/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*-*/ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this file, * You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "MediaStreamGraphImpl.h" #include "mozilla/MathAlgorithms.h" #include "mozilla/unused.h" #include "AudioSegment.h" #include "VideoSegment.h" #include "nsContentUtils.h" #include "nsIAppShell.h" #include "nsIObserver.h" #include "nsPrintfCString.h" #include "nsServiceManagerUtils.h" #include "nsWidgetsCID.h" #include "prerror.h" #include "prlog.h" #include "mozilla/Attributes.h" #include "TrackUnionStream.h" #include "ImageContainer.h" #include "AudioChannelService.h" #include "AudioNodeEngine.h" #include "AudioNodeStream.h" #include "AudioNodeExternalInputStream.h" #include #include "DOMMediaStream.h" #include "GeckoProfiler.h" #include "mozilla/unused.h" #ifdef MOZ_WEBRTC #include "AudioOutputObserver.h" #endif #include "webaudio/blink/HRTFDatabaseLoader.h" using namespace mozilla::layers; using namespace mozilla::dom; using namespace mozilla::gfx; namespace mozilla { #ifdef PR_LOGGING PRLogModuleInfo* gMediaStreamGraphLog; #define STREAM_LOG(type, msg) PR_LOG(gMediaStreamGraphLog, type, msg) #else #define STREAM_LOG(type, msg) #endif // #define ENABLE_LIFECYCLE_LOG // We don't use NSPR log here because we want this interleaved with adb logcat // on Android/B2G #ifdef ENABLE_LIFECYCLE_LOG # ifdef ANDROID # include "android/log.h" # define LIFECYCLE_LOG(...) __android_log_print(ANDROID_LOG_INFO, "Gecko - MSG", ## __VA_ARGS__); printf(__VA_ARGS__);printf("\n"); # else # define LIFECYCLE_LOG(...) printf(__VA_ARGS__);printf("\n"); # endif #else # define LIFECYCLE_LOG(...) #endif /** * The singleton graph instance. */ static nsDataHashtable gGraphs; MediaStreamGraphImpl::~MediaStreamGraphImpl() { NS_ASSERTION(IsEmpty(), "All streams should have been destroyed by messages from the main thread"); STREAM_LOG(PR_LOG_DEBUG, ("MediaStreamGraph %p destroyed", this)); LIFECYCLE_LOG("MediaStreamGraphImpl::~MediaStreamGraphImpl\n"); } StreamTime MediaStreamGraphImpl::GetDesiredBufferEnd(MediaStream* aStream) { StreamTime current = IterationEnd() - aStream->mBufferStartTime; // When waking up media decoders, we need a longer safety margin, as it can // take more time to get new samples. A factor of two seem to work. return current + 2 * MillisecondsToMediaTime(std::max(AUDIO_TARGET_MS, VIDEO_TARGET_MS)); } void MediaStreamGraphImpl::FinishStream(MediaStream* aStream) { if (aStream->mFinished) return; STREAM_LOG(PR_LOG_DEBUG, ("MediaStream %p will finish", aStream)); aStream->mFinished = true; aStream->mBuffer.AdvanceKnownTracksTime(STREAM_TIME_MAX); // Force at least one more iteration of the control loop, since we rely // on UpdateCurrentTimeForStreams to notify our listeners once the stream end // has been reached. EnsureNextIteration(); SetStreamOrderDirty(); } void MediaStreamGraphImpl::AddStream(MediaStream* aStream) { aStream->mBufferStartTime = IterationEnd(); mStreams.AppendElement(aStream); STREAM_LOG(PR_LOG_DEBUG, ("Adding media stream %p to the graph", aStream)); SetStreamOrderDirty(); } void MediaStreamGraphImpl::RemoveStream(MediaStream* aStream) { // Remove references in mStreamUpdates before we allow aStream to die. // Pending updates are not needed (since the main thread has already given // up the stream) so we will just drop them. { MonitorAutoLock lock(mMonitor); for (uint32_t i = 0; i < mStreamUpdates.Length(); ++i) { if (mStreamUpdates[i].mStream == aStream) { mStreamUpdates[i].mStream = nullptr; } } } // Ensure that mFirstCycleBreaker and mMixer are updated when necessary. SetStreamOrderDirty(); mStreams.RemoveElement(aStream); NS_RELEASE(aStream); // probably destroying it STREAM_LOG(PR_LOG_DEBUG, ("Removing media stream %p from the graph", aStream)); } void MediaStreamGraphImpl::UpdateConsumptionState(SourceMediaStream* aStream) { MediaStreamListener::Consumption state = aStream->mIsConsumed ? MediaStreamListener::CONSUMED : MediaStreamListener::NOT_CONSUMED; if (state != aStream->mLastConsumptionState) { aStream->mLastConsumptionState = state; for (uint32_t j = 0; j < aStream->mListeners.Length(); ++j) { MediaStreamListener* l = aStream->mListeners[j]; l->NotifyConsumptionChanged(this, state); } } } void MediaStreamGraphImpl::ExtractPendingInput(SourceMediaStream* aStream, GraphTime aDesiredUpToTime, bool* aEnsureNextIteration) { bool finished; { MutexAutoLock lock(aStream->mMutex); if (aStream->mPullEnabled && !aStream->mFinished && !aStream->mListeners.IsEmpty()) { // Compute how much stream time we'll need assuming we don't block // the stream at all between mBlockingDecisionsMadeUntilTime and // aDesiredUpToTime. StreamTime t = GraphTimeToStreamTime(aStream, CurrentDriver()->StateComputedTime()) + (aDesiredUpToTime - CurrentDriver()->StateComputedTime()); STREAM_LOG(PR_LOG_DEBUG+1, ("Calling NotifyPull aStream=%p t=%f current end=%f", aStream, MediaTimeToSeconds(t), MediaTimeToSeconds(aStream->mBuffer.GetEnd()))); if (t > aStream->mBuffer.GetEnd()) { *aEnsureNextIteration = true; #ifdef DEBUG if (aStream->mListeners.Length() == 0) { STREAM_LOG(PR_LOG_ERROR, ("No listeners in NotifyPull aStream=%p desired=%f current end=%f", aStream, MediaTimeToSeconds(t), MediaTimeToSeconds(aStream->mBuffer.GetEnd()))); aStream->DumpTrackInfo(); } #endif for (uint32_t j = 0; j < aStream->mListeners.Length(); ++j) { MediaStreamListener* l = aStream->mListeners[j]; { MutexAutoUnlock unlock(aStream->mMutex); l->NotifyPull(this, t); } } } } finished = aStream->mUpdateFinished; for (int32_t i = aStream->mUpdateTracks.Length() - 1; i >= 0; --i) { SourceMediaStream::TrackData* data = &aStream->mUpdateTracks[i]; aStream->ApplyTrackDisabling(data->mID, data->mData); for (uint32_t j = 0; j < aStream->mListeners.Length(); ++j) { MediaStreamListener* l = aStream->mListeners[j]; StreamTime offset = (data->mCommands & SourceMediaStream::TRACK_CREATE) ? data->mStart : aStream->mBuffer.FindTrack(data->mID)->GetSegment()->GetDuration(); l->NotifyQueuedTrackChanges(this, data->mID, offset, data->mCommands, *data->mData); } if (data->mCommands & SourceMediaStream::TRACK_CREATE) { MediaSegment* segment = data->mData.forget(); STREAM_LOG(PR_LOG_DEBUG, ("SourceMediaStream %p creating track %d, start %lld, initial end %lld", aStream, data->mID, int64_t(data->mStart), int64_t(segment->GetDuration()))); aStream->mBuffer.AddTrack(data->mID, data->mStart, segment); // The track has taken ownership of data->mData, so let's replace // data->mData with an empty clone. data->mData = segment->CreateEmptyClone(); data->mCommands &= ~SourceMediaStream::TRACK_CREATE; } else if (data->mData->GetDuration() > 0) { MediaSegment* dest = aStream->mBuffer.FindTrack(data->mID)->GetSegment(); STREAM_LOG(PR_LOG_DEBUG+1, ("SourceMediaStream %p track %d, advancing end from %lld to %lld", aStream, data->mID, int64_t(dest->GetDuration()), int64_t(dest->GetDuration() + data->mData->GetDuration()))); dest->AppendFrom(data->mData); } if (data->mCommands & SourceMediaStream::TRACK_END) { aStream->mBuffer.FindTrack(data->mID)->SetEnded(); aStream->mUpdateTracks.RemoveElementAt(i); } } if (!aStream->mFinished) { aStream->mBuffer.AdvanceKnownTracksTime(aStream->mUpdateKnownTracksTime); } } if (aStream->mBuffer.GetEnd() > 0) { aStream->mHasCurrentData = true; } if (finished) { FinishStream(aStream); } } void MediaStreamGraphImpl::UpdateBufferSufficiencyState(SourceMediaStream* aStream) { StreamTime desiredEnd = GetDesiredBufferEnd(aStream); nsTArray runnables; { MutexAutoLock lock(aStream->mMutex); for (uint32_t i = 0; i < aStream->mUpdateTracks.Length(); ++i) { SourceMediaStream::TrackData* data = &aStream->mUpdateTracks[i]; if (data->mCommands & SourceMediaStream::TRACK_CREATE) { // This track hasn't been created yet, so we have no sufficiency // data. The track will be created in the next iteration of the // control loop and then we'll fire insufficiency notifications // if necessary. continue; } if (data->mCommands & SourceMediaStream::TRACK_END) { // This track will end, so no point in firing not-enough-data // callbacks. continue; } StreamBuffer::Track* track = aStream->mBuffer.FindTrack(data->mID); // Note that track->IsEnded() must be false, otherwise we would have // removed the track from mUpdateTracks already. NS_ASSERTION(!track->IsEnded(), "What is this track doing here?"); data->mHaveEnough = track->GetEnd() >= desiredEnd; if (!data->mHaveEnough) { runnables.MoveElementsFrom(data->mDispatchWhenNotEnough); } } } for (uint32_t i = 0; i < runnables.Length(); ++i) { runnables[i].mTarget->Dispatch(runnables[i].mRunnable, 0); } } StreamTime MediaStreamGraphImpl::GraphTimeToStreamTime(MediaStream* aStream, GraphTime aTime) { MOZ_ASSERT(aTime <= CurrentDriver()->StateComputedTime(), "Don't ask about times where we haven't made blocking decisions yet"); if (aTime <= IterationEnd()) { return std::max(0, aTime - aStream->mBufferStartTime); } GraphTime t = IterationEnd(); StreamTime s = t - aStream->mBufferStartTime; while (t < aTime) { GraphTime end; if (!aStream->mBlocked.GetAt(t, &end)) { s += std::min(aTime, end) - t; } t = end; } return std::max(0, s); } StreamTime MediaStreamGraphImpl::GraphTimeToStreamTimeOptimistic(MediaStream* aStream, GraphTime aTime) { GraphTime computedUpToTime = std::min(CurrentDriver()->StateComputedTime(), aTime); StreamTime s = GraphTimeToStreamTime(aStream, computedUpToTime); return s + (aTime - computedUpToTime); } GraphTime MediaStreamGraphImpl::StreamTimeToGraphTime(MediaStream* aStream, StreamTime aTime, uint32_t aFlags) { if (aTime >= STREAM_TIME_MAX) { return GRAPH_TIME_MAX; } MediaTime bufferElapsedToCurrentTime = IterationEnd() - aStream->mBufferStartTime; if (aTime < bufferElapsedToCurrentTime || (aTime == bufferElapsedToCurrentTime && !(aFlags & INCLUDE_TRAILING_BLOCKED_INTERVAL))) { return aTime + aStream->mBufferStartTime; } MediaTime streamAmount = aTime - bufferElapsedToCurrentTime; NS_ASSERTION(streamAmount >= 0, "Can't answer queries before current time"); GraphTime t = IterationEnd(); while (t < GRAPH_TIME_MAX) { if (!