/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "mozilla/layers/ContentHost.h" #include "LayersLogging.h" // for AppendToString #include "gfx2DGlue.h" // for ContentForFormat #include "mozilla/gfx/Point.h" // for IntSize #include "mozilla/Assertions.h" // for MOZ_ASSERT, etc #include "mozilla/gfx/BaseRect.h" // for BaseRect #include "mozilla/layers/Compositor.h" // for Compositor #include "mozilla/layers/Effects.h" // for TexturedEffect, Effect, etc #include "mozilla/layers/LayersMessages.h" // for ThebesBufferData #include "nsAString.h" #include "nsPrintfCString.h" // for nsPrintfCString #include "nsString.h" // for nsAutoCString #include "mozilla/layers/TextureHostOGL.h" // for TextureHostOGL namespace mozilla { namespace gfx { class Matrix4x4; } using namespace gfx; namespace layers { ContentHostBase::ContentHostBase(const TextureInfo& aTextureInfo) : ContentHost(aTextureInfo) , mPaintWillResample(false) , mInitialised(false) {} ContentHostBase::~ContentHostBase() { } struct AutoLockContentHost { AutoLockContentHost(ContentHostBase* aHost) : mHost(aHost) { mSucceeded = mHost->Lock(); } ~AutoLockContentHost() { if (mSucceeded) { mHost->Unlock(); } } bool Failed() { return !mSucceeded; } ContentHostBase* mHost; bool mSucceeded; }; void ContentHostBase::Composite(EffectChain& aEffectChain, float aOpacity, const gfx::Matrix4x4& aTransform, const Filter& aFilter, const Rect& aClipRect, const nsIntRegion* aVisibleRegion, TiledLayerProperties* aLayerProperties) { NS_ASSERTION(aVisibleRegion, "Requires a visible region"); AutoLockContentHost lock(this); if (lock.Failed()) { return; } RefPtr source = GetTextureSource(); RefPtr sourceOnWhite = GetTextureSourceOnWhite(); if (!source) { return; } RefPtr effect = CreateTexturedEffect(source, sourceOnWhite, aFilter); if (!effect) { return; } aEffectChain.mPrimaryEffect = effect; nsIntRegion tmpRegion; const nsIntRegion* renderRegion; if (PaintWillResample()) { // If we're resampling, then the texture image will contain exactly the // entire visible region's bounds, and we should draw it all in one quad // to avoid unexpected aliasing. tmpRegion = aVisibleRegion->GetBounds(); renderRegion = &tmpRegion; } else { renderRegion = aVisibleRegion; } nsIntRegion region(*renderRegion); nsIntPoint origin = GetOriginOffset(); // translate into TexImage space, buffer origin might not be at texture (0,0) region.MoveBy(-origin); // Figure out the intersecting draw region gfx::IntSize texSize = source->GetSize(); nsIntRect textureRect = nsIntRect(0, 0, texSize.width, texSize.height); textureRect.MoveBy(region.GetBounds().TopLeft()); nsIntRegion subregion; subregion.And(region, textureRect); if (subregion.IsEmpty()) { // Region is empty, nothing to draw return; } nsIntRegion screenRects; nsIntRegion regionRects; // Collect texture/screen coordinates for drawing nsIntRegionRectIterator iter(subregion); while (const nsIntRect* iterRect = iter.Next()) { nsIntRect regionRect = *iterRect; nsIntRect screenRect = regionRect; screenRect.MoveBy(origin); screenRects.Or(screenRects, screenRect); regionRects.Or(regionRects, regionRect); } TileIterator* tileIter = source->AsTileIterator(); TileIterator* iterOnWhite = nullptr; if (tileIter) { tileIter->BeginTileIteration(); } if (sourceOnWhite) { iterOnWhite = sourceOnWhite->AsTileIterator(); MOZ_ASSERT(!tileIter || tileIter->GetTileCount() == iterOnWhite->GetTileCount(), "Tile count mismatch on component alpha texture"); if (iterOnWhite) { iterOnWhite->BeginTileIteration(); } } bool usingTiles = (tileIter && tileIter->GetTileCount() > 1); do { if (iterOnWhite) { MOZ_ASSERT(iterOnWhite->GetTileRect() == tileIter->GetTileRect(), "component alpha textures should be the same size."); } nsIntRect texRect = tileIter ? tileIter->GetTileRect() : nsIntRect(0, 0, texSize.width, texSize.height); // Draw texture. If we're using tiles, we do repeating manually, as texture // repeat would cause each individual tile to repeat instead of the // compound texture as a whole. This involves drawing at most 4 sections, // 2 for each axis that has texture repeat. for (int y = 0; y < (usingTiles ? 2 : 1); y++) { for (int x = 0; x < (usingTiles ? 2 : 1); x++) { nsIntRect currentTileRect(texRect); currentTileRect.MoveBy(x * texSize.width, y * texSize.height); nsIntRegionRectIterator screenIter(screenRects); nsIntRegionRectIterator regionIter(regionRects); const nsIntRect* screenRect; const nsIntRect* regionRect; while ((screenRect = screenIter.Next()) && (regionRect = regionIter.Next())) { nsIntRect tileScreenRect(*screenRect); nsIntRect tileRegionRect(*regionRect); // When we're using tiles, find the intersection between the tile // rect and this region rect. Tiling is then handled by the // outer for-loops and modifying the tile rect. if (usingTiles) { tileScreenRect.MoveBy(-origin); tileScreenRect = tileScreenRect.Intersect(currentTileRect); tileScreenRect.MoveBy(origin); if (tileScreenRect.IsEmpty()) continue; tileRegionRect = regionRect->Intersect(currentTileRect); tileRegionRect.MoveBy(-currentTileRect.TopLeft()); } gfx::Rect rect(tileScreenRect.x, tileScreenRect.y, tileScreenRect.width, tileScreenRect.height); effect->mTextureCoords = Rect(Float(tileRegionRect.x) / texRect.width, Float(tileRegionRect.y) / texRect.height, Float(tileRegionRect.width) / texRect.width, Float(tileRegionRect.height) / texRect.height); GetCompositor()->DrawQuad(rect, aClipRect, aEffectChain, aOpacity, aTransform); if (usingTiles) { DiagnosticTypes diagnostics = DIAGNOSTIC_CONTENT | DIAGNOSTIC_BIGIMAGE; diagnostics |= iterOnWhite ? DIAGNOSTIC_COMPONENT_ALPHA : 0; GetCompositor()->DrawDiagnostics(diagnostics, rect, aClipRect, aTransform, mFlashCounter); } } } } if (iterOnWhite) { iterOnWhite->NextTile(); } } while (usingTiles && tileIter->NextTile()); if (tileIter) { tileIter->EndTileIteration(); } if (iterOnWhite) { iterOnWhite->EndTileIteration(); } DiagnosticTypes diagnostics = DIAGNOSTIC_CONTENT; diagnostics |= iterOnWhite ? DIAGNOSTIC_COMPONENT_ALPHA : 0; GetCompositor()->DrawDiagnostics(diagnostics, *aVisibleRegion, aClipRect, aTransform, mFlashCounter); } void ContentHostTexture::UseTextureHost(TextureHost* aTexture) { ContentHostBase::UseTextureHost(aTexture); mTextureHost = aTexture; mTextureHostOnWhite = nullptr; } void ContentHostTexture::UseComponentAlphaTextures(TextureHost* aTextureOnBlack, TextureHost* aTextureOnWhite) { ContentHostBase::UseComponentAlphaTextures(aTextureOnBlack, aTextureOnWhite); mTextureHost = aTextureOnBlack; mTextureHostOnWhite = aTextureOnWhite; } void ContentHostTexture::SetCompositor(Compositor* aCompositor) { ContentHostBase::SetCompositor(aCompositor); if (mTextureHost) { mTextureHost->SetCompositor(aCompositor); } if (mTextureHostOnWhite) { mTextureHostOnWhite->SetCompositor(aCompositor); } } #ifdef MOZ_DUMP_PAINTING void ContentHostTexture::Dump(FILE* aFile, const char* aPrefix, bool aDumpHtml) { if (!aDumpHtml) { return; } if (!aFile) { aFile = stderr; } fprintf(aFile, "
