCornerDimensions[c].width; c3.y = pc.y + cornerMults[i3].b * mBorderCornerDimensions[c].height; mContext->NewPath(); mContext->MoveTo(c1); mContext->LineTo(c2); mContext->LineTo(c3); mContext->LineTo(pci); mContext->ClosePath(); mContext->Fill(); } } } void nsCSSBorderRenderer::DrawNoCompositeColorSolidBorderAzure() { DrawTarget *dt = mContext->GetDrawTarget(); const gfxFloat alpha = 0.55191497064665766025; const twoFloats cornerMults[4] = { { -1, 0 }, { 0, -1 }, { +1, 0 }, { 0, +1 } }; const twoFloats centerAdjusts[4] = { { 0, +0.5 }, { -0.5, 0 }, { 0, -0.5 }, { +0.5, 0 } }; Point pc, pci, p0, p1, p2, p3, pd, p3i; gfxCornerSizes innerRadii; ComputeInnerRadii(mBorderRadii, mBorderWidths, &innerRadii); gfxRect strokeRect = mOuterRect; strokeRect.Deflate(gfxMargin(mBorderWidths[0] / 2.0, mBorderWidths[1] / 2.0, mBorderWidths[2] / 2.0, mBorderWidths[3] / 2.0)); ColorPattern colorPat(Color(0, 0, 0, 0)); LinearGradientPattern gradPat(Point(), Point(), nullptr); NS_FOR_CSS_CORNERS(i) { // the corner index -- either 1 2 3 0 (cw) or 0 3 2 1 (ccw) mozilla::css::Corner c = mozilla::css::Corner((i+1) % 4); mozilla::css::Corner prevCorner = mozilla::css::Corner(i); // i+2 and i+3 respectively. These are used to index into the corner // multiplier table, and were deduced by calculating out the long form // of each corner and finding a pattern in the signs and values. int i1 = (i+1) % 4; int i2 = (i+2) % 4; int i3 = (i+3) % 4; pc = ToPoint(mOuterRect.AtCorner(c)); pci = ToPoint(mInnerRect.AtCorner(c)); nscolor firstColor, secondColor; if (IsVisible(mBorderStyles[i]) && IsVisible(mBorderStyles[i1])) { firstColor = mBorderColors[i]; secondColor = mBorderColors[i1]; } else if (IsVisible(mBorderStyles[i])) { firstColor = mBorderColors[i]; secondColor = mBorderColors[i]; } else { firstColor = mBorderColors[i1]; secondColor = mBorderColors[i1]; } RefPtr builder = dt->CreatePathBuilder(); Point strokeStart, strokeEnd; strokeStart.x = mOuterRect.AtCorner(prevCorner).x + mBorderCornerDimensions[prevCorner].width * cornerMults[i2].a; strokeStart.y = mOuterRect.AtCorner(prevCorner).y + mBorderCornerDimensions[prevCorner].height * cornerMults[i2].b; strokeEnd.x = pc.x + mBorderCornerDimensions[c].width * cornerMults[i].a; strokeEnd.y = pc.y + mBorderCornerDimensions[c].height * cornerMults[i].b; strokeStart.x += centerAdjusts[i].a * mBorderWidths[i]; strokeStart.y += centerAdjusts[i].b * mBorderWidths[i]; strokeEnd.x += centerAdjusts[i].a * mBorderWidths[i]; strokeEnd.y += centerAdjusts[i].b * mBorderWidths[i]; builder->MoveTo(strokeStart); builder->LineTo(strokeEnd); RefPtr path = builder->Finish(); dt->Stroke(path, ColorPattern(Color::FromABGR(mBorderColors[i])), StrokeOptions(mBorderWidths[i])); builder = nullptr; path = nullptr; Pattern *pattern; if (firstColor != secondColor) { gradPat.mStops = CreateCornerGradient(c, firstColor, secondColor, dt, gradPat.mBegin, gradPat.mEnd); pattern = &gradPat; } else { colorPat.mColor = Color::FromABGR(firstColor); pattern = &colorPat; } builder = dt->CreatePathBuilder(); if (mBorderRadii[c].width > 0 && mBorderRadii[c].height > 0) { p0.x = pc.x + cornerMults[i].a * mBorderRadii[c].width; p0.y = pc.y + cornerMults[i].b * mBorderRadii[c].height; p3.x = pc.x + cornerMults[i3].a * mBorderRadii[c].width; p3.y = pc.y + cornerMults[i3].b * mBorderRadii[c].height; p1.x = p0.x + alpha * cornerMults[i2].a * mBorderRadii[c].width; p1.y = p0.y + alpha * cornerMults[i2].b * mBorderRadii[c].height; p2.x = p3.x - alpha * cornerMults[i3].a * mBorderRadii[c].width; p2.y = p3.y - alpha * cornerMults[i3].b * mBorderRadii[c].height; Point cornerStart; cornerStart.x = pc.x + cornerMults[i].a * mBorderCornerDimensions[c].width; cornerStart.y = pc.y + cornerMults[i].b * mBorderCornerDimensions[c].height; builder->MoveTo(cornerStart); builder->LineTo(p0); builder->BezierTo(p1, p2, p3); Point outerCornerEnd; outerCornerEnd.x = pc.x + cornerMults[i3].a * mBorderCornerDimensions[c].width; outerCornerEnd.y = pc.y + cornerMults[i3].b * mBorderCornerDimensions[c].height; builder->LineTo(outerCornerEnd); p0.x = pci.x + cornerMults[i].a * innerRadii[c].width; p0.y = pci.y + cornerMults[i].b * innerRadii[c].height; p3i.x = pci.x + cornerMults[i3].a * innerRadii[c].width; p3i.y = pci.y + cornerMults[i3].b * innerRadii[c].height; p1.x = p0.x + alpha * cornerMults[i2].a * innerRadii[c].width; p1.y = p0.y + alpha * cornerMults[i2].b * innerRadii[c].height; p2.x = p3i.x - alpha * cornerMults[i3].a * innerRadii[c].width; p2.y = p3i.y - alpha * cornerMults[i3].b * innerRadii[c].height; builder->LineTo(p3i); builder->BezierTo(p2, p1, p0); builder->Close(); path = builder->Finish(); dt->Fill(path, *pattern); } else { Point c1, c2, c3, c4; c1.x = pc.x + cornerMults[i].a * mBorderCornerDimensions[c].width; c1.y = pc.y + cornerMults[i].b * mBorderCornerDimensions[c].height; c2 = pc; c3.x = pc.x + cornerMults[i3].a * mBorderCornerDimensions[c].width; c3.y = pc.y + cornerMults[i3].b * mBorderCornerDimensions[c].height; builder->MoveTo(c1); builder->LineTo(c2); builder->LineTo(c3); builder->LineTo(pci); builder->Close(); path = builder->Finish(); dt->Fill(path, *pattern); } } } void nsCSSBorderRenderer::DrawRectangularCompositeColors() { nsBorderColors *currentColors[4]; mContext->SetLineWidth(1); memcpy(currentColors, mCompositeColors, sizeof(nsBorderColors*) * 4); gfxRect rect = mOuterRect; rect.Deflate(0.5); const twoFloats cornerAdjusts[4] = { { +0.5, 0 }, { 0, +0.5 }, { -0.5, 0 }, { 0, -0.5 } }; for (int i = 0; i < mBorderWidths[0]; i++) { NS_FOR_CSS_SIDES(side) { int sideNext = (side + 1) % 4; gfxPoint firstCorner = rect.CCWCorner(side); firstCorner.x += cornerAdjusts[side].a; firstCorner.y += cornerAdjusts[side].b; gfxPoint secondCorner = rect.CWCorner(side); secondCorner.x -= cornerAdjusts[side].a; secondCorner.y -= cornerAdjusts[side].b; gfxRGBA currentColor = currentColors[side] ? gfxRGBA(currentColors[side]->mColor) : gfxRGBA(mBorderColors[side]); mContext->SetColor(currentColor); mContext->NewPath(); mContext->MoveTo(firstCorner); mContext->LineTo(secondCorner); mContext->Stroke(); mContext->NewPath(); gfxPoint cornerTopLeft = rect.CWCorner(side); cornerTopLeft.x -= 0.5; cornerTopLeft.y -= 0.5; mContext->Rectangle(gfxRect(cornerTopLeft, gfxSize(1, 1))); gfxRGBA nextColor = currentColors[sideNext] ? gfxRGBA(currentColors[sideNext]->mColor) : gfxRGBA(mBorderColors[sideNext]); gfxRGBA cornerColor((currentColor.r + nextColor.r) / 2.0, (currentColor.g + nextColor.g) / 2.0, (currentColor.b + nextColor.b) / 2.0, (currentColor.a + nextColor.a) / 2.0); mContext->SetColor(cornerColor); mContext->Fill(); if (side != 0) { // We'll have to keep side 0 for the color averaging on side 3. if (currentColors[side] && currentColors[side]->mNext) { currentColors[side] = currentColors[side]->mNext; } } } // Now advance the color for side 0. if (currentColors[0] && currentColors[0]->mNext) { currentColors[0] = currentColors[0]->mNext; } rect.Deflate(1); } } void nsCSSBorderRenderer::DrawBorders() { bool forceSeparateCorners = false; // Examine the border style to figure out if we can draw it in one // go or not. bool tlBordersSame = AreBorderSideFinalStylesSame(SIDE_BIT_TOP | SIDE_BIT_LEFT); bool brBordersSame = AreBorderSideFinalStylesSame(SIDE_BIT_BOTTOM | SIDE_BIT_RIGHT); bool allBordersSame = AreBorderSideFinalStylesSame(SIDE_BITS_ALL); if (allBordersSame && ((mCompositeColors[0] == nullptr && (mBorderStyles[0] == NS_STYLE_BORDER_STYLE_NONE || mBorderStyles[0] == NS_STYLE_BORDER_STYLE_HIDDEN || mBorderColors[0] == NS_RGBA(0,0,0,0))) || (mCompositeColors[0] && (mCompositeColors[0]->mColor == NS_RGBA(0,0,0,0) && !mCompositeColors[0]->mNext)))) { // All borders are the same style, and the style is either none or hidden, or the color // is transparent. // This also checks if the first composite color is transparent, and there are // no others. It doesn't check if there are subsequent transparent ones, because // that would be very silly. return; } gfxMatrix mat = mContext->CurrentMatrix(); // Clamp the CTM to be pixel-aligned; we do this only // for translation-only matrices now, but we could do it // if the matrix has just a scale as well. We should not // do it if there's a rotation. if (mat.HasNonTranslation()) { if (!mat.HasNonAxisAlignedTransform()) { // Scale + transform. Avoid stroke fast-paths so that we have a chance // of snapping to pixel boundaries. mAvoidStroke = true; } } else { mat.x0 = floor(mat.x0 + 0.5); mat.y0 = floor(mat.y0 + 0.5); mContext->SetMatrix(mat); // round mOuterRect and mInnerRect; they're already an integer // number of pixels apart and should stay that way after // rounding. We don't do this if there's a scale in the current transform // since this loses information that might be relevant when we're scaling. mOuterRect.Round(); mInnerRect.Round(); } bool allBordersSameWidth = AllBordersSameWidth(); if (allBordersSameWidth && mBorderWidths[0] == 0.0) { // Some of the allBordersSameWidth codepaths depend on the border // width being greater than zero. return; } bool allBordersSolid; // First there's a couple of 'special cases' that have specifically optimized // drawing paths, when none of these can be used we move on to the generalized // border drawing code. if (allBordersSame && mCompositeColors[0] == nullptr && allBordersSameWidth && mBorderStyles[0] == NS_STYLE_BORDER_STYLE_SOLID && mNoBorderRadius && !mAvoidStroke) { // Very simple case. SetupStrokeStyle(NS_SIDE_TOP); gfxRect rect = mOuterRect; rect.Deflate(mBorderWidths[0] / 2.0); mContext->NewPath(); mContext->Rectangle(rect); mContext->Stroke(); return; } if (allBordersSame && mCompositeColors[0] == nullptr && allBordersSameWidth && mBorderStyles[0] == NS_STYLE_BORDER_STYLE_DOTTED && mBorderWidths[0] < 3 && mNoBorderRadius && !mAvoidStroke) { // Very simple case. We draw this rectangular dotted borner without // antialiasing. The dots should be pixel aligned. SetupStrokeStyle(NS_SIDE_TOP); gfxFloat dash = mBorderWidths[0]; mContext->SetDash(&dash, 1, 0.5); mContext->SetAntialiasMode(gfxContext::MODE_ALIASED); gfxRect rect = mOuterRect; rect.Deflate(mBorderWidths[0] / 2.0); mContext->NewPath(); mContext->Rectangle(rect); mContext->Stroke(); return; } if (allBordersSame && mCompositeColors[0] == nullptr && mBorderStyles[0] == NS_STYLE_BORDER_STYLE_SOLID && !mAvoidStroke && !mNoBorderRadius) { // Relatively simple case. SetupStrokeStyle(NS_SIDE_TOP); RoundedRect borderInnerRect(mOuterRect, mBorderRadii); borderInnerRect.Deflate(mBorderWidths[NS_SIDE_TOP], mBorderWidths[NS_SIDE_BOTTOM], mBorderWidths[NS_SIDE_LEFT], mBorderWidths[NS_SIDE_RIGHT]); // Instead of stroking we just use two paths: an inner and an outer. // This allows us to draw borders that we couldn't when stroking. For example, // borders with a border width >= the border radius. (i.e. when there are // square corners on the inside) // // Further, this approach can be more efficient because the backend // doesn't need to compute an offset curve to stroke the path. We know that // the