(aFlags & INCLUDE_TRAILING_BLOCKED_INTERVAL) && streamAmount == 0) { return t; } bool blocked; GraphTime end; if (t < CurrentDriver()->StateComputedTime()) { blocked = aStream->mBlocked.GetAt(t, &end); end = std::min(end, CurrentDriver()->StateComputedTime()); } else { blocked = false; end = GRAPH_TIME_MAX; } if (blocked) { t = end; } else { if (streamAmount == 0) { // No more stream time to consume at time t, so we're done. break; } MediaTime consume = std::min(end - t, streamAmount); streamAmount -= consume; t += consume; } } return t; } GraphTime MediaStreamGraphImpl::GetAudioPosition(MediaStream* aStream) { /* This is correlated to the audio clock when using an AudioCallbackDriver, * and is using a system timer otherwise. */ return IterationEnd(); } GraphTime MediaStreamGraphImpl::IterationEnd() { return CurrentDriver()->IterationEnd(); } void MediaStreamGraphImpl::UpdateCurrentTimeForStreams(GraphTime aPrevCurrentTime, GraphTime aNextCurrentTime) { nsTArray streamsReadyToFinish; nsAutoTArray streamHasOutput; streamHasOutput.SetLength(mStreams.Length()); for (uint32_t i = 0; i < mStreams.Length(); ++i) { MediaStream* stream = mStreams[i]; // Calculate blocked time and fire Blocked/Unblocked events GraphTime blockedTime = 0; GraphTime t = aPrevCurrentTime; // include |nextCurrentTime| to ensure NotifyBlockingChanged() is called // before NotifyEvent(this, EVENT_FINISHED) when |nextCurrentTime == stream end time| while (t <= aNextCurrentTime) { GraphTime end; bool blocked = stream->mBlocked.GetAt(t, &end); if (blocked) { blockedTime += std::min(end, aNextCurrentTime) - t; } if (blocked != stream->mNotifiedBlocked) { for (uint32_t j = 0; j < stream->mListeners.Length(); ++j) { MediaStreamListener* l = stream->mListeners[j]; l->NotifyBlockingChanged(this, blocked ? MediaStreamListener::BLOCKED : MediaStreamListener::UNBLOCKED); } stream->mNotifiedBlocked = blocked; } t = end; } stream->AdvanceTimeVaryingValuesToCurrentTime(aNextCurrentTime, blockedTime); // Advance mBlocked last so that implementations of // AdvanceTimeVaryingValuesToCurrentTime can rely on the value of mBlocked. stream->mBlocked.AdvanceCurrentTime(aNextCurrentTime); streamHasOutput[i] = blockedTime < aNextCurrentTime - aPrevCurrentTime; // Make this an assertion when bug 957832 is fixed. NS_WARN_IF_FALSE(!streamHasOutput[i] || !stream->mNotifiedFinished, "Shouldn't have already notified of finish *and* have output!"); if (stream->mFinished && !stream->mNotifiedFinished) { streamsReadyToFinish.AppendElement(stream); } STREAM_LOG(PR_LOG_DEBUG+1, ("MediaStream %p bufferStartTime=%f blockedTime=%f", stream, MediaTimeToSeconds(stream->mBufferStartTime), MediaTimeToSeconds(blockedTime))); } for (uint32_t i = 0; i < streamHasOutput.Length(); ++i) { if (!streamHasOutput[i]) { continue; } MediaStream* stream = mStreams[i]; for (uint32_t j = 0; j < stream->mListeners.Length(); ++j) { MediaStreamListener* l = stream->mListeners[j]; l->NotifyOutput(this, IterationEnd()); } } for (uint32_t i = 0; i < streamsReadyToFinish.Length(); ++i) { MediaStream* stream = streamsReadyToFinish[i]; // The stream is fully finished when all of its track data has been played // out. if (IterationEnd() >= stream->StreamTimeToGraphTime(stream->GetStreamBuffer().GetAllTracksEnd())) { NS_WARN_IF_FALSE(stream->mNotifiedBlocked, "Should've notified blocked=true for a fully finished stream"); stream->mNotifiedFinished = true; stream->mLastPlayedVideoFrame.SetNull(); SetStreamOrderDirty(); for (uint32_t j = 0; j < stream->mListeners.Length(); ++j) { MediaStreamListener* l = stream->mListeners[j]; l->NotifyEvent(this, MediaStreamListener::EVENT_FINISHED); } } } } bool MediaStreamGraphImpl::WillUnderrun(MediaStream* aStream, GraphTime aTime, GraphTime aEndBlockingDecisions, GraphTime* aEnd) { // Finished streams can't underrun. ProcessedMediaStreams also can't cause // underrun currently, since we'll always be able to produce data for them // unless they block on some other stream. if (aStream->mFinished || aStream->AsProcessedStream()) { return false; } GraphTime bufferEnd = StreamTimeToGraphTime(aStream, aStream->GetBufferEnd(), INCLUDE_TRAILING_BLOCKED_INTERVAL); #ifdef DEBUG if (bufferEnd < IterationEnd()) { STREAM_LOG(PR_LOG_ERROR, ("MediaStream %p underrun, " "bufferEnd %f < IterationEnd() %f (%lld < %lld), Streamtime %lld", aStream, MediaTimeToSeconds(bufferEnd), MediaTimeToSeconds(IterationEnd()), bufferEnd, IterationEnd(), aStream->GetBufferEnd())); aStream->DumpTrackInfo(); NS_ASSERTION(bufferEnd >= IterationEnd(), "Buffer underran"); } #endif // We should block after bufferEnd. if (bufferEnd <= aTime) { STREAM_LOG(PR_LOG_DEBUG+1, ("MediaStream %p will block due to data underrun at %ld, " "bufferEnd %ld", aStream, aTime, bufferEnd)); return true; } // We should keep blocking if we're currently blocked and we don't have // data all the way through to aEndBlockingDecisions. If we don't have // data all the way through to aEndBlockingDecisions, we'll block soon, // but we might as well remain unblocked and play the data we've got while // we can. if (bufferEnd < aEndBlockingDecisions && aStream->mBlocked.GetBefore(aTime)) { STREAM_LOG(PR_LOG_DEBUG+1, ("MediaStream %p will block due to speculative data underrun, " "bufferEnd %f (end at %ld)", aStream, MediaTimeToSeconds(bufferEnd), bufferEnd)); return true; } // Reconsider decisions at bufferEnd *aEnd = std::min(*aEnd, bufferEnd); return false; } void MediaStreamGraphImpl::MarkConsumed(MediaStream* aStream) { if (aStream->mIsConsumed) { return; } aStream->mIsConsumed = true; ProcessedMediaStream* ps = aStream->AsProcessedStream(); if (!ps) { return; } // Mark all the inputs to this stream as consumed for (uint32_t i = 0; i < ps->mInputs.Length(); ++i) { MarkConsumed(ps->mInputs[i]->mSource); } } void MediaStreamGraphImpl::UpdateStreamOrder() { #ifdef MOZ_WEBRTC bool shouldAEC = false; #endif bool audioTrackPresent = false; // Value of mCycleMarker for unvisited streams in cycle detection. const uint32_t NOT_VISITED = UINT32_MAX; // Value of mCycleMarker for ordered streams in muted cycles. const uint32_t IN_MUTED_CYCLE = 1; for (uint32_t i = 0; i < mStreams.Length(); ++i) { MediaStream* stream = mStreams[i]; stream->mIsConsumed = false; stream->mInBlockingSet = false; #ifdef MOZ_WEBRTC if (stream->AsSourceStream() && stream->AsSourceStream()->NeedsMixing()) { shouldAEC = true; } #endif // If this is a AudioNodeStream, force a AudioCallbackDriver. if (stream->AsAudioNodeStream()) { audioTrackPresent = true; } for (StreamBuffer::TrackIter tracks(stream->GetStreamBuffer(), MediaSegment::AUDIO); !tracks.IsEnded(); tracks.Next()) { audioTrackPresent = true; } } if (!audioTrackPresent && CurrentDriver()->AsAudioCallbackDriver()) { bool started; { MonitorAutoLock mon(mMonitor); started = CurrentDriver()->AsAudioCallbackDriver()->IsStarted(); } if (started) { MonitorAutoLock mon(mMonitor); if (mLifecycleState == LIFECYCLE_RUNNING) { SystemClockDriver* driver = new SystemClockDriver(this); CurrentDriver()->SwitchAtNextIteration(driver); } } } #ifdef MOZ_WEBRTC if (shouldAEC && !mFarendObserverRef && gFarendObserver) { mFarendObserverRef = gFarendObserver; mMixer.AddCallback(mFarendObserverRef); } else if (!shouldAEC && mFarendObserverRef){ if (mMixer.FindCallback(mFarendObserverRef)) { mMixer.RemoveCallback(mFarendObserverRef); mFarendObserverRef = nullptr; } } #endif // The algorithm for finding cycles is based on Tim Leslie's iterative // implementation [1][2] of Pearce's variant [3] of Tarjan's strongly // connected components (SCC) algorithm. There are variations (a) to // distinguish whether streams in SCCs of size 1 are in a cycle and (b) to // re-run the algorithm over SCCs with breaks at DelayNodes. // // [1] http://www.timl.id.au/?p=327 // [2] https://github.com/scipy/scipy/blob/e2c502fca/scipy/sparse/csgraph/_traversal.pyx#L582 // [3] http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.102.1707 // // There are two stacks. One for the depth-first search (DFS), mozilla::LinkedList dfsStack; // and another for streams popped from the DFS stack, but still being // considered as part of SCCs involving streams on the stack. mozilla::LinkedList sccStack; // An index into mStreams for the next stream found with no unsatisfied // upstream dependencies. uint32_t orderedStreamCount = 0; for (uint32_t i = 0; i < mStreams.Length(); ++i) { MediaStream* s = mStreams[i]; if (s->IsIntrinsicallyConsumed()) { MarkConsumed(s); } ProcessedMediaStream* ps = s->AsProcessedStream(); if (ps) { // The dfsStack initially contains a list of all processed streams in // unchanged order. dfsStack.insertBack(s); ps->mCycleMarker = NOT_VISITED; } else { // SourceMediaStreams have no inputs and so can be ordered now. mStreams[orderedStreamCount] = s; ++orderedStreamCount; } } // mNextStackMarker corresponds to "index" in Tarjan's algorithm. It is a // counter to label mCycleMarker on the next visited stream in the DFS // uniquely in the set of visited streams that are still being considered. // // In this implementation, the counter descends so that the values are // strictly greater than the values that mCycleMarker takes when the stream // has been ordered (0 or IN_MUTED_CYCLE). // // Each new stream labelled, as the DFS searches upstream, receives a value // less than those used for all other streams being considered. uint32_t nextStackMarker = NOT_VISITED - 1; // Reset list of DelayNodes in cycles stored at the tail of mStreams. mFirstCycleBreaker = mStreams.Length(); // Rearrange dfsStack order as required to DFS upstream and pop streams // in processing order to place in mStreams. while (auto ps = static_cast(dfsStack.getFirst())) { const auto& inputs = ps->mInputs; MOZ_ASSERT(ps->AsProcessedStream()); if (ps->mCycleMarker == NOT_VISITED) { // Record the position on the visited stack, so that any searches // finding this stream again know how much of the stack is in the cycle. ps->mCycleMarker = nextStackMarker; --nextStackMarker; // Not-visited input streams should be processed first. // SourceMediaStreams have already been ordered. for (uint32_t i = inputs.Length(); i--; ) { auto input = inputs[i]->mSource->AsProcessedStream(); if (input && input->mCycleMarker == NOT_VISITED) { input->remove(); dfsStack.insertFront(input); } } continue; } // Returning from DFS. Pop from dfsStack. ps->remove(); // cycleStackMarker keeps track of the highest marker value on any // upstream stream, if any, found receiving input, directly or indirectly, // from the visited stack (and so from |ps|, making a cycle). In a // variation from Tarjan's SCC algorithm, this does not include |ps| // unless it is part of the cycle. uint32_t cycleStackMarker = 0; for (uint32_t i = inputs.Length(); i--; ) { auto input = inputs[i]->mSource->AsProcessedStream(); if (input) { cycleStackMarker = std::max(cycleStackMarker, input->mCycleMarker); } } if (cycleStackMarker <= IN_MUTED_CYCLE) { // All inputs have been ordered and their stack markers have been removed. // This stream is not part of a cycle. It can be processed next. ps->mCycleMarker = 0; mStreams[orderedStreamCount] = ps; ++orderedStreamCount; continue; } // A cycle has been found. Record this stream for ordering when all // streams in this SCC have been popped from the DFS stack. sccStack.insertFront(ps); if (cycleStackMarker > ps->mCycleMarker) { // Cycles have been found that involve streams that remain on the stack. // Leave mCycleMarker indicating the most downstream (last) stream on // the stack known to be part of this SCC. In this way, any searches