    "); if (mTextureHost) { fprintf(aFile, "%s", aPrefix); fprintf(aFile, "
  • Front buffer
  • "); } if (mTextureHostOnWhite) { fprintf(aFile, "%s", aPrefix); fprintf(aFile, "
  • Front buffer on white
  • "); } fprintf(aFile, "
"); } #endif static inline void AddWrappedRegion(const nsIntRegion& aInput, nsIntRegion& aOutput, const nsIntSize& aSize, const nsIntPoint& aShift) { nsIntRegion tempRegion; tempRegion.And(nsIntRect(aShift, aSize), aInput); tempRegion.MoveBy(-aShift); aOutput.Or(aOutput, tempRegion); } bool ContentHostSingleBuffered::UpdateThebes(const ThebesBufferData& aData, const nsIntRegion& aUpdated, const nsIntRegion& aOldValidRegionBack, nsIntRegion* aUpdatedRegionBack) { aUpdatedRegionBack->SetEmpty(); if (!mTextureHost) { mInitialised = false; return true; // FIXME should we return false? Returning true for now } // to preserve existing behavior of NOT causing IPC errors. // updated is in screen coordinates. Convert it to buffer coordinates. nsIntRegion destRegion(aUpdated); destRegion.MoveBy(-aData.rect().TopLeft()); if (!aData.rect().Contains(aUpdated.GetBounds()) || aData.rotation().x > aData.rect().width || aData.rotation().y > aData.rect().height) { NS_ERROR("Invalid update data"); return false; } // destRegion is now in logical coordinates relative to the buffer, but we // need to account for rotation. We do that by moving the region to the // rotation offset and then wrapping any pixels that extend off the // bottom/right edges. // Shift to the rotation point destRegion.MoveBy(aData.rotation()); nsIntSize bufferSize = aData.rect().Size(); // Select only the pixels that are still within the buffer. nsIntRegion finalRegion; finalRegion.And(nsIntRect(nsIntPoint(), bufferSize), destRegion); // For each of the overlap areas (right, bottom-right, bottom), select those // pixels and wrap them around to the opposite edge of the buffer rect. AddWrappedRegion(destRegion, finalRegion, bufferSize, nsIntPoint(aData.rect().width, 0)); AddWrappedRegion(destRegion, finalRegion, bufferSize, nsIntPoint(aData.rect().width, aData.rect().height)); AddWrappedRegion(destRegion, finalRegion, bufferSize, nsIntPoint(0, aData.rect().height)); MOZ_ASSERT(nsIntRect(0, 0, aData.rect().width, aData.rect().height).Contains(finalRegion.GetBounds())); mTextureHost->Updated(&finalRegion); if (mTextureHostOnWhite) { mTextureHostOnWhite->Updated(&finalRegion); } mInitialised = true; mBufferRect = aData.rect(); mBufferRotation = aData.rotation(); return true; } bool ContentHostDoubleBuffered::UpdateThebes(const ThebesBufferData& aData, const nsIntRegion& aUpdated, const nsIntRegion& aOldValidRegionBack, nsIntRegion* aUpdatedRegionBack) { if (!mTextureHost) { mInitialised = false; *aUpdatedRegionBack = aUpdated; return true; } // We don't need to calculate an update region because we assume that if we // are using double buffering then we have render-to-texture and thus no // upload to do. mTextureHost->Updated(); if (mTextureHostOnWhite) { mTextureHostOnWhite->Updated(); } mInitialised = true; mBufferRect = aData.rect(); mBufferRotation = aData.rotation(); *aUpdatedRegionBack = aUpdated; // Save the current valid region of our front buffer, because if // we're double buffering, it's going to be the valid region for the // next back buffer sent back to the renderer. // // NB: we rely here on the fact that mValidRegion is initialized to // empty, and that the first time Swap() is called we don't have a // valid front buffer that we're going to return to content. mValidRegionForNextBackBuffer = aOldValidRegionBack; return true; } ContentHostIncremental::ContentHostIncremental(const TextureInfo& aTextureInfo) : ContentHostBase(aTextureInfo) , mDeAllocator(nullptr) , mLocked(false) { } ContentHostIncremental::~ContentHostIncremental() { } void ContentHostIncremental::DestroyTextures() { mSource = nullptr; mSourceOnWhite = nullptr; mUpdateList.Clear(); } void ContentHostIncremental::CreatedIncrementalTexture(ISurfaceAllocator* aAllocator, const TextureInfo& aTextureInfo, const nsIntRect& aBufferRect) { mUpdateList.AppendElement(new TextureCreationRequest(aTextureInfo, aBufferRect)); mDeAllocator = aAllocator; FlushUpdateQueue(); } void ContentHostIncremental::UpdateIncremental(TextureIdentifier aTextureId, SurfaceDescriptor& aSurface, const nsIntRegion& aUpdated, const nsIntRect& aBufferRect, const nsIntPoint& aBufferRotation) { mUpdateList.AppendElement(new TextureUpdateRequest(mDeAllocator, aTextureId, aSurface, aUpdated, aBufferRect, aBufferRotation)); FlushUpdateQueue(); } void ContentHostIncremental::FlushUpdateQueue() { // If we're not compositing for some reason (the window being minimized // is one example), then we never process these updates and it can consume // huge amounts of memory. Instead we forcibly process the updates (during the // transaction) if the list gets too long. static const uint32_t kMaxUpdateCount = 6; if (mUpdateList.Length() >= kMaxUpdateCount) { ProcessTextureUpdates(); } } void ContentHostIncremental::ProcessTextureUpdates() { for (uint32_t i = 0; i < mUpdateList.Length(); i++) { mUpdateList[i]->Execute(this); } mUpdateList.Clear(); } NewTextureSource* ContentHostIncremental::GetTextureSource() { MOZ_ASSERT(mLocked); return mSource; } NewTextureSource* ContentHostIncremental::GetTextureSourceOnWhite() { MOZ_ASSERT(mLocked); return mSourceOnWhite; } void ContentHostIncremental::TextureCreationRequest::Execute(ContentHostIncremental* aHost) { Compositor* compositor = aHost->GetCompositor(); MOZ_ASSERT(compositor); RefPtr temp = compositor->CreateDataTextureSource(mTextureInfo.mTextureFlags); MOZ_ASSERT(temp->AsSourceOGL() && temp->AsSourceOGL()->AsTextureImageTextureSource()); RefPtr newSource = temp->AsSourceOGL()->AsTextureImageTextureSource(); RefPtr newSourceOnWhite; if (mTextureInfo.mTextureFlags & TEXTURE_COMPONENT_ALPHA) { temp = compositor->CreateDataTextureSource(mTextureInfo.mTextureFlags); MOZ_ASSERT(temp->AsSourceOGL() && temp->AsSourceOGL()->AsTextureImageTextureSource()); newSourceOnWhite = temp->AsSourceOGL()->AsTextureImageTextureSource(); } if (mTextureInfo.mDeprecatedTextureHostFlags & TEXTURE_HOST_COPY_PREVIOUS) { nsIntRect bufferRect = aHost->mBufferRect; nsIntPoint bufferRotation = aHost->mBufferRotation; nsIntRect overlap; // The buffer looks like: // ______ // |1 |2 | Where the center point is offset