rounded parts are elipses we can offset exactly and can just compute // a new cubic approximation. mContext->NewPath(); mContext->RoundedRectangle(mOuterRect, mBorderRadii, true); mContext->RoundedRectangle(borderInnerRect.rect, borderInnerRect.corners, false); mContext->Fill(); return; } bool hasCompositeColors; allBordersSolid = AllBordersSolid(&hasCompositeColors); // This leaves the border corners non-interpolated for single width borders. // Doing this is slightly faster and shouldn't be a problem visually. if (allBordersSolid && allBordersSameWidth && mCompositeColors[0] == nullptr && mBorderWidths[0] == 1 && mNoBorderRadius && !mAvoidStroke) { DrawSingleWidthSolidBorder(); return; } if (allBordersSolid && !hasCompositeColors && !mAvoidStroke) { if (mContext->IsCairo()) { DrawNoCompositeColorSolidBorder(); } else { DrawNoCompositeColorSolidBorderAzure(); } return; } if (allBordersSolid && allBordersSameWidth && mNoBorderRadius && !mAvoidStroke) { // Easy enough to deal with. DrawRectangularCompositeColors(); return; } // If we have composite colors -and- border radius, // then use separate corners so we get OPERATOR_ADD for the corners. // Otherwise, we'll get artifacts as we draw stacked 1px-wide curves. if (allBordersSame && mCompositeColors[0] != nullptr && !mNoBorderRadius) forceSeparateCorners = true; S(" mOuterRect: "), S(mOuterRect), SN(); S(" mInnerRect: "), S(mInnerRect), SN(); SF(" mBorderColors: 0x%08x 0x%08x 0x%08x 0x%08x\n", mBorderColors[0], mBorderColors[1], mBorderColors[2], mBorderColors[3]); // if conditioning the outside rect failed, then bail -- the outside // rect is supposed to enclose the entire border mOuterRect.Condition(); if (mOuterRect.IsEmpty()) return; mInnerRect.Condition(); int dashedSides = 0; NS_FOR_CSS_SIDES(i) { uint8_t style = mBorderStyles[i]; if (style == NS_STYLE_BORDER_STYLE_DASHED || style == NS_STYLE_BORDER_STYLE_DOTTED) { // pretend that all borders aren't the same; we need to draw // things separately for dashed/dotting allBordersSame = false; dashedSides |= (1 << i); } } SF(" allBordersSame: %d dashedSides: 0x%02x\n", allBordersSame, dashedSides); if (allBordersSame && !forceSeparateCorners) { /* Draw everything in one go */ DrawBorderSides(SIDE_BITS_ALL); SN("---------------- (1)"); } else { PROFILER_LABEL("nsCSSBorderRenderer", "DrawBorders::multipass"); /* We have more than one pass to go. Draw the corners separately from the sides. */ /* * If we have a 1px-wide border, the corners are going to be * negligible, so don't bother doing anything fancy. Just extend * the top and bottom borders to the right 1px and the left border * to the bottom 1px. We do this by twiddling the corner dimensions, * which causes the right to happen later on. Only do this if we have * a 1.0 unit border all around and no border radius. */ NS_FOR_CSS_CORNERS(corner) { const mozilla::css::Side sides[2] = { mozilla::css::Side(corner), PREV_SIDE(corner) }; if (!IsZeroSize(mBorderRadii[corner])) continue; if (mBorderWidths[sides[0]] == 1.0 && mBorderWidths[sides[1]] == 1.0) { if (corner == NS_CORNER_TOP_LEFT || corner == NS_CORNER_TOP_RIGHT) mBorderCornerDimensions[corner].width = 0.0; else mBorderCornerDimensions[corner].height = 0.0; } } // First, the corners NS_FOR_CSS_CORNERS(corner) { // if there's no corner, don't do all this work for it if (IsZeroSize(mBorderCornerDimensions[corner])) continue; const int sides[2] = { corner, PREV_SIDE(corner) }; int sideBits = (1 << sides[0]) | (1 << sides[1]); bool simpleCornerStyle = mCompositeColors[sides[0]] == nullptr && mCompositeColors[sides[1]] == nullptr && AreBorderSideFinalStylesSame(sideBits); // If we don't have anything