on // other paths that find |ps| will know (without having to traverse from // this stream again) that they are part of this SCC (i.e. part of an // intersecting cycle). ps->mCycleMarker = cycleStackMarker; continue; } // |ps| is the root of an SCC involving no other streams on dfsStack, the // complete SCC has been recorded, and streams in this SCC are part of at // least one cycle. MOZ_ASSERT(cycleStackMarker == ps->mCycleMarker); // If there are DelayNodes in this SCC, then they may break the cycles. bool haveDelayNode = false; auto next = sccStack.getFirst(); // Streams in this SCC are identified by mCycleMarker <= cycleStackMarker. // (There may be other streams later in sccStack from other incompletely // searched SCCs, involving streams still on dfsStack.) // // DelayNodes in cycles must behave differently from those not in cycles, // so all DelayNodes in the SCC must be identified. while (next && static_cast(next)-> mCycleMarker <= cycleStackMarker) { auto ns = next->AsAudioNodeStream(); // Get next before perhaps removing from list below. next = next->getNext(); if (ns && ns->Engine()->AsDelayNodeEngine()) { haveDelayNode = true; // DelayNodes break cycles by producing their output in a // preprocessing phase; they do not need to be ordered before their // consumers. Order them at the tail of mStreams so that they can be // handled specially. Do so now, so that DFS ignores them. ns->remove(); ns->mCycleMarker = 0; --mFirstCycleBreaker; mStreams[mFirstCycleBreaker] = ns; } } auto after_scc = next; while ((next = sccStack.getFirst()) != after_scc) { next->remove(); auto removed = static_cast(next); if (haveDelayNode) { // Return streams to the DFS stack again (to order and detect cycles // without delayNodes). Any of these streams that are still inputs // for streams on the visited stack must be returned to the front of // the stack to be ordered before their dependents. We know that none // of these streams need input from streams on the visited stack, so // they can all be searched and ordered before the current stack head // is popped. removed->mCycleMarker = NOT_VISITED; dfsStack.insertFront(removed); } else { // Streams in cycles without any DelayNodes must be muted, and so do // not need input and can be ordered now. They must be ordered before // their consumers so that their muted output is available. removed->mCycleMarker = IN_MUTED_CYCLE; mStreams[orderedStreamCount] = removed; ++orderedStreamCount; } } } MOZ_ASSERT(orderedStreamCount == mFirstCycleBreaker); } void MediaStreamGraphImpl::RecomputeBlocking(GraphTime aEndBlockingDecisions) { bool blockingDecisionsWillChange = false; STREAM_LOG(PR_LOG_DEBUG+1, ("Media graph %p computing blocking for time %f", this, MediaTimeToSeconds(CurrentDriver()->StateComputedTime()))); for (uint32_t i = 0; i < mStreams.Length(); ++i) { MediaStream* stream = mStreams[i]; if (!stream->mInBlockingSet) { // Compute a partition of the streams containing 'stream' such that we can // compute the blocking status of each subset independently. nsAutoTArray streamSet; AddBlockingRelatedStreamsToSet(&streamSet, stream); GraphTime end; for (GraphTime t = CurrentDriver()->StateComputedTime(); t < aEndBlockingDecisions; t = end) { end = GRAPH_TIME_MAX; RecomputeBlockingAt(streamSet, t, aEndBlockingDecisions, &end); if (end < GRAPH_TIME_MAX) { blockingDecisionsWillChange = true; } } } GraphTime end; stream->mBlocked.GetAt(IterationEnd(), &end); if (end < GRAPH_TIME_MAX) { blockingDecisionsWillChange = true; } } STREAM_LOG(PR_LOG_DEBUG+1, ("Media graph %p computed blocking for interval %f to %f", this, MediaTimeToSeconds(CurrentDriver()->StateComputedTime()), MediaTimeToSeconds(aEndBlockingDecisions))); CurrentDriver()->UpdateStateComputedTime(aEndBlockingDecisions); if (blockingDecisionsWillChange) { // Make sure we wake up to notify listeners about these changes. EnsureNextIteration(); } } void MediaStreamGraphImpl::AddBlockingRelatedStreamsToSet(nsTArray* aStreams, MediaStream* aStream) { if (aStream->mInBlockingSet) return; aStream->mInBlockingSet = true; aStreams->AppendElement(aStream); for (uint32_t i = 0; i < aStream->mConsumers.Length(); ++i) { MediaInputPort* port = aStream->mConsumers[i]; if (port->mFlags & (MediaInputPort::FLAG_BLOCK_INPUT | MediaInputPort::FLAG_BLOCK_OUTPUT)) { AddBlockingRelatedStreamsToSet(aStreams, port->mDest); } } ProcessedMediaStream* ps = aStream->AsProcessedStream(); if (ps) { for (uint32_t i = 0; i < ps->mInputs.Length(); ++i) { MediaInputPort* port = ps->mInputs[i]; if (port->mFlags & (MediaInputPort::FLAG_BLOCK_INPUT | MediaInputPort::FLAG_BLOCK_OUTPUT)) { AddBlockingRelatedStreamsToSet(aStreams, port->mSource); } } } } void MediaStreamGraphImpl::MarkStreamBlocking(MediaStream* aStream) { if (aStream->mBlockInThisPhase) return; aStream->mBlockInThisPhase = true; for (uint32_t i = 0; i < aStream->mConsumers.Length(); ++i) { MediaInputPort* port = aStream->mConsumers[i]; if (port->mFlags & MediaInputPort::FLAG_BLOCK_OUTPUT) { MarkStreamBlocking(port->mDest); } } ProcessedMediaStream* ps = aStream->AsProcessedStream(); if (ps) { for (uint32_t i = 0; i < ps->mInputs.Length(); ++i) { MediaInputPort* port = ps->mInputs[i]; if (port->mFlags & MediaInputPort::FLAG_BLOCK_INPUT) { MarkStreamBlocking(port->mSource); } } } } void MediaStreamGraphImpl::RecomputeBlockingAt(const nsTArray& aStreams, GraphTime aTime, GraphTime aEndBlockingDecisions, GraphTime* aEnd) { for (uint32_t i = 0; i < aStreams.Length(); ++i) { MediaStream* stream = aStreams[i]; stream->mBlockInThisPhase = false; } for (uint32_t i = 0; i < aStreams.Length(); ++i) { MediaStream* stream = aStreams[i]; if (stream->mFinished) { GraphTime endTime = StreamTimeToGraphTime(stream, stream->GetStreamBuffer().GetAllTracksEnd()); if (endTime <= aTime) { STREAM_LOG(PR_LOG_DEBUG+1, ("MediaStream %p is blocked due to being finished", stream)); // We'll block indefinitely MarkStreamBlocking(stream); *aEnd = std::min(*aEnd, aEndBlockingDecisions); continue; } else { STREAM_LOG(PR_LOG_DEBUG+1, ("MediaStream %p is finished, but not blocked yet (end at %f, with blocking at %f)", stream, MediaTimeToSeconds(stream->GetBufferEnd()), MediaTimeToSeconds(endTime))); *aEnd = std::min(*aEnd, endTime); } } GraphTime end; bool explicitBlock = stream->mExplicitBlockerCount.GetAt(aTime, &end) > 0; *aEnd = std::min(*aEnd, end); if (explicitBlock) { STREAM_LOG(PR_LOG_DEBUG+1, ("MediaStream %p is blocked due to explicit blocker", stream)); MarkStreamBlocking(stream); continue; } bool underrun = WillUnderrun(stream, aTime, aEndBlockingDecisions, aEnd); if (underrun) { // We'll block indefinitely MarkStreamBlocking(stream); *aEnd = std::min(*aEnd, aEndBlockingDecisions); continue; } } NS_ASSERTION(*aEnd > aTime, "Failed to advance!"); for (uint32_t i = 0; i < aStreams.Length(); ++i) { MediaStream* stream = aStreams[i]; stream->mBlocked.SetAtAndAfter(aTime, stream->mBlockInThisPhase); } } void MediaStreamGraphImpl::NotifyHasCurrentData(MediaStream* aStream) { if (!aStream->mNotifiedHasCurrentData && aStream->mHasCurrentData) { for (uint32_t j = 0; j < aStream->mListeners.Length(); ++j) { MediaStreamListener* l = aStream->mListeners[j]; l->NotifyHasCurrentData(this); } aStream->mNotifiedHasCurrentData = true; } } void MediaStreamGraphImpl::CreateOrDestroyAudioStreams(GraphTime aAudioOutputStartTime, MediaStream* aStream) { MOZ_ASSERT(mRealtime, "Should only attempt to create audio streams in real-time mode"); nsAutoTArray audioOutputStreamsFound; for (uint32_t i = 0; i < aStream->mAudioOutputStreams.Length(); ++i) { audioOutputStreamsFound.AppendElement(false); } if (!aStream->mAudioOutputs.IsEmpty()) { for (StreamBuffer::TrackIter tracks(aStream->GetStreamBuffer(), MediaSegment::AUDIO); !tracks.IsEnded(); tracks.Next()) { uint32_t i; for (i = 0; i < audioOutputStreamsFound.Length(); ++i) { if (aStream->mAudioOutputStreams[i].mTrackID == tracks->GetID()) { break; } } if (i < audioOutputStreamsFound.Length()) { audioOutputStreamsFound[i] = true; } else { MediaStream::AudioOutputStream* audioOutputStream = aStream->mAudioOutputStreams.AppendElement(); audioOutputStream->mAudioPlaybackStartTime = aAudioOutputStartTime; audioOutputStream->mBlockedAudioTime = 0; audioOutputStream->mLastTickWritten = 0; audioOutputStream->mTrackID = tracks->GetID(); if (!CurrentDriver()->AsAudioCallbackDriver() && !CurrentDriver()->Switching()) { MonitorAutoLock mon(mMonitor); if (mLifecycleState == LIFECYCLE_RUNNING) { AudioCallbackDriver* driver = new AudioCallbackDriver(this); mMixer.AddCallback(driver); CurrentDriver()->SwitchAtNextIteration(driver); } } } } } for (int32_t i = audioOutputStreamsFound.Length() - 1; i >= 0; --i) { if (!audioOutputStreamsFound[i]) { aStream->mAudioOutputStreams.RemoveElementAt(i); } } } StreamTime MediaStreamGraphImpl::PlayAudio(MediaStream* aStream, GraphTime aFrom, GraphTime aTo) { MOZ_ASSERT(mRealtime, "Should only attempt to play audio in realtime mode"); StreamTime ticksWritten = 0; // We compute the number of needed ticks by converting a difference of graph // time rather than by substracting two converted stream time to ensure that // the rounding between {Graph,Stream}Time and track ticks is not dependant // on the absolute value of the {Graph,Stream}Time, and so that number of // ticks to play is the same for each cycle. StreamTime ticksNeeded = aTo - aFrom; if (aStream->mAudioOutputStreams.IsEmpty()) { return 0; } float volume = 0.0f; for (uint32_t i = 0; i < aStream->mAudioOutputs.Length(); ++i) { volume += aStream->mAudioOutputs[i].mVolume; } for (uint32_t i = 0; i < aStream->mAudioOutputStreams.Length(); ++i) { MediaStream::AudioOutputStream& audioOutput = aStream->mAudioOutputStreams[i]; StreamBuffer::Track* track = aStream->mBuffer.FindTrack(audioOutput.mTrackID); AudioSegment* audio = track->Get(); AudioSegment output; // offset and audioOutput.mLastTickWritten can differ by at most one sample, // because of the rounding issue. We track that to ensure we don't skip a // sample. One sample may be played twice, but this should not happen // again during an unblocked sequence of track samples. StreamTime offset = GraphTimeToStreamTime(aStream, aFrom); if (audioOutput.mLastTickWritten && audioOutput.mLastTickWritten != offset) { // If there is a global underrun of the MSG, this property won't hold, and // we reset the sample count tracking. if (offset - audioOutput.mLastTickWritten == 1) { offset = audioOutput.mLastTickWritten; } } // We don't update aStream->mBufferStartTime here to account for time spent // blocked. Instead, we'll update it in UpdateCurrentTimeForStreams after // the blocked period has completed. But we do need to make sure we play // from the right offsets in the stream buffer, even if we've already // written silence for some amount of blocked time after the current time. GraphTime t = aFrom; while (ticksNeeded) { GraphTime end; bool blocked = aStream->mBlocked.GetAt(t, &end); end = std::min(end, aTo); // Check how many ticks of sound we can provide if we are blocked some // time in the middle of this cycle. StreamTime toWrite = 0; if (end >= aTo) { toWrite = ticksNeeded; } else { toWrite = end - t; } ticksNeeded -= toWrite; if (blocked) { output.InsertNullDataAtStart(toWrite); ticksWritten += toWrite; STREAM_LOG(PR_LOG_DEBUG+1, ("MediaStream %p writing %ld blocking-silence samples for %f to %f (%ld to %ld)\n", aStream, toWrite, MediaTimeToSeconds(t), MediaTimeToSeconds(end), offset, offset + toWrite)); } else { StreamTime endTicksNeeded = offset + toWrite; StreamTime endTicksAvailable = audio->GetDuration(); STREAM_LOG(PR_LOG_DEBUG+1, ("MediaStream %p writing %ld samples for %f to %f (samples %ld to %ld)\n", aStream, toWrite, MediaTimeToSeconds(t), MediaTimeToSeconds(end), offset, endTicksNeeded)); if (endTicksNeeded <= endTicksAvailable) { output.AppendSlice(*audio, offset, endTicksNeeded); ticksWritten += toWrite; offset = endTicksNeeded; } else { // MOZ_ASSERT(track->IsEnded(), "Not enough data, and track not ended."); // If we are at the end of the track, maybe write the remaining // samples, and pad with/output silence. if (endTicksNeeded > endTicksAvailable && offset < endTicksAvailable) { output.AppendSlice(*audio, offset, endTicksAvailable); uint32_t available = endTicksAvailable - offset; ticksWritten += available; toWrite -= available; offset = endTicksAvailable; } output.AppendNullData(toWrite); ticksWritten += toWrite; } output.ApplyVolume(volume); } t = end; } audioOutput.mLastTickWritten = offset; // Need unique id for stream & track - and we want it to match the inserter output.WriteTo(LATENCY_STREAM_ID(aStream, track->GetID()), mMixer, AudioChannelCount(), mSampleRate); } return ticksWritten; } static void SetImageToBlackPixel(PlanarYCbCrImage* aImage) { uint8_t blackPixel[] = { 0x10, 0x80, 0x80 }; PlanarYCbCrData data; data.mYChannel = blackPixel; data.mCbChannel = blackPixel + 1; data.mCrChannel = blackPixel + 2; data.mYStride = data.mCbCrStride = 1; data.mPicSize = data.mYSize = data.mCbCrSize = IntSize(1, 1); aImage->SetData(data); } void MediaStreamGraphImpl::PlayVideo(MediaStream* aStream) { MOZ_ASSERT(mRealtime, "Should only attempt to play video in realtime mode"); if (aStream->mVideoOutputs.IsEmpty()) return; // Display the next frame a bit early. This is better than letting the current // frame be displayed for too long. Because depending on the GraphDriver in // use, we can't really estimate the graph interval duration, we clamp it to // the current state computed time. GraphTime framePosition = IterationEnd() + MillisecondsToMediaTime(CurrentDriver()->IterationDuration()); if (framePosition > CurrentDriver()->StateComputedTime()) { NS_WARN_IF_FALSE(std::abs(framePosition - CurrentDriver()->StateComputedTime()) < MillisecondsToMediaTime(5), "Graph thread slowdown?"); framePosition = CurrentDriver()->StateComputedTime(); } MOZ_ASSERT(framePosition >= aStream->mBufferStartTime, "frame position before buffer?"); StreamTime frameBufferTime = GraphTimeToStreamTime(aStream, framePosition); StreamTime start; const VideoFrame* frame = nullptr; for (StreamBuffer::TrackIter tracks(aStream->GetStreamBuffer(), MediaSegment::VIDEO); !tracks.IsEnded(); tracks.Next()) { VideoSegment* segment = tracks->Get(); StreamTime thisStart; const VideoFrame* thisFrame = segment->GetFrameAt(frameBufferTime, &thisStart); if (thisFrame && thisFrame->GetImage()) { start = thisStart; frame = thisFrame; } } if (!frame || *frame == aStream->mLastPlayedVideoFrame) return; STREAM_LOG(PR_LOG_DEBUG+1, ("MediaStream %p writing video frame %p (%dx%d)", aStream, frame->GetImage(), frame->GetIntrinsicSize().width, frame->GetIntrinsicSize().height)); GraphTime startTime = StreamTimeToGraphTime(aStream, start, INCLUDE_TRAILING_BLOCKED_INTERVAL); TimeStamp targetTime = CurrentDriver()->GetCurrentTimeStamp() + TimeDuration::FromMilliseconds(double(startTime - IterationEnd())); for (uint32_t i = 0; i < aStream->mVideoOutputs.Length(); ++i) { VideoFrameContainer* output = aStream->mVideoOutputs[i]; if (frame->GetForceBlack()) { nsRefPtr image = output->GetImageContainer()->CreateImage(ImageFormat::PLANAR_YCBCR); if (image) { // Sets the image to a single black pixel, which will be scaled to fill // the rendered size. SetImageToBlackPixel(static_cast(image.get())); } output->SetCurrentFrame(frame->GetIntrinsicSize(), image, targetTime); } else { output->SetCurrentFrame(frame->GetIntrinsicSize(), frame->GetImage(), targetTime); } nsCOMPtr event = NS_NewRunnableMethod(output, &VideoFrameContainer::Invalidate); DispatchToMainThreadAfterStreamStateUpdate(event.forget()); } if (!aStream->mNotifiedFinished) { aStream->mLastPlayedVideoFrame = *frame; } } bool MediaStreamGraphImpl::ShouldUpdateMainThread() { if (mRealtime) { return true; } TimeStamp now = TimeStamp::Now(); if ((now - mLastMainThreadUpdate).ToMilliseconds() > CurrentDriver()->IterationDuration()) { mLastMainThreadUpdate = now; return true; } return false; } void MediaStreamGraphImpl::PrepareUpdatesToMainThreadState(bool aFinalUpdate) { mMonitor.AssertCurrentThreadOwns(); // We don't want to frequently update the main thread about timing update // when we are not running in realtime. if (aFinalUpdate || ShouldUpdateMainThread()) { mStreamUpdates.SetCapacity(mStreamUpdates.Length() + mStreams.Length()); for (uint32_t i = 0; i < mStreams.Length(); ++i) { MediaStream* stream = mStreams[i]; if (!stream->MainThreadNeedsUpdates()) { continue; } StreamUpdate* update = mStreamUpdates.AppendElement(); update->mGraphUpdateIndex = stream->mGraphUpdateIndices.GetAt(IterationEnd()); update->mStream = stream; update->mNextMainThreadCurrentTime = GraphTimeToStreamTime(stream, IterationEnd()); update->mNextMainThreadFinished = stream->mNotifiedFinished; } if (!mPendingUpdateRunnables.IsEmpty()) { mUpdateRunnables.MoveElementsFrom(mPendingUpdateRunnables); } } // Don't send the message to the main thread if it's not going to have // any work to do. if (aFinalUpdate || !mUpdateRunnables.IsEmpty() || !mStreamUpdates.IsEmpty()) { EnsureStableStateEventPosted(); } } GraphTime MediaStreamGraphImpl::RoundUpToNextAudioBlock(GraphTime aTime) { StreamTime ticks = aTime; uint64_t block = ticks >> WEBAUDIO_BLOCK_SIZE_BITS; uint64_t nextBlock = block + 1; StreamTime nextTicks = nextBlock << WEBAUDIO_BLOCK_SIZE_BITS; return nextTicks; } void MediaStreamGraphImpl::ProduceDataForStreamsBlockByBlock(uint32_t aStreamIndex, TrackRate aSampleRate, GraphTime aFrom, GraphTime aTo) { MOZ_ASSERT(aStreamIndex <= mFirstCycleBreaker, "Cycle breaker is not AudioNodeStream?"); GraphTime t = aFrom; while (t < aTo) { GraphTime next = RoundUpToNextAudioBlock(t); for (uint32_t i = mFirstCycleBreaker; i < mStreams.Length(); ++i) { auto ns = static_cast(mStreams[i]); MOZ_ASSERT(ns->AsAudioNodeStream()); ns->ProduceOutputBeforeInput(t); } for (uint32_t i = aStreamIndex; i < mStreams.Length(); ++i) { ProcessedMediaStream* ps = mStreams[i]->AsProcessedStream(); if (ps) { ps->ProcessInput(t, next, (next == aTo) ? ProcessedMediaStream::ALLOW_FINISH : 0); } } t = next; } NS_ASSERTION(t == aTo, "Something went wrong with rounding to block boundaries"); } bool MediaStreamGraphImpl::AllFinishedStreamsNotified() { for (uint32_t i = 0; i < mStreams.Length(); ++i) { MediaStream* s = mStreams[i]; if (s->mFinished && !s->mNotifiedFinished) { return false; } } return true; } void MediaStreamGraphImpl::UpdateGraph(GraphTime aEndBlockingDecision) { // Calculate independent action times for each batch of messages (each // batch corresponding to an event loop task). This isolates the performance // of different scripts to some extent. for (uint32_t i = 0; i < mFrontMessageQueue.Length(); ++i) { mProcessingGraphUpdateIndex = mFrontMessageQueue[i].mGraphUpdateIndex; nsTArray >& messages = mFrontMessageQueue[i].mMessages; for (uint32_t j = 0; j < messages.Length(); ++j) { messages[j]->Run(); } } mFrontMessageQueue.Clear(); if (mStreamOrderDirty) { UpdateStreamOrder(); } bool ensureNextIteration = false; // Grab pending stream input. for (uint32_t i = 0; i < mStreams.Length(); ++i) { SourceMediaStream* is = mStreams[i]->AsSourceStream(); if (is) { UpdateConsumptionState(is); ExtractPendingInput(is, aEndBlockingDecision, &ensureNextIteration); } } // The loop is woken up so soon that IterationEnd() barely advances and we // end up having aEndBlockingDecision == CurrentDriver()->StateComputedTime(). // Since stream blocking is computed in the interval of // [CurrentDriver()->StateComputedTime(), aEndBlockingDecision), it won't be computed at all. // We should ensure next iteration so that pending blocking changes will be // computed in next loop. if (ensureNextIteration || aEndBlockingDecision == CurrentDriver()->StateComputedTime()) { EnsureNextIteration(); } // Figure out which streams are blocked and when. RecomputeBlocking(aEndBlockingDecision); } void MediaStreamGraphImpl::Process(GraphTime aFrom, GraphTime aTo) { // Play stream contents. bool allBlockedForever = true; // True when we've done ProcessInput for all processed streams. bool doneAllProducing = false; // This is the number of frame that are written to the AudioStreams, for // this cycle. StreamTime ticksPlayed = 0; mMixer.StartMixing(); // Figure out what each stream wants to do for (uint32_t i = 0; i < mStreams.Length(); ++i) { MediaStream* stream = mStreams[i]; if (!doneAllProducing) { ProcessedMediaStream* ps = stream->AsProcessedStream(); if (ps) { AudioNodeStream* n = stream->AsAudioNodeStream(); if (n) { #ifdef DEBUG // Verify that the sampling rate for all of the following streams is the same for (uint32_t j = i + 1; j < mStreams.Length(); ++j) { AudioNodeStream* nextStream = mStreams[j]->AsAudioNodeStream(); if (nextStream) { MOZ_ASSERT(n->SampleRate() == nextStream->SampleRate(), "All AudioNodeStreams in the graph must have the same sampling rate"); } } #endif // Since an AudioNodeStream is present, go ahead and // produce audio block by block for all the rest of the streams. ProduceDataForStreamsBlockByBlock(i, n->SampleRate(), aFrom, aTo); doneAllProducing = true; } else { ps->ProcessInput(aFrom, aTo, ProcessedMediaStream::ALLOW_FINISH); NS_WARN_IF_FALSE(stream->mBuffer.GetEnd() >= GraphTimeToStreamTime(stream, aTo), "Stream did not produce enough data"); } } } NotifyHasCurrentData(stream); // Only playback audio and video in real-time mode if (mRealtime) { CreateOrDestroyAudioStreams(aFrom, stream); if (CurrentDriver()->AsAudioCallbackDriver()) { StreamTime ticksPlayedForThisStream = PlayAudio(stream, aFrom, aTo); if (!ticksPlayed) { ticksPlayed = ticksPlayedForThisStream; } else { MOZ_ASSERT(!ticksPlayedForThisStream || ticksPlayedForThisStream == ticksPlayed, "Each stream should have the same number of frame."); } } PlayVideo(stream); } SourceMediaStream* is = stream->AsSourceStream(); if (is) { UpdateBufferSufficiencyState(is); } GraphTime end; if (!stream->mBlocked.GetAt(aTo, &end) || end < GRAPH_TIME_MAX) { allBlockedForever = false; } } if (CurrentDriver()->AsAudioCallbackDriver() && ticksPlayed) { mMixer.FinishMixing(); } // If we are switching away from an AudioCallbackDriver, we don't need the // mixer anymore. if (CurrentDriver()->AsAudioCallbackDriver() && CurrentDriver()->Switching()) { bool isStarted; { MonitorAutoLock mon(mMonitor); isStarted = CurrentDriver()->AsAudioCallbackDriver()->IsStarted(); } if (isStarted) { mMixer.RemoveCallback(CurrentDriver()->AsAudioCallbackDriver()); } } if (!allBlockedForever) { EnsureNextIteration(); } } bool MediaStreamGraphImpl::OneIteration(GraphTime aFrom, GraphTime aTo, GraphTime aStateFrom, GraphTime aStateEnd) { { MonitorAutoLock lock(mMemoryReportMonitor); if (mNeedsMemoryReport) { mNeedsMemoryReport = false; for (uint32_t i = 0; i < mStreams.Length(); ++i) { AudioNodeStream* stream = mStreams[i]->AsAudioNodeStream(); if (stream) { AudioNodeSizes usage; stream->SizeOfAudioNodesIncludingThis(MallocSizeOf, usage); mAudioStreamSizes.AppendElement(usage); } } lock.Notify(); } } UpdateCurrentTimeForStreams(aFrom, aTo); UpdateGraph(aStateEnd); Process(aStateFrom, aStateEnd); // Send updates to the main thread and wait for the next control loop // iteration. { MonitorAutoLock lock(mMonitor); bool finalUpdate = mForceShutDown || (IterationEnd() >= mEndTime && AllFinishedStreamsNotified()) || (IsEmpty() && mBackMessageQueue.IsEmpty()); PrepareUpdatesToMainThreadState(finalUpdate); if (finalUpdate) { // Enter shutdown mode. The stable-state handler will detect this // and complete shutdown. Destroy any streams immediately. STREAM_LOG(PR_LOG_DEBUG, ("MediaStreamGraph %p waiting for main thread cleanup", this)); // We'll shut down this graph object if it does not get restarted. mLifecycleState = LIFECYCLE_WAITING_FOR_MAIN_THREAD_CLEANUP; // No need to Destroy streams here. The main-thread owner of each // stream is responsible for calling Destroy on them. return false; } CurrentDriver()->WaitForNextIteration(); SwapMessageQueues(); } mFlushSourcesNow = false; return true; } void MediaStreamGraphImpl::ApplyStreamUpdate(StreamUpdate* aUpdate) { mMonitor.AssertCurrentThreadOwns(); MediaStream* stream = aUpdate->mStream; if (!stream) return; stream->mMainThreadCurrentTime = aUpdate->mNextMainThreadCurrentTime; stream->mMainThreadFinished = aUpdate->mNextMainThreadFinished; if (stream->mWrapper) { stream->mWrapper->NotifyStreamStateChanged(); } for (int32_t i = stream->mMainThreadListeners.Length() - 1; i >= 0; --i) { stream->mMainThreadListeners[i]->NotifyMainThreadStateChanged(); } } void MediaStreamGraphImpl::ForceShutDown() { NS_ASSERTION(NS_IsMainThread(), "Must be called on main thread"); STREAM_LOG(PR_LOG_DEBUG, ("MediaStreamGraph %p ForceShutdown", this)); { MonitorAutoLock lock(mMonitor); mForceShutDown = true; EnsureNextIterationLocked(); } } namespace { class MediaStreamGraphShutDownRunnable : public nsRunnable { public: explicit MediaStreamGraphShutDownRunnable(MediaStreamGraphImpl* aGraph) : mGraph(aGraph) {} NS_IMETHOD Run() { NS_ASSERTION(mGraph->mDetectedNotRunning, "We should know the graph thread control loop isn't running!"); LIFECYCLE_LOG("Shutting down graph %p", mGraph.get()); // We've asserted the graph isn't running. Use mDriver instead of CurrentDriver // to avoid thread-safety checks #if 0 // AudioCallbackDrivers are released asynchronously anyways // XXX a better test would be have setting mDetectedNotRunning make sure // any current callback has finished and block future ones -- or just // handle it all in Shutdown()! if (mGraph->mDriver->AsAudioCallbackDriver()) { MOZ_ASSERT(!mGraph->mDriver->AsAudioCallbackDriver()->InCallback()); } #endif mGraph->mDriver->Shutdown(); // mGraph's thread is not running so it's OK to do whatever here if (mGraph->IsEmpty()) { // mGraph is no longer needed, so delete it. mGraph->Destroy(); } else { // The graph is not empty. We must be in a forced shutdown, or a // non-realtime graph that has finished processing. Some later // AppendMessage will detect that the manager has been emptied, and // delete it. NS_ASSERTION(mGraph->mForceShutDown || !mGraph->mRealtime, "Not in forced shutdown?"); for (uint32_t i = 0; i < mGraph->mStreams.Length(); ++i) { DOMMediaStream* s = mGraph->mStreams[i]->GetWrapper(); if (s) { s->NotifyMediaStreamGraphShutdown(); } } mGraph->mLifecycleState = MediaStreamGraphImpl::LIFECYCLE_WAITING_FOR_STREAM_DESTRUCTION; } return NS_OK; } private: nsRefPtr mGraph; }; class MediaStreamGraphStableStateRunnable : public nsRunnable { public: explicit MediaStreamGraphStableStateRunnable(MediaStreamGraphImpl* aGraph, bool aSourceIsMSG) : mGraph(aGraph) , mSourceIsMSG(aSourceIsMSG) { } NS_IMETHOD Run() { if (mGraph) { mGraph->RunInStableState(mSourceIsMSG); } return NS_OK; } private: nsRefPtr mGraph; bool mSourceIsMSG; }; /* * Control messages forwarded from main thread to graph manager thread */ class CreateMessage : public ControlMessage { public: explicit CreateMessage(MediaStream* aStream) : ControlMessage(aStream) {} virtual void Run() MOZ_OVERRIDE { mStream->GraphImpl()->AddStream(mStream); mStream->Init(); } virtual void RunDuringShutdown() MOZ_OVERRIDE { // Make sure to run this message during shutdown too, to make sure // that we balance the number of streams registered with the graph // as they're destroyed during shutdown. Run(); } }; class MediaStreamGraphShutdownObserver MOZ_FINAL : public nsIObserver { ~MediaStreamGraphShutdownObserver() {} public: NS_DECL_ISUPPORTS NS_DECL_NSIOBSERVER }; } void MediaStreamGraphImpl::RunInStableState(bool aSourceIsMSG) { NS_ASSERTION(NS_IsMainThread(), "Must be called on main thread"); nsTArray > runnables; // When we're doing a forced shutdown, pending control messages may be // run on the main thread via RunDuringShutdown. Those messages must // run without the graph monitor being held. So, we collect them here. nsTArray > controlMessagesToRunDuringShutdown; { MonitorAutoLock lock(mMonitor); if (aSourceIsMSG) { MOZ_ASSERT(mPostedRunInStableStateEvent); mPostedRunInStableStateEvent = false; } #ifdef ENABLE_LIFECYCLE_LOG // This should be kept in sync with the LifecycleState enum in // MediaStreamGraphImpl.h const char * LifecycleState_str[] = { "LIFECYCLE_THREAD_NOT_STARTED", "LIFECYCLE_RUNNING", "LIFECYCLE_WAITING_FOR_MAIN_THREAD_CLEANUP", "LIFECYCLE_WAITING_FOR_THREAD_SHUTDOWN", "LIFECYCLE_WAITING_FOR_STREAM_DESTRUCTION" }; if (mLifecycleState != LIFECYCLE_RUNNING) { LIFECYCLE_LOG("Running %p in stable state. Current state: %s\n", this, LifecycleState_str[mLifecycleState]); } #endif runnables.SwapElements(mUpdateRunnables); for (uint32_t i = 0; i < mStreamUpdates.Length(); ++i) { StreamUpdate* update = &mStreamUpdates[i]; if (update->mStream) { ApplyStreamUpdate(update); } } mStreamUpdates.Clear(); if (mCurrentTaskMessageQueue.IsEmpty()) { if (mLifecycleState == LIFECYCLE_WAITING_FOR_MAIN_THREAD_CLEANUP && IsEmpty()) { // Complete shutdown. First, ensure that this graph is no longer used. // A new graph graph will be created if one is needed. // Asynchronously clean up old graph. We don't want to do this // synchronously because it spins the event loop waiting for threads // to shut down, and we don't want to do that in a stable state handler. mLifecycleState = LIFECYCLE_WAITING_FOR_THREAD_SHUTDOWN; LIFECYCLE_LOG("Sending MediaStreamGraphShutDownRunnable %p", this); nsCOMPtr event = new MediaStreamGraphShutDownRunnable(this ); NS_DispatchToMainThread(event); LIFECYCLE_LOG("Disconnecting MediaStreamGraph %p", this); MediaStreamGraphImpl* graph; if (gGraphs.Get(mAudioChannel, &graph) && graph == this) { // null out gGraph if that's the graph being shut down gGraphs.Remove(mAudioChannel); } } } else { if (mLifecycleState <= LIFECYCLE_WAITING_FOR_MAIN_THREAD_CLEANUP) { MessageBlock* block = mBackMessageQueue.AppendElement(); block->mMessages.SwapElements(mCurrentTaskMessageQueue); block->mGraphUpdateIndex = mNextGraphUpdateIndex; ++mNextGraphUpdateIndex; EnsureNextIterationLocked(); } // If the MediaStreamGraph has more messages going to it, try to revive // it to process those messages. Don't do this if we're in a forced // shutdown or it's a non-realtime graph that has already terminated // processing. if (mLifecycleState == LIFECYCLE_WAITING_FOR_MAIN_THREAD_CLEANUP && mRealtime && !mForceShutDown) { mLifecycleState = LIFECYCLE_RUNNING; // Revive the MediaStreamGraph since we have more messages going to it. // Note that we need to put messages into its queue before reviving it, // or it might exit immediately. { LIFECYCLE_LOG("Reviving a graph (%p) ! %s\n", this, CurrentDriver()->AsAudioCallbackDriver() ? "AudioDriver" : "SystemDriver"); nsRefPtr driver = CurrentDriver(); MonitorAutoUnlock unlock(mMonitor); driver->Revive(); } } } // Don't start the thread for a non-realtime graph until it has been // explicitly started by StartNonRealtimeProcessing. if (mLifecycleState == LIFECYCLE_THREAD_NOT_STARTED && (mRealtime || mNonRealtimeProcessing)) { mLifecycleState = LIFECYCLE_RUNNING; // Start the thread now. We couldn't start it earlier because // the graph might exit immediately on finding it has no streams. The // first message for a new graph must create a stream. { // We should exit the monitor for now, because starting a stream might // take locks, and we don't want to deadlock. LIFECYCLE_LOG("Starting a graph (%p) ! %s\n", this, CurrentDriver()->AsAudioCallbackDriver() ? "AudioDriver" : "SystemDriver"); nsRefPtr driver = CurrentDriver(); MonitorAutoUnlock unlock(mMonitor); driver->Start(); } } if ((mForceShutDown || !mRealtime) && mLifecycleState == LIFECYCLE_WAITING_FOR_MAIN_THREAD_CLEANUP) { // Defer calls to RunDuringShutdown() to happen while mMonitor is not held. for (uint32_t i = 0; i < mBackMessageQueue.Length(); ++i) { MessageBlock& mb = mBackMessageQueue[i]; controlMessagesToRunDuringShutdown.MoveElementsFrom(mb.mMessages); } mBackMessageQueue.Clear(); MOZ_ASSERT(mCurrentTaskMessageQueue.IsEmpty()); // Stop MediaStreamGraph threads. Do not clear gGraph since // we have outstanding DOM objects that may need it. mLifecycleState = LIFECYCLE_WAITING_FOR_THREAD_SHUTDOWN; nsCOMPtr event = new MediaStreamGraphShutDownRunnable(this); NS_DispatchToMainThread(event); } mDetectedNotRunning = mLifecycleState > LIFECYCLE_RUNNING; } // Make sure we get a new current time in the next event loop task if (!aSourceIsMSG) { MOZ_ASSERT(mPostedRunInStableState); mPostedRunInStableState = false; } for (uint32_t i = 0; i < runnables.Length(); ++i) { runnables[i]->Run(); } for (uint32_t i = 0; i < controlMessagesToRunDuringShutdown.Length(); ++i) { controlMessagesToRunDuringShutdown[i]->RunDuringShutdown(); } #ifdef DEBUG mCanRunMessagesSynchronously = mDetectedNotRunning && mLifecycleState >= LIFECYCLE_WAITING_FOR_THREAD_SHUTDOWN; #endif } static NS_DEFINE_CID(kAppShellCID, NS_APPSHELL_CID); void MediaStreamGraphImpl::EnsureRunInStableState() { NS_ASSERTION(NS_IsMainThread(), "main thread only"); if (mPostedRunInStableState) return; mPostedRunInStableState = true; nsCOMPtr event = new MediaStreamGraphStableStateRunnable(this, false); nsCOMPtr appShell = do_GetService(kAppShellCID); if (appShell) { appShell->RunInStableState(event); } else { NS_ERROR("Appshell already destroyed?"); } } void MediaStreamGraphImpl::EnsureStableStateEventPosted() { mMonitor.AssertCurrentThreadOwns(); if (mPostedRunInStableStateEvent) return; mPostedRunInStableStateEvent = true; nsCOMPtr event = new MediaStreamGraphStableStateRunnable(this, true); NS_DispatchToMainThread(event); } void MediaStreamGraphImpl::AppendMessage(ControlMessage* aMessage) { NS_ASSERTION(NS_IsMainThread(), "main thread only"); NS_ASSERTION(!aMessage->GetStream() || !aMessage->GetStream()->IsDestroyed(), "Stream already destroyed"); if (mDetectedNotRunning && mLifecycleState > LIFECYCLE_WAITING_FOR_MAIN_THREAD_CLEANUP) { // The graph control loop is not running and main thread cleanup has // happened. From now on we can't append messages to mCurrentTaskMessageQueue, // because that will never be processed again, so just RunDuringShutdown // this message. // This should only happen during forced shutdown, or after a non-realtime // graph has finished processing. #ifdef DEBUG MOZ_ASSERT(mCanRunMessagesSynchronously); mCanRunMessagesSynchronously = false; #endif aMessage->RunDuringShutdown(); #ifdef DEBUG mCanRunMessagesSynchronously = true; #endif delete aMessage; if (IsEmpty() && mLifecycleState >= LIFECYCLE_WAITING_FOR_STREAM_DESTRUCTION) { MediaStreamGraphImpl* graph; if (gGraphs.Get(mAudioChannel, &graph) && graph == this) { gGraphs.Remove(mAudioChannel); } Destroy(); } return; } mCurrentTaskMessageQueue.AppendElement(aMessage); EnsureRunInStableState(); } MediaStream::MediaStream(DOMMediaStream* aWrapper) : mBufferStartTime(0) , mExplicitBlockerCount(0) , mBlocked(false) , mGraphUpdateIndices(0) , mFinished(false) , mNotifiedFinished(false) , mNotifiedBlocked(false) , mHasCurrentData(false) , mNotifiedHasCurrentData(false) , mWrapper(aWrapper) , mMainThreadCurrentTime(0) , mMainThreadFinished(false) , mMainThreadDestroyed(false) , mGraph(nullptr) , mAudioChannelType(dom::AudioChannel::Normal) { MOZ_COUNT_CTOR(MediaStream); // aWrapper should not already be connected to a MediaStream! It needs // to be hooked up to this stream, and since this stream is only just // being created now, aWrapper must not be connected to anything. NS_ASSERTION(!aWrapper || !aWrapper->GetStream(), "Wrapper already has another media stream hooked up to it!"); } size_t MediaStream::SizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const { size_t amount = 0; // Not owned: // - mGraph - Not reported here // - mConsumers - elements // Future: // - mWrapper // - mVideoOutputs - elements // - mLastPlayedVideoFrame // - mListeners - elements // - mAudioOutputStream - elements amount += mBuffer.SizeOfExcludingThis(aMallocSizeOf); amount += mAudioOutputs.SizeOfExcludingThis(aMallocSizeOf); amount += mVideoOutputs.SizeOfExcludingThis(aMallocSizeOf); amount += mExplicitBlockerCount.SizeOfExcludingThis(aMallocSizeOf); amount += mListeners.SizeOfExcludingThis(aMallocSizeOf); amount += mMainThreadListeners.SizeOfExcludingThis(aMallocSizeOf); amount += mDisabledTrackIDs.SizeOfExcludingThis(aMallocSizeOf); amount += mBlocked.SizeOfExcludingThis(aMallocSizeOf); amount += mGraphUpdateIndices.SizeOfExcludingThis(aMallocSizeOf); amount += mConsumers.SizeOfExcludingThis(aMallocSizeOf); return amount; } size_t MediaStream::SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const { return aMallocSizeOf(this) + SizeOfExcludingThis(aMallocSizeOf); } void MediaStream::Init() { MediaStreamGraphImpl* graph = GraphImpl(); mBlocked.SetAtAndAfter(graph->IterationEnd(), true); mExplicitBlockerCount.SetAtAndAfter(graph->IterationEnd(), true); mExplicitBlockerCount.SetAtAndAfter(graph->CurrentDriver()->StateComputedTime(), false); } MediaStreamGraphImpl* MediaStream::GraphImpl() { return mGraph; } MediaStreamGraph* MediaStream::Graph() { return mGraph; } void MediaStream::SetGraphImpl(MediaStreamGraphImpl* aGraph) { MOZ_ASSERT(!mGraph, "Should only be called once"); mGraph = aGraph; mBuffer.InitGraphRate(aGraph->GraphRate()); } void MediaStream::SetGraphImpl(MediaStreamGraph* aGraph) { MediaStreamGraphImpl* graph = static_cast(aGraph); SetGraphImpl(graph); } StreamTime MediaStream::GraphTimeToStreamTime(GraphTime aTime) { return GraphImpl()->GraphTimeToStreamTime(this, aTime); } StreamTime MediaStream::GraphTimeToStreamTimeOptimistic(GraphTime aTime) { return GraphImpl()->GraphTimeToStreamTimeOptimistic(this, aTime); } GraphTime MediaStream::StreamTimeToGraphTime(StreamTime aTime) { return GraphImpl()->StreamTimeToGraphTime(this, aTime, 0); } void MediaStream::FinishOnGraphThread() { GraphImpl()->FinishStream(this); } int64_t MediaStream::GetProcessingGraphUpdateIndex() { return GraphImpl()->GetProcessingGraphUpdateIndex(); } StreamBuffer::Track* MediaStream::EnsureTrack(TrackID aTrackId) { StreamBuffer::Track* track = mBuffer.FindTrack(aTrackId); if (!track) { nsAutoPtr segment(new AudioSegment()); for (uint32_t j = 0; j < mListeners.Length(); ++j) { MediaStreamListener* l = mListeners[j]; l->NotifyQueuedTrackChanges(Graph(), aTrackId, 0, MediaStreamListener::TRACK_EVENT_CREATED, *segment); } track = &mBuffer.AddTrack(aTrackId, 0, segment.forget()); } return track; } void MediaStream::RemoveAllListenersImpl() { for (int32_t i = mListeners.Length() - 1; i >= 0; --i) { nsRefPtr listener = mListeners[i].forget(); listener->NotifyEvent(GraphImpl(), MediaStreamListener::EVENT_REMOVED); } mListeners.Clear(); } void MediaStream::DestroyImpl() { for (int32_t i = mConsumers.Length() - 1; i >= 0; --i) { mConsumers[i]->Disconnect(); } mGraph = nullptr; } void MediaStream::Destroy() { // Keep this stream alive until we leave this method nsRefPtr kungFuDeathGrip = this; class Message : public ControlMessage { public: explicit Message(MediaStream* aStream) : ControlMessage(aStream) {} virtual void Run() { mStream->RemoveAllListenersImpl(); auto graph = mStream->GraphImpl(); mStream->DestroyImpl(); graph->RemoveStream(mStream); } virtual void RunDuringShutdown() { Run(); } }; mWrapper = nullptr; GraphImpl()->AppendMessage(new Message(this)); // Message::RunDuringShutdown may have removed this stream from the graph, // but our kungFuDeathGrip above will have kept this stream alive if // necessary. mMainThreadDestroyed = true; } void MediaStream::AddAudioOutput(void* aKey) { class Message : public ControlMessage { public: Message(MediaStream* aStream, void* aKey) : ControlMessage(aStream), mKey(aKey) {} virtual void Run() { mStream->AddAudioOutputImpl(mKey); } void* mKey; }; GraphImpl()->AppendMessage(new Message(this, aKey)); } void MediaStream::SetAudioOutputVolumeImpl(void* aKey, float aVolume) { for (uint32_t i = 0; i < mAudioOutputs.Length(); ++i) { if (mAudioOutputs[i].mKey == aKey) { mAudioOutputs[i].mVolume = aVolume; return; } } NS_ERROR("Audio output key not found"); } void MediaStream::SetAudioOutputVolume(void* aKey, float aVolume) { class Message : public ControlMessage { public: Message(MediaStream* aStream, void* aKey, float aVolume) : ControlMessage(aStream), mKey(aKey), mVolume(aVolume) {} virtual void Run() { mStream->SetAudioOutputVolumeImpl(mKey, mVolume); } void* mKey; float mVolume; }; GraphImpl()->AppendMessage(new Message(this, aKey, aVolume)); } void MediaStream::RemoveAudioOutputImpl(void* aKey) { for (uint32_t i = 0; i < mAudioOutputs.Length(); ++i) { if (mAudioOutputs[i].mKey == aKey) { mAudioOutputs.RemoveElementAt(i); return; } } NS_ERROR("Audio output key not found"); } void MediaStream::RemoveAudioOutput(void* aKey) { class Message : public ControlMessage { public: Message(MediaStream* aStream, void* aKey) : ControlMessage(aStream), mKey(aKey) {} virtual void Run() { mStream->RemoveAudioOutputImpl(mKey); } void* mKey; }; GraphImpl()->AppendMessage(new Message(this, aKey)); } void MediaStream::AddVideoOutput(VideoFrameContainer* aContainer) { class Message : public ControlMessage { public: Message(MediaStream* aStream, VideoFrameContainer* aContainer) : ControlMessage(aStream), mContainer(aContainer) {} virtual void Run() { mStream->AddVideoOutputImpl(mContainer.forget()); } nsRefPtr mContainer; }; GraphImpl()->AppendMessage(new Message(this, aContainer)); } void MediaStream::RemoveVideoOutput(VideoFrameContainer* aContainer) { class Message : public ControlMessage { public: Message(MediaStream* aStream, VideoFrameContainer* aContainer) : ControlMessage(aStream), mContainer(aContainer) {} virtual void Run() { mStream->RemoveVideoOutputImpl(mContainer); } nsRefPtr mContainer; }; GraphImpl()->AppendMessage(new Message(this, aContainer)); } void MediaStream::ChangeExplicitBlockerCount(int32_t aDelta) { class Message : public ControlMessage { public: Message(MediaStream* aStream, int32_t aDelta) : ControlMessage(aStream), mDelta(aDelta) {} virtual void Run() { mStream->ChangeExplicitBlockerCountImpl( mStream->GraphImpl()->CurrentDriver()->StateComputedTime(), mDelta); } int32_t mDelta; }; // This can happen if this method has been called asynchronously, and the // stream has been destroyed since then. if (mMainThreadDestroyed) { return; } GraphImpl()->AppendMessage(new Message(this, aDelta)); } void MediaStream::AddListenerImpl(already_AddRefed aListener) { MediaStreamListener* listener = *mListeners.AppendElement() = aListener; listener->NotifyBlockingChanged(GraphImpl(), mNotifiedBlocked ? MediaStreamListener::BLOCKED : MediaStreamListener::UNBLOCKED); if (mNotifiedFinished) { listener->NotifyEvent(GraphImpl(), MediaStreamListener::EVENT_FINISHED); } if (mNotifiedHasCurrentData) { listener->NotifyHasCurrentData(GraphImpl()); } } void MediaStream::AddListener(MediaStreamListener* aListener) { class Message : public ControlMessage { public: Message(MediaStream* aStream, MediaStreamListener* aListener) : ControlMessage(aStream), mListener(aListener) {} virtual void Run() { mStream->AddListenerImpl(mListener.forget()); } nsRefPtr mListener; }; GraphImpl()->AppendMessage(new Message(this, aListener)); } void MediaStream::RemoveListenerImpl(MediaStreamListener* aListener) { // wouldn't need this if we could do it in the opposite order nsRefPtr listener(aListener); mListeners.RemoveElement(aListener); listener->NotifyEvent(GraphImpl(), MediaStreamListener::EVENT_REMOVED); } void MediaStream::RemoveListener(MediaStreamListener* aListener) { class Message : public ControlMessage { public: Message(MediaStream* aStream, MediaStreamListener* aListener) : ControlMessage(aStream), mListener(aListener) {} virtual void Run() { mStream->RemoveListenerImpl(mListener); } nsRefPtr mListener; }; // If the stream is destroyed the Listeners have or will be // removed. if (!IsDestroyed()) { GraphImpl()->AppendMessage(new Message(this, aListener)); } } void MediaStream::RunAfterPendingUpdates(nsRefPtr aRunnable) { MOZ_ASSERT(NS_IsMainThread()); MediaStreamGraphImpl* graph = GraphImpl(); // Special case when a non-realtime graph has not started, to ensure the // runnable will run in finite time. if (!