by mBufferRotation from the top-left corner. // |___|__| // |3 |4 | // |___|__| // // This is drawn to the screen as: // ______ // |4 |3 | Where the center point is { width - mBufferRotation.x, height - mBufferRotation.y } from // |___|__| from the top left corner - rotationPoint. // |2 |1 | // |___|__| // // The basic idea below is to take all quadrant rectangles from the src and transform them into rectangles // in the destination. Unfortunately, it seems it is overly complex and could perhaps be simplified. nsIntRect srcBufferSpaceBottomRight(bufferRotation.x, bufferRotation.y, bufferRect.width - bufferRotation.x, bufferRect.height - bufferRotation.y); nsIntRect srcBufferSpaceTopRight(bufferRotation.x, 0, bufferRect.width - bufferRotation.x, bufferRotation.y); nsIntRect srcBufferSpaceTopLeft(0, 0, bufferRotation.x, bufferRotation.y); nsIntRect srcBufferSpaceBottomLeft(0, bufferRotation.y, bufferRotation.x, bufferRect.height - bufferRotation.y); overlap.IntersectRect(bufferRect, mBufferRect); nsIntRect srcRect(overlap), dstRect(overlap); srcRect.MoveBy(- bufferRect.TopLeft() + bufferRotation); nsIntRect srcRectDrawTopRight(srcRect); nsIntRect srcRectDrawTopLeft(srcRect); nsIntRect srcRectDrawBottomLeft(srcRect); // transform into the different quadrants srcRectDrawTopRight .MoveBy(-nsIntPoint(0, bufferRect.height)); srcRectDrawTopLeft .MoveBy(-nsIntPoint(bufferRect.width, bufferRect.height)); srcRectDrawBottomLeft.MoveBy(-nsIntPoint(bufferRect.width, 0)); // Intersect with the quadrant srcRect = srcRect .Intersect(srcBufferSpaceBottomRight); srcRectDrawTopRight = srcRectDrawTopRight .Intersect(srcBufferSpaceTopRight); srcRectDrawTopLeft = srcRectDrawTopLeft .Intersect(srcBufferSpaceTopLeft); srcRectDrawBottomLeft = srcRectDrawBottomLeft.Intersect(srcBufferSpaceBottomLeft); dstRect = srcRect; nsIntRect dstRectDrawTopRight(srcRectDrawTopRight); nsIntRect dstRectDrawTopLeft(srcRectDrawTopLeft); nsIntRect dstRectDrawBottomLeft(srcRectDrawBottomLeft); // transform back to src buffer space dstRect .MoveBy(-bufferRotation); dstRectDrawTopRight .MoveBy(-bufferRotation + nsIntPoint(0, bufferRect.height)); dstRectDrawTopLeft .MoveBy(-bufferRotation + nsIntPoint(bufferRect.width, bufferRect.height)); dstRectDrawBottomLeft.MoveBy(-bufferRotation + nsIntPoint(bufferRect.width, 0)); // transform back to draw coordinates dstRect .MoveBy(bufferRect.TopLeft()); dstRectDrawTopRight .MoveBy(bufferRect.TopLeft()); dstRectDrawTopLeft .MoveBy(bufferRect.TopLeft()); dstRectDrawBottomLeft.MoveBy(bufferRect.TopLeft()); // transform to destBuffer space dstRect .MoveBy(-mBufferRect.TopLeft()); dstRectDrawTopRight .MoveBy(-mBufferRect.TopLeft()); dstRectDrawTopLeft .MoveBy(-mBufferRect.TopLeft()); dstRectDrawBottomLeft.MoveBy(-mBufferRect.TopLeft()); newSource->EnsureBuffer(mBufferRect.Size(), ContentForFormat(aHost->mSource->GetFormat())); aHost->mSource->CopyTo(srcRect, newSource, dstRect); if (bufferRotation != nsIntPoint(0, 0)) { // Draw the remaining quadrants. We call BlitTextureImage 3 extra // times instead of doing a single draw call because supporting that // with a tiled source is quite tricky. if (!srcRectDrawTopRight.IsEmpty()) aHost->mSource->CopyTo(srcRectDrawTopRight, newSource, dstRectDrawTopRight); if (!srcRectDrawTopLeft.IsEmpty()) aHost->mSource->CopyTo(srcRectDrawTopLeft, newSource, dstRectDrawTopLeft); if (!srcRectDrawBottomLeft.IsEmpty()) aHost->mSource->CopyTo(srcRectDrawBottomLeft, newSource, dstRectDrawBottomLeft); } if (newSourceOnWhite) { newSourceOnWhite->EnsureBuffer(mBufferRect.Size(), ContentForFormat(aHost->mSourceOnWhite->GetFormat())); aHost->mSourceOnWhite->CopyTo(srcRect, newSourceOnWhite, dstRect); if (bufferRotation != nsIntPoint(0, 0)) { // draw the remaining quadrants if (!srcRectDrawTopRight.IsEmpty()) aHost->mSourceOnWhite->CopyTo(srcRectDrawTopRight, newSourceOnWhite, dstRectDrawTopRight); if (!srcRectDrawTopLeft.IsEmpty()) aHost->mSourceOnWhite->CopyTo(srcRectDrawTopLeft, newSourceOnWhite, dstRectDrawTopLeft); if (!srcRectDrawBottomLeft.IsEmpty()) aHost->mSourceOnWhite->CopyTo(srcRectDrawBottomLeft, newSourceOnWhite, dstRectDrawBottomLeft); } } } aHost->mSource = newSource; aHost->mSourceOnWhite = newSourceOnWhite; aHost->mBufferRect = mBufferRect; aHost->mBufferRotation = nsIntPoint(); } nsIntRect ContentHostIncremental::TextureUpdateRequest::GetQuadrantRectangle(XSide aXSide, YSide aYSide) const { // quadrantTranslation is the amount we translate the top-left // of the quadrant by to get coordinates relative to the layer nsIntPoint quadrantTranslation = -mBufferRotation; quadrantTranslation.x += aXSide == LEFT ? mBufferRect.width : 0; quadrantTranslation.y += aYSide == TOP ? mBufferRect.height : 0; return mBufferRect + quadrantTranslation; } void ContentHostIncremental::TextureUpdateRequest::Execute(ContentHostIncremental* aHost) { nsIntRect drawBounds = mUpdated.GetBounds(); aHost->mBufferRect = mBufferRect; aHost->mBufferRotation = mBufferRotation; // Figure out which quadrant to draw in int32_t xBoundary = mBufferRect.XMost() - mBufferRotation.x; int32_t yBoundary = mBufferRect.YMost() - mBufferRotation.y; XSide sideX = drawBounds.XMost() <= xBoundary ? RIGHT : LEFT; YSide sideY = drawBounds.YMost() <= yBoundary ? BOTTOM : TOP; nsIntRect quadrantRect = GetQuadrantRectangle(sideX, sideY); NS_ASSERTION(quadrantRect.Contains(drawBounds), "Messed up quadrants"); mUpdated.MoveBy(-nsIntPoint(quadrantRect.x, quadrantRect.y)); IntPoint offset = ToIntPoint(-mUpdated.GetBounds().TopLeft()); RefPtr surf = GetSurfaceForDescriptor(mDescriptor); if (mTextureId == TextureFront) { aHost->mSource->Update(surf, &mUpdated, &offset); } else { aHost->mSourceOnWhite->Update(surf, &mUpdated, &offset); } } void ContentHostTexture::PrintInfo(nsACString& aTo, const char* aPrefix) { aTo += aPrefix; aTo += nsPrintfCString("ContentHost (0x%p)", this); AppendToString(aTo, mBufferRect, " [buffer-rect=", "]"); AppendToString(aTo, mBufferRotation, " [buffer-rotation=", "]"); if (PaintWillResample()) { aTo += " [paint-will-resample]"; } nsAutoCString pfx(aPrefix); pfx += " "; if (mTextureHost) { aTo += "\n"; mTextureHost->PrintInfo(aTo, pfx.get()); } } LayerRenderState ContentHostTexture::GetRenderState() { if (!mTextureHost) { return LayerRenderState(); } LayerRenderState result = mTextureHost->GetRenderState(); if (mBufferRotation != nsIntPoint()) { result.mFlags |= LAYER_RENDER_STATE_BUFFER_ROTATION; } result.SetOffset(GetOriginOffset()); return result; } #ifdef MOZ_DUMP_PAINTING TemporaryRef ContentHostTexture::GetAsSurface() { if (!mTextureHost) { return nullptr; } return mTextureHost->GetAsSurface(); } #endif } // namespace } // namespace