/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 4 -*- * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #ifndef GFX_3DMATRIX_H #define GFX_3DMATRIX_H #include #include #include #include #include /** * This class represents a 3D transformation. The matrix is laid * out as follows: * * _11 _12 _13 _14 * _21 _22 _23 _24 * _31 _32 _33 _34 * _41 _42 _43 _44 * * This matrix is treated as row-major. Assuming we consider our vectors row * vectors, this matrix type will be identical in memory to the OpenGL and D3D * matrices. OpenGL matrices are column-major, however OpenGL also treats * vectors as column vectors, the double transposition makes everything work * out nicely. */ class THEBES_API gfx3DMatrix { public: /** * Create matrix. */ gfx3DMatrix(void); /** * Matrix multiplication. */ gfx3DMatrix operator*(const gfx3DMatrix &aMatrix) const; gfx3DMatrix& operator*=(const gfx3DMatrix &aMatrix); gfxPointH3D& operator[](int aIndex) { NS_ABORT_IF_FALSE(aIndex >= 0 && aIndex <= 3, "Invalid matrix array index"); return *reinterpret_cast((&_11)+4*aIndex); } const gfxPointH3D& operator[](int aIndex) const { NS_ABORT_IF_FALSE(aIndex >= 0 && aIndex <= 3, "Invalid matrix array index"); return *reinterpret_cast((&_11)+4*aIndex); } /** * Return true if this matrix and |aMatrix| are the same matrix. */ bool operator==(const gfx3DMatrix& aMatrix) const; /** * Divide all values in the matrix by a scalar value */ gfx3DMatrix& operator/=(gfxFloat scalar); /** * Create a 3D matrix from a gfxMatrix 2D affine transformation. * * \param aMatrix gfxMatrix 2D affine transformation. */ static gfx3DMatrix From2D(const gfxMatrix &aMatrix); /** * Returns true if the matrix is isomorphic to a 2D affine transformation * (i.e. as obtained by From2D). If it is, optionally returns the 2D * matrix in aMatrix. */ bool Is2D(gfxMatrix* aMatrix) const; bool Is2D() const; /** * Returns true if the matrix can be reduced to a 2D affine transformation * (i.e. as obtained by From2D). If it is, optionally returns the 2D * matrix in aMatrix. This should only be used on matrices required for * rendering, not for intermediate calculations. It is assumed that the 2D * matrix will only be used for transforming objects on to the z=0 plane, * therefore any z-component perspective is ignored. This means that if * aMatrix is applied to objects with z != 0, the results may be incorrect. * * Since drawing is to a 2d plane, any 3d transform without perspective * can be reduced by dropping the z row and column. */ bool CanDraw2D(gfxMatrix* aMatrix = nullptr) const; /** * Converts the matrix to one that doesn't modify the z coordinate of points, * but leaves the rest of the transformation unchanged. */ gfx3DMatrix& ProjectTo2D(); /** * Returns true if the matrix is the identity matrix. The most important * property we require is that gfx3DMatrix().IsIdentity() returns true. */ bool IsIdentity() const; /** * Pre-multiplication transformation functions: * * These functions construct a temporary matrix containing * a single transformation and pre-multiply it onto the current * matrix. */ /** * Add a translation by aPoint to the matrix. * * This creates this temporary matrix: * | 1 0 0 0 | * | 0 1 0 0 | * | 0 0 1 0 | * | aPoint.x aPoint.y aPoint.z 1 | */ void Translate(const gfxPoint3D& aPoint); /** * Skew the matrix. * * This creates this temporary matrix: * | 1 tan(aYSkew) 0 0 | * | tan(aXSkew) 1 0 0 | * | 0 0 1 0 | * | 0 0 0 1 | */ void SkewXY(double aXSkew, double aYSkew); void SkewXY(double aSkew); void SkewXZ(double aSkew); void SkewYZ(double aSkew); /** * Scale the matrix * * This creates this temporary matrix: * | aX 0 0 0 | * | 0 aY 0 0 | * | 0 0 aZ 0 | * | 0 0 0 1 | */ void Scale(float aX, float aY, float aZ); /** * Return the currently set scaling factors. */ float GetXScale() const { return _11; } float GetYScale() const { return _22; } float GetZScale() const { return _33; } /** * Rotate around the X axis.. * * This creates this temporary matrix: * | 1 0 0 0 | * | 0 cos(aTheta) sin(aTheta) 0 | * | 0 -sin(aTheta) cos(aTheta) 0 | * | 0 0 0 1 | */ void RotateX(double aTheta); /** * Rotate around the Y axis.. * * This creates this temporary matrix: * | cos(aTheta) 0 -sin(aTheta) 0 | * | 0 1 0 0 | * | sin(aTheta) 0 cos(aTheta) 0 | * | 0 0 0 1 | */ void RotateY(double aTheta); /** * Rotate around the Z axis.. * * This creates this temporary matrix: * | cos(aTheta) sin(aTheta) 0 0 | * | -sin(aTheta) cos(aTheta) 0 0 | * | 0 0 1 0 | * | 0 0 0 1 | */ void RotateZ(double aTheta); /** * Apply perspective to the matrix. * * This creates this temporary matrix: * | 1 0 0 0 | * | 0 1 0 0 | * | 0 0 1 -1/aDepth | * | 0 0 0 1 | */ void Perspective(float aDepth); /** * Pre multiply an existing matrix onto the current * matrix */ void PreMultiply(const gfx3DMatrix& aOther); void PreMultiply(const gfxMatrix& aOther); /** * Post-multiplication transformation functions: * * These functions construct a temporary matrix containing * a single transformation and post-multiply it onto the current * matrix. */ /** * Add a translation by aPoint after the matrix. * This is functionally equivalent to: * matrix * gfx3DMatrix::Translation(aPoint) */ void TranslatePost(const gfxPoint3D& aPoint); /** * Transforms a point according to this matrix. */ gfxPoint Transform(const gfxPoint& point) const; /** * Transforms a rectangle according to this matrix */ gfxRect TransformBounds(const gfxRect& rect) const; gfxQuad TransformRect(const gfxRect& aRect) const; /** * Transforms a 3D vector according to this matrix. */ gfxPoint3D Transform3D(const gfxPoint3D& point) const; gfxPointH3D Transform4D(const gfxPointH3D& aPoint) const; gfxPointH3D TransposeTransform4D(const gfxPointH3D& aPoint) const; gfxPoint ProjectPoint(const gfxPoint& aPoint) const; gfxRect ProjectRectBounds(const gfxRect& aRect) const; /** * Inverts this matrix, if possible. Otherwise, the matrix is left * unchanged. */ gfx3DMatrix Inverse() const; gfx3DMatrix& Invert() { *this = Inverse(); return *this; } gfx3DMatrix& Normalize(); gfxPointH3D TransposedVector(int aIndex) const { NS_ABORT_IF_FALSE(aIndex >= 0 && aIndex <= 3, "Invalid matrix array index"); return gfxPointH3D(*((&_11)+aIndex), *((&_21)+aIndex), *((&_31)+aIndex), *((&_41)+aIndex)); } void SetTransposedVector(int aIndex, gfxPointH3D &aVector) { NS_ABORT_IF_FALSE(aIndex >= 0 && aIndex <= 3, "Invalid matrix array index"); *((&_11)+aIndex) = aVector.x; *((&_21)+aIndex) = aVector.y; *((&_31)+aIndex) = aVector.z; *((&_41)+aIndex) = aVector.w; } gfx3DMatrix& Transpose(); gfx3DMatrix Transposed() const; /** * Returns a unit vector that is perpendicular to the plane formed * by transform the screen plane (z=0) by this matrix. */ gfxPoint3D GetNormalVector() const; /** * Returns true if a plane transformed by this matrix will * have it's back face visible. */ bool IsBackfaceVisible() const; /** * Check if matrix is singular (no inverse exists). */ bool IsSingular() const; /** * Create a translation matrix. * * \param aX Translation on X-axis. * \param aY Translation on Y-axis. * \param aZ Translation on Z-axis. */ static gfx3DMatrix Translation(float aX, float aY, float aZ); static gfx3DMatrix Translation(const gfxPoint3D& aPoint); /** * Create a scale matrix. Scales uniformly along all axes. * * \param aScale Scale factor */ static gfx3DMatrix ScalingMatrix(float aFactor); /** * Create a scale matrix. */ static gfx3DMatrix ScalingMatrix(float aX, float aY, float aZ); gfxFloat Determinant() const; private: gfxFloat Determinant3x3() const; gfx3DMatrix Inverse3x3() const; gfx3DMatrix Multiply2D(const gfx3DMatrix &aMatrix) const; public: /** Matrix elements */ float _11, _12, _13, _14; float _21, _22, _23, _24; float _31, _32, _33, _34; float _41, _42, _43, _44; }; #endif /* GFX_3DMATRIX_H */