(graph->mRealtime || graph->mNonRealtimeProcessing)) { aRunnable->Run(); } class Message : public ControlMessage { public: explicit Message(MediaStream* aStream, already_AddRefed aRunnable) : ControlMessage(aStream) , mRunnable(aRunnable) {} virtual void Run() MOZ_OVERRIDE { mStream->Graph()-> DispatchToMainThreadAfterStreamStateUpdate(mRunnable.forget()); } virtual void RunDuringShutdown() MOZ_OVERRIDE { // Don't run mRunnable now as it may call AppendMessage() which would // assume that there are no remaining controlMessagesToRunDuringShutdown. MOZ_ASSERT(NS_IsMainThread()); NS_DispatchToCurrentThread(mRunnable); } private: nsRefPtr mRunnable; }; graph->AppendMessage(new Message(this, aRunnable.forget())); } void MediaStream::SetTrackEnabledImpl(TrackID aTrackID, bool aEnabled) { if (aEnabled) { mDisabledTrackIDs.RemoveElement(aTrackID); } else { if (!mDisabledTrackIDs.Contains(aTrackID)) { mDisabledTrackIDs.AppendElement(aTrackID); } } } void MediaStream::SetTrackEnabled(TrackID aTrackID, bool aEnabled) { class Message : public ControlMessage { public: Message(MediaStream* aStream, TrackID aTrackID, bool aEnabled) : ControlMessage(aStream), mTrackID(aTrackID), mEnabled(aEnabled) {} virtual void Run() { mStream->SetTrackEnabledImpl(mTrackID, mEnabled); } TrackID mTrackID; bool mEnabled; }; GraphImpl()->AppendMessage(new Message(this, aTrackID, aEnabled)); } void MediaStream::ApplyTrackDisabling(TrackID aTrackID, MediaSegment* aSegment, MediaSegment* aRawSegment) { if (!mDisabledTrackIDs.Contains(aTrackID)) { return; } aSegment->ReplaceWithDisabled(); if (aRawSegment) { aRawSegment->ReplaceWithDisabled(); } } void SourceMediaStream::DestroyImpl() { // Hold mMutex while mGraph is reset so that other threads holding mMutex // can null-check know that the graph will not destroyed. MutexAutoLock lock(mMutex); MediaStream::DestroyImpl(); } void SourceMediaStream::SetPullEnabled(bool aEnabled) { MutexAutoLock lock(mMutex); mPullEnabled = aEnabled; if (mPullEnabled && GraphImpl()) { GraphImpl()->EnsureNextIteration(); } } void SourceMediaStream::AddTrackInternal(TrackID aID, TrackRate aRate, StreamTime aStart, MediaSegment* aSegment) { MutexAutoLock lock(mMutex); TrackData* data = mUpdateTracks.AppendElement(); data->mID = aID; data->mInputRate = aRate; data->mStart = aStart; data->mCommands = TRACK_CREATE; data->mData = aSegment; data->mHaveEnough = false; if (GraphImpl()) { GraphImpl()->EnsureNextIteration(); } } void SourceMediaStream::ResampleAudioToGraphSampleRate(TrackData* aTrackData, MediaSegment* aSegment) { if (aSegment->GetType() != MediaSegment::AUDIO || aTrackData->mInputRate == GraphImpl()->GraphRate()) { return; } AudioSegment* segment = static_cast(aSegment); int channels = segment->ChannelCount(); // If this segment is just silence, we delay instanciating the resampler. if (channels) { if (aTrackData->mResampler) { MOZ_ASSERT(aTrackData->mResamplerChannelCount == segment->ChannelCount()); } else { SpeexResamplerState* state = speex_resampler_init(channels, aTrackData->mInputRate, GraphImpl()->GraphRate(), SPEEX_RESAMPLER_QUALITY_DEFAULT, nullptr); if (!state) { return; } aTrackData->mResampler.own(state); #ifdef DEBUG aTrackData->mResamplerChannelCount = channels; #endif } } segment->ResampleChunks(aTrackData->mResampler, aTrackData->mInputRate, GraphImpl()->GraphRate()); } bool SourceMediaStream::AppendToTrack(TrackID aID, MediaSegment* aSegment, MediaSegment *aRawSegment) { MutexAutoLock lock(mMutex); // ::EndAllTrackAndFinished() can end these before the sources notice bool appended = false; auto graph = GraphImpl(); if (!mFinished && graph) { TrackData *track = FindDataForTrack(aID); if (track) { // Data goes into mData, and on the next iteration of the MSG moves // into the track's segment after NotifyQueuedTrackChanges(). This adds // 0-10ms of delay before data gets to direct listeners. // Indirect listeners (via subsequent TrackUnion nodes) are synced to // playout time, and so can be delayed by buffering. // Apply track disabling before notifying any consumers directly // or inserting into the graph ApplyTrackDisabling(aID, aSegment, aRawSegment); ResampleAudioToGraphSampleRate(track, aSegment); // Must notify first, since AppendFrom() will empty out aSegment NotifyDirectConsumers(track, aRawSegment ? aRawSegment : aSegment); track->mData->AppendFrom(aSegment); // note: aSegment is now dead appended = true; GraphImpl()->EnsureNextIteration(); } else { aSegment->Clear(); } } return appended; } void SourceMediaStream::NotifyDirectConsumers(TrackData *aTrack, MediaSegment *aSegment) { // Call with mMutex locked MOZ_ASSERT(aTrack); for (uint32_t j = 0; j < mDirectListeners.Length(); ++j) { MediaStreamDirectListener* l = mDirectListeners[j]; StreamTime offset = 0; // FIX! need a separate StreamTime.... or the end of the internal buffer l->NotifyRealtimeData(static_cast(GraphImpl()), aTrack->mID, offset, aTrack->mCommands, *aSegment); } } // These handle notifying all the listeners of an event void SourceMediaStream::NotifyListenersEventImpl(MediaStreamListener::MediaStreamGraphEvent aEvent) { for (uint32_t j = 0; j < mListeners.Length(); ++j) { MediaStreamListener* l = mListeners[j]; l->NotifyEvent(GraphImpl(), aEvent); } } void SourceMediaStream::NotifyListenersEvent(MediaStreamListener::MediaStreamGraphEvent aNewEvent) { class Message : public ControlMessage { public: Message(SourceMediaStream* aStream, MediaStreamListener::MediaStreamGraphEvent aEvent) : ControlMessage(aStream), mEvent(aEvent) {} virtual void Run() { mStream->AsSourceStream()->NotifyListenersEventImpl(mEvent); } MediaStreamListener::MediaStreamGraphEvent mEvent; }; GraphImpl()->AppendMessage(new Message(this, aNewEvent)); } void SourceMediaStream::AddDirectListener(MediaStreamDirectListener* aListener) { bool wasEmpty; { MutexAutoLock lock(mMutex); wasEmpty = mDirectListeners.IsEmpty(); mDirectListeners.AppendElement(aListener); } if (wasEmpty) { // Async NotifyListenersEvent(MediaStreamListener::EVENT_HAS_DIRECT_LISTENERS); } } void SourceMediaStream::RemoveDirectListener(MediaStreamDirectListener* aListener) { bool isEmpty; { MutexAutoLock lock(mMutex); mDirectListeners.RemoveElement(aListener); isEmpty = mDirectListeners.IsEmpty(); } if (isEmpty) { // Async NotifyListenersEvent(MediaStreamListener::EVENT_HAS_NO_DIRECT_LISTENERS); } } bool SourceMediaStream::HaveEnoughBuffered(TrackID aID) { MutexAutoLock lock(mMutex); TrackData *track = FindDataForTrack(aID); if (track) { return track->mHaveEnough; } return false; } void SourceMediaStream::DispatchWhenNotEnoughBuffered(TrackID aID, nsIEventTarget* aSignalThread, nsIRunnable* aSignalRunnable) { MutexAutoLock lock(mMutex); TrackData* data = FindDataForTrack(aID); if (!data) { aSignalThread->Dispatch(aSignalRunnable, 0); return; } if (data->mHaveEnough) { if (data->mDispatchWhenNotEnough.IsEmpty()) { data->mDispatchWhenNotEnough.AppendElement()->Init(aSignalThread, aSignalRunnable); } } else { aSignalThread->Dispatch(aSignalRunnable, 0); } } void SourceMediaStream::EndTrack(TrackID aID) { MutexAutoLock lock(mMutex); // ::EndAllTrackAndFinished() can end these before the sources call this if (!mFinished) { TrackData *track = FindDataForTrack(aID); if (track) { track->mCommands |= TRACK_END; } } if (auto graph = GraphImpl()) { graph->EnsureNextIteration(); } } void SourceMediaStream::AdvanceKnownTracksTime(StreamTime aKnownTime) { MutexAutoLock lock(mMutex); MOZ_ASSERT(aKnownTime >= mUpdateKnownTracksTime); mUpdateKnownTracksTime = aKnownTime; if (auto graph = GraphImpl()) { graph->EnsureNextIteration(); } } void SourceMediaStream::FinishWithLockHeld() { mMutex.AssertCurrentThreadOwns(); mUpdateFinished = true; if (auto graph = GraphImpl()) { graph->EnsureNextIteration(); } } void SourceMediaStream::EndAllTrackAndFinish() { MutexAutoLock lock(mMutex); for (uint32_t i = 0; i < mUpdateTracks.Length(); ++i) { SourceMediaStream::TrackData* data = &mUpdateTracks[i]; data->mCommands |= TRACK_END; } FinishWithLockHeld(); // we will call NotifyEvent() to let GetUserMedia know } StreamTime SourceMediaStream::GetBufferedTicks(TrackID aID) { StreamBuffer::Track* track = mBuffer.FindTrack(aID); if (track) { MediaSegment* segment = track->GetSegment(); if (segment) { return segment->GetDuration() - GraphTimeToStreamTime(GraphImpl()->CurrentDriver()->StateComputedTime()); } } return 0; } void SourceMediaStream::RegisterForAudioMixing() { MutexAutoLock lock(mMutex); mNeedsMixing = true; } bool SourceMediaStream::NeedsMixing() { MutexAutoLock lock(mMutex); return mNeedsMixing; } void MediaInputPort::Init() { STREAM_LOG(PR_LOG_DEBUG, ("Adding MediaInputPort %p (from %p to %p) to the graph", this, mSource, mDest)); mSource->AddConsumer(this); mDest->AddInput(this); // mPortCount decremented via MediaInputPort::Destroy's message ++mDest->GraphImpl()->mPortCount; } void MediaInputPort::Disconnect() { NS_ASSERTION(!mSource == !mDest, "mSource must either both be null or both non-null"); if (!mSource) return; mSource->RemoveConsumer(this); mSource = nullptr; mDest->RemoveInput(this); mDest = nullptr; GraphImpl()->SetStreamOrderDirty(); } MediaInputPort::InputInterval MediaInputPort::GetNextInputInterval(GraphTime aTime) { InputInterval result = { GRAPH_TIME_MAX, GRAPH_TIME_MAX, false }; GraphTime t = aTime; GraphTime end; for (;;) { if (!mDest->mBlocked.GetAt(t, &end)) { break; } if (end >= GRAPH_TIME_MAX) { return result; } t = end; } result.mStart = t; GraphTime sourceEnd; result.mInputIsBlocked = mSource->mBlocked.GetAt(t, &sourceEnd); result.mEnd = std::min(end, sourceEnd); return result; } void MediaInputPort::Destroy() { class Message : public ControlMessage { public: explicit Message(MediaInputPort* aPort) : ControlMessage(nullptr), mPort(aPort) {} virtual void Run() { mPort->Disconnect(); --mPort->GraphImpl()->mPortCount; mPort->SetGraphImpl(nullptr); NS_RELEASE(mPort); } virtual void RunDuringShutdown() { Run(); } MediaInputPort* mPort; }; GraphImpl()->AppendMessage(new Message(this)); } MediaStreamGraphImpl* MediaInputPort::GraphImpl() { return mGraph; } MediaStreamGraph* MediaInputPort::Graph() { return mGraph; } void MediaInputPort::SetGraphImpl(MediaStreamGraphImpl* aGraph) { MOZ_ASSERT(!mGraph || !aGraph, "Should only be set once"); mGraph = aGraph; } already_AddRefed ProcessedMediaStream::AllocateInputPort(MediaStream* aStream, uint32_t aFlags, uint16_t aInputNumber, uint16_t aOutputNumber) { // This method creates two references to the MediaInputPort: one for // the main thread, and one for the MediaStreamGraph. class Message : public ControlMessage { public: explicit Message(MediaInputPort* aPort) : ControlMessage(aPort->GetDestination()), mPort(aPort) {} virtual void Run() { mPort->Init(); // The graph holds its reference implicitly mPort->GraphImpl()->SetStreamOrderDirty(); unused << mPort.forget(); } virtual void RunDuringShutdown() { Run(); } nsRefPtr mPort; }; nsRefPtr port = new MediaInputPort(aStream, this, aFlags, aInputNumber, aOutputNumber); port->SetGraphImpl(GraphImpl()); GraphImpl()->AppendMessage(new Message(port)); return port.forget(); } void ProcessedMediaStream::Finish() { class Message : public ControlMessage { public: explicit Message(ProcessedMediaStream* aStream) : ControlMessage(aStream) {} virtual void Run() { mStream->GraphImpl()->FinishStream(mStream); } }; GraphImpl()->AppendMessage(new Message(this)); } void ProcessedMediaStream::SetAutofinish(bool aAutofinish) { class Message : public ControlMessage { public: Message(ProcessedMediaStream* aStream, bool aAutofinish) : ControlMessage(aStream), mAutofinish(aAutofinish) {} virtual void Run() { static_cast(mStream)->SetAutofinishImpl(mAutofinish); } bool mAutofinish; }; GraphImpl()->AppendMessage(new Message(this, aAutofinish)); } void ProcessedMediaStream::DestroyImpl() { for (int32_t i = mInputs.Length() - 1; i >= 0; --i) { mInputs[i]->Disconnect(); } MediaStream::DestroyImpl(); // The stream order is only important if there are connections, in which // case MediaInputPort::Disconnect() called SetStreamOrderDirty(). // MediaStreamGraphImpl::RemoveStream() will also call // SetStreamOrderDirty(), for other reasons. } MediaStreamGraphImpl::MediaStreamGraphImpl(bool aRealtime, TrackRate aSampleRate, DOMMediaStream::TrackTypeHints aHint= DOMMediaStream::HINT_CONTENTS_UNKNOWN, dom::AudioChannel aChannel) : MediaStreamGraph(aSampleRate) , mProcessingGraphUpdateIndex(0) , mPortCount(0) , mNeedAnotherIteration(false) , mGraphDriverAsleep(false) , mMonitor("MediaStreamGraphImpl") , mLifecycleState(LIFECYCLE_THREAD_NOT_STARTED) , mEndTime(GRAPH_TIME_MAX) , mForceShutDown(false) , mPostedRunInStableStateEvent(false) , mFlushSourcesNow(false) , mFlushSourcesOnNextIteration(false) , mDetectedNotRunning(false) , mPostedRunInStableState(false) , mRealtime(aRealtime) , mNonRealtimeProcessing(false) , mStreamOrderDirty(false) , mLatencyLog(AsyncLatencyLogger::Get()) #ifdef MOZ_WEBRTC , mFarendObserverRef(nullptr) #endif , mMemoryReportMonitor("MSGIMemory") , mSelfRef(MOZ_THIS_IN_INITIALIZER_LIST()) , mAudioStreamSizes() , mNeedsMemoryReport(false) #ifdef DEBUG , mCanRunMessagesSynchronously(false) #endif , mAudioChannel(static_cast(aChannel)) { #ifdef PR_LOGGING if (!gMediaStreamGraphLog) { gMediaStreamGraphLog = PR_NewLogModule("MediaStreamGraph"); } #endif if (mRealtime) { if (aHint & DOMMediaStream::HINT_CONTENTS_AUDIO) { AudioCallbackDriver* driver = new AudioCallbackDriver(this, aChannel); mDriver = driver; mMixer.AddCallback(driver); } else { mDriver = new SystemClockDriver(this); } } else { mDriver = new OfflineClockDriver(this, MEDIA_GRAPH_TARGET_PERIOD_MS); } mLastMainThreadUpdate = TimeStamp::Now(); RegisterWeakMemoryReporter(this); } void MediaStreamGraphImpl::Destroy() { // First unregister from memory reporting. UnregisterWeakMemoryReporter(this); // Clear the self reference which will destroy this instance. mSelfRef = nullptr; } NS_IMPL_ISUPPORTS(MediaStreamGraphShutdownObserver, nsIObserver) static bool gShutdownObserverRegistered = false; namespace { PLDHashOperator ForceShutdownEnumerator(const uint32_t& /* aAudioChannel */, MediaStreamGraphImpl* aGraph, void* /* aUnused */) { aGraph->ForceShutDown(); return PL_DHASH_NEXT; } } // anonymous namespace NS_IMETHODIMP MediaStreamGraphShutdownObserver::Observe(nsISupports *aSubject, const char *aTopic, const char16_t *aData) { if (strcmp(aTopic, NS_XPCOM_SHUTDOWN_OBSERVER_ID) == 0) { gGraphs.EnumerateRead(ForceShutdownEnumerator, nullptr); nsContentUtils::UnregisterShutdownObserver(this); gShutdownObserverRegistered = false; } return NS_OK; } MediaStreamGraph* MediaStreamGraph::GetInstance(DOMMediaStream::TrackTypeHints aHint, dom::AudioChannel aChannel) { NS_ASSERTION(NS_IsMainThread(), "Main thread only"); uint32_t channel = static_cast(aChannel); MediaStreamGraphImpl* graph = nullptr; if (!gGraphs.Get(channel, &graph)) { if (!gShutdownObserverRegistered) { gShutdownObserverRegistered = true; nsContentUtils::RegisterShutdownObserver(new MediaStreamGraphShutdownObserver()); } CubebUtils::InitPreferredSampleRate(); graph = new MediaStreamGraphImpl(true, CubebUtils::PreferredSampleRate(), aHint, aChannel); gGraphs.Put(channel, graph); STREAM_LOG(PR_LOG_DEBUG, ("Starting up MediaStreamGraph %p", graph)); } return graph; } MediaStreamGraph* MediaStreamGraph::CreateNonRealtimeInstance(TrackRate aSampleRate) { NS_ASSERTION(NS_IsMainThread(), "Main thread only"); MediaStreamGraphImpl* graph = new MediaStreamGraphImpl(false, aSampleRate); STREAM_LOG(PR_LOG_DEBUG, ("Starting up Offline MediaStreamGraph %p", graph)); return graph; } void MediaStreamGraph::DestroyNonRealtimeInstance(MediaStreamGraph* aGraph) { NS_ASSERTION(NS_IsMainThread(), "Main thread only"); MOZ_ASSERT(aGraph->IsNonRealtime(), "Should not destroy the global graph here"); MediaStreamGraphImpl* graph = static_cast(aGraph); if (graph->mForceShutDown) return; // already done if (!graph->mNonRealtimeProcessing) { // Start the graph, but don't produce anything graph->StartNonRealtimeProcessing(0); } graph->ForceShutDown(); } NS_IMPL_ISUPPORTS(MediaStreamGraphImpl, nsIMemoryReporter) struct ArrayClearer { explicit ArrayClearer(nsTArray& aArray) : mArray(aArray) {} ~ArrayClearer() { mArray.Clear(); } nsTArray& mArray; }; NS_IMETHODIMP MediaStreamGraphImpl::CollectReports(nsIHandleReportCallback* aHandleReport, nsISupports* aData, bool aAnonymize) { // Clears out the report array after we're done with it. ArrayClearer reportCleanup(mAudioStreamSizes); { MonitorAutoLock memoryReportLock(mMemoryReportMonitor); mNeedsMemoryReport = true; { // Wake up the MSG thread if it's real time (Offline graphs can't be // sleeping). MonitorAutoLock monitorLock(mMonitor); if (!CurrentDriver()->AsOfflineClockDriver()) { CurrentDriver()->WakeUp(); } } if (mLifecycleState >= LIFECYCLE_WAITING_FOR_THREAD_SHUTDOWN) { // Shutting down, nothing to report. return NS_OK; } // Wait for up to one second for the report to complete. nsresult rv; const PRIntervalTime kMaxWait = PR_SecondsToInterval(1); while ((rv = memoryReportLock.Wait(kMaxWait)) != NS_OK) { if (PR_GetError() != PR_PENDING_INTERRUPT_ERROR) { return rv; } } } #define REPORT(_path, _amount, _desc) \ do { \ nsresult rv; \ rv = aHandleReport->Callback(EmptyCString(), _path, \ KIND_HEAP, UNITS_BYTES, _amount, \ NS_LITERAL_CSTRING(_desc), aData); \ NS_ENSURE_SUCCESS(rv, rv); \ } while (0) for (size_t i = 0; i < mAudioStreamSizes.Length(); i++) { const AudioNodeSizes& usage = mAudioStreamSizes[i]; const char* const nodeType = usage.mNodeType.IsEmpty() ? "" : usage.mNodeType.get(); nsPrintfCString domNodePath("explicit/webaudio/audio-node/%s/dom-nodes", nodeType); REPORT(domNodePath, usage.mDomNode, "Memory used by AudioNode DOM objects (Web Audio)."); nsPrintfCString enginePath("explicit/webaudio/audio-node/%s/engine-objects", nodeType); REPORT(enginePath, usage.mEngine, "Memory used by AudioNode engine objects (Web Audio)."); nsPrintfCString streamPath("explicit/webaudio/audio-node/%s/stream-objects", nodeType); REPORT(streamPath, usage.mStream, "Memory used by AudioNode stream objects (Web Audio)."); } size_t hrtfLoaders = WebCore::HRTFDatabaseLoader::sizeOfLoaders(MallocSizeOf); if (hrtfLoaders) { REPORT(NS_LITERAL_CSTRING( "explicit/webaudio/audio-node/PannerNode/hrtf-databases"), hrtfLoaders, "Memory used by PannerNode databases (Web Audio)."); } #undef REPORT return NS_OK; } SourceMediaStream* MediaStreamGraph::CreateSourceStream(DOMMediaStream* aWrapper) { SourceMediaStream* stream = new SourceMediaStream(aWrapper); NS_ADDREF(stream); MediaStreamGraphImpl* graph = static_cast(this); stream->SetGraphImpl(graph); graph->AppendMessage(new CreateMessage(stream)); return stream; } ProcessedMediaStream* MediaStreamGraph::CreateTrackUnionStream(DOMMediaStream* aWrapper) { TrackUnionStream* stream = new TrackUnionStream(aWrapper); NS_ADDREF(stream); MediaStreamGraphImpl* graph = static_cast(this); stream->SetGraphImpl(graph); graph->AppendMessage(new CreateMessage(stream)); return stream; } AudioNodeExternalInputStream* MediaStreamGraph::CreateAudioNodeExternalInputStream(AudioNodeEngine* aEngine, TrackRate aSampleRate) { MOZ_ASSERT(NS_IsMainThread()); if (!aSampleRate) { aSampleRate = aEngine->NodeMainThread()->Context()->SampleRate(); } AudioNodeExternalInputStream* stream = new AudioNodeExternalInputStream(aEngine, aSampleRate); NS_ADDREF(stream); MediaStreamGraphImpl* graph = static_cast(this); stream->SetGraphImpl(graph); graph->AppendMessage(new CreateMessage(stream)); return stream; } AudioNodeStream* MediaStreamGraph::CreateAudioNodeStream(AudioNodeEngine* aEngine, AudioNodeStreamKind aKind, TrackRate aSampleRate) { MOZ_ASSERT(NS_IsMainThread()); if (!aSampleRate) { aSampleRate = aEngine->NodeMainThread()->Context()->SampleRate(); } AudioNodeStream* stream = new AudioNodeStream(aEngine, aKind, aSampleRate); NS_ADDREF(stream); MediaStreamGraphImpl* graph = static_cast(this); stream->SetGraphImpl(graph); if (aEngine->HasNode()) { stream->SetChannelMixingParametersImpl(aEngine->NodeMainThread()->ChannelCount(), aEngine->NodeMainThread()->ChannelCountModeValue(), aEngine->NodeMainThread()->ChannelInterpretationValue()); } graph->AppendMessage(new CreateMessage(stream)); return stream; } bool MediaStreamGraph::IsNonRealtime() const { const MediaStreamGraphImpl* impl = static_cast(this); MediaStreamGraphImpl* graph; return !gGraphs.Get(impl->AudioChannel(), &graph) || graph != impl; } void MediaStreamGraph::StartNonRealtimeProcessing(uint32_t aTicksToProcess) { NS_ASSERTION(NS_IsMainThread(), "main thread only"); MediaStreamGraphImpl* graph = static_cast(this); NS_ASSERTION(!graph->mRealtime, "non-realtime only"); if (graph->mNonRealtimeProcessing) return; graph->mEndTime = graph->IterationEnd() + aTicksToProcess; graph->mNonRealtimeProcessing = true; graph->EnsureRunInStableState(); } void ProcessedMediaStream::AddInput(MediaInputPort* aPort) { mInputs.AppendElement(aPort); GraphImpl()->SetStreamOrderDirty(); } }