complex going on in this corner, // then we can just fill the corner with a solid color, and avoid // the potentially expensive clip. if (simpleCornerStyle && IsZeroSize(mBorderRadii[corner]) && IsSolidCornerStyle(mBorderStyles[sides[0]], corner)) { mContext->NewPath(); DoCornerSubPath(corner); mContext->SetColor(MakeBorderColor(mBorderColors[sides[0]], mBackgroundColor, BorderColorStyleForSolidCorner(mBorderStyles[sides[0]], corner))); mContext->Fill(); continue; } mContext->Save(); // clip to the corner mContext->NewPath(); DoCornerSubPath(corner); mContext->Clip(); if (simpleCornerStyle) { // we don't need a group for this corner, the sides are the same, // but we weren't able to render just a solid block for the corner. DrawBorderSides(sideBits); } else { // Sides are different. We could draw using OPERATOR_ADD to // get correct color blending behaviour at the seam. We'd need // to do it in an offscreen surface to ensure that we're // always compositing on transparent black. If the colors // don't have transparency and the current destination surface // has an alpha channel, we could just clear the region and // avoid the temporary, but that situation doesn't happen all // that often in practice (we double buffer to no-alpha // surfaces). We choose just to seam though, as the performance // advantages outway the modest easthetic improvement. for (int cornerSide = 0; cornerSide < 2; cornerSide++) { mozilla::css::Side side = mozilla::css::Side(sides[cornerSide]); uint8_t style = mBorderStyles[side]; SF("corner: %d cornerSide: %d side: %d style: %d\n", corner, cornerSide, side, style); mContext->Save(); mContext->NewPath(); DoSideClipSubPath(side); mContext->Clip(); DrawBorderSides(1 << side); mContext->Restore(); } } mContext->Restore(); SN(); } // in the case of a single-unit border, we already munged the // corners up above; so we can just draw the top left and bottom // right sides separately, if they're the same. // // We need to check for mNoBorderRadius, because when there is // one, FillSolidBorder always draws the full rounded rectangle // and expects there to be a clip in place. int alreadyDrawnSides = 0; if (mOneUnitBorder && mNoBorderRadius && (dashedSides & (SIDE_BIT_TOP | SIDE_BIT_LEFT)) == 0) { if (tlBordersSame) { DrawBorderSides(SIDE_BIT_TOP | SIDE_BIT_LEFT); alreadyDrawnSides |= (SIDE_BIT_TOP | SIDE_BIT_LEFT); } if (brBordersSame && (dashedSides & (SIDE_BIT_BOTTOM | SIDE_BIT_RIGHT)) == 0) { DrawBorderSides(SIDE_BIT_BOTTOM | SIDE_BIT_RIGHT); alreadyDrawnSides |= (SIDE_BIT_BOTTOM | SIDE_BIT_RIGHT); } } // We're done with the corners, now draw the sides. NS_FOR_CSS_SIDES (side) { // if we drew it above, skip it if (alreadyDrawnSides & (1 << side)) continue; // If there's no border on this side, skip it if (mBorderWidths[side] == 0.0 || mBorderStyles[side] == NS_STYLE_BORDER_STYLE_HIDDEN || mBorderStyles[side] == NS_STYLE_BORDER_STYLE_NONE) continue; if (dashedSides & (1 << side)) { // Dashed sides will always draw just the part ignoring the // corners for the side, so no need to clip. DrawDashedSide (side); SN("---------------- (d)"); continue; } // Undashed sides will currently draw the entire side, // including parts that would normally be covered by a corner, // so we need to clip. // // XXX Optimization -- it would be good to make this work like // DrawDashedSide, and have a DrawOneSide function that just // draws one side and not the corners, because then we can // avoid the potentially expensive clip. mContext->Save(); mContext->NewPath(); DoSideClipWithoutCornersSubPath(side); mContext->Clip(); DrawBorderSides(1 << side); mContext->Restore(); SN("---------------- (